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Abstract

An Implementation of Reynolds'
Defunctionalization Method for a

Modern Functional Language

Jeffrey M. Bell, M.S.
Oregon Graduate Institute of Science & Technology, 1994

Supervising Professor: James Hook

In a 1972 paper, John C. Reynolds outlined a method for removing higher order func-

tions from a functional language program by representing functional values as data and

interpreting the representations as needed. This transformation is known as defunction-

alization. This thesis describes an automated defunctionalization system that transforms

a significant portion of core Standard ML syntax. Modern functional language features

addressed by this research include pattern matching, parametric polymorphism, "mul-

tiple alternate" expressions, local declarations, and function values contained in data

structures. This research elaborates on details not explained in earlier presentations of

the defunctionalization method, including detection of higher order functions, function

values that are "shared" by several higher order functions, and higher order functions

with higher order parameters.
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Chapter 1

Introduction

1.1 Higher Order Functions and Their Elimination

Higher order functions (HoFs) are either

1. functions with arguments that are themselves functions

2. functions that return function values

Fold functions are common examples of HOFs of the first sort, and curried functions are

examples of the second sort.

Defunctionalization [Rey72], firstification [Nel9!], or higher-order removal [CD93] is

the process of eliminating higher order functions from a program, while preserving the

semantics of the program. It is desirable to eliminate higher order functions from a

program because some program transformations which improve program efficiency can

only be performed on first order programs (i. e. programs without higher order functions).

Higher order functions of the second sort can be eliminated from a program via un-

currying. The uncurrying transformation ensures that every function call includes values

for all arguments to the function, and that function declarations include all necessary

parameters. If a value for one of a function's arguments is not available at a call site, a

lambda abstraction (section) is constructed at the call site, supplying the function with

all its arguments.

This research focuses on HOFS of the first sort, i.e. functions with function valued

parameters (Fvps). It is assumed that curried functions are eliminated via uncurrying

1
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before the program is transformed by the defunctionalization system described in this

thesis. In fact, a "stronger" form of uncurrying is assumed to have been done to input

programs for the defunctionalization system. This transformation ensures that each

function has only one argument, which may be a tuple.

1.2 ROF Elimination via Specialization

Chin and Darlington [CD93] have developed a HOF elimination algorithm based on

fold/unfold rules that uses specialization. The following example demonstrates the algo-

rithm. The program below contains a HOF called map, which applies a function to each

argument in a list. After its definition, map is called with the function increment.

fun map f Nil = Nil

map f Gons(x,xs) = GonsU x, map f xs)

fun addone I = map increment I

After specialization, the call to map is unfolded to the body of map, specialized with

respect to the Fvp used. The resulting program is:

fun map f Nil = Nil

map f Gons(x,xs) = GonsU x, map f xs)

fun addone Nil = Nil

addone Gons(x, xs) = Gons(increment x, addone xs)

Note that map is not modified. However, since it is no longer called, it can safely be

eliminated from the program.

This method is limited. Only higher order functions whose functional arguments are

variable-only can be specialized with this approach. A functional argument in a recursive

call to a higher order function is variable-only if the argument is an identifier. Functional
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arguments in non-recursive function calls are all variable-only. If a functional argument

in a recursive call to a higher order function is not variable-only, the algorithm will go

into an infinite loop trying to specialize the function.

1.3 Reynolds' Defunctionalization Method

In a 1972 paper, John C. Reynolds outlined a more general method for eliminating

higher order functions known as defunctionalization [Rey72]. The key to this method is

representing Fvps as data values. When Fvps are transformed into data values, higher

order functions become first order, since they no longer have functions as arguments.

However, applications of the Fvps need to be modified, since a data value cannot be

applied as a function. This is accomplished by creating an "apply" function for each Fvp

of a HOF. The apply function is called wherever the Fvp was applied in the original

HOF. The apply function takes as arguments the data value representing the Fvp and

all the arguments to the Fvp. The apply function decodes the Fvp representation, and

applies the appropriate function to the remaining arguments.

The following example illustrates Reynolds' defunctionalization method. Consider

the following program, which contains a higher order function high and two calls to high.

fun high (somefun, x) = somefun x

val two = high (increment, 1)

val zero = high (decrement, 1)

If the program is defunctionalized using strings containing the function name as the

representation of function values, the following program is the result.
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fun apply_somefun (function_rep,function_arg) =

case function_arg of

"increment" => increment function_arg
"decrement" => decrement function_arg

fun high (somefun, x) = apply_somefun (somefun, x)

val two = high ("increment", 1)

val zero = high ("decrement",1)

Reynolds' method has been used in many papers to defunctionalize denotational

semantics specifications. Motivations for this include detection of stack-based environ-

ments [Sch88], detection of global variables [Sch85a], and deriving an implementation of

the specification [BJ82, Sch85b, Wan85].

