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Abstract 

Mincpp: Efficient, Portable Compilation of C Programs 

George Moberly 

Oregon Graduate Institute of Science & Technology 

Supervising Professor: Tim Sheard, Ph.D. 

The mapping of C programs into files introduces inefficiencies in the build process. 

Three quantifiable inefficiencies are: compile times too long, too many builds triggered, 

and, ironically, too few builds triggered. Mincpp solves these problems by replacing the 

C preprocessor in the compiler driver. Mincpp uses a C parser to minimize its output to 

just that needed, with all spurious source code omitted. The result is faster compile times, 

semantically unnecessary builds short circuited, and "correct by construction" file 

dependency generation. The result is a new development tool that leverages developer 

productivity by speeding up the edit-compile-link-debug cycle. Mincpp is portable to any 

system and works with any C compiler. 



1. INTRODUCTION/PROBLEM STATEMENT 

C programs are stored as files. C textbooks encourage a modular programming 

style where a program is stored in several files, the files reflecting the logical layout of the 

application [Harbison9 11 [Johnson86a] [Kernighan88]. Although not strictly required, 

most designs make use of "header files" ( . h files), which are files that contain declarations 

that are shared between separately compiled modules ( . c files). In fact, the programmer 

who does not strictly follow this practice runs the risk of introducing (difficult to find) 

runtime errors if declarations are mismatched between separately compiled modules. In 

fact, using libraries ( . a files) created by the librarian utility normally involves including the 

declarations (hnction declarations and/or data structure declarations) via a preprocessor 

directive1 that expands to the contents of the referenced file during preprocessing of the 

. c file, and including the library in the final link step. 

Note that the above discussion references the C programming language in 

particular, but the observations and results of this work are at least conceptually applicable 

to a wide variety of programming language environments such as C++ [Ellis901 

[Lippman91] [Stroustrup9 11, Modula, or Ada. In fact, this work was originally motivated 

by observations of slow compile times for C++ programs that used many header files. 

The ANSI C standard [ANSI891 defines the logical stages of processing a 

"translation unit" into machine readable output, such as a binary compiled object file ( . o 

file), interpreted output (such as p-code in the Microsoft C/C++ compiler [Microsofi91]), 

or some other implementation-defined binary representation. Transformation of the C 

module into a translation unit is the job of preprocessing [Jaescke89]. Preprocessor 

directives are processed, with conditional code, text substitution, and header file inclusion 



occurring. The translation unit is then suitable for evaluation by a C language parser.2 

While there is no requirement that preprocessing occurs as a pass over the input distinct 

from the compiler, many implementations do so using the standard preprocessor. 

1.1 Hello, World 

A natural result of placing declarations into header files is that the groupings of 

definitions are sub-optimal for any particular translation unit. That is, a typical translation 

unit will use some but not all of the declarations in any particular file. For example, 

consider the classic "hello, world" program [Kernighan88]. 

#include <stdio.h> 
main ( ) 
{ 

printf ( "hello, world\nn) ; 
1 

This program requires a declaration for the p r i n t  f ( ) function from the standard 

C library to type check its call in the program. This declaration is in the s t d i o  . h header 

file. 

Note that all the C library I/0 functions and types are declared in s t d i o  . h, not 

just p r i n t  f ( ) . File he 1 l o  . c just uses, or references, the single function prototype for 

function p r i n t  f ( ) . Here is a piece of a representative s t  d i  o  . h: 

/ *  stdi0.h fragment * /  

int fseek(F1LE *, long, int) ; 
long ftell(const FILE * ) ;  
char *gets(char * ) ;  
int getw(F1LE * ) ;  
int pclose (FILE * )  ; 
FILE *popen(const char *, const char * ) ;  
int printf(const char *, ... 1 ;  
int puts(const char * ) ;  
int putw(int, FILE * ) ;  
void rewind (FILE * ) ; 

? h e  source code files ( . c and . h files) are not interpretable by the compiler until preprocessing 

has been performed. The translation unit is the top level production in the grammar. The translation unit 

is logically a file whose contents are the preprocessor output. Most compiler systems can output tlus file by 

using the -E switch. 



int scanf(const char *, ... 1 ;  
void setbuf ( F I L E  *, char ) ; 
int sscanf(const char *, const char *, ... ) ;  
int ungetc(int, F I L E  * ) ;  

Now, consider a typical first build of he1 l o  . c using standard UNIX tools. These 

are a C compiler driver that uses a separate preprocessor, make [Feldman86] for 

generating build scripts, the standard C library for the p r i n t  f ( ) definition, and the 

standard linker. Make decides which modules need to be re-compiled based on file time- 

stamps. If the object file time-stamp is older than any source file time-stamp that it 

depends on, the build script is triggered. On a first build the object file is "older" (it is 

"infinitely old" in that it does not exist yet) so the compiler is run. The preprocessor 

expands the concatenation of s t d i o  . h and hello. c as output, the compiler translates 

the result into an object file, and the linker searches the standard C library for a definition 

of p r  i n  t f ( ) and finds it (hypothetically) in library component p r i n t  f . o. If other 

functions are defined in p r i n t  f . o, they are included in the he 1 lo binary e~ecutable.~ 

Now, any subsequent modification to he 11 o . c or s t  d i  o . h will trigger a build, 

regardless of whether the change is "important" to h e  1 lo . c. In fact the only change that 

could matter in s t d i o  . h would be for the function signature (declaration, or prototype) 

of p r i n t  f ( ) to change. Make, which is file-granularity based, cannot know this. So, 

make can and does generate many unnecessary builds because of the semantic gap 

between how the program is stored on disk (as files in a file system) and how the C 

language sees things (as one or many separately processed translation units). 

Another problem occurs if the make dependencies are not correct. If a file 

dependency is missing and a change is made to that file that affects, say, the layout or 

alignment of a structure, a build may not happen that should have. This is a particularly 

difficult run-time error to diagnose. Having make not build in this case is worse than the 

previous problem of building too much. 

3 Welldesigned libraries do not waste space in client's binaries. Commonly, one function is 

placed in its own C file. so the library members contain one function each. 



1.2 Nova 

We see that the size of the translation unit for "hello, world after preprocessing is 

much larger than b e f ~ r e . ~  The designer of s t d i o  . h chose to include all the VO 

declarations in one file rather than some other choice. Another choice might have been to 

placeafewofthemostusedhnctions(printf 0, f p r i n t f  0, s s c a n f  0, etc.)in 

s t d i 0 . h  andless-usedhnctions(suchas f f l u s h ( )  o r v f p r i n t f  0) elsewhere. 

The less used hnctions could be placed in a separate file, say e s t d i  o . h (extended 

standard LJO). This procedure is called header file partitioning. 

This new choice would result in a smaller s t d i o  . h, and the expansion 

introduced by the preprocessor for this example would be much less. This is true since the 

one hnction used is one of the common ones. This design tradeoff is a common one: 

balancing the desire for small, efficiently processed, logically related header files versus 

fewer, more global, but more expensive to process header files. 

For any particular client of a chosen header file, the partitioning is optimal from a 

compilation efficiency point of view only if the client actually uses every declaration in the 

header file. Unused declarations just waste time. 

An ideal preprocessor would output the following for the example:' 

int printf(const char *, ...) ; 
main ( ) 
I 
print£ ("hello, world\nl') ; 
1 

This is h e l l o .  c with the included file expanded to just the single function 

prototype needed to check the call in the function body. The standard preprocessor 

instead expands the included file to a much larger quantity of text, a fragment of which 

-s is not a general statement. For the specific example under discussion, this is true. In 

general, the size may be much larger. This tends to be true if many or long header files are read by the 

preprocessor. 

 deal, or "perfect", is defined in terms of compilation efficiency in the sense of not requiring 

any unnecessary processing. 



was excerpted earlier. Even using the proposed st d i o  . h/e s t d i o  . h arrangement, 

there are still other commonly used functions in the new, lighter s t d i o  . h, so the 

standard preprocessor still produces non-optimal output. 

Sub-optimal header file partitioning is almost a certainty. A given header file 

generally has many clients. These clients use different declarations depending on their 

individual algorithmic requirements. The only way to effect optimal header file partitioning 

is to dynamically materialize the header file for each individual compilation. This is an 

operational requirement for an ideal preprocessor. 

The quantity of text expansion introduced by the preprocessor is of interest to us 

in quantifLing potential gains in compiler efficiency. This expansion parameter will be 

defined as Nova (number of bytes in the . i file 1 number of bytes in the . c file), where 

. i is the output of the preprocessor. For "hello, world," this is 65 1/59 = 1 1. 

Contrast this with the "minimal" he 1 l o  . i, also referred to as a . m i n  . i file,6 or 

hello . min . i. Here, Nova is 67/59 1 1. 

Programs that use lots of header files tend to have high Nova. Header files can also 

be deeply and widely nested, so the cost of inclusion can vary greatly depending on the 

hierarchy of sub-inclusion. 

We now compare compiler timings for he 1 l o  . c before and after minimization. 

The following is the compile time using the standard preprocessor: 

time cc -c -g he1lo.c 
0 . 2 ~  0.7s 0:02 45% 0+224k 15+2io 38pf+Ow 

and now the compile time using the ideal, or minimizing, preprocessor: 

time cc -c -g he1lo.c 
O.lu 0.5s 0:00 101% 0+200k O+lio Opf+Ow 

The important field in the time output is the third field, 0:02 for unaltered input 

and 0:00 for minimized input. This is the elapsed time for the operation. Minimization 

standard preprocessor output is referred to as the .i file, while the ideaYperfect/minimal 

preprocessor output is referred to as the . min . i file. 



reduces the elapsed time fiom 2 to 0 (nearly) seconds. The ideal preprocessor output is 

also referred to as the minimized output. 

While the savings appears modest, we will see that as the size of the module 

increases, it can result in considerably less time spent in compilation. Compilations in large 

applications can take many minutes each to complete. If there are many modules to build, 

the elapsed time for the entire build to complete can be hours. 

1.3 Thesis Problems 

So far, three problems have been cited: 

1. Excessive compile times because of sub-optimal header file partitioning. 

2. Too many builds because of file-granularity dependencies. 

3. Too few builds because of file dependency leaks. 

Mincpp provides solutions to these problems. Mincpp is a C preprocessor 

replacement that integrates easily into any compiler system. Mincpp performs the 

dynamic header file materialization required for it to operate as an ideal preprocessor. 

1.3.1 High Compile Times 

Mincpp parses . i files with a C parser and builds an in-memory chained hash 

table structure for it [Knuth73]. Chains that represent the program text and type 

dependencies are also maintained. Using this structure, the tool can output only the 

required declarations that were used for this translation. File he1 l o  . min . i as shown 

above is an example output. Since the compiler sees less input, compile times are 

improved. 

1.3.2 Too Many Builds 

Mincpp could look at text differences after minimization and compare against 

previously materialized versions of the . min . i file. The absence of differences implies 

that the re-compile is spurious and can be avoided. This situation can easily occur if a 

shared header file is changed and the specific change does not affect a particular module. 



For example, if the declaration of s s c a n  f ( ) is changed in s t  d i o  . h, h e  1 l o  . c does 

not need to be re-compiled since it refers only to p r i n t  f ( ) . 

1.3.3 Too Few Builds 

Mincpp could generate "correct by construction" # i n c l u d e  lists and " f i l e .  c 

: f i 1 e . h" make f i 1 e dependency information as a by-product of every build. The 

preceding reads as " f i 1 e . c depends on f i 1 e . h". This expresses a dependency 

asserting that f i 1 e . h is included in f i 1 e . c. 

Since these lists are re-created as a by-product of every compile, there are no 

opportunities for a dependency change to be lost. This eliminates a source of run-time 

errors that are difficult to find. For example, a structure member is added to a header file. 

If the file dependency is missing from just one C module that uses that structure, make 

will not re-compile that module. That module now refers to the structure with incorrect 

offsets generated from the previous version of the structure. This is a hard problem to find 

even with a good window-based debugger. 

1.4 Chapter Summaries 

The remainder of the thesis is organized as follows. Chapter 2 presents related 

work. While mincpp  is a new contribution to the development tools arena, other work to 

make the build process more efficient has been carried out and brought to market by 

others, and the problem of burdensome compile times, especially for C++, has been noted 

in the literature. This chapter considers related work for not only C, but for C derivatives 

such as C++ and Objective C. 

Chapter 3 examines a sample implementation of mincpp  that performs the . i -+ 
. min . i transformation. The system and its algorithms are presented in detail. This 

chapter defines an approach to solving thesis problem one. 

Chapter 4 presents the results of using mincpp on five selected benchmarks. 

Reduced compile times are demonstrated. 

Chapter 5 presents ideas for extending mincpp, and ideas for other tools based 

around mincpp's basic architecture. Additional benefits beyond the core problems 



addressed in the body of the present work are discussed. Also discussed are extensions to 

mincpp that address thesis problems two and three. 

We end with conclusions in Chapter 6 .  



2. RELATED WORK 

This chapter discusses the differences and similarities between mincpp and the 

following. 

1. Traditional UNIX compiler environment. 

2. Cbac k (NewCode Technology, Inc.). 

3. Centerline ObjectCenter [CenterLine93]. 

4. Lucid Energize [Lucid93a] [Lucid93b]. 

5. Microsoft C/C++ [Microsoft9 11. 

6. Borland C++ [Borland93] [Holub93]. 

7. IBM Tokyo Research Compile Server [Onodera93]. 

8. NeXT Smart Preprocessor [Litman93]. 

2.1 Overview 

In the UNIX compiler environment, four different systems examined are: 

traditional compilers, cbac k, ObjectCenter, and Energize. In the MS-DOSfWindows 

environment, two different approaches to compilation are taken by Microsoft C/C* and 

Borland C*. We will also describe systems from IBM and NeXT. 

A summary of approaches used in these tools follows: 

Table 2.1 Compilation Technique Summary 

Description 

Header files are expanded to their entire 

contents. 

Technique 

Dumb Preprocessing 

Used By 

Traditional 



Source Code 

Rewriting 

Interpretation 

Compiled Header 

Files 

Incremental 

Compilation 

Incremental Linking 

Compilation Server 

Smart Preprocessing 

cback 

Objectcenter 

Lucid 

Objectcenter 

Microsoft 

Borland 

NeXT 

Lucid 

Lucid 

ObjectCenter 

IBM 

NeXT 

C source code produced by the cfront 

translator is rewritten to improve and 

prune the code of unnecessary and 

unreadable constructs. 

Source code is interpreted rather than 

compiled. This allows interactive 

evaluation as new code is entered into the 

system. 

The compiler state is dumped into a binary 

file when the compiler parses header files. 

If nothing has changed, the compiler can 

load the binary file instead of re-parsing 

the header files. 

The system evaluates differences between 

old and new versions of the source code 

and re-compiles only altered functions and 

data. 

Object files produced by the compiler are 

re-used to produce an executable binary. 

To contrast, the traditional linker 

reconstructs the binary from scratch every 

time the program is linked. 

A long-lived compile server takes requests 

for compilation and re-uses header files 

that have already been read into the 

compiler's internal tables. 

Header files are evaluated lazily. Header 

file declarations are pulled into the module 

on demand. 



There are other environments for other languages that address the core problem of 

edit/compile/link/debug cycle performance, which is a crucial issue in developer 

productivity in general. Some examples of these include environments for languages such 

as Lisp, Smalltalk, and Basic. We shall not discuss these systems since we focus on 

c/c++. 

The systems under consideration support C as well as C derivatives. Of the 

systems described below, cc and a c c  are C language only, c f r o n t  and cbac k are 

C++-specific tools, Objectcenter, Lucid, Microsoft, and Borland support both C and C++, 

IBM supports a proprietary language based upon C that is object-oriented, and NeXT 

supports C, C++, and Objective C. 

Chapter 5 will explore extensions to mincpp  that would make it suitable for C++ 

as well as C environments. 

2.2 System Descriptions 

2.2.1 Standard U N M  Compilers: cc, acc and cf ront 

Probably the most common UNIX programming environment uses a traditional 

file-based compiler, using a "Kernighan & Ritchie" C compiler (cc), an ANSI C compiler 

( a c  c), or c f r o n t  as a C++ front-end to one of the C compilers. All program storage is 

based exclusively on UNIX files. The most common arrangement is for preprocessing to 

occur in a separate pass distinct from compilation, and for the compiler to generate 

assembler code that a macro assembler turns into an object file. This allows the compiler 

to not have to deal with the vagaries of macro preprocessing or object file formats. 

Preprocessing was an area where compilers varied widely in the past, as the 

original C specifications were rather vague about its role in compilation. The ANSI C 

standard has cleaned up this area considerably. Consequently, ANSI preprocessing is 

common across most environments at the present time. 



Figure 2.1 cc/acc/cf ront: preprocessor/translator/compiler 

Source code files are preprocessed. The result of this processing is either a C 

translation unit or a C++ translation unit. C++ translation units are converted to C 

translation units by c f ron t .  C translation units are passed to the C compiler. The C 

compiler creates an object file. 

Note that c f r o n t  is just an additional processing step over that already in place 

for a strictly C-based environment. 



