
ELECTRONIC HEALTH RECORD PHENOTYPING TO FACILITATE THE 

CATEGORIZATION OF GENETIC VARIANTS OF UNCERTAIN SIGNIFICANCE 

By 

Jennifer A. Pacheco 

A CAPSTONE PROJECT 

Presented to the Department of Medical Informatics and Clinical Epidemiology 

and the Oregon Health & Science University 

School of Medicine 

in partial fulfillment of 

the requirements for the degree of 

Master of Science 

March 2020 



School of Medicine 

Oregon Health & Science University 

        CERTIFICATE OF APPROVAL 

This is to certify that the Master’s Capstone Project of 

Jennifer Allen Pacheco 

“Electronic Health Record Phenotyping to Facilitate the Categorization of Genetic 

Variants of Uncertain Significance” 

Has been approved 

_________________________________________ 

Capstone Advisor 

Michael Mooney, PhD 



Page i of iv 

TABLE OF CONTENTS 
Chapter 1 INTRODUCTION ........................................................................................... 1 

Background................................................................................................................. 1 

Objective ..................................................................................................................... 4 

Assumptions ............................................................................................................... 6 

Chapter 2 MATERIALS AND METHODS ....................................................................... 7 

Study population ......................................................................................................... 7 

Genotyping methods ................................................................................................... 8 

Phenotyping methods ................................................................................................10 

Figure 1. Phenotyping Algorithms ..............................................................................12 

Table 1. Phecode to ICD diagnosis code map ...........................................................13 

Data Analysis and Validation .....................................................................................14 

Chapter 3 RESULTS ......................................................................................................17 

Table 2. Demographics by cohort ..............................................................................18 

Figure 2a. Phenotype algorithm results by genetic variant, cohort a (WGS) ...............22 

Figure 2b. Phenotype algorithm results by genetic variant, cohort b (eMERGEseq) ...24 

Figure 3a. Genetic variants by phenotype algorithm result, cohort a (WGS) ..............25 

Figure 3b. Genetic variants by phenotype algorithm result, cohort b (eMERGEseq) ..26 

Table 3. VUSs that occur in > 1 subject .....................................................................29 

Table 4. VUS proportions by race/ethnicity ................................................................31 

Chapter 4 DISCUSSION ................................................................................................31 

Caveats and Limitations .............................................................................................37 

Future work ................................................................................................................37 

Chapter 5 Summary and Conclusions ............................................................................39 

Chapter 6 References ...................................................................................................41 

Chapter 7 APPENDIX A: Supplemental Tables .............................................................50 

Supplemental Table 1. Gene mutation types by variant type by cohort ......................50 

Supplemental Tables 2a-d. Accuracy of algorithms with confusion matrices ..............51 

Chapter 8 APPENDIX B: Definition of major terms ........................................................53 



Page ii of iv 

 

ACKNOWLEDGMENTS 

 

I acknowledge and sincerely thank the following groups and people: 

 

The NUgene project, especially the Director Maureen Smith, and Washington University 

School of Medicine McDonnell Genome Institute, Tess Pottinger and Megan Puckelwartz 

for the WGS cohort genetic data, and for their moral support and feedback.  Maureen 

inspired me to pursue the topic of this project and Tess gave me the data I needed.  

 

The eMERGE project, Baylor College of Medicine Genetics Laboratories, Rex Chisholm, 

Maureen Smith, Laura J. Rasmussen-Torvik, Christie Hoell, Adam Gordon for the 

eMERGEseq cohort genetic data, and for their moral support and feedback.  Also other 

eMERGE colleagues including Hana Zouk for her insight and expertise, Iftikhar Kullo 

and others for their inspiring work on familial hypercholesterolemia. Last but not least, 

Abel Kho who introduced me to the field of biomedical informatics and encouraged me 

to pursue this degree, and for his continued encouragement. 

  

Beth Wilmot and Michael Mooney for their invaluable mentorship, advice, feedback, and 

patience as Capstone advisors. Without them this would not have been possible. 

 

All other faculty and staff in the Department of Medical Informatics and Clinical 

Epidemiology at the Oregon Health & Science University, for their support and for their 

rigorous academic program in biomedical informatics which has taught me so much. 

Especially Bill Hersh as both the director and my first teacher in the program; Diane 

Doctor for the advice and taking care of countless details; and Vishnu Mohan and Judy 

Logan whom I had for multiple classes, not just because they taught some required 

classes, but because they were great teachers.  In fact, all of the teachers I had in this 

program were good. 

 

All other members of my department where I work at Northwestern University, the 

Center for Genetic Medicine, for moral support and insight. 

 

My husband, Cesar Pacheco, for both his moral support and for taking care of everything 

from cooking to cleaning to being my chauffer all the years I was working on this degree 

and project. I have been a part-time student from the beginning of our courtship 

throughout our entire marriage.  Also my other family members and friends, especially 

my parents and my in-laws, and my best friend Jin-hee Bae, for their moral and other 

support, and especially for listening to me go on and on about this project, and for 

cajoling me to keep going.  



Page iii of iv 

ABSTRACT 

Objective 

Many genetic variants are of unknown significance (VUS).  Efficient and accurate 

electronic health record (EHR) phenotyping, having facilitated genome-wide association 

studies, could identify patients with VUSs who exhibit phenotypic features that might 

indicate pathogenicity of those variants.  Identifying and following up with these patients 

could improve their healthcare, and assist in improving genetic variant categorization.  

Methods 

Subjects (N=3860) were recruited at Northwestern Medicine for 2 studies and 

genotyped on 2 separate platforms.  Each study’s platform genotyped the 3 genes 

containing variants that collectively explain ~40% of diagnosed cases of familial 

hypercholesterolemia (HC) (FH).  Rare variants in these genes were queried for 

pathogenic/likely pathogenic (P/LP), conflicting interpretations of pathogenicity (CPV), 

and VUS classifications; and unreported non-synonymous variants (URV) were noted.  

Four EHR phenotype algorithms of varying complexity were implemented:  2 

algorithms, for primary HC (PH) and FH; a subset of the PH algorithm: maximum low-

density lipoprotein (LDL) without recurring high triglycerides (high LDL); and ICD 

diagnosis codes, grouped into phecodes for HC.  The distribution of genetic variants, the 

distribution of the phenotypes found by the algorithms, and the overlap thereof, was 

examined.  VUSs found in multiple subjects were further scrutinized to assess HC 

phenotypes in those subjects, and variant characteristics, to tentatively determine 

whether those VUSs lean toward being pathogenic or benign. 
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Summary of Results 

Of the 24 patients with P/LP FH variants, 21 were found by any algorithm to have HC in 

the EHR. Furthermore, just over half of the patients with VUSs, CPVs, or URVs, but no 

P/LP variants, were found to have HC. As expected, the phecode algorithm (the 

simplest), found the most patients with HC with P/LP variants (21), or other queried 

variant types.  Both the high LDL and PH algorithms found a similar number of HC 

patients with P/LP variants or other variants, although overall PH found more than the 

high LDL algorithm. As expected, the FH algorithm (the strictest), found the least 

number of patients with HC with P/LP variants (3) or other variants (15).   The phecode 

algorithm found all patients having P/LP variants with evidence of HC. However, both 

the phecode and PH algorithms were needed to identify all of the patients having VUSs, 

CPVs and/or URVs with evidence of HC. Thus, for patients with FH genetic variants, 

both of those algorithms are needed to identify patients for diagnostic evaluation. 

Twenty-five VUSs were identified in more than 1 subject. For 21 of these VUSs, the vast 

majority of subjects had evidence of HC in their EHR, indicating those VUSs may be 

pathogenic; thus, the 82 subjects who had those VUSs should be further investigated.   

Conclusion 

With further assessment, these methods, combined with other data, could be used to 

identify phenotypes in patients with VUSs, URVs, or CPVs, which in turn could facilitate 

the functional categorization of those variants as either pathogenic or benign. 
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Chapter 1 INTRODUCTION  

Background 

Variants of unknown significance (VUSs) in genes are often incidentally found with 

genetic testing (Kalia et al.; Safarova, Klee, et al.).  These variants have unclear 

implications for patients and physicians, and the problem of interpreting the 

consequences of genetic variants is becoming more urgent as broader genetic testing is 

becoming more popular (Kalia et al.; Hooper et al.).  We need more efficient ways to 

check for clinical manifestations of relevant diseases in large numbers of individuals with 

VUSs, especially in genes for which the American College of Medical Genetics and 

Genomics (ACMG) recommends returning secondary findings of pathogenic or likely 

pathogenic (P/LP) variants (Kalia et al.).  Validated electronic health record (EHR) 

phenotyping algorithms could be used to discover clinical manifestations of VUSs 

efficiently in larger populations.  Given the relative success of EHR phenotyping for 

extracting phenotypic data for genome-wide association studies (GWAS) (Rasmussen-

Torvik et al.; Kho, Pacheco, et al.; Pathak et al.; Gottesman et al.; Klarin et al.), using 

published algorithms, or subsets thereof, could also be used to identify patients with 

phenotypes possibly associated with VUSs.  In order to test these algorithms, we need to 

explore which offers the greatest yield in terms of detecting clinical manifestations of 

disease in those with a VUS, while minimizing time and effort to extract phenotypic data 

from the EHR, to determine which phenotypes patients have.  

Genomic sequencing for clinical care is becoming more prevalent, and from this more 

VUSs are found, which are not known if clinically actionable (Kalia et al.; Iacocca et 

al.).  Thus, we need an efficient way to check for any clinical significance of these VUSs.  