Reynolds' method is more powerful than the specialization method of Chin and

Darlington because it is not limited to variable-only function valued arguments. However,

a defunctionalized program is only pseudo first-order [CD93] because it still mimics the

runtime characteristics of the original higher order program. Chin and Darlington's

method produces more efficient implementations. Therefore, when either method is

applicable, it is desirable to use specialization rather than defunctionalization.

1.4 Limitations of Reynolds' Method

Reynolds presents this method in an ad hoc way, via a specific example. This is also

true in examples of the method in other papers. Thus there are many details left out

of these presentations. These details are needed for a fully automated implementation

of the defunctionalization method. In particular, the following details are not explicitly

discussed in the paper:

D-1 A method for detecting HOFs and Fvps in a program

D-2 Locally declared higher order functions (via let or lambda expressions)
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D-3 Function values declared in a scope more local than the HOF to which the function

value is a Fvp

D-4 Fvps that are shared by more than one HOF (e.g., when one HOF passes its Fvp

to another HOF)

D-5 HOFs with HOFs as parameters

Likewise, many features of modern functional languages are not explicitly dealt with

in Reynolds' method. These include:

F-1 Pattern matching

F-2 Polymorphic higher order functions

F-3 Function values contained within data structures

F-4 Complications to the method arising from use of case and similar expressions

1.5 Firstify-An Automated Defunctionalization System

The research presented in this thesis is an attempt to produce an automated defunction-

alization system for a modern functional language. This required the identification and

resolution of the above limitations. Firstify, the result of this effort, is a fully automated

implementation of Reynolds' method.

Firstify addresses all of the limitations outlined above, at least to some extent. In

particular, D-1, D-4, F-1, F-21 , and F-4 are fully addressed. Issues D-5 and F-3 are

partially addressed. Solutions to D-2 and D-3 have been developed, but are only partially

addressed in the implementation. Since another relatively simple transformation can

eliminate let expressions and nearly all lambda abstractions from a program, it was

not necessary to include full support for these features. However, they are interesting

1Addressing this feature required the use of type information, and is in fact the only use for type
information in Firstify. It is therefore believed that this research applies to untyped languages as well.
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subproblems. Other minor restrictions to Firstify input are listed in the final chapter of

this thesis.

The input and output to Firstify are in the form of Standard ML programs, expressed

as lists of declarations in the CRML abstract syntax. CRML, or Compile-Time Reflective

ML [She93], is a reflective dialect of ML which allows ML declarations, expressions,

patterns, and types to be represented as data. Firstify is written in CRML.

1.6 Problem Examples

This section outlines problems addressed in this thesis by showing an example illustrating

each problem. A brief description of each problem is included, along with the chapter

or section number in which the problem is addressed. Solutions to the problems are

described in the referenced chapters and sections.

1.6.1 Identifier Aliasing

By binding identifiers to other identifiers, the name of HOF or function passed as a Fvp

might be aliased as another identifier. This poses problems when looking for applications

of Fvps and transforming calls to HOFS, because the "real" name of the function is

needed. This problem is addressed in Section 2.1. Example:

fun high (f, x) =
let val g = f

in g x end

val two = case increment of myinc => high (myinc,l)

1.6.2 HOFS With Shared Fvps

Higher order functions share Fvps if both HOFs are passed the same Fvp. One way for

HOFs to share Fvps is if one HOF passes a Fvp to another HOF in a function call. All

HOFs that share Fvps must also share an apply function. There are four ways in which

HOFS with shared Fvps are detected. This problem is addressed in Section 3.4.
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Example 1, in which the first parameter of high and the second parameter of high'

are shared Fvps. The shared Fvps are detected when transforming the body of the HOF

high.

fun high (f,x) = (high' (x, f), f x)

Example 2, in which the second and third parameters of high are shared Fvps. The

shared Fvps are detected when transforming the body of the HOF high

fun high (f,g,x) = (case x of

nil => f

x :: xs => g) x

Example 3, in which outer and high share their first (function-valued) parameter.

The shared Fvps are detected when transforming calls to high.

fun outer (f,x) = high (f,x)

Example 4, in which high and high' share their first (function-valued) parameter.

