
Mincpp: Efficient, Portable Compilation of C Programs

George Moberly

B.S., Boston University

A thesis submitted to the faculty

of the Oregon Graduate Institute of Science & Technology

in partial fulfillment of the requirements for the degree

Master of Science in

Computer Science

April, 1994

The thesis "Mincpp: Efficient, Port;

Moberly has been examined and approved b:

1

The

le Compilation of C Programs" by George

the following Examination Committee:

.-------------______--s----------------------

a Sheard, Ph.D.

sistant Professor

s Research Advisor

eve Otto, Ph.D.

sistant Professor

Acknowledgment

This thesis and supporting degree program was made possible only with the

financial, intellectual, and emotional support of many corporations, institutions, and

individuals. Past and present employers Digital Equipment Corporation, Mentor

Graphics Corporation, and SpaceLabs Medical, Incorporated generously paid for

the vast majority of the educational expenses involved, and have actively supported

my work. Degree credit was transferred from Tufts University, The University of

Washington, and Oregon State University. The following individuals shared

generously of their time to discuss issues with me: Phil Brooks and Mike Gresham

of Mentor Graphics, Bill Bregar of Oregon State University, Aki Fujimura of Pure

Software, Greg Kostal, Jeff Small, and of course Tim Sheard and Steve Otto of

OGI. Finally, my wife Julie deserves profound credit and thanks for not letting me

give up when it would have been easier to have done so, and for unwavering belief

and support of this effort.

Table of Contents

TABLE OF CONTENTS ... IV

LIST OF TABLES .. VIII

LIST OF FIGURES .. M

ABSTRACT .. X

1 . INTRODUCTIONffROBLEM STATEMENT ... 1

... 1.1 HELLO. WORLD 2

.. 1.2 NOVA 4

... 1.3 THESIS PROBLEMS 6

.. 1.3.1 High Compile Times 6

... 1.3.2 Too Many Builds 6

1.3.3 Too Few Builds ... 7

1.4 CHAPTER SUMMARIES .. 7

2 . RELATED WORK ... 9

... 2.1 OVERVIEW 9

.. 2.2 SYSTEM DESCRIPTIONS 11

2.2.1 Standard UNIX Compilers: cc. ace and cfront ... I I
2.2.2 Cfront/cback ... 13

2.2.3 Centerline Objectcenter .. 15

.. 2.2.4 Lucid Energize 18

.. 2.2.5 MicrosoJ C/C+ + 20

2.2.6 BorlandC++ .. 20

.. 2.2.7 IBM Tokyo Research Compile Server 20

... 2.2.8 NeST Smart Preprocessor 20

... 2.3 DISCUSSION 21

3 . MINCPP ... 22

3.1 IMPLEMENTATION RATIONALE .. 22

.. 3.2 SYMBOL TABLE BASICS 23

3.3 SCANNER ... 25

.. 3.4 PARSER BASICS 26

.. 3.5 A SINGLE SIMPLE DECLARATION 28

.. 3.6 SYMBOL TABLE: PART 2 31

... 3.7 EXTERNAL DECLARATIONS 32

.. 3.7.1 Simple Declarations 33

3.7.2 Function Prototypes .. 35

.. 3.7.3 Enumerations 37

... 3.7.4 Structures and Unions 38

.. 3.7.5 Typede f Declarations 40

... 3.8 FUNCTION DEFINITIONS 41

3.8.1 Old-Style Parameters .. 41

.. 3.8.2 ANSI-Style Parameters 42

.. 3.8.3 Local Declarations 43

3.8.4 Referencing ... 44

3.9 SAVE AND REPLAY ... 44

3.9.1 Save .. 45

3.9.2 Replay ... 45

... 3.10 USING MINCPP 46

3.11 IMPLEMENTATION SUMMARY .. 47

. 4 RESULTS ... 48

... 4.1 BENCHMARK DESCRIPTIONS 48

4.1.1 Small Benchmarks ... 49

... 4.1.2 Large Benchmarks 49

... 4.2 DIRECTORY STRUCTURE 50

... 4.3 HEADER FILE STRUCTURES 50

... 4.4 N o c o ~ 58

... 4.5 MAKEFILES AND BUILD SCRIPTS 58

... 4.6 COLLECTION METHODOLOGY AND TOOLS 65

.. 4.7 RESULT DATA 66

4.7.1 File Sizes ... 66

.. 4.7.2 Cpp and Mincpp Times 69

.. 4.7.3 Compile Times 71

4.7.4 Object File Sizes ... 74

... 4.7.5 Linker and Binary Results 76

4.7.6 Overall Compile Times .. 79

.. 4.7.7 Compiler Drivers 83

... 4.8 RESULTS SUMMARY 86

. 5 FUTURE WORK .. 87

... 5.1 OVERVIEW 87

.. 5.2 ~ ~ N C P P SYSTEM 88

... 5.2.1 Combined Parser 88

5.2.2 Parse Avoidance and Trace Cache .. 90

... 5.2.3 Build Avoidance and . min . i Cache 92

5.2.4 The Hub .. 92

5.2.5 Multi-Threaded Compile Server .. 93

5.3 ANCILLARY TOOLS ... 93

5.3.1 Minimal #include Generator .. 93

5.3.2 "Presto " Syntax Checker ... 94

.. 5.3.3 "Dead" Text Eliminator 94

5.3.4 File Architect ... 95

5.3.5 Dependency Manager .. 95

.. 5.4 C++ 96

... 5.5 AGGRESSIVE ~~NIMIZATIONS 96

... 5.6 SIDE EFFECT MANAGEMENT 97

5.6.1 Compiler/Debugger ... 97

5.6.2 ANSI "Implementation-Dejined Behavior" ... 97

... 5.6.3 Extern Objects 98

... 5.6.4 SyntaxBernantic Compiler Errors 1 0 0

. .. 6 CONCLUSION 101

6.1 KEY BENEFITS DEMONSTRATED .. 101

6.1. I Reduced Compile Times ... 101

6.1.2 Compiler. Operating System, and Plarform Independence .. I01

... 6.1.3 Reduces Object File Sizes 102

... 6.1.4 Build Avoidance and make Dependency Leaks 1 0 2

.. 6.2 KEY BENEFITS SUGGESTED 1 0 2

... 6.2.1 C+ + Static Initialization 1 0 3

... 6.2.2 Network Traffic 1 0 3

6.2.3 Point Development Tools .. 1 0 3

6.2.4 Architecture and Metric Tools ... 1 0 3

6.3 CLOSING REMARKS .. 1 0 4

REFERENCES .. 105

BIOGRAPHICAL NOTE .. 108

vii

List of Tables

viii

List of Figures

FIGURE 2.1 CC/ACC/CFRONT: PREPROCESSOR~TRANSLATOR/COMPILER ... 12

FIGURE 2.2 CBACK: PREPROCESSOR/TRANSLATOR/REWRITER/COMPILER .. 13

FIGURE 2.3 OBJECTCENTER: PREPROCESSOR~TRANSLATOR/C~MPILER/REPOS~T~RY 15

FIGURE 2.4 ENERGIZE: DATABASEIEDITO~BROWSER/COMPILER .. 18

FIGURE 3.1 MMCPP: PREPROCESSOR/MINCPP/TRACE FILE/MINIMIZED OUTPUT FILE 22

FIGURE 3.2 M ~ C P P SYMBOL TABLE .. 24

FIGURE 3.3 T E ~ CHAIN EXAMPLE ... 27

FIGURE 3.4 SIMPLE DECLARATIONS SYMBOL TABLE .. 34

FIGURE 4.1 EXAMPLES DIRECTORY STRUCTURE ... 50

.. FIGURE 4.2 wc.c INCLUDE TREE 52

FIGURE 4.3 TRIP-CB.C INCLUDE TREE ... 54

FIGURE 4.4 F0NTS.C INCLUDE TREE ... 57

.. FIGURE 4.5 FILE SIZES: SMALL CASES 67

FIGURE 4.6 FILE SIZES: LARGE CASES .. 68

... FIGURE 4.7 CPP/MINCPP TIMINGS GRAPH 70

FIGURE 4.8 COMPILE TIMES GRAPH .. 73

FIGURE 4.9 OBJECT FILE SIZES ... 75

FIGURE 4.10 LINKERDEBUGGER GRAPH .. 78

... FIGURE 4.1 1 OVERALL COMPILE TIMES: LARGE CASES 80

FIGURE 4.12 COMPILER DRIVERS COMPILE TIME .. 84

FIGURE 5.1 MINCPP SYSTEM .. 88

Abstract

Mincpp: Efficient, Portable Compilation of C Programs

George Moberly

Oregon Graduate Institute of Science & Technology

Supervising Professor: Tim Sheard, Ph.D.

The mapping of C programs into files introduces inefficiencies in the build process.

Three quantifiable inefficiencies are: compile times too long, too many builds triggered,

and, ironically, too few builds triggered. Mincpp solves these problems by replacing the

C preprocessor in the compiler driver. Mincpp uses a C parser to minimize its output to

just that needed, with all spurious source code omitted. The result is faster compile times,

semantically unnecessary builds short circuited, and "correct by construction" file

dependency generation. The result is a new development tool that leverages developer

productivity by speeding up the edit-compile-link-debug cycle. Mincpp is portable to any

system and works with any C compiler.

1. INTRODUCTION/PROBLEM STATEMENT

C programs are stored as files. C textbooks encourage a modular programming

style where a program is stored in several files, the files reflecting the logical layout of the

application [Harbison9 11 [Johnson86a] [Kernighan88]. Although not strictly required,

most designs make use of "header files" (. h files), which are files that contain declarations

that are shared between separately compiled modules (. c files). In fact, the programmer

who does not strictly follow this practice runs the risk of introducing (difficult to find)

runtime errors if declarations are mismatched between separately compiled modules. In

fact, using libraries (. a files) created by the librarian utility normally involves including the

declarations (hnction declarations and/or data structure declarations) via a preprocessor

directive1 that expands to the contents of the referenced file during preprocessing of the

. c file, and including the library in the final link step.

Note that the above discussion references the C programming language in

particular, but the observations and results of this work are at least conceptually applicable

to a wide variety of programming language environments such as C++ [Ellis901

[Lippman91] [Stroustrup9 11, Modula, or Ada. In fact, this work was originally motivated

by observations of slow compile times for C++ programs that used many header files.

The ANSI C standard [ANSI891 defines the logical stages of processing a

"translation unit" into machine readable output, such as a binary compiled object file (. o

file), interpreted output (such as p-code in the Microsoft C/C++ compiler [Microsofi91]),

or some other implementation-defined binary representation. Transformation of the C

module into a translation unit is the job of preprocessing [Jaescke89]. Preprocessor

directives are processed, with conditional code, text substitution, and header file inclusion

occurring. The translation unit is then suitable for evaluation by a C language parser.2

While there is no requirement that preprocessing occurs as a pass over the input distinct

from the compiler, many implementations do so using the standard preprocessor.

1.1 Hello, World

A natural result of placing declarations into header files is that the groupings of

definitions are sub-optimal for any particular translation unit. That is, a typical translation

unit will use some but not all of the declarations in any particular file. For example,

consider the classic "hello, world" program [Kernighan88].

#include <stdio.h>
main ()
{

printf ("hello, world\nn) ;
1

This program requires a declaration for the p r i n t f () function from the standard

C library to type check its call in the program. This declaration is in the s t d i o . h header

file.

Note that all the C library I/0 functions and types are declared in s t d i o . h, not

just p r i n t f () . File he 1 l o . c just uses, or references, the single function prototype for

function p r i n t f () . Here is a piece of a representative s t d i o . h:

/ * stdi0.h fragment * /

int fseek(F1LE *, long, int) ;
long ftell(const FILE *) ;
char *gets(char *) ;
int getw(F1LE *) ;
int pclose (FILE *) ;
FILE *popen(const char *, const char *) ;
int printf(const char *, ... 1 ;
int puts(const char *) ;
int putw(int, FILE *) ;
void rewind (FILE *) ;

? h e source code files (. c and . h files) are not interpretable by the compiler until preprocessing

has been performed. The translation unit is the top level production in the grammar. The translation unit

is logically a file whose contents are the preprocessor output. Most compiler systems can output tlus file by

using the -E switch.

int scanf(const char *, ... 1 ;
void setbuf (F I L E *, char) ;
int sscanf(const char *, const char *, ...) ;
int ungetc(int, F I L E *) ;

Now, consider a typical first build of he1 l o . c using standard UNIX tools. These

are a C compiler driver that uses a separate preprocessor, make [Feldman86] for

generating build scripts, the standard C library for the p r i n t f () definition, and the

standard linker. Make decides which modules need to be re-compiled based on file time-

stamps. If the object file time-stamp is older than any source file time-stamp that it

depends on, the build script is triggered. On a first build the object file is "older" (it is

"infinitely old" in that it does not exist yet) so the compiler is run. The preprocessor

expands the concatenation of s t d i o . h and hello. c as output, the compiler translates

the result into an object file, and the linker searches the standard C library for a definition

of p r i n t f () and finds it (hypothetically) in library component p r i n t f . o. If other

functions are defined in p r i n t f . o, they are included in the he 1 lo binary e~ecutable.~

Now, any subsequent modification to he 11 o . c or s t d i o . h will trigger a build,

regardless of whether the change is "important" to h e 1 lo . c. In fact the only change that

could matter in s t d i o . h would be for the function signature (declaration, or prototype)

of p r i n t f () to change. Make, which is file-granularity based, cannot know this. So,

make can and does generate many unnecessary builds because of the semantic gap

between how the program is stored on disk (as files in a file system) and how the C

language sees things (as one or many separately processed translation units).

Another problem occurs if the make dependencies are not correct. If a file

dependency is missing and a change is made to that file that affects, say, the layout or

alignment of a structure, a build may not happen that should have. This is a particularly

difficult run-time error to diagnose. Having make not build in this case is worse than the

previous problem of building too much.

3 Welldesigned libraries do not waste space in client's binaries. Commonly, one function is

placed in its own C file. so the library members contain one function each.

1.2 Nova

We see that the size of the translation unit for "hello, world after preprocessing is

much larger than b e f ~ r e . ~ The designer of s t d i o . h chose to include all the VO

declarations in one file rather than some other choice. Another choice might have been to

placeafewofthemostusedhnctions(printf 0, f p r i n t f 0, s s c a n f 0, etc.)in

s t d i 0 . h andless-usedhnctions(suchas f f l u s h () o r v f p r i n t f 0) elsewhere.

The less used hnctions could be placed in a separate file, say e s t d i o . h (extended

standard LJO). This procedure is called header file partitioning.

This new choice would result in a smaller s t d i o . h, and the expansion

introduced by the preprocessor for this example would be much less. This is true since the

one hnction used is one of the common ones. This design tradeoff is a common one:

balancing the desire for small, efficiently processed, logically related header files versus

fewer, more global, but more expensive to process header files.

For any particular client of a chosen header file, the partitioning is optimal from a

compilation efficiency point of view only if the client actually uses every declaration in the

header file. Unused declarations just waste time.

An ideal preprocessor would output the following for the example:'

int printf(const char *, ...) ;
main ()
I
print£ ("hello, world\nl') ;
1

This is h e l l o . c with the included file expanded to just the single function

prototype needed to check the call in the function body. The standard preprocessor

instead expands the included file to a much larger quantity of text, a fragment of which

-s is not a general statement. For the specific example under discussion, this is true. In

general, the size may be much larger. This tends to be true if many or long header files are read by the

preprocessor.

 deal, or "perfect", is defined in terms of compilation efficiency in the sense of not requiring

any unnecessary processing.

was excerpted earlier. Even using the proposed st d i o . h/e s t d i o . h arrangement,

there are still other commonly used functions in the new, lighter s t d i o . h, so the

standard preprocessor still produces non-optimal output.

Sub-optimal header file partitioning is almost a certainty. A given header file

generally has many clients. These clients use different declarations depending on their

individual algorithmic requirements. The only way to effect optimal header file partitioning

is to dynamically materialize the header file for each individual compilation. This is an

operational requirement for an ideal preprocessor.

The quantity of text expansion introduced by the preprocessor is of interest to us

in quantifLing potential gains in compiler efficiency. This expansion parameter will be

defined as Nova (number of bytes in the . i file 1 number of bytes in the . c file), where

. i is the output of the preprocessor. For "hello, world," this is 65 1/59 = 1 1.

Contrast this with the "minimal" he 1 l o . i, also referred to as a . m i n . i file,6 or

hello . min . i. Here, Nova is 67/59 1 1.

Programs that use lots of header files tend to have high Nova. Header files can also

be deeply and widely nested, so the cost of inclusion can vary greatly depending on the

hierarchy of sub-inclusion.

We now compare compiler timings for he 1 l o . c before and after minimization.

The following is the compile time using the standard preprocessor:

time cc -c -g he1lo.c
0 . 2 ~ 0.7s 0:02 45% 0+224k 15+2io 38pf+Ow

and now the compile time using the ideal, or minimizing, preprocessor:

time cc -c -g he1lo.c
O.lu 0.5s 0:00 101% 0+200k O+lio Opf+Ow

The important field in the time output is the third field, 0:02 for unaltered input

and 0:00 for minimized input. This is the elapsed time for the operation. Minimization

standard preprocessor output is referred to as the .i file, while the ideaYperfect/minimal

preprocessor output is referred to as the . min . i file.

reduces the elapsed time fiom 2 to 0 (nearly) seconds. The ideal preprocessor output is

also referred to as the minimized output.

While the savings appears modest, we will see that as the size of the module

increases, it can result in considerably less time spent in compilation. Compilations in large

applications can take many minutes each to complete. If there are many modules to build,

the elapsed time for the entire build to complete can be hours.

1.3 Thesis Problems

So far, three problems have been cited:

1. Excessive compile times because of sub-optimal header file partitioning.

2. Too many builds because of file-granularity dependencies.

3. Too few builds because of file dependency leaks.

Mincpp provides solutions to these problems. Mincpp is a C preprocessor

replacement that integrates easily into any compiler system. Mincpp performs the

dynamic header file materialization required for it to operate as an ideal preprocessor.

1.3.1 High Compile Times

Mincpp parses . i files with a C parser and builds an in-memory chained hash

table structure for it [Knuth73]. Chains that represent the program text and type

dependencies are also maintained. Using this structure, the tool can output only the

required declarations that were used for this translation. File he1 l o . min . i as shown

above is an example output. Since the compiler sees less input, compile times are

improved.