A pipeline using biomedical informatics, specifically data mining of clinical data (from 
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the EHR), could be used to discover possible disease associations with VUSs in genes 

already known to have P/LP variants that cause the given disease. For example, some 

studies (Safarova, Klee, et al.; Chora et al.) have re-classified VUSs, in genes with 

variants that cause familial hypercholesterolemia (FH), as likely pathogenic, or likely 

benign.  Another example is cancer studies that have revealed VUSs in BRCA1 and 

BRCA2 genes whose classification changed to be benign (Kast et al.).  Similarly, for 

cardiac disease it has been difficult to determine pathogenicity of genetic variants 

associated with cardiomyopathies (Ackerman).  

EHR data has been used to determine if patients have relevant phenotypes for GWAS 

(Rasmussen-Torvik et al.; Pacheco et al.; Jeff et al.; Kho, Hayes, et al.; Klarin et al.). 

Conversely, EHR data has been used for phenome-wide association studies (PheWAS) 

(Denny, Ritchie, et al.; Denny, Bastarache, et al.), to discover what other phenotypes 

patients have for genetic variants known to cause disease.  Many genetic variants are 

VUS, and determining pathogenicity of genetic variants is important yet can be difficult; 

thus, efficient yet accurate EHR phenotyping could facilitate identifying patients for 

follow-up, and possibly subsequent genetic variant categorization.  In particular if 

multiple patients have the same VUS and most either do, or do not, exhibit a phenotype 

associated with the gene in which the VUS occurs, then those VUSs would warrant 

further investigation for possible categorization of either likely pathogenic or likely 

benign. 

Familial hypercholesterolemia (FH) was primarily selected for this pilot study because of 

the significantly larger number of patients in our study populations with the FH 

phenotype and/or pathogenic variants in genes known to cause FH.  More importantly, 

FH confers a high risk of premature coronary artery disease (Wierzbicki et al.; Kramer et 

al.; Lan et al.; Akioyamen et al.) and studies have shown that a significant number of 
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patients with FH go undiagnosed and/or untreated, with an estimated 1 in ~250 people 

having FH (Kramer et al.; Banda et al.; Myers et al.).  In particular, a recent study found 

only about half of patients found to have FH via genetic testing were on a statin and even 

less were diagnosed with FH before the testing was done (Abul-Husn et al.), and 

suggested that analyzing EHR data could be used to uncover these un- or under-

diagnosed patients for treatment.  Also, phenotyping for FH can be done using mostly 

structured data in the EHR which can be abstracted without manual review of patients’ 

charts, as the diagnosis is mostly based on high low-density lipoprotein levels (LDL), 

personal history of cardiovascular disease, plus sometimes also family history and/or 

specific physical symptoms (xanthomas and corneal arcus) (Humphries et al.; Séguro et 

al.).   

In addition, genetic testing is recommended for patients with suspected FH (Sturm et al.; 

Stein et al.), yet, there are many VUSs in FH genes (Calandra et al.), ranging anywhere 

from 10% to over 40% of variants in FH genes reported to ClinVar, depending on the 

gene (Iacocca et al.). Furthermore, when pathogenic variants are found in genes known 

to cause FH, there is clear action to take, namely, cholesterol lowering drugs and in 

extreme cases, lipopheresis (Wierzbicki et al.). Sometimes, when genetic testing is done 

based on suspicion of FH, VUSs are considered to warrant such action by the clinician. 

Furthermore, with broader genetic testing being done without any specific diagnosis as 

an indication for the testing, VUSs cannot necessarily be interpreted in the same way 

(Ambry Genetics).  For example, a recent study showed great “variability” (Safarova, 

Klee, et al.) in classifying FH variants, and another found many variants suspected of 

causing FH that do not have evidence of functional change to warrant pathogenic 

classification (Chora et al.).  Furthermore, a PheWAS of genetic variants associated with 

FH found that phecodes related to lipid disorders were associated with those variants as 
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expected, and were also associated with a non-lipid disorder (Safarova, Satterfield, et 

al.).   A more recent study found that VUSs in genes associated with cardiac disorders, 

including FH, occurred more frequently in African-Americans (Pottinger Tess D. et al.), 

warranting further investigation of these VUSs. 

Lastly, EHR phenotyping methods are evolving such that phenotype algorithms, usually 

created in laborious collaboration between informaticists and clinicians, can be instead 

created using more efficient methods such as by using phecodes (Bastarache et al.; 

Safarova, Satterfield, et al.; Denny, Bastarache, et al.; Denny, Ritchie, et al.) or machine 

learning (Pathak et al.; Hripcsak and Albers; Beaulieu-Jones and Greene; Liao et al.; Yu 

et al.).  For example, recently a machine learning algorithm was developed to identify 

patients with possible FH in the EHR by training and testing a random forest 

classification algorithm against known cases, which successfully identified three-

quarters of patients with known FH (Banda et al.). 

Objective 

The overall objective of this study is to evaluate phenotyping algorithms that use clinical 

data from EHRs to identify subjects with known genetic risk factors for 

hypercholesterolemia (i.e. P/LP variants in FH genes). Subsequently we aim to use those 

same algorithms to identify subjects with evidence of HC and VUSs in the FH genes. In 

addition, VUS that occur in more than one subject, where a majority of the subjects with 

the same VUS either have HC, or not, will be prioritized for follow up as these VUSs are 

more likely to be P/LP, or benign/likely benign (B/LB), variants. This will then allow us 

to meet the next objective which is to identify subjects with VUSs in FH genes and with 

HC for further investigation and potential follow-up to confirm their phenotype, and to 

improve their healthcare if they have an HC phenotype and are not adequately treated. 
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Subsequently, the phenotypic findings for these VUSs, especially in VUSs in > 1 subject, 

should be reported to ClinVar to assist in a final objective, a clearer categorization of the 

variants.   

Thus, we will assess how to use more efficient phenotyping methods to find potential 

correlations between genotypes, especially LP/P variants and VUSs, and 

phenotypes.  The purpose of this pilot study is to test different methods of extracting and 

analyzing diagnostic data (via database queries, i.e., not chart review) from the EHR to 

find diseases associated with VUSs, especially those in ACMG genes. 

Our hypothesis is that there is a tradeoff between using common, easier to extract data 

versus more difficult to extract, less common, data from the EHR to characterize patients 

with P/LP or VUS variants in selected genes, as either having disease manifestations 

associated with those genes or not.  Specifically, we expect to find a higher percentage of 

patients with P/LP variants, and possibly some VUS in genes, especially VUSs occurring 

in more than 1 subject, with evidence of disease, by using a broader phenotype algorithm 

that uses more data from the EHR.  However, simply using phecodes (Denny, Ritchie, et 

al.; Denny, Ritchie, et al.) may still find a similar percentage of patients, which could be 

good enough. Also, it is also expected that if most of these patients are older, for there to 

be some evidence of FH, or at least HC, if they have FH. Lastly, given the previously 

observed penetrance of up to 96% (Kullo et al.; Kullo), the majority should have FH, or 

at least HC, if they have P/LP variants in FH genes. 

Furthermore, some VUSs may be more likely to be pathogenic if seen in > 1 subject that 

manifested the expected phenotype.  However, most P/LP variants, including those in 

FH genes, are not 100% penetrant (Shah et al.; Kullo et al.); therefore, not all subjects 

with P/LP variants are expected to have manifestations of the disease.   
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Assumptions 

 

1.  EHR data is sufficient to find at least some evidence of a given phenotype, including 

more structured but potentially less accurate data, such as billing codes, if the data is 

used appropriately (i.e., codes grouped into logical phenotype codes such as phecodes for 

PheWAS studies) (Denny, Bastarache, et al.).  However, EHR data likely contains an 

incomplete record of a subject’s health and healthcare, especially at an academic medical 

center like Northwestern Medicine (NM) where this study is being conducted, where 

subjects may only seek tertiary care. Thus, many subjects may only see the clinicians 

most likely to diagnosis FH, such as primary care and/or cardiology clinicians, outside of 

NM. 

 

2. Genotypic assumption(s): Only variants with a significant minor allele frequency 

(MAF) have been studied (Pottinger Tess D. et al.; Zouk et al.), and each variant has been 

studied individually (negating the need for burden testing).   Not all subjects with P/LP 

variants in FH genes will have the HC disease phenotype, as the currently known P/LP 

variants in FH genes are not 100% penetrant (Shah et al.; Kullo et al.; Kullo).   

 

3. Phenotypic assumption(s): For data from the EHR (and not the phecodes derived from 

billing data), using existing algorithms, or parts thereof, will be faster than consulting 

with clinicians to determine phenotypic inclusion and exclusion criteria; however, we 

will likely still need to consult with clinicians to check if the results of any of the 

algorithms make sense clinically.   

 

In summary, it is expected that there will be 1 or more phenotyping algorithms that are 

better at identifying HC in the EHR, and although not all subjects with P/LP variants in 
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FH genes will have HC, most will; thus, the same algorithms can be used to identify 

subjects with HC who also have VUSs.  This would allow for the identification of subjects 

and VUSs for follow-up, for proper treatment for subjects with these VUSs that might be 

P/LP, and for eventual clearer categorization of these VUSs as either P/LP or B/LB. 

Chapter 2 MATERIALS AND METHODS 

Study population 

Patients (N=3860) were recruited at NM, an academic tertiary hospital/healthcare 

system, for two studies.  Participants were genotyped on two separate platforms (see 

details below for each study). DNA variants in three genes, LDLR, APOB, and PCSK9, 

across all participants, were examined, given the evidence that variants in these genes 

collectively explain ~40% of diagnosed cases of FH (Sharifi et al.). 

