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Abstract 
DSM-5 Autism Spectrum Disorder (ASD) comprises a set of neurodevelopmental disorders characterized 

by deficits in social communication and interaction and repetitive behaviors or restricted interests, and 

may both affect and be affected by multiple cognitive mechanisms. This study attempts to identify and 

characterize cognitive subtypes within the ASD population using a random forest (RF) machine learning 

classification model. We trained our model on measures from seven tasks that reflect multiple levels of 

information processing.  47 ASD diagnosed and 58 typically developing (TD) children between the ages 

of 9 and 13 participated in this study. Our RF model was 72.7% accurate, with 80.7% specificity and 

63.1% sensitivity. Using the RF model, we measured the proximity of each subject to every other 

subject, generating a distance matrix between participants. This matrix was then used in a community 

detection algorithm to identify subgroups within the ASD and TD groups, revealing 3 ASD and 4 TD 

putative subgroups with unique behavioral profiles. We then examined differences in functional brain 

systems between diagnostic groups and putative subgroups using resting-state functional connectivity 

magnetic resonance imaging (rsfcMRI). Chi-square tests revealed a significantly greater number of 

between group differences (p < .05) within the cingulo-opercular, visual, and default systems as well as 

differences in inter-system connections in the somato-motor, dorsal attention, and subcortical systems. 

Many of these differences were primarily driven by specific subgroups suggesting that our method could 

potentially parse the variation in brain mechanisms affected by ASD. 
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Main Section 

Chapter 1: Introduction 

Issues in diagnosing and treating ASD 

Lack of precision medicine in ASD 

Autism Spectrum Disorders (ASD) comprise altered social interactions and/or communication, as well as 

the presence of stereotyped or repetitive behavior (1). The prevalence of ASD in the global population 

has been estimated around 1%, but that number has been growing over the past decade (2,3). The 

variability in symptoms, severity, and adaptive behavior impairment within the ASD population (4) 

complicates the development of effective treatments and improved diagnostic measures. Such variation 

also suggests the possibility of discrete ASD subphenotypes and is consistent with the evidence that ASD 

may encompass multiple etiologies (1,5). Therefore, identifying and differentiating subgroups in this 

population should help refine ASD diagnostic criteria and further the study of precision medicine for 

individuals with ASD. 

Heterogeneity in ASD 

The etiology of ASD is complex, and the ASD diagnosis has been related to multiple cognitive, sensory, 

and motor faculties (6). We focused here on the cognitive domain. A thorough review of cognitive 

mechanisms underlying ASD suggested that non-social cognitive mechanisms, including reward, 

executive function, attention, visual and auditory processing, may affect the presentation of social 

behavior regardless of specific impairment or the existence of domain-specific social cognitive 

mechanisms(7).  We examined seven cognitive domains related to information processing and control 

that have varying levels of association with ASD: spatial working memory, response inhibition, temporal 

discounting of reward, attentional vigilance, facial recognition, facial affect processing and vocal affect 

processing. 

 

Working Memory 

Working memory refers here to a limited capacity cognitive system that retains information in an 

accessible state which supports human thought processes(8). A vast literature in ASD reveals 

inconsistent findings as to whether visuospatial working memory may be impaired, suggesting the 

existence of ASD subgroups, which may drive the observed impairments. Early studies of working 

memory showed that high (9), but not low (10), functioning children with autism had impairments in 

verbal and non-verbal working memory. Another found no differences in working memory between 

children with or without ASD (11). Measures of non-verbal working memory on a non-spatial and non-

verbal self-ordered pointing task correlate with visuospatial memory in children with ASD but not 

children without ASD (12). In contrast, children without ASD, but not children with ASD, show a 

relationship between language ability and verbal working memory (12). Such heterogeneity may reflect 

differences in how individuals with ASD utilize visuospatial memory to augment non-verbal working 

memory, whereas individuals without ASD may utilize language to augment verbal working memory 

(13).  

More recent studies have supported the hypothesis that children with ASD may use different cognitive 

mechanisms to support working memory. A large-scale study revealed that children with ASD exhibited 
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lower performance than unaffected children on a spatial span task (14), requiring children to repeat a 

sequence of fixed spatial locations indicated by a series of changing colors. Interestingly, the ASD 

participants had significantly lower verbal, but not performance, IQ. This study is consistent with 

findings from two recent studies on children with ASD (15,16), one of which showed that better 

performance on working memory tasks predicted faster development of play behavior (15). However, 

another recent study found no differences in a similar spatial span task (17). Taken together, all of these 

findings suggest working memory differences between children with and without ASD are inconsistent, 

and may be affected by sample differences that comprise different ASD subgroups. 

Response Inhibition  

Response inhibition refers here to the ability to inhibit a prepotent response, a lower level component 

of executive function(18). Over 40 studies have examined whether response inhibition is different 

between individuals with and without ASD (19). While a number of these studies are underpowered, 

several use large sample sizes and previously validated psychophysical tests. The results from these 

studies are quite variable, despite large sample sizes and similar task designs. For example, Guerts and 

colleagues used a stop task to compare stop signal reaction times between TD and ASD children and 

found a large effect of diagnosis (20), while a more recent study employing the same task found only a 

small effect of ASD when examining commission errors (21). Although sampling variation may explain 

divergent results, an interesting possibility is that heterogeneity in ASD helps explain the inconsistency 

across the literature (19). 

Temporal Discounting of Reward 

Temporal discounting refers here to the weakening of the subjective value of a reward due to a 

delay(22). A few studies (23–25) reveal that those with ASD have altered performance on delayed 

reward discounting tasks. On average, people naturally prefer immediate to delayed rewards of similar 

values. Different types of rewards may be discounted differently, and may reflect varying preferences 

for rewards associated with goal-oriented behavior. For example, individuals with ASD discount 

monetary and social rewards similarly, whereas typically developing (TD) individuals discount social 

rewards more than monetary rewards (24). ASD individuals may also discount monetary rewards more 

steeply with respect to time than TD individuals (25).   

Attentional Vigilance 

Attentional vigilance refers to the ability to maintain an alert state in the absence of an alerting stimulus. 

It is often measured using continuous performance tasks (CPTs). ASD performance on CPTs show mixed 

results. An early study found no difference between children with and without ASD on CPT performance. 

However, the task used long displays and the parameters of the task were not shifted throughout (26). A 

more recent study using the same version of the task also failed to find differences between children 

with and without an ASD. However, they did find differences in EEG signals that are important for 

sustained and selective attention (27), suggesting that individuals with ASD may use an alternative, 

perhaps compensatory, strategy to perform similarly on CPTs. Consistent with this hypothesis, 

individuals with ASD show impaired performance on CPTs where the ratio of distractors to targets (28) 

or inter-stimulus interval (29) varies over the task duration. On the other hand, increasing attentional 

demands by crowding the visual display does not seem to affect performance in participants with ASD 

(30).  
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Processing of facial features, vocal affect, and facial emotion  

Previous work has repeatedly suggested that individuals with ASDs may have trouble processing the 

arrangements of facial features, which may impair facial identity recognition and the ability to link 

speech to facial expressions. Individuals with ASD show impairments in searching for the eye region on a 

face (31). Unlike TD individuals, individuals with ASD are not faster at recognizing a part of the face 

when it is placed in the context of a whole face (32), and performance on facial identity recognition is 

not maintained when the orientation of a face is altered (33). Impairments in face processing may affect 

other domains; individuals with an ASD have difficulty integrating visual facial and auditory speech 

information (34) and do not use visual information from the mouth to guide speech perception (35). 

However, results on facial emotion recognition are more mixed (36). Earlier studies found wide variation 

in facial emotion recognition performance in adults with an ASD (37,38). More recent studies have 

shown that facial recognition can be improved in ASD, but that this improvement may not generalize 

when recognizing emotions from faces (39). ASD participants trained to recognize basic emotions like 

‘happy’ or ‘sad’ for a particular set of identities did not improve recognition on faces from novel 

identities. Furthermore, ASD participants did not improve at recognizing emotion when the eyes were 

presented in the context of a whole face, suggesting that such training did not enable individuals with 

ASD to process the eyes holistically (39). 

In summary, multiple information processing streams may be affected in individuals with ASD, but the 

types of impairment may be heterogeneous within the ASD population, with different individuals 

showing varying patterns of difficulty. Critically, it is difficult to disentangle from these studies whether 

individuals with an ASD diagnosis comprise distinct subgroups, as shown by working memory and 

response inhibition findings. Therefore, it is critical to test whether  ASD is heterogeneous categorically 

and/or multi-dimensionally. The identification of distinct ASD subgroups may enable better mapping of 

the cognitive domains affected by and/or responsible for ASD. 

Lack of clear biomarkers in ASD 
Due to the wide variation in behavioral measures related to ASD, many studies have sought brain-based 

biological markers to identify a common etiology across individuals with ASD. Markers that are 

measurable via MRI are highly desirable, because they may represent potential targets for diagnostic 

tools and or treatments. Unfortunately, the results of these studies are varied due to differences in both 

study design and sample composition. 

Structural brain biomarkers indicating heterogeneity 

Reviews of structural MRI findings in ASD have found a wide range of putative biomarkers across 

independent studies (40–42). Whole brain-volume (43) developmental trajectories may differ between 

individuals with and without ASD. Regionally, the temporal-parietal junction (44), anterior insula (44,45), 

posterior cingulate (46,47), lateral and medial prefrontal (46), corpus-callosum (48), intra-parietal sulcus 

(45,49), and occipital cortex (47), have all been shown to be different between samples with and 

without ASD. This has led a number of reviewers to suggest that the heterogeneity within the disorder 

may account for the divergent findings (40,41). Indeed, an interesting study by Christine Nordahl in 2007 

examined differences between individuals diagnosed with high-functioning autism, Asperger’s, and low 

functioning autism. Compared to TD individuals, these three samples showed varying cortical folding 

signatures, indicating that the mechanisms underlying the diagnosis for these samples may differ (45). 
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Functional brain biomarkers indicating heterogeneity 

Studies of functional brain biomarkers for ASD have largely centered on studies of resting state 

functional connectivity MRI (rsfcMRI) for two reasons. First, the hemodynamic response in ASD children 

has been shown to be largely similar to the hemodynamic response in TD children (50), suggesting that 

differences in functional MRI reflect differences in neural activity. Second, the absence of a task enables 

one to examine differences across multiple brain regions and/or networks, similar to structural MRI.  

Unfortunately, findings from rsfcMRI have also varied considerably from study to study. Studies have 

found altered connectivity within the dorsal attention network (51); default mode-network (DEF; (52)); 

whole-brain (53,54) and subcortical-cortical (55) underconnectivity; whole-brain (56) and cortical-

subcortical (57) hyperconnectivity; and altered connectivity within a discrete set of regions dubbed the 

“social brain” (58). Some studies (59,60) found no differences in functional connectivity. All of these 

studies differ not only in MRI processing strategies, but also in the diagnostic inclusion/exclusion criteria. 

More recent studies (51,58,59) also examined differences in processing strategy, but continued to show 

discrepant results. Taken together, the findings strongly suggest that ASD heterogeneity may limit the 

replicability of findings. 

Chapter 2: Background 

Machine Learning approaches in classifying ASD 
Machine learning algorithms provide data-driven methods that can characterize ASD heterogeneity by 

identifying data-driven subgroups of individuals with ASD. However, most studies using machine-

learning algorithms focused only on the identification of individuals with ASD, despite recent studies 

demonstrating moderate success using such algorithms. A large number of studies have tested whether 

imaging biomarkers can classify whether an individual has or does not have ASD. Early studies had small 

sample sizes under 100 individuals and showed high classification rates ranging from 80 to 97 percent 

accurate (61–64). Larger scale studies greater than 100 individuals typically showed modest accuracy in 

range of 60 to 80 percent (65–67). The discrepancies may indicate poor control of motion in some cases 

or over-fit models in others(68). Alternatively, the discrepancies might be the result of ASD 

heterogeneity. Along these latter lines, one of the best classifications of ASD was performed using 

Random Forests (RF; (67)). RFs are random ensembles of independently grown decision trees, where 

each decision tree votes as a weak classifier, and classification into the same group can occur through 

different pathways. ASD classification was improved when behavioral features were incorporated into 

models, suggesting that ASD may be stratified by differences in brain function and behavior (65). 

Interestingly, random forests can also enable the identification of subgroups (69), however, to our 

knowledge no machine learning approach has attempted to do so for individuals diagnosed with ASD. 