1.3.2 Too Many Builds

Mincpp could look at text differences after minimization and compare against

previously materialized versions of the . min . i file. The absence of differences implies

that the re-compile is spurious and can be avoided. This situation can easily occur if a

shared header file is changed and the specific change does not affect a particular module.

For example, if the declaration of s s c a n f () is changed in s t d i o . h, h e 1 l o . c does

not need to be re-compiled since it refers only to p r i n t f () .

1.3.3 Too Few Builds

Mincpp could generate "correct by construction" # i n c l u d e lists and " f i l e . c

: f i 1 e . h" make f i 1 e dependency information as a by-product of every build. The

preceding reads as " f i 1 e . c depends on f i 1 e . h". This expresses a dependency

asserting that f i 1 e . h is included in f i 1 e . c.

Since these lists are re-created as a by-product of every compile, there are no

opportunities for a dependency change to be lost. This eliminates a source of run-time

errors that are difficult to find. For example, a structure member is added to a header file.

If the file dependency is missing from just one C module that uses that structure, make

will not re-compile that module. That module now refers to the structure with incorrect

offsets generated from the previous version of the structure. This is a hard problem to find

even with a good window-based debugger.

1.4 Chapter Summaries

The remainder of the thesis is organized as follows. Chapter 2 presents related

work. While mincpp is a new contribution to the development tools arena, other work to

make the build process more efficient has been carried out and brought to market by

others, and the problem of burdensome compile times, especially for C++, has been noted

in the literature. This chapter considers related work for not only C, but for C derivatives

such as C++ and Objective C.

Chapter 3 examines a sample implementation of mincpp that performs the . i -+
. min . i transformation. The system and its algorithms are presented in detail. This

chapter defines an approach to solving thesis problem one.

Chapter 4 presents the results of using mincpp on five selected benchmarks.

Reduced compile times are demonstrated.

Chapter 5 presents ideas for extending mincpp, and ideas for other tools based

around mincpp's basic architecture. Additional benefits beyond the core problems

addressed in the body of the present work are discussed. Also discussed are extensions to

mincpp that address thesis problems two and three.

We end with conclusions in Chapter 6 .

2. RELATED WORK

This chapter discusses the differences and similarities between mincpp and the

following.

1. Traditional UNIX compiler environment.

2. Cbac k (NewCode Technology, Inc.).

3. Centerline ObjectCenter [CenterLine93].

4. Lucid Energize [Lucid93a] [Lucid93b].

5. Microsoft C/C++ [Microsoft9 11.

6. Borland C++ [Borland93] [Holub93].

7. IBM Tokyo Research Compile Server [Onodera93].

8. NeXT Smart Preprocessor [Litman93].

2.1 Overview

In the UNIX compiler environment, four different systems examined are:

traditional compilers, cbac k, ObjectCenter, and Energize. In the MS-DOSfWindows

environment, two different approaches to compilation are taken by Microsoft C/C* and

Borland C*. We will also describe systems from IBM and NeXT.

A summary of approaches used in these tools follows:

Table 2.1 Compilation Technique Summary

Description

Header files are expanded to their entire

contents.

Technique

Dumb Preprocessing

Used By

Traditional

Source Code

Rewriting

Interpretation

Compiled Header

Files

Incremental

Compilation

Incremental Linking

Compilation Server

Smart Preprocessing

cback

Objectcenter

Lucid

Objectcenter

Microsoft

Borland

NeXT

Lucid

Lucid

ObjectCenter

IBM

NeXT

C source code produced by the cfront

translator is rewritten to improve and

prune the code of unnecessary and

unreadable constructs.

Source code is interpreted rather than

compiled. This allows interactive

evaluation as new code is entered into the

system.

The compiler state is dumped into a binary

file when the compiler parses header files.

If nothing has changed, the compiler can

load the binary file instead of re-parsing

the header files.

The system evaluates differences between

old and new versions of the source code

and re-compiles only altered functions and

data.

Object files produced by the compiler are

re-used to produce an executable binary.

To contrast, the traditional linker

reconstructs the binary from scratch every

time the program is linked.

A long-lived compile server takes requests

for compilation and re-uses header files

that have already been read into the

compiler's internal tables.

Header files are evaluated lazily. Header

file declarations are pulled into the module

on demand.

There are other environments for other languages that address the core problem of

edit/compile/link/debug cycle performance, which is a crucial issue in developer

productivity in general. Some examples of these include environments for languages such

as Lisp, Smalltalk, and Basic. We shall not discuss these systems since we focus on

c/c++.

The systems under consideration support C as well as C derivatives. Of the

systems described below, cc and a c c are C language only, c f r o n t and cbac k are

C++-specific tools, Objectcenter, Lucid, Microsoft, and Borland support both C and C++,

IBM supports a proprietary language based upon C that is object-oriented, and NeXT

supports C, C++, and Objective C.

Chapter 5 will explore extensions to mincpp that would make it suitable for C++

as well as C environments.

2.2 System Descriptions

2.2.1 Standard U N M Compilers: cc, acc and cf ront

Probably the most common UNIX programming environment uses a traditional

file-based compiler, using a "Kernighan & Ritchie" C compiler (cc), an ANSI C compiler

(a c c), or c f r o n t as a C++ front-end to one of the C compilers. All program storage is

based exclusively on UNIX files. The most common arrangement is for preprocessing to

occur in a separate pass distinct from compilation, and for the compiler to generate

assembler code that a macro assembler turns into an object file. This allows the compiler

to not have to deal with the vagaries of macro preprocessing or object file formats.

Preprocessing was an area where compilers varied widely in the past, as the

original C specifications were rather vague about its role in compilation. The ANSI C

standard has cleaned up this area considerably. Consequently, ANSI preprocessing is

common across most environments at the present time.

Figure 2.1 cc/acc/cf ront: preprocessor/translator/compiler

Source code files are preprocessed. The result of this processing is either a C

translation unit or a C++ translation unit. C++ translation units are converted to C

translation units by c f ron t . C translation units are passed to the C compiler. The C

compiler creates an object file.

Note that c f r o n t is just an additional processing step over that already in place

for a strictly C-based environment.

Figure 2.2 cback: preprocessor/translator/rewriter/compiler

rn

Cbac k introduces another pass in the chain of processing, and is only relevant to

c f ron t -based C++ compiler systems. The generated C code that c f ron t produces is

very difficult to read. While today it is rarely the case that the programmer needs to look

at this intermediate code, this was not always the case. Then, few debuggers understood

"mangled names". Mangled names are the coded identifiers needed in C++ to differentiate

between several overloaded functions and to refer to functions (or class methods) by their

entire signature rather than just by name. The signature is an encoding of the return type

of the function, the function's name, and an encoding of every parameter's type. In

contrast, a function in C is uniquely identified by its name.

While cback was originally written to make the code easier to read, its later

evolution to strip unnecessary type declarations fiom the C code is the feature relevant to

this work. Type declarations that are "pure" type declarations can be stripped fiom the C

code. A pure type declaration is one that does not declare space-allocating variables along

with the type declaration. An example of a pure type declaration is:

- firno- - -

. ccl. c - cfiont cback 1 cclas 1
.1 . C

> + 0 + 3 0 +
. C' .O

enum boolean {True, F a l s e] ;

while a space-allocating declaration variant of this would be:

enum boolean {True, Fa l se] f l a g ;

Other processing includes re-writing expressions, and eliminating unnecessary type

conversions.

Cback reads the C code into memory and builds a parse tree. It also reads a file of

rule descriptions that, essentially, direct ways of rewriting the tree that do not alter the

semantics of the code, but result in the benefits described above.

Cback also reduces symbolic information in the object file by:

1. Eliminating unnecessary code

2. Eliminating unnecessary type/fUnction/variable declarations

3. SimplifLing expressions

This leads to reduced object file size, and reduces symbolic debug information. As

a result, cback can reduce link time, and can considerably reduce debugger load time.

Mincpp shares some similarities with cback. Both read C code and "improve"

it: cbac k targets improved readability, simplicity, and debugging issues while mincpp is

primarily concerned with reducing compile time.

Cbac k and mincpp both parse input with a C parser, but cbac k builds a parse

tree while mincpp builds a symbol table with dependency and text sequence links

implemented as a chained hash table. Cback uses tree rewriting while mincpp marks

reference information. Both output algorithmically-altered C code.

The majority of compile time is spent in preprocessing and translation. Because of

this, cback cannot have a significant effect on compile times. Furthermore, the

improvements that cback makes to the C code result in cback saving about as much

time in the C compilation phase as it takes to run itself. While there are ancillary benefits

to using the tool, it does not address the overall compile time problem that is the subject

of the present work.

2.2.3 Centerline ObjectCenter

Figure 2.3 ObjectCenter: preprocessor/translator/compiler/reposito~y

den -

ObjectCenter is a complete programming system. It includes a graphical debugger,

various language browsers, a program builder, incremental linker, integration with various

source code control systems, a source code interpreter, and C and C++ compilers.

The interpreter allows interactive evaluation as code is being typed into the system.

This provides good error checking and allows modules to be easily unit-tested by inserting

stimuli and observing responses.'

Interpreted-code performance, both at load-time and run-time, is slow. One must

be judicious in balancing interpreted and compiled modules. Typical practice is to use the

interpreter only while doing initial development and testing, using the compiled module

thereafter.

7 A module can be tested by loading the module, and interactively calling functions to elicit

behaviors. The calling of fhctions and examination of results can be driven by scripts and response files.

This allows unit testing without a fully-built executable.

.o

-
-

clcfiont f 3

. cc1.c) "cback"

v

J preprocessor L

0 01 . 0 #include

BLOB'S

"POY~OV

The compiler is a cfront derivative, and uses a modified version of the GNU

preprocessor, cc cp.

Most relevant to mincpp are two compiler features: compiled header files and

"demand driven code generation."

Demand driven code generation does essentially what cbac k does, reducing

unnecessary debug information by stripping unnecessary type declarations. Similar . o size

reductions and debugger load times are observed. Compile times are slightly improved as

less write I/O occurs when creating . o files.

Compiled header files are maintained in a "repository" directory. On an initial

compile, #include preprocessor directives that are at the beginning of a module down

to the first non-white-space token can be saved in the repository (this is an explicit

restriction), and can later be restored instead of parsing. While the details of this process

are proprietary, the repository entries are surely a binary representation of enough of the

compiler's state to ensure that the compiler's state after loading a saved repository entry is

the same as it would have been had it actually parsed the source. Some examples are in

order:

/ / b e g i n n i n g o f f i l e
/ /
i n c l u d e < s t d i o . h >
i n c l u d e < s t r i n g . h >

i n t i;

In this example, the system will pre-compile the first two include files and stop

when it sees a token other than white-space. There is no way to include the third file in the

repository without altering the source code.

The pre-compilation of header files can be explicitly controlled by a preprocessor

directive. For example:

/ / b e g i n n i n g o f f i l e
/ /
i n c l u d e < s t d i o . h >
#pragma h d r s t o p
i n c l u d e < s t r i n g . h >

/ / and s o forth a s above.

Here the system stops the pre-compilation after the first include, as directed by the

programmer.

Repository entries are tagged with the time-stamps of all their constituent files as

well as the names and values of all preprocessor macros in effect for the entry. If macros

or time-stamps change from compile to compile, the entry is invalidated, pre-compiled

again, and saved.

As we will see later, the performance of this scheme results in only a modest

improvement over just parsing the . h sources. Repository entries can be very costly in

disk space usage if carefbl planning, restructuring, and rewriting of source code is not

done.

Objectcenter and mincpp have more differences than similarities. Mincpp is

external to the compiler, and does not restrict the user's compiler choice. Mincpp defines

a repository to pre-compile previous translations, but does so differently. This scheme is

described in detail later.

Objectcenter's compiled header files require the programmer to make source code

changes to utilize the scheme effectively. Usually, this means creating a global header file

and using it consistently throughout the application, and making sure that the compiled

header is the first thing included in all the modules. The other systems that use compiled

header files all document similar techniques. This artificial restriction does not work well

with existing code.

There is also a temptation to create a single "global" header file that contains

everything a program needs. Since there is likely to be a great deal of unnecessary

information for any particular compilation, the savings from using the pre-compiled header

are offset by the unnecessary information that needs to be processed.

2.2.4 Lucid Energize

X windows based messaging bus

program

database

Figure 2.4 Energize: database/editor/browser/compiler

Like ObjectCenter, Lucid Energize is a full-featured programming environment.

The feature relevant to the present work is an incremental compiler. The compiler can

either run in standalone mode, producing a standard . o file, or in "Energize" mode.8

In Energize mode, the compiler breaks the source into "Language Elements", such

as individual declarations, t ypede fs, and function bodies. It stores these language

elements in an Object Oriented Database as individual objects. It also stores dependencies

between the language elements in the databa~e.~ It also writes object code to a . o file that

has "slots" for functions. These slots have extra empty "slop" space allocated in them.

This allows new, larger versions of a function to be overlaid without recreating the entire

object file. These . 0's are incrementally linked.

8 Lucid's compiler also supports compiled header files. These are only available in the non-

incremental version of the compiler. The operation of compiled header files is similar to ObjectCenter.
9 Forexample,intheprogramfragment "typedef i n t Boolean; Boolean T - F;"The

declaration of T - F is dependent on the declaration of Boolean.

To edit source code, either a conventional editor, such as v i or emacs, or "Lucid

emacs" is used. If a conventional editor is used, the system evaluates text differences

between the new and old versions of the file, and turns this into a list of altered language

elements, which are marked as changed in the database. If Lucid emacs is used, the

editor marks language elements as changed as characters are entered in the editor. Lucid

emacs also graphically highlights altered language elements as the user types.

When re-compilation is requested, the compiler walks the dependency graph from

all changed language elements, re-compiles only the affected functions, and swaps the

newly re-compiled functions into the slotted . o file.

The structure of language elements can be browsed with a graphical "Language

Element Browsery', including navigation across the dependency graph.

The most striking similarity between Energize and mincpp is the organization of

code into blocks, and maintenance of dependencies. Mincpp's "text fragment"

corresponds to Lucid's language element. Mincpp builds its text fragment list and

dependencies in-memory rather than in a database. Mincpp does its processing external

to the compiler, whereas Lucid's processing is done as a part of compilation.

While the Energize concept is an appealing one, performance of the system is,

currently, poor. The compiler is considerably slower in Energize mode than in traditional

file mode.

There has been a lot of research and patent activity recently in the area of different

approaches for incremental compilation. For more information the reader can consult

[Iitsuka93], [McKeeman92], or [Smith931 as well as the Lucid manuals referred to earlier.

Finally, note that the compiler in Energize is a "native" C* compiler. This term

refers to compilers that read C++ and write an object file directly. This is in contrast to

ObjectCenter and c f r o n t , where C++ is read and C generated instead of an object file.

ObjectCenter links the translator into the C compiler, so this intermediate file is not

generated. Other examples of native compilers for UNIX include those developed by Sun,

HP, IBM, and DEC. Experience with these compilers suggests that compile times are not

significantly reduced just by eliminating one intermediate file.

2.2.5 Microsoft C/C++

Microsoft C/C++ features compiled header files that work similarly to

Objectcenter's. As with ObjectCenter, a certain coding style is required to achieve a full

measure of benefit from the scheme. Again, header files are stored in a repository. A

repository entry is characterized by a set of macro bindings and an ordered list of header

files. Each entry is stored in a separate file.

Borland C++ also has compiled header files. These header files may not contain

code (functions). Again, source code changes are required to use the system effectively,

since the same restrictions that were described for ObjectCenter and Microsoft are also

restrictions in the Borland environment. All repository entries are stored in a single (large)

file.

Both Microsoft and Borland are native compilers not derived from c f ron t .

2.2.7 IBM Tokyo Research Compile Server

This project implemented a long-lived compile server that can read header files

into its internal context and re-use them for subsequent compiles. While the author is able

to show reductions in compile time, it is done only at the expense of significant restrictions

on what may be placed in header files. Also, the implementation is tied to a particular

environment, and is not suitable for re-hosting. The use of a new, uncommon C dialect is a

disadvantage.

2.2.8 NeXT Smart Preprocessor

This system comes closest to mincpp. Header files are manually compiled.'0 The

preprocessor, like mincpp, parses text. The parser, on finding an undeclared reference,

searches any encountered pre-compiled headers for a definition, and it is tagged for

I '?he file is pre-compiled by the user typing a command into a shell. The automatic pre-

compilation process described for ObjectCenterMcrosoft/Borland is not available.

inclusion in the output. The net result is output that is similar to mincpp's. However, the

algorithms and system implementation are very different.

NeXT requires manual work to pre-compile the header file. Also, it is necessary to

flag the compiled header with # impor t , rather than a # i n c l u d e directive. This is a

source code change that requires a special preprocessor to interpret.

NeXT uses a demand driven algorithm for including header file contents. The

system waits for an occurrence of an undefined identifier. When this occurs, the

declaration is located in a pre-compiled header, then marked for inclusion. The new

declaration is then recursively re-parsed.

The lazy evaluation algorithm provides an interesting contrast with mincpp's

greedy algorithm. Mincpp takes the entire preprocessor output and minimizes it without

special preprocessors or source code changes.

2.3 Discussion

Most of the current approaches emphasize putting optimizations in the compiler

proper. This thesis emphasizes that by minimizing the input to the compiler in the

preprocessing phase of translation via a special purpose tool, compile times can be

reduced. By being external to the compiler, the tool can work with any compiler in any

environment. Unlike compiled header files, incremental compilation, or interpretation,

mincpp can be easily used in any environment without change to work habits, source

code, or make f i 1 e s . Furthermore, semantically-unnecessary builds are avoided

altogether, a unique feature.

3. MINCPP

Figure 3.1 mincpp: preprocessorlmincppltrace filelminimized output file

Mincpp reads input from either preprocessor output (the . i file) or from a trace

file, which is an ASCII transcript of every symbol table manipulation routine called.

Mincpp can be run once, reading the . i file: during this run a Trace file is created.

Mincpp can then be run again, reading the previously created file. In either case, the

output is a modified . i file that is suitable for passing to whatever compiler is used.

. C
> -

3.1 Implementation Rationale

-

.1

-

i CC

I acc
I

I cfront

Mincpp is a preprocessing phase after traditional preprocessing and before

compilation. Mincpp minimizes its input and discards unnecessary declarations. As

declarations are parsed, they are remembered. Later, when another declaration or code in

3

-

Trace

.rnin.i j > cfronUcback

; clc++

1 Icc
!

t v \

< J j mscc
j

! CXX !

a fbnction refers to the declaration, it is marked as needed. Unneeded declarations are not

included in the final output.