The first study was a selection of 894 NM patients enrolled in the NUgene DNA biobank 

at Northwestern University (NU), who were selected by the NUgene team to have whole 

genome sequencing (WGS) (Pottinger Tess D. et al.); thus, this cohort will be referred to 

as the WGS cohort. They had to be NM patients seen in an NM clinic in the last few years 

at the time of the study, who did not already have broad genotyping. Furthermore, 

patients were selected such that approximately half were male, and such that the 

distribution of self-reported minority races/ethnicities approximated the following 

proportions:  African American (~40%), Caucasian (~20%), and/or Hispanic/Latino 

(~40%) race/ethnicity, in order to conduct subsequent genetic studies of minorities who 

are typically under-represented in such studies (Pottinger Tess D. et al.).  Approximately 

one-quarter were also selected for having one of 4 phenotypes: atopic dermatitis (AD, 

N=95), cardiomyopathy (N=56), cancer (N=118), using International Classification of 

Diseases (ICD) diagnosis codes, Current Procedural Terminology (CPT) codes, and/or 
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medications; and chronic rhinosinusitis (CRS, N=180), using a previously published 

algorithm (Hsu et al.).  

The second study, a part of the eMERGE (electronic Medical Records and Genomics) 

project’s phase III Return of Results study (Zouk et al.), called the “Genetic Testing and 

your Health” study at NM, recruited ~3,000 NM patients for genetic testing to be 

returned to them and their clinical providers to study both patients’ and providers’ 

perceived utility of broader genetic testing.  The genotyping panel called eMERGEseq 

was created by the eMERGE network, to contain the 59 aforementioned ACMG genes 

(Kalia et al.), plus ~41 other genes and some selected single nucleotide polymorphisms 

(SNPs) selected by the network to be of interest for the purposes of the study, including 

some for pharmacogenomics (Zouk et al.). Thus, this cohort will be referred to as the 

eMERGEseq cohort.   

A subset of the patients in both cohorts were recruited by the respective NUgene and 

eMERGE teams, for specific indications and/or specialty clinics, including a lipid 

disorder clinic (N=283), of which a majority (N=246) were recruited for the eMERGEseq 

cohort. In this lipid clinic, some patients who already had hypercholesterolemia were 

selected, but also spouses and relatives of those patients without hypercholesterolemia 

were recruited.  Other specific indications included a few other phenotypes, especially 

those related to the genotypes being extracted for eMERGEseq, such as cardiac diseases, 

and certain cancers, as mentioned previously. 

Genotyping methods 

Both studies consented patients and collected blood samples from which DNA was 

extracted, using NU Institutional Review Board approved protocols. In addition, only the 

eMERGEseq cohort used Clinical Laboratory Improvement Amendments (CLIA) 
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standards in CLIA certified labs (Baylor Genetics Laboratories) (Zouk et al.), as it was the 

only study of the 2 to return the genetic testing results to the patients in the study. For 

the WGS cohort, rare variants in these genes were queried in ClinVar (National Center 

for Biotechnology Information, U.S., ClinVar) for (P/LP, which were grouped together) 

and VUS classifications, by Pottinger et. al. (Pottinger Tess D. et al.). 

For the WGS cohort, the WGS was performed at McDonnell Genome Institute at 

Washington University, then researchers at NU used ClinVar designations to determine 

pathogenicity of genetic variants (Pottinger Tess D. et al.). These included VUSs, and 

variants with conflicting interpretations of pathogenicity (CPVs) in ClinVar, which 

although they are technically VUSs, they are also a separate category from VUS: CPVs 

are VUSs that have multiple conflicting interpretations reported to ClinVar which 

include reports of pathogenicity.  Unreported variants (URVs, not reported to ClinVar) 

that were nonsynonymous substitutions (variants that cause a change in an amino acid 

which thus results in changes to the protein) were also collected by Pottinger et. al. 

(Pottinger Tess D. et al.).   

For the eMERGEseq cohort, genotyping was done by Baylor Genetics Laboratories who 

determined variant designation by using ACMG guidelines, and by consulting ClinVar, 

and other sources, such as disease indication for patients with prior disease indicated as 

the reason for testing.    Other sources expert curators also used to determine the 

classifications included published literature, and phenotypic information from the EHR. 

VUSs included the types of genetic mutations listed in Supplemental Table 1, and URVs 

included non-synonymous coding variants plus other mutation types, also listed in 

Supplemental Table 1. There were also no CPVs in eMERGEseq because the expert 

curators at Baylor lab investigated questionable variants by requesting and reviewing 

additional relevant EHR data, to resolve the conflict and assign CPVs, and sometimes 
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VUSs, as either P/LP, VUS, or B/LB.  Lastly, Baylor also provided details on the exact 

mutations; thus, for this cohort we examined whether any VUSs occurred in more than 

one participant. 

Phenotyping methods 

The EHR was examined using four phenotype algorithms of varying complexity (Figure 

1), to determine whether subjects had hypercholesterolemia (HC), and if so, which type 

they might have.  Two algorithms were developed by Mayo Clinic (Safarova, Liu, et al.) 

and subsequently used by the eMERGE network for primary HC (PH) and FH 

(Electronic Health Record-Based Phenotyping Algorithm for Familial 

Hypercholesterolemia | PheKB). This algorithm defined FH cases as having “definite” or 

“probable” FH per Dutch Lipid Clinic Network (DLCN) criteria (Séguro et al.); thus, 

those that are “possible” FH (3-5 points using DLCN) (Séguro et al.) are categorized as 

just having PH, and grouped with those with “unlikely” FH (0-2 DLCN points) (Séguro et 

al.) into 1 PH category.  Thus, those who had “possible” FH were also calculated 

separately for this pilot study. In addition, a subset of the PH algorithm was used to 

determine maximum low-density lipoprotein (LDL) per patient, specifically selecting the 

maximum LDL, without making any adjustments for lipid lowering treatments, for 

patients who did not have abnormally high triglycerides on more than 1 occasion, as 

these laboratory measures are more common and more easily extracted from the EHR.   
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Figure 1. Phenotyping Algorithms 

EHR phenotyping algorithms for simple high LDL without recurring high triglycerides, primary 

and familial hypercholesterolemia (PH and FH) (Safarova, Liu, et al.), and simply any 

hypercholesterolemia phecode.  Note these case types are not mutually exclusive, i.e. a patient can 

be more than 1 type of hypercholesterolemia case. Number of subjects that meet each case criteria 

and percentage of the respective cohort are shown:  a=WGS cohort, b=eMERGEseq cohort, 

c=both cohorts combined (note there is overlap between the cohorts, i.e., there are 31 subjects in 

both cohorts); LDL=Low-density lipoprotein. 

Lastly, for the fourth algorithm, phecodes used for PheWAS were mapped to ICD 

diagnosis codes (using maps 1.2 and 1.2b1 from PheWAScatalog.org) (Wei et al.; P. Wu et 

al.) found in the EHR.  Then phecodes (Table 1), which are groupings of ICD diagnosis 

codes into phenotypes for genetic association studies, shown to be associated with 

hypercholesterolemia or hyperlipidemia, were selected from a 2019 PheWAS of genetic 

variants in the 3 FH genes (Safarova, Satterfield, et al.), which map to the following ICD-

codes shown in Table 1.  For this algorithm, subjects were noted as have HC if they had at 

least 1 of these phecodes (Table 1). 

If patients did not have evidence of HC in their EHR, it was assumed they are either 

healthy, or their EHR is lacking sufficient data to determine HC status.  Thus, the 

number and percentage of patients with any LDL lab results was noted as LDL 

measurements are what is used to diagnosis HC, and if a patient does not have any LDL 

results, their HC phenotype status may not be able to be determined.  Also, earliest age 

of diagnosis for any of these disorders was calculated based on the dates of diagnosis in 

the EHR, as shown in Table 1, or earliest LDL measure >= 155 mg/dL. 
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corresponding ICD-9-CM 
codes 
  

corresponding ICD-10-CM 
codes 
  

phe-
code phenotype code description code description 

272 
Disorders of 
lipoid 
metabolism 

272 Pure hypercholesterolemia 

  

272.1 Pure hyperglyceridemia 

272.2 Mixed hyperlipidemia 

272.3 Hyperchylomicronemia 

272.4 
Other and unspecified 
hyperlipidemia 

272.9 
Unspecified disorder of 
lipoid metabolism 

272.1 
Hyper-
lipidemia 

272 Pure hypercholesterolemia E78.4 Other hyperlipidemia 

272.1 Pure hyperglyceridemia E78.5 
Hyperlipidemia, 
unspecified 

272.2 Mixed hyperlipidemia 

  
272.3 Hyperchylomicronemia 

272.4 
Other and unspecified 
hyperlipidemia 

272.11 
Hyper-
cholesterol-
emia 

272.* Pure hypercholesterolemia 

E78.0 
Pure 
hypercholesterolemia 

E78.00 
Pure 
hypercholesterolemia
, unspecified 

E78.01 
Familial 
hypercholesterolemia 

272.13 
Mixed 
hyperlipid-
emia 

272.2 Mixed hyperlipidemia E78.2 
Mixed 
hyperlipidemia 

Table 1. Phecode to ICD diagnosis code map 

Phecodes used to determine diagnosis of hypercholesterolemia, associated with variants in FH 

genes in PheWAS (Safarova, Satterfield, et al.) 

Due to the clinical diagnosis of FH first requiring a patient to be diagnosed with PH, and 

due to the multiple types of data (lab test results, diagnosis codes) that can be used to 

determine patients’ phenotypes, note that patients can have more than 1 

hypercholesterolemia phenotype: in particular, a patient can have both PH, FH, and high 

LDLs, and phecodes for those disorders.  Furthermore, patients can have several 
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mutations or variants in a single gene or across the 3 FH genes. Thus, when comparing 

patients’ phenotypes and genotypes, mutually exclusive groups of patients were created 

in a hierarchical fashion, such that the most severe phenotype (FH) and severe genotype 

(P/LP) were first selected, and then excluding those patients already selected with the 

most severe, patients with the next most potentially severe phenotype (PH without FH) 

and genotype (CPVs or VUSs without any P/LP variants) were grouped, followed lastly 

by the least severe phenotype and genotype (VUS or URVs). 