The shared Fvps are detected when transforming calls to high.

fun calLhigh x = (case x of

nil => high

x :: xs => high') (f, x)

1.6.3 LambdaAbstractions as Fvps

Lambda abstractions can be passed to HOFs. If the lambda abstraction uses variables

bound locally, the representation of the Fvp as a data value must encode the values of

locally bound variables. This problem is addressed in Section 3.6. Example:

fun calLhigh x = high (.Az.g(x,y, z), 0)

1.6.4 Multiple Alternate Expressions

Some expressions, like case, contain several explicit possible values. When one of these

multiple alternate expressions is an expression that needs to be transformed by Firstify,

the transformation becomes more complex. This problem is addressed in Section 3.7.
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Example 1, a multiple alternate expression in the body of a HOF:

fun high (f,x) = (case x of

nil => id

x :: xs => f) x

Example 2, a multiple alternate expression used as the HOF expression at a HOF call

site:

fun calLhigh x = (case x of

nil => high

x :: xs => high') (f, x)

Example 3, a multiple alternate expression used as the Fvp expression at a HOF call

site:

fun calLhigh x = high (case x of
o => increment

_ => decrement, x)

1.6.5 Local Declarations

When HOFs or functions used as Fvps are declared at a local scope, the transformations

must utilize scope information. This problem is addressed in Section 4.2. Example:

fun outer x =
let fun high (f,x) = f x

fun increment x = x + 1
in

high (increment, x)
end

1.6.6 Fvp and HOF Declared at Different Scopes

Suppose a Fvp passed to a HOF is declared at a scope that is more "inner" than the

scope at which the HOF is declared. Since the apply function for the HOF must be



9

declared after the Fvp is declared but before the HOF is declared, the apply function

cannot be correctly inserted into the program. This problem is addressed in Section 4.3.1.

Example:

fun high (f, x) = f x

fun comma_separate (x, y) =
let fun concaLto-xs = x A ",,,. s

in high (concaLto-x,y) end

1.6.7 Polymorphic Higher Order Functions

If a HOF is polymorphic in the type of its Fvp and the HOF is instantiated at more

than one type, then the apply function for the HOF will not be well-typed. Instead, an

apply function is needed for each type at which the HOF is instantiated. This problem

is addressed in Chapter 5. Example:

1.6.8 Functions in Data Structures

Function values contained in data structures (i. e. records, tuples, and datatype values)

pose unique problems in defunctionalization. This problem is discussed in Section 6.1.

Example:

fun plus1 (x : int) = x + 1

fun java s = s' "java"

fun high (f,x) = f x
val two = high (plus1, 1)

val coffee = high (java, "mocca-")
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datatype Changes =
Change With of int ~ int

I Unchanged

fun change_number (change, x) =

case change of

ChangeWith f => f x
Unchanged=> x

val two = change_number (Change With increment, 1)

1.6.9 ROFS with Higher Order Fvps

A higher order function may have a function valued parameter that is itself a higher

order function. In this case, the HOF passed as a Fvp may never be explicitly called in

the program, but only called in the body of the other HOF. This problem is discussed

in Section 6.2. Example:

fun high (f,x) = f x

fun higher (f,g,x) = f (g,x)

val calLhigher = higher(high, id, 1)

1.6.10 Transforming Fvp Values Away from the Call Site

In some situations, the transformation of a function value into a data value needs to

take place at some place in the program other than at the HOF call site. This problem

is discussed in Section 6.3. Example:

val params = (increment, 1)

val calLhigh = high params



Chapter 2

Non-Operational Implementation
Overview

The functionality of Firstify can be described in terms of three major subproblems. This

is not an operational breakdown, since the subproblems do not correspond to phases of

execution, but it is useful in that it clarifies the functionality of Firstify.

2.1 Subproblem I-Maintaining Information

To perform transformations on a program, and even to determine when and if a trans-

formation is necessary, some information about identifiers in the program is needed. In

particular, Firstify needs information about identifiers referring to function values that

might be passed as a Fvp and identifiers referring to parameters to see if a parameter is

applied as a function, and the surrounding function is thus higher order.

Firstify maintains this information in an environment, that gives bindings for iden-

tifiers. Environments are realized as functions from identifiers (strings) to environment

values in the enventry datatype, shown in Figure 2.1. Environments are dynamic, chang-

ing as the structure of a program is traversed. For example, when a function declaration is

encountered, the function name is entered in the environment, bound to the information

that the identifier is a function name. Also, all identifiers in the formal parameter! to the

function are bound to information indicating the position of the identifier in the formal

1There is only one formal parameter because functions are assumed to be "strongly" uncurried.