One of the original goals of mincpp was to collect sufficient data to demonstrate

compile time improvements. In doing so, several decisions were made to limit the scope of

the project, so that the system could be implemented in reasonable time. The complete

mincpp system that is described in Chapter 5 was originally planned. Mincpp and cpp

were originally planned to be in the same binary. The parser was originally planned to

parse C++ code as well.

By factoring out the I/0 wasted in a separate pass, we can accurately predict run

times, so the single binary work was deferred." By parsing C syntax only, the work in

constructing a grammar was greatly reduced.12 The tracelreplay cache is an eitherlor

proposition: mincpp either parses 100% of it's input or it replays 100% of it's input.

Later, we will reason about cache effectiveness and the reader can draw their own

conclusions regarding cache hit rates which one might expect to see. But, the replay mode

allows us to quantifjl the potential benefits of using the tracelreplay mechanism. Another

potential approach would be to enhance the grammar specification to include

preprocessing directives, and merge processing with mincpp into one pass over the

input. This would cut additional time and boost compile time improvements.

For all its limitations, mincpp is still able to substantially improve compile times.

3.2 Symbol Table Basics

The key data structure in mincpp is the symbol table. The symbol table is hash

table based [Ah0861 [Sedgewick90]. The identifier is hashed into an index, and symbols

that hash to the same index are grouped by a doubly linked list. Additional linking in

symbol entries include a chain linking symbols of identical scope, dependency pointers,

 h he joined, or single binary is the preprocessor code and the parserlminimization code put

together in a single program.
12 Originally, not much improvement on just C programs was expected, but the results on just C

programs were suprisingly good.

and a program text chain. There are four types of links that are maintained in the symbol

table. These are:

Symbol link. Chains together symbols whose name hash to the same hash table bucket.

Scope link. Chains together symbols whose scope is identical.

Text link. Chains symbols together in the order their text appears in the translation

unit. The full text of the translation unit is chained when processing ends.

Dependency link. Chains symbols whose definition depends on another definition. An

example of this is a declaration of a variable whose type is defined by a t ypede f

declaration.

hash table

link

-
-
-

scopes array

Figure 3.2 mincpp Symbol Table

The scopes array stores a chain of symbols of same scope. This speeds exit-scope

processing as all symbols can be un-linked when they fall out of scope very simply. The

symbol link is a standard symbol table technique. There is a pointer to the beginning of

text. Each symbol has its program text associated with it, and the text fragments are

chained together in the order they appear in the source. These are shown as text links in

the diagram. Finally, a dependency link shows a dependent relationship between two text

fragments. For example, consider:

typedef i n t boolean;
boolean a;
i n t c;
m a i n 0 (a = 1;)

This creates symbols named boo 1 e an, a, c, and main at scope 0 (file, or

external scope) with text fragments "t ypede f i n t boolean;", "boo lean a;",
'L i n t c;", and "ma i n () { a = 1 ; } " respectively. There are text links between the

four text fragments, plus scope links between the four symbols at scope 0, and a single

dependency link between symbol a and symbol b o o l e a n to express the type hierarchy

relationship between them.

On inspection, the minimal version of this program fragment is everything but i n t

c . The reference to a in main marks "boo lean a" as referenced, and "t ypede f

i n t b o o l e a n ; " is also referenced by the dependency link joining lines one and two of

the text. References to a type have to also reference, recursively, dependent types. When

the mincpp program exits, it traverses the text chain and prints out all the text fragments

that have the reference bit set. Function definitions are referenced automatically. The

symbols a and b o o l e a n are referenced by the mention of a in the hnction. The symbol

c is never referenced, so it is not printed out.

Scope is incremented and decremented by seeing ' { ' and ' } ', respectively, in a

fbnction definition. Exiting scope also deletes that scope's symbols. There is a distinction

between external declarations (scope 0) and local declarations (scope greater than 0).

Local declarations do not have a text fragment, their text is part of the fbnction

definition's text fragment.

3.3 Scanner

The scanner, l e x . 1, turns the . i file into tokens for the parser, y a c c . y. This

is a very straightforward procedure, with just one subtle point. The scanner pushes

identifiers and type names onto an "identifier stack" and "type stack. Identifier and

typedefname are terminal symbols in the yacc grammar. When the scanner recognizes

an identifier, it queries the symbol table to see if it is a type via the symbol table's

isaType () function. The scanner returns the character text of the token as its return

3.4 Parser Basics

Mincpp uses a complete C parser. The parser uses the matching text as the value

passed through the yacc stack in all cases. Specifically YYSTYPE has type char *.
Yacc puts the text matching the grammar production on the stack. This allows mincpp

to easily grab text fragments at key points in the rule reduction sequence and index and

chain the returned text into the symbol table.

The top level productions in the C grammar are:

translation-unit c= external-definition
external-definition <= declaration
external-definition c= function-definition

Mincpp breaks the text into blocks of external-definition granularity. Thus, an

atomic text fragment is a single external declaration or external function definition. Text

fragments are chained together as these productions cause text pointers to be updated in

the symbol table.

As an external declaration is parsed (at file scope, or scope level 0, i.e. a global

declaration), references to other declarations are noted and a dependency relationship is

constructed by creating a dependency link in the symbol table. For example:

typedef i n t boolean;
s t r u c t s (boolean b);

Here the first declaration is independent, in that it uses only language-defined types

(int is a basic, or built-in type). The second declaration is dependent on the first. If the

second declaration is used, or referenced, this implies that the first declaration also is used.

If, on the other hand only the first declaration is used, say the program uses boolean but

never mentions st ruct s, then s truct s is not used and the program will compile if

it is not present in the text.

As fbnction definitions, which include local declarations (declarations within

fbnction definitions, at scope > O), and expressions (forming statements and statement

lists, combining into compound statements) are being parsed, naming a type or calling a

fbnction (or taking its address) constructs a reference to the mentioned type, object, or

fbnction. For example:

i n t f o o 0 { s t r u c t s s l ;)

references s directly, and boo 1 e a n indirectly, using the declarations given earlier,

whereas:

i n t foo () {boolean b; 1

references only boo 1 ean.

Consider the symbol table's text chain after processing the boo lean-referencing

fbnction foo:

Figure 3.3 Text Chain Example

text-begin

When end-of-file (EOF)occurs, the text chain is traversed, and only when

referenced = '>yes" is the text printed to standard output. This trims the text of external

declarations that are not used somewhere. This example uses only pure type declarations,

those that do not allocate space. Space-allocating declarations introduce additional

considerations. These are elaborated krther in the next section.

I ref text
W

next
yes typedef int boolean;

no

Yes

struct s . . .

int foo() { boolean b;)

3.5 A Single Simple Declaration

We are now ready to give a detailed walk-through for a very simple program.

Mincpp has three distinct tracing facilities that allow us to see in detail what happens

during parsing, and how minimization is effected. Firstly, mincpp was written using

Berkeley yacc. Berkeley yacc has a debug facility that outputs parse trees in a

graphical presentation. This is an addition to the reduction trace available in standard

yacc.

The yacc functions and mincpp contain code to trace their actions based on two

conditional preprocessor definitions, DEBUG and TRACE. Lastly, the symbol table trace

file that is used for replay gives a very detailed log of symbol table manipulations. Our

strategy will be to present the source code fragment, then present the parse tree, debug,

and trace output. Each will be accompanied by descriptive narrative.

Perhaps the simplest C program (even simpler than "hello, world") is

int i;

Here is the parse tree that Berkeley yacc produces:

.... look ahead at INT 'int'
INT <-- 'int'
basic-type-name
basic-type-specifier
I look ahead at IDENTIFIER 'i'
type - specifier
I IDENTIFIER <-- 'it
I paren - identifier-declarator
I I look ahead at ';I

I identifier declarator
I declarator-
I I initializer-opt
+-------+-------+

I
declaring - list
I 1 . 1 <-- '.I

I
declaration
external definition
translation-unit
I look ahead at end-of-file

The key reductions are at declarator and declaration. In the output above, the

text "look ahead indicates where the parser has asked the scanner for another token.

Rules that end in -opt such as initializer-opt show places where the rule is optional. For

instance, " i n t i = 0 ; " uses "= 0" as an initializer while " i n t i;" does not.

Mincpp operates on text chunks at the external-defintion level of granularity. Here,

there is only one such reduction. l3

Next, the DEBUG and TRACE output:

/ * symtab: add symbol 'NAMELESS':O:object */
/ * symtab: looEup i:-1 not found * /
/ * id stack: pushed i * /
/ * sGtab: isaTYPE IDENTIFIER * /
type - specifier <- basic - type - specifier @i@

r30cl "int i"
/ * type stack: pushed BASIC * /
declarator <- identifier - declarator @;@

r78cl "i;"
/ * id-stack: popped i */
/ * symtab: add symbol i:O:object * /
declaration <-declaring - list ' ; ' @; @

r26cl "int i;" @ 11 ; 11

/ * symtab: abort-tentative
symtab: add snode int i;
/ * type stack: popped BASIC * /
externai - definition <- declaration @; @

r76c2 "int i;"

Two classes of information are presented. The first format used is a pair of lines,

the first containing a '<-', and the second indented. They show the rule reduced and the

actual arguments to the function. Lines of the second format begin with the facility

performing the transcription ("symtab for the symbol table module, "id-stack" and

"type-stack" for the stack managers) along with an operational description of the work

performed. The presence of C-style comments was originally intended to allow this output

to be included in minimized output. However, this was not consistently and completely

implemented.

Refemng to the DEBUGITRACE output, the scanner looks up 'i' and pushes it

on the "identifier stack" because it is not a type name. When " i n t " is recognized as a

type-specifier of "basic" type (i n t , c h a r , f l o a t , d o u b l e , l ong , s h o r t . ..), it

pushes "BASIC" on the "type stack". The meaning of this is to inform a later action that

the type of the declaration is language-defined and not dependent on anything else. The

 h here is only one declaration in the program, so there is only one external declaration.

declarator function pops the identifier stack and creates a new symbol for the declarator

When the entire declaration is recognized, the type stack is popped, and the text of the

declaration is associated with the symbol i.

And finally, the T r a c e file for this run:

A line is printed to this file for every symbol table operation performed. The

function called is encoded as a number in the first field. The arguments to the function are

then given, all separated with a '@' character, which was chosen because it is not a legal

character in a C program. This allows a compact representation to be easily parsed by

successive calls to the C s t r t o k () facility. As we will see in more detail later, this file is

used by mincpp in "replay" mode.

At line 1, field 1, and line 2, field 1, '2' is the code for symbol table knction

add - symbol () , and field 2 is the name of the symbol being inserted. NAMELESS is a

built in symbol whose meaning will be discussed in a later section. Symbol i is added next.

Symbols are numbered as they are inserted. They are numbered numerically in

ascending order. In this example, symbol NAMELESS is symbol 1, and symbol i is

symbol 2. These numbers are referenced as fields in the file later on to add additional

information to the symbol.

At line 3, symbol i is tagged as needing text. As we will see, some symbols do

not need text, such as local declaration symbols. At lines 5 and 6 the text " i n t i;" is

associated with the symbol i. When EOF is recognized, the text chain is traversed. There

is only the single node for symbol i , and it has not been referenced by anything else, so it

is not printed in the minimized result.

Mincpp, as implemented, deletes un-referenced space-allocating declarations.

This is not a sufficient condition for a general-purpose tool. See section 5.6.3 for a

complete treatment of this subject.

3.6 Symbol Table: Part 2

We will present the symbol table data structure used by m i n c p p and discuss its

parts:

typedef enum kind
(

o b j e c t ,
f unc t ion ,
typedef name,
enum-coiis t a n t ,
l a b e l ,
su-tag,
enum-tag

) Kind;

typedef enum boolean
(

True = 1,
Fa l se = 0

) Boolean;

typedef s t r u c t symbol *Symbol;

s t r u c t symbol
I

cha r * t e x t ;
vo id * t ex tp ;
Boolean r e f ;
cha r *name;
i n t scope;
Kind kind;
Symbol nex t ;
Symbol prev ;
Symbol s l i n k ;
Symbol dep [l6] ;
l ong i d ;

1 ;

The members name, s c o p e , k i n d , n e x t , and prev are members that are to be

expected in any sort of compiler symbol table. They are minimally needed to track the

symbol's name, lifetime, type, and links to the symbol table's hash structure. The s l i n k

member is an optimization that allows for quick exit-scope processing. The new members

that facilitate minimization are t e x t , t e x tp, ref, and dep. The remaining member,

id, is introduced to allow symbols to be persistent. This is needed for the cache

mechanism described later in this chapter.

A member-by-member description follows:

Kind tells what class of symbol an instance is. These classes are taken directly

fiom K&R 2e [Kernighan88]. There are different name-spaces associated with these

classes, and this tag allows name-space discrimination to be accomplished on lookup and

insert. Since only one symbol table is kept instead of one per name-space, this is an

important thing to keep track of. This feature is also critical in discriminating between type

names and objects which is required for the scanner to correctly return terminal symbols

identifier and typedef-name to the parser.

Member boo 1 e an is used to mark symbols as referenced. Clearly, without a

marker there is no way to keep track of unused code.

Member t e x t is a pointer to the program text that corresponds to the

external-definition a symbol belongs to. Textp is a pointer to the next symbol in lexical

order, or text chain order. N a m e is the name of the symbol and is what is matched on

lookups. All symbols of same scope are linked by s 1 ink, which allows symbols to be

deleted when they fall out of scope by just chasing the s l i n k pointers. Scope tells the

lexical scope of the symbol. This field is actually redundant, because of the s 1 ink

member. An earlier implementation of the symbol table did not have this, and the table had

to be searched on the scope member to delete out of scope symbols. Next and prev

are forward and backward doubly linked list pointers that link symbols that hash to the

same bucket.

Member dep is an array of symbol pointers to symbols upon whom the symbol is

dependent. This is a poor implementation since most symbols have fewer than this, and the

processor breaks if there are more. This should be a dynamically allocated list of pointers.

The present implementation is very memory-inefficient but was done for expediency.

Finally, i d is a unique tag for a symbol that allows symbol identity to be

established in the persistent trace file. We will see later how this is used in more detail..

3.7 External Declarations

Mincpp organizes a program as a list of external definitions. These are either

scope 0 declarations, or function definitions. All function definitions are marked as

referenced when encountered. Declarations are marked as referenced as the expressions

and declarations in the program make use of them.

We will cover each category of external declaration and present an example.

3.7.1 Simple Declarations

Simple declarations are declarations that use only built-in types. They can have

declarators that denote pointer or array variants. For example:

1 i n t i , j;
2
3 char *c, c1[128];
4
5 i n t £00 ()

6 I
7 c = 0;
8 I

This program has three text fragments, one for the int declaration, one for the

char declaration, and one for the fbnction definition. Only c is referenced. These

declarations each have two declarators. Declaration one has declarators i and j,

declaration two has * c and c 1 [12 8] . Mincpp inserts symbols, at scope 0, for

declarators i and j . When the declaration is recognized, it attaches the text "int i , j ;"
to both symbols, and links the two symbols into the text chain. Then, symbols c and cl

are inserted into the symbol table at scope 0, the text char * c , c 1 [12 8] ; is attached

to both symbols, and the two symbols are linked into the text chain.

When foo is recognized as a fbnction definition, it is inserted as a fbnction symbol

at scope 0 and its ref member is marked True. When "c" is seen as an expression

component, mincpp looks up c and references it. Visually, the processing can be shown

Figure 3.4 Simple Declarations Symbol Table

3 4

Upon EOF, mincpp visits the text chain starting with t e x t - begin, and prints

every text fragment for symbols that have ref = True. In this case this is true for symbols

c and f oo only. In answer to the question "what if both c and cl are referenced",

mincpp stores a pointer that keeps track of the last text fiagment printed. If the current

text pointer equals the previous pointer, the text is not printed twice.

The granularity of text disclosure is the external declaration. So, in this example, c

and cl both map to the same external declaration, so it is disclosed if either is referenced.

In this example, if either i or j is referenced from another module through an

extern declaration, it is wrong to not disclose them here. While many programs, such as

the benchmark programs described later, do not use global variables in this fashion, it

nevertheless is wrong to assume this. The version of mincpp described here does

perform these un-safe minimizations. Section 5.6.3 describes enhancements to mincpp

that do allow such declarations to be safely minimized. Mincpp can be altered to not

perform these minimizations by the addition of a small amount of logic. When the

TEXT INPUT

int i j;

char *c, c1[128];

int foo()
{
c = 0;

1
L

SYMBOL TABLE TEXT OUTPUT

char *c, c1[128];

int foo()

{

I = "ref = True"
text chain link

4

int foo() . . .

symbols symbol's program text

declarator symbols are inserted, a flag is set. Later, when the text is entered, the flag is

checked. If set, the symbols are marked as referenced. This allows minimization of pure

declarations while keeping space-allocating declarations. This behavior should be the

default behavior for the tool as described here.

Declarations with multiple declarators could be fbrther broken up into individual

external declarations. We could re-write a declaration such as:

int x, * y , z[3] ;

as:

int x;
int * y ;
int z [3] ;

This approach was not taken. The result from this example is that if any of x, y, or

z is referenced, then all three are declared.I4

3.7.2 Function Prototypes

Function declarations are one of the more interesting "dark comers" of C. In K&R

C, functions did not even have to be declared. They were assumed to return int unless

something else was specified. Only in ANSI C [ANSI891 werefunction prototypes

introduced, which allowed the number and type of hnction arguments to be placed in a

header file so the compiler could check types, previously a notorious source of run-time

errors. ANSI C grandfathered the K&R rules and syntax, but additionally allowed fbnction

definitions to use prototype syntax. Another interesting ANSI addition was the void

type. Because of the K&R syntax, not specifjrlng fbnction parameters in a prototype really

meant that the type and number were unspecified. To say that a fbnction actually took no

parameters required saying function (void) . Just to spice things up, C++ demands a

fbnction prototype and excludes the K&R defaulting syntax, which means that

function () in C++ does mean fbnction taking no parameters. It should be noted that

I 4 ~ t one point the implementation did break these up. While some data space savings might

occur, the implementation complexity was deemed not worth the effort.

some of these ideas were originally created for C++ and later wound up being accepted

into C by the ANSI committee. A few examples should prove useful:

/ * K & R syntax * /

func () ; / * function declaration * /

func(i, j) / * function definition, matches either explicit decl. * /
/ * or will default if missing * /

int i;
float j ;

I ... 1

/ * ANSI C accepts all of the above, and introduces the following */

void func(int, int j); / * function declaration prototype, * /
/ * only type names /
/ * are required, variable names can be * /
/ * added for documentation purposes * /

void func(int i, int j) (. . . 1
/ * function definition using prototype argument syntax * /

Mincpp's parser accepts any combination of the above-mentioned syntax. Our

example program follows:

1 int foo0;
2 int fool(int a);
3 int £0020 (foo0;)

Function parameters present an interesting problem for mincpp. When a fbnction

parameter is recognized, we do not yet know if we are in a fbnction prototype declaration

or in a parameter section of a function definition. Also, ANSI requires the scope of

function parameters to be the same as the scope of the symbols immediately after the " {"

that starts the function body. In other words, function parameters are conceptually

inserted as symbols right after the " I", or right before the first local declarations. Also, in

a prototype, the parameter name is optional. All that is needed is the type, called an

abstract-declarator in the grammar.