Data Analysis and Validation 

First, to assess if there were statistically significant differences between the demographic 

characteristics of the 2 cohorts, both chi-squared and Fisher’s exact tests (using KNIME 

Analytics Platform, available from knime.com) were performed to compare gender, plus 

each race and ethnicity, between cohorts.  In addition, Mann–Whitney–Wilcoxon tests 

(using KNIME Statistics Nodes (Labs), available from knime.com) were performed to 

test if the current ages, and ages at first diagnosis or first high LDL for subjects with 

phenotypic evidence of HC, differed significantly.  Mann–Whitney–Wilcoxon tests were 

used as the distribution of those ages, especially in the eMERGEseq cohort, were skewed:  

most of subjects were older.  Note that because the 31 subjects who are in both cohorts 

comprise only approximately 10% of the total number of subjects, those subjects were 

counted in both cohorts when comparing them, and the tests were also performed by 

excluding those 31 subjects from both cohorts, to make sure they did not affect the 

results. 

Secondly, results of previous validations of the FH algorithm were gathered, and 

validation on the algorithms used in this study was performed where possible, to assess 

the accuracy of the algorithms.  Specifically, when Mayo originally developed the FH 
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algorithm, they reviewed the charts of approximately 100 cases and 100 controls, 

resulting in sensitivity, or recall, of 97%; specificity of 94%; positive predictive value 

(PPV), or precision, of 94%; and negative predictive value (NPV) of 97% (Safarova, Liu, 

et al.).  Then, when Mayo subsequently validated the algorithm for use across the 

eMERGE network, by reviewing the charts of an additional 58 cases and 42 controls, the 

PPV of the algorithm was 100%, and the NPV was 98% (Mayo Clinic).  In addition, 

another eMERGE site, Geisinger Health System, validated Mayo’s FH algorithm on 25 

cases and 25 controls, resulting in a PPV of 100% and NPV of 96% (Geisinger). Although 

the algorithms used were validated in previous studies, additional validation was 

performed where possible. Specifically, for the eMERGEseq cohort, de-identified 

outcomes forms were completed via chart review by the eMERGE network to assess 

patients’ disease status before and after the return of P/LP variants, including both FH 

and PH. This included assessing if patients received lipid-lowering treatment for PH or 

FH before and/or after the return of those results. Thus, for additional validation, 

outcomes data, for patients with P/LP variants in FH genes, was searched to confirm if 

the subjects with penetrant disease (not all were expected to have FH given previously 

observed penetrance of < 100%) are found using the above phenotyping methods, to 

calculate accuracy statistics including precision (PPV) and recall (sensitivity). 

The following analyses were performed to analyze if diagnostic data extracted from the 

EHR can be used to find possible correlations with genetic variants known to cause 

disease (P/LP genetic variants).  Further analyses were done to subsequently test, if, 

using the same phenotyping methods of EHR data, we can find any genetic VUSs in 

patients with those diseases, or vice versa.  First, we assessed the overlap of patients with 

P/LP FH variants and VUSs in the FH genes, and patients with HC according to the 

different algorithms, and then vice versa.  
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Specifically, first, descriptive statistics were calculated including percentages of patients 

that have any manifestation of disease using each of the phenotyping methods outlined 

above. Then, differences in percentages between the different types of EHR data extraction 

methods, as outlined above, were compared. Secondly, descriptive statistics were 

generated, for patients with P/LP genetic variants and VUSs (from eMERGE or Clinvar), 

and for the WGS cohort, also for CPVs and URVs, of which phenotypes they have, and vice 

versa, to assess overlap of the phenotypes and genotypes. 

In addition, to verify patients had sufficient EHR data to be able to determine the 

presence or absence of hypercholesterolemia, whether patients had any non-zero LDL 

lab results were noted.  As only ICD-10 (not ICD-9) has a specific diagnosis code for FH, 

and having more recent encounter(s) with diagnoses indicates recent health assessment, 

it was also noted whether patients had any ICD-10 diagnosis codes in any clinical 

encounters within the last ~5 years (specifically since October 1, 2015, when ICD-10 was 

mandated for use in EHRs the United Status in order to qualify for meaningful use 

reimbursement) (Bert et al.).  Furthermore, subjects with the ICD-10 diagnosis code 

specific to FH (E78.01), were compared to subjects who had FH according to the 

algorithms, for further tentative confirmation of patients having FH. 

Finally, for the eMERGEseq cohort which had detailed information on the VUSs in FH 

genes subjects had, those VUSs that occurred in more than 1 subject were further 

analyzed by examining the number of subjects with each of those VUSs, and the 

phenotypes they had from the EHR (and if they even had any relevant EHR data).  In 

addition, the type of mutation by gene was also examined, as previous studies have 

shown penetrance of the FH phenotype to vary by gene and, of course, by type of 

mutation (i.e. the more severe the effect of the mutation the more likely FH will occur) 

(Shah et al.; Kullo et al.; Kullo). Lastly, the number of VUSs, CPVs, and URVs were 
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compared across races and ethnicities, as previous studies have seen that minorities have 

a larger proportion of VUSs, compared to the majority Caucasian population, in both 

cancer and cardiac phenotypes (Pottinger Tess D. et al.; Landry and Rehm; Slavin et al.; 

Caswell-Jin et al.).   

Chapter 3 RESULTS 

Table 2 summarizes the demographic characteristics of the two study cohorts, including 

the ages when patients with H.C. were first found to have H.C. in the EHR. For those 

with no evidence of H.C. using the phenotyping methods described herein, current ages 

are shown.  Subjects in the WGS cohort are slightly younger, and have more diverse 

races/ethnicities than those in the eMERGEseq cohort due to the targeted selection of 

minorities for the WGS cohort; in fact, all of the demographics are significantly different 

between the 2 cohorts (p-values <= 0.03 from chi-squared and Mann–Whitney–

Wilcoxon tests). 

  WGS eMERGEseq 

p-values   N % N % 

Total number of patients 894   2995     

Sex (Male) 307 34.3% 1156 38.6% 2.1103E-02 

Hispanic/Latinx* 340 38.0% 180 6.0% 1.4655E-134 

Race (Caucasian)* 610 68.2% 2406 80.3% 2.7379E-14 

Race (African)* 343 38.4% 405 13.5% 1.8979E-61 

Race (Asian)* 18 2.0% 152 5.1% 8.5205E-05 

Race (Native American/Alaska 
Native)* 70 7.8% 31 1.0% 3.6428E-29 

Race (Pacific 
Islander/Hawaiian)* 10 1.1% 14 0.5% 2.9142E-02 

  mean SD mean SD   

age at diagnosis for subjs w/ 
phenotype 47.2 10.5 58.1 11.7 0.0000E+00 

current age for subjs w/o 
phenotype 48.4 10.3 51.4 15.8 3.7603E-03 
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Table 2. Demographics by cohort 

Demographic characteristics of both cohorts in this study.  *Some patients reported more than 1 

race/ethnicity; thus, the total for all races/ethnicities is >100%.  p-values are  from chi-squared 

and Mann–Whitney–Wilcoxon test, as described in the methods. 

There are coincidentally 31 subjects who are in both cohorts, and for those subjects the 

genotype results are generally the same between the 2 studies, with the following 

exceptions.  First, all 31 have URVs in FH genes reported for the WGS study, that Baylor 

did not report in the eMERGEseq study, as eMERGE did not report URVs.  In addition, 

because Baylor resolved CPVs to be either P/LP, B/LB, or VUSs, 1 out of 13 subjects with 

CPVs reported in the WGS study were classified in the eMERGEseq study by Baylor as 

VUS, and the rest (N=12) were classified as B/LB.  Lastly, there is one subject who has a 

VUS in the WGS study that is not reported in the eMERGEseq study, again, because 

Baylor resolved CPVs and VUS variants in the eMERGEseq study where possible.   

Figure 1 (in the Methods section above) shows the number of patients found by each of 

the algorithms, in addition to the number of subjects who had any LDL lab results or any 

ICD diagnosis codes (from an encounter or in the problem list, in the last 5 years) in 

their NM EHR.  Approximately 80% of subjects in both cohorts had at least 1 LDL 

measure, and 17-20% had HC according to the high LDL algorithm.  Furthermore, 

almost all had at least 1 ICD-10 diagnosis code from a recent (since 2015) encounter, and 

55-61% had phecodes for HC.  Lastly, just over 20% had evidence of PH, and just over 1% 

had evidence of FH.    

For algorithm validation, the results of comparing the chart review results of the 18 

subjects in the eMERGEseq cohort with P/LP variants, to the results of the phenotype 

algorithms for those subjects, are shown in Supplementary Tables 2a-d.  Of the 18 
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subjects for whom there were outcomes forms in the eMERGEseq cohort, 17 were 

confirmed in the outcomes forms to have HC if not PH or FH, and 1 was confirmed to not 

have HC at all.  Furthermore, all 17 subjects confirmed to have HC via chart review were 

found to have HC by at least 1 algorithm, and no algorithms found the 1 patient 

confirmed to not have to HC, to have HC.  Only the phecode algorithm was 100% 

accurate, with 100% precision and recall; however, the PH algorithm also performed well 

with 82.4% recall and 100% precision, resulting in an overall accuracy of 83.3%.  The FH 

algorithm had the worst performance with 55.6% accuracy overall, only 22.2% recall, and 

66.7% precision.  Lastly, the high LDL algorithm was more accurate than the FH 

algorithm, with 66.7% accuracy and 100% precision, but with 64.7% recall.  Also, as part 

of that validation, it was found that of the 18 eMERGEseq cohort subjects with P/LP 

variants in FH genes, half (N=9) had an FH diagnosis before genetic testing, and of those 

that did not have an FH diagnosis before, 5 had an HC diagnosis; thus, the remaining 4 

did not have a diagnosis of HC before testing, according to their abstracted outcomes 

data from eMERGE. Furthermore, 15 of these 18 subjects were on an LLT before genetic 

testing, 1 after, and thus 2 did not receive LLT before or after receiving the genetic test 

results.  