Figure 2.2 cback: preprocessor/translator/rewriter/compiler 

rn 

Cbac k introduces another pass in the chain of processing, and is only relevant to 

c f ron t -based C++ compiler systems. The generated C code that c f ron t produces is 

very difficult to read. While today it is rarely the case that the programmer needs to look 

at this intermediate code, this was not always the case. Then, few debuggers understood 

"mangled names". Mangled names are the coded identifiers needed in C++ to differentiate 

between several overloaded functions and to refer to functions (or class methods) by their 

entire signature rather than just by name. The signature is an encoding of the return type 

of the function, the function's name, and an encoding of every parameter's type. In 

contrast, a function in C is uniquely identified by its name. 

While cback was originally written to make the code easier to read, its later 

evolution to strip unnecessary type declarations fiom the C code is the feature relevant to 

this work. Type declarations that are "pure" type declarations can be stripped fiom the C 

code. A pure type declaration is one that does not declare space-allocating variables along 

with the type declaration. An example of a pure type declaration is: 
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enum boolean {True, F a l s e ] ;  

while a space-allocating declaration variant of this would be: 

enum boolean {True, Fa l se ]  f l a g ;  

Other processing includes re-writing expressions, and eliminating unnecessary type 

conversions. 

Cback reads the C code into memory and builds a parse tree. It also reads a file of 

rule descriptions that, essentially, direct ways of rewriting the tree that do not alter the 

semantics of the code, but result in the benefits described above. 

Cback also reduces symbolic information in the object file by: 

1. Eliminating unnecessary code 

2. Eliminating unnecessary type/fUnction/variable declarations 

3. SimplifLing expressions 

This leads to reduced object file size, and reduces symbolic debug information. As 

a result, cback can reduce link time, and can considerably reduce debugger load time. 

Mincpp shares some similarities with cback. Both read C code and "improve" 

it: cbac k targets improved readability, simplicity, and debugging issues while mincpp is 

primarily concerned with reducing compile time. 

Cbac k and mincpp both parse input with a C parser, but cbac k builds a parse 

tree while mincpp builds a symbol table with dependency and text sequence links 

implemented as a chained hash table. Cback uses tree rewriting while mincpp marks 

reference information. Both output algorithmically-altered C code. 

The majority of compile time is spent in preprocessing and translation. Because of 

this, cback cannot have a significant effect on compile times. Furthermore, the 

improvements that cback makes to the C code result in cback saving about as much 

time in the C compilation phase as it takes to run itself. While there are ancillary benefits 

to using the tool, it does not address the overall compile time problem that is the subject 

of the present work. 



2.2.3 Centerline ObjectCenter 

Figure 2.3 ObjectCenter: preprocessor/translator/compiler/reposito~y 
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ObjectCenter is a complete programming system. It includes a graphical debugger, 

various language browsers, a program builder, incremental linker, integration with various 

source code control systems, a source code interpreter, and C and C++ compilers. 

The interpreter allows interactive evaluation as code is being typed into the system. 

This provides good error checking and allows modules to be easily unit-tested by inserting 

stimuli and observing responses.' 

Interpreted-code performance, both at load-time and run-time, is slow. One must 

be judicious in balancing interpreted and compiled modules. Typical practice is to use the 

interpreter only while doing initial development and testing, using the compiled module 

thereafter. 

7 A module can be tested by loading the module, and interactively calling functions to elicit 

behaviors. The calling of fhctions and examination of results can be driven by scripts and response files. 

This allows unit testing without a fully-built executable. 
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The compiler is a cfront derivative, and uses a modified version of the GNU 

preprocessor, cc cp. 

Most relevant to mincpp are two compiler features: compiled header files and 

"demand driven code generation." 

Demand driven code generation does essentially what cbac k does, reducing 

unnecessary debug information by stripping unnecessary type declarations. Similar . o size 

reductions and debugger load times are observed. Compile times are slightly improved as 

less write I/O occurs when creating . o files. 

Compiled header files are maintained in a "repository" directory. On an initial 

compile, #include preprocessor directives that are at the beginning of a module down 

to the first non-white-space token can be saved in the repository (this is an explicit 

restriction), and can later be restored instead of parsing. While the details of this process 

are proprietary, the repository entries are surely a binary representation of enough of the 

compiler's state to ensure that the compiler's state after loading a saved repository entry is 

the same as it would have been had it actually parsed the source. Some examples are in 

order: 

/ /  b e g i n n i n g  o f  f i l e  
/ / 
# i n c l u d e  < s t d i o . h >  
# i n c l u d e  < s t r i n g . h >  

i n t  i; 

In this example, the system will pre-compile the first two include files and stop 

when it sees a token other than white-space. There is no way to include the third file in the 

repository without altering the source code. 

The pre-compilation of header files can be explicitly controlled by a preprocessor 

directive. For example: 

/ /  b e g i n n i n g  o f  f i l e  
/ / 
# i n c l u d e  < s t d i o . h >  
#pragma h d r s t o p  
# i n c l u d e  < s t r i n g . h >  



/ /  and s o  forth a s  above. 

Here the system stops the pre-compilation after the first include, as directed by the 

programmer. 

Repository entries are tagged with the time-stamps of all their constituent files as 

well as the names and values of all preprocessor macros in effect for the entry. If macros 

or time-stamps change from compile to compile, the entry is invalidated, pre-compiled 

again, and saved. 

As we will see later, the performance of this scheme results in only a modest 

improvement over just parsing the . h sources. Repository entries can be very costly in 

disk space usage if carefbl planning, restructuring, and rewriting of source code is not 

done. 

Objectcenter and mincpp have more differences than similarities. Mincpp is 

external to the compiler, and does not restrict the user's compiler choice. Mincpp defines 

a repository to pre-compile previous translations, but does so differently. This scheme is 

described in detail later. 

Objectcenter's compiled header files require the programmer to make source code 

changes to utilize the scheme effectively. Usually, this means creating a global header file 

and using it consistently throughout the application, and making sure that the compiled 

header is the first thing included in all the modules. The other systems that use compiled 

header files all document similar techniques. This artificial restriction does not work well 

with existing code. 

There is also a temptation to create a single "global" header file that contains 

everything a program needs. Since there is likely to be a great deal of unnecessary 

information for any particular compilation, the savings from using the pre-compiled header 

are offset by the unnecessary information that needs to be processed. 



2.2.4 Lucid Energize 
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Figure 2.4 Energize: database/editor/browser/compiler 

Like ObjectCenter, Lucid Energize is a full-featured programming environment. 

The feature relevant to the present work is an incremental compiler. The compiler can 

either run in standalone mode, producing a standard . o file, or in "Energize" mode.8 

In Energize mode, the compiler breaks the source into "Language Elements", such 

as individual declarations, t ypede fs, and function bodies. It stores these language 

elements in an Object Oriented Database as individual objects. It also stores dependencies 

between the language elements in the databa~e.~ It also writes object code to a . o file that 

has "slots" for functions. These slots have extra empty "slop" space allocated in them. 

This allows new, larger versions of a function to be overlaid without recreating the entire 

object file. These . 0's are incrementally linked. 

8 Lucid's compiler also supports compiled header files. These are only available in the non- 

incremental version of the compiler. The operation of compiled header files is similar to ObjectCenter. 
9 Forexample,intheprogramfragment "typedef i n t  Boolean; Boolean T - F;"The 

declaration of T - F is dependent on the declaration of Boolean. 



To edit source code, either a conventional editor, such as v i  or emacs, or "Lucid 

emacs" is used. If a conventional editor is used, the system evaluates text differences 

between the new and old versions of the file, and turns this into a list of altered language 

elements, which are marked as changed in the database. If Lucid emacs is used, the 

editor marks language elements as changed as characters are entered in the editor. Lucid 

emacs also graphically highlights altered language elements as the user types. 

When re-compilation is requested, the compiler walks the dependency graph from 

all changed language elements, re-compiles only the affected functions, and swaps the 

newly re-compiled functions into the slotted . o file. 

The structure of language elements can be browsed with a graphical "Language 

Element Browsery', including navigation across the dependency graph. 

The most striking similarity between Energize and mincpp is the organization of 

code into blocks, and maintenance of dependencies. Mincpp's "text fragment" 

corresponds to Lucid's language element. Mincpp builds its text fragment list and 

dependencies in-memory rather than in a database. Mincpp does its processing external 

to the compiler, whereas Lucid's processing is done as a part of compilation. 

While the Energize concept is an appealing one, performance of the system is, 

currently, poor. The compiler is considerably slower in Energize mode than in traditional 

file mode. 

There has been a lot of research and patent activity recently in the area of different 

approaches for incremental compilation. For more information the reader can consult 

[Iitsuka93], [McKeeman92], or [Smith931 as well as the Lucid manuals referred to earlier. 

Finally, note that the compiler in Energize is a "native" C* compiler. This term 

refers to compilers that read C++ and write an object file directly. This is in contrast to 

ObjectCenter and c f r o n t ,  where C++ is read and C generated instead of an object file. 

ObjectCenter links the translator into the C compiler, so this intermediate file is not 

generated. Other examples of native compilers for UNIX include those developed by Sun, 

HP, IBM, and DEC. Experience with these compilers suggests that compile times are not 

significantly reduced just by eliminating one intermediate file. 



2.2.5 Microsoft C/C++ 

Microsoft C/C++ features compiled header files that work similarly to 

Objectcenter's. As with ObjectCenter, a certain coding style is required to achieve a full 

measure of benefit from the scheme. Again, header files are stored in a repository. A 

repository entry is characterized by a set of macro bindings and an ordered list of header 

files. Each entry is stored in a separate file. 

Borland C++ also has compiled header files. These header files may not contain 

code (functions). Again, source code changes are required to use the system effectively, 

since the same restrictions that were described for ObjectCenter and Microsoft are also 

restrictions in the Borland environment. All repository entries are stored in a single (large) 

file. 

Both Microsoft and Borland are native compilers not derived from c f ron t .  

2.2.7 IBM Tokyo Research Compile Server 

This project implemented a long-lived compile server that can read header files 

into its internal context and re-use them for subsequent compiles. While the author is able 

to show reductions in compile time, it is done only at the expense of significant restrictions 

on what may be placed in header files. Also, the implementation is tied to a particular 

environment, and is not suitable for re-hosting. The use of a new, uncommon C dialect is a 

disadvantage. 

2.2.8 NeXT Smart Preprocessor 

This system comes closest to mincpp. Header files are manually compiled.'0 The 

preprocessor, like mincpp, parses text. The parser, on finding an undeclared reference, 

searches any encountered pre-compiled headers for a definition, and it is tagged for 

I '?he file is pre-compiled by the user typing a command into a shell. The automatic pre- 

compilation process described for ObjectCenterMcrosoft/Borland is not available. 



inclusion in the output. The net result is output that is similar to mincpp's. However, the 

algorithms and system implementation are very different. 

NeXT requires manual work to pre-compile the header file. Also, it is necessary to 

flag the compiled header with # impor t ,  rather than a # i n c l u d e  directive. This is a 

source code change that requires a special preprocessor to interpret. 

NeXT uses a demand driven algorithm for including header file contents. The 

system waits for an occurrence of an undefined identifier. When this occurs, the 

declaration is located in a pre-compiled header, then marked for inclusion. The new 

declaration is then recursively re-parsed. 

The lazy evaluation algorithm provides an interesting contrast with mincpp's 

greedy algorithm. Mincpp takes the entire preprocessor output and minimizes it without 

special preprocessors or source code changes. 

2.3 Discussion 

Most of the current approaches emphasize putting optimizations in the compiler 

proper. This thesis emphasizes that by minimizing the input to the compiler in the 

preprocessing phase of translation via a special purpose tool, compile times can be 

reduced. By being external to the compiler, the tool can work with any compiler in any 

environment. Unlike compiled header files, incremental compilation, or interpretation, 

mincpp can be easily used in any environment without change to work habits, source 

code, or make f i 1 e s . Furthermore, semantically-unnecessary builds are avoided 

altogether, a unique feature. 



3. MINCPP 

Figure 3.1 mincpp: preprocessorlmincppltrace filelminimized output file 

Mincpp reads input from either preprocessor output (the . i file) or from a trace 

file, which is an ASCII transcript of every symbol table manipulation routine called. 

Mincpp can be run once, reading the . i file: during this run a Trace file is created. 

Mincpp can then be run again, reading the previously created file. In either case, the 

output is a modified . i file that is suitable for passing to whatever compiler is used. 
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a fbnction refers to the declaration, it is marked as needed. Unneeded declarations are not 

included in the final output. 

One of the original goals of mincpp was to collect sufficient data to demonstrate 

compile time improvements. In doing so, several decisions were made to limit the scope of 

the project, so that the system could be implemented in reasonable time. The complete 

mincpp system that is described in Chapter 5 was originally planned. Mincpp and cpp 

were originally planned to be in the same binary. The parser was originally planned to 

parse C++ code as well. 

By factoring out the I/0 wasted in a separate pass, we can accurately predict run 

times, so the single binary work was deferred." By parsing C syntax only, the work in 

constructing a grammar was greatly reduced.12 The tracelreplay cache is an eitherlor 

proposition: mincpp either parses 100% of it's input or it replays 100% of it's input. 

Later, we will reason about cache effectiveness and the reader can draw their own 

conclusions regarding cache hit rates which one might expect to see. But, the replay mode 

allows us to quantifjl the potential benefits of using the tracelreplay mechanism. Another 

potential approach would be to enhance the grammar specification to include 

preprocessing directives, and merge processing with mincpp into one pass over the 

input. This would cut additional time and boost compile time improvements. 

For all its limitations, mincpp is still able to substantially improve compile times. 

3.2 Symbol Table Basics 

The key data structure in mincpp is the symbol table. The symbol table is hash 

table based [Ah0861 [Sedgewick90]. The identifier is hashed into an index, and symbols 

that hash to the same index are grouped by a doubly linked list. Additional linking in 

symbol entries include a chain linking symbols of identical scope, dependency pointers, 

 h he joined, or single binary is the preprocessor code and the parserlminimization code put 

together in a single program. 
12 Originally, not much improvement on just C programs was expected, but the results on just C 

programs were suprisingly good. 



and a program text chain. There are four types of links that are maintained in the symbol 

table. These are: 

Symbol link. Chains together symbols whose name hash to the same hash table bucket. 

Scope link. Chains together symbols whose scope is identical. 

Text link. Chains symbols together in the order their text appears in the translation 

unit. The full text of the translation unit is chained when processing ends. 

Dependency link. Chains symbols whose definition depends on another definition. An 

example of this is a declaration of a variable whose type is defined by a t ypede f 

declaration. 

hash table 

link 

- 
- 
- 

scopes array 

Figure 3.2 mincpp Symbol Table 

The scopes array stores a chain of symbols of same scope. This speeds exit-scope 

processing as all symbols can be un-linked when they fall out of scope very simply. The 

symbol link is a standard symbol table technique. There is a pointer to the beginning of 

text. Each symbol has its program text associated with it, and the text fragments are 



chained together in the order they appear in the source. These are shown as text links in 

the diagram. Finally, a dependency link shows a dependent relationship between two text 

fragments. For example, consider: 

typedef  i n t  boolean; 
boolean a;  
i n t  c; 
m a i n 0  ( a  = 1;) 

This creates symbols named boo 1 e an, a, c,  and main  at scope 0 (file, or 

external scope) with text fragments "t ypede  f i n t  boolean;", "boo lean  a;", 
'L i n  t c;", and "ma i n  ( ) { a = 1 ; } " respectively. There are text links between the 

four text fragments, plus scope links between the four symbols at scope 0, and a single 

dependency link between symbol a and symbol b o o l e a n  to express the type hierarchy 

relationship between them. 

On inspection, the minimal version of this program fragment is everything but i n t  

c .  The reference to a in main  marks "boo lean  a" as referenced, and "t ypede  f 

i n t  b o o l e a n ;  " is also referenced by the dependency link joining lines one and two of 

the text. References to a type have to also reference, recursively, dependent types. When 

the mincpp program exits, it traverses the text chain and prints out all the text fragments 

that have the reference bit set. Function definitions are referenced automatically. The 

symbols a and b o o l e a n  are referenced by the mention of a in the hnction. The symbol 

c is never referenced, so it is not printed out. 

Scope is incremented and decremented by seeing ' { ' and ' } ', respectively, in a 

fbnction definition. Exiting scope also deletes that scope's symbols. There is a distinction 

between external declarations (scope 0) and local declarations (scope greater than 0). 

Local declarations do not have a text fragment, their text is part of the fbnction 

definition's text fragment. 

3.3 Scanner 

The scanner, l e x  . 1, turns the . i file into tokens for the parser, y a c c  . y. This 

is a very straightforward procedure, with just one subtle point. The scanner pushes 

identifiers and type names onto an "identifier stack" and "type stack. Identifier and 



typedefname are terminal symbols in the yacc grammar. When the scanner recognizes 

an identifier, it queries the symbol table to see if it is a type via the symbol table's 

isaType ( ) function. The scanner returns the character text of the token as its return 

3.4 Parser Basics 

Mincpp uses a complete C parser. The parser uses the matching text as the value 

passed through the yacc stack in all cases. Specifically YYSTYPE has type char *. 
Yacc puts the text matching the grammar production on the stack. This allows mincpp 

to easily grab text fragments at key points in the rule reduction sequence and index and 

chain the returned text into the symbol table. 

The top level productions in the C grammar are: 

translation-unit c= external-definition 
external-definition <= declaration 
external-definition c= function-definition 

Mincpp breaks the text into blocks of external-definition granularity. Thus, an 

atomic text fragment is a single external declaration or external function definition. Text 

fragments are chained together as these productions cause text pointers to be updated in 

the symbol table. 