Novel use of Random Forest (RF) in identifying subgroups within sample 
Here we implement a novel approach for using RFs to identify more homogenous ASD subgroups. RFs is 

a random ensemble classification approach that iteratively grows decision trees to classify data. The RF 

model produces a proximity matrix that indicates the similarity between participants. This proximity 

matrix illustrates how often a pair of subjects were grouped into the same terminal node of each 

decision tree within the RF and is similar to a correlation matrix. Conceptually, we can recast the 

proximity matrix as a graph, and a community detection algorithm (70) can be used to identify putative 

subgroups. Several recent studies have used community detection to characterize subpopulations (71). 

However, one limitation from the approach as it is currently being used is that the community detection 
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approach does not tie the sub-grouping to the outcome measurement of interest. In other words, prior 

studies have not evaluated whether the similarity measured between participants, which drives the 

community detection, is associated with the clinical diagnosis. Thus, an approach that ties the defined 

sub-populations to the clinical diagnosis is better equipped to identify clinically relevant subgroups. We 

posit that the combination of random forest classification and community detection can assist with this 

goal.   

In the current report we classify children with and without ASD using several information processing and 

control measures. To attempt to validate the group assignments identified from the cognitive measures, 

we then compared the strength of rsfcMRI connections, within or between neural systems, across the 

identified subgroups. Such a link would provide external evidence that these subgroups differ in 

functional brain organization as it pertains to an ASD diagnosis.  

Chapter 3: Materials and Methods 

Participants/Demographics 

Participants 

The study sample consisted of 105 children between the ages of 9 and 13. Age demographics are shown 

in Table 1, PDS in Table S1, and all other demographics are 

shown in Table 2. The ASD group was recruited by community 

outreach and referrals from a nearby autism treatment center 

and included 47 children (11 females) with a mean age of 12.15 

years (SD = 2.12) across all tests.  All ASD children had their 

diagnosis confirmed (using DSM-IV criteria) by a diagnostic team 

that included two licensed psychologists and a child psychiatrist, 

and were assessed with a research reliable Autism Diagnostic 

Observation Schedule Second Edition (ADOS; mean ASD = 12.36, 

SD = 3.371), Autism Diagnostic Interview-Revised interview (ADI-

R) and by the Social Responsiveness Scale Second Edition (SRS; 

TD mean = 17.8, SD = 10.45; ASD mean = 92.32, SD = 27.02) 

surveys filled out by parents of the children. The TD group 

included 58 children (31 females) with a mean age of 10.29 

years (SD 2.16) for all tests. A Fisher’s exact test indicated that 

gender was significantly different between the two groups (p = 

0.025). It should be noted that the gender difference between 

our groups is consistent with the fact that males are at increased 

risk for autism in the general population. Parental pubertal 

developmental stage (PDS) report was used to assess pubertal 

stage. The PDS information was acquired once for all 

participants, but was untied to the tasks or MRI visits, which 

limits our ability to infer from it. For each MRI and task visit, we 

calculated the difference between the date of PDS acquisition and the date the task/MRI was acquired. 

For each task, any participant that had a PDS within 6 months of the task/MRI visit was included. As a 

result, the reported subject numbers for the PDS, as linked to the task and MRI, vary. However, we did 

have a single PDS measure acquired for all participants. Median PDS values were calculated from the 

observable measures on the PDS (e.g. hair growth or skin changes), measures that did not involve 

Table 1. Age table for ASD and TD samples 
per test. TD = Typically Developing; ASD = 
Autism Spectrum Disorder; M = mean; SD = 
Standard Deviation. Independent-sample t-
tests revealed that subgroups were 
significantly differed in terms of age on the 
Facial and Affect Processing Tasks, Spatial 
Span, Delay Discounting, CPT, Stop Task, and 
MRI scans. Note that the demographics for 
the Facial and Affect Processing Tasks applies 
to the Face Identity Recognition, Facial Affect 
Matching, and the Vocal Affect Recognition 
tasks. 
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observation (e.g. whether the parent will discuss puberty with his/her child) were excluded. 

Unsurprisingly, differences in PDS were strikingly similar to the differences observed in age (see: Table 

S1). Exclusion criteria for both groups included the presence of seizure disorder, cerebral palsy, pediatric 

stroke, history of chemotherapy, sensorimotor handicaps, closed head injury, thyroid disorder, 

schizophrenia, bipolar disorder, current major depressive episode, fetal alcohol syndrome, severe vision 

impairments, Rett’s syndrome, and an IQ below 70. Participants in the TD group were also excluded if 

diagnosed with attention-deficit hyperactivity disorder. Subjects taking prescribed stimulant 

medications completed medication washout prior to testing and scanning. Children performed tasks and 

completed MRI visits following a minimum of five half-life washouts, which ranged from 24 to 48 hours 

given the preparation.  Participants on non-stimulant psychotropic medication (e.g. anxioltyics or anti-

depressants) were excluded from this study. 

Data collection procedures 

ASD participants came in for a screening visit to determine if they qualified for the study. During this 

initial visit, informed written consent or assent was obtained from 

all participants and their parents, consistent with the Oregon 

Health & Science University institutional review board. Additionally, 

children completed the ADOS and the Wechsler Intelligence Scale 

for Children IV (WISC-IV; (72)) block design subtest while parents 

completed the SRS, ADI-R, and Developmental and Medical History 

surveys. Participants who qualified for the study came back for a 

second visit where they completed our Delay Discounting, Spatial 

Span, CPT, and Stop tasks. All participants also experienced a 

“mock scanner” to acclimate to the scanner environment and to 

train themselves to lie still during the procedure. Participants then 

came in for a third visit where they were scanned. At the fourth 

visit, participants completed our Face Identity Recognition, Facial 

Affect Matching, and Vocal Affect Recognition tasks. 

Participants in the TD group were recruited from a partner study 

with similar protocol. During the initial screening visit, participants 

underwent a diagnostic evaluation based on the Kiddie-Schedule 

for Affective Disorders and Schizophrenia (KSADS) interview, as 

well as parent and teacher standardized ratings, which were 

reviewed by their research diagnostic team. TD participants 

completed their study visits and tasks in a similar timeline and were 

recruited for our study during their MRI visit. TD participants were 

then screened and enrolled in an additional visit in which they 

completed the Face Identity Recognition, Facial Affect Matching, and Vocal Affect Recognition tasks. 

Most of the participants consented to a longitudinal study where they returned on an annual basis to be 

reassessed on these same tasks and were re-scanned. For this study, we used data from each 

participant’s earliest time point for each completed task and MRI scan. Per task and scan, a t-test was 

conducted to test whether the cross-sectional ages were significantly different for that test. In all cases, 

ASD participants were significantly older than TD participants (all p < 0.05). We controlled for non-verbal 

intelligence, as measured by the WISC block design, by ensuring that block design scores were not 

Table 2. Demographics table for ASD and 
TD samples per test. WISC BD = 
Wechsler’s Intelligence Scale for Children 
IV: Block design raw score. 
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significantly different between the groups (p = 0.285). We also calculated and tested the difference in 

visit age for the ASD (mean years = 1.51, s.d. (years) = 1.36) and typical (mean years = 1.14, s.d. (years) = 

1.17) samples selected. We found no significant group effects on average visit difference ( t(103) = 1.49, 

p = 0.14). 

Tasks 
Measures derived from seven tasks were 

used as input features for the random 

forest. These seven tasks cover multiple 

levels of information processing, which 

may affect or be affected by the 

presence of an ASD diagnosis. Per 

measure, an independent samples, two-

tailed, t-test was conducted to evaluate 

whether ASD and TD participants 

differed significantly. Table 3 lists each 

feature along with the t-statistic and p-

value associated with the test. Because 

the random forest approach is robust 

against the presence of non-predictive 

features(73), our initial feature selection 

was inclusive. Despite this liberal 

inclusion, these non-predictive features 

did not contribute meaningfully to the 

classification model and thus did not 

affect results materially (supplementary 

materials). 

Delay Discounting  

The Delay Discounting task measures an individual’s impulsivity by asking them to evaluate a reward’s 

subjective value following a delay. The task design employed here has been described in detail 

previously (74,75). In short, this computerized task consisted of 91 questions and requested participants 

to choose between two hypothetical amounts of money, one smaller amount that would be available 

immediately, and one larger amount that would be available after a fluctuating delay (between 0 to 180 

days). No actual money was obtained. We used 9 variables from this task in our RF model: the 

indifference score at 5 time points (7, 30, 90, or 180 days), the calculated area under the curve (AUC) 

based on these indifference scores, the proportion of variance explained between the scores and their 

timepoints, their k value (a measure of overall rate of discounting), and the natural log-transformation 

of these k values. Three validity criteria were applied(76): 1) an indifference point for a specific delay 

could not be greater than the preceding-delay indifference point by more than 20% ($2); 2) the final 

(180 day) indifference point was required to be less than the first (0 day) indifference point, indicating 

evidence of variation in subjective value of rewards across delays; and 3) the 0-day indifference point 

was required to be at least 9.25. Lower values for the 0-day indifference point indicate that the child 

chose multiple times to have a smaller reward now over a larger reward now, suggesting 

Table 3. Table of task measures used in RF analysis. Independent samples t-
tests were conducted between all available ASD and TD data. RT = reaction 
time. 
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misunderstanding or poor task engagement. Data that did not meet validity criteria were treated as 

missing in analyses. 

Spatial Span 

The Spatial Span task measures an individual’s visuospatial working memory capacity. Our participants 

received a spatial span subtest identical to the computerized Cambridge Neuropsychological Test 

Battery (CANTAB; (77)). Briefly, this computerized task presents a series of 10 white boxes randomly 

placed on the screen, a subset of which would change color in a fixed order. Participants were instructed 

to watch for boxes that changed color and to keep track of their sequence. In the spatial forward task, 

participants were instructed to click on the boxes in the same sequential order in which they were 

presented. In the spatial backward task, participants were instructed to click on the boxes in the reverse 

order in which they were presented. The tasks were counterbalanced, and every subject had the 

opportunity to practice before administration. At the beginning of both tasks, the numbers of squares 

that changed started at three and increased to nine, with two trials at each sequence length (a total of 

24 trials for both tasks).  The task discontinued when a child failed both trials at a sequence length. We 

used 8 measures from this task in our RF model: reaction time, accuracy, number completed, and span 

number correct for both the forward and backward tasks. 

Stop Task 

A tracking version of the Logan stop task was administered to all participants(78,79). The Stop Task is a 

dual go-stop task. The go portion of the task measures reaction time and variability of reaction time on a 

simple choice detection task; the stop portion measures speed at which the individual can interrupt a 

prepotent response (how much warning is needed). For this computerized task participants fixated on a 

small cross in the center of computer screen, which appeared for 500ms on each trial. For the “go trials” 

(75% of total trials), either a rainbow “X” or an “O” would appear on the screen for 1000ms. Participants 

then had 2000ms to indicate whether they saw an “X” or an “O” using a key press, after which the next 

trial would automatically start. The “stop trials” (25% of total trials) were identical except that an 

auditory tone was played briefly after the presentation of the visual cue. The timing of the tone was 

varied stochastically to maintain approximately 50% success at stopping.  Participants were instructed to 

not respond with the key press if they heard the tone. Each participant performed 20 practice trials to 

ensure they understood the task, before completing eight 32 trial blocks of the task. We used 5 

measures from this task in our RF forest model: accuracy of the X/O choice on “go-trials”, probability of 

successful stopping on the “stop-trials”, stop signal reaction time (computed as the difference between 

go RT and timing of the stop delay warning signal), mean reaction time on go-trials, and the standard 

deviation of reaction times during “go-trials”. 

Continuous Performance Task 

The Continuous Performance task was an identical-pairs version of the common CPT, which measures 

vigilance. For this computerized task participants viewed a series of four digit numbers (250ms per cue) 

and were instructed to press a button whenever they saw a pair of identical numbers back-to-back. The 

task consisted of three types of trials: 1) trials where the paired numbers were made of distinct digits 

called “stim trials”, 2) trials where paired numbers only differed by one digit called “catch trials” and 3) 

trials where the pair of numbers were identical (target trials). The task included a total of 300 stimuli 

and required about 10 minutes to complete. There were 20% target trials, 20% catch trials, and 60% 
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“stim” or non-target trials. We used 6 measures from this task in our RF model: dprime (a measure of 

discriminability(80)) per discrimination type (essentially, “hard” and “easy” discriminations), bias score 

for each discrimination type, and the natural log of bias per discrimination type. 