Mincpp' s approach to this is to add a tentative concept to the symbol table

facility. When a parameter name is encountered, either in a prototype or parameter

section, it is inserted into the symbol table tentatively. The symbol table facility stores

tentative symbols in a separate place distinct fiom the hashed structure. Later, in the case

of a prototype with named arguments, function abort tent at ive () is called to -

delete these. In the case of a function definition, after the initial " { " is seen, function

insert - tent at ive () is called to make these symbols first class symbols in the hash

structure.

In our example, f oo is recognized as a function when the " () " parses to a

postfixing~abstract~declarator. It is inserted as a function in the symbol table, and its

text is associated when the declaration is complete. Abort tentative () is called -

with no effect since no parameter names were present. At line 2, symbol a is first added

tentatively when it parses to a parameter-declaration. This occurs before the function is

parsed to a postfixing-abstract-declarator, at which point f oo 1 is added as a function

symbol. When a declaration is recognized, text is associated, and

abort - tentative () has the effect of erasing the tentative "a". As before, foo2 is

added and referenced upon encountering the " () ". When "foo" appears in a function call

expression, foo is looked up, found at scope 0, and referenced. At EOF the program,

without the declaration of foo 1 () , is printed to standard output.

3.7.3 Enumerations

Enumerations are the first construct that introduce tags and members.''

Enumeration tags can be used to refer to an enum declaration later in the program. The

members are just integer-valued identifiers that allow the intent of an assignment in the

programmer's mind to be made self-documenting. Our example program follows:

1 enum {red, yellow, green) a;
2 int £000 (a = red;]
3 enum boolean {true, false} ;
4 enum boolean b;

At line 1 we see an example of a tagless enumeration. It declares three members

that might represent stop light colors. Here, a is a variable declaration. The variable can

be assigned the enumeration constants, as the members are sometimes called.

I5 In the fragment "enum temperature (cold, warm, hot) ;", temperature is the

tag, and cold/warm/ho t are the members.

Mincpp sees the constants reduce to non-terminal enumerator-list. When this

happens, the constants are placed into the symbol table in their enclosing scope, here

scope 0. Now, a is recognized as a declarator once more, but, for the first time in our

examples, this type is non-BASIC. Nevertheless, a is inserted as an object, or variable

symbol. When declaration is reduced, all four symbols are tied to the text of the

declaration.

In foo , both a" and red are referenced in two expressions that constitute an

assignment statement, which then reduces to a { 1 -delimited compound statement. a and

red are looked up and referenced in turn.

At line three we see an enurn with a tag. When parsed, "boolean" is inserted as

an enumeration tag. The constants " t rue" and " f a l s e " are inserted as before, and the

three symbols are linked to the declaration text.

Lastly, "boolean" is pushed on the type stack, and b is a declarator. The

declarator code sees ''boo1 ean" on the type stack. This is a dependency, not a reference.

The declarator code adds b o o l e a n as a dependent type. The program terminates with

EOF. Now, enum {red, yellow, green) a ; and the function are printed. Since neither

b o o l e a n or b were referenced by an expression, neither are printed.

3.7.4 Structures and Unions

The most complicated declarations in C are those for multi-membered data

structures, or s t r u c t l u n i o n types. The basic syntax is (s t r u c t I u n i o n)

optional-tag ' { ' member-list ') ' optional-identifier-list ' ; '. If the identifier list is

absent, no variables, or objects that set aside storage, are declared, and this is a true type

declaration. If the tag is not present, then no variable declaration that occurs lexically later

in the program can refer to the structure. Members can be any storage-allocating

declaration, including other structures. Structures can be self-referencing.

Mincpp has a concept of the "current" external s t r u c t / u n i on symbol. It uses

this to add dependencies to the current external declaration being parsed. The strategy is

to collapse all the members under the external s t r u c t into dependency links and ignore

the details of the members. An example will be helpful.

1 s t r u c t a { i n t i ;};
2 s t r u c t b { s t r u c t a aa; f l o a t f;];
3 i n t £ 0 0 0 (s t r u c t b bb;}
4

Identifier "a" is placed in the symbol table as a s t r u c t l u n i o n tag. Since we are

at scope 0, symbol "a" is designated to be the current external structurelunion. The

grammar parses the members, (the ' ; ' separated list of declarations inside the s t r u c t

brackets), as before. The key difference is that the declarations reduce to non-terminal

member-declaration rather than declaration, and member-declaration loops via

member-declaration-list. As we saw before, " i n t i" pushes "BASIC" on the type

stack. When we see the declarator "i", we check to see if we are in a s t r u c t , and since

we are, "i" is not placed in the symbol table. This time, we reduce to

member-declaration. Instead of the process of linking text to declarators as before, we

just look at the type stack to see if the type is BASIC or not. This time it's basic so there

is nothing more to do. Now, the declaration reduces, and we add the text of the

declaration to symbol "a".

For the second declaration, (that of "b"), we insert "b" in the symbol table as a

structurelunion tag. The first member pushes type "st r u c t a" on the type stack. When

the memberdeclaration is reduced, we pop the type stack and see "a", not "BASIC".

We lookup "a" and add a dependency link fiom "b" to "a". The rest of the processing is

similar to that described for "a". Here, we just show one dependent type, but there can be

an arbitrary number of types that attach themselves to "b".

The hnction foo has one local variable, bb. The local declaration is parsed just

like an external declaration, with one important difference. Local declarations that refer to

non-BASIC types cause a reference to occur instead of a dependency, as is the case for

scope 0 declarations. There are some other issues regarding local declaration that will be

deferred until later in the section devoted just to them. The key point is that the reference

to type b in the local declaration marks the symbol b as referenced. As the dep array in

symbol b has a pointer to a, we follow the pointer and also mark a as referenced. This

algorithm does a depth-first tree walk of the dependency arrays to mark as referenced the

type dependencies.

It is now time to explain the NAMELESS symbol that always is placed in the

symbol table at program startup. Recall fiom earlier discussion the fact that the tag of a

s t r u c t declaration is optional. This allows declarations such as

s t r u c t (i n t x; i n t y ;) P o i n t ;

But now consider the following program:

typedef i n t temp;
s t r u c t { i n t i; temp t ;} a;

Ignoring the specifics of t ypede f , which is the subject of the next section, the

notable thing here is the lack of a tag and a type dependency between the variable a and

the typede f temp. For such instances, a special variable, NAMELESS, is made the

current external s t r u c t . Now, a dependency between NAMELESS and temp is made

for the second s t r u c t member. Later, when the whole declaration is parsed, we copy

the dependencies from NAMELESS to "a", which is the only symbol table symbol in this

example. Had we said "a, a1 , a2" instead of "a", the dependencies would have been

copied to each in turn. After copying, NAMELESS dependencies are cleared to ready it for

its next use.16

3.7.5 Typedef Declarations

Typedef in C does nothing more than provide a handy way to provide an

alternative name for an existing type. The existing type can be built-in or user specified

(enum/struct/union). A simple example to explain mincpp's treatment of

t ypede f names should suffice:

' 6 ~ ~ ~ ~ ~ ~ ~ ~ is a poor choice of name for this symbol as it could collide with a program name.

A better name would be "' or '$', characters other than @ whch are not part of C's character set. The

character @ cannot be used as it is already reserved to delimit fields in the trace file. Also, the special

symbol for this purpose could be kept outside of the symbol table, but keeping it inside allows for a

simpler and cleaner implementation of tagless structures.

1 typedef int temperature;
2
3 temperature t;
4
5 int f o o 0 It = l o o ;]
6

The keyword t ypede f has the effect of putting mincpp into a mode where

declarations do not populate the symbol table as objects but instead adds a type name

symbol. The declarator is inserted into the symbol table as a typedef name rather than as

an object. The end-of-declaration processing ties the text to the typedef name symbol

t e m p e r a t u r e . At line 3 the type-specifier code again pushes t e m p e r a t u r e on the

type stack. The declarator code creates a new object symbol for t, and the declaration

code pops the type stack, creates a dependency from t to t e m p e r a t u r e , and links the

text. Inside the fbnction, t reduces to a primary-expression, which causes scope 0 t to

be referenced, as well as t emp e r a t u r e via the dependency link.

3.8 Function Definitions

So far, we have been concerned only with external declarations. The other

syntactic element at external-definition level is the function definition, or body. As we

saw earlier, mincpp treats the entire block of a function as a single text unit. For fbnction

definitions, the overall strategy is to alter the behavior of local declarations to cause them

to be in reference mode rather than dependency mode. We also create local declaration

symbols for reference but do not tie any text to them, so they are not put in the text chain,

and we delete them when they fall out of scope. Lastly, fbnction parameters require some

special treatment, especially the ANSI prototype form.

Nothing inside a function is minimized. They are parsed only to see what they

reference.

3.8.1 Old-Style Parameters

A fbnction parameter can be thought of as a local variable in scope 1 that is

logically inserted into the symbol table right after the ' { ' that opens a hnction body.

1 i n t a ;

2 i n t f o o (a)
3 i n t a ;
4 I
5 a = 100;
6 1
7

Here, scope 1 a is what the expression at line 5 involving a references, not scope

0 a , which has been hidden by the local symbol with the same name. The grammar has a

non-terminal, old-function-declarator, that is used when the hnction parameter list is

closed by the end parenthesis and the next token is not the open brace that starts the body.

This sets a flag that indicates that we are parsing declarations that are hnction parameters.

So, when declarator "a" is parsed, it is inserted at scope + I, or just scope 1 in this

example. At declaration end, we see that this flag is set and do not tie any text into the text

chain, since elements in the text chain are just those of external-definition granularity.

The expression involving a causes a to be looked up, and the most deeply nested one is

returned, or the scope 1 a here. When we fall out of scope 1 at the end brace, all scope 1

symbols are deleted, or just scope 1 a that has its reference field set. So, scope 1 a came

and went, and the only real effect was to cloak and hide the external a so it would not get

its reference bit set. Finally, once again we tie the hnction text into the text chain when

the external-definition for function-definition is reduced.

3.8.2 ANSI-Style Parameters

A variation on the parameter theme is hnction definitions that use the ANSI

prototype syntax.

f l o a t f ;
i n t f o o (f 1 o a t f)
{ f = 2.0;)

Scope 0 f is processed as usual. Inside the parenthesis, f reduces to

parameter-declaration." This causes f to be inserted tentatively, meaning it is stored

"1x1 the treatment of function declarations, we saw that the identifier could be missing. This is

known as an abstract parameter in that the type but not name is declared. C* extends this syntax to the

function definition parameters as well. This allows the programmer to explicitly state that this is a

away internally by the symbol table but not really put in the real hash structure. This is

because we do not yet know if we are parsing a function declaration or a function

definition. We have seen this before when discussing function declarations. The open

brace in this case triggers a utility function called function - def () . One of the things

it does is to call the symbol table commit - tent at ive () routine. This takes the

tentative list and promotes them to be real symbols. It inserts them at scope + I since the

helper non-terminal that increments scope on recognition of the open brace has not yet

reduced (but it will soon). So, here a is promoted to scope 1 and the body parsing begins.

Just as for an old-style parameter, f references scope 1 f, then scope 1 falls out of scope

after having hid scope 0 f from being referenced, scope 1 is exited upon ') ', and scope 1

f is deleted.

3.8.3 Local Declarations

Function parameters, which we have already treated, are just a special case of local

declarations. They are inserted and deleted as they fall in and out of scope. The trick to

insert the parameters at scope + I is not needed.

1 int a;
2 int foo ()

3 I
4 int a;
5 a = 7;
6 1
7

The only difference between this and the old style example is that the local variable

is a true scope 1 variable rather that a parameter scope 1 variable. l8 Scope increases as

more open braces are seen, indicating statement block begin and scope decreases as close

brace is seen, indicating statement block end. The final close brace terminates the hnction

body, and all scope 1 locals, either "real" or "parameter" are deleted. Scope > 1 variables

are deleted as the '1' that closes the scope is encountered.

parameter to the function, but that it will not be used. This can allow control over compiler warnings

about unused parameters.

I8~his can chain indefinitely. Consider int f oo () (int a ; (int a; a = 9 ;))

3.8.4 Referencing

This concludes our discussion of specific language constructs that we will examine.

Before proceeding we will consider one more example:

i n t a;
i n t b;
c h a r **c;
s t r u c t s { i n t i;);

i n t £ 1 0
(

s t r u c t s ss;
1

i n t £ 2 0
(

c = 0;
1

Variables a, b, c, and s have symbols created and are then chained to the text,

since they are external declarations. Function fl is placed in the symbol table, and

references s through the declaration for s s. C is referenced by f 2 . At the end, a and b

are not printed since they are not referenced, c and s are printed since they are

referenced, and the two functions are printed since function bodies are always referenced.

3.9 Save and Replay

When the development of mincpp's parse mode was complete, an investigation

into strategies for boosting performance was conducted. Profiling the application

Bre93bl revealed that 96% of the program's execution time was spent in y y l e x () and

yypar s e () , in other words, the majority of processing time was spent parsing. This was

a welcome result, as it showed that the symbol table and other processing that mincpp

does did not significantly add to the time just to recognize input as C code via parsing. It

also suggested that an approach for saving mincpp's state in an external file and

replaying it later would result in reduced overall processing time.

3.9.1 Save

On an initial pass, the trace for the entire translation unit is saved. On a subsequent

run, the trace can be replayed instead of parsing the same translation unit. This is

ineffective as an actual caching mechanism since it does not accommodate any changes in

the files, but it is usehl for setting an upper limit on cache efficiencies. Fully parsing gives

a worst case, or zero percent caching limit. Replaying gives a best case, or 100 percent

caching limit. The effectiveness of caching is dependent on the nature of change to the

files. Local changes to C modules and header files will re-use most of the trace

information and caching will be effective.

All of mincpp's state is encapsulated in its symbol table. Any manipulation of the

data structure is done through the symbol table manipulation hnctions prototyped in

s ymbo 1 . h. There is a clean interface that resembles a C++ class with all data members

private. The code is, however, just C code that obeys abstract type coding rules.

Save works by adding a single field to the symbol structure, "id", which contains

a unique symbol number. This is done because the in-memory symbol address is not

persistent and is only valid for the current execution of the program, and we need a way of

identifjmg symbols persistently.

Every symbol table manipulation fknction had a line of code added to it to append

a line to a file (the T r a c e file) giving the operation performed and the hnction

arguments. Each hnction was assigned a number, or operation code. It writes that instead

of the name of the fbnction, mostly to save space. Most of the symbol table hnctions take

symbol pointers as arguments. A D i c t i o n a r y class was added to store associations of

"symbol id t, symbol address" pairs. This allows the hnctions to lookup the i d for a

symbol address and transcript the i d to the T r a c e file instead of addresses. The

dictionary gets new pairs fiom the a d d - symbol () routine.

3.9.2 Replay

On startup, the environment variable USE-TRACE-CACHE is examined. If it is

set, we replay by calling 1 o a d - s ym () , otherwise it parses by calling y y p a r s e () .

Load - s ym () opens and reads the trace file one line at a time. It dispatches on the

operation code it finds and calls the specified symbol table hnction. If the operation is to

create a new symbol with add - s ymbo 1 () , it reads back the memory address of the

newly created symbol (add - s ymbo 1 () returns this) and creates a dictionary entry for it.

If the operation has a symbol address as an argument, it translates the symbol i d from the

on-disk file into the memory address by looking up the id in the dictionary.

The Dictionary class takes addresses and turns them into id ' s on behalf of the

manipulation routine's need to create the file, and takes id ' s and turns them into memory

addresses on behalf of l o a d - s ym () 's need to have memory addresses to call the

manipulation functions.

3.10 Using Mincpp

One approach to using mincpp is to change the make rule used. In GNU make

[GNU92], mincpp can be used by changing a pattern rule like:

to:

8.0 : 8.c
cccp $< > tmp.i
mincpp < tmp.i > tmp.min.i
cc -c - g -0 $13 tmp.min.i
rm -f tmp.i tmp.min.i

Here the preprocessor output is re-directed to a temporary file. Mincpp reads

that temporary file and creates a second temporary file, which the compiler reads. Finally,

both temporary files are deleted.

Most compiler drivers will recognize the file extension . i as already-preprocessed

code and will skip the pass through cpp. When a hlly implemented mincpp exists, it will

be possible to use a "compiler driver-driver" that replaces cc. This obviates the need to

mod@ make f i 1 e s . Another possibility is to use an environment variable that instructs

cc as to which binary to use for the cpp pass. Many existing compiler drivers support

this hook by using the variable cppC.

3.11 Implementation Summary

We have seen how mincpp processes the various syntactical structures of the C

language. In order to keep the narrative rather straightforward, simple examples have been

used. In the next chapter we will see that mincpp can process realistic examples based on

complicated header files from the X window system and the various facilities provided by

the UNIX system, as well as the facilities provided by a commercial database system

vendor.

4. RESULTS

Compile times rise dramatically when using type-rich header files. Programs that

use these include clients of Motif, Open Look, Microsoft Windows, application

frameworks, and others. As applications and toolkits continue to grow in complexity,

header files are likely to only grow further.

4.1 Benchmark Descriptions

Mincpp was evaluated by observing compile time and various other factors for a

number of different benchmarks. These were chosen to represent code from different

application areas, as well as having a variety of Nova factors. To review, Nova is the

number of bytes after preprocessing divided by the number of bytes in the source module

originally (. i 1 . c).
The benchmarks are:

1. he 11 o , wo r 1 d. The classic first C program from Kernighan & Ritchie

[Kernighan88].