As an external declaration is parsed (at file scope, or scope level 0, i.e. a global 

declaration), references to other declarations are noted and a dependency relationship is 

constructed by creating a dependency link in the symbol table. For example: 

typedef  i n t  boolean; 
s t r u c t  s ( boolean b); 

Here the first declaration is independent, in that it uses only language-defined types 

(int is a basic, or built-in type). The second declaration is dependent on the first. If the 

second declaration is used, or referenced, this implies that the first declaration also is used. 

If, on the other hand only the first declaration is used, say the program uses boolean but 

never mentions st ruct s, then s truct s is not used and the program will compile if 

it is not present in the text. 



As fbnction definitions, which include local declarations (declarations within 

fbnction definitions, at scope > O), and expressions (forming statements and statement 

lists, combining into compound statements) are being parsed, naming a type or calling a 

fbnction (or taking its address) constructs a reference to the mentioned type, object, or 

fbnction. For example: 

i n t  f o o 0  { s t r u c t  s s l ; )  

references s directly, and boo 1 e a n  indirectly, using the declarations given earlier, 

whereas: 

i n t  foo ( )  {boolean b; 1 

references only boo 1 ean. 

Consider the symbol table's text chain after processing the boo lean-referencing 

fbnction foo: 

Figure 3.3 Text Chain Example 

text-begin 

When end-of-file (EOF)occurs, the text chain is traversed, and only when 

referenced = '>yes" is the text printed to standard output. This trims the text of external 

declarations that are not used somewhere. This example uses only pure type declarations, 

those that do not allocate space. Space-allocating declarations introduce additional 

considerations. These are elaborated krther in the next section. 
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3.5 A Single Simple Declaration 

We are now ready to give a detailed walk-through for a very simple program. 

Mincpp has three distinct tracing facilities that allow us to see in detail what happens 

during parsing, and how minimization is effected. Firstly, mincpp was written using 

Berkeley yacc. Berkeley yacc has a debug facility that outputs parse trees in a 

graphical presentation. This is an addition to the reduction trace available in standard 

yacc. 

The yacc functions and mincpp contain code to trace their actions based on two 

conditional preprocessor definitions, DEBUG and TRACE. Lastly, the symbol table trace 

file that is used for replay gives a very detailed log of symbol table manipulations. Our 

strategy will be to present the source code fragment, then present the parse tree, debug, 

and trace output. Each will be accompanied by descriptive narrative. 

Perhaps the simplest C program (even simpler than "hello, world") is 

int i; 

Here is the parse tree that Berkeley yacc produces: 

.... look ahead at INT 'int' 
INT <-- 'int' 
basic-type-name 
basic-type-specifier 
I .... look ahead at IDENTIFIER 'i' 
type - specifier 
I IDENTIFIER <-- 'it 
I paren - identifier-declarator 
I I .... look ahead at ';I 

I identifier declarator 
I declarator- 
I I initializer-opt 
+-------+-------+ 

I 
declaring - list 
I 1 . 1  <-- '.I 

I 
declaration 
external definition 
translation-unit 
I .... look ahead at end-of-file 

The key reductions are at declarator and declaration. In the output above, the 

text "look ahead indicates where the parser has asked the scanner for another token. 



Rules that end in -opt such as initializer-opt show places where the rule is optional. For 

instance, " i n t  i = 0 ; " uses "= 0" as an initializer while " i n t  i;" does not. 

Mincpp operates on text chunks at the external-defintion level of granularity. Here, 

there is only one such reduction. l3  

Next, the DEBUG and TRACE output: 

/ *  symtab: add symbol 'NAMELESS':O:object */  
/ *  symtab: looEup i:-1 not found * /  
/ *  id stack: pushed i * /  
/ *  sGtab: isaTYPE IDENTIFIER * /  
type - specifier <- basic - type - specifier @i@ 

r30cl "int i" 
/ *  type stack: pushed BASIC * /  
declarator <- identifier - declarator @;@ 

r78cl "i;" 
/ *  id-stack: popped i */  
/ *  symtab: add symbol i:O:object * /  
declaration <-declaring - list ' ; ' @; @ 

r26cl "int i;" @ 11 ; 11 

/ *  symtab: abort-tentative 
symtab: add snode int i; 
/ *  type stack: popped BASIC * /  
externai - definition <- declaration @; @ 

r76c2 "int i;" 

Two classes of information are presented. The first format used is a pair of lines, 

the first containing a '<-', and the second indented. They show the rule reduced and the 

actual arguments to the function. Lines of the second format begin with the facility 

performing the transcription ("symtab for the symbol table module, "id-stack" and 

"type-stack" for the stack managers) along with an operational description of the work 

performed. The presence of C-style comments was originally intended to allow this output 

to be included in minimized output. However, this was not consistently and completely 

implemented. 

Refemng to the DEBUGITRACE output, the scanner looks up 'i' and pushes it 

on the "identifier stack" because it is not a type name. When " i n t "  is recognized as a 

type-specifier of "basic" type ( i n t ,  c h a r ,  f l o a t ,  d o u b l e ,  l ong ,  s h o r t .  ..), it 

pushes "BASIC" on the "type stack". The meaning of this is to inform a later action that 

the type of the declaration is language-defined and not dependent on anything else. The 

 h here is only one declaration in the program, so there is only one external declaration. 



declarator function pops the identifier stack and creates a new symbol for the declarator 

When the entire declaration is recognized, the type stack is popped, and the text of the 

declaration is associated with the symbol i. 

And finally, the T r a c e  file for this run: 

A line is printed to this file for every symbol table operation performed. The 

function called is encoded as a number in the first field. The arguments to the function are 

then given, all separated with a '@' character, which was chosen because it is not a legal 

character in a C program. This allows a compact representation to be easily parsed by 

successive calls to the C s t  r t o k ( ) facility. As we will see in more detail later, this file is 

used by mincpp  in "replay" mode. 

At line 1, field 1, and line 2, field 1, '2' is the code for symbol table knction 

add - symbol ( ) , and field 2 is the name of the symbol being inserted. NAMELESS is a 

built in symbol whose meaning will be discussed in a later section. Symbol i is added next. 

Symbols are numbered as they are inserted. They are numbered numerically in 

ascending order. In this example, symbol NAMELESS is symbol 1, and symbol i is 

symbol 2. These numbers are referenced as fields in the file later on to add additional 

information to the symbol. 

At line 3, symbol i is tagged as needing text. As we will see, some symbols do 

not need text, such as local declaration symbols. At lines 5 and 6 the text " i n t  i;" is 

associated with the symbol i. When EOF is recognized, the text chain is traversed. There 

is only the single node for symbol i ,  and it has not been referenced by anything else, so it 

is not printed in the minimized result. 

Mincpp, as implemented, deletes un-referenced space-allocating declarations. 

This is not a sufficient condition for a general-purpose tool. See section 5.6.3 for a 

complete treatment of this subject. 



3.6 Symbol Table: Part 2 

We will present the symbol table data structure used by m i n c p p  and discuss its 

parts: 

typedef  enum kind 
( 

o b j e c t ,  
f unc t ion ,  
typedef  name, 
enum-coiis t a n t ,  
l a b e l ,  
su-tag, 
enum-tag 

) Kind; 

typedef  enum boolean 
( 

True = 1, 
Fa l se  = 0 

) Boolean; 

typedef  s t r u c t  symbol *Symbol; 

s t r u c t  symbol 
I 

cha r  * t e x t ;  
vo id  * t ex tp ;  
Boolean r e f ;  
cha r  *name; 
i n t  scope; 
Kind kind; 
Symbol nex t ;  
Symbol prev ;  
Symbol s l i n k ;  
Symbol dep [l6] ; 
l ong  i d ;  

1 ;  

The members name, s c o p e ,  k i n d ,  n e x t ,  and prev are members that are to be 

expected in any sort of compiler symbol table. They are minimally needed to track the 

symbol's name, lifetime, type, and links to the symbol table's hash structure. The s l i n k  

member is an optimization that allows for quick exit-scope processing. The new members 

that facilitate minimization are t e x t ,  t e x  tp,  ref, and dep. The remaining member, 

id,  is introduced to allow symbols to be persistent. This is needed for the cache 

mechanism described later in this chapter. 

A member-by-member description follows: 



Kind tells what class of symbol an instance is. These classes are taken directly 

fiom K&R 2e [Kernighan88]. There are different name-spaces associated with these 

classes, and this tag allows name-space discrimination to be accomplished on lookup and 

insert. Since only one symbol table is kept instead of one per name-space, this is an 

important thing to keep track of. This feature is also critical in discriminating between type 

names and objects which is required for the scanner to correctly return terminal symbols 

identifier and typedef-name to the parser. 

Member boo 1 e an is used to mark symbols as referenced. Clearly, without a 

marker there is no way to keep track of unused code. 

Member t e x t  is a pointer to the program text that corresponds to the 

external-definition a symbol belongs to. Textp is a pointer to the next symbol in lexical 

order, or text chain order. N a m e  is the name of the symbol and is what is matched on 

lookups. All symbols of same scope are linked by s 1 ink, which allows symbols to be 

deleted when they fall out of scope by just chasing the s l i n k  pointers. Scope tells the 

lexical scope of the symbol. This field is actually redundant, because of the s 1 ink 

member. An earlier implementation of the symbol table did not have this, and the table had 

to be searched on the scope member to delete out of scope symbols. Next and prev 

are forward and backward doubly linked list pointers that link symbols that hash to the 

same bucket. 

Member dep is an array of symbol pointers to symbols upon whom the symbol is 

dependent. This is a poor implementation since most symbols have fewer than this, and the 

processor breaks if there are more. This should be a dynamically allocated list of pointers. 

The present implementation is very memory-inefficient but was done for expediency. 

Finally, i d  is a unique tag for a symbol that allows symbol identity to be 

established in the persistent trace file. We will see later how this is used in more detail.. 

3.7 External Declarations 

Mincpp organizes a program as a list of external definitions. These are either 

scope 0 declarations, or function definitions. All function definitions are marked as 



referenced when encountered. Declarations are marked as referenced as the expressions 

and declarations in the program make use of them. 

We will cover each category of external declaration and present an example. 

3.7.1 Simple Declarations 

Simple declarations are declarations that use only built-in types. They can have 

declarators that denote pointer or array variants. For example: 

1 i n t i ,  j; 
2 
3 char *c, c1[128]; 
4 
5 i n t  £00 ( )  

6 I 
7 c = 0; 
8 I 

This program has three text fragments, one for the int declaration, one for the 

char declaration, and one for the fbnction definition. Only c is referenced. These 

declarations each have two declarators. Declaration one has declarators i and j, 

declaration two has * c and c 1 [ 12 8 ] . Mincpp inserts symbols, at scope 0, for 

declarators i and j . When the declaration is recognized, it attaches the text "int i , j ;" 
to both symbols, and links the two symbols into the text chain. Then, symbols c and cl 

are inserted into the symbol table at scope 0, the text char * c , c 1 [ 12 8 ] ; is attached 

to both symbols, and the two symbols are linked into the text chain. 

When foo is recognized as a fbnction definition, it is inserted as a fbnction symbol 

at scope 0 and its ref member is marked True. When "c" is seen as an expression 

component, mincpp looks up c and references it. Visually, the processing can be shown 



Figure 3.4 Simple Declarations Symbol Table 

3 4 

Upon EOF, mincpp visits the text chain starting with t e x t  - begin, and prints 

every text fragment for symbols that have ref = True. In this case this is true for symbols 

c and f oo only. In answer to the question "what if both c and cl are referenced", 

mincpp stores a pointer that keeps track of the last text fiagment printed. If the current 

text pointer equals the previous pointer, the text is not printed twice. 

The granularity of text disclosure is the external declaration. So, in this example, c 

and cl both map to the same external declaration, so it is disclosed if either is referenced. 

In this example, if either i or j is referenced from another module through an 

extern declaration, it is wrong to not disclose them here. While many programs, such as 

the benchmark programs described later, do not use global variables in this fashion, it 

nevertheless is wrong to assume this. The version of mincpp described here does 

perform these un-safe minimizations. Section 5.6.3 describes enhancements to mincpp 

that do allow such declarations to be safely minimized. Mincpp can be altered to not 

perform these minimizations by the addition of a small amount of logic. When the 

TEXT INPUT 

int i j; 

char *c, c1[128]; 

int foo() 
{ 
c = 0; 

1 
L 

SYMBOL TABLE TEXT OUTPUT 

char *c, c1[128]; 

int foo() 

{ 

I = "ref = True" 
text chain link 

4 

int foo() . . . 

symbols symbol's program text 



declarator symbols are inserted, a flag is set. Later, when the text is entered, the flag is 

checked. If set, the symbols are marked as referenced. This allows minimization of pure 

declarations while keeping space-allocating declarations. This behavior should be the 

default behavior for the tool as described here. 

Declarations with multiple declarators could be fbrther broken up into individual 

external declarations. We could re-write a declaration such as: 

int x, * y ,  z[3] ; 

as: 

int x; 
int * y ;  
int z [3] ; 

This approach was not taken. The result from this example is that if any of x, y, or 

z is referenced, then all three are declared.I4 

3.7.2 Function Prototypes 

Function declarations are one of the more interesting "dark comers" of C. In K&R 

C, functions did not even have to be declared. They were assumed to return int unless 

something else was specified. Only in ANSI C [ANSI891 werefunction prototypes 

introduced, which allowed the number and type of hnction arguments to be placed in a 

header file so the compiler could check types, previously a notorious source of run-time 

errors. ANSI C grandfathered the K&R rules and syntax, but additionally allowed fbnction 

definitions to use prototype syntax. Another interesting ANSI addition was the void 

type. Because of the K&R syntax, not specifjrlng fbnction parameters in a prototype really 

meant that the type and number were unspecified. To say that a fbnction actually took no 

parameters required saying function (void) . Just to spice things up, C++ demands a 

fbnction prototype and excludes the K&R defaulting syntax, which means that 

function ( ) in C++ does mean fbnction taking no parameters. It should be noted that 

I 4 ~ t  one point the implementation did break these up. While some data space savings might 

occur, the implementation complexity was deemed not worth the effort. 



some of these ideas were originally created for C++ and later wound up being accepted 

into C by the ANSI committee. A few examples should prove useful: 

/ *  K & R syntax * /  

func ( ) ; / *  function declaration * / 

func(i, j) / *  function definition, matches either explicit decl. * /  
/ *  or will default if missing * / 

int i; 
float j ; 

I ... 1 

/ *  ANSI C accepts all of the above, and introduces the following */  

void func(int, int j); / *  function declaration prototype, * / 
/ *  only type names / 
/ *  are required, variable names can be * / 
/ *  added for documentation purposes * / 

void func(int i, int j) ( . . .  1 
/ *  function definition using prototype argument syntax * /  

Mincpp's parser accepts any combination of the above-mentioned syntax. Our 

example program follows: 

1 int foo0; 
2 int fool(int a); 
3 int £0020 (foo0;) 

Function parameters present an interesting problem for mincpp. When a fbnction 

parameter is recognized, we do not yet know if we are in a fbnction prototype declaration 

or in a parameter section of a function definition. Also, ANSI requires the scope of 

function parameters to be the same as the scope of the symbols immediately after the " {"  

that starts the function body. In other words, function parameters are conceptually 

inserted as symbols right after the " I", or right before the first local declarations. Also, in 

a prototype, the parameter name is optional. All that is needed is the type, called an 

abstract-declarator in the grammar. 

Mincpp' s approach to this is to add a tentative concept to the symbol table 

facility. When a parameter name is encountered, either in a prototype or parameter 

section, it is inserted into the symbol table tentatively. The symbol table facility stores 

tentative symbols in a separate place distinct fiom the hashed structure. Later, in the case 



of a prototype with named arguments, function abort tent at ive ( ) is called to - 

delete these. In the case of a function definition, after the initial " { "  is seen, function 

insert - tent at ive ( ) is called to make these symbols first class symbols in the hash 

structure. 

In our example, f oo is recognized as a function when the " ( ) " parses to a 

postfixing~abstract~declarator. It is inserted as a function in the symbol table, and its 

text is associated when the declaration is complete. Abort tentative ( ) is called - 

with no effect since no parameter names were present. At line 2, symbol a is first added 

tentatively when it parses to a parameter-declaration. This occurs before the function is 

parsed to a postfixing-abstract-declarator, at which point f oo 1 is added as a function 

symbol. When a declaration is recognized, text is associated, and 

abort - tentative ( ) has the effect of erasing the tentative "a". As before, foo2 is 

added and referenced upon encountering the " ( ) ". When "foo" appears in a function call 

expression, foo is looked up, found at scope 0, and referenced. At EOF the program, 

without the declaration of foo 1 ( ) , is printed to standard output. 

3.7.3 Enumerations 

Enumerations are the first construct that introduce tags and members.'' 

Enumeration tags can be used to refer to an enum declaration later in the program. The 

members are just integer-valued identifiers that allow the intent of an assignment in the 

programmer's mind to be made self-documenting. Our example program follows: 

1 enum {red, yellow, green) a; 
2 int £000 (a = red;] 
3 enum boolean {true, false} ; 
4 enum boolean b; 

At line 1 we see an example of a tagless enumeration. It declares three members 

that might represent stop light colors. Here, a is a variable declaration. The variable can 

be assigned the enumeration constants, as the members are sometimes called. 