Face Identity Recognition Task 

The Face Identity Recognition Task was designed by the Center for Spoken Language Understanding 

(CSLU) at OHSU to measure facial processing skills. In this computerized identification task, for each of 

the 25 trials (inter-trial interval = 2s), participants were presented with a “target face” on the left side of 

the screen, a colored photograph of a human face presented in standardized poses with neutral facial 

expressions. At the same time participants were shown an additional four facial photographs on the 

right side of the screen (all photographs were selected from the Glasgow Unfamiliar Faces Database 

(81), see Fig 1B), one of which matched the target face. Participants were asked to select the target face 

out of the lineup by touching the screen with stylus pen. Reaction times were calculated from the 

moment the trial began to the participant’s response; however, participants were not told they were 

being timed or instructed to complete the task as quickly as possible. Each participant was allowed five 

practice trials to ensure they understood the task. We used 2 measures from this task in our RF model 

which included the number of correct responses and the median reaction time for all trials. 

Facial Affect Matching Task 

The Facial Affect Matching Task and was 

designed by the CSLU at OHSU to measure affect 

discrimination skills using facial expressions. In 

this computerized task, for each of the 25 trials 

(inter-trial interval = 2s), participants were 

presented with a “target emotion”, a colored 

photograph of a human face expressing one of 

six possible emotions (happiness, sadness, 

surprise, disgust, fear or anger), on the left side 

of the screen. At the same time participants 

were shown an additional four facial 

photographs on the right side of the screen (all 

photographs were selected from the NimStim 

set of facial expressions (82), see Fig 1A), one of 

which matched the target emotion. Participants 

were asked to select the target emotion out of 

the lineup by touching the screen with stylus 

pen. Reaction times were calculated from the 

moment the trial began to the participant’s 

response; however, participants were not told they were being timed or instructed to complete the task 

as quickly as possible. Each participant was allowed five practice trials to ensure they understood the 

task. We used 2 measures from this task in our RF model which included the number of correct 

responses and the median reaction time for all trials.  

Vocal Affect Recognition 

Figure 1. Depiction of stimuli used in face and affect processing 
experiments. (A) Example from visual facial affect recognition 
task. (B) Example from facial identity recognition task. (C) 
Example from auditory facial affect recognition task. 
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The Affect Matching Task was designed by the CSLU g at OHSU to measure affect discrimination skills 

using auditory cues. In this computerized task, for each of the 24 trials (inter-trial interval = 2s), 

participants were presented with an audio recording of an actor reading neutral phrases (e.g., “we leave 

tomorrow”) but expressing one of four possible emotions (happiness, sadness, fear or anger) during the 

reading. Participants were asked to identify what type of emotion the actor was expressing by selecting 

one of four black and white drawings of facial expressions, each depicting one of the 4 basic emotions 

(see Fig 1C). Reaction times were calculated from the moment the trial began to the participant’s 

response; however, participants were not told they were being timed or instructed to complete the task 

as quickly as possible. Each participant was allowed four practice trials to ensure they understood the 

task. We used 2 measures from this task in our RF model which included the number of correct 

responses and the median reaction time for all trials.   

MRI scans 

Data acquisition 

Participants were scanned in a 3.0 T Siemens Magnetom Tim Trio scanner (Siemens Medical Solutions, 

Erlangen, Germany) with a 12 channel head coil at the Advanced Imaging Research center at Oregon 

Health and Science University. One T1 weighted structural image (TR = 2300ms, TE = 3.58ms, orientation 

= sagittal, FOV = 256x256 matrix, voxel resolution = 1mmx1mmx1.1mm slice thickness), and one T2-

weighted structural image (TR = 3200ms, TE = 30ms, flip angle= 90° FOV =240mm, slice thickness = 

1mm, in-plane resolution = 1 X 1mm) was acquired for each participant. Functional imaging was 

performed using blood oxygenated level-dependent (BOLD) contrast sensitive gradient echo-planar 

sequence (TR = 2500ms, TE = 30ms, flip angle = 90°, in-plane resolution 3.8x3.8mm, slice thickness = 

3.8mm, 36 slices). For fMRI data acquisition, there were three 5-minute rest scans where participants 

were asked to relax, lie perfectly still and fixate on a black cross in the center of a white display.  

General preprocessing 

All functional images went through identical Human Connectome Project preprocessing pipelines as 

described previously (83) in order to reduce artifacts. These pipelines included 1) PreFreeSurfer, which 

corrects for MR gradient and bias field distortions, performs T1w and T2w image alignment, and 

registers structural volume to MNI space; 2) FreeSurfer (84), which segments volumes into predefined 

cortical and subcortical regions, reconstructs white and pial surfaces, and aligns images to a standard 

surface template (FreeSurfer’s fsaverage); 3) PostFreeSurfer, which converts data to NIFTI and GIFTI 

formats, down sampled from a 164k to a 32k vertices surface space, applies surface registration to a 

Conte69 template, and generates a final brain mask. 4) fMRIVolume, which removes spatial distortions, 

performs motion correction, aligns fMRI data to the subject’s structural data, normalizes data to a global 

mean, and masks the data using the final brain mask, and 5) fMRISurface which maps the volume time 

series to a standard CIFTI grayordinate space.  

Functional connectivity processing 

All resting state functional connectivity MRI data received additional preprocessing that have been 

widely used in the imaging literature (85) to account for signals from non-neuronal processes. These 

steps included: 1) removal of a central spike caused by MR signal offset, 2) slice timing correction 3) 

correction for head movement between and across runs, 4) intensity normalization to a whole brain 

mode value of 1000, 5) temporal band-pass filtering (.009Hz < f <.08 Hz), 6) regression of nuisance 

variables: 36 motion related parameters, and three averaged signal timecourses from the grayordinates, 
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white matter, and cerebrospinal fluid (CSF). Additionally, because previous research has indicated that 

minor head movement can result in changes in MRI signal, we performed motion-targeted “scrubbing” 

on all rs-fcMRI data (85). These steps included censoring any volumes with frame displacement (FD) > 

.2mm, and the elimination of any run with less than a total of two and a half minutes of data.  

Correlation matrix generation 

All timecourses and correlations were derived from a set of 333 Regions of Interest (ROIs) produced 

from a published data-driven parcellation scheme (Figure 4) (86), and a set of 19 subcortical areas 

parcellated by FreeSurfer during preprocessing. The resulting parcellations set comprised 352 ROIs. 

Correlations between ROIs were calculated using Pearson product-moment coefficient between each 

pair of ROIs over the extracted time series following preprocessing and motion censoring. We created a 

correlation matrix for each participant and then created group correlation matrices by averaging 

individual matrices across groups and subgroups.   

Data Analysis 

Exploratory Data Analysis 

Prior to construction of the RF model, we measured the quantity of missing data. Machine-learning 

model performance can be greatly affected by missing data. Therefore, we excluded any measures and 

participants that were missing more than 15 percent of data. The remaining missing data is imputed 

separately for the training and test datasets using the random forest algorithm below, where the 

missing data’s column is the outcome measure and the remaining variables are used as predictors. Prior 

to our exploratory data analysis we had a total of 143 subjects (73 ASD, 70 TD) with partially completed 

data, after eliminating subjects with more than 15 percent missing data we finalized our subject list 

down to 105 (47 ASD, 58 TD). In the final dataset, less than 3 percent of all possible data was missing. An 

inspection of the missing data was unable to find any patterns that distinguish the missing ASD data 

from the remaining cases. 

Random Forest classification 

General algorithm  

The RF algorithm constructs a series of decision trees. Per tree, a bootstrapped dataset is generated 

from a subset of the training data and a subset of features are randomly used to predict group 

classification or outcome measure in the case of imputation. The Gini impurity is used as the cost 

function to determine the optimal tree for classification and the mean square error is used as the cost 

function to determine the optimal tree for regression. Finally, a testing dataset comprising participants 

that were excluded from the training dataset is used to evaluate classification model performance. We 

implemented this algorithm via in-house custom-built MATLAB programs that used the MATLAB 

TreeBagger class. 1000 trees were used for the classification model and 20 trees were used for the 

surrogate imputation. Missing data was imputed separately for training and testing datasets. For 

classification, 1000 iterations of the RF algorithm were run to assess the performance of the RF models. 

Per iteration, 60 percent of participants formed the training dataset and the remaining 40 percent 

formed the testing dataset. 

Optimization and validation 

Distributions of overall, ASD, and control accuracy were constructed from the 1000 iterations and 

compared against a distribution of 1000 null-models. Per null-model, the group assignments are 

randomly permuted and the RF procedure above is performed on the permuted data. If the RF 
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classification models are significantly better than the null models, then we interpret the RF models as 

valid for predicting a given outcome measure. An independent samples t-test was used to evaluate the 

significance of the RF model performance against the null model performance based on the models’ 

accuracy, specificity, and sensitivity rates. 

Community detection 

Since each tree has different terminal branches, the RF algorithm may identify different paths for 

participants with the same diagnosis. Therefore, validated models can be further analyzed to identify 

putative subgroups that reflect the same diagnosis but perhaps different etiologies. Briefly, the RF 

algorithm produces a proximity matrix, where the rows and columns reflect the participants and each 

cell represents the proportion of times, across all trees and forests, a given pair of participants ended in 

the same terminal branch. For the classification model, the Infomap algorithm (Rosvall, 2007) was used 

to identify putative subgroups from the proximity matrix for participants with an ASD and from the 

proximity matrix for control participants. Because we have no basis for determining what constitutes an 

edge, an iterative procedure was used (87), where we identified a consensus set of community 

assignments across all possible thresholds.  

Radar plot visualization 

Task measures were then examined via radar plots to identify features that distinguish putative 

subgroups. Since plotting all measures may obscure differences between the groups, visualized task 

measures were chosen via statistical testing.  For the ASD and the TD samples separately, one-way 

ANOVAs, with subgroup as the factor and each subgroup a level, were conducted for each task measure. 

Significant (p < 0.05) task measures were chosen for visualization. Individual task measures were 

converted to percentiles and visualized by task. 

Functional connectivity cluster analysis 

We used a chi-square approach to identify potential differences between subgroups within or between 

functional systems, as opposed to individual functional connections (88). Briefly, three sets of mass 

univariate tests were conducted for all Fisher-Z transformed functional connections: a set of one-way 

ANOVA using ASD subgroup as the factor, a set of one-way ANOVAs using control subgroup as the 

factor, and a set of t-tests between ASD and control groups. Per set, a matrix of coefficients are 

extracted and binarized to an uncorrected p < 0.05 threshold. This binary matrix is then divided into 

modules based on the published community structure (89) which reflects groups of within system (e.g. 

connections within the default mode system) and between system (e.g. connections between the 

default mode system and the visual system) functional connections. The subcortical parcellation was 

defined as its own system for this analysis because of prior research suggesting differences between 

cortical and subcortical connectivity (55). A ratio of expected significant to non-significant functional 

connections (i.e. the expected ratio) is calculated by dividing the total number of significant connections 

by the total number of all connections. Per module, the number of expected significant and non-

significant functional connections is determined by multiplying the expected ratio by the total number 

of functional connections within the module. A chi-squared statistic is then calculated using the 

observed and expected ratio of significant connections. Permutation tests were conducted for all 

functional connections across the 352 ROIs to calculate the p value per module, and evaluate whether 

the observed clustering is greater than what would be observed by random chance. 
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Supplemental analysis 1: Evaluation of age and gender on input features  

Justification 

In our sample, ASD outcomes varied by age and gender, but it is possible that, within our specific 

sample, such variation may not be associated with performance on the tasks measured. Therefore, we 

examined whether age and gender were associated with task measures using linear and logistic 

regression. If age and gender are associated with specific measures, then such measures may not be 

specific to clinical outcomes, and age and gender could drive RF classification. If age and gender are 

unrelated to specific measures, then such measures are specific to clinical outcomes, and it is less likely 

that age and gender drive RF classification. 

Approach 

In order to evaluate whether age and gender may have driven the results in our main manuscript, we 

performed a linear regression analysis for age and a logistic regression analysis for gender against the 34 

features used as predictors in the random forest (RF) algorithm. All data across ASDs and TDs were used 

in the regression analysis, in order to assess how much effects of ASD on gender and age may have 

influenced our primary findings. False Discovery Rate (FDR) with a q of 0.05 was used to correct for 

multiple comparisons. We assessed the effect size for each regression using R-squared values as the 

measure of effect size. If R-squared values are low for all features, it would suggest that age and gender 

are not driving factors in our analysis. 