In addition, across both cohorts, only 18 subjects had the ICD-10 code for FH and have 

both HC phenotype and FH genotype data, and of those half (N=9) have “definite,” 

“probable,” or “possible” FH and were also found by the high LDL algorithm; 5 (27.7%) 

have PH; and all had phecodes for HC. Furthermore, of the 18 subjects with the ICD-10 

code for FH, 5 (27.7%) have P/LP variants in FH genes; 3 (16.7%) have VUSs in FH 

genes; and 4 (22.2%) have URVs in FH genes.  In addition, as mentioned previously, 283 

subjects across both cohorts were enrolled from a lipid disorders clinic, and of those, 270 

(95.4%) have both an HC phenotype in the EHR and an FH genotype, of which 80 
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(29.6%) have “definite,” “probable,” or “possible” FH; 114 (42.2%) have PH; 90 (33.3%) 

have high LDL; and all but 1 subject had phecodes for HC (and that 1 subject had an FH 

genotype but no evidence of an HC phenotype). 

Figures 2a-b summarize the number of patients found to have HC and/or FH via the 4 

algorithms, stratified by genetic variant classification, and Figures 3a-b summarize the 

number of patients with the different types of genetic variants, stratified by phenotype 

algorithm classification, by showing the overlap of the algorithms as Euler or Venn 

diagrams.  There are separate figures for each cohort, where a = WGS cohort and 

b=eMERGEseq cohort. 

To determine whether the phenotyping algorithms were truly identifying the relevant 

subjects, we examined how many subjects in each phenotypic category had known risk 

variants (i.e. P/LP variants).  From both cohorts, of the 24 patients with P/LP FH 

variants, 21 were found to have HC via any algorithm. All of the 3 that did not have HC 

did not have any LDL lab results in their NM EHR and one did not even have any 

problem list diagnoses in the EHR; thus, those patients may have HC that is not 

recorded in their NM EHR.  Of those 21 found to have any HC, only 3 had “definite” or 

“probable” FH, but, of those that did not have (“definite” or “probable”) FH, 9 had PH 

with “possible” FH per DLCN criteria, and all had phecodes for HC. As seen in Figure 2a, 

in the WGS cohort (N=894), only 4 of the 6 subjects with P/LP variants had HC and 

none of them were found to have FH.  However, 2 of the 4 with HC actually had 

“possible” FH according to DLCN criteria, and of those 2 without HC evidence in their 

EHR, both had no LDL lab results in their EHR.  

Given the number of subjects classified as FH or PH who did not have P/LP variants, but 

did have VUSs, we next examined which phenotypic criteria subjects with those variants 
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met.  As the analysis of the WGS study resulted in additional variant types (CPVs and 

URVs) that are not P/LP nor B/LB, other than VUSs, those were also examined 

separately.  In particular, in the WGS cohort seen in Figure 2a, 324 patients with 

variants with conflicting interpretations of pathogenicity were found to have HC, and of 

the 246 not found to have HC, all but 57 did have LDL lab results; of those with HC, 7 

had “definite” or “probable” FH while 44, of the 110 with PH, had “possible” FH, for a 

total of 51 with “possible,” “probable,” or “definite” FH; and 214 or approximately two-

thirds of those found to have HC were only found using phecodes.  Of the 9 patients with 

VUSs (but not VUSs that are CPVs), 8 patients with VUSs were found to have HC, 5 had 

PH, of which 2 had “possible” FH, and one-third (N=3) were found with phecodes only, 

and the 1 patient not found to have HC did have an LDL lab result and other diagnoses 

from recent encounters recorded in their NM EHR. Furthermore, of the remaining 308 

subjects with only URVs, approximately one-third (N=130) had no HC phenotype, 

although 26 of those patients had other diagnoses but no LDL lab results; 4 had FH; 

approximately one-quarter (79) had PH, of which 33 had “possible” FH, for a total of 37 

with “possible,” “probable” or “definite” FH; and approximately one-third (N=98) were 

found to have HC only using phecodes. 
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Figure 2a. Phenotype algorithm results by genetic variant, 

cohort a (WGS)  

Counts and percentages of subjects with phenotypes by distinct genotypes in the WGS (a) cohort. 

P/LP = Pathogenic/Likely Pathogenic variant, CPV = Conflicting Pathogenic variant 

interpretations, VUS = Variant of Unknown Significance (but not any P/LP), URV = unreported 

variant (only).  Phenotype algorithms: blue = LDL (high low-density lipoprotein without high 

triglycerides on >=2 days), yellow = PH (primary hypercholesterolemia (HC)), red = FH (familial 
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HC), green = phecode for HC or hyperlipidemia, purple = no H.C. (hypercholesterolemia) 

phenotype in EHR; note that overlapping areas are a mixture of the component colors. 

Similarly, in Figure 2b, of the 18 eMERGEseq subjects with P/LP variants, all but 1 had 

evidence of HC, and although only 3 had FH, 7 the 13 with PH did have “possible” FH, 

for a total of 10 out of 18 with “possible,” “probable” or “definite” FH.  Notably, phecodes 

were the only indication of HC for approximately one-quarter of the patients, i.e. none of 

the other 3 algorithms found 4, out of the 18 patients with P/LP variants in eMERGEseq, 

to have HC.  For the 1 subject with no evidence of HC, there were no LDL lab results in 

the EHR.  For the 165 eMERGEseq subjects with VUSs, approximately two-thirds had 

evidence of HC, and of the approximately one-third (N=52) who did not, only 33 had any 

LDL lab results in their EHR.  Of those found to have HC, 4 had FH; 40 had PH, of which 

12 had “possible” FH; and almost half (N=72 (43.6%)) only had evidence of HC found via 

phecodes. 
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Figure 2b. Phenotype algorithm results by genetic variant, 

cohort b (eMERGEseq) 

Counts and percentages of subjects with phenotypes by distinct genotypes in the eMERGEseq (b) 

cohort. Legend is the same as for Fig. 2a above.  Note there were no CPVs nor URVs in the FH 

genes in the eMERGEseq cohort (b). 

Next, to determine the number of subjects found by the phenotyping algorithms and how 

many of those had each variant type, we created similar figures by cohort.  Figure 3a 

shows 11 WGS subjects with evidence of FH in their EHR as mostly having CPVs, with 

the remaining approximately one-third having URVs. Of those found to have PH without 

FH, all had a variant in the FH genes that was not known to be B/LB:  more than half 

had CPVs, and of those, 44 had “possible” FH; 4 had P/LP variants of which 2 had 

“possible” FH, and of the remaining 188 with URVs, 33 had “possible” FH, for a total of 

92 with “possible,” “probable,” or “definite” FH. Lastly of the 316 found to have HC via 

phecodes only, all but 1 had a possibly pathogenic variant: most had at least 1 URV, ~2/3 

had at least 1 CPV, and only ~3% had a VUS. 
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Figure 3a. Genetic variants by phenotype algorithm result, 

cohort a (WGS) 

Counts and percentages of genotypes by distinct phenotypes in the WGS (a) cohort.  FH = 

Familial Hypercholesterolemia (HC) algorithm, PH = Primary HC algorithm. Genetic variant 

types:  red = P/LP (pathogenic/likely pathogenic), blue = CPV (conflicting pathogenic variant), 

yellow = VUS (variant of unknown significance), purple = URV (unreported variant), green = no 

variants; note that overlapping areas are a mixture of the component colors. 

Finally, Figure 3b shows a majority of the eMERGEseq subjects found to have FH having 

no variants, with < 10 % each having P/LP variants or VUSs.  Of those found to have PH, 

only a small percentage of those have P/LP variants, and of those, 7 (3.8%) had 

“possible” FH.  Lastly, of the 1,238 subjects found to have HC only by using phecodes, 
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only a small percentage had P/LP (0.3%) variants or VUSs (5.8%), and the remaining 

majority had no possibly pathogenic variants.  

 

Figure 3b. Genetic variants by phenotype algorithm result, 

cohort b (eMERGEseq) 

Counts and percentages of genotypes by distinct phenotypes in the eMERGEseq (b) cohort.  

Legend is the same as for Fig. 3a above. 

There were no URVs in FH genes in the eMERGEseq cohort. Also, as stated in the 

methods, there were no CPVs reported in eMERGEseq.  In particular, as mentioned 

previously, there was 1 subject who was in both cohorts, and from the WGS cohort, who 

had 7 CPVs in ClinVar; however, in the eMERGEseq study Baylor lab assigned 6 of those 

7 variants as B/LB variants, and the remaining CPV as a VUS. 
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Next, to determine if some VUSs occurred in > 1 subject with evidence of HC, we 

examined the details of the VUSs, where possible.  The results of comparing subjects 

with the exact same VUSs in FH genes is shown in Table 3, which list details for the 25 

VUSs in FH genes in the WGS cohort that were seen in > 1 subject.  Of those 25 VUSs, 21 

(84.0%) had half or more (>=50%) of the subjects with that VUS exhibiting an HC 

phenotype. In other words, of 101 subjects with those 25 VUSs, 82 (81.1%) of those 

subjects had evidence of an HC phenotype in their EHR, for 21, collectively, of the VUSs.  