I5 In the fragment "enum temperature (cold, warm, hot) ;", temperature is the 

tag, and cold/warm/ho t are the members. 



Mincpp sees the constants reduce to non-terminal enumerator-list. When this 

happens, the constants are placed into the symbol table in their enclosing scope, here 

scope 0. Now, a is recognized as a declarator once more, but, for the first time in our 

examples, this type is non-BASIC. Nevertheless, a is inserted as an object, or variable 

symbol. When declaration is reduced, all four symbols are tied to the text of the 

declaration. 

In foo ,  both a" and red are referenced in two expressions that constitute an 

assignment statement, which then reduces to a { 1 -delimited compound statement. a and 

red are looked up and referenced in turn. 

At line three we see an enurn with a tag. When parsed, "boolean" is inserted as 

an enumeration tag. The constants " t rue"  and " f a l s e "  are inserted as before, and the 

three symbols are linked to the declaration text. 

Lastly, "boolean" is pushed on the type stack, and b is a declarator. The 

declarator code sees ''boo1 ean" on the type stack. This is a dependency, not a reference. 

The declarator code adds b o o l e a n  as a dependent type. The program terminates with 

EOF. Now, enum {red, yellow, green) a ;  and the function are printed. Since neither 

b o o l e a n  or b were referenced by an expression, neither are printed. 

3.7.4 Structures and Unions 

The most complicated declarations in C are those for multi-membered data 

structures, or s t  r u c t l u n i o n  types. The basic syntax is ( s t  r u c t  I u n i o n )  

optional-tag ' { ' member-list ' ) ' optional-identifier-list ' ; '. If the identifier list is 

absent, no variables, or objects that set aside storage, are declared, and this is a true type 

declaration. If the tag is not present, then no variable declaration that occurs lexically later 

in the program can refer to the structure. Members can be any storage-allocating 

declaration, including other structures. Structures can be self-referencing. 

Mincpp has a concept of the "current" external s t  r u c  t / u n i  on  symbol. It uses 

this to add dependencies to the current external declaration being parsed. The strategy is 

to collapse all the members under the external s t  r u c  t into dependency links and ignore 

the details of the members. An example will be helpful. 



1 s t r u c t  a  { i n t  i ;}; 
2 s t r u c t  b { s t r u c t  a  aa;  f l o a t  f;]; 
3 i n t  £ 0 0 0  ( s t r u c t  b bb;} 
4 

Identifier "a" is placed in the symbol table as a s t  r u c t l u n i o n  tag. Since we are 

at scope 0, symbol "a" is designated to be the current external structurelunion. The 

grammar parses the members, (the ' ; ' separated list of declarations inside the s t  r u c t  

brackets), as before. The key difference is that the declarations reduce to non-terminal 

member-declaration rather than declaration, and member-declaration loops via 

member-declaration-list. As we saw before, " i n t  i" pushes "BASIC" on the type 

stack. When we see the declarator "i", we check to see if we are in a s t r u c t ,  and since 

we are, "i" is not placed in the symbol table. This time, we reduce to 

member-declaration. Instead of the process of linking text to declarators as before, we 

just look at the type stack to see if the type is BASIC or not. This time it's basic so there 

is nothing more to do. Now, the declaration reduces, and we add the text of the 

declaration to symbol "a". 

For the second declaration, (that of "b"), we insert "b" in the symbol table as a 

structurelunion tag. The first member pushes type "st r u c  t a" on the type stack. When 

the memberdeclaration is reduced, we pop the type stack and see "a", not "BASIC". 

We lookup "a" and add a dependency link fiom "b" to "a". The rest of the processing is 

similar to that described for "a". Here, we just show one dependent type, but there can be 

an arbitrary number of types that attach themselves to "b". 

The hnction foo has one local variable, bb. The local declaration is parsed just 

like an external declaration, with one important difference. Local declarations that refer to 

non-BASIC types cause a reference to occur instead of a dependency, as is the case for 

scope 0 declarations. There are some other issues regarding local declaration that will be 

deferred until later in the section devoted just to them. The key point is that the reference 

to type b in the local declaration marks the symbol b as referenced. As the dep array in 

symbol b has a pointer to a, we follow the pointer and also mark a as referenced. This 



algorithm does a depth-first tree walk of the dependency arrays to mark as referenced the 

type dependencies. 

It is now time to explain the NAMELESS symbol that always is placed in the 

symbol table at program startup. Recall fiom earlier discussion the fact that the tag of a 

s t  r u c  t declaration is optional. This allows declarations such as 

s t r u c t  ( i n t  x; i n t  y ; )  P o i n t ;  

But now consider the following program: 

typedef  i n t  temp; 
s t r u c t  { i n t  i; temp t ;}  a; 

Ignoring the specifics of t ypede f ,  which is the subject of the next section, the 

notable thing here is the lack of a tag and a type dependency between the variable a and 

the typede f temp. For such instances, a special variable, NAMELESS, is made the 

current external s t  r u c  t . Now, a dependency between NAMELESS and temp is made 

for the second s t r u c t  member. Later, when the whole declaration is parsed, we copy 

the dependencies from NAMELESS to "a", which is the only symbol table symbol in this 

example. Had we said "a, a1 , a2" instead of "a", the dependencies would have been 

copied to each in turn. After copying, NAMELESS dependencies are cleared to ready it for 

its next use.16 

3.7.5 Typedef Declarations 

Typedef in C does nothing more than provide a handy way to provide an 

alternative name for an existing type. The existing type can be built-in or user specified 

(enum/struct/union). A simple example to explain mincpp's treatment of 

t ypede f names should suffice: 

' 6 ~ ~ ~ ~ ~ ~ ~ ~  is a poor choice of name for this symbol as it could collide with a program name. 

A better name would be "' or '$', characters other than @ whch are not part of C's character set. The 

character @ cannot be used as it is already reserved to delimit fields in the trace file. Also, the special 

symbol for this purpose could be kept outside of the symbol table, but keeping it inside allows for a 

simpler and cleaner implementation of tagless structures. 



1 typedef int temperature; 
2 
3 temperature t; 
4 
5 int f o o 0  It = l o o ; ]  
6 

The keyword t ypede f has the effect of putting mincpp into a mode where 

declarations do not populate the symbol table as objects but instead adds a type name 

symbol. The declarator is inserted into the symbol table as a typedef name rather than as 

an object. The end-of-declaration processing ties the text to the typedef name symbol 

t e m p e r a t u r e .  At line 3 the type-specifier code again pushes t e m p e r a t u r e  on the 

type stack. The declarator code creates a new object symbol for t, and the declaration 

code pops the type stack, creates a dependency from t to t e m p e r a t u r e ,  and links the 

text. Inside the fbnction, t reduces to a primary-expression, which causes scope 0 t to 

be referenced, as well as t emp e r a t  u r  e via the dependency link. 

3.8 Function Definitions 

So far, we have been concerned only with external declarations. The other 

syntactic element at external-definition level is the function definition, or body. As we 

saw earlier, mincpp treats the entire block of a function as a single text unit. For fbnction 

definitions, the overall strategy is to alter the behavior of local declarations to cause them 

to be in reference mode rather than dependency mode. We also create local declaration 

symbols for reference but do not tie any text to them, so they are not put in the text chain, 

and we delete them when they fall out of scope. Lastly, fbnction parameters require some 

special treatment, especially the ANSI prototype form. 

Nothing inside a function is minimized. They are parsed only to see what they 

reference. 

3.8.1 Old-Style Parameters 

A fbnction parameter can be thought of as a local variable in scope 1 that is 

logically inserted into the symbol table right after the ' { ' that opens a hnction body. 

1 i n t a ;  



2  i n t  f o o ( a )  
3 i n t a ;  
4 I 
5 a  = 100;  
6 1 
7 

Here, scope 1 a is what the expression at line 5 involving a references, not scope 

0 a ,  which has been hidden by the local symbol with the same name. The grammar has a 

non-terminal, old-function-declarator, that is used when the hnction parameter list is 

closed by the end parenthesis and the next token is not the open brace that starts the body. 

This sets a flag that indicates that we are parsing declarations that are hnction parameters. 

So, when declarator "a" is parsed, it is inserted at scope + I, or just scope 1 in this 

example. At declaration end, we see that this flag is set and do not tie any text into the text 

chain, since elements in the text chain are just those of external-definition granularity. 

The expression involving a causes a to be looked up, and the most deeply nested one is 

returned, or the scope 1 a here. When we fall out of scope 1 at the end brace, all scope 1 

symbols are deleted, or just scope 1 a that has its reference field set. So, scope 1 a came 

and went, and the only real effect was to cloak and hide the external a so it would not get 

its reference bit set. Finally, once again we tie the hnction text into the text chain when 

the external-definition for function-definition is reduced. 

3.8.2 ANSI-Style Parameters 

A variation on the parameter theme is hnction definitions that use the ANSI 

prototype syntax. 

f l o a t  f ;  
i n t  f o o ( f 1 o a t  f) 
{ f  = 2.0; ) 

Scope 0 f is processed as usual. Inside the parenthesis, f reduces to 

parameter-declaration." This causes f to be inserted tentatively, meaning it is stored 

"1x1 the treatment of function declarations, we saw that the identifier could be missing. This is 

known as an abstract parameter in that the type but not name is declared. C* extends this syntax to the 

function definition parameters as well. This allows the programmer to explicitly state that this is a 



away internally by the symbol table but not really put in the real hash structure. This is 

because we do not yet know if we are parsing a function declaration or a function 

definition. We have seen this before when discussing function declarations. The open 

brace in this case triggers a utility function called function - def ( ) . One of the things 

it does is to call the symbol table commit - tent at ive ( ) routine. This takes the 

tentative list and promotes them to be real symbols. It inserts them at scope + I since the 

helper non-terminal that increments scope on recognition of the open brace has not yet 

reduced (but it will soon). So, here a is promoted to scope 1 and the body parsing begins. 

Just as for an old-style parameter, f references scope 1 f, then scope 1 falls out of scope 

after having hid scope 0 f from being referenced, scope 1 is exited upon ' ) ', and scope 1 

f is deleted. 

3.8.3 Local Declarations 

Function parameters, which we have already treated, are just a special case of local 

declarations. They are inserted and deleted as they fall in and out of scope. The trick to 

insert the parameters at scope + I is not needed. 

1 int a; 
2 int foo ( )  

3 I 
4 int a; 
5 a = 7; 
6 1 
7 

The only difference between this and the old style example is that the local variable 

is a true scope 1 variable rather that a parameter scope 1 variable. l8  Scope increases as 

more open braces are seen, indicating statement block begin and scope decreases as close 

brace is seen, indicating statement block end. The final close brace terminates the hnction 

body, and all scope 1 locals, either "real" or "parameter" are deleted. Scope > 1 variables 

are deleted as the '1' that closes the scope is encountered. 

parameter to the function, but that it will not be used. This can allow control over compiler warnings 

about unused parameters. 

I8~his can chain indefinitely. Consider int f oo ( ) ( int a ; ( int a; a = 9 ; ) ) 



3.8.4 Referencing 

This concludes our discussion of specific language constructs that we will examine. 

Before proceeding we will consider one more example: 

i n t  a; 
i n t  b; 
c h a r  **c; 
s t r u c t  s { i n t  i;); 

i n t  £ 1 0  
( 

s t r u c t  s ss; 
1 

i n t  £ 2 0  
( 

c = 0; 
1 

Variables a, b, c,  and s have symbols created and are then chained to the text, 

since they are external declarations. Function fl is placed in the symbol table, and 

references s through the declaration for s s. C is referenced by f 2 .  At the end, a and b 

are not printed since they are not referenced, c and s are printed since they are 

referenced, and the two functions are printed since function bodies are always referenced. 

3.9 Save and Replay 

When the development of mincpp's parse mode was complete, an investigation 

into strategies for boosting performance was conducted. Profiling the application 

Bre93bl  revealed that 96% of the program's execution time was spent in y y l e x  ( ) and 

yypar  s e  ( ) , in other words, the majority of processing time was spent parsing. This was 

a welcome result, as it showed that the symbol table and other processing that mincpp 

does did not significantly add to the time just to recognize input as C code via parsing. It 

also suggested that an approach for saving mincpp's state in an external file and 

replaying it later would result in reduced overall processing time. 



3.9.1 Save 

On an initial pass, the trace for the entire translation unit is saved. On a subsequent 

run, the trace can be replayed instead of parsing the same translation unit. This is 

ineffective as an actual caching mechanism since it does not accommodate any changes in 

the files, but it is usehl for setting an upper limit on cache efficiencies. Fully parsing gives 

a worst case, or zero percent caching limit. Replaying gives a best case, or 100 percent 

caching limit. The effectiveness of caching is dependent on the nature of change to the 

files. Local changes to C modules and header files will re-use most of the trace 

information and caching will be effective. 

All of mincpp's state is encapsulated in its symbol table. Any manipulation of the 

data structure is done through the symbol table manipulation hnctions prototyped in 

s ymbo 1 . h. There is a clean interface that resembles a C++ class with all data members 

private. The code is, however, just C code that obeys abstract type coding rules. 

Save works by adding a single field to the symbol structure, "id", which contains 

a unique symbol number. This is done because the in-memory symbol address is not 

persistent and is only valid for the current execution of the program, and we need a way of 

identifjmg symbols persistently. 

Every symbol table manipulation fknction had a line of code added to it to append 

a line to a file (the T r a c e  file) giving the operation performed and the hnction 

arguments. Each hnction was assigned a number, or operation code. It writes that instead 

of the name of the fbnction, mostly to save space. Most of the symbol table hnctions take 

symbol pointers as arguments. A D i c t i o n a r y  class was added to store associations of 

"symbol id t, symbol address" pairs. This allows the hnctions to lookup the i d  for a 

symbol address and transcript the i d  to the T r a c e  file instead of addresses. The 

dictionary gets new pairs fiom the a d d  - symbol ( ) routine. 

3.9.2 Replay 

On startup, the environment variable USE-TRACE-CACHE is examined. If it is 

set, we replay by calling 1 o a d  - s ym ( ) , otherwise it parses by calling y y p a r  s e ( ) . 



Load - s ym ( ) opens and reads the trace file one line at a time. It dispatches on the 

operation code it finds and calls the specified symbol table hnction. If the operation is to 

create a new symbol with add  - s ymbo 1 ( ) , it reads back the memory address of the 

newly created symbol (add - s ymbo 1 ( ) returns this) and creates a dictionary entry for it. 

If the operation has a symbol address as an argument, it translates the symbol i d  from the 

on-disk file into the memory address by looking up the id in the dictionary. 

The Dictionary class takes addresses and turns them into id ' s  on behalf of the 

manipulation routine's need to create the file, and takes id ' s  and turns them into memory 

addresses on behalf of l o a d  - s ym ( ) 's need to have memory addresses to call the 

manipulation functions. 

3.10 Using Mincpp 

One approach to using mincpp is to change the make rule used. In GNU make 

[GNU92], mincpp can be used by changing a pattern rule like: 

to: 

8.0 : 8.c 
cccp $< > tmp.i 
mincpp < tmp.i > tmp.min.i 
cc -c - g  -0 $13 tmp.min.i 
rm -f tmp.i tmp.min.i 

Here the preprocessor output is re-directed to a temporary file. Mincpp reads 

that temporary file and creates a second temporary file, which the compiler reads. Finally, 

both temporary files are deleted. 

Most compiler drivers will recognize the file extension . i as already-preprocessed 

code and will skip the pass through cpp. When a hlly implemented mincpp exists, it will 

be possible to use a "compiler driver-driver" that replaces cc. This obviates the need to 

mod@ make f i 1 e s . Another possibility is to use an environment variable that instructs 

cc as to which binary to use for the cpp pass. Many existing compiler drivers support 

this hook by using the variable cppC. 



3.11 Implementation Summary 

We have seen how mincpp processes the various syntactical structures of the C 

language. In order to keep the narrative rather straightforward, simple examples have been 

used. In the next chapter we will see that mincpp can process realistic examples based on 

complicated header files from the X window system and the various facilities provided by 

the UNIX system, as well as the facilities provided by a commercial database system 

vendor. 



4. RESULTS 

Compile times rise dramatically when using type-rich header files. Programs that 

use these include clients of Motif, Open Look, Microsoft Windows, application 

frameworks, and others. As applications and toolkits continue to grow in complexity, 

header files are likely to only grow further. 

4.1 Benchmark Descriptions 

Mincpp was evaluated by observing compile time and various other factors for a 

number of different benchmarks. These were chosen to represent code from different 

application areas, as well as having a variety of Nova factors. To review, Nova is the 

number of bytes after preprocessing divided by the number of bytes in the source module 

originally ( . i 1 . c ). 
The benchmarks are: 

1. he 11 o , wo r 1 d. The classic first C program from Kernighan & Ritchie 

[Kernighan88]. 

2. xmt r ave 1, from the Xiblotif version 1.2.2 demo directory. This is a mockup of a 

sample "travel agency" application that tracks airline reservations. 

3. wc (word count program) from the Berkeley BSD 4.3 sources. 

4. t ims (Technical Information Management System) a database library example 

program from Raima Data Manager 3.2 1 a [Raima92]. 

5 .  o 1 - fonts, font-related applications from Sun Open Look version 3. 