Supplemental analysis 2: RF classification when controlling for age and gender 

Justification 

Supplemental analysis 1 suggested that RF classification may not be affected by associations between 

task performance and age or gender, but it is far from conclusive. We can further address this question 

directly by testing whether RF classification accuracy is affected when controlling for age and gender. If 

RF accuracy is unaffected, then we can be certain that age and gender did not affect RF classification 

performance. Unfortunately, due to the strong association between age, gender, and clinical outcome, 

reductions in RF classification performance should be expected, even if age and gender are weakly 

related to the task performance measures. However, if RF model performance falls below chance, it is 

more likely that RF classification was driven by demographics. If RF model performance is above chance, 

subgroups will be identified via Infomap and examined further to explore what features may drive RF 

classification in this supplemental analysis. 

Approach 

We controlled for age and gender via linear and logistic regression separately. Per feature, the residuals 

from linear regression of the feature against age were calculated, and the residuals were input into a 

logistic regression against age, where new residuals were calculated. This procedure resulted in 34 

residual features, controlling for both age and gender, which were used as input for the RF algorithm 

(see the main manuscript for details). It is important to interpret these results cautiously. Because 

gender and age are different between ASD and TDs, if gender and age are not related to the predictors, 

then this regression procedure may add variance into the input data without removing any bias. In other 

words, because of the gender and age confounds, reduced classifier performance is expected when 

performing regression. 
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Supplemental Analysis 3: Effect of subgroup on ADOS scores 

Justification 

The social responsiveness scale (SRS), while a quantitative estimate of autism symptom severity, may fail 

to capture aspects of autism traits that can be captured through other instruments. In order to further 

test whether ASD subgroups varied in autism symptom severity measures, we examined whether autism 

symptom severity, as measured by the Autism Diagnostic Observation Schedule (ADOS), varied between 

ASD subgroups.  The ADOS measures observed child behavior as the child interacts with a trained 

clinician, while the SRS is a parental report of symptoms over an approximate six month period. 

Therefore the ADOS represents a very different type of measure than the SRS. If no differences in ADOS 

symptom severity is observed, we can be more confident that the ASD subgroups reflect typical 

heterogeneity more than autism symptom severity. 

Approach 

We used a one-way ANOVA to examine the effect of subgroup on ADOS sum scaled scores, where 

subgroup was modeled as a factor and the ADOS sum scaled scores were the dependent variable. We 

performed this analysis for the subgroups identified by both the original (Figure 9A), and supplemental 

(Figure 9B) analyses.  

Supplemental Analysis 4: comparison of demographics between ASD subgroups and between TD 

subgroups 

Justification 

Variation in typical heterogeneity could be explained either by cognitive or demographic factors, such as 

age and gender. Therefore, we examined whether demographic traits like age and gender, or cognitive 

traits like intelligence vary between the ASD and TD subgroups. Variation in such demographic factors 

and not autism symptom severity would indicate that RFs were sensitive to demographic factors. 

Comparing demographic differences between the original and supplemental RF subgroups may indicate 

how age and gender regression affected subgroup affiliation. 

Approach  

In order to examine factors that may drive subgroup identification, we examined whether ASD and TD 

subgroups showed significant variation in gender, age, or intelligence as measured by the WISC-IV block 

design scaled score. Age per individual was calculated as the mean age across all behavioral tasks the 

individual participated in. We excluded the MRI ages because those would not factor into the RF model 

itself, for MRI data were analyzed independently from the RF model. As with ADOS symptom scores, we 

used separate one-way ANOVAs per age and IQ measure to test the effect of subgroup on ASD and TD 

subgroups. For gender, we used a chi-squared analysis. Both supplemental and original RF subgroups 

were examined. 

Supplemental Analysis 5: comparison of demographics between accurately classified subgroups 

Justification 

Because it is unclear whether regression produced an RF model that identified artefactual or meaningful 

subgroups, we tested whether age and IQ varied between accurately classified ASD and TD subgroups. If 

accurately classified subgroups in the original RF model do not differ by age or IQ, then it is unlikely that 

the original RF model classified participants on the basis of such factors, suggesting that variation in 

typical cognitive profile may have driven RF classification and subgroup identification. If accurately 

classified subgroups in the supplemental RF model differ by age or IQ, then it is likely that the 
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supplemental RF model classified participants by demographics, suggesting that demographic variation 

may have driven the supplemental results.  

Approach 

If RF classification accuracy is driven by variation in demographics, we should expect to see significant 

differences in age/gender/IQ between the accurately classified subgroups. Therefore, we tested 

whether the RF classification was driven by demographic variables (i.e. age, gender, and IQ) using one-

way ANOVAs and chi-squared tests. Subgroups whose accuracy was greater than random chance were 

modeled in the analyses. As with the above analyses, we examined both the original and supplemental 

subgroups, to see how controlling for age and gender via regression impact subgroup composition.  

Supplemental Analysis 6: examination of variable importance from features 

Justification 

Because associations between input features and demographics varied across tasks and measures, we 

evaluated the importance of each feature used in the original RF. This analysis provides context for the 

supplemental analyses above. If features important for classification were associated with age and 

gender, we would anticipate that controlling for age and gender would produce a more appropriate 

model. On the other hand, if features important for classification are unrelated with age and gender, 

such regression could contaminate the analysis, because age and gender are associated with the clinical 

outcome in our sample. Additionally, a number of included features are controlled by the experimenter, 

and should not be useful in classification. If such features were important for classification, then the RF 

model may be affected by variation in task parameters, and not task performance. 

Approach 

Features used in the RF algorithm were assessed for variable importance(73). Briefly, cases not used in 

the bootstrapped dataset for a given tree, also known as the out of bag (OOB) cases, are run through the 

decision tree and the OOB error rate is calculated. Per feature, the values for the OOB cases’ given 

feature are then permuted and the difference between the permuted OOB error rate and observed is 

calculated. This procedure is repeated across all trees, and because each tree is independent, a z-score 

can be calculated for each feature across all trees. Thus, this variable importance measure indicates 

which variables meaningfully contribute to classification. 

The eight features showing improved classification accuracy were entered into a supervised random 

forest algorithm, to assess the performance of these eight features vs. including all 34 features across all 

tasks. Age and gender were not regressed in order to compare the RF performance with the original RF. 

1000 iterations were run with 40 percent holdout (see: Supplemental Analysis 2; methods, for more 

details) for testing data and 60 percent as training data. Mean and standard deviation for total accuracy, 

sensitivity, and specificity are reported. 

Chapter 4: Results 

Random Forest Classification results 

Random forest successfully classified individuals as having ASD or not 

 RF model accuracy is shown in Figure 2A. Applying the RF algorithm on behavioral data from 7 

different tasks (34 variables) achieved an overall classification accuracy of 73% (M = .727, SD = .087) and 

an independent sample t-test revealed that the RF model was significantly more accurate than the 

permutation accuracy measure of 51% [M = 50.9, SD =.103; t (1998) = 51.325, p < .001]. The RF model 
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had a sensitivity  of 63% (M = .631, SD = .153) when classifying ASD subjects, the ability to correctly 

identify true positives, and an independent sample t-test revealed that the model’s sensitivity was 

significantly higher compared to the permutation sensitivity of 44%. [M = .441, SD =.166; t (1998) = 

26.643, p < .001]. The RF model also had a specificity of 81% (M = .807, SD = .153) when classifying 

control participants, the ability to correctly identify true negatives, and an independent sample t-test 

revealed that this was significantly more accurate compared to the permutation specificity of 56%. [M = 

.564, SD =.153; t (1998) = 40.501, p < .001]. Taken together, these findings show that the RF model 

identified patterns in the cognitive data that stratified individuals with an ASD diagnosis from individuals 

without. (Note: Due to confound age and gender factors, a secondary RF analysis was performed on the 

behavioral data, controlling for both factors. Despite the large confounds, the RF analysis accurately 

classified ASD from control participants greater than chance. This analysis is discussed in supplemental 

materials). 

Proximity matrices from random forest model suggest subgroups in ASD and Control samples 

We next applied community detection to the proximity matrices generated through the random forest 

modeling. The community detection algorithm identified three putative ASD subgroups and four 

putative control subgroups (Figure 2B). For children with an ASD diagnosis, the largest subgroup 

comprised 25 individuals, while the other two subgroups numbered 13 and 9 children respectively. For 

children without an ASD diagnosis, the largest subgroup comprised 39 individuals; three other 

subgroups were evenly split with five, five, and three children respectively. Six controls were not 

identified as part of any community, which were placed into a fifth “unspecified” subgroup. To 

characterize these subgroups, we first examined whether accuracy of classification varied between 

subgroups, and then examined variation in the task measures between the subgroups.  

ASD subgroups differed in terms of classification accuracy 

We next compared the classification accuracy of individuals within each ASD subgroup to see if specific 

subgroups may have differentially affected RF model performance (Figure 2C). It also allowed us to 

validate that these subgroups were indeed systematically different from one another based on the 

cognitive data used in the RF model. 
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Figure 2. (A) Plot of accuracy for observed (blue) vs. permuted (red) RF models. Wide bars refer to the 25th/75th percentiles and 
thinner bars refer to the 2.5th/97.5th percentiles. (B) Sorted proximity matrix, where each row and column represents a 
participant and each cell represents the number of times two participants ended in the same terminal node across all the RF 
models. (C) Plot of RF classification accuracy for ASD subgroups, error bars represent 1 standard error of the mean (SE). Dashed 
blue line represents 50% mean accuracy. (D) Plot of RF classification accuracy for control subgroups. Error bars represent 1 SE. 
Dashed blue line represents 50% mean accuracy. (E) Plot of SRS for ASD subgroups. The color code for each subgroup is 
maintained throughout all subfigures. 

Because we constructed multiple RFs, each subject was included in the test dataset a large number of 

times, therefore we can calculate the rate of accurate classification per subject. A one-way between 

subjects ANOVA was conducted to compare the rate of classification accuracy between the 3 ASD 

subgroups identified by community detection. There was no significant difference between the groups 

[F (2, 44) =1.859, p=.168]. An independent sample t-test was conducted to see if subgroup classification 

accuracy significantly differed from chance (.5) using a Bonferroni adjusted alpha level of .0167 per test 

(.05/3). Subgroup 1 was significantly better at classification than chance [M = .726 SD = .367; t (24) 

=3.0732, p=.005] but subgroups 2 [M = .607 SD = .383; t (12) =1.01, p=.334] and subgroup 3 [M = .443 SD 

= .431; t (8) =-.399, p=.701] were not.  

These results suggest that there may be differences in our subgroups that are important for 

distinguishing ASD from TD. This difference is subtle, because effects of subgroup on accuracy are small 

and could largely be driven by the small sample size in subgroups 2 and 3. However, variation in 

classification accuracy may reflect differences in cognitive profiles. Subjects in subgroup 3 had a 

classification accuracy of only 44%, which may indicate that these individuals had cognitive scores more 

similar to our control group than our ASD group, while subgroup 1 had a classification accuracy of nearly 

73% suggesting that their cognitive scores may be far different from both our control group, and ASD 

subgroup 3.  
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Control subgroups differed in terms of classification accuracy 

We also compared the classification accuracy of individuals within each control subgroup to again see if 

specific subgroups were differentially affecting our RF model’s performance (Figure 2D). 

A one-way between subjects ANOVA was conducted to compare classification accuracy for each of the 4 

control subgroups plus the controls that were lumped into a fifth subgroup, identified by community 

detection. There was a significant effect of subgroups on classification accuracy [F (4, 53) =24.018, 

p<.001]. Post-hoc comparisons using an independent-sample t-test indicated that the classification 

accuracy for subgroup 5 (M = .120 SD=.086) was significantly worse (using a Bonferroni adjusted alpha 

level of .006 per test) than subgroup 1 [M = .922 SD = .137; t(43)=-13.871, p<.001], subgroup 2 [M = .804 

SD = .422; t(9)=-3.910, p=.004], and subgroup 4 [M = .995 SD = .0089; t(7)=-16.903, p<.001], but not 

subgroup 3 [M = .636 SD = .362; t(9)=-3.411, p=.008]. Additionally, an independent sample t-test was 

conducted to see if subgroup classification accuracy significantly differed from chance (.5) using the 

Bonferroni adjusted alpha level of .006 per test. Participants in subgroups 1 [t (38) =19.276, p<.001] and 

4 [t (2) =96.00, p<.001] were classified as controls significantly more than chance, while participants in 

subgroup 5 [t (5) =-10.773, p<.001] were classified as controls significantly less than chance.  