The VUSs in Table 3 are order in order from most to least likely to be pathogenic.  In 

particular, the penetrance of FH from LDLR mutations is higher than those in APOB, 

which are higher than those in PCSK9, at least across the entire eMERGE network of 

~25,000 subjects genotyped on the eMERGEseq platform, of which 128 had P/LP 

variants in FH genes and had outcomes forms filled out (Kullo).  Furthermore, certain 

types of mutations, such as deletions and splices, are more severe than simple 

nonsynonymous mutations and thus also more likely to be pathogenic.  Also VUSs that 

have more subjects with the VUS and a higher percentage of those subjects with HC, 

especially if FH or PH, might be more likely to be pathogenic.  As noted in the legend for 

Table 3, evidence for each VUS to lean pathogenic vs. benign vs. still uncertain is 

highlighted in green, blue, and yellow, respectively.  It is also highlighted if some of the 

subjects did not have LDL tested nor any other diagnoses in their EHR, as the lack of 

these types of data in the EHR make it difficult if not impossible to determine their HC 

status. 
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   Number of subjects in eMERGEseq cohort with: 

Gene 

Mutation 

Type 

VUS 

Genomic 

Info. 

V 

U 

S 

any HC 

(N (%)) 

def-

inite 

or 

prob-

able 

FH 

PH & 

poss-

ible 

FH 

PH 

(& 

not 

FH) 

phe-

code(s) 

only 

any

LDL 

labs 

no 

LDL 

labs 

nor 

any 

diag-

no-

sis 

in 

her 

LDLR 

Nonsynon-

ymous 

11240278 

G>A 6 5 (83.3 %) 0 1 1 3 5 1 

LDLR 

Nonsynon-

ymous 

11231164 

G>A 3 3 (100 %) 0 0 0 3 3 0 

LDLR 

Nonsynon-

ymous 

11224014 

G>A 2 2 (100 %) 1 0 1 0 2 0 

LDLR 

Nonsynon-

ymous 

11200282 

G>A 2 2 (100 %) 0 0 1 1 2 0 

LDLR 

Nonsynon-

ymous 

11233940 

G>A 2 2 (100 %) 0 0 1 1 2 0 

LDLR 

Nonsynon-

ymous 

11224398 

G>A 2 2 (100 %) 0 0 0 2 2 0 

LDLR Intronic 

11216301 

C>T 3 3 (100 %) 0 0 1 2 2 0 

APOB 

Deletion 

(nonframe-

shift) 

21233099 

_21233101

del 12 5 (41.7 %) 0 0 3 2 10 0 

APOB 

Splice 

region 

21249840 

A>T 6 6 (100 %) 0 0 0 6 6 0 

APOB 

Nonsynon-

ymous 

21238367 

C>T 10 5 (50 %) 0 0 1 4 10 0 

APOB 

Nonsynon-

ymous 

21238323 

G>A 9 7 (77.8 %) 0 0 3 4 9 0 

APOB 

Nonsynon-

ymous 

21225491 

A>G 7 6 (85.7 %) 1 1 2 2 6 0 

APOB 

Nonsynon-

ymous 

21234674 

C>T 7 4 (57.1 %) 0 1 2 1 7 0 

APOB 

Nonsynon-

ymous 

21232044 

C>T 4 4 (100 %) 0 1 1 2 4 0 

APOB 

Nonsynon-

ymous 

21229032 

G>A 4 4 (100 %) 0 0 1 3 4 0 



Page 29 of 54 

   Number of subjects in eMERGEseq cohort with: 

Gene 

Mutation 

Type 

VUS 

Genomic 

Info. 

V 

U 

S 

any HC 

(N (%)) 

def-

inite 

or 

prob-

able 

FH 

PH & 

poss-

ible 

FH 

PH 

(& 

not 

FH) 

phe-

code(s) 

only 

any

LDL 

labs 

no 

LDL 

labs 

nor 

any 

diag-

no-

sis 

in 

her 

APOB 

Nonsynon-

ymous 

21229068 

G>A 2 2 (100 %) 0 0 1 1 2 0 

APOB 

Nonsynon-

ymous 

21227979 

C>T 2 2 (100 %) 0 0 0 2 1 0 

APOB 

Nonsynon-

ymous 

21260933 

G>A 2 1 (50 %) 1 0 0 0 1 0 

APOB 

Nonsynon-

ymous 

21232455 

A>T 2 1 (50 %) 0 0 0 1 2 0 

APOB 

Nonsynon-

ymous 

21231190 

A>C 2 1 (50 %) 0 0 0 1 1 0 

APOB 

Nonsynon-

ymous 

21228437 

A>G 2 0 (0 %) 0 0 0 0 1 0 

PCSK9 

Nonsynon-

ymous 

55505679 

G>A 3 3 (100 %) 0 0 1 2 3 0 

PCSK9 

Nonsynon-

ymous 

55518374 

C>T 3 1 (33.3 %) 0 0 0 1 1 0 

PCSK9 

Nonsynon-

ymous 

55523779 

C>A 2 1 (50 %) 0 0 1 0 2 0 

PCSK9 

Nonsynon-

ymous 

55518422 

C>T 2 0 (0 %) 0 0 0 0 1 0 

Table 3. VUSs that occur in > 1 subject 

Number of subjects in the WGS cohort for each VUS that occurs in >1 subject, with number & 

percentage of those who have HC by phenotype. Highlighted cells indicate evidence for each VUS 

to possibly be either pathogenic or benign as follows:  green = favor pathogenic, yellow = maybe 

pathogenic, blue = favor benign. 
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Lastly, to determine if there were differences in the amount and type of VUSs between 

different races/ethnicities, as has been seen in previous cardiac disease studies in 

particular (Pottinger Tess D. et al.; Landry and Rehm), we examined the proportion of 

these types of variants for each race and ethnic group. Table 4 shows the number of 

subjects with VUSs, CPVs, and URVs across race and ethnicities, across both cohorts.    

Minorities, especially African-Americans, and Hispanics/Latinx, Native 

Americans/Alaska Natives, and Pacific Islanders/Hawaiians, have approximately twice 

as many VUSs, CPVs, or URVs than Caucasians, percentage-wise. Specifically:  

approximately one-third (34.3%) of Caucasians have VUSs, CPVs, or URVs; while 

approximately a half or more of African-Americans (58.6%), Native Americans (80.9%), 

Pacific Islanders (68.8%) and Hispanics (80.4%) have those types of variants.  The only 

exception are Asians who have a similar percentage (32.6%) of subjects with VUSs, 

CPVs, or URVs compared to Caucasians. When breaking down by the individual 

classifications of these variants, VUSs (but no CPVs nor URVs), are lowest in Native 

Americans (3.4%) and Hispanics (4.8%), a little higher and about the same in Caucasians 

(6.5%) and Africans (7.1%),  and highest in Asians (14%) and Pacific Islanders (12.4%).  

The difference is much higher when including CPVs with other VUSs:  approximately 

one-quarter of Caucasians (21.5%) and Asians (24.4%) and 31.2% of Pacific Islanders 

have VUSs including CPVs variants; compared to, almost half (44.1%) of Hispanics, just 

over half (51.4%) of Africans, and approximately two-thirds of Native Americans 

(66.3%).  Finally, the difference is the highest when comparing just URVs:  Asians have 

the lowest at 20.9% and Caucasians are not much higher at 28.6%; yet, half of Africans 

(53.8%) and Pacific Islanders (56.2%) have URVs, and Hispanics (77.4%) and Native 

Americans (78.7%) have more than three-quarters with URVs. 
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Number (%) of subjects with: 

Race/ 
Ethnicity 

Total  
across 
both 
cohorts 

Total 
VUSs 
inc. 
CPVs, 
and/or 
URVs 

VUSs 
inc. 
CPVs** 

VUSs 
** URVs** 

Hispanic/ 
Latinx* 438 

352 
(80.4%) 

193 
(44.1%) 

21 
(4.8%) 

339 
(77.4%) 

Caucasian* 2135 
732 

(34.3%) 
458 

(21.5%) 
139 

(6.5%) 
610 

(28.6%) 

African* 638 
374 

(58.6%) 
328 

(51.4%) 
45 

(7.1%) 
343 

(53.8%) 

Asian* 86 
28 

(32.6%) 
21 

(24.4%) 
12 

(14%) 
18 

(20.9%) 
Native 
American/ 
Alaska Native* 89 

72 
(80.9%) 

59 
(66.3%) 

3 
(3.4%) 

70 
(78.7%) 

Pacific 
Islander/ 
Hawaiian* 16 

11 
(68.8%) 

5 
(31.2%) 

2 
(12.5%) 

9 
(56.2%) 

 Table 4. VUS proportions by race/ethnicity 

Number & percentage of subjects across both cohorts, with the various types of variants of 

uncertain/unknown significance.  VUS = variant of unknown significance, CPV = conflicting 

pathogenic variant, URV = unreported variant. Higher percentages of subjects in certain 

races/ethnicities, compared to other races/ethnicities, are highlighted. *Some patients reported 

more than 1 race/ethnicity; thus, the total for all races/ethnicities is >100%. **Similarly, some 

patients will have multiple types of uncertain variants, including VUSs, CPVs, and/or URVs; thus, 

the total across VUSs inc. CPV, VUSs, and URVs is >100%. 

Chapter 4 DISCUSSION 

It was expected that if there were significantly more patients found by 1 or more of the 

different phenotyping algorithms and the algorithms are found to be valid (most patients 

known to have disease found by the methods), then the algorithm(s) that identify more 

patients could be used to power future research, including genotype-phenotype 
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association studies, for finding phenotypes associated with VUSs.  Also, given the 

previously reported prevalence of up to 96% (Shah et al.; Kullo et al.; Kullo), and the 

older age of many of these patients (average age > 47), evidence in the EHR was expected 

of the manifestation of at least HC for the majority of those with P/LP variants and/or 

FH.  