Note that none of the benchmarks contain global variables that cause unsafe 

e x t e r n  minimizations as described earlier. So, the results presented here are the same 

with or without the option to disclose space-allocating declarations. 

4.1.1 Small Benchmarks 

The first three benchmarks, h e l l o ,  wc,  and t i m s ,  will be collectively referred to 

as the small benchmarks. These benchmarks have smaller file size increases after 

preprocessing that do the others. As we will see, some compile time improvements are 

obtainable even for the small cases, but the elapsed times are too small to really matter. 

4.1.2 Large Benchmarks 

Xmtrave l  and 01 - f o n t s  are referred to as the large benchmarks. This is 

actually a misnomer since both are demonstration programs that are quite modest in size 

compared to a typical application that one might develop. The common thread here is the 

use of the X Windows system. As we will see, the larger the include files, the more 

compile times can be reduced. 



4.2 Directory Structure 

L ex 
hello 

01-font s 
L include 

pixrect 

timk include 

vm 
xmtravel 

x l l  
xm 
xt 

Figure 4.1 Examples Directory Structure 

Figure 4.1 shows the layout of directories under the examples directory. The 

source code for the various benchmarks was assembled under one directory for easier 

experiment management. The standard preprocessor was run for each C module to scan 

for path names of include files. This list was used to create a local include directory under 

each benchmark's directory. Copies of all the header files needed in preprocessing were 

made locally. This simplifies the task of creating a common make f i 1 e (just use - I . in 

the rule) and also allows for easier transport of the directory across different machines. 

4.3 Header File Structures 

A tool to help understand header file include dependencies was constructed. This 

tool takes a . i file with embedded line directives (#1 ine )  and creates a hierarchically- 

organized list of the files. A C program then generates Postscript code that shows the 



# inc lude  file structure graphically. Following are text-based hierarchical include lists 

for four of the benchmark modules, with graphical renderings of three: 

/ /  include hierarchy for tims de1info.c benchmark 
/ / 

1 delinfo. c 
2 include/stdio.h 
3 include/vista. h 
4 include/dproto.h 
5 include/lockcomm.h 
6 . /tims.h 

/ /  include hierarchy for wc.c benchmark 
/ / 

1 wc.c 
2 include/sys/param.h 
3 include/machine/param.h 
4 include/rnachine/devaddr.h 
5 include/sys/signal.h 
6 include/vm/faultcode.h 
7 include/sys/stdtypes.h 
8 include/sys/types.h 
9 include/sys/stdtypes.h 

10 include/sys/sysmacros.h 
11 include/sys/stat.h 
12 include/sys/types.h 
13 include/sys/file.h 
14 include/sys/types.h 
15 include/sys/fcntlcom.h 
16 include/sys/stdtypes.h 
17 include/sys/stat.h 
18 include/stdio.h 



Figure 4.2 wc . c Include Tree 

// i n c l u d e  h i e r a r c h y  f o r  xmtravel  t r i p  - cb . c  benchmark 
/ / 

1 t r i p  cb. c 
2 iiiclude/Xm/Xm. h 



include/Xm/DialogS.h 
include/Xm/Xm.h 

include/Xm/SelectioB.h 
include/Xm/Xm.h 

include/Xm/MessageB.h 
include/Xm/Xm.h 

include/Xm/Text.h 
include/Xm/Xm.h 
include/stdio.h 

./xmtravel.h 
include/stdio.h 
include/Xm/Xm.h 
include/Mrm/MrmPublic.h 

include/X11/Intrinsic.h 
include/Mrm/MrmDecls.h 

./menu cb. h 

./client cb. h 

./trip cb.h . /dialog. h 



Figure 4.3 t r ip  - cb . c Include Tree 



/ /  include hierarchy for 01 fonts f0nts.c benchmark 
1 fonts. c 2 include/ ctype. h 

13 include/c varieties-h 
14 include/sys/signal. h 
15 include/vm/faultcode.h 





Figure 4.4 fonts. c Include Tree 



4.4 Nocom 

A tool called nocom was constructed. Nocom is simply a lex application with a 

small driver that tokenizes a file and strips white-space. The primary goal of constructing 

this tool was to put to rest any uncertainty as to whether or not all we were doing was 

simple file stripping. 

In a practical application, blank lines are not removed so that subsequent 

compilation passes can report accurate line number information to the user. Here, nocom 

also strips blank lines so that we can very accurately see the decrease in lexically 

significant tokens that mincpp reduces. The make file runs cpp to create the . i file. 

These are stripped by nocom to create a . nc . i file ("no comments"). Mincpp is run on 

the . nc . i to create a .min . i ("minimized). 

4.5 Makef iles and Build Scripts 

One of the advantages of collecting all the source in a common area is that a 

consistent build environment can be created. For our experiments, we use common 

formats and conventions, and then include a common make f i 1 e fragment that contains 

all the translation rules (also referred to as suffix rules or pattern rules). This ensures that 

build transcripts are in a uniform format, which in turn allows automated creation of tables 

and charts possible. 

GNU make is used, primarily to access two features not supplied with standard 

make: pattern rules and include-able makefiles. The pattern rule syntax is considerably 

more flexible and power!%l that the standard make suffix rule ( . c . i : ), while the 

included make fi le facility allows common definitions to be stored in one place and used 

in multiple make f i 1 e s. For readers not familiar with gnu make, the suffix rule . c . o 
expressed as a pattern rule is 8, . o : 8 . c, and the syntax "include fi 1 e" works just 

like a #include in C source. 

Xmt rave 1's make f i le follows: 

OBJS = client cb.0 dia1og.o menu cb.0 trip cb.0 xmtrave1.0 
IFILES = client-cb.i dia1og.i menu - cb.i trip - cb.i xmtrave1.i 



DBGOBJS = client - cb.dbg.0 dia1og.dbg.o menu - cb.dbg.0 trip - cb.dbg.0 
xmtrave1.dbg.o 
OPTOBJS = client - cb.opt.0 dia1og.opt.o menu - cb.opt.0 trip - cb.opt.0 
xmtrave1.opt.o 
MINOBJS = client - cb.min.0 dia1og.min.o menu-cb.min.0 trip-cb.min.0 
xmt ravel. min . o 
DBGMINOBJS = client cb.dbg.min.0 dia1og.dbg.min.o menu-cb.dbg.min.0 
trip-cb.dbg.min. o Gtravel .dbg.min. o 
OPTMINOBJS = client cb.opt.min.0 dia1og.opt.min.o menu-cb.opt.min.0 
trip-cb. opt .min. o Gtravel. opt.min. o 

EXE = xmtravel xmtravel.min xmtravel.dbg xmtravel.dbg.min xmtravel.opt 
xmtravel. opt .min 

EXTRA - LIBS=-1Mrm -1Xm -lXt -1X11 

include ../mkdef 

xmtravel: $ (OBJS) 
xmtravel.min: $(MINOBJS) 
client cb.0 : client cb. c - 
dialogTo : dia1og.c 
menu-cb.0 : menu cb.c 
trip-cb.0 : trip-cb.c 
xmtrave1.0: xmtrZve1.c 
client-cb.min.0 : client cb.min.i 
dia1og.min.o : dia1og.min.i 
menu-cb.min.0 : menu cb.min.i 
trip-cb.min.0 : t~i~1cb.min.i 
xmtrave1.min.o: xmtrave1.min.i 
xmtravel.dbg : $(DBGOBJS) 
xmtrave1.dbg.mi.n : $(DBGMINOBJS) 
xmtravel.opt : $(OPTOBJS) 
xmtravel.opt.min : $(OPTMINOBJS) 
client cb.dbg.0 : client-cb.c 
dialog,dbg.o : dia1og.c 
menu-cb.dbg.0 : menu-cb.c 
trip cb.dbg.0 : trip cb.c 
xmtravel . dbg . o : xmtravel . c 
client cb.opt.0 : client-cb.c 
dialogTopt. o : dialog. c 
menu-cb.opt.0 : menu-cb.c 
trip-cb.opt.0 : trip-cb.c 
xmtrave1.opt.o: xmtrave1.c 
client-cb.opt.min.o : client-cb.min.i 
dia1og.opt.min.o : dia1og.min.i 
menu-cb.opt.min.0 : menu-cb.min.i 
trip-cb.opt.min.o : trip cb.min.i 
xmtrave1.opt.min.o: xmtrave1.min.i 
client-cb.dbg.min.o : client-cb.min.i 
dia1og.dbg.min.o : dia1og.min.i 
menu-cb.dbg.min.0 : menu-cb.min.i 
trip-cb. dbg.min. o : trip-cb.min. i 
xmtrave1.dbg.min.o: xmtrave1.min.i 
client-cb.i : client-cb.c 
dia1og.i : dia1og.c 
menu-cb.i : menu-cb.c 
trip-cb.i : trip-cb.c 
xmtrave1.i: xmtrave1.c 
client-cb.min.i : client-cb.nc.i 



dia1og.min.i : dia1og.nc.i 
menu-cb.min.i : menu-cb.nc.i 
trip-cb.min.i : trip-cb.nc.i 
xmtrave1.min.i: xmtrave1.nc.i 
client-cb.nc.i : client - cb.i 
dia1og.nc.i : dia1og.i 
menu-cb.nc.i : menu cb.i 
trip-cb.nc.i : trip-cb.i 
xmtravel . nc. i : xmtravel . i 

In the make f i 1 e above, the first lines show groups of files that are the object 

files that comprise a single executable. Lines of the form " < t e x t  > : < t e x t  >" show 

build order dependencies: a translation including the file to the right of the colon results in 

the creation of the file on the left. 

Every module follows a certain translation flow. The . c is read by cc to create 

three flavors of . o files, . o, . dbg . o, and . o p t .  o. These correspond to compiling with 

switches -c, -g, and -0 respectively. The . c is also read by c p p  which creates the . i .  

The . i is read by nocom to create the . n c  . i. The . n c  . i is read by mincpp to create 

the . min . i. The . min . i is read by cc three times to create the three flavors of 

minimized . 0's. There is a single executable (xmt rave l )  created from the five separate 

. o modules. There are six flavors of compile overall, three each for standardminimized 

corresponding to the three flavors (-c, -g, and -0). 

While we collect data for all three build flavors, we look in detail at the debuggable 

flavor ( . dbg,  corresponding to -g). This assumption is driven by the observation that 

mincpp is most applicable to the development phase where the edit/compile/link/debug 

loop is focused on the creation and early testing of source. Here, full debug is the 

prevalent mode of compilation. One might drop symbols later (the vanilla flavor, no 

optimization, no symbols) and finally use optimization for release builds (and for pre- 

release builds to test for compiler optimization bugs!). However, we will see that mincpp 

reduces compile times even on optimized code. 

Mkde f is a file included in every make f i 1 e to give a uniform transcript format 

and ensure consistency in build procedures. The rules in mkde  f drive the entire build 

cycle: preprocess, compile, link, run (through the debugger). Testing was done by running 

applications manually and performing whatever operations with the executable were 



deemed complete to show that there were no runtime variances. This was done informally: 

no attempt at evaluating testing effectiveness using test c ~ v e r a ~ e ' ~ o r  runtime error 

checking tools2' was done. 

The complete text of mkde f and detailed descriptions of every translation rule will 

follow: 

#CC=cc 
CC=acc -D STDC 
#CC=CC -D-STDC- - - -D - C ~ ~ U S ~ ~ U S  

#CPP=../../app/cccp -U - STDC - 
CPP=../../app/cccp -D STDC - 
#CPP=. . / . . /app/cccp -D - STDC - -D-cplusplus 

%.min.i : %.nc.i 
USE TRACE CACHE=n; PRINT TO MEMORY=n; YYDEBUG=; \ - - 
export USE TRACE CACHE; export YYDEBUG; export - - 

PRINT TO MEMORY; \ - - 
cp $< /tmp/; \ 
time ../../c-src/mincpp < /tmp/$< > $@; \ 
1s -1 Trace; \ 
USE TRACE CACHE=y; PRINT TO MEMORY=n; \ - - 
cp Trace Ttmp/; \ 
time ../../c - src/mincpp > /dev/null; \ 
rm Trace; \ 
Is -1 $ @  

%.nc.i : %.i 
time ../../c~src/nocom/nocom $< > £00; mv £00 $ @  
1s -1 $ @  

%.i : %.c 
-time $(CPP) -P -I. -1include $< > $ @  
1s -1 $ @  $< 
time wc -c $ @  

B.opt.min.0 : %.min.i 
time $(CC) -c -0 -0 $@ -I. -1include $< 
1s -1 $ @  

%.dbg.min.o : %.min.i 
echo " #  1 \"foo.c\"" > £00; \ 
cat £00 $< > tmp.i 
time $(CC) -c -g -0 $ @  tmp.i 
1s -1 $ @  
rm -f £00 

%.min.o : B.min.i 
time $(CC) -c -0 $ @  -I. -1include $< 

19 tcov or Testcenter [CenterLine93a] 

''%x@, Sentinel, or Insight 



B.opt.0 : %.c 
time $(CC) -c -0 -0 $ @  -I. -1include $< 
1s -1 $ @  

%.dbg.o : %.c 
time $(CC) -c -g -0 $@ -I. -1include $< 
1s -1 $ @  

%.o : %.c 
time $(CC) -c -0 $ @  -I. -1include $< 
1s -1 $ @  

%.dbg.min : %.dbg.min.o 
%.dbg : %.dbg.o 
%.opt.min : %.opt.min.o 
%.opt : %.opt.o 
%.min : B.min.0 
% : 8.0 

time cc -0 $ @  $" -Bstatic $(EXTRA LIBS) 
if [ ! -x $ @  I ;  then rm -f $@; fi- 
. . /dbxit $ @  
1s -1 $ @  
rm -f $ @  
rrn -f $"  

all : $(EXE) 

clean : 
rm -f core * . o  *.i $(EXE) #*# *- 

Table 4.1 Translation Rules 

Rule 

8.i : 8.c 

Description 

-time $(CPP) -P -I. -1include $< > $ @  

The GNU preprocessor, cccp,  is run, using the local 

directories as search paths for # i n c l u d e  files. The switch -P 

specifies that # l i n e  number directives NOT be present in the 

~ t p u t .  Mincpp is not equipped to deal with these. The rule uses 

the automatic make variables $< and $ @ to specie the matching 

. c and . i files respectively. 



%.nc.i : %.i 

% . min. i : % . nc . 

% . o  : %.C 

B.dbg.0 : %.c 

B.opt.0 : 8.c  

%.min.o : 

% .min.i 

%.dbg.min.o : 

time ../../c - src/nocom/nocom $< > £00; mv foo $ @  

Nocom from the mincpp source directory (c - sr c) is 

run on the . i file and moved (through a temporary file) to the 

matching . nc . i file. 

iUSE TRACE CACHE=n; PRINT - TO - MEMORY=n; YYDEBUG=; \ 
export USE TRACE CACHE; export YYDEBUG; export 
PRINT TO MEMORY;-\ 
cp $<-/home/tmp/; time wc -c /home/tmp/$<; time wc - 
c /home/tmp/$<; \ 
time ../../c src/mincpp < /home/tmp/$< > $@; \ 
USE TRACE CAEHE=~; PRINT - TO - MEMORY=~; \ 
cp Trace Thome/tmp/; time wc -c /home/tmp/Trace; 
time wc -c /home/tmp/Trace; \ 
time ../../c-src/mincpp; \ 
rm Trace; \ 

Several pieces of data are collected here. First, some 

environment variables are explicitly set and exported. 

USE-TRACE-CACHE specifies mincpp's mode: parse or 

replay. PRINT-TO-MEMORY is an un-implemented feature 

that was intended to allow mincpp to output to an in-memory 

data structure to measure file UO effects. WDEBUG is a yacc 

variable that allows rule reductions to be transcripted to stderr: 

this is a parser debugging tool. 

Wc is then run on a copy of the . i file. Mincpp is run in 

parse mode, then the resulting Trace file is examined for size, 

then mincpp is run in replay mode, then some clean-up occurs. 

Wc is run to allow measurement of file UO overhead. 

%.opt.min.o : %.min.i 
time $(CC) -c -0 -0 $ @  -I. -1include $< 

%.dbg.min.o : %.min.i 
echo " #  1 \"foo.c\"" > foo; \ 
cat £00 $< > tmp.i 
time $(CC) -c -g -0 $ @  tmp.i 
rm -f tmp.i £00 

%.min.o : %.min.i 
time $(CC) -c -0 $ @  -I. -1include $< 

%.opt.o : %.c 
time $(cc) -c -0 -0 $@ -I. -1include $< 

%.dbg.o : %.c - 



Mkde f uses an external script to invoke the debugger, dbx and collect data on 

8 .min. i 

%.opt.min.o : 

% .min.i 

8 : 8.0 

%.dbg : 8.0 

%.opt : 8.0 

%.min : 8.min.o 

%.dbg.min : 

8.min.o 

%.opt.min : 

8.min.o 

clean 

debugger load times. It just loads the program and quits so the time has a relationship to 

time $(cC) -c -g -0 $ @  -I. -1include $< 
%.o : B.c 

time $(CC) -c -0 $ @  -I. -1include $< 

These are pretty straightforward: there are separate rules 

to make sure the .07s  have different suffixes to match their flavor. 

The rules match suffix and use -c, -g, and -0 appropriately. 