Community Detection identified these subgroups in ASD and Control samples who differed in behavioral 

tasks and classification accuracy 

To test whether ASD subgroups may reflect quantitative variation in autism symptom severity, we 

examined whether identified ASD subgroups varied by Social Responsiveness Scale (SRS). A one-way 

ANOVA revealed no significant differences between the subgroups on SRS (Figure 2E; F (2, 44) = 0.006, p 

= 0.994), suggesting 

that ASD subgroups 

had similar autism 

severity but varied in 

other ways. Because 

normal variation in 

cognitive profiles 

may affect the 

manifestation of a 

developmental 

disorder (71), we 

then examined the 

variation in task 

performance for ASD 

(Figure 3; left) and 

control (Figure 3; right) subgroups. For control subgroups, the fourth subgroup was not examined due to 

the small sample size and the fifth subgroup was not examined because it represented “unspecified” 

subjects. A series of subgroupXtask measure repeated measures ANOVA were performed to assess 

whether we should examine task performance between specific subgroups. The ASD subgroups 

(F(66,1056) = 7.65, p = 7.5*10-54), control subgroups (F(66,1452) = 2.19, p = 2.4*10-7), and accurately 

identified subgroups (F(33,1716) = 10.64, p = 3.3*10-49) showed significant differences across task, 

indicating that identified subgroups varied by task measure. Post-hoc one-way ANOVAs identified 11 

significant different features for control subgroups (F (2, 46) > 3.29, p < 0.0462) and 16 significant 

Figure 3. Radar plots represent the 50th percentile for performance per group. All data are 
normalized within each radar plot from 0 to 100 percent. Per sample, one-way ANOVAs were 
conducted on raw data to reduce the number of points plotted based on differences between 
subgroups. The colors for each subgroup are the same as in Figure 2. 
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different features for ASD subgroups (F (2, 44) > 3.45, p < 0.0405). For both ASD and control subgroups, 

similar relative cognitive profiles were observed. The largest subgroup in both cohorts performed best 

on stop and continuous performance tasks. The second largest subgroup in both cohorts had the 

smallest spatial span, and the highest accuracy and longest reaction times for the facial and affect 

processing tasks. The third subgroup in both cohorts was characterized by highest spatial span, but 

lowest accuracy and shortest reaction time for the face processing tasks. Participants who show a 

combination of low accuracy and short reaction time may be showing a speed accuracy trade-off (90), 

where individual participants are making quicker responses at a cost of more accurate responses. For 

the most part, delayed discounting did not differentiate the subgroups, which is unsurprising, because 

evidence is mixed whether delayed discounting varies by ASD or ASD subgroups. A prior study suggests 

that ASD and control subgroups discount monetary rewards similarly(24); the relationship between 

discounting and time varies by ASD subgroup, which is consistent with findings from a separate study 

where some ASD participants may discount monetary rewards more steeply than controls(25). The 

similar cognitive profiles observed between controls and ASD subgroups suggests that normal variation 

in cognitive profiles may impact how ASD manifests in individuals.  

Functional Connectivity Results 

Functional connectivity differences between ASDs and 

Controls 

To test our hypothesis that our ASD and controls 

groups differed in terms of resting-state functional 

connections between, and within, different functional 

systems, we used the chi-squared approach described 

earlier. The Gordon parcellation plus 19 subcortical 

regions were used to define the modules (Figure 4). 

We conducted the analysis on the 26 ASD subjects 

Figure 4. Visualization of systems of the brain used in the 
chi-squared analysis. Aud = Auditory. CIO = Cingulo-
opercular. CIP = Cingulo-parietal. Def = Default-mode. 
DoA = Dorsal attention. FrP = Frontal-parietal. ReT = 
Retrosplenial. SMh = Somato-motor hand. Smm = 
somato-motor mouth. VeA = ventral attention. Vis = 
Visual. SBcT = subcortical. Non = none. 

Figure 5. (A)  Plot of t-statistics for significant clustering observed between ASD and controls. (B) Plot of F ratios for significant 
clustering observed in the ANOVAs by subgroup. Colors surrounding significant clusters reflect the functional systems involved in 
the module (e.g. within or between system connectivity). (C) Visualization of estimated marginal means via subgroup by 
network interactions. Error bars represent 2 times the standard error of the mean. Colors surrounding the boxes reflect the 
functional systems involved and are consistent with the colors in B. 
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and 42 control subjects with satisfactory fMRI data (Figure 5A). The chi-squared analysis revealed 

significant clustering effects between the cingulo-opercular system and the default mode system (χ2 = 

48.86, p =.0002), the somato-motor hand system and the default mode system (χ2 = 12.81, p =.0016), 

the visual system and default mode system (χ2 = 11.74, p =.001), and between the subcortical system 

and the dorsal attention system (χ2 = 35.05, p =.0024). It also revealed significant clustering effects 

within the cingulo-opercular (χ2 = 259.36, p =.0002), the default mode system (χ2 = 11.66, p =.0002), 

and the visual system (χ2 = 35.05, p =.0002). These findings are consistent with prior reports of rsfcMRI 

differences between TD and ASD samples (see: Discussion). 

Subgroup differences within ASD and control 

samples 

Because ASD subgroups differed in classification 

accuracy with respect to chance (Figure 2C), we 

also tested whether variance between each of the 

ASD subgroups and the large control subgroup 

differed in terms of resting-state functional 

connections between, and within, different 

function systems, using the chi-squared analysis. 

Unfortunately, due to the MRI ‘scrubbing’ 

procedure, we did not have sufficient data in the 

other control subgroups to include them in this analysis. We conducted a one-way ANOVA with four 

groups on 57 subjects: the 31 subjects from Control subgroup one, 12 subjects from ASD subgroup 1, 8 

subjects from ASD subgroup two, and 6 subjects from ASD subgroup three who had satisfactory fMRI 

data. We again used a permutation test to determine each system’s expected ratio and compared this 

to the observed ratio using the chi-squared analysis (Figure 5B). We used the estimated marginal means 

from the ANOVA to visualize which subgroups drove significant clustering (Figure 5C). This test revealed 

significant increases in connectivity for ASD subgroup 1, relative to all other subgroups, between the 

cingulo-parietal system and the auditory system (χ2 = 12.06, p =.0014). Significant increases in ASD 

subgroup 2 and 3 between the cingulo-opercular system and the default system (χ2 = 24.01, p =.0002), 

and between the dorsal attention system and the somato-motor hand system (χ2 = 15.37, p = .0006). 

Significant increases in ASD subgroup 1 and 2 connectivity between the salience system and the visual 

system (χ2 = 11.36, p = .0016). Significant increases in control connectivity were observed within the 

default system (χ2 = 22.36, p = .0010) and between the dorsal attention system and the subcortical 

system (χ2 = 11.85, p = .002). Connectivity between the default system and the somato-motor hand 

system (χ2 = 28.85, p = .0002) showed mixed results, with ASD subgroups deviating from controls.  The 

estimated marginal means for these tests are summarized in Table 4.   

These differences overlapped substantially with the differences observed between ASD and controls 

(Figure 5A), suggesting that normal variation in mechanisms that are also affected by ASD may cause 

variation in how ASD may manifest (1,91). These findings should be interpreted cautiously, however, 

because these data are not predictive of diagnosis.  

Supplemental analysis 1: Age and gender are not associated with most input features 
Supplemental figure 1 shows the relationships observed between age (Figure 6;blue), gender (Figure 6; 

red), and task measures. No measure was significantly associated with gender, after correction for 

multiple comparisons (R2 < 0.045 , p > 0.169). However, eight features were significantly correlated with 

Table 4. A list of the estimated marginal means from the chi-
square ANOVA test. Values in parentheses reflect the standard 
error of the marginal means. 
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age ( significant 

p threshold = 

0.011): CPT 

dprime1 (R2 = 

0.308 , p < 

0.001), CPT 

dprime2 (R2 = 

0.192 , p < 

0.001), CPT 

natural log of 

bias (R2 = 0.105 , 

p = 0.001), 

spatial span 

forward RT (R2 = 

0.158, p < 

0.001), spatial 

span backward RT (R2 = 0.105, p = 0.001), spatial span forward span (R2 = 0.086 ,p= 0.002), spatial span 

forward number completed (R2 = 0.077 ,p= 0.004), and accuracy on stop go trials (R2 = 0.165, p < 0.001). 

Despite this relationship, measures that show insignificant correlations with age, such as stop signal RT 

(R2 = 0.022, p = 0.136), standard deviation of stop go trial RT (R2 = 0.026, p = 0.099), facial affect 

accuracy (R2 = 0.045 , p = 0.033), and auditory affect RT (R2 = 0.039, p = 0.049), strongly characterized 

the differences between subgroups (Figure 3) and between diagnostic samples (Figure 9). This analysis 

suggests that gender and age may have had minimal influence on the predictive features despite the 

differences between ASD and TDs.  

Figure 6. Radar plot of proportion of variance explained for age (red) and gender (blue). Orientation 
matches other radar plots in figure 3 and Figure 8. 
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Supplemental analysis 2: RF classified ASD diagnosis and identified three ASD subgroups and two 

control subgroups 

After controlling for age and gender, random forest successfully classified participants without an ASD 

from participants with an ASD 

 

Figure 7. (A) Plot of accuracy for observed (blue) vs. permuted (red) RF models after controlling for age and gender. Wide bars 
refer to the 25th/75th percentiles and thinner bars refer to the 2.5th/97.5th percentiles. (B) Sorted proximity matrix, where each 
row and column represents a participant and each cell represents the number of times two participants ended in the same 
terminal node across all the RF models. (C) Plot of RF classification accuracy for ASD subgroups, error bars represent 1 standard 
error of the mean (SE). Dashed blue line represents 50% mean accuracy. (D) Plot of RF classification accuracy for TD subgroups. 
Error bars represent 1 SE. Dashed blue line represents 50% mean accuracy. (E) Plot of SRS for ASD subgroups. The color code for 
each subgroup is maintained throughout all subfigures. 

RF model accuracy is shown in supplemental figure 2A. Applying the RF algorithm on behavioral data 

from 7 different tasks (34 variables) achieved an overall classification accuracy of 62% (M = .623, SD = 

.063) and an independent sample t-test revealed that the RF model was significantly more accurate than 

the permutation accuracy measure of 50% [M = .504, SD =.077; t(1998) = 37.83, p < .001]. The RF model 

had a sensitivity  of 64% (M = .647, SD = .123) when classifying ASD participants, the ability to correctly 

identify true positives, and an independent sample t-test revealed that the model’s sensitivity was 

marginally, albeit significantly, higher compared to the permutation sensitivity of 47%. [M = .467, SD 

=.137; t(1998) = 30.98, p < .001]. The RF model also had a specificity of 60% (M = .603, SD = .106) when 

classifying TD participants, the ability to correctly identify true negatives, and an independent sample t-

test revealed that this was significantly more accurate compared to the permutation specificity of 53%. 

[M = .534, SD =.123; t(1998) = 13.55, p < .001]. After controlling for age and gender, the RF model 

separates TDs and ASDs equally. However, the proximity matrix notes strong separation between the 

groups (Figure 2B). Because few predictive features were significantly related to age and gender, but age 

and gender were significantly different between the cohorts, the observed loss of accuracy may reflect 

increased noise in the residuals as opposed to a removal of age and gender confounds. 
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Proximity matrices from random forest model suggest three subgroups each for ASD and two for control 

cohorts  

The community detection algorithm identified three putative ASD subgroups and two putative TD 

subgroups (Figure 7B). For children with an ASD diagnosis, the largest subgroup comprised 27 

individuals, while the other two subgroups numbered 15 and 4 children respectively. One child was not 

part of any community and left out of remaining analyses. For children without an ASD diagnosis, the 

largest subgroup comprised 31 individuals, the second group numbered 27 individuals. To characterize 

these subgroups, we first examined whether accuracy of classification varied between subgroups, and 

then examined variation in the task measures between the subgroups.  

ASD subgroups differed in terms of classification accuracy  

A one-way between participants ANOVA was conducted to compare classification accuracy between the 

3 ASD subgroups identified by community detection (Figure 7C). There was a significant effect of 

subgroups on classification accuracy [F(2,43) = 12.212, p<.001]. Post-hoc comparisons using an 

independent-sample t-test indicated that the classification accuracy for Subgroup 3 (M = .005, SD =.007) 

was significantly worse than Subgroup 1 [M = .706, SD = .297; t(27) = -4.645, p < .001] and Subgroup 2 

[M = ..678, SD = .237; t(17) = -5.558, p < .001], while Subgroups 1 and 2 were not significantly different 

from one another [t(40) = .315, p = .754]. 