2. xmt r ave 1, from the Xiblotif version 1.2.2 demo directory. This is a mockup of a

sample "travel agency" application that tracks airline reservations.

3. wc (word count program) from the Berkeley BSD 4.3 sources.

4. t ims (Technical Information Management System) a database library example

program from Raima Data Manager 3.2 1 a [Raima92].

5 . o 1 - fonts, font-related applications from Sun Open Look version 3.

Note that none of the benchmarks contain global variables that cause unsafe

e x t e r n minimizations as described earlier. So, the results presented here are the same

with or without the option to disclose space-allocating declarations.

4.1.1 Small Benchmarks

The first three benchmarks, h e l l o , wc, and t i m s , will be collectively referred to

as the small benchmarks. These benchmarks have smaller file size increases after

preprocessing that do the others. As we will see, some compile time improvements are

obtainable even for the small cases, but the elapsed times are too small to really matter.

4.1.2 Large Benchmarks

Xmtrave l and 01 - f o n t s are referred to as the large benchmarks. This is

actually a misnomer since both are demonstration programs that are quite modest in size

compared to a typical application that one might develop. The common thread here is the

use of the X Windows system. As we will see, the larger the include files, the more

compile times can be reduced.

4.2 Directory Structure

L ex
hello

01-font s
L include

pixrect

timk include

vm
xmtravel

x l l
xm
xt

Figure 4.1 Examples Directory Structure

Figure 4.1 shows the layout of directories under the examples directory. The

source code for the various benchmarks was assembled under one directory for easier

experiment management. The standard preprocessor was run for each C module to scan

for path names of include files. This list was used to create a local include directory under

each benchmark's directory. Copies of all the header files needed in preprocessing were

made locally. This simplifies the task of creating a common make f i 1 e (just use - I . in

the rule) and also allows for easier transport of the directory across different machines.

4.3 Header File Structures

A tool to help understand header file include dependencies was constructed. This

tool takes a . i file with embedded line directives (#1 ine) and creates a hierarchically-

organized list of the files. A C program then generates Postscript code that shows the

inc lude file structure graphically. Following are text-based hierarchical include lists

for four of the benchmark modules, with graphical renderings of three:

/ / include hierarchy for tims de1info.c benchmark
/ /

1 delinfo. c
2 include/stdio.h
3 include/vista. h
4 include/dproto.h
5 include/lockcomm.h
6 . /tims.h

/ / include hierarchy for wc.c benchmark
/ /

1 wc.c
2 include/sys/param.h
3 include/machine/param.h
4 include/rnachine/devaddr.h
5 include/sys/signal.h
6 include/vm/faultcode.h
7 include/sys/stdtypes.h
8 include/sys/types.h
9 include/sys/stdtypes.h

10 include/sys/sysmacros.h
11 include/sys/stat.h
12 include/sys/types.h
13 include/sys/file.h
14 include/sys/types.h
15 include/sys/fcntlcom.h
16 include/sys/stdtypes.h
17 include/sys/stat.h
18 include/stdio.h

Figure 4.2 wc . c Include Tree

// i n c l u d e h i e r a r c h y f o r xmtravel t r i p - cb . c benchmark
/ /

1 t r i p cb. c
2 iiiclude/Xm/Xm. h

include/Xm/DialogS.h
include/Xm/Xm.h

include/Xm/SelectioB.h
include/Xm/Xm.h

include/Xm/MessageB.h
include/Xm/Xm.h

include/Xm/Text.h
include/Xm/Xm.h
include/stdio.h

./xmtravel.h
include/stdio.h
include/Xm/Xm.h
include/Mrm/MrmPublic.h

include/X11/Intrinsic.h
include/Mrm/MrmDecls.h

./menu cb. h

./client cb. h

./trip cb.h . /dialog. h

Figure 4.3 t r ip - cb . c Include Tree

/ / include hierarchy for 01 fonts f0nts.c benchmark
1 fonts. c 2 include/ ctype. h

13 include/c varieties-h
14 include/sys/signal. h
15 include/vm/faultcode.h

Figure 4.4 fonts. c Include Tree

4.4 Nocom

A tool called nocom was constructed. Nocom is simply a lex application with a

small driver that tokenizes a file and strips white-space. The primary goal of constructing

this tool was to put to rest any uncertainty as to whether or not all we were doing was

simple file stripping.

In a practical application, blank lines are not removed so that subsequent

compilation passes can report accurate line number information to the user. Here, nocom

also strips blank lines so that we can very accurately see the decrease in lexically

significant tokens that mincpp reduces. The make file runs cpp to create the . i file.

These are stripped by nocom to create a . nc . i file ("no comments"). Mincpp is run on

the . nc . i to create a .min . i ("minimized).

4.5 Makef iles and Build Scripts

One of the advantages of collecting all the source in a common area is that a

consistent build environment can be created. For our experiments, we use common

formats and conventions, and then include a common make f i 1 e fragment that contains

all the translation rules (also referred to as suffix rules or pattern rules). This ensures that

build transcripts are in a uniform format, which in turn allows automated creation of tables

and charts possible.

GNU make is used, primarily to access two features not supplied with standard

make: pattern rules and include-able makefiles. The pattern rule syntax is considerably

more flexible and power!%l that the standard make suffix rule (. c . i :), while the

included make fi le facility allows common definitions to be stored in one place and used

in multiple make f i 1 e s. For readers not familiar with gnu make, the suffix rule . c . o
expressed as a pattern rule is 8, . o : 8 . c, and the syntax "include fi 1 e" works just

like a #include in C source.

Xmt rave 1's make f i le follows:

OBJS = client cb.0 dia1og.o menu cb.0 trip cb.0 xmtrave1.0
IFILES = client-cb.i dia1og.i menu - cb.i trip - cb.i xmtrave1.i

DBGOBJS = client - cb.dbg.0 dia1og.dbg.o menu - cb.dbg.0 trip - cb.dbg.0
xmtrave1.dbg.o
OPTOBJS = client - cb.opt.0 dia1og.opt.o menu - cb.opt.0 trip - cb.opt.0
xmtrave1.opt.o
MINOBJS = client - cb.min.0 dia1og.min.o menu-cb.min.0 trip-cb.min.0
xmt ravel. min . o
DBGMINOBJS = client cb.dbg.min.0 dia1og.dbg.min.o menu-cb.dbg.min.0
trip-cb.dbg.min. o Gtravel .dbg.min. o
OPTMINOBJS = client cb.opt.min.0 dia1og.opt.min.o menu-cb.opt.min.0
trip-cb. opt .min. o Gtravel. opt.min. o

EXE = xmtravel xmtravel.min xmtravel.dbg xmtravel.dbg.min xmtravel.opt
xmtravel. opt .min

EXTRA - LIBS=-1Mrm -1Xm -lXt -1X11

include ../mkdef

xmtravel: $ (OBJS)
xmtravel.min: $(MINOBJS)
client cb.0 : client cb. c -
dialogTo : dia1og.c
menu-cb.0 : menu cb.c
trip-cb.0 : trip-cb.c
xmtrave1.0: xmtrZve1.c
client-cb.min.0 : client cb.min.i
dia1og.min.o : dia1og.min.i
menu-cb.min.0 : menu cb.min.i
trip-cb.min.0 : t~i~1cb.min.i
xmtrave1.min.o: xmtrave1.min.i
xmtravel.dbg : $(DBGOBJS)
xmtrave1.dbg.mi.n : $(DBGMINOBJS)
xmtravel.opt : $(OPTOBJS)
xmtravel.opt.min : $(OPTMINOBJS)
client cb.dbg.0 : client-cb.c
dialog,dbg.o : dia1og.c
menu-cb.dbg.0 : menu-cb.c
trip cb.dbg.0 : trip cb.c
xmtravel . dbg . o : xmtravel . c
client cb.opt.0 : client-cb.c
dialogTopt. o : dialog. c
menu-cb.opt.0 : menu-cb.c
trip-cb.opt.0 : trip-cb.c
xmtrave1.opt.o: xmtrave1.c
client-cb.opt.min.o : client-cb.min.i
dia1og.opt.min.o : dia1og.min.i
menu-cb.opt.min.0 : menu-cb.min.i
trip-cb.opt.min.o : trip cb.min.i
xmtrave1.opt.min.o: xmtrave1.min.i
client-cb.dbg.min.o : client-cb.min.i
dia1og.dbg.min.o : dia1og.min.i
menu-cb.dbg.min.0 : menu-cb.min.i
trip-cb. dbg.min. o : trip-cb.min. i
xmtrave1.dbg.min.o: xmtrave1.min.i
client-cb.i : client-cb.c
dia1og.i : dia1og.c
menu-cb.i : menu-cb.c
trip-cb.i : trip-cb.c
xmtrave1.i: xmtrave1.c
client-cb.min.i : client-cb.nc.i

dia1og.min.i : dia1og.nc.i
menu-cb.min.i : menu-cb.nc.i
trip-cb.min.i : trip-cb.nc.i
xmtrave1.min.i: xmtrave1.nc.i
client-cb.nc.i : client - cb.i
dia1og.nc.i : dia1og.i
menu-cb.nc.i : menu cb.i
trip-cb.nc.i : trip-cb.i
xmtravel . nc. i : xmtravel . i

In the make f i 1 e above, the first lines show groups of files that are the object

files that comprise a single executable. Lines of the form " < t e x t > : < t e x t >" show

build order dependencies: a translation including the file to the right of the colon results in

the creation of the file on the left.

Every module follows a certain translation flow. The . c is read by cc to create

three flavors of . o files, . o, . dbg . o, and . o p t . o. These correspond to compiling with

switches -c, -g, and -0 respectively. The . c is also read by c p p which creates the . i .

The . i is read by nocom to create the . n c . i. The . n c . i is read by mincpp to create

the . min . i. The . min . i is read by cc three times to create the three flavors of

minimized . 0's. There is a single executable (xmt rave l) created from the five separate

. o modules. There are six flavors of compile overall, three each for standardminimized

corresponding to the three flavors (-c, -g, and -0).

While we collect data for all three build flavors, we look in detail at the debuggable

flavor (. dbg, corresponding to -g). This assumption is driven by the observation that

mincpp is most applicable to the development phase where the edit/compile/link/debug

loop is focused on the creation and early testing of source. Here, full debug is the

prevalent mode of compilation. One might drop symbols later (the vanilla flavor, no

optimization, no symbols) and finally use optimization for release builds (and for pre-

release builds to test for compiler optimization bugs!). However, we will see that mincpp

reduces compile times even on optimized code.

Mkde f is a file included in every make f i 1 e to give a uniform transcript format

and ensure consistency in build procedures. The rules in mkde f drive the entire build

cycle: preprocess, compile, link, run (through the debugger). Testing was done by running

applications manually and performing whatever operations with the executable were

deemed complete to show that there were no runtime variances. This was done informally:

no attempt at evaluating testing effectiveness using test c ~ v e r a ~ e ' ~ o r runtime error

checking tools2' was done.

The complete text of mkde f and detailed descriptions of every translation rule will

follow:

#CC=cc
CC=acc -D STDC
#CC=CC -D-STDC- - - -D - C ~ ~ U S ~ ~ U S

#CPP=../../app/cccp -U - STDC -
CPP=../../app/cccp -D STDC -
#CPP=. . / . . /app/cccp -D - STDC - -D-cplusplus

%.min.i : %.nc.i
USE TRACE CACHE=n; PRINT TO MEMORY=n; YYDEBUG=; \ - -
export USE TRACE CACHE; export YYDEBUG; export - -

PRINT TO MEMORY; \ - -
cp $< /tmp/; \
time ../../c-src/mincpp < /tmp/$< > $@; \
1s -1 Trace; \
USE TRACE CACHE=y; PRINT TO MEMORY=n; \ - -
cp Trace Ttmp/; \
time ../../c - src/mincpp > /dev/null; \
rm Trace; \
Is -1 $ @

%.nc.i : %.i
time ../../c~src/nocom/nocom $< > £00; mv £00 $ @
1s -1 $ @

%.i : %.c
-time $(CPP) -P -I. -1include $< > $ @
1s -1 $ @ $<
time wc -c $ @

B.opt.min.0 : %.min.i
time $(CC) -c -0 -0 $@ -I. -1include $<
1s -1 $ @

%.dbg.min.o : %.min.i
echo " # 1 \"foo.c\"" > £00; \
cat £00 $< > tmp.i
time $(CC) -c -g -0 $ @ tmp.i
1s -1 $ @
rm -f £00

%.min.o : B.min.i
time $(CC) -c -0 $ @ -I. -1include $<

19 tcov or Testcenter [CenterLine93a]

''%x@, Sentinel, or Insight

B.opt.0 : %.c
time $(CC) -c -0 -0 $ @ -I. -1include $<
1s -1 $ @

%.dbg.o : %.c
time $(CC) -c -g -0 $@ -I. -1include $<
1s -1 $ @

%.o : %.c
time $(CC) -c -0 $ @ -I. -1include $<
1s -1 $ @

%.dbg.min : %.dbg.min.o
%.dbg : %.dbg.o
%.opt.min : %.opt.min.o
%.opt : %.opt.o
%.min : B.min.0
% : 8.0

time cc -0 $ @ $" -Bstatic $(EXTRA LIBS)
if [! -x $ @ I ; then rm -f $@; fi-
. . /dbxit $ @
1s -1 $ @
rm -f $ @
rrn -f $"

all : $(EXE)

clean :
rm -f core * . o *.i $(EXE) #*# *-

Table 4.1 Translation Rules

Rule

8.i : 8.c

Description

-time $(CPP) -P -I. -1include $< > $ @

The GNU preprocessor, cccp, is run, using the local

directories as search paths for # i n c l u d e files. The switch -P

specifies that # l i n e number directives NOT be present in the

~ t p u t . Mincpp is not equipped to deal with these. The rule uses

the automatic make variables $< and $ @ to specie the matching

. c and . i files respectively.

%.nc.i : %.i

% . min. i : % . nc .

% . o : %.C

B.dbg.0 : %.c

B.opt.0 : 8.c

%.min.o :

% .min.i

%.dbg.min.o :

time ../../c - src/nocom/nocom $< > £00; mv foo $ @

Nocom from the mincpp source directory (c - sr c) is

run on the . i file and moved (through a temporary file) to the

matching . nc . i file.

iUSE TRACE CACHE=n; PRINT - TO - MEMORY=n; YYDEBUG=; \
export USE TRACE CACHE; export YYDEBUG; export
PRINT TO MEMORY;-\
cp $<-/home/tmp/; time wc -c /home/tmp/$<; time wc -
c /home/tmp/$<; \
time ../../c src/mincpp < /home/tmp/$< > $@; \
USE TRACE CAEHE=~; PRINT - TO - MEMORY=~; \
cp Trace Thome/tmp/; time wc -c /home/tmp/Trace;
time wc -c /home/tmp/Trace; \
time ../../c-src/mincpp; \
rm Trace; \

Several pieces of data are collected here. First, some

environment variables are explicitly set and exported.

USE-TRACE-CACHE specifies mincpp's mode: parse or

replay. PRINT-TO-MEMORY is an un-implemented feature

that was intended to allow mincpp to output to an in-memory

data structure to measure file UO effects. WDEBUG is a yacc

variable that allows rule reductions to be transcripted to stderr:

this is a parser debugging tool.

Wc is then run on a copy of the . i file. Mincpp is run in

parse mode, then the resulting Trace file is examined for size,

then mincpp is run in replay mode, then some clean-up occurs.

Wc is run to allow measurement of file UO overhead.

%.opt.min.o : %.min.i
time $(CC) -c -0 -0 $ @ -I. -1include $<

%.dbg.min.o : %.min.i
echo " # 1 \"foo.c\"" > foo; \
cat £00 $< > tmp.i
time $(CC) -c -g -0 $ @ tmp.i
rm -f tmp.i £00

%.min.o : %.min.i
time $(CC) -c -0 $ @ -I. -1include $<

%.opt.o : %.c
time $(cc) -c -0 -0 $@ -I. -1include $<

%.dbg.o : %.c -

Mkde f uses an external script to invoke the debugger, dbx and collect data on

8 .min. i

%.opt.min.o :

% .min.i

8 : 8.0

%.dbg : 8.0

%.opt : 8.0

%.min : 8.min.o

%.dbg.min :

8.min.o

%.opt.min :

8.min.o

clean

debugger load times. It just loads the program and quits so the time has a relationship to

time $(cC) -c -g -0 $ @ -I. -1include $<
%.o : B.c

time $(CC) -c -0 $ @ -I. -1include $<

These are pretty straightforward: there are separate rules

to make sure the .07s have different suffixes to match their flavor.

The rules match suffix and use -c, -g, and -0 appropriately.

There is a bug in Sun acc so that if there are no line numbers it

causes a compiler crash. That is why the operations involving

#line 1 foo . c are there.

time $(CC) -0 $ @ $^ -1xview -1olgx -1X11
../libvistamu.a -lXt -1Xm -lMrm
../dbxit $ @

The link. All the libraries that are needed in any of the

binaries are specified so one rule works for all links. Dbxit is an

external script that runs the program under the dbx debugger.

This loads the program.

rm -f core *.o *.i

This cleans things up.

the load time of the binary.

time dbx <<!
debug $1
quit
!

4.6 Collection Methodology and Tools

There is a top level make fi le in the examples directory that changes directory

into each of the 6 example directories and does a make a1 1. This causes all builds and

runs to occur and transcript to stdout.

all :
cd hello; make clean; rm -f build.*
cd wc; make clean; rm -f build.*
cd tims; make clean; rm -f build.*
cd xmtravel; make clean; rm -f build.*
cd 01 fonts; make clean; rm -f build.*
cd heilo; make > ../build.log 2>&1
cd wc; make >> ../build.log 2 x 1
cd tims; make >> ../build.log 2>&1
cd xmtravel; make >> ../build.log 2>&1
cd 01 - fonts; make >> ../build.log 2>&1

. . . repeat

cd hello; make clean; rm -f build.*
cd wc; make clean; rm -f build.*
cd tims; make clean; rm -f build.*
cd xmtravel; make clean; rm -f build.*
cd 01 fonts; make clean; rm -f build.*
cd heilo; make >> . . /build.log 2 x 1
cd wc; make >> ../build.log 2>&1
cd tims; make >> ../build.log 2>&1
cd xmtravel; make >> ../build.log 2>&1
cd 01 fonts; make >> ../build.log 2>&1
./mktab.sh

This was run three times with a make clean in-between runs to force a fill re-

build for each iteration. All of the output was sent to a log file. This raw compile data was

processed into table format by an awk program. The awk program keeps arrays of data

for each event of interest. Since three runs of data are in the same file, it updates each

array entry three times. At the end, each data bucket is averaged, and printed in table form

suitable for processing by a spreadsheet program. Excel spreadsheets were created by

loading b u i l d . txt and creating derivative spreadsheets.