There is a bug in Sun acc so that if there are no line numbers it 

causes a compiler crash. That is why the operations involving 

#line 1 foo . c are there. 

time $(CC) -0 $ @  $^  -1xview -1olgx -1X11 
../libvistamu.a -lXt -1Xm -lMrm 
../dbxit $ @  

The link. All the libraries that are needed in any of the 

binaries are specified so one rule works for all links. Dbxit is an 

external script that runs the program under the dbx debugger. 

This loads the program. 

rm -f core *.o *.i 

This cleans things up. 

the load time of the binary. 

time dbx <<! 
debug $1 
quit 
! 



4.6 Collection Methodology and Tools 

There is a top level make fi le in the examples directory that changes directory 

into each of the 6 example directories and does a make a1  1. This causes all builds and 

runs to occur and transcript to stdout. 

all : 
cd hello; make clean; rm -f build.* 
cd wc; make clean; rm -f build.* 
cd tims; make clean; rm -f build.* 
cd xmtravel; make clean; rm -f build.* 
cd 01 fonts; make clean; rm -f build.* 
cd heilo; make > ../build.log 2>&1 
cd wc; make >> ../build.log 2 x 1  
cd tims; make >> ../build.log 2>&1  
cd xmtravel; make >> ../build.log 2>&1  
cd 01 - fonts; make >> ../build.log 2>&1 
# 
# . . . repeat 
# 
cd hello; make clean; rm -f build.* 
cd wc; make clean; rm -f build.* 
cd tims; make clean; rm -f build.* 
cd xmtravel; make clean; rm -f build.* 
cd 01 fonts; make clean; rm -f build.* 
cd heilo; make >> . . /build.log 2 x 1  
cd wc; make >> ../build.log 2>&1 
cd tims; make >> ../build.log 2>&1  
cd xmtravel; make >> ../build.log 2>&1 
cd 01 fonts; make >> ../build.log 2>&1 
./mktab.sh 

This was run three times with a make clean in-between runs to force a fill re- 

build for each iteration. All of the output was sent to a log file. This raw compile data was 

processed into table format by an awk program. The awk program keeps arrays of data 

for each event of interest. Since three runs of data are in the same file, it updates each 

array entry three times. At the end, each data bucket is averaged, and printed in table form 

suitable for processing by a spreadsheet program. Excel spreadsheets were created by 

loading b u i l d .  txt and creating derivative spreadsheets. 

All data was collected on a Sun SparcServer 670MP with 5 gigabytes SCSI-2 disk, 

192 megabytes of memory, running SunOS 4.1.2. The data was collected while the 

machine was in single-user mode to insure that there would be no interference from the 

network or other users. 



4.7 Result Data 

The data collected by the procedures outlined above will be presented. A brief 

description of the areas of interest will be followed by a table and one or two graphs. 

Table column header descriptions will follow the matching table. Discussion of the results 

will conclude each section. 

4.7.1 File Sizes 

The increase in file size after preprocessing, and the decrease in size possible 

through minimization is directly correlated to the compile time reductions. Here we will 

show the sizes of the various intermediate files that are introduced by the preprocessing 

steps. 

Table 4.2 Benchmark File Sizes 

. c : Size in bytes of original . c module. 

. i : Size in bytes of unmodified preprocessor output. 



. nc . i : Size in bytes of white space and comment stripped preprocessor output. 

. min. i : Size in bytes of minimized, white space, and comment stripped 

preprocessor output. 

Increase: Byte increase in size from . c file to . i file ( . i - . c). 
Decrease: Byte decrease fiom . i file to . min . i file ( . i - . min . i). 

. i S b  R e c C E s ~ m Y  cases 

Figure 4.5 File Sizes: Small Cases 
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Figure 4.6 File Sizes: Large Cases 

Here we show the sizes of files at the end of various preprocessing steps. There is 

a general trend for the . min . i to be around the same size as the original . c for the small 



cases, around twice as large for the xmtravel modules, and around 10 times as large for 

the 01 - fonts modules. 

Following the discussion of the last chapter, it can be concluded that the font 

applications make more use of their header files than the other applications. Since more 

declarations are referenced, less text is spurious, and the minimization is comparatively 

less than for the other applications considered as a whole. 

4.7.2 Cpp and Mincpp Times 

The time to execute the preprocessing tools is critical in reducing compile times. 

Adding minimization to preprocessing must save more time than it adds to the 

preprocessing phase. 

Table 4.3 Cpphfincpp Timings 

module cccp H ~ C  nocom mincpp/s mincpp/r # Trace Worst 
inc Case 

0.10j 0.101 0.101 0.101 0.00 1 5054 0.10 

-nu c b . ~  1.40i 0.201 1.201 0.501 42 200702 2.101 
t r ip  cb. c 1.60: 0.201 1.201 0.50 49 218289 2.401 

Gimit-cb. -.-..----.-.-.----- c 1 . 6 G 3 1 . 2 ? 1  ---..---.--.--. b .-.-------..--.-.---.-- 0.60 49 -.-.-.-.-- 230755 2.56 
dialog.  c 11.801 0.201 1.301 0.60 56 231712 2.80 

L -̂ 

entinf o  . c 
.---...----..-.-..---+--.--.---.-. 

findpubs. c .------.----.-----.----. 
raotravel . c 
i 

cccp : Time in seconds for cpp to run. 

-.--A -.-. ~-~ 
0.20i 0.101 0.ldr 0.20 0.10' 5 -..---.-+.------- 1 1 
0.201 ~ . l o r  0.20 0.20r 0.1q 5 i" +.-.---- * --------.- ..---.- 
1.531 0.201 1.101 1.80t 0.501 39 

8-1. font-c  

disp f 0 n t s . c  
C 

' d i ~ ~ f o n t s 2 . c  

14637 .------- 
15079 

I--.- 

195117 

type f0n t . c  2.30; 0.30; 1.80: 4.50, 0.701 119 310743 5.00 I.-...- % * ...-.......-..... * 1 
fonts .  c 2.30' 0.301 1.80' 4.60 i 0.801 119 324382 5.10 

....................................................................... 

0.20 
0.20: 
2.13. 

2.101 0.301 1.501 3.571 0.601 118 249498 
250745 
250795 

2.101 0.30 1.501 3.571 0.60 
3.87 
3.87 
3.87 

117 
2.10i 0.30 1.501 3.571 

----.I-ll * .------ L- 
0.60 117 -- --.---- -9- 



wc : Time in seconds for wc to run. 

nocom: Time in seconds for nocom to run. 

mincpp/ s : Time in seconds for mincpp to run in save mode. Mincpp is creating 

a Trace file and parsing 1 00% of its input. 

mincpp/ r : Time in seconds for mincpp to run in replay mode. Mincpp is 

reading the Trace file and is parsing none of its input. 

# inc: Number of header files read in by the preprocessor. 

Trace : Size in bytes of mincpp's trace file, created during save mode processing. 

Worst Case: Time in seconds for total preprocessing assuming no optimizations. This 

is cpp time plus mincpp time. 

Preproce-r Tool Times 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Row 

Figure 4.7 CppMincpp Timings Graph 

We observe the cpp and nocom take roughly the same time to run. This is 

intuitively appealing because both tools are scanning the input and doing some processing 

based on token content. They are not parsing the source language but are instead 



concerned with token manipulation: cpp with # directive interpretation and macro 

identifier identification, nocom with identifying white space tokens and matching the end 

of the white space. 

Wc is given to show the raw time it takes to read the file off disk. This is used later 

to factor out some file 110 in calculating worst case timings for a cpplmincpp joined 

binary. 

Mincpp takes about the same time as cpp for the small cases, about 50% more 

for xmtravel, and about 2 times more for 01 - fonts. Since mincpp includes a 

complete C parser, we do expect it to take more time that cpp. Some of this difference 

lies in relationship to how much code is stripped. The font code is stripped relatively less 

than the xmtravel code, so the output is bigger. 

4.7.3 Compile Times 

The most important data collected is on compile times. This table shows raw 

compile times for standard and minimized text. These numbers are too optimistic for the 

minimized case since no preprocessing is included. We need to add in preprocessing time. 

This is done in a later section considering three different preprocessing scenarios. 



Table 4.4 Compile Times 

module I cc(-g) I cc(-glm) I cc I cc(m) I cc(-0) I cc(-Olm) 
[hello. c 0.60 
e ------ 0.601 0.60; 0.50 0.90/ 0.80: 
IWC-c 1.50, 1 . ~ - ~ . o o  

-----i.-------_-- 

0.90: --- 

1tims.c 

1.101 0.80: 0,901 0 . 7  - + ...---------- 
borrow. c 0.90: 1.00 0.731 1.67 

-._cI_c~---.---_cI--- --.-A 
1.40 

' 1.20; 
---+-- . 0.90; 1.00 0.80: -.- --- 1.701 

1 f indpubs . c 1 1.37i 1.001 1.10 0.80: 2.00 1.80 
i 

- I 

1.601 .i-ii--i-.-.I.-.i..ii..i-ii.i..._ 4.10 1.201 4.60 1.731 
i 5.23' 1.20i 4.30 l.0Oi 5.53 
j .-&.. 

1 5.731 2.001 4.90 1.501 6.10 
i 
iclient cb. c 1 6.23 + 1 2.57; 5.27 1.901 7.20 3.601 

/ 7.10i -.-+ 3.10: 6.00 2.431 8.40 4.701 
Isiaple-font. c v 7.93 ' 2.03 6.771 1.80 i -----.-..-.-.-.--....---.--.-- 7.33 2.401 -( 

tdisp .------.- f0nts.c 7.93i 2.40i 7.00 ...--..-.....-..--. 2.101 - 7.67 2.801 1 

cc(-g): Time in seconds for debug compile of unmodified module. 

cc(-g/m): Time in seconds for debug compile of minimized module. 

cc: Time in seconds for non-debug, non-optimized (-c) compile of unmodified module. 

cc(rnin): Time in seconds for non-debug, non-optimized (-c) compile of minimized 

module. 

cc(-0): Time in seconds for optimized compile of unmodified module. 

cc(-Olm): Time in seconds for optimized compile of minimized module. 



Debug Compile Times 

heU0.c tims.c findpubs.~ dbnt_cb.c dbp-fonts2.c 
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Figure 4.8 Compile Times Graph 

The non-minimized are for straight cc, reading fiom the . c file. The minimized 

are for cc reading the . min. i, so these times are too optimistic since they factor out 



preprocessing. A later table will show times for factoring this in several different forms 

based on the attributes of the build. 

4.7.4 Object File Sizes 

An interesting side-effect of minimization is that object file sizes for debug 

compiles are reduced. This is intuitively appealing, since we reason that the declarations 

that are missing are also not taking space in the object file's symbol table. 

Table 4.5 Object File Sizes 

a .o(-g): Size in bytes of object file compiled debug using unmodified module. 

.o(-dm): Size in bytes of object file compiled debug using minimized module. 

.o: Size in bytes of object file compiled non-debug, non-optimized (-c) using 

unmodified module. 

.o(min): Size in bytes of object file compiled non-debug, non-optimized (-c) using 

minimized module. 

module 
he l lo .  c 

P=- 
ilistkeys . c ---- 
Pstauth .  c 

-.--------.-3-.- 

tims. c 

F i n f o  . c -. ---- .- 
borrow. c 

entinf o  . c 

f indpubs . c 

-travel. c --.-.-..-.- .... 
manu-&. c 

trip-cb. c .- 
c l i en t  & . c 

z?r---- 

dialog. c 

.o(-0) 
152 

3804 
712 
876 ------.------.------*.-.-.-----------.------.---- 

2492 
1904 

.- . -. 
2240 
2996 
3404 
6264 -- ..... 
3840 
5460 
7724 
8176 

.o(-O/m) 
152 

3632 
712 
876 

2492 ..-.-...---.-.-.-..-.-.-----. 
1904 .---- 
2240 
2996 
3404 
5864 -.-.-.-.-.----.------.- 
3432 -- 
5044 
7724 
7764 

font.: 

.o(m) 
168 

4916 
764 
916 

2580 .-.- .---. -- ..... -- 
2124 -- --.---. --.-. 
2556 
3436 
3640 
6152 -..--.- ....-.. 
4128 
6772 

10392 
11884 

.o(-g) 
1368 

12452 

-.-.---.-- ...--.-..--.. = .....--.-.--.---.-. 

.o(-glm) 
1068 --- 
9520 

62388 
disp f0nts .c  ---- = 
disp fonts2. c ---.. .r?? ...--......--.-....-... 
typm font . c  

fonts.  c 

.o 
168 

5088 

1 9 0 8 1  15281 15281 .13761 137\ -.-- -.-.-.-.. 

-- 764 
916 -..--...-- 

2580 
2124 -. 
2556 
3436 
3640 
6552 
4536 
7188 

10392 
12296 

3608 

.-.--..-.-.-.- .-.......-..-...- -.--. -.--.-. 

1940 

64432 -...-....~.--~~--------..-..--....-.....~..-~-- 
64528 -. .-.-.----..----. 
75064 
81940 

23472 3216 3216 2884 2884 .-.-..-.- .----..-. .--.....--- 
23568 3180 3180 2816 2816 .---..-..----.-- 
37248 3284 3284 2732 2732 
45836 8480 8480 7100 7100 ----- -- 

388% 2220 .... -----.- 
5148 
5604 
6500 
7532 
8060 

55200 
55756 
60180 

-.-.-.-.-- -... - 
4124 
4164 - 
4964 - 
6164 
6620 

24828 
10324 .-.---..--.-...--.-.-.-.-------.-.---------------.----.-..-.----.-.--.---.-.---.---.--------.-....-.-.-....-.-----...---. 
28580 

66588 
69536 

36156 
37892 



.o(-0): Size in bytes of object file compiled optimized using unmodified module. 

.o(-Olm): Size in bytes of object file compiled optimized using minimized module. 
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Figure 4.9 Object File Sizes 

The interesting result here is that mincpp is able to reduce object file sizes 

considerably for debug compiles. This results in disk space savings as well as some 

incremental benefits in link and debugger load time. These are incremental benefits and 



will not be discussed further to keep the discussion focused on compile time issues. The 

reduction in . o size is explained by the fact that the object file's symbol table has 

information for all the types mentioned in all header files, whether they are needed or not. 

Since mincpp is deleting unneeded declarations, the space that would have been needed 

for these is reclaimed. Again, the large examples show a greater difference than do the 

small examples. 

4.7.5 Linker and Binary Results 

The reductions in object file size for debug compiles also result in some decrease in 

linker and debugger load times. These are presented for the debug case only. 



Table 4.6 LinkerIBinary Statistics 

[simple = -....... font ......... 
disp-fonts .--.------ ........ 
disp-hnts2 ----- 
I-iiG-3~. - .------. 
I hnts 

binary 

Id: Time in seconds to link the unmodified executable. 

Id min: Time in seconds to link the minimized executable. 

syrns: Number of debug symbols in the executable as reported by the debugger for the 

unmodified executable. 

Id Id 
min 

a.out syms a.out 
min 

dbx 
min 

syrns 
min 

dbx 



syms min: Number of debug symbols in the executable as reported by the debugger for 

the minimized executable. 

dbx: Time in seconds to load the unmodified executable into the debugger. 

dbx min: Time in seconds to load the minimized executable into the debugger. 

a.out: Size in bytes of the unmodified executable. 

a.out min: Size in bytes of the minimized executable. 

ldldbx Run Times 

timsl-g simple-font/-g dip-fonts21-g fonts/-g 

Binary 

Figure 4.10 Linkermebugger Graph 

We observe some positive effects from minimization for debug built binaries, but 

not any real effect for the other two flavors. An interesting experiment to conduct would 

be to look at very large binaries with tens to hundreds of thousands of symbols and see if 

the effect increases. 



4.7.6 Overall Compile Times 

Here, we consider more realistic compile times. We use the standard compile time 

charted earlier, but now we add preprocessing time back into the minimized compile time. 

This is done three ways: full preprocessing plus minimization (minimization does full 

parsing), minimization with full replay, and minimization (full replay) where the build can 

be avoided. Because of the length of the column descriptions, they are given after the 

chart. 

Table 4.7 Overall Compile Times 

module cc wrst 
case 

hello. c 0.60' 

.--.--- = .-...- ............................... C... .... .- + ... ...---.-. 
c ~ s p  - fonts2.c 7.90 6.30! ~~~~~ 0.60, 2.11 3 z 1 p 2 1  7x1 ,.--3 -....-. ......... ............... + -...----- .. ......- 
typm font . c 9.07 8.231 

--?---- 
0.701 2.3 4.5 3.23 0.7 0.3 

fonts . c 9.63 9.101 4.80 0.80; 2.3 
--L----L 

4 0.8 0.3 

............-.-.--........... 
WC. c 

listkeys. c .--. 
listauth. c 

tinu. c 

delinf o . c 
borrow. c 

entinf o . c 
f indpubs . c 
xmtravml . c ..... ..-.-........-.........-.................................... 
mmnu cb . c .--...-... = ....- 
trip-cb. c 

client cb.c 

dialog. c 

simple f0nt.c 

c ~ s p  f0nts.c 

100% cache 
build needed 

0.201 0.601 O.OO[ 0.1 ......................... 
1.50 
0.90 
0.90 
1.00 .......................................... 
1.10 .................... 
1.10 

1.20 - 
1.37 -- 
5.03 
5.23 
5.73 
6.23 
7.10 
7.93 
7.93 

0.1 ----.---.----..--. 
0.2 

0.13 
0.2 
0.2 .. 
0.2 ............................. 
0.2 .. ...... 
0.2 
0.2 
1.8 
1.9 ..-..-. 