An independent sample t-test was conducted to see if subgroup classification accuracy significantly 

differed from chance (.5) using a Bonferroni adjusted alpha level of.017 per test (.05/3). Subgroup 1 

[t(26) = 3.604, p = .001] and Subgroup 2  [t(14) = 2.908, p = .012] were both significantly better at 

classification than chance, while Subgroup 3 was significantly worse than chance [t(3) = -146.247, p < 

.001]. 

TD subgroups differed in terms of classification accuracy 

Supplemental figure 2D shows the accuracy for TD subgroups. An independent samples t-test was 

conducted to compare classification accuracy between the two TD subgroups identified by community 

detection which revealed that Subgroup 1 (M = .870, SD = .286) had significantly higher classification 

accuracy compared to Subgroup 2[M =.287, SD = .240; t(56) = 8.339, p < .001]. 

An independent sample t-test was conducted to see if subgroup classification accuracy significantly 

differed from chance (.5) using the Bonferroni adjusted alpha level of .025 per test (.05/2). Participants 

in Subgroups 1[t(30) = 7.206, p < .001] were correctly classified as TDs significantly more than chance, 

while participants in Subgroup 2 [t(26) = -.4.611, p < .001]  were incorrectly classified as ASD more than 

chance. 
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Similar cognitive profiles were identified with ASD and within TD subgroups 

To test whether ASD subgroups may reflect quantitative variation in autism symptom severity, we 

examined whether identified ASD subgroups varied by Social Responsiveness Scale (SRS; Figure 7E). A 

one-way ANOVA revealed no significant differences between the subgroups on SRS (F(2,44) = .012, p = 

.988), 

suggesting that 

ASD subgroups 

may have had 

similar autism 

severity but 

varied in other 

ways.  

Because normal 

variation in 

cognitive 

profiles may 

affect the 

manifestation of 

a developmental disorder (Fair, 2012), we then examined the variation in task performance for ASD 

(Figure 8; left) and TD (Figure 8; right) subgroups. For both sets of subgroups, all measures were 

significantly different. For both ASD and TD subgroups, similar cognitive profiles were observed and 

separated by overall task performance. The largest subgroup performed best across all tasks. The 

second largest subgroup performed worst across all tasks. For ASD, the third subgroup was 

characterized by varying performance in the middle.  

Supplemental Analysis 3: Subgroups did not vary by ADOS scores 
ADOS symptoms for the original (Figure 9A) and supplemental (Figure 9B) subgroups are shown in Figure 

9. For the original analysis, no significant effects of subgroup were observed (F(2,46) = 1.122, p = 0.335), 

and the largest numerical difference 

was observed between the first (M = 

11.8 SD = 2.79) and second (M = 13.54 

SD = 3.52) subgroups (cohen’s d = 

0.53). For the supplemental analysis, 

no significant effects of subgroup were 

observed (F(2,45) = 1.256,p = 0.295). 

However, large numerical effects were 

observed comparing the third 

subgroup (M = 10.75 SD = 1.258) to 

the first (M = 12.07 SD = 3.234 ; 

cohen’s d = 0.56 )  and second (M = 

13.4 SD = 3.924 ; cohen’s d = 0.9)  

subgroups. The large effect size in the 

supplemental results may have been 

affected by demographics, particularly differences in gender. 

Figure 8. Radar plots represent the 50th percentile for performance per group. All data are normalized 
within each radar plot from 0 to 100 percent. The colors for each subgroup are the same as in Figure 7. 

Figure 9. Bar plot of ADOS summed scaled scores for ASD subgroups. Error 
bars reflect one standard error of the mean. Subgroups are color-coded by 
their affiliated colors (see: Figure 2). (A)  ADOS summed scaled scores for 
original subgroups. (B) ADOS summed scaled scores for supplemental 
subgroups. 
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Supplemental Analysis 4: Supplemental subgroups varied by age and gender; original subgroups 

varied by age 
Therefore, we examined whether the ASD and TD subgroups varied by age (Figure 10), gender and IQ 

(Figure 11). For the 

TD original 

subgroups, we 

found no significant 

variation in age 

(Figure 10B; F(4,57) 

= 2.09, p = 0.095), 

IQ (Figure 11B; 

F(4,57) = 2.33, p 

=0.068), or gender 

(χ2(df = 4, N = 57) = 

4.979, p = 0.290). 

The supplemental 

subgroups split into 

female (first) and 

male (second) 

subgroups (χ2(df = 

1, N = 57)= 58.00, p 

<.001) but showed 

no significant age 

(Figure 10D; t(56)  = 

0.343, p = 0.733) or 

IQ (Figure 11D; t(56) = -1.54, p = 0.129) differences, suggesting that the supplemental RF may have 

classified the groups primarily on gender differences.  

Both the ASD supplemental and original subgroups varied by age (Figure 10) and IQ (Figure 11), but in 

very different ways. For the original subgroups, the largest (N = 25) and best classified subgroup had 

significantly lower age (Figure 10A ; F(2,46) = 3.39, p = 0. 043) and IQ (Figure 11A ; F(2,46) = 8.4, p = 

0.001). For the supplemental subgroups, the smallest (N= 4) and worst classified subgroup had 

significantly lower age (M = 9.76, SD = 1.59) and IQ (M = 24.3, SD = 9.95). We suspect that the 

discrepancy between the original and supplemental results may be driven by differences in gender 

composition; the supplemental ASD subgroups varied by gender  (χ2(df = 2, N = 57) = 20.112, p =<.001), 

with the smallest subgroup comprising female ASD children, whereas the original ASD subgroups did not 

vary by gender (χ2(df = 2, N = 57) = .875, p = .646). 

Figure 10. Bar plots of age for original (top) and supplemental (bottom) subgroups. Plots are split by 
ASD (left) and TD (right) subgroups. Error bars reflect one standard error of the mean. Subgroups are 
color-coded by their affiliated colors (see: Figure 2). (A)  Age for original ASD subgroups. (B) Age for 
original TD subgroups (C) Age for supplemental ASD subgroups (D) Age for supplemental control 
subgroups. 
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Supplemental 

Analysis 5: 

accurately classified 

supplemental, but 

not original, 

subgroups differed 

by age and IQ. 
Given the uncertainty 

with the 

supplemental 

analysis, we 

examined whether 

the results of either 

analysis could be 

explained by age or 

IQ. If successfully 

classified ASD and 

typical subgroups 

vary by 

demographics, 

than such 

variation could 

affect the RF model. 

Therefore, age and IQ were 

compared using a one-way 

ANOVA across ASD and TD 

subgroups that were 

accurately classified in the 

original (Figures 2C and 2D) 

and the supplemental 

(Figures S2C and S2D) 

analyses.  

IQ and age for accurately 

classified supplemental and 

original subgroups are 

shown in Figure 12. For the 

original analysis, subgroups 

did not significantly vary by 

age (Figure 12A; F (2,66) = 

1.37, p = 0.261), or IQ 

(Figure 12C; F (2,66) = 

2.65, p = 0.078). However, 

IQ may be numerically 

Figure 11. Bar plots of IQ, as measured by block design scaled scores for original (top) and 
supplemental (bottom) subgroups. Plots are split by ASD (left) and TD (right) subgroups. Error bars 
reflect one standard error of the mean. Subgroups are color-coded by their affiliated colors (see: 
Figure 2). (A)  Age for original ASD subgroups. (B) Age for original TD subgroups (C) Age for 
supplemental ASD subgroups (D) Age for supplemental TD subgroups. Abbreviations: WISC: Wechsler 
Intellectual Scale for Children; BD: Block Design. 

Figure 12. Age (top) and IQ (bottom) bar plots for accurately classified original (left) and 
supplemental (bottom) subgroups. Error bars reflect one standard error of the mean. 
Subgroups are color-coded by their affiliated colors (see: Figure 2). (A)  Age for original 
subgroups. (B) Age for supplemental subgroups (C) IQ for original subgroups (D) IQ for 
supplemental subgroups. Abbreviations: WISC: Wechsler Intellectual Scale for Children; 
BD: Block Design. 
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lower in the ASD subgroup (M = 34, SD = 12.75) than in the first (M = 40.5, SD = 12.64; cohen’s d = 0.51) 

or fourth (M = 46.3, SD = 9.61; cohen’s d = 1.1) TD subgroups. For the supplemental analysis, both age 

(Figure 12B; F (2,72) = 11.29, p < 0.001) and IQ (Figure 12D; F (2,72) = 3.13, p = 0.05) showed significant 

variation across the subgroups. In particular, the TD subgroup was numerically younger (M = 10.3, SD = 

0.157) and had lower IQ (M = 35.6, SD = 13.7) than the ASD subgroups. 

Supplemental Analysis 6: Eight features contributed meaningfully to classification 
Supplemental figure 8 shows the variable importance for all 34 features. Only 8 of the 34 features 

contributed meaningfully to classification: mean stop task RT, standard deviation stop task RT, spatial 

span backwards RT, spatial span backwards span, spatial span forwards RT, accuracy on face identity 

task, accuracy on face emotion task, and RT on vocal affect task.   

The eight feature RF performed similarly to the original RF. Total accuracy was slightly higher for the 

original (M = 0.727, SD = 0.087) than the eight feature (M = 0.7144, SD = 0.0577) RF. Sensitivity was 

higher in the eight feature (M = 0.678, SD = 0.114) than in the original (M = 0.631, SD = 0.153) RF. 

Specificity was higher in the original (M = 0.807, SD = 0.153) than in the eight feature (M = 0.743, SD = 

0.0914) RF. 

Chapter 5: Discussion 

Accuracy of the Random Forest 

model 

Link our results to prior findings 

using machine learning ASD 

classification  

Using a RF model, ASD and control 

participants were accurately 

classified 73 percent of the time 

using a comprehensive battery of 

cognitive tasks often identified as 

affected by an ASD diagnosis. 

Despite differences in age between 

samples, it is unlikely that the 

accurate classification was driven by 

age for two primary reasons. First, 

task measures important for 

classification did not show strong 

correlations with age (see: 

supplemental materials for 

discussion); when corrected for 

multiple comparisons, no 

relationships between gender and task performance are observed. Second, we performed a second RF 

model controlling for age and gender across all features, which continued to perform above chance 

(see: supplemental materials for discussion). 

Figure 13. Plot of variable importance for each feature included in the analysis. 
The variables are ordered by task, from left to right, in the same order as the 
radar plots. Positive values indicate that removing the feature from the model 
increases error (i.e. reduces performance), and therefore are more important 
variables for the RF model. 
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Higher performance has been reported for behavior when constructing a model using visual face 

scanning (88.1%; (92)) or goal-oriented reach (96.7%; (93)) measures. However, high classification 

accuracy may be a function of validation strategies or sample size. Liu et al used a leave-one-outcross 

validation (LOOCV) strategy, which improves classification accuracy within a test dataset, but may 

reduce the generalizability of the model to other datasets. Crippa et al. also used a LOOCV validation 

strategy, and were also limited in sample size. Machine learning approaches using imaging data have 

shown that validation accuracy decreases as the sample size increases, suggesting that these small 

sample sizes may be overfitting the data (65,68).  

Recent classification studies incorporating brain measures have shown comparable results to our initial 

classification and further suggest that heterogeneity of clinically relevant ASD subgroups may limit high 

classification accuracy. Duchesnay et al. found that PET imaging could be used to predict ASD with 88% 

accuracy in a sample of 26 participants (61). Murdaugh et al. used the intra-DEF connectivity to predict 

ASD with 96% accuracy in a sample of 27 participants (62). Wang et al., using whole-brain functional 

connectivity, correctly predicted ASD with 83% accuracy in a sample of 58 participants (63). Jamal et al. 

used EEG activity during task switching to predict ASD with 95% accuracy in a sample of 24 participants 

(64). Using large data consortiums like the Autism Brain Imaging Data Exchange (ABIDE), recent 

classification studies have developed and tested models using datasets with over 100 participants. 

Collectively, these large-sample studies demonstrate performance accuracy from 59% to 70% when 

testing untrained data (65–68,94). Our data highlights the importance of considering heterogeneity for 

such tests.  

Extension of prior Machine Learning studies 

Individual classification results and their relation to subgroups 

Our RF approach extends prior studies by identifying putative subgroups from a validated ASD 

classification model. Specifically, we identified three ASD and four control putative subgroups, with a 

fifth group of isolated subjects. To further characterize these subgroups, we examined whether 

subgroups were stratified via classification accuracy. Because of our extremely stringent inclusion 

criteria, we are extremely confident that all ASD subjects indeed have an ASD, therefore ASD subgroups 

that contain misclassified individuals may represent clinically important subgroups that our initial RF 

model failed to capture. Control subgroups that contain misclassified individuals may represent 

subgroups that our initial RF model confused for ASD individuals. We found that the largest subgroup for 

ASD and the largest and smallest subgroup for controls were significantly more accurate than chance. 