The validation results in other studies were sufficient to show that the FH algorithm 

performs well with >= 94% precision and 97% recall.  In this study the validation results 

were similar for the PH and phecode algorithms, with precision at 100% for both, and 

recall at 82.4% and 100%, respectively.  For this research, recall is more important, even 

at the sacrifice of lower precision, because it is more important not to miss any patients, 

so that more FH patients can be diagnosed and treated where possible. Also, the next 

step would be to follow-up with these patients to verify their phenotype, so lower 

precision is acceptable. Thus, the high LDL algorithm would not suffice even though the 

precision is 100%, as its recall is less than tw0-thirds.  The only algorithm that did not 

perform well overall was the FH algorithm with less than one-quarter recall and only 

two-thirds precision.  Inadequately documented family history in the EHR, either due to 

the history not being fully documented or being documented only in clinical narrative 

text, may be reason the FH algorithm did not perform as well (Safarova and Kullo; 

Mehrabi et al.).  The results show that no single phenotyping algorithm found all 

relevant patients:  even though the phecode algorithm did identify all patients with P/LP 

variants with HC, the phecode algorithm did not identify all patients with VUSs, CPVs, 

and/or URVs with evidence of HC.  However, using both phecodes and the PH algorithm 

identified all (100%) of the patients VUSs, CPVs, and/or URVs with evidence of HC, as 

seen by the overlap of algorithms in the Euler diagrams in Figures 2a and 2b.    These 

Euler diagrams show the high LDL and FH algorithms being almost completely covered 
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by the PH algorithm, with a non-trivial percentage of patients being found by phecodes 

only; and is also illustrated by the higher number of patients with variants in the Euler 

diagrams in Figure 2 being found by the PH (but not FH) and phecode (but not FH, PH, 

or high LDL) algorithms.  In hindsight, it seems almost obvious that PH would be the 

best algorithm compared to FH and high LDL algorithms, as the PH algorithm is a 

prerequisite for the FH algorithm and the high LDL algorithm is a subset of the PH 

algorithm.  However, what was also found by this pilot study that might not be expected, 

is that there is a substantial proportion of the 643 patients across both cohorts with any 

type of variant, other than B/LB variants, in FH genes that were found to have HC via 

phecodes only (N=391 (60.1%)).  In particular, 82% (N=2458) of those with an FH 

genotype and/or HC phenotype data (N=2795) had phecodes for HC.   

In particular, summarizing across both cohorts, as seen in Figures 2 and 3, the phecode 

algorithm (the simplest algorithm), found the most patients with HC with P/LP variants, 

specifically 87.5% of those with P/LP variants (N=21), or VUSs including CPVs and 

URVs.  Not all, but a significant proportion, from 22.2% with P/LP variants to 43.6% 

without P/LP variants but with VUSs, CPVs or URVs, were found only by using phecodes 

across both cohorts.  Both the highest LDL and PH algorithms found a similar 

proportion of HC patients with P/LP variants or VUSs including CPVs and URVs, 

overall.  Lastly, as expected, the FH algorithm (the strictest and most complex 

algorithm), found the least number of patients overall with HC with P/LP (N= 3) 

variants or VUSs including CPVs and URVs (N= 15), as illustrated in Figure 3. Note there 

were no subjects who only had high low-density lipoprotein labs >= 155 mg/dL (i.e., all 

of those with high LDLs had PH or FH). 

Overall 99% of subjects did have recent ICD-10 diagnosis codes for any diagnosis, and 

over 80% had at least 1 LDL lab result; therefore, it is expected that the phenotyping 
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algorithms would find evidence of HC if the subjects had HC.  However, the eMERGEseq 

outcome forms indicated that not all of those with P/LP variants were diagnosed with 

FH or HC before genetic test results were given: only 77.7% (N=14) were, which indicates 

it might be hard for a phenotype algorithm to detect HC before genetic testing if almost a 

quarter of the patients weren’t even diagnosed at that time.  Thus, subjects that had P/LP 

variants but no evidence of HC were scrutinized further to ensure this was not due to 

lack of relevant EHR data.  Of the 3 subjects with FH P/LP variants across both cohorts 

who did not have evidence of an HC phenotype in their EHR, all 3 never had a 

cholesterol or lipid panel lab test result in their NM EHR and 1 did not have any problem 

list diagnoses; thus, they may have FH but their EHR at NM appears to lack the 

necessary data to determine their FH status.  Conversely, of the 24 subjects across both 

cohorts who had P/LP variants, half (N=12) had “definite”, “probable,” or “possible” FH, 

and 87.5% (N=21) had some evidence of HC, which parallels the previously observed 

penetrance of P/LP variants in FH genes (Kullo et al.; Kullo).  Using phecodes was the 

only algorithm to find all 21 of the subjects across both cohorts with P/LP variants to 

have HC, while the PH algorithm also performed well, finding 70.8% (N=17) of those to 

have HC overall.  

Most importantly, as illustrated by Figure 2, of those who had CPVs, VUSs, and/or URVs 

in both cohorts, and had evidence of HC, all were found via phecodes or the PH 

algorithm, yet neither of those individual algorithms found all of those with HC.  Thus, 

using a combination of phecodes and the PH algorithm appears to be best way to identify 

patients with HC, especially as the PH algorithm includes “definite,” “probable” and 

“possible” FH cases, and as seen in the results of this pilot study, some of the subjects 

with P/LP variants were classified as having “possible” FH indicating the need to not 

simply focus on “definite” and “probable” FH cases. 
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In addition, the fact that >95% of subjects enrolled from the lipid disorders clinic had 

evidence of HC, and all but 1 of those had phecodes for HC, confirms that the phecode 

algorithm works well to identify subjects with HC.  The <5% of those who did not have 

HC could have been subjects who were not blood relatives of the lipid clinic patients as 

spouses and other relatives of patients were also enrolled in the studies. Lastly, the small 

proportion (20.8%, N=5) of subjects with P/LP variants who had the ICD-10 code for FH 

illustrates the need for using more than just ICD diagnosis codes to find patients with FH 

in particular. 

Furthermore, overall, as seen in Figure 3, those who met criteria for “definite” or 

“probable” FH, most did not have P/LP but instead had VUSs, CPVs, or URVs, or no 

potentially pathogenic mutations in FH genes at all.  Of those that did have variants, 

more had an URV, somewhat less had a CPV, and the least had VUSs, and this is also 

seen for the other phenotype algorithms; however, this could be a result of the 

eMERGEseq cohort receiving expert curation beyond ClinVar and thus not having any 

CPVs nor URVs, or, this could be due to the demographic differences between the 

cohorts.  This illustrates the need for follow up on the individual patients for further 

investigation by experts.   

For those subjects who met the phenotype criteria for HC, especially “definite,” 

“probable,” or “possible” FH, or PH, if they only had VUSs in the FH genes, those are 

patients whose EHR should be reviewed in more detail, and if warranted by the chart 

review, should be contacted to discuss and possibly conduct further confirmatory testing 

(such as further genetic testing and further lipid, esp. LDL, lab tests).  In particular, for 

the 25 VUSs the eMERGEseq cohort seen in > 1 subject, over half (64%) had evidence 

that the variants were actually P/LP, 2 had evidence that the variants were actually 

B/LB, and another 28% had mixed evidence, which indicates the need for further 
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investigation. Combining the phenotype algorithm results with genetic results can 

provide sufficient evidence for prioritizing subjects and variants for follow-up.  

Furthermore, at least 1 subject with P/LP variants was only put on an LLT after genetic 

testing, which illustrates the need to find undiagnosed patients who are not receiving 

treatment, as other studies have shown (Banda et al.; deGoma et al.).  If the further 

investigation and/or follow-up reveals that the variant is likely pathogenic or likely 

benign, then this should be reported to ClinVar as evidence for assisting in the eventual 

proper categorization of that variant. 

Lastly, the importance of finding patients with potential HC or FH for follow-up and 

doing further research to categorize genetic variants, especially in minorities, is 

highlighted by the results shown in Table 4. Even Asians, who have mostly the same 

proportion having VUSs, CPVs, or URVs, still have more than double the percentage of 

VUSs than Caucasians. Hispanics and Native Americans are affected the most, while 

African-Americans and Pacific Islanders also have a higher proportion of these variants 

which need clearer classification. The only categories in which Caucasians do not have 

the least, or close to the least, proportion is of VUSs only at 6.5%, where instead 

Hispanics (4.8%) and Native Americans (3.4%) have the least; and URVs with 28.6% 

which is slightly higher than Asians with the least proportion (20.9%) of URVs.  These a 

relatively small differences compared to the much greater difference between Caucasians 

and minorities overall, which aligns with previous studies of VUSs in cardiac disease 

genes (Pottinger Tess D. et al.; Landry and Rehm).  As previous studies have shown that 

the contribution of genotypes vs. the environment to the manifestation of FH varies 

sometimes significantly between races and ethnicities (Wright et al.), this should also be 

taken into account. 
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Caveats and Limitations 

 

1. Given that genetic variants can be rare and genetic variation between humans is 

less than 1 percent among millions of nucleotide base pairs in our DNA, we might 

not have enough patients in our study to have enough power to find disease 

associations with any, or at least some of the rarer, genetic variations.  However, 

in this study we are not performing association studies between the genetic 

variants found and the extracted phenotypic data, so we are not implying that we 

have found associations.  Instead, we are simply filtering out patients with 

genetic variants, for further investigation, who also have some phenotypic 

evidence in their EHR of the disease caused by variants in the same genes which 

have known P/LP variants to cause the given disease. 

 

2. The EHR usually does not contain a given patient’s entire health history; in 

particular, data such as family history and environmental exposures are not well 

captured. Thus, the EHR may not have all the data that might be necessary to 

accurately determine all relevant diagnoses for the patients in our study. 

 

3. No association studies are being performed, and correlation does not imply 

causation.  This is a descriptive study and any validation being done will need to 

be replicated on a larger scale, and likely via review of patients’ medical charts, to 

determine true accuracy. 