All data was collected on a Sun SparcServer 670MP with 5 gigabytes SCSI-2 disk,

192 megabytes of memory, running SunOS 4.1.2. The data was collected while the

machine was in single-user mode to insure that there would be no interference from the

network or other users.

4.7 Result Data

The data collected by the procedures outlined above will be presented. A brief

description of the areas of interest will be followed by a table and one or two graphs.

Table column header descriptions will follow the matching table. Discussion of the results

will conclude each section.

4.7.1 File Sizes

The increase in file size after preprocessing, and the decrease in size possible

through minimization is directly correlated to the compile time reductions. Here we will

show the sizes of the various intermediate files that are introduced by the preprocessing

steps.

Table 4.2 Benchmark File Sizes

. c : Size in bytes of original . c module.

. i : Size in bytes of unmodified preprocessor output.

. nc . i : Size in bytes of white space and comment stripped preprocessor output.

. min. i : Size in bytes of minimized, white space, and comment stripped

preprocessor output.

Increase: Byte increase in size from . c file to . i file (. i - . c).
Decrease: Byte decrease fiom . i file to . min . i file (. i - . min . i).

. i S b R e c C E s ~ m Y cases

Figure 4.5 File Sizes: Small Cases

.i She Redudion, large cases

80000

70000

60000

50000

-
0)

.3

30000

20000

10000

0
'? '? '? '4 '? '? '? .. q
" + f l i + p t q e 3 = d J a - o ?!

. s a = d - l E E 3 4 2
In a

E
module

Figure 4.6 File Sizes: Large Cases

Here we show the sizes of files at the end of various preprocessing steps. There is

a general trend for the . min . i to be around the same size as the original . c for the small

cases, around twice as large for the xmtravel modules, and around 10 times as large for

the 01 - fonts modules.

Following the discussion of the last chapter, it can be concluded that the font

applications make more use of their header files than the other applications. Since more

declarations are referenced, less text is spurious, and the minimization is comparatively

less than for the other applications considered as a whole.

4.7.2 Cpp and Mincpp Times

The time to execute the preprocessing tools is critical in reducing compile times.

Adding minimization to preprocessing must save more time than it adds to the

preprocessing phase.

Table 4.3 Cpphfincpp Timings

module cccp H ~ C nocom mincpp/s mincpp/r # Trace Worst
inc Case

0.10j 0.101 0.101 0.101 0.00 1 5054 0.10

-nu c b . ~ 1.40i 0.201 1.201 0.501 42 200702 2.101
t r ip cb. c 1.60: 0.201 1.201 0.50 49 218289 2.401

Gimit-cb. -.-..----.-.-.----- c 1 . 6 G 3 1 . 2 ? 1 ---..---.--.--. b .-.-------..--.-.---.-- 0.60 49 -.-.-.-.-- 230755 2.56
dialog. c 11.801 0.201 1.301 0.60 56 231712 2.80

L -̂

entinf o . c
.---...----..-.-..---+--.--.---.-.

findpubs. c .------.----.-----.----.
raotravel . c
i

cccp : Time in seconds for cpp to run.

-.--A -.-. ~-~
0.20i 0.101 0.ldr 0.20 0.10' 5 -..---.-+.------- 1 1
0.201 ~ . l o r 0.20 0.20r 0.1q 5 i" +.-.---- * --------.- ..---.-
1.531 0.201 1.101 1.80t 0.501 39

8-1. font-c

disp f 0 n t s . c
C

' d i ~ ~ f o n t s 2 . c

14637 .-------
15079

I--.-

195117

type f0n t . c 2.30; 0.30; 1.80: 4.50, 0.701 119 310743 5.00 I.-...- % * ...-.......-..... * 1
fonts . c 2.30' 0.301 1.80' 4.60 i 0.801 119 324382 5.10

...

0.20
0.20:
2.13.

2.101 0.301 1.501 3.571 0.601 118 249498
250745
250795

2.101 0.30 1.501 3.571 0.60
3.87
3.87
3.87

117
2.10i 0.30 1.501 3.571

----.I-ll * .------ L-
0.60 117 -- --.---- -9-

wc : Time in seconds for wc to run.

nocom: Time in seconds for nocom to run.

mincpp/ s : Time in seconds for mincpp to run in save mode. Mincpp is creating

a Trace file and parsing 1 00% of its input.

mincpp/ r : Time in seconds for mincpp to run in replay mode. Mincpp is

reading the Trace file and is parsing none of its input.

inc: Number of header files read in by the preprocessor.

Trace : Size in bytes of mincpp's trace file, created during save mode processing.

Worst Case: Time in seconds for total preprocessing assuming no optimizations. This

is cpp time plus mincpp time.

Preproce-r Tool Times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Row

Figure 4.7 CppMincpp Timings Graph

We observe the cpp and nocom take roughly the same time to run. This is

intuitively appealing because both tools are scanning the input and doing some processing

based on token content. They are not parsing the source language but are instead

concerned with token manipulation: cpp with # directive interpretation and macro

identifier identification, nocom with identifying white space tokens and matching the end

of the white space.

Wc is given to show the raw time it takes to read the file off disk. This is used later

to factor out some file 110 in calculating worst case timings for a cpplmincpp joined

binary.

Mincpp takes about the same time as cpp for the small cases, about 50% more

for xmtravel, and about 2 times more for 01 - fonts. Since mincpp includes a

complete C parser, we do expect it to take more time that cpp. Some of this difference

lies in relationship to how much code is stripped. The font code is stripped relatively less

than the xmtravel code, so the output is bigger.

4.7.3 Compile Times

The most important data collected is on compile times. This table shows raw

compile times for standard and minimized text. These numbers are too optimistic for the

minimized case since no preprocessing is included. We need to add in preprocessing time.

This is done in a later section considering three different preprocessing scenarios.

Table 4.4 Compile Times

module I cc(-g) I cc(-glm) I cc I cc(m) I cc(-0) I cc(-Olm)
[hello. c 0.60
e ------ 0.601 0.60; 0.50 0.90/ 0.80:
IWC-c 1.50, 1 . ~ - ~ . o o

-----i.-------_--

0.90: ---

1tims.c

1.101 0.80: 0,901 0 . 7 - + ...----------
borrow. c 0.90: 1.00 0.731 1.67

-._cI_c~---.---_cI--- --.-A
1.40

' 1.20;
---+-- . 0.90; 1.00 0.80: -.- --- 1.701

1 f indpubs . c 1 1.37i 1.001 1.10 0.80: 2.00 1.80
i

- I

1.601 .i-ii--i-.-.I.-.i..ii..i-ii.i..._ 4.10 1.201 4.60 1.731
i 5.23' 1.20i 4.30 l.0Oi 5.53
j .-&..

1 5.731 2.001 4.90 1.501 6.10
i
iclient cb. c 1 6.23 + 1 2.57; 5.27 1.901 7.20 3.601

/ 7.10i -.-+ 3.10: 6.00 2.431 8.40 4.701
Isiaple-font. c v 7.93 ' 2.03 6.771 1.80 i -----.-..-.-.-.--....---.--.-- 7.33 2.401 -(

tdisp .------.- f0nts.c 7.93i 2.40i 7.00 ...--..-.....-..--. 2.101 - 7.67 2.801 1

cc(-g): Time in seconds for debug compile of unmodified module.

cc(-g/m): Time in seconds for debug compile of minimized module.

cc: Time in seconds for non-debug, non-optimized (-c) compile of unmodified module.

cc(rnin): Time in seconds for non-debug, non-optimized (-c) compile of minimized

module.

cc(-0): Time in seconds for optimized compile of unmodified module.

cc(-Olm): Time in seconds for optimized compile of minimized module.

Debug Compile Times

heU0.c tims.c findpubs.~ dbnt_cb.c dbp-fonts2.c

Module

Figure 4.8 Compile Times Graph

The non-minimized are for straight cc, reading fiom the . c file. The minimized

are for cc reading the . min. i, so these times are too optimistic since they factor out

preprocessing. A later table will show times for factoring this in several different forms

based on the attributes of the build.

4.7.4 Object File Sizes

An interesting side-effect of minimization is that object file sizes for debug

compiles are reduced. This is intuitively appealing, since we reason that the declarations

that are missing are also not taking space in the object file's symbol table.

Table 4.5 Object File Sizes

a .o(-g): Size in bytes of object file compiled debug using unmodified module.

.o(-dm): Size in bytes of object file compiled debug using minimized module.

.o: Size in bytes of object file compiled non-debug, non-optimized (-c) using

unmodified module.

.o(min): Size in bytes of object file compiled non-debug, non-optimized (-c) using

minimized module.

module
he l lo . c

P=-
ilistkeys . c ----
Pstauth . c

-.--------.-3-.-

tims. c

F i n f o . c -. ---- .-
borrow. c

entinf o . c

f indpubs . c

-travel. c --.-.-..-.-
manu-&. c

trip-cb. c .-
c l i en t & . c

z?r----

dialog. c

.o(-0)
152

3804
712
876 ------.------.------*.-.-.-----------.------.----

2492
1904

.- . -.
2240
2996
3404
6264 --
3840
5460
7724
8176

.o(-O/m)
152

3632
712
876

2492 ..-.-...---.-.-.-..-.-.-----.
1904 .----
2240
2996
3404
5864 -.-.-.-.-.----.------.-
3432 --
5044
7724
7764

font.:

.o(m)
168

4916
764
916

2580 .-.- .---. -- --
2124 -- --.---. --.-.
2556
3436
3640
6152 -..--.--..
4128
6772

10392
11884

.o(-g)
1368

12452

-.-.---.-- ...--.-..--.. =--.-.--.---.-.

.o(-glm)
1068 ---
9520

62388
disp f0nts .c ---- =
disp fonts2. c ---.. .r?? ...--......--.-....-...
typm font . c

fonts. c

.o
168

5088

1 9 0 8 1 15281 15281 .13761 137\ -.-- -.-.-.-..

-- 764
916 -..--...--

2580
2124 -.
2556
3436
3640
6552
4536
7188

10392
12296

3608

.-.--..-.-.-.- .-.......-..-...- -.--. -.--.-.

1940

64432 -...-....~.--~~--------..-..--....-.....~..-~--
64528 -. .-.-.----..----.
75064
81940

23472 3216 3216 2884 2884 .-.-..-.- .----..-. .--.....---
23568 3180 3180 2816 2816 .---..-..----.--
37248 3284 3284 2732 2732
45836 8480 8480 7100 7100 ----- --

388% 2220 -----.-
5148
5604
6500
7532
8060

55200
55756
60180

-.-.-.-.-- -... -
4124
4164 -
4964 -
6164
6620

24828
10324 .-.---..--.-...--.-.-.-.-------.-.---------------.----.-..-.----.-.--.---.-.---.---.--------.-....-.-.-....-.-----...---.
28580

66588
69536

36156
37892

.o(-0): Size in bytes of object file compiled optimized using unmodified module.

.o(-Olm): Size in bytes of object file compiled optimized using minimized module.

Object File Sire

""T

module

L 1

Figure 4.9 Object File Sizes

The interesting result here is that mincpp is able to reduce object file sizes

considerably for debug compiles. This results in disk space savings as well as some

incremental benefits in link and debugger load time. These are incremental benefits and

will not be discussed further to keep the discussion focused on compile time issues. The

reduction in . o size is explained by the fact that the object file's symbol table has

information for all the types mentioned in all header files, whether they are needed or not.

Since mincpp is deleting unneeded declarations, the space that would have been needed

for these is reclaimed. Again, the large examples show a greater difference than do the

small examples.

4.7.5 Linker and Binary Results

The reductions in object file size for debug compiles also result in some decrease in

linker and debugger load times. These are presented for the debug case only.

Table 4.6 LinkerIBinary Statistics

[simple = -....... font
disp-fonts .--.------
disp-hnts2 -----
I-iiG-3~. - .------.
I hnts

binary

Id: Time in seconds to link the unmodified executable.

Id min: Time in seconds to link the minimized executable.

syrns: Number of debug symbols in the executable as reported by the debugger for the

unmodified executable.

Id Id
min

a.out syms a.out
min

dbx
min

syrns
min

dbx

syms min: Number of debug symbols in the executable as reported by the debugger for

the minimized executable.

dbx: Time in seconds to load the unmodified executable into the debugger.

dbx min: Time in seconds to load the minimized executable into the debugger.

a.out: Size in bytes of the unmodified executable.

a.out min: Size in bytes of the minimized executable.

ldldbx Run Times

timsl-g simple-font/-g dip-fonts21-g fonts/-g

Binary

Figure 4.10 Linkermebugger Graph

We observe some positive effects from minimization for debug built binaries, but

not any real effect for the other two flavors. An interesting experiment to conduct would

be to look at very large binaries with tens to hundreds of thousands of symbols and see if

the effect increases.

4.7.6 Overall Compile Times

Here, we consider more realistic compile times. We use the standard compile time

charted earlier, but now we add preprocessing time back into the minimized compile time.

This is done three ways: full preprocessing plus minimization (minimization does full

parsing), minimization with full replay, and minimization (full replay) where the build can

be avoided. Because of the length of the column descriptions, they are given after the

chart.

Table 4.7 Overall Compile Times

module cc wrst
case

hello. c 0.60'

.--.--- = .-...- C...- +---.-.
c ~ s p - fonts2.c 7.90 6.30! ~~~~~ 0.60, 2.11 3 z 1 p 2 1 7x1 ,.--3 -....-. + -...------
typm font . c 9.07 8.231

--?----
0.701 2.3 4.5 3.23 0.7 0.3

fonts . c 9.63 9.101 4.80 0.80; 2.3
--L----L

4 0.8 0.3

............-.-.--...........
WC. c

listkeys. c .--.
listauth. c

tinu. c

delinf o . c
borrow. c

entinf o . c
f indpubs . c
xmtravml . c-.-........-.........-....................................
mmnu cb . c .--...-... =-
trip-cb. c

client cb.c

dialog. c

simple f0nt.c

c ~ s p f0nts.c

100% cache
build needed

0.201 0.601 O.OO[0.1
1.50
0.90
0.90
1.00 ..
1.10
1.10

1.20 -
1.37 --
5.03
5.23
5.73
6.23
7.10
7.93
7.93

0.1 ----.---.----..--.
0.2

0.13
0.2
0.2 ..
0.2
0.2
0.2
0.2
1.8
1.9 ..-..-.

2-..............
2.13
2.2

3.57

.....................................
1.001 1.20
0.33:
---i-----------------

0.60
0.43; 0.63
0.601 0.90

4
0.601 0.90
0.70i 1.00 -*...
0.70i -- 1.00 - 0.801 -. 1.10
3.731 2.10

+ ..
3.301 1.70 :
4.401 2.50 ..
5.13i 3.17
5.901 .- 3.70
5.90i 2.63

build
avoided

.--. -
0.00' 0.2
0.001 0.2
0.00' 0.2
0.10/ 0.2,..............
0.101 0.2 w.................. + .---.-...--
0.101 0.2 ...-........,......-..
0.101 0.2
0.10i 0.2 --..--..--- 4--

0.501 1.53 .
0.501 1.4 ,,
0.50; 1.6

L
0.601 1.63
0.601 1.8
0.601 2.1

2.4 0.6 0.3

0.6
1.2
0.6

0.63

6.271

cccp

0.601 2.1' 3.57

0 .
0
0
0

sav

0.1
0.1
0.1
0.1
0.1'
0.1 -
0.1 ---
0.1
0.1
0.2 --..---
0.2
0.2

0.60.2
0.2
0.3

0.8
0.8
0.9
0.9

1.6
1.2

2
2.57
3.1

2.03

cc
min

0.1 --.-
0.1 ---
0.1 . ..----.
0.1

1 0 . 1
0.5
0.5 -...-.
0.5 ..----

0.6
0.6

rst w

Compile Times (large cases)

10.00 T

o o o ' ? - o ~ o o o o
E ? g $ (U

g ~ l ~ ~ x 8 4 2 El
b . . s : s J % , E g . - -

0 .g 4 .4
(I) 0

E
module

cache/100

avoided

Figure 4.11 Overall Compile Times: Large Cases

We now proceed to describe the table column descriptions and discuss the

methodology and results.

Table 4.8 Overall Compile Times Column Descriptions

Column

cc

worst case mincpp

100% effective replay

caching

100% effective

caching, and build can

be avoided.

cccp time

mincpp/parse mode

cc time for . min . i
file

Description

Standard compile using cc as compiler driver on the . c file.

Worst case performance with mincpp. Formula for large cases

i s c c c p + m i n c p p / p a r s e - w c -2wc -3wc.

Assumptions: c ccp /mincpp are in same binary, mincpp read

input fiom an in-memory buffer that c c c p writes (c c c p

changed to write the buffer). Mincpp saves a read (-wc),

c c c p saves a write (- 2 wc), and mincpp does not write a

T r a c e file (-3wc).

Write 110 was measured as twice as slow as read I/O on the

experimental system. The subtracting for no trace is justified

since the trace file is a caching optimization that if turned on

results in slightly higher times for the first run with the

expectation of savings upon reuse.

For the small cases we u s e c c c p + m i n c p p / p a r s e -

l w c as the numbers are too small to really matter.

The build is needed, but the trace cache is 100% effective. While

clearly overly optimistic, we will argue in Chapter 5 that 80-90%

is a reasonable expectation. Preprocessing time is that for

mincpp/replay .

As above, caching is effective, plus at the end the . min . i file is

shown to be the same as the last one produced, and the build is

short circuited. More detail is presented later on how this is

done. Overall build time is that for rnincpptreplay.

Repeated here for spreadsheet calculation.

Repeated here for spreadsheet calculation.

Repeated here for spreadsheet calculation.

In comparing mincpp with standard cc , there are three cases to consider:

1. There is no replay, just parsing. Cpp is still used for preprocessing. This is called

the worst-case condition. In calculating this, we assume that c c c p and mincpp

are both modified to be in the same binary, and they use an internal in-memory

buffer to reduce file VO. Also the trace file is not written. The trace file is really a

part of the caching strategy, and must be considered a first-time overhead cost to

be repaid later via reuse.