Other ASD and control subgroups were not, and the distinction in classification accuracy may reflect the 

heterogeneity within the disorder. In an earlier study, ASD participants were sub-grouped on the basis 

of symptom severity, verbal IQ, and age, which caused classification rates to increase by as much as 10% 

(65). On the other hand, the fact that control subgroups also showed misclassification suggests that 

variation in such skills may represent the existence of broad cognitive subgroups that are independent 

of diagnosis, whose variation may impact the presentation of ASD symptoms (1). Prior work by Fair et al. 

has shown similar heterogeneity in both TD and ADHD children; as with Katuwal, taking into account this 

heterogeneity improved diagnostic accuracy (71). 

ASD subgroups are not associated with variance in symptom severity 

It is controversial whether clinical subgroups even exist in ASD. Recently, it has been suggested that ASD 

represents the tail end of a continuous distribution of social abilities. Categorically distinct subtypes are 
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either artificial constructs (95)  or unknown (1). Categorically distinct subtypes may be difficult to 

discover due to the heterogeneity present within the typical population (71) as well as the 

heterogeneity in genetic causes of ASD (1). According to Constantino et al., such genetic subtypes may 

interact with the environment of the individual, leading to varying manifestations of ASD. Findings that 

the trajectories of adaptive functioning and autism symptom severity are distinct from one another 

(14,91) further suggests a dissociation between adaptive functioning and symptom burden. 

Therefore, our subgroups may reflect the variation in autism symptom severity or in cognitive 

mechanisms that may impact ASD profiles, independent of severity. To test this hypothesis, we 

examined whether our ASD subgroups varied by autism symptom severity, as measured by the SRS (96) 

and the ADOS (Supplemental Analysis 3).  We found that our subgroups did not differ on the SRS or the 

ADOS, suggesting that autism symptom severity was similar across the three subgroups, despite 

differences in classification accuracy. Because we are confident in the ASD diagnosis, we suspect that 

the variation between these three subgroups reflects typical variation in cognitive mechanisms, which 

may be independent of autism symptom severity but influence ASD presentation(14,91). Identification 

of such subgroups may be critical for the development of personalized treatment approaches in future 

studies and has the potential for improving ASD diagnosis and long term outcomes (1). Future studies 

could better characterize putatively identified subgroups by examining how subgroups may differ on 

measures of adaptive functioning, or examining whether the subgroups may be characterized by a set of 

measured ASD symptoms. Critically, future studies should also seek to assess the stability of identified 

subgroups using longitudinal data. 

Describe identified subgroups 
To further characterize the identified subgroups, we examine how the subgroups differed on the tasks 

incorporated into the model. With such an analysis, we can compare our results to prior research that 

has identified subgroups in independent datasets using similar tasks (71). Replication of similar 

subgroups would suggests these subgroups may be meaningful. However, because the data from these 

tasks were used to construct the model, an independent set of measures is necessary to establish the 

validity of the identified subgroups. Therefore, we also examined differences in functional brain 

organization in a subset of participants, to see whether differences in functional brain organization 

between the subgroups reflects the effect of an ASD diagnosis on functional brain organization.  

Differences in behavior and how that compares to previous literature  

Due to fragmentation and limited sample size, we examined variation in task performance between the 

three ASD subgroups and between the largest three control subgroups only. Similar to prior research, 

subgroup differences were largely similar, independent of clinical diagnosis. Per sample, the largest 

subgroups performed best on CPT and stop tasks, and worst on face processing tasks. The second 

largest subgroups had the smallest spatial span and were slower but more accurate on the face 

processing tasks. The third largest subgroups had the largest spatial span and were faster, but less 

accurate, on the face processing tasks. The distinctions between these subgroups are consistent with 

prior research, which characterized heterogeneity in typical and ADHD samples and found multiple 

subgroups characterized by either a small spatial span, slow RT, and high information processing, or high 

spatial span, fast RT and low information processing(71). Taken together, these findings suggest that 

clinical heterogeneity may emerge from normal variation in cognitive profiles, and are consistent with a 

recent study showing that clinical heterogeneity within ASD may be driven by normative 
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development(97). Our study here extends the prior findings to ASD and establishes a predictive model, 

which provides some clinical validity to the identified subgroups.  

Our finding that the differences between subgroups were similar in both ASD and TD samples may 

appear inconsistent with prior studies that show an effect of ASD on the relationship between cognitive 

measures and task performance(12,27,37,38). However, differences in diagnostic criteria may explain 

some of the apparent contradiction here. Our study used a team of experts to confirm ASD diagnosis per 

individual, whereas these prior studies often used only a DSM diagnosis plus one or two instruments 

that assess autism symptom severity (e.g. the ADOS and/or ADIR). The inconsistency in findings may be 

interpreted as further evidence of heterogeneity within ASD. Differences in cognitive profiles across 

individuals with ASD could explain the variation in attention, working memory, and face processing.  In 

addition, prior work suggests that cognitive subtypes within ASD may be similar to cognitive subtypes 

found in typical populations(98).  

Differences in fMRI data and validation of subgroups how that compares to previous literature  

To provide further validation of the subgroups, we examined whether significant differences in the 

functional organization of the brain between subgroups overlapped with significant effects of ASD on 

functional brain organization. Since this data was never used in the RF model, variation that overlaps 

with differences between ASD and typical children may reflect clinically or etiologically important 

distinctions between subgroups. Because we did not observe differences in symptom severity between 

subgroups, the findings above are more likely to reflect typical variation in neural mechanisms 

underlying cognitive performance, as opposed to manifestations of ASD symptoms. 

Differences between children with and without ASD are consistent with prior studies but also show 

some novel findings. Children with an ASD have shown altered visual system responses to stacks of 

oriented lines (99), and at rest they’ve exhibited altered DEF functional connectivity (52), but not altered 

cingulo-operuclar connectivity (59). Between system differences have been less studied in ASD, 

however, sub-cortical cortical connectivity has been shown to be altered (55,57) as well as the dorsal 

attention network organization (51), which is consistent with altered connections between subcortical 

and dorsal attention networks. However, differences between the DEF and visual, somatomotor, and 

cingulo-opercular systems have not been documented. The differences found between somatomotor 

and DEF may be consistent with findings of altered motor system function in ASD (100), while 

differences between DEF and cingulo-opercular systems may be consistent with altered rich-club 

organization (51).  

We would like to emphasize that the ANOVA chi-squared analysis may be underpowered (88) and, 

though enticing, is not definitive. Nevertheless, the subgroup chi-squared ANOVAs hint that the 

identified subgroups may reflect differences in both mechanisms relevant to an ASD diagnosis, and 

mechanisms that reflect variation across the subgroups. Four of the seven connectivity modules 

significantly affected by an ASD diagnosis showed variation in the ANOVA analysis: connectivity within 

the DEF; connectivity between the DEF and cingulo-opercular systems, between the DEF and 

somatomotor systems, and between the dorsal attention and subcortical systems.  We also found 

significant variation in the ANOVA chi-squared analysis from the ASD and typical comparisons. Like with 

behavioral measures in children with and without ADHD, it is possible that variation within the ASD 

subgroups identified here may actually be “nested” within the normal variation found in brain networks 

across typical children (1,71,91) . 
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The correspondence between the subgroups and the connectivity profiles are intriguing, and hint that 

the first ASD subgroup may have altered visual processing mechanisms, the third ASD subgroup may 

have altered attention mechanisms, and the second ASD subgroup may have both. Speculatively, the 

first ASD subgroup shows the best ASD performance on both stop and CPT tasks, just as individuals in 

the first control subgroup performs better than the other control subgroups. Inter-system connectivity 

between the default mode and task control and attention systems (i.e. CIP and DOA) are control-like in 

the first ASD subgroup, as well as connectivity between attention and motor systems. As discussed 

extensively in the introduction, such variation is consistent with the literature and may reflect typical 

heterogeneity variability related to the presentation of ASD. The third ASD subgroup shows the worst 

performance on facial and affect tasks of the three ASD subgroups; the first control group performs 

worse on the same tasks compared to the other control subgroups (Figure 3; right). Such tasks would 

involve visual processing, and the chi-squared comparison reveals that the third ASD and first control 

subgroups have similar visual system connectivity. Variation in facial task performance may be 

implicated in some children with autism (39), but not others (37). It will be interesting to see whether 

future studies identify similar variation in system-level connectivity between ASD subgroups, and 

whether these groups are stable over time. In addition, future studies with larger sample sizes may be 

able to uncover additional or more refined sub-populations within the disorder. 

Effects of demographics on RF model performance and subgroup affiliation 
Due to the age and gender differences between our ASD and TD samples, we wanted to test whether 

the typical variation affecting ASD subgroups may reflect differences in demographic variables. We 

conducted six supplemental analyses (see: Supplemental Materials) to address this question. The 

analyses detailed extensively in Supplemental Materials are alluded to here. Specifically, we evaluated 

the effect of age and gender on the behavioral measures (Supplemental Analysis 1), performed the RF 

classification on behavioral measures when controlling for age and gender (Supplemental Analysis 2), 

examined the effect of ASD subgroup on ADOS symptom scores (Supplemental Analysis 3), tested 

whether subgroup affiliation affected age, IQ, or gender (Supplemental Analyses 4 and 5), and measured 

how much each behavioral measure improved RF classification (Supplemental Analysis 6). 

The results from the supplemental RF were concerning, and hinted that controlling for age and gender 

may have, in fact, biased the analysis in unintended ways. There is some literature(101) that suggests 

such biases may occur when the differences in groups might differ by the controlling variables, but the 

features important for classification (i.e. in this case the behavioral measures) are not associated with 

those variables (i.e., here, age or gender). When we compared the association between age/gender and 

behavioral measures (Supplemental Analysis 1; Figure 6) to the behavioral measure importance 

(Supplemental Analysis 6; Figure 13), we found that only a few variables were associated with age or 

gender; the most important behavioral features showed no association with either demographic 

variable. After conducting the RF analysis we found several sub-groups that differed primarily by age 

and gender. Such findings were minimal in the main analysis. The findings provide important context for 

the primary findings, and highlight the importance of first examining the relationship between nuisance 

variables and input features. If no associations between input features and regressors are found, but 

regressors are associated with the outcome variable, then such regression may bias subsequent models 

in unintended ways. Similar concerns have been found when using parametric tests like analysis of 

covariance (ANCOVA) in psychiatric research(101). Nonetheless, several considerations arise from these 

supplementary analyses.  
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When controlling for age and gender, the supplemental RF (Supplemental Analysis 2) showed a 

reduction in classification accuracy from 73 to 62 percent (Figure 7A). Nevertheless, the RF model 

remained significantly above chance for both ASD (64 percent) and TD (60 percent) individuals. Notably, 

the drop in model performance was driven entirely by the TD group, where performance dropped over 

20 percent. Inspection of the subgroups shows that the second TD subgroup was more similar to the 

ASD subgroups; accuracy for the second TD subgroup was almost zero, suggesting that they were all 

being classified with ASD (Figure 7D), and therefore ASD classification may be driven by typical 

heterogeneity. Such an interpretation is consistent with the findings from the original RF. Additionally, 

We found little evidence that ASD subgroups varied by either SRS (Figure 7E and 2E) or ADOS (Figure 9; 

Supplemental Analysis 3) measures, which further indicates that ASD subgroups vary by typical 

heterogeneity and not autism symptom severity. However, it is unclear whether typical heterogeneity 

reflects demographic variables like age and gender or more cognitive variables like IQ or general task 

performance (Figure 8). Therefore further analyses investigated what aspects of typical heterogeneity 

affected subgroup affiliation. 

The original RF model may be driven by cognitive profile, while the supplemental RF model may be driven 

more by demographics 

Surprisingly, as noted above, the supplemental RF analysis identified subgroups that varied more by age 

and gender than the original RF (Supplemental Analysis 4). When we examined variation between 

control subgroups, we found that the supplemental RF subgroups (Figures S5D and S6D) were split by 

gender, while the original subgroups showed no demographic differences (Figures S6B and S6D). The 

ASD supplemental subgroups varied by age (Figure 10C), gender, and IQ (Figure 11C), while the ASD 

original subgroups varied by age (Figure 10A) and IQ (Figure 11A). The variation in age and IQ differed 

between the supplemental and original analysis. The most accurately classified ASD subgroup in the 

original analysis was closest in terms of age and IQ to the control subgroups, while the least accurately 

classified ASD subgroup in the supplemental analysis was most similar to the control subgroups. Because 

such demographic differences between accurately classified subgroups may explain the RF classification, 

we were interested in whether accurately classified ASD subgroups differed from accurately classified 

control subgroups. Since gender did not vary in the original analysis between ASD subgroups and 

between control subgroups, we focused on age and IQ variables. We found that age and IQ varied more 

in the supplemental than in the original analysis, however, IQ was numerically lower in the original ASD 

subgroup when compared to the control subgroups. Taken together, the findings suggest that the 

original RF was driven by variation in typical cognitive profiles, whereas the supplemental RF may be 

affected by variation in gender and age. 