Future work 

Further investigation can be done in the WGS cohort in particular, specifically the details 

of the VUSs need to be extracted to determine which VUSs appear in >1 subject for 
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investigating those VUSs further as was done in the eMERGEseq cohort.  Furthermore, it 

would likely be worth further sub-dividing the CPVs into the 3 sub-types of conflicting 

pathogenic, in order from highest to lowest probability to become pathogenic/likely 

pathogenic, as follows: 

1. P/LP & VUS 

2. P/LP & B/LB 

3. B/LB & VUS 

For both cohorts, further investigation into the VUSs identified by this pilot study as 

likely pathogenic or likely benign is needed by genetic experts to determine if these 

variants are B/LB or P/LP.  Testing should also be done on other genes that have 

genotypes associated with other disease phenotypes.  

Further EHR phenotyping could also be conducted, first by using Observational Medical 

Outcomes Partnership (OMOP) common data model (OMOP Common Data Model – 

OHDSI) or other common data models (CDMs) to make the phenotype algorithms more 

portable to other sites for study, at least for sites that have these CDMs (Safarova and 

Kullo).  Additional de-identified data elements, such as other common medications 

and/or common labs not already collected, could be more easily obtained via an OMOP 

or other CDM query, such that more phenotypes could be studied.  Improving the 

documentation of family history in the EHR with integrated tools such as MeTree (R. R. 

Wu et al.), would enable these algorithms to more easily access this important piece of 

data for many phenotypes. Any clinical criteria used would need to be determined from 

existing algorithms or machine learning, and subsequently by consultation with 

clinicians who diagnosis the selected disease phenotypes to confirm feature selection. 
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In addition, more complex yet more efficient algorithms such as machine learning (ML), 

either classification or clustering or other appropriate technique mined from the 

literature (Liao et al.; Yu et al.; Myers et al.; Peissig et al.; Banda et al.), could also be 

performed, where the features used were the extracted commonly available discrete EHR 

data used by the algorithms described above.  In particular, clustering of patients using 

extracted EHR data and P/LP variants, and VUSs, in selected genes; or association 

analysis using various types of logistic regression, might yield interesting results if 

enough patients had genetic testing for comparison and possible association.  In a recent 

study whose goal was to find patients with undiagnosed FH in the EHR, machine 

learning successfully identified multiple cases of FH (Banda et al.); thus, it is likely 

possible to use a similar algorithm to identify case of FH in patients with VUSs in FH 

genes for follow-up. 

Lastly, these phenotype algorithms could also potentially be used to identify patients 

without genetic testing who might have FH, to detect more undiagnosed cases of FH.  As 

mentioned earlier, a machine learning algorithm was developed to do this, at Stanford, 

and results were replicated at Geisinger, with both institutions achieving a precision of 

84% or higher at identifying FH cases (Banda et al.). 

Chapter 5 Summary and Conclusions 

Although further assessment is needed, these initial results demonstrate that EHR 

phenotyping can be used to identify phenotypes in patients with VUSs, and with other 

data, could be used to categorize VUSs as either P/LP or B/LB.  The results also 

demonstrate that no single phenotyping algorithm, even those validated in previous 

studies, can necessarily extract the majority of patients with a given phenotype from 

EHR data.  Finally, the phenotypic information is most useful when compared with VUSs 
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that occur in more than 1 subject and can be used to prioritize patients, and VUSs, for 

further investigation. 
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Chapter 7 APPENDIX A: Supplemental Tables 

 

Supplemental Table 1. Gene mutation types by variant type 

by cohort 

Gene mutation types found in FH genes in the 2 patient cohorts and how 

used to classify variants as VUS and URVs 

 

 

 

  eMERGEseq WGS 

Mutation Type VUS URV VUS URV 

Nonsynonymous    

Synonymous       

Intronic      

Cryptic Splice 
(Acceptor) 

     

Cryptic Splice (Donor)      

Splicing      

Splice region      

Insertion 
(nonframeshift) 

      

Deletion 
(nonframeshift) 

     

Frameshift      

Startloss       

Stoploss       

Stopgain      

UTR3       

UTR5       

Upstream       
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Supplemental Tables 2a-d. Accuracy of algorithms with 

confusion matrices 

Confusion matrices with accuracy statistics comparing the chart reviewed results from 

the eMERGEseq outcome forms to the FH, PH, high LDL, and phecode algorithms.  In 

yellow are lower precision and recall values that indicate the algorithm performance was 

not sufficient, and in green are higher precision and recall values that are more ideal.  

PPV = Positive Predictive Value (precision), NPV = Negative Predictive Value, Sens. = 

Sensitivity (recall), Spec. = Specificity. 

 

 

 

 

 

 

 

 

 

 

 

 

2a compares FH found via chart review with the FH algorithm 

 

 

    PH 83.3% accuracy 

   PH NO PH    

PH 
algorithm 

PH 
14 0 

100.0% precision/PPV 
NO 
PH 

3 1 
25.0% NPV 

   82.4% 100.0%    

    
recall/ 

sensitivity specificity     

    Supplementary Table 2b 

 

2b compares PH (and FH, as patients with FH by definition have PH)  

 found via chart review with the PH algorithm 

 

  

    FH 55.6% accuracy 

   FH NO FH    

FH  
algorithm 

FH 
2 1 

66.7% precision/PPV 

NO 
FH 

7 8 
53.3% NPV 

   22.2% 88.9%    

    
recall/ 

sensitivity specificity     

    Supplementary Table 2a 
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    PH 66.7% accuracy 

   PH NO PH    

high LDL  
algorithm 

PH 
11 0 

100.0% precision/PPV 

NO 
PH 

6 1 
14.3% NPV 

   64.7% 100.0%    

    
recall/ 

sensitivity specificity     

    Supplementary Table 2c 

 

2c compares PH found via chart review as for 2b,  

but compares to the high LDL algorithm 

 

 

    PH 100.0% accuracy 

   PH NO PH    

phe- 
codes 

PH 
17 0 

100.0% precision/PPV 

NO 
PH 

0 1 
100.0% NPV 

   100% 100.0%    

    
recall/ 

sensitivity specificity     

    Supplementary Table 2d 

 

2d compares PH found via chart review as for 2b,  

but compares to the phecode algorithm 
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Chapter 8 APPENDIX B: Definition of major 

terms 

 

1. Phenotypes are diseases, disorders, or traits caused potentially, in part at least, by 

genetic variation. 

 

2. Single Nucleotide Polymorphisms (SNPs) are single nucleotides, usually within a 

gene, that have multiple possible nucleotides (A, T, C, G) among the population, 

which can cause different phenotypes to be expressed.  

 

3. Variant Classifications:  

a. Known Pathogenic (KP or just P) & Likely Pathogenic (LP) variants are 

genetic variants that are known to cause certain disease(s), or are likely to 

cause them, respectively. 

b. Variants of Unknown Significance (VUSs) are genetic variants that cause 

a change in the protein that the variant is coded to create, but it is not 

known if the variation or change causes disease or is benign (does not 

cause disease, is relatively harmless). 

c. Benign & Likely Benign (B/LB) variants are genetic variants that are 

known to NOT cause any known disease(s), i.e., are essentially harmless 

d. Variants with conflicting interpretations of pathogenicity (CPVs) are a 

ClinVar designation for VUSs that have multiple conflicting 

interpretations reported to ClinVar which include reports of 

pathogenicity.  Thus, although they are technically VUSs, they are also a 

separate category from VUSs (National Center for Biotechnology 

Information, U.S., Representation of Clinical Significance in ClinVar and 

Other Variation Resources at NCBI). 

e. Unreported variants (URVs) are variants that were found during 

genotyping that are not reported to ClinVar, which are nonsynonymous 

substitutions (variants that cause a change in an amino acid which thus 

results in changes to the protein)  

 

4. Hypercholesterolemia phenotypes and the algorithms: 

a. Hypercholesterolemia (HC) is high or elevated cholesterol levels in the 

blood which are a risk factor for heart disease. 

b. High low-density lipoprotein (LDL) lab results are an indication of HC.  

Thus the high LDL algorithm attempts to simply find these lab results, 

where the result of another lab test usually performed together with LDL 

as part of what’s typically called a lipid panel, triglycerides, are not 

elevated more than once, as elevated triglycerides are an indication of a 

secondary cause of HC. 

c. Primary HC (PH) is HC not caused by secondary causes such as 

pregnancy. The PH algorithm thus looks for high LDL, where there are no 
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secondary causes, and also adjusts the LDL level when patients are also 

on lipid-lowering treatment at the time of the LDL measurement to 

estimate the LDL without treatment (Safarova, Liu, et al.).   

d. Familial HC (FH) is PH inherited from family members and puts patients 

at a higher risk for heart disease (Akioyamen et al.; Lan et al.; Kramer et 

al.). The FH algorithm takes patients who meet the criteria for PH from 

the PH algorithm, and then looks for family and personal history of HC 

and heart disease, and physical symptoms of FH, per the Dutch Lipid 

Clinic Network (DLCN) criteria (Séguro et al.). 

e. Phecodes are logical groupings of ICD-9 and ICD-10 diagnosis codes into 

phenotypes that do or might associate with genotypes.  Each phecode 

represents a single phenotype. For example, there are multiple ICD codes 

for type 2 diabetes mellitus (T2DM), and particularly in ICD-9, they are 

not all grouped into 1 base code separate from type 1 diabetes mellitus 

(T1DM); thus, there is a phecode for T1DM and a phecode for T2DM that 

group these appropriately. 

 

5. A nonsynonymous substitution is a substitution of one DNA nucleotide for 

another, such that the codon that the nucleotide is within now codes for a 

different amino acid. Therefore, the protein which is to be made from the exon 

region in which the mutation occurs will be different (specifically, its amino acid 

sequence will be different), potentially in a way that alters the protein’s structure 

and function.  Thus, this potential change in protein function could cause disease. 