11
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datatype enventry =
NotInEnv

NotA pplicable

Ref To of string

Param of function_id * parameter_id

LocalDec of function_id

TuplePartOf of int * enventry

ConstrPartOf of enventry

RecordPartOf of enventry

BasedOn of enventry

TupleContaining of enventry list

RecordContaining of (string * enventry) list

Possible Values of enventry list

Closure of environ * int * (( string pattern * (environ - enventry)) list)

Figure 2.1: The enventry datatype

parameter. The formal parameter bindings are in the environment used while travers-

ing the function body, but not in the environment used while traversing the remaining

declarations in the program. However, the binding for the function name remains in the

environment used while traversing all other declarations at the same scope.

In addition to environment information, Firstify needs to maintain type information

about functions in the program. This information is necessary to perform specializa-

tion on HOFs (see Chapter 5). Type information is obtained at the beginning of the

transformation process, as described in Section 5.3. Type information is updated as

specialization occurs and the types of HOFs change due to transformations. While type

information could have been included in environments (in the LocalDec constructor), it

is more efficient and convenient to gather all type information at one time.

A description of how each enventry constructor is used to represent environment

bindings is shown in Appendix A. Tables 2.1 and 2.2 show an illustrative subset of this

information. Note that arguments to the TuplePartOf constructor encode information
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about the position of an identifier in a tuple. However, similar information is not con-

tained in ConstrPartOf and RecordPartOf arguments. This is because it is assumed that

in the input to Firstify, function values are not contained in record or datatype val-

ues, and environment bindings are primarily used to obtain information about function

values. This is discussed further in Section 6.1.

Building and maintaining environments is primarily done via functions that calculate

environment values for values in the CRML datatypes that represent expressions and

declarations. A description of these datatypes and a more complete explanation of the

environment-calculating functions is given in Chapter 3. The environment-calculating

function for declarations returns a list of identifiers declared, each of which is paired

with the enventry value for the identifier. The environment-calculating function for

expressions returns the enventry value to which the expression corresponds.

When a pattern is matched to an expression in the source program, the identifiers

in the pattern need to be bound to the enventry value of the expression. This is trivial

when the pattern consists of a single identifier. When the pattern is more complex, the

bind function computes a list of bindings for identifiers in a pattern to an enventry value.

Figure 2.2 shows the definition of bind. The notation ((x)) indicates the representation

of the program fragment x, as opposed to the value of x.

2.2 Subproblem II-Determining Transformations to Per-
form

Higher order functions are found by looking for function parameters that are applied as

functions. However, when a HOF and Fvp are found before the transformations can be

performed, all other HOFs with Fvps that are shared with the detected Fvp must be

found, so that the transformations for all the HOFs can be performed at once. One way

for two Fvps to be shared is if a HOF passes its Fvp to another HOF. H two HOFs with

shared Fvps were transformed independently of one another, and the representation

chosen for the Fvps of the two functions were not the same type, then the program
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Table 2.1: Uses of enventry constructors (part 1)

Constructor Domain

Description of Use

Example

Ref To string

Identifier directly referring to another identifier

let val x = y in BODY end

While processing BODY, x is bound to Ref To "y".
Param function_id * parameter _id

Part of a parameter to a function. The function_id encodes which
function, and the parameter_id encodes the position of the identifier
in the function's parameter.

fun f x = BODY

While processing BODY, x is bound to Param (( "f ",0), Position 0).
The types function_id and parameter_id are discussed in Section 3.3.1.

LocalDec function_id

Identifier declared in a val, fun, datatype, exception, or type dec-
laration. The function_id encodes information about the identifier,
including the scope at which it is declared.

fun f ...

While processing all declarations occurring after the declaration of
f, f is bound to LocalDec ( "f ", 0). The function_id type is discussed
in Section 3.3.1.
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Table 2.2: Uses of enventry constructors (part 2)

Constructor Domain

Description of Use

Example

TuplePartOf int * enventry

Identifier that is contained in a tuple. The enventry represents
the tuple in which the identifier is contained, and the int encodes
the position of the identifier in the tuple.

valz = a

let val (x, y) = z in BODY end

While pro-
cessing BODY, x is bound to TuplePartOf (1, Ref To "a") and
y is bound to TuplePartOf (2, Ref To "a").