Supplemental analysis 1: age and gender are less likely to drive RF classification  
Ultimately, we found that the relationship between age and predictive features varied by task. 

Measures from CPT and spatial span tasks were associated with age, whereas facial affect, delayed 

discounting, and stop tasks were not. Stop and facial affect tasks contained measures that were 

considered extremely important by the RF (see: supplemental analysis 6). Taken together, these findings 

suggest that age and gender are less likely to be driving any RF classification. Nevertheless, it is certainly 

possible that combinations of variables may be associated with age and gender. Therefore, examining 

the effects of age and gender on RF classification and subgroup identification can help determine which 

explanation is more likely. 
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Supplemental analysis 2: when controlling for age and gender, RF model identifies different 

subgroups that vary by cognitive profile 

RF classification is reduced when controlling for age and gender, but still greater than chance 

Compared to the original analysis (Figure 2A), accuracy for the supplemental RF model decreased 

approximately 11 percent. The reduction in overall accuracy is driven entirely by a 20 percent reduction 

in specificity, whereas sensitivity was unchanged. Although the reduction in model performance is large, 

it is difficult to dissociate whether the supplemental or original analysis should be the preferred analysis. 

Nevertheless, both RFs show over 60% accuracy and perform significantly better than the null models. 

Therefore, we identified subgroups and examined subgroup similarity and model performance per 

subgroup. 

Two ASD subgroups appear more similar to the second TD subgroup than the third ASD subgroup 

In the supplemental RF, model performance varied dramatically by subgroup. The third ASD and second 

TD subgroups could not be accurately classified, and visual inspection of the similarity matrix reveals 

almost no similarity between the two TD subgroups, or between the ASD subgroups. In fact, the second 

TD subgroup was more similar to the first two ASD subgroups than to the other TD group. The 

supplemental RF subgroups are substantially different from the original RF subgroups, so we further 

examined how these subgroups may vary by demographics (see: Supplemental Analysis 4 and 5), and 

cognitive profile. 

Subgroups differed by overall performance but not symptom severity 

Both ASD and TD subgroups varied by cognitive profile. The third ASD subgroup and first TD subgroup 

showed high performance across the variables, whereas the second TD and first two ASD subgroups 

showed low performance. These cognitive profiles are consistent with the model performance; the 

second TD subgroup and third ASD subgroups could not be accurately classified. Furthermore, autism 

symptom severity, as measured by the social responsiveness scale, did not vary between ASD 

subgroups, which suggests that autism symptom severity was similar across the three ASD subgroups. 

Taken together, these results suggest that the RF model is identifying subgroups by typical 

heterogeneity rather than ASD symptom severity, which is also consistent with the findings from the 

original RF. 

Supplemental Analysis 3: Effect of subgroup on ADOS scores 

ASD original subgroups show no significant variation in ADOS symptom 

Both the original and supplemental RF subgroups showed similar effects; we found effect of subgroup 

on autism symptom severity for either model. Coupled with our prior findings, we are confident that the 

subgroups identified by both the supplemental and original RFs reflect variation in typical heterogeneity 

rather than ASD severity. However, typical heterogeneity could reflect variation in demographics, 

cognitive profile or both. Having already compared cognitive profiles (Figure 3 and Figure 8), we 

investigated whether demographics such as age, and gender varied within the original and supplemental 

RF subgroups. 
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Supplemental Analysis 4: comparison of demographics between ASD subgroups and between TD 

subgroups 

Original ASD subgroups vary by age and IQ 

Demographic differences for the original dataset show that age and IQ vary by ASD subgroup, while TD 

subgroups show no differences in demographics. In particular, the largest and best classified ASD 

subgroup is both younger and has a lower IQ than the other two ASD subgroups. Notably, this subgroup 

is closest to the mean age and IQ of the TD subgroups. These findings suggest that the ASD subgroup 

variation reflects typical variation in cognitive profile, age and IQ, but not gender.  

Supplemental ASD and TD subgroups may be driven by gender differences 

Demographics differences for the supplemental dataset suggest that TD subgroups were stratified by 

gender. ASD supplemental subgroups showed significant variation across age, IQ and gender. In 

particular, the worst classified and smallest subgroup was youngest and had lower IQ. Notably, the 

poorly classified ASD subgroup shows the greatest demographic similarity to the TD subgroups. TD 

subgroups were effectively split into male and female subgroups, suggesting that the supplemental RF 

was driven by gender differences. Given that we controlled for gender, we found this effect somewhat 

surprising. However, the univariate regression approach does not TD for combinations of multiple 

variables, which may still enable one to dissociate male from female participants. Therefore, it is unclear 

whether effects of gender in the supplemental material is artefactual, or represents variation in gender. 

Supplemental Analysis 5: comparison of demographics between accurately classified subgroups 
Due to small sample sizes, we advise readers to interpret these tests cautiously. Nevertheless, the 

results here suggest that the RF model in the original analysis does not differentiate between ASD and 

TD samples by simple age or IQ. In fact, the ASD subgroup closest to the TD subgroups in age shows the 

highest classification accuracy. IQ shows a numerical difference, suggesting that variation in cognitive 

profile may have driven the RF. As noted above, subgroups in supplemental appear to be split by 

gender, but also may vary by both age and IQ. The direction of this variation differs from the original 

analysis, in that the ASD accurately-classified subgroups are older, more female, have lower IQ, and all 

of the observed effects are much larger. Taken together with the ADOS and SRS findings, these results 

suggest that ASD subgroups vary by typical heterogeneity more than autism symptom severity. Notably, 

the original RF model is less driven by demographic criteria than the regressed model in the 

supplemental, particularly age. Given that few task variables are associated with age and gender (see: 

Figure 6), we are concerned that the supplemental regression may have contaminated the analysis. 

Therefore, we would encourage users to perform such a regression only when an association is 

observed. Additionally, a careful examination of the subgroup demographics can help determine 

whether demographics affect the accuracy of the model. 

Supplemental Analysis 6: examination of variable importance from features 
Variable importance plot shows that eight features contribute to ASD classification. It is noteworthy that 

none of the eight features show a large relationship with gender or age (Figure 6). Furthermore, 

features that are controlled by the experimenter, such as accuracy on the stop task, did not contribute 

meaningfully to classification. All eight of these measures are considered important when evaluating 

performance on these tasks. On the other hand, both the delayed discounting task and the continuous 

performance task did not contribute at all to classification. The results from the eight feature RF further 

suggest that the delayed discounting and continuous performance tasks did not dilute classification. 
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Chapter 6: Summary and Conclusions 

Summary, limitations, and future directions 
The current study developed a novel approach for identifying and characterizing putative clinical 

subgroups and applied the approach to the question of ASD. Putative ASD subgroups identified from a 

diagnostically validated RF model are more likely to reflect properties relevant to clinical diagnosis than 

simple examination of the similarity between subjects. Therefore, this approach extends prior work that 

seeks to cluster and identify clinically important subgroups (71). However, we want to emphasize that 

the identified subgroups in this sample are putative. To maintain a sensible scope and limit overfitting, 

we limited the model features to cognitive measures covering executive function and face processing, 

which do not cover every implicated domain of ASD (6).  

To provide more support for the validity of these subgroups, we compared the subgroups using rs-fcMRI 

data. While we had sufficient power to examine the effect of ASD on resting state data (88), we were 

underpowered when examining differences between subgroups. Therefore, while the rs-fcMRI analysis 

provides some evidence that speaks to the validity of the subgroups, the analysis does not fully validate 

them. In addition, our quality control procedure did not identify enough samples in the 2nd, 3rd, and 4th 

control subgroups to include them in the rs-fcMRI comparison. Such a comparison would help ascertain 

how the heterogeneity within and between control and ASD subgroups on behavior relates to rs-fcMRI 

patterns. 

Prior identification of subgroups have relied on calculating the distance between each individual directly 

(71). Unfortunately, such a method has two primary limitations. First, the diagnosis (or question) of 

interest is not tied directly to the distance measure. By tying the distance measure directly to diagnosis 

we can be more confident that the identified subgroups are relevant to the clinical question. Second, 

the proximity method employed by the RF approach implicitly handles missing data. Using the same 

dataset, we could not calculate a correlation matrix because we do not have all the data, and excluding 

participants by missing data would bias the subgroup identification. Nevertheless, we hope future 

studies will compare our approach with other detection techniques in order to better evaluate the 

performance. 

Validate results and subgroups on external data set 

Because we are continuing to acquire data on these and new participants, we will be able to use 

external data to test whether behaviorally identified subgroups can be predicted from functional 

connectivity, or structural morphometry data. Furthermore, the approach outlined here can be used in 

future independent studies to identify putative clinical subgroups acquired at different sites. Ultimately, 

such independent studies can test whether previously identified subgroups are replicable, and whether 

such subgroups can be predicted in independent data. 

It is important to note that the interpretations of our analyses here are limited by the age and gender 

gap between the ASD and TD cohorts. Interestingly, we saw no differences of age or IQ across the 

accurately identified subgroups, nor were any subgroups split by gender. In fact, controlling for age and 

gender by regressing out these variables, as the supplemental RF model identified subgroups that were 

strongly affected by age, gender, and IQ. Taken together, these points suggest that the original RF is 

capturing variation in typical cognitive profile, as opposed to age or gender. Nonetheless, this limitation 

should not outweigh the novel impact of the approach presented here; future studies can use this RF 
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approach on independent samples and verify whether identified ASD subgroups display similar 

characteristics to the subgroups identified in the present sample.   

With the aid of large-scale data consortiums (e.g. ABIDE(102)), future studies will and should be able to 

identify putative subgroups and validate them further in larger samples. New tools will be needed to 

reduce the large dimensionality of the imaging data, and potential site differences in data quality; 

however, such resources, which provide imaging data on over 2000 participants across multiple sites, 

should provide a natural extension to the current work.  

Taken together, the findings from the supplemental analyses suggest that ASD subgroups vary by typical 

heterogeneity. The features important for the model were not strongly associated with age and gender. 

However, controlling for age and gender altered subgroups and reduced classification accuracy to 62 

percent. ASD subgroups did not vary significantly by symptom severity scores, however, ASD subgroups 

in both original and supplemental analyses varied by age and IQ, but in opposite directions. In the 

original analysis, the largest and most accurately classified ASD subgroup was youngest and had the 

lowest IQ; accurately classified TD and ASD subgroups did not differ by age and IQ. In the supplemental 

analysis, the most accurately classified ASD subgroups were older and had higher IQs; accurately 

classified TD and ASD subgroups differed by age, IQ, and gender. Based on these analyses we suspect 

the subgroups identified by the supplemental RF were split by gender, and that the age and gender 

regression may have contaminated the data. Future studies should be cautious in choosing whether to 

perform such a regression prior to machine learning, especially if the input features and demographics 

show small relationships, but demographics and clinical outcomes are highly associated. 

Summary of findings from supplemental analysis 
Taken together, the findings from the supplemental analyses suggest that ASD subgroups vary by typical 

heterogeneity. The features important for the model were not strongly associated with age and gender. 

However, controlling for age and gender altered subgroups and reduced classification accuracy to 62 

percent. ASD subgroups did not vary significantly by symptom severity scores, however, ASD subgroups 

in both original and supplemental analyses varied by age and IQ, but in opposite directions. In the 

original analysis, the largest and most accurately classified ASD subgroup was youngest and had the 

lowest IQ; accurately classified TD and ASD subgroups did not differ by age and IQ. In the supplemental 

analysis, the most accurately classified ASD subgroups were older and had higher IQs; accurately 

classified TD and ASD subgroups differed by age, IQ, and gender. Based on these analyses we suspect 

the subgroups identified by the supplemental RF were split by gender, and that the age and gender 

regression may have contaminated the data. Future studies should be cautious in choosing whether to 

perform such a regression prior to machine learning, especially if the input features and demographics 

show small relationships, but demographics and clinical outcomes are highly associated. 
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