2. There is 100% reuse of the trace cache, and the build is necessary. In other words,

imagine that mincpp saves previous copies of . min . i files. It could then

compare the present translation to a past one. If they are the same, it could just

t o u c h the . o file and bypass cc altogether. Otherwise, it calls cc so it can

replace the . o. This case is for calling cc to create a new object file.

3. Same as 2 but it can just touch the . o .

mincpplreplay mode

w c time

Chapter 3 discussed replay mode and hinted at build avoidance. In Chapter 5 we

will explore the issues of replay caching and build avoidance in much more detail.

Refemng now to the chart, we see improvements that are meaningfbl even

assuming the worst case of no caching. We also see that caching provides dramatic

improvements over no caching. Build avoidance is almost an order of magnitude better.

Overall, mincpp provides significant reductions in compile times for all three build

scenarios.

Referring now to the table for the small cases, we see that mincpp worst case is

about a draw with cc , that replay caching always helps some, and that build avoidance

can help a lot. In any event, a reduction fiom 0.8 seconds to 0.6 seconds with 100%

caching is not world-changing news. Build avoidance is still very helpfbl if a header file is

changed. The basic conclusion is: if the program is a small C program then mincpp is not

Repeated here for spreadsheet calculation.

Repeated here for spreadsheet calculation.

going to be tremendously helpfbl unless a header file is changed. Despite this, there are

some point development tools described in Chapter 5 that would be usehl even in the

small program environment.

4.7.7 Compiler Drivers

As discussed in the previous chapter, this work was originally conceived as an

optimization to a C++ compiler system, not just for C alone. While the compile time

improvements are significant just for C, as we have just seen, fbrther improvements for

C++ are anticipated. Taking advantage of the similarity between C and C++, one module

from the benchmark suite was compiled with a variety of compilers ranging from a K&R

C compiler to several commercially available C++ compilers. The results suggest that the

improvements demonstrated here will increase with C++.

Table 4.9 Compiler Driver Statistics

cdmincp plr :ij 0 . ~ 1 85081 lg511q -- --- ------.. -.---.-.-. .-.-------..-- --.-- ----
act - 55200
acc/mincpp/s 1.2! 24824 1951 17
acclmincpplr 0.7 / 0.71 24824, 1951 171

"-c": All compilers are compiling -c: non-optimized, non-debug.

mpositoy
01

tool
I cc

"-g": All compilers are compiling -g: full debug.

"-g" .o size: Size in bytes of the object files produced by the full debug compiles.

"-c"
2.1

repository: Size in bytes of the compiled header file repository (in Centerline's case) or

I "-gW.o s h e
2.4 1 45 192

size of the trace file in bytes (in mincpp's case). Trace file size is reported

uncompressed. Experiments with using text compression (compr e s s) show 2-3

times reduction in file size over that reported.

Figure 4.12 Compiler Drivers Compile Time

UC++ Conpiler Drivers

All times were measured using a Sun SparcStation 10130 running SunOS 4.1.3

with a 1 gigabyte SCSI-2 disk and 128 megabytes memory.

30

25

20

T
q 15
E
-3

10 --

5 --

0

t
+ +
8 8

driver combination

-

--

--

--

I
I I II 1 II I I I I I 1

Each row of the table corresponds to a different compiler system. The rows are

described as follows:

1. cc , the Sun K & R C compiler.

2. cc , using mincpp in parse mode.

3. cc , using mincpp in replay mode.

4. acc , the Sun ANSI C compiler.

5. acc , using mincpp in parse mode.

6. acc , using mincpp in replay mode.

7. CC, the Sun C++ compiler, version 2.1. This is a cfront-based compiler. Function

prototypes had to be added to the code since C++ requires a prototype and C does

not. This is referred to as Cckack.

8. CC, including the proper # i n c l u d e files to properly fix the compile error in 7.

9. CC/cback. CC using cback between c f r o n t and ccom (ccom is the actual

compiler binary under SunOS).

10. c 1 c++, the ObjectCenter 2.0 compiler. This is a c f r o n t 3.0 derived compiler. The

compiler uses FlexLM to license compiles.

1 1. c 1 c+ + using demand driven code generation

12. c 1 c+ + using demand driven-code generation and compiled header files in the save

case.

13. c 1 c + + as in (1 2) but restoring the compiled header files in lieu of parsing.

What we see here is that the C U compilers are decidedly slower than the C

compilers. Since mincpp cannot (yet) parse C* code, we can only speculate that the

compile time improvements shown earlier in this chapter will be magnified for C* code

and provide even greater benefits. Another decided benefit is the efficiency of mincpp's

"compiled header files" approach, which uses less disk space than the equivalent

ObjectCenter repository binary but is more effective at reducing compile times.

4.8 Results Summary

Mincpp saves compile time by giving the compiler a smaller job to do. It takes

less time for it to minimize with special purpose algorithms just for minimization than for

the compiler to process the discarded code.

For small examples, there is little benefit to any optimization strategy, be it

compiled header files, incremental compilation, or minimization. For larger applications,

improvements in compile time and object file size are significant.

An important observation is that mincpp, on the examples chosen, never

increases compile times. As we saw with the Objectcenter example, that particular

scheme seems to increase times dramatically in parse and save mode.

5. FUTURE WORK

5.1 Ovemew

This chapter is about what was not actually implemented for the present work but

about the ultimate vision of the shape of a toolkit suitable for production use. At the

beginning of Chapter 3 we discussed the implementation rationale for mincpp. In

essence, what was implemented was designed to answer the basic question: can compile

times be reduced by reducing the input to the compiler. The question was answered in

Chapter 4. The goal of this chapter is to extend the core concept detailed previously and

show its application in the larger context of the entire software development environment.

5.2 Mincpp System

Figure 5.1 Mincpp System

Mincpp, as implemented, is the single oval labeled "mincpp" in the diagram

above. Cccp is the GNU ANSI C preprocessor. The system reads source code as . c and

. h files and writes a . min. i file. The box around the mincpp ovals will be called the

"Hub" and provides all the glue code amongst the processing steps. The system uses two

caches: one is a collection of previously created minimized . i files. The other is the

"Trace Cache". This stores trace information in the same format as the trace file shown in

Chapter 3, but it is indexed and arranged to permit a compact representation that suits the

needs of multiple modules, multiple compiler switches, and multiple users.

.O

s a t e

. h enh. scanner reproc

mincpp

5.2.1 Combined Parser

-

One of the glaring deficiencies of the work as implemented is the fact that

mincpp needs to work with preprocessed code and does not actually replace the

preprocessor. There is a large amount of wasted I/0 that results. There are two solutions

to this problem. One is very simple: compile the preprocessor code and mincpp code

. C y-- ' . . I - -
-

El trace cache mini cache

OR

mincpp

W
to compiler

.min.i -

L

into a single binary and let them share an in-memory buffer. Cpp writes this buffer with

preprocessed text and mincpp minimizes it. This is easy to implement: some make f i l e

work, finding the p r i n t f () statements in c c c p and making them print to a string

(s p r i n t f ()), and making mincpp's scanner read from this string, which just means

changing its default r e a d () procedure call to one that sets up a pointer to the buffer

text.

Another single binary issue is the presence of two y a c c grammars: one for

preprocessing and one for parsing. Most y a c c implementations have provisions for multi-

parser binaries, but standard y a c c does not. There is an easy workaround, however. We

change the yy variables and hnctions in each generated parser to have a unique prefix

using sed or awk with a filter such as 's / yy/pp - yy/g7 and 's/ yy/min - yy/g ' to

uniquely name the variables for the preprocessor and minimizer grammars respectively.

The same issue, and solution, apply to the presence of two scanners in the same binary.

While this solution is straightforward, given a little effort to work around

l e x / y a c c limitations, there is more we could do. Based on profiling results, we saw that

96% of mincpp ' s time was spent parsing, that is: time in generated l e x and y a c c

code. We hrther observed that this time was evenly split between l e x and y a c c code.

Scanning was just as expensive as parsing. Going one step further, we could enhance the

1 e x code to include tokens for preprocessing tokens. This in essence means replacing the

scanning code in cccp , which is non-lex based, with additional l e x rules to match

preprocessing directives such as #de f i n e , #unde f , # i f , and # i n c l u d e . The scanner

would need to keep a list of defined macro's around to do text substitution, moving that

code out of c c c p and into the scanner. The # i n c l u d e macros would have the effect of

pushing a new input stream in fiont of the scanner.

Probably the cleanest solution for the y a c c files would be to keep them and their

supporting C code separate. If the scanner finds a preprocessing token, it sends it to the

cccp y a c c parser, otherwise it sends it to the mincpp parser. Since y a c c is normally

the master of this process, calling y y l e x () when it wants to do look-ahead, we would

have to modify the y a c c control files (y a c c p a r in standard yacc or headerhodyltrailer

files in Berkeley yacc) to behave in a co-routine relationship with l ex . This does not put

lex in charge per say, but allows the two parsers to alternate execution based on the

tokens encountered.

There has also been some recent work in creating a yacc-like tool that can deal

with conditional parsing [PlatofB4]. This could be an approach that would allow the two

parsers proposed above to be consolidated into a single parser, with possibly additional

savings in overhead.

5.2.2 Parse Avoidance and Trace Cache

Since mincpp spends the vast majority of its time parsing, and we want to make

the execution time as small as possible, the obvious optimization is to avoid parsing.

We have shown how replay mode is significantly faster than parse mode. While the

trace facility as demonstrated is not directly useful in a production compiler system, it

forms a technical basis for a realistic scheme.

One idea is to treat the trace files as a tree of linked text that mirrors the structure

of the include file hierarchy as shown graphically in Chapter 4. There is a link established

that not only links the files, but also links the preprocessor options in effect when the link

was made, especially the defined macros and their values, which can affect the contents of

the preprocessed code. So, we could allow multiple copies of the link with different

preprocessor options to be stored concurrently.

It would be most desirable to store the linked traces and the link context

persistently. To do so, a database that allows objects and object relations to be directly

expressed would be the most natural representation. This is not a surprise, since many

design problems have been shown to be modeled most naturally with an OODB while

many commercial business problems are modeled naturally using a relational model.

There are many OODB solutions at present that might be a good fit based on an

analysis of their performance in the context of this application. Objectstore, Ontos,

Objectivity, Versant, and Raima [Raima92] are a few of the vendors that currently offer

such products.

Another possibility would be to store the "indexed" traces in memory, but this

would be very costly in terms of virtual memory consumed. Much better would be a

caching scheme to keep hot pages in memory and the rest on disk, which is exactly what

an OODB system does transparently.

Another issue is the invalidation of pieces of this cache. If a file's modification time

is altered, we would choose to delete all trace information for that file.*' While this may be

more than needs to be deleted, it is surely easier to rebuild it than to figure out what

changed. To make this really effective we would limit the trace cache to saving pieces of

header files only, since the base C module will be modified more than the header files. We

could also provide a directory filter so that the developer's private header files are also

exempt from caching, and only external header files are cached. By using such a scheme, it

should be easy to allow caching of infrequently changing files and speci@ parsing mode

for frequently changing files.

In the system, the process would be started from the actions attached to the

#include token processing. It would search for a matching cache element for the same

file with the same preprocessor switches. If found it would load directly from trace and

avoid parsing, otherwise it would parse and populate a trace tree for the run to be used

later by other compilations.

It is asserted that most of the time the only files that are changing are tightly

coupled header files and the C modules themselves. The majority of the compilation unit

remains static: i.e. the foundation part of the program such as class libraries, windowing

support (windows . h or Xm. h for example) or system-provided facilities. This assertion

is what makes caching 80-90% effective.

A list of pathnames for file components that have changed is available as a built-in make

variable with GNU make. Additionally, if the command line to the compiler driver changes, invalidation

must also occur since the order, number, or position of preprocessor options may have changed, which can

alter the text of the preprocessed code.

5.2.3 Build Avoidance and . min . i Cache

Every programmer has experienced the problem of changing a header file and

waiting a long time for a build to complete while make rebuilds the entire application.

While the trace cache would make this process much faster than usual, we introduce the

. min . i or "mini" cache as a further optimization.

If make decided that, based on file time-stamps, a build is necessary, but after

minimization no text difference from the last build for the module is detected, mincpp

could touch the object file and avoid compiling altogether. In the development of mincpp

itself, a common case was adding a function to the symbol table on behalf of a single

module elsewhere, and having to recompile the entire application unnecessarily. As a

concrete example, function hook - t e x t () was added for a routine in r 2 6 . c. Only

s ymbo 1 . c that implements the function, and r 2 6 . c that references the function really

need to be compiled, but since symbol . h is included everywhere the whole application

is rebuilt by make .

To do this, verbatim copies of previously created "mini" files are kept in a

directory, tagged with the preprocessor options that were in effect, and possibly the

modification time-stamps of all the constituent files. When a new . min . i file is created

by mincpp, it could search the "mini" cache for likely matches by comparing file size and

preprocessor switches. Using d i if or sum, matches can be detected.

If header files are stable and unchanging, then the "mini" cache could be disabled.

If header files are mostly static but are sometimes changed, with long builds resulting, the

cache can be used to reduce the cost of header file changes.

5.2.4 The Hub

The agent that coordinates the activities of the trace cache manager, "mini" cache

manager, and consolidated parser is collectively called the Hub. This code would scan for

matches in the caches, manage the state transitions between parselreplay, invalidate cache

entries, prune caches to meet size constraints, and interact with make. It would also

replace cc as compiler driver since to effectively touch object files it needs to be in

control of the compiler driver.

5.2.5 Multi-Threaded Compile Server

A compile server could run on a number of machines on a network. The server

would accept a compilation job by ma k e y possibly using a network-distributed version of

make. The server would read the job out of make' s environment, taking the command

line, environment variables, and make built-in variables. It would attach the job to a

thread waiting in a ready thread farm and let the thread perform the work. The server is

then fiee to accept a new job while the thread is completing the job. The thread would

open and lock entries in the caches in a manner consistent with multi-user access and

guarantee freedom from deadlock. In particular, the trace cache needs to be locked as it is

descended to keep other readerslwriters fiom locking ahead, which could result in a race

condition that could lead to deadlock.

Use of threads would also enable parallel execution of compiles in environments

that support such on a multiprocessor, such as Solaris 2.x, OSF/l, and Windows NT. A

server implementation would also more effectively use any disk caching mechanism

provided by the database.

5.3 Ancillary Tools

So far, we have focused exclusively on mincpp's application in the compiler

driver itself with the goal being to reduce compile times. There are a number of other

applications of the basic technology that merit some discussion.

5.3.1 Minimal #include Generator

The compiler forces the programmer to include a new header file when a reference

to a new file is made in the code. But, when the code changes in a way that allows an

included file to be deleted, it is most likely that the included file will remain included. Most

programmers are too busy to tinker with compiling, working code. A simple tool that

peruses the minimized output could generate a minimal # inc lude block for the module.

An even more usefbl tool could be developed by just adding a global index to the

trace cache. If a new fbnction or type is referenced by new code, this facility could assist

the programmer in identifjllng the correct #include and place it in the code

automatically. We could add a regular expression lookup for incomplete lookups.

Currently, the programmer identifies a need to use a fhnction, usually fhmbles through

man pages to hunt it down, maybe cracks a book or two, finds it, has to move up in the

file to add the #include, pages back to where they originally were, and then proceeds.

Using this tool, the fhnction could be queried, a choice box displayed with matches

and their corresponding #include files, and indication of what #include files are

already in the module that could bind the hnction. A simple selection and OK replace the

above-mentioned tedious procedure.

5.3.2 "Presto" Syntax Checker

Mincpp could be integrated in an editing environment such as emacs [GNU871

through the mock Lisp interface. This would allow the code to be run through mincpp in

a quick and interactive fashion. This would be a way to do a quick syntax check without

incurring the overhead of doing a fbll compile. On a syntax error resulting fiom a missing

header file, selecting the text and invoking the lookup facility described in the last section

would be a way to quickly add the necessary #include file. It would be possible to run

an automatic syntax check in the background and display an unobtrusive indicator on the

display: red for syntax error, green for O K . ~ ~ If the programmer thinks that the code

should be correct but sees red, it is an immediate indicator to look for a problem before

the problematic code has been cut and pasted somewhere else, compounding the problem.

5.3.3 "Deadn Text Eliminator

Mincpp is based on a module by module view of the compilation process. It

would be possible to add a subassembly view based on a collection of modules that

constituted a program or library, and above that an assembly, or system, view that

22~emember that since mincpp is based on a full C parser it also detects all syntax errors.

represents a body of applications that represent a complete software system. Once this is

done some analysis on the whole can be done based on minimization. Dead hnctions and

definitions could be identified as candidates for deletion, based on the judgment of the

developer. Just as is the case for stray, unnecessary #include files at the module level,

dead declarations, type definitions, and functions rarely are cleaned up fiom a compiling,

working system. A tool such as this could be used at key points in the development cycle

to give the code a quick tune-up before going into production.

5.3.4 File Architect

Minimization results could drive graphical tools that examine the relationships and

dependencies between modules and their header files. This information might lead to a re-

organization of header files based on reference patterns. For example, a header file might

be split into two: one for specialized facilities used by just a couple of modules, the other

being used for the more commonly used facilities that are of more general interest.

Metrics could be developed to aid in this procedure and identie possible

candidates for examination. Minimization results provide insight into the code that is

different from that available to either static or dynamic analysis tools.

5.3.5 Dependency Manager

Mincpp could interact with make in a tightly coupled fashion. Mincpp could

maintain the file dependency lists for each module and update it on every compile,

ensuring "correct by construction" dependency lists. This prevents dependency leaks fiom

occurring. If dependencies are not correct by construction there exists the potential for a

build to be missed by make. For a make that supports conditional make fi les, or an

environment that uses preprocessed make f i l e s , mincpp could generate "#define

smart" dependency lists, that handle conditional inclusion, a very common portability

technique.= This is actually how the stated problem of "too few builds" cited in Chapter 1

is addressed.

23 #ifdef WINDOWS #include <windows.h> #else #include <Xm.h> #endif

Other interactions with make include reading the environment out of make as

described in the compile server description, and the touching of object files as a control

mechanism that the "mini" cache can enable. There are proprietary build environments that

might also allow a custom integration of mincpp technology through a vendor A P I . ~ ~

Mincpp's minimization algorithms could be extended to work with C*. The C

parser that mincpp uses is actually a subset of a C* parser also supplied with the

package. While this parser does not handle the C* 3.0 features of templates and

exceptions, it does handle everything else.

The additions would involve treating class derivation as type dependency, treating

fbnctions as complete signatures to handle fbnction overloading, and different name space

treatment [AT&T90].