2 ....................-.............. 
2.13 
2.2 

3.57 

..................................... 
1.001 1.20 
0.33: 
---i----------------- 

0.60 
0.43; 0.63 
0.601 0.90 

4 ......... 
0.601 0.90 
0.70i 1.00 ............................. -*... .................. 
0.70i -- 1.00 - 0.801 -. 1.10 
3.731 2.10 

+ ................................................ 
3.301 1.70 ................. : 
4.401 2.50 ............................................................................................ 
5.13i 3.17 
5.901 .- 3.70 
5.90i 2.63 

build 
avoided 

.--. ..... - 
0.00' 0.2 
0.001 0.2 
0.00' 0.2 
0.10/ 0.2 .....................,.............. 
0.101 0.2 w.................. + .---.-...-- 
0.101 0.2 ...-........,......-.. 
0.101 0.2 
0.10i 0.2 --..--..--- 4-- 

0.501 1.53 . 
0.501 1.4 .................... ,, 
0.50; 1.6 

L ...... 
0.601 1.63 
0.601 1.8 
0.601 2.1 

2.4 0.6 0.3 

0.6 
1.2 
0.6 

0.63 

6.271 

cccp 

0.601 2.1' 3.57 

0 . 
0 
0 
0 

sav 

0.1 
0.1 
0.1 
0.1 
0.1' 
0.1 - 
0.1 --- 
0.1 
0.1 
0.2 --..--- 
0.2 
0.2 

0.60.2 
0.2 
0.3 

0.8 
0.8 
0.9 
0.9 

--- 
1.6 
1.2 ..................... 

2 
2.57 
3.1 

2.03 

cc 
min 

0.1 --.- 
0.1 --- 
0.1 . ..----. 
0.1 

1 0 . 1  
0.5 
0.5 -...-. 
0.5 ..---- 

0.6 
0.6 

rst w 
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Figure 4.11 Overall Compile Times: Large Cases 

We now proceed to describe the table column descriptions and discuss the 

methodology and results. 



Table 4.8 Overall Compile Times Column Descriptions 

Column 

cc 

worst case mincpp  

100% effective replay 

caching 

100% effective 

caching, and build can 

be avoided. 

cccp time 

mincpp/parse mode 

cc time for . min . i 
file 

Description 

Standard compile using cc as compiler driver on the . c file. 

Worst case performance with mincpp. Formula for large cases 

i s c c c p  + m i n c p p / p a r s e  - w c  -2wc -3wc. 

Assumptions: c ccp /mincpp  are in same binary, mincpp read 

input fiom an in-memory buffer that c c c p  writes ( c c c p  

changed to write the buffer). Mincpp saves a read (-wc), 

c c c p  saves a write (- 2 wc), and mincpp  does not write a 

T r a c e  file (-3wc). 

Write 110 was measured as twice as slow as read I/O on the 

experimental system. The subtracting for no trace is justified 

since the trace file is a caching optimization that if turned on 

results in slightly higher times for the first run with the 

expectation of savings upon reuse. 

For the small cases we u s e  c c c p  + m i n c p p / p a r s e  - 

l w c  as the numbers are too small to really matter. 

The build is needed, but the trace cache is 100% effective. While 

clearly overly optimistic, we will argue in Chapter 5 that 80-90% 

is a reasonable expectation. Preprocessing time is that for 

mincpp/replay . 

As above, caching is effective, plus at the end the . min  . i file is 

shown to be the same as the last one produced, and the build is 

short circuited. More detail is presented later on how this is 

done. Overall build time is that for rnincpptreplay. 

Repeated here for spreadsheet calculation. 

Repeated here for spreadsheet calculation. 

Repeated here for spreadsheet calculation. 



In comparing mincpp with standard cc ,  there are three cases to consider: 

1. There is no replay, just parsing. Cpp is still used for preprocessing. This is called 

the worst-case condition. In calculating this, we assume that c c c p  and mincpp  

are both modified to be in the same binary, and they use an internal in-memory 

buffer to reduce file VO. Also the trace file is not written. The trace file is really a 

part of the caching strategy, and must be considered a first-time overhead cost to 

be repaid later via reuse. 

2. There is 100% reuse of the trace cache, and the build is necessary. In other words, 

imagine that mincpp saves previous copies of . min . i files. It could then 

compare the present translation to a past one. If they are the same, it could just 

t o u c h  the . o file and bypass cc altogether. Otherwise, it calls cc so it can 

replace the . o. This case is for calling cc to create a new object file. 

3. Same as 2 but it can just touch the . o . 

mincpplreplay mode 

w c  time 

Chapter 3 discussed replay mode and hinted at build avoidance. In Chapter 5 we 

will explore the issues of replay caching and build avoidance in much more detail. 

Refemng now to the chart, we see improvements that are meaningfbl even 

assuming the worst case of no caching. We also see that caching provides dramatic 

improvements over no caching. Build avoidance is almost an order of magnitude better. 

Overall, mincpp  provides significant reductions in compile times for all three build 

scenarios. 

Referring now to the table for the small cases, we see that mincpp worst case is 

about a draw with cc ,  that replay caching always helps some, and that build avoidance 

can help a lot. In any event, a reduction fiom 0.8 seconds to 0.6 seconds with 100% 

caching is not world-changing news. Build avoidance is still very helpfbl if a header file is 

changed. The basic conclusion is: if the program is a small C program then mincpp  is not 

Repeated here for spreadsheet calculation. 

Repeated here for spreadsheet calculation. 



going to be tremendously helpfbl unless a header file is changed. Despite this, there are 

some point development tools described in Chapter 5 that would be usehl even in the 

small program environment. 

4.7.7 Compiler Drivers 

As discussed in the previous chapter, this work was originally conceived as an 

optimization to a C++ compiler system, not just for C alone. While the compile time 

improvements are significant just for C, as we have just seen, fbrther improvements for 

C++ are anticipated. Taking advantage of the similarity between C and C++, one module 

from the benchmark suite was compiled with a variety of compilers ranging from a K&R 

C compiler to several commercially available C++ compilers. The results suggest that the 

improvements demonstrated here will increase with C++. 

Table 4.9 Compiler Driver Statistics 

cdmincp plr :ij 0 . ~ 1  85081 lg511q -- --- ------.. -.---.-.-. .-.-------..-- --.-- ---- 
act - 55200 
acc/mincpp/s 1.2! 24824 1951 17 
acclmincpplr 0.7 / 0.71 24824, 1951 171 

"-c": All compilers are compiling -c: non-optimized, non-debug. 

mpositoy 
01 

tool 
I cc 

"-g": All compilers are compiling -g: full debug. 

"-g" .o size: Size in bytes of the object files produced by the full debug compiles. 

"-c" 
2.1 

repository: Size in bytes of the compiled header file repository (in Centerline's case) or 

I "-gW.o s h e  
2.4 1 45 192 

size of the trace file in bytes (in mincpp's case). Trace file size is reported 



uncompressed. Experiments with using text compression (compr e s s) show 2-3 

times reduction in file size over that reported. 

Figure 4.12 Compiler Drivers Compile Time 

UC++ Conpiler Drivers 

All times were measured using a Sun SparcStation 10130 running SunOS 4.1.3 

with a 1 gigabyte SCSI-2 disk and 128 megabytes memory. 

30 

25 

20 

T 
q 15 
E 
-3 

10 -- 

5 -- 

0 

t 
+ + 
8 8 

driver combination 

- 

-- 

-- 

-- 

I 
I I II 1 II I I I I I 1 



Each row of the table corresponds to a different compiler system. The rows are 

described as follows: 

1. cc ,  the Sun K & R C compiler. 

2. cc ,  using mincpp in parse mode. 

3. cc ,  using mincpp in replay mode. 

4. acc ,  the Sun ANSI C compiler. 

5. acc ,  using mincpp in parse mode. 

6. acc ,  using mincpp in replay mode. 

7. CC, the Sun C++ compiler, version 2.1. This is a cfront-based compiler. Function 

prototypes had to be added to the code since C++ requires a prototype and C does 

not. This is referred to as Cckack. 

8. CC, including the proper # i n c l u d e  files to properly fix the compile error in 7. 

9. CC/cback. CC using cback  between c f r o n t  and ccom (ccom is the actual 

compiler binary under SunOS). 

10. c 1 c++, the ObjectCenter 2.0 compiler. This is a c f r o n t  3.0 derived compiler. The 

compiler uses FlexLM to license compiles. 

1 1. c 1 c+  + using demand driven code generation 

12. c 1 c+ + using demand driven-code generation and compiled header files in the save 

case. 

13. c 1 c +  + as in (1 2) but restoring the compiled header files in lieu of parsing. 

What we see here is that the C U  compilers are decidedly slower than the C 

compilers. Since mincpp cannot (yet) parse C* code, we can only speculate that the 

compile time improvements shown earlier in this chapter will be magnified for C* code 

and provide even greater benefits. Another decided benefit is the efficiency of mincpp's 

"compiled header files" approach, which uses less disk space than the equivalent 

ObjectCenter repository binary but is more effective at reducing compile times. 



4.8 Results Summary 

Mincpp saves compile time by giving the compiler a smaller job to do. It takes 

less time for it to minimize with special purpose algorithms just for minimization than for 

the compiler to process the discarded code. 

For small examples, there is little benefit to any optimization strategy, be it 

compiled header files, incremental compilation, or minimization. For larger applications, 

improvements in compile time and object file size are significant. 

An important observation is that mincpp, on the examples chosen, never 

increases compile times. As we saw with the Objectcenter example, that particular 

scheme seems to increase times dramatically in parse and save mode. 



5. FUTURE WORK 

5.1 Ovemew 

This chapter is about what was not actually implemented for the present work but 

about the ultimate vision of the shape of a toolkit suitable for production use. At the 

beginning of Chapter 3 we discussed the implementation rationale for mincpp. In 

essence, what was implemented was designed to answer the basic question: can compile 

times be reduced by reducing the input to the compiler. The question was answered in 

Chapter 4. The goal of this chapter is to extend the core concept detailed previously and 

show its application in the larger context of the entire software development environment. 



5.2 Mincpp System 

Figure 5.1 Mincpp System 

Mincpp, as implemented, is the single oval labeled "mincpp" in the diagram 

above. Cccp is the GNU ANSI C preprocessor. The system reads source code as . c and 

. h files and writes a . min.  i file. The box around the mincpp  ovals will be called the 

"Hub" and provides all the glue code amongst the processing steps. The system uses two 

caches: one is a collection of previously created minimized . i files. The other is the 

"Trace Cache". This stores trace information in the same format as the trace file shown in 

Chapter 3, but it is indexed and arranged to permit a compact representation that suits the 

needs of multiple modules, multiple compiler switches, and multiple users. 

.O 

s a t e  

. h enh. scanner reproc 

mincpp 

5.2.1 Combined Parser 

- 

One of the glaring deficiencies of the work as implemented is the fact that 

mincpp  needs to work with preprocessed code and does not actually replace the 

preprocessor. There is a large amount of wasted I/0 that results. There are two solutions 

to this problem. One is very simple: compile the preprocessor code and mincpp  code 

. C y-- ' . . I -  - 
- 

El trace cache mini cache 

OR 
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to compiler 
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into a single binary and let them share an in-memory buffer. Cpp writes this buffer with 

preprocessed text and mincpp minimizes it. This is easy to implement: some make f i  l e  

work, finding the p r i n t  f ( ) statements in c c c p  and making them print to a string 

( s p r i n t  f ( ) ), and making mincpp's scanner read from this string, which just means 

changing its default r e a d  ( ) procedure call to one that sets up a pointer to the buffer 

text. 

Another single binary issue is the presence of two y a c c  grammars: one for 

preprocessing and one for parsing. Most y a c c  implementations have provisions for multi- 

parser binaries, but standard y a c c  does not. There is an easy workaround, however. We 

change the yy  variables and hnctions in each generated parser to have a unique prefix 

using sed or awk with a filter such as 's / yy/pp  - yy/g7  and 's/ yy/min - yy/g '  to 

uniquely name the variables for the preprocessor and minimizer grammars respectively. 

The same issue, and solution, apply to the presence of two scanners in the same binary. 

While this solution is straightforward, given a little effort to work around 

l e x /  y a c c  limitations, there is more we could do. Based on profiling results, we saw that 

96% of mincpp '  s time was spent parsing, that is: time in generated l e x  and y a c c  

code. We hrther observed that this time was evenly split between l e x  and y a c c  code. 

Scanning was just as expensive as parsing. Going one step further, we could enhance the 

1 e x  code to include tokens for preprocessing tokens. This in essence means replacing the 

scanning code in cccp ,  which is non-lex based, with additional l e x  rules to match 

preprocessing directives such as #de f i n e ,  #unde f ,  # i f ,  and # i n c l u d e .  The scanner 

would need to keep a list of defined macro's around to do text substitution, moving that 

code out of c c c p  and into the scanner. The # i n c l u d e  macros would have the effect of 

pushing a new input stream in fiont of the scanner. 

Probably the cleanest solution for the y a c c  files would be to keep them and their 

supporting C code separate. If the scanner finds a preprocessing token, it sends it to the 

cccp y a c c  parser, otherwise it sends it to the mincpp parser. Since y a c c  is normally 

the master of this process, calling y y l e x  ( ) when it wants to do look-ahead, we would 

have to modify the y a c c  control files ( y a c c p a r  in standard yacc or headerhodyltrailer 



files in Berkeley yacc )  to behave in a co-routine relationship with l ex .  This does not put 

lex in charge per say, but allows the two parsers to alternate execution based on the 

tokens encountered. 

There has also been some recent work in creating a yacc-like tool that can deal 

with conditional parsing [PlatofB4]. This could be an approach that would allow the two 

parsers proposed above to be consolidated into a single parser, with possibly additional 

savings in overhead. 

5.2.2 Parse Avoidance and Trace Cache 

Since mincpp  spends the vast majority of its time parsing, and we want to make 

the execution time as small as possible, the obvious optimization is to avoid parsing. 

We have shown how replay mode is significantly faster than parse mode. While the 

trace facility as demonstrated is not directly useful in a production compiler system, it 

forms a technical basis for a realistic scheme. 

One idea is to treat the trace files as a tree of linked text that mirrors the structure 

of the include file hierarchy as shown graphically in Chapter 4. There is a link established 

that not only links the files, but also links the preprocessor options in effect when the link 

was made, especially the defined macros and their values, which can affect the contents of 

the preprocessed code. So, we could allow multiple copies of the link with different 

preprocessor options to be stored concurrently. 

It would be most desirable to store the linked traces and the link context 

persistently. To do so, a database that allows objects and object relations to be directly 

expressed would be the most natural representation. This is not a surprise, since many 

design problems have been shown to be modeled most naturally with an OODB while 

many commercial business problems are modeled naturally using a relational model. 

There are many OODB solutions at present that might be a good fit based on an 

analysis of their performance in the context of this application. Objectstore, Ontos, 

Objectivity, Versant, and Raima [Raima92] are a few of the vendors that currently offer 

such products. 



Another possibility would be to store the "indexed" traces in memory, but this 

would be very costly in terms of virtual memory consumed. Much better would be a 

caching scheme to keep hot pages in memory and the rest on disk, which is exactly what 

an OODB system does transparently. 

Another issue is the invalidation of pieces of this cache. If a file's modification time 

is altered, we would choose to delete all trace information for that file.*' While this may be 

more than needs to be deleted, it is surely easier to rebuild it than to figure out what 

changed. To make this really effective we would limit the trace cache to saving pieces of 

header files only, since the base C module will be modified more than the header files. We 

could also provide a directory filter so that the developer's private header files are also 

exempt from caching, and only external header files are cached. By using such a scheme, it 

should be easy to allow caching of infrequently changing files and speci@ parsing mode 

for frequently changing files. 

In the system, the process would be started from the actions attached to the 

#include token processing. It would search for a matching cache element for the same 

file with the same preprocessor switches. If found it would load directly from trace and 

avoid parsing, otherwise it would parse and populate a trace tree for the run to be used 

later by other compilations. 

It is asserted that most of the time the only files that are changing are tightly 

coupled header files and the C modules themselves. The majority of the compilation unit 

remains static: i.e. the foundation part of the program such as class libraries, windowing 

support (windows . h or Xm. h for example) or system-provided facilities. This assertion 

is what makes caching 80-90% effective. 

A list of pathnames for file components that have changed is available as a built-in make 

variable with GNU make. Additionally, if the command line to the compiler driver changes, invalidation 

must also occur since the order, number, or position of preprocessor options may have changed, which can 

alter the text of the preprocessed code. 



5.2.3 Build Avoidance and . min . i Cache 

Every programmer has experienced the problem of changing a header file and 

waiting a long time for a build to complete while make rebuilds the entire application. 

While the trace cache would make this process much faster than usual, we introduce the 

. min . i or "mini" cache as a further optimization. 

If make decided that, based on file time-stamps, a build is necessary, but after 

minimization no text difference from the last build for the module is detected, mincpp  

could touch the object file and avoid compiling altogether. In the development of mincpp 

itself, a common case was adding a function to the symbol table on behalf of a single 

module elsewhere, and having to recompile the entire application unnecessarily. As a 

concrete example, function hook - t e x t  ( ) was added for a routine in r 2  6 .  c. Only 

s ymbo 1 . c that implements the function, and r 2  6 . c that references the function really 

need to be compiled, but since symbol . h is included everywhere the whole application 

is rebuilt by make . 