Also, since the bulk of mincpp's fbnctionality does not depend on the reference

yacc parser in particular, it could be easily re-hosted to a compiler environment that uses

a custom parser, or a parser that uses different compiler-compiler tools.

Re-hosting into a custom compiler environment would eliminate the overhead of

creating the intermediate . i file, but only at the expense of reduced portability.

5.5 Aggressive Minimizations

It should be noted that mincpp's algorithms could be made smarter and perform

more minimization than is presented here. Such a case is "pointer references" to structures

where an abstract declaration can be substituted for the full declaration if the only

references are by pointer. In C* this would also include "by reference".

In addition to this, unused local variables could be eliminated. Further, the notion

of reference to structure could be significantly refined to really be "reference to structure

member". This opens up several intriguing possibilities such as only disclosing members up

to the last lexically referenced one (so the compiler gets s i zeo f right...), or disclosing

24~tria's ClearMake [Atria93], part of the Clearcase product, is a good example.

only referenced members, substituting "slop" members for correct space and alignment.

The latter obviously is platform and compiler switch dependent. Also, carehl treatment of

virtual functions in a C++ system would have to be considered.

5.6 Side Effect Management

Mincpp as currently implemented reports incorrect line numbers that end up

being reported in compiler warning and error messages, and subsequently in source listings

available under a source-scrolling debugger. There are very straightforward techniques

available to keep track of linelfile numbers in lex. Mincpp should store line ranges and

file names along with the text fragments it indexes. Then, if a text fiagment or series of

text fragments are skipped, the next fiagment whose text is emitted would reset the file

and line number by emitting a # 1 i n e directive, keeping track of the number of skipped

lines by adding to a total from a line-count member in the text structure. This is the

approach is used in [Litman93].

The symbols for all those fragments that are eliminated are not available for use in

the debugger, but this should not be of concern to the programmer. If a structure is not

used in a module, there is little chance that a programmer would want to view an object

casted to such a structure anyway.

5.6.2 ANSI bbImplementation-Defined Behavior"

There are opportunities for problems in code that takes advantage of

implementation-defined behavior. Suppose there are three declarations for objects that are

lexically sequential such as in t i ; int j ; int k ; . Furthermore, the programmer

has taken the address of i such as void * p = & i ; . The programmer knows the

program is running on a Sun SparcStation, and int s are 4 bytes, so are vo id * 's, and

the programmer accesses k by adding 8 bytes to p (p += 8 ; *p = 4 ;). If k is not

explicitly referenced, it's gone from the text.

This is poor coding practice and is certainly not portable. One option is for

mincpp to not discard space allocating declarations, only type definition or function

definitions. The other option is to support a #pragma directive to allow the programmer

to explicitly state that the following declaration is not a candidate for minimization. For

example:

int i;
#pragma keep
int j;
#pragma keep
int k;

This also applies to objects stored in a module that are not referenced, but have

some external use:

#pragrna keep
char *SCCSId = "version 1.2 fi1e.c copyright (c) 1994 \

Etherium SoftwareN;

The general problem of space allocating declarations is treated in more detail in the

next section.

5.6.3 Extern Objects

If a global variable is declared but not used in file A and file B uses the variable via

an e x t e r n declaration, mincpp, as implemented, will erroneously remove the

declaration of the variable from file A. The code in file B is counting on the space for the

variable to be created for it somewhere.

Some compiler systems allow space allocating variables in header files. The linker

resolves all references to a same-named global variable to the same instance. Other

compilers do not allow this but force space allocating objects to be declared in a header

file via an e x t e r n declaration, and the programmer must allocate the space for the

variable once in a single C module. Certainly, the latter style is more portable and depends

less on the linker implementation. Many ANSI C and C++ compilers do in fact enforce the

latter behavior.

This problem was not encountered using the sample benchmarks used in Chapter

4.25 SO, while this effect was not observed here, there are several approaches to remedy

the situation that could be implemented.

1. Do not minimize away space allocating declarations. This can be easily implemented

by setting the reference bit for a declaration if the non-terminal declarator is

recognized at any point during the parsing of the declaration. This would effectively

keep such declarations just as hnction definitions are kept. This could possibly reduce

the amount of minimization, but in well-structured programs the number of global

variables is small relative to everything else, and as described above, space allocating

declarations are rare in header files for portability reasons.

2. Provide a #pragrna directive to direct mincpp to not allow the following

declaration to be minimized away. This is an inferior solution that would require

source code changes.

3. Keep a list of space allocating declarations that have been minimized away internal to

the tool. After the first link, read the undeclared symbol list from the linker and

generate a C module that is the text for the symbols that were minimized away.

Compile this, add it to the list of modules for the linker to process, and link a second

time with the minimization stub now resolving the undefined references. This is also an

inferior solution as it requires a two-pass link.

4. During the printing of minimized text, the tool creates a library entry for each space

allocating declaration that is skipped. This is done by creating a C module for each

discarded declaration, compiling it, and adding it as a library member. This library is

added at the end of the link list. This approach is the preferred solution: it makes

compile times as small as possible, it only requires a one pass link, and any space-

allocating global declarations that really are not referenced anywhere are omitted from

the binary, saving space in the program's data section. There is a small amount of

overhead in maintaining the library. This approach has an additional benefit for C*

2S~f fhls were to be a problem for the benchmarks, these variables would have produced undefined

symbols during the link. Since this was not the case, the minimization results remain valid.

systems. In C* a static object instance in a header file or elsewhere can result in

excess static constructors being called at program start up and excess static

destructors being called at program exit. Standard header files for streams and

complex numbers contain such static objects. If these header files are pulled into every

module, as is often the case, then invoke times can be degraded while the extra objects

are being created. The library approach collapses all of these object instances into just

one object. In a traditional c f r o n t l l d environment, each module has a separate

copy of every static object mentioned in the preprocessor output.

5.6.4 SyntadSemantic Compiler Errors

As observed in [Litman93], another side effect of including a parser in the

preprocessor is that syntax errors are reported during preprocessing, not later during

compilation. The users of [Litman931 reported that having syntax errors reported first,

with semantic errors and type checking errors reported later was actually beneficial and

clearer.

6. CONCLUSION

6.1 Key Benefits Demonstrated

Despite the limited nature of the system actually implemented, we were able to

demonstrate several key benefits of using mincpp in a compile environment.

6.1.1 Reduced Compile Times

Mincpp reduces compile times by reducing the quantity of input given to the

compiler. In many applications, the volume of text added to each module in the form of

header files is much greater than the volume of code. All that extra text takes time to

process. If it can be minimized by a special purpose tool, savings in overall compile times

can be demonstrated. For C programs, we saw that the savings were modest for smaller

examples, and much more significant for larger application that use "heavy" header files,

such as GUI applications based on the X windows system.

We also saw that the complexity of the grammar the compiler processes can

increase this benefit. For one example, the savings increased dramatically as the compiler

for the same module was changed fiom K&R C, ANSI C, C++ 2.1, and C++ 3.0.

6.1.2 Compiler, Operating System, and Platform Independence

A distinguishing characteristic of mincpp is its ability to improve compile time no

matter the compiler, operating system, or hardware platform used. It can be deployed with

any system without make f i 1 e or source code changes. It does not introduce any new

"rules of engagement" that the programmer is forced to carry around in their head. Such

rules are inevitably forgotten, broken, and ignored.

6.1.3 Reduces Object File Sizes

All of the text fragments omitted take up space in the object file's symbol table.

This space is saved by using mincpp. The same space saved in the object file is

potentially saved in the executable file if a particular text fragment is completely dead.

That is, it is not referenced by any constituent module of those that make up the complete

binary.

6.1.4 Build Avoidance and make Dependency Leaks

Changing a header file can cause a complete rebuild, since the tools used to decide

what has to be rebuilt can only check file granularity changes via file time-stamps. This is

very pessimistic, but at least produces something less than a complete rebuild in most

cases. This problem can be solved by letting mincpp short circuit re-compiles if it can

determine that a requested build is not necessary, since the minimized text is identical to

the prior materialization of that particular module.

There are more sophisticated builders that allow object files to be shared amongst

developers, such as Atria Clearcase. These systems allow one developer to rebuild the

system, check in source code changes, and the configuration management system also

"checks in" the matching object files. Subsequent builds then use these object files since

they match. Unfortunately, they do nothing to help the unfortunate developer who had to

rebuild the entire application in the first place.

Despite all this, a dependency leak in a make f i 1 e can introduce a difficult to find

run-time problem if something that should have been built was not. Mincpp can generate

file dependencies that are correct by construction and guarantee that this problem will not

occur.

6.2 Key Benefits Suggested

There are some specific benefits that were alluded to but perhaps not explicitly

stated in Chapter 5. We state a few of these here.

6.2.1 C++ Static Initialization

In C++, a static object instance that has a constructor has its constructor called

before main () is called. A static object instance that has a destructor has its destructor

called after main () exits. If a program has many of these, it can have an impact on the

time from program request until the user can interact with the program, called invoke

time, and the time from the user exiting the program until it is gone, called tear-down

time. With enhancements proposed in Chapter 5, the extra objects are eliminated.

6.2.2 Network Trafiic

A compile server such as described in Chapter 5 can have a very positive effect on

network traffic in a multi-node parallel build environment. Since the server is mostly

running out of local, indexed, memory-paged trace cache, it is not reading files over a

network-oriented file system. Not only is this much faster, but by reducing network traffic

it allows the network to support more concurrent operations/nodes than it would be able

to support otherwise.

6.2.3 Point Development Tools

Mincpp has some incremental benefits even in the edit cycle, if some tools based

on its minimization technology are developed.

The include generator reduces the amount of time managing include lists. It also

reduces the time spent hunting for definitions.

The syntax checker allows a quick check for syntax errors to be found and fixed

before doing a full compile. When the programmer does a build, they do so with some

assurance that syntax errors will not be reported.

6.2.4 Architecture and Metric Tools

For header files that the developer has some control over, mincpp can help the

programmer manage the partitioning of these files. Mincpp can provide reference metrics

and some sort of "min-cut" analysis of the use of files across an application. This may

result in a reorganization of files if it makes sense.

6.3 Closing Remarks

Mincpp has been (partially) implemented and characterized. We have seen

compile time improvements even in its worst case mode, and substantial improvements

using caching. Mincpp offers several benefits that could result in increased developer

productivity and satisfaction.

References

[ANSI881 American National Standards Institute, C Language Speczfication, American
National Standards Institute, New York, New York, 1989.

[Ah0861 Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D., Compilers: Princ@les,
Techniques, and Tools, Addison-Wesley, Reading, Massachusetts, 1986.

[Atria931 Atria Software, Inc., Clearcase Reference Manual, Atria Software, Inc.,
Natick, Massachusetts, 1993.

[AT&T90] AT&T, Unix System V A T&T C+ + Language System Release 2.1 Selected
Readings, AT&T, Murray Hills, New Jersey, 1990.

[Borland93] Borland International, Inc., Borland C+ + User 's Guide, Version 4.0,
Borland International, Inc., Scotts Valley, California, 1993.

[Centerline931 Centerline Software, Inc., Objectcenter Reference Manual, Centerline
Software, Inc., Cambridge, Massachusetts, 1993.

[CenterLine93a] Centerline Software, Inc., Testcenter Reference Manual, Centerline
Software, Inc., Cambridge, Massachusetts, 1993.

[Ellis901 Ellis, Margaret A., and Stroustrup, Bjarne, The Annotated C+ + Reference
Manual, Addison-Wesley, Reading, Massachusetts, 1990.

[Feldman86] Feldman, S. I., "Make - A Program for Maintaining Computer Programs",
PS 1 : 12-1 - PS 1 : 12-9, BSD4.3 Unix Programmer's Manual Supplementary
Documents 1, University of California, Berkeley, California, 1986.

[Harbison91] Harbison, Samual P., and Steele, Guy L. Jr., C: A Reference Manual,
Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[Gircys88] Gircys, Gintaras R., Understanding and Using COFF, O'Reily & Associates,
Inc., Newton, Massachusetts, 1988.

[GNU871 Free Software Foundation, GNU Emacs User's Manual, Free Software
Foundation, Cambridge, Massachusetts, 1987.

[GNU921 Free Software Foundation, GNU Make User 's Manual, Free Software
Foundation, Cambridge, Massachusetts, 1992.

[Holub93] Holub, Allen, "Visual C++: It's Compiler, Language Implementation, and Code
Quality7', pp. 65-73, Microsoft Systems Journal, Vol. 8 No. 6, June 1993.

[Iitsuka93] Iitsuka, Takayoshi, and Kikuchi, Sumio, "Method of Recompiling a Program
by Using Result of Previous Compilation", United States Patent 5,230,050, July
20, 1993.

[Jaeschke89] Jaeschke, Rex, Portabiliq and the C Language, Hayden Books,
Indianapolis, Indiana, 1989.

[Johnson86a] Johnson, S. C., "A Tour Through the Portable C Compiler", SMM: 19-1 -
SMM19-28, BSD4.3 Unix System Manager's Manual, University of California,
Berkeley, California, 1986.

[Johnson86b] Johnson, Stephen C., "Yacc: Yet Another Compiler-Compiler", PSI: 15-1 -
PS 1 : 15-33, BSD4.3 Unix Programmer's Manual Supplementary Documents 1,
University of California, Berkeley, California, 1986.

[Kernighan88] Kernighan, Brian W., and Ritchie, Dennis M., The C Programming
Language, Second Edition, Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[Kernighan84] Kernighan, Brian W., and Pike, Rob, f i e UNIXProgramming
Environment, Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[Knuth73] Knuth, Donald E., The Art of Computer Programming: Volume 3 /Sorting
and Searching, Addison-Wesley, Reading, Massachusetts, 1973.

[Lesk86] Lesk, M. E., and Schmidt, E., "Lex - A Lexical Analyzer Generator", PSI: 16-1 -
PS 1 : 16-13, BSD4.3 Unix Programmer's Manual Supplementary Documents 1,
University of California, Berkeley, California, 1986.

Lucid93al Lucid, Inc., Lucid C++, Lucid, Inc., Menlo Park, California, 1993

Lucid93 b] Lucid, Inc., Energize Programming System User 's Guide, Lucid, Inc., Menlo
Park, California, 1993.

bevine921 Levine, John R., Mason, Tony, and Brown, Doug, Lex & Yacc, O'Reilly &
Associates, Inc., Sabastopol, California, 1992.

Lippman9 1] Lippman, Stanley B., C+ + Primer, Addison-Wesley, Reading,
Massachusetts, 1 99 1 .

Litman931 Litman, Andy, "An Implementation of Precompiled Headers", pp. 341 - 350,
Software-Practice and Experience, Vol. 23(3), March 1993.

[McKeemangZ] McKeeman, William M., and Aki, Shota, "Incremental-Scanning
Compiler for Source-code Development System", United States Patent 5,170,465,
December 8, 1992.

~ c r o s o f t 9 1] Microsoft Corporation, Microsoft C/C+ +: Environment and Tools,
Microsoft Corporation, 1 99 1.

[Onoderag31 Onodera, Tamiya, "Reducing Compilation Time by a Compilation Server",
pp. 477-485, Software-Practice and Experience, Vol. 23(5), May 1993.

[PlatoB4] Platoff, Michael, and Wagner, Michael, "Method for Parsing and Representing
Multi-Versioned Computer Programs, for Simultaneous and Synchronous
Processing of the Plural Phases", United States Patent 5,276,880, January 4, 1994.

[Pure93a] PURE Software, Inc., Purr& User's Manual, Pure Software, Inc., Sunnyvale,
California, 1993.

[Pure93b] PURE Software, Inc., Quant~& User's Manual, Pure Software, Inc.,
Sunnyvale, California, 1993.

[Raima92] Raima Corporation, Raima Object Manager Reference Manual, Raima
Corporation, Issaquah, Washington, 1993.

[Sedgewick901 Sedgewick, Robert, Algorithms in C, Addison-Wesley, Reading,
Massachusetts, 1990.

[Smith931 Smith, Steven P., Padawer, Andrew D., Jones, David T., Whitten, Gregory F.,
and Wittenburg, Craig H., "Incremental Compiler", United States Patent
5,204,960, April 20, 1993.

[Stroustrup9 1] Stroustrup, Bjarne, The C+ + Programming Language, Addison-Wesley,
Reading, Massachusetts, 199 1.

[Tuthill86] Tuthill, Bill, and Dunlap, Kevin J., "Debugging with dbx", PS 1 : 1 1 - 1 - PS 1 : 1 1 -
6, BSD4.3 Unix Programmer's Manual Supplementary Documents 1, University of
California, Berkeley, California, 1986.

Biographical Note

The author was born 18 September 1962 in Spokane, Washington. He attended St.

Charles Elementary School from 1968 and graduated in 1976. He attended Gonzaga

Preparatory School, graduating Summa cum laude in 1980. His undergraduate degree is in

Computer Engineering and was granted by Boston University, Summa cum laude, in 1984.

The author pursued an active role in the Boston University's School for the Arts with a

piano performance focus during this time. The author began his professional experience

with Texas Instruments in Lewisville, Texas, but discovered a short time later that military

electronics was not his calling. Between late 1984 and 1986 the author worked at Digital

Equipment in Littleton, Massachusetts, on a VAX research project that later provided

corporate memory for the development of parallel VAX and ALPHA processors, and

symmetric multiprocessing in VMS. In 1986 the author transferred to Digital Equipment's

R&D facility in Bellevue, Washington, otherwise known as DECwest. Here the author was

a member of the team whose work later became the ALPHA project at Digital and the

WindowdNT project at Microsoft. Late in 1989 the author left Digital eager to work on a

project that "made it out the door", and assumed a key role in the development of release

8.0 of IDEAstation at Mentor Graphics Corporation. While in this role author was

motivated to investigate the material that constitutes this thesis. In May 1992 the author

assumed his current role of project leader and technical architect of a family of Clinical

Information System products at SpaceLabs Medical in Redmond, Washington. While at

DEC~Littleton, the author spent a year in the M.S.E.E. program at Tufts University,

Medford, Massachusetts. While at DEClBellevue, the author took graduate courses in the

C.S. department of the University of Washington as a Graduate Non-matriculated student.

While at Mentor Graphics, the author was accepted into the doctoral program at Oregon

State and passed the qualification exam before transferring to the Graduate Institute to

finish (finally) his Master's program. The author has been married six years to the former

Julie Rassmussen and has two children: Madeleine (age three) and Peter (age one).