To do this, verbatim copies of previously created "mini" files are kept in a 

directory, tagged with the preprocessor options that were in effect, and possibly the 

modification time-stamps of all the constituent files. When a new . min . i file is created 

by mincpp, it could search the "mini" cache for likely matches by comparing file size and 

preprocessor switches. Using d i  if or sum, matches can be detected. 

If header files are stable and unchanging, then the "mini" cache could be disabled. 

If header files are mostly static but are sometimes changed, with long builds resulting, the 

cache can be used to reduce the cost of header file changes. 

5.2.4 The Hub 

The agent that coordinates the activities of the trace cache manager, "mini" cache 

manager, and consolidated parser is collectively called the Hub. This code would scan for 

matches in the caches, manage the state transitions between parselreplay, invalidate cache 

entries, prune caches to meet size constraints, and interact with make. It would also 



replace cc as compiler driver since to effectively touch object files it needs to be in 

control of the compiler driver. 

5.2.5 Multi-Threaded Compile Server 

A compile server could run on a number of machines on a network. The server 

would accept a compilation job by ma k e y  possibly using a network-distributed version of 

make. The server would read the job out of make' s environment, taking the command 

line, environment variables, and make built-in variables. It would attach the job to a 

thread waiting in a ready thread farm and let the thread perform the work. The server is 

then fiee to accept a new job while the thread is completing the job. The thread would 

open and lock entries in the caches in a manner consistent with multi-user access and 

guarantee freedom from deadlock. In particular, the trace cache needs to be locked as it is 

descended to keep other readerslwriters fiom locking ahead, which could result in a race 

condition that could lead to deadlock. 

Use of threads would also enable parallel execution of compiles in environments 

that support such on a multiprocessor, such as Solaris 2.x, OSF/l, and Windows NT. A 

server implementation would also more effectively use any disk caching mechanism 

provided by the database. 

5.3 Ancillary Tools 

So far, we have focused exclusively on mincpp's application in the compiler 

driver itself with the goal being to reduce compile times. There are a number of other 

applications of the basic technology that merit some discussion. 

5.3.1 Minimal #include Generator 

The compiler forces the programmer to include a new header file when a reference 

to a new file is made in the code. But, when the code changes in a way that allows an 

included file to be deleted, it is most likely that the included file will remain included. Most 

programmers are too busy to tinker with compiling, working code. A simple tool that 

peruses the minimized output could generate a minimal # inc lude  block for the module. 



An even more usefbl tool could be developed by just adding a global index to the 

trace cache. If a new fbnction or type is referenced by new code, this facility could assist 

the programmer in identifjllng the correct #include and place it in the code 

automatically. We could add a regular expression lookup for incomplete lookups. 

Currently, the programmer identifies a need to use a fhnction, usually fhmbles through 

man pages to hunt it down, maybe cracks a book or two, finds it, has to move up in the 

file to add the #include, pages back to where they originally were, and then proceeds. 

Using this tool, the fhnction could be queried, a choice box displayed with matches 

and their corresponding #include files, and indication of what #include files are 

already in the module that could bind the hnction. A simple selection and OK replace the 

above-mentioned tedious procedure. 

5.3.2 "Presto" Syntax Checker 

Mincpp could be integrated in an editing environment such as emacs [GNU871 

through the mock Lisp interface. This would allow the code to be run through mincpp in 

a quick and interactive fashion. This would be a way to do a quick syntax check without 

incurring the overhead of doing a fbll compile. On a syntax error resulting fiom a missing 

header file, selecting the text and invoking the lookup facility described in the last section 

would be a way to quickly add the necessary #include file. It would be possible to run 

an automatic syntax check in the background and display an unobtrusive indicator on the 

display: red for syntax error, green for O K . ~ ~  If the programmer thinks that the code 

should be correct but sees red, it is an immediate indicator to look for a problem before 

the problematic code has been cut and pasted somewhere else, compounding the problem. 

5.3.3 "Deadn Text Eliminator 

Mincpp is based on a module by module view of the compilation process. It 

would be possible to add a subassembly view based on a collection of modules that 

constituted a program or library, and above that an assembly, or system, view that 

22~emember that since mincpp is based on a full C parser it also detects all syntax errors. 



represents a body of applications that represent a complete software system. Once this is 

done some analysis on the whole can be done based on minimization. Dead hnctions and 

definitions could be identified as candidates for deletion, based on the judgment of the 

developer. Just as is the case for stray, unnecessary #include files at the module level, 

dead declarations, type definitions, and functions rarely are cleaned up fiom a compiling, 

working system. A tool such as this could be used at key points in the development cycle 

to give the code a quick tune-up before going into production. 

5.3.4 File Architect 

Minimization results could drive graphical tools that examine the relationships and 

dependencies between modules and their header files. This information might lead to a re- 

organization of header files based on reference patterns. For example, a header file might 

be split into two: one for specialized facilities used by just a couple of modules, the other 

being used for the more commonly used facilities that are of more general interest. 

Metrics could be developed to aid in this procedure and identie possible 

candidates for examination. Minimization results provide insight into the code that is 

different from that available to either static or dynamic analysis tools. 

5.3.5 Dependency Manager 

Mincpp could interact with make in a tightly coupled fashion. Mincpp could 

maintain the file dependency lists for each module and update it on every compile, 

ensuring "correct by construction" dependency lists. This prevents dependency leaks fiom 

occurring. If dependencies are not correct by construction there exists the potential for a 

build to be missed by make. For a make that supports conditional make fi les, or an 

environment that uses preprocessed make f i l e  s ,  mincpp could generate "#define 

smart" dependency lists, that handle conditional inclusion, a very common portability 

technique.= This is actually how the stated problem of "too few builds" cited in Chapter 1 

is addressed. 

23 #ifdef WINDOWS #include <windows.h> #else #include <Xm.h> #endif 



Other interactions with make include reading the environment out of make as 

described in the compile server description, and the touching of object files as a control 

mechanism that the "mini" cache can enable. There are proprietary build environments that 

might also allow a custom integration of mincpp technology through a vendor A P I . ~ ~  

Mincpp's minimization algorithms could be extended to work with C*. The C 

parser that mincpp uses is actually a subset of a C* parser also supplied with the 

package. While this parser does not handle the C* 3.0 features of templates and 

exceptions, it does handle everything else. 

The additions would involve treating class derivation as type dependency, treating 

fbnctions as complete signatures to handle fbnction overloading, and different name space 

treatment [AT&T90]. 

Also, since the bulk of mincpp's fbnctionality does not depend on the reference 

yacc parser in particular, it could be easily re-hosted to a compiler environment that uses 

a custom parser, or a parser that uses different compiler-compiler tools. 

Re-hosting into a custom compiler environment would eliminate the overhead of 

creating the intermediate . i file, but only at the expense of reduced portability. 

5.5 Aggressive Minimizations 

It should be noted that mincpp's algorithms could be made smarter and perform 

more minimization than is presented here. Such a case is "pointer references" to structures 

where an abstract declaration can be substituted for the full declaration if the only 

references are by pointer. In C* this would also include "by reference". 

In addition to this, unused local variables could be eliminated. Further, the notion 

of reference to structure could be significantly refined to really be "reference to structure 

member". This opens up several intriguing possibilities such as only disclosing members up 

to the last lexically referenced one (so the compiler gets s i zeo f right...), or disclosing 

24~tria's  ClearMake [Atria93], part of the Clearcase product, is a good example. 



only referenced members, substituting "slop" members for correct space and alignment. 

The latter obviously is platform and compiler switch dependent. Also, carehl treatment of 

virtual functions in a C++ system would have to be considered. 

5.6 Side Effect Management 

Mincpp as currently implemented reports incorrect line numbers that end up 

being reported in compiler warning and error messages, and subsequently in source listings 

available under a source-scrolling debugger. There are very straightforward techniques 

available to keep track of linelfile numbers in lex. Mincpp should store line ranges and 

file names along with the text fragments it indexes. Then, if a text fiagment or series of 

text fragments are skipped, the next fiagment whose text is emitted would reset the file 

and line number by emitting a # 1 i n e  directive, keeping track of the number of skipped 

lines by adding to a total from a line-count member in the text structure. This is the 

approach is used in [Litman93]. 

The symbols for all those fragments that are eliminated are not available for use in 

the debugger, but this should not be of concern to the programmer. If a structure is not 

used in a module, there is little chance that a programmer would want to view an object 

casted to such a structure anyway. 

5.6.2 ANSI bbImplementation-Defined Behavior" 

There are opportunities for problems in code that takes advantage of 

implementation-defined behavior. Suppose there are three declarations for objects that are 

lexically sequential such as in t i ; int j ; int k ; . Furthermore, the programmer 

has taken the address of i such as void * p = & i ; . The programmer knows the 

program is running on a Sun SparcStation, and int s are 4 bytes, so are vo id  * 's, and 

the programmer accesses k by adding 8 bytes to p (p += 8 ; *p = 4 ; ). If k is not 

explicitly referenced, it's gone from the text. 



This is poor coding practice and is certainly not portable. One option is for 

mincpp to not discard space allocating declarations, only type definition or function 

definitions. The other option is to support a #pragma directive to allow the programmer 

to explicitly state that the following declaration is not a candidate for minimization. For 

example: 

int i; 
#pragma keep 
int j; 
#pragma keep 
int k; 

This also applies to objects stored in a module that are not referenced, but have 

some external use: 

#pragrna keep 
char *SCCSId = "version 1.2 fi1e.c copyright (c) 1994 \ 

Etherium SoftwareN; 

The general problem of space allocating declarations is treated in more detail in the 

next section. 

5.6.3 Extern Objects 

If a global variable is declared but not used in file A and file B uses the variable via 

an e x t  e r n  declaration, mincpp, as implemented, will erroneously remove the 

declaration of the variable from file A. The code in file B is counting on the space for the 

variable to be created for it somewhere. 

Some compiler systems allow space allocating variables in header files. The linker 

resolves all references to a same-named global variable to the same instance. Other 

compilers do not allow this but force space allocating objects to be declared in a header 

file via an e x t e r n  declaration, and the programmer must allocate the space for the 

variable once in a single C module. Certainly, the latter style is more portable and depends 

less on the linker implementation. Many ANSI C and C++ compilers do in fact enforce the 

latter behavior. 



This problem was not encountered using the sample benchmarks used in Chapter 

4.25 SO, while this effect was not observed here, there are several approaches to remedy 

the situation that could be implemented. 

1. Do not minimize away space allocating declarations. This can be easily implemented 

by setting the reference bit for a declaration if the non-terminal declarator is 

recognized at any point during the parsing of the declaration. This would effectively 

keep such declarations just as hnction definitions are kept. This could possibly reduce 

the amount of minimization, but in well-structured programs the number of global 

variables is small relative to everything else, and as described above, space allocating 

declarations are rare in header files for portability reasons. 

2. Provide a #pragrna directive to direct mincpp to not allow the following 

declaration to be minimized away. This is an inferior solution that would require 

source code changes. 

3. Keep a list of space allocating declarations that have been minimized away internal to 

the tool. After the first link, read the undeclared symbol list from the linker and 

generate a C module that is the text for the symbols that were minimized away. 

Compile this, add it to the list of modules for the linker to process, and link a second 

time with the minimization stub now resolving the undefined references. This is also an 

inferior solution as it requires a two-pass link. 

4. During the printing of minimized text, the tool creates a library entry for each space 

allocating declaration that is skipped. This is done by creating a C module for each 

discarded declaration, compiling it, and adding it as a library member. This library is 

added at the end of the link list. This approach is the preferred solution: it makes 

compile times as small as possible, it only requires a one pass link, and any space- 

allocating global declarations that really are not referenced anywhere are omitted from 

the binary, saving space in the program's data section. There is a small amount of 

overhead in maintaining the library. This approach has an additional benefit for C* 

2S~f fhls were to be a problem for the benchmarks, these variables would have produced undefined 

symbols during the link. Since this was not the case, the minimization results remain valid. 



systems. In C* a static object instance in a header file or elsewhere can result in 

excess static constructors being called at program start up and excess static 

destructors being called at program exit. Standard header files for streams and 

complex numbers contain such static objects. If these header files are pulled into every 

module, as is often the case, then invoke times can be degraded while the extra objects 

are being created. The library approach collapses all of these object instances into just 

one object. In a traditional c f r o n t l l d  environment, each module has a separate 

copy of every static object mentioned in the preprocessor output. 

5.6.4 SyntadSemantic Compiler Errors 

As observed in [Litman93], another side effect of including a parser in the 

preprocessor is that syntax errors are reported during preprocessing, not later during 

compilation. The users of [Litman931 reported that having syntax errors reported first, 

with semantic errors and type checking errors reported later was actually beneficial and 

clearer. 



6. CONCLUSION 

6.1 Key Benefits Demonstrated 

Despite the limited nature of the system actually implemented, we were able to 

demonstrate several key benefits of using mincpp in a compile environment. 

6.1.1 Reduced Compile Times 

Mincpp reduces compile times by reducing the quantity of input given to the 

compiler. In many applications, the volume of text added to each module in the form of 

header files is much greater than the volume of code. All that extra text takes time to 

process. If it can be minimized by a special purpose tool, savings in overall compile times 

can be demonstrated. For C programs, we saw that the savings were modest for smaller 

examples, and much more significant for larger application that use "heavy" header files, 

such as GUI applications based on the X windows system. 

We also saw that the complexity of the grammar the compiler processes can 

increase this benefit. For one example, the savings increased dramatically as the compiler 

for the same module was changed fiom K&R C, ANSI C, C++ 2.1, and C++ 3.0. 

6.1.2 Compiler, Operating System, and Platform Independence 

A distinguishing characteristic of mincpp is its ability to improve compile time no 

matter the compiler, operating system, or hardware platform used. It can be deployed with 

any system without make f i 1 e or source code changes. It does not introduce any new 

"rules of engagement" that the programmer is forced to carry around in their head. Such 

rules are inevitably forgotten, broken, and ignored. 



6.1.3 Reduces Object File Sizes 

All of the text fragments omitted take up space in the object file's symbol table. 

This space is saved by using mincpp. The same space saved in the object file is 

potentially saved in the executable file if a particular text fragment is completely dead. 

That is, it is not referenced by any constituent module of those that make up the complete 

binary. 

6.1.4 Build Avoidance and make Dependency Leaks 

Changing a header file can cause a complete rebuild, since the tools used to decide 

what has to be rebuilt can only check file granularity changes via file time-stamps. This is 

very pessimistic, but at least produces something less than a complete rebuild in most 

cases. This problem can be solved by letting mincpp short circuit re-compiles if it can 

determine that a requested build is not necessary, since the minimized text is identical to 

the prior materialization of that particular module. 

There are more sophisticated builders that allow object files to be shared amongst 

developers, such as Atria Clearcase. These systems allow one developer to rebuild the 

system, check in source code changes, and the configuration management system also 

"checks in" the matching object files. Subsequent builds then use these object files since 

they match. Unfortunately, they do nothing to help the unfortunate developer who had to 

rebuild the entire application in the first place. 

Despite all this, a dependency leak in a make f i 1 e can introduce a difficult to find 

run-time problem if something that should have been built was not. Mincpp can generate 

file dependencies that are correct by construction and guarantee that this problem will not 

occur. 

6.2 Key Benefits Suggested 

There are some specific benefits that were alluded to but perhaps not explicitly 

stated in Chapter 5. We state a few of these here. 



6.2.1 C++ Static Initialization 

In C++, a static object instance that has a constructor has its constructor called 

before main ( ) is called. A static object instance that has a destructor has its destructor 

called after main ( ) exits. If a program has many of these, it can have an impact on the 

time from program request until the user can interact with the program, called invoke 

time, and the time from the user exiting the program until it is gone, called tear-down 

time. With enhancements proposed in Chapter 5, the extra objects are eliminated. 

6.2.2 Network Trafiic 

A compile server such as described in Chapter 5 can have a very positive effect on 

network traffic in a multi-node parallel build environment. Since the server is mostly 

running out of local, indexed, memory-paged trace cache, it is not reading files over a 

network-oriented file system. Not only is this much faster, but by reducing network traffic 

it allows the network to support more concurrent operations/nodes than it would be able 

to support otherwise. 

6.2.3 Point Development Tools 

Mincpp has some incremental benefits even in the edit cycle, if some tools based 

on its minimization technology are developed. 

The include generator reduces the amount of time managing include lists. It also 

reduces the time spent hunting for definitions. 

The syntax checker allows a quick check for syntax errors to be found and fixed 

before doing a full compile. When the programmer does a build, they do so with some 

assurance that syntax errors will not be reported. 

6.2.4 Architecture and Metric Tools 

For header files that the developer has some control over, mincpp can help the 

programmer manage the partitioning of these files. Mincpp can provide reference metrics 

and some sort of "min-cut" analysis of the use of files across an application. This may 

result in a reorganization of files if it makes sense. 



6.3 Closing Remarks 

Mincpp has been (partially) implemented and characterized. We have seen 

compile time improvements even in its worst case mode, and substantial improvements 

using caching. Mincpp offers several benefits that could result in increased developer 

productivity and satisfaction. 
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