TupleContaining enventry list

Identifier is a tuple, containing several values. The values within
the tuple are represented in order in the enventry list.

valy = a

valz = b

let val x = (y, z) in BODY end

While processing BODY, x is bound to

TupleContaining [RefTo "a", Ref To "b'l

Possible Values enventry list

Identifier refers to several possible values, such as when a case or
handle expression is used. Each enventry in the list represents
one possible binding for the identifier.

valy = a
valz = b

let val x = case c of

o => y

I _ => z

in BODY end

While processmg BODY, x IS bound to

Possible Values [Ref To "a", Ref To "b'1.



b
["x"-+e]
nil
bind_wrap((x}) e ConstrPartOf
case e of

TupleContaining [el, e2] =>

(bind ((x)) el) @ (bind ((y» e2)
e' =>

(bind_wrap ((x» e' (>.e.TuplePartOf(l,e))) @
(bind_wrap ((y» e' (>.e.TuplePartOf(2,e)))

= case e of

RecordContaining [(ti, el), (t~, e2)] =>

(bind ((x» ed @ (bind ((y» e2)
if 'Vi, ti = t~

e' =>

(bind_wrap ((x» e' RecordPartOJ) @
(bind_wrap ((y)) e' RecordPartOJ)

e = (bind ((a» e) @ (bind ((P» (Ref To "a"))
e = bind((x» e
e = nil

bind ((x»
bind ((c)}
bind (((C x))
bind (( (x, y) »

bind (({tl = x,t2 = y}» e

bind (( (a as p))
bind (( (x : t))
bind ({-})

bind_wrap p e wrapper

16

l"t b b
- mapu (>.(a-+e).(a-+ (wrapper e))) (bindp e)

Note: a ~ e means identifier a is bound to environment value e. In the implementation,

the binding a ~ e is the pair ("a",e).

Figure 2.2: The bind function.

e =
e -
e -
e =
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would not be well typed. Thus it is necessary to find all HOFs with shared Fvps before

performing transformations on the first HOF. A collection of HOFs with shared Fvps is

known as a HOF set. In a HOF set, the first HOF that was detected is known as the base

HOF, and the Fvp of that HOF is the base Fvp. HOFs with shared Fvps are discussed

in Section 3.4.

Another approach to detecting HOFs is type analysis. By examining the type of each

function, looking for functional types in the arguments to the function, it is possible to

determine if the function is higher order. This is perhaps a more efficient method for

detecting higher order functions. However, the method described above works well in

the control structure developed for performing transformations, described in Section 3.2.

2.3 Subproblem III-Performing the Transformations

Once a HOF set is found, the following transformations need to be performed:

1. A Fvp datatype must be constructed. Each constructor in a Fvp datatype repre-

sents a function that is passed as a Fvp to a HOF in the HOF set. This datatype

is inserted in the program before the declaration of the base HOF.

2. An apply function must be constructed that interprets values in the datatype and

applies the appropriate function to its arguments. This declaration is inserted in

the program before the declaration of the base HOF, but after the Fvp datatype

declaration.

3. At each call to one of the HOFS in the HOF set, the Fvp expression must be

transformed into a value representing that function. At the call site, the expres-

sion that evaluates to the HOF and the expression being passed as the Fvp can

be any arbitrary expression. If they are both identifiers, then the transformation

is straightforward. However, the HOF expression can be a multiple alternate ex-

pression. A multiple alternate expression is an expression that contains several
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explicit alternative values, or alternates. For example, a case statement is a mul-

tiple alternate expression. Anyone of the alternates might be selected at runtime,

so each alternate might need to be transformed. Likewise, the Fvp expression

can be a lambda abstraction or multiple alternate expression. In these instances,

the transformation is more complex. Thansforming multiple alternate expressions

is discussed in Section 3.7 and elsewhere. Representing lambda abstractions is

discussed in Section 3.6.

4. Each time a Fvp is applied in the body of a HOF, the call must be transformed

into a call to the apply function, passing it the Fvp function representation and

the arguments to the Fvp function.

5. In the body of a HOF, other uses of the Fvp might require transformation, since

the type of the Fvp has changed. For example, transformation is necessary when

one alternate in a multiple alternate expression evaluates to the Fvp. Since all

values in all alternates of multiple alternate expressions must have unifiable types,

other alternates may need to be transformed. This transformation is discussed in

Section 3.7.



Chapter 3

Operational Implementation Overview

This chapter gives an operational overview of the Firstify implementation. It discusses

the implementation language, the control structures used, the phases of execution, and

other implementation issues.

3.1 CRML

CRML, or Compile- Time Reflective ML, is both the implementation language for Firstify

(the meta language) and the language over which Firstify performs transformations (the

object language). CRML is a dialect of Standard ML that includes built-in datatypes that

represent program fragments in the form of CRML expressions, declarations, patterns,

and types. It also includes a mechanism for compile-time reflection, that is, converting

sentences in the object language into sentences in the meta language at compile time.

The version of CRML used for this research includes only the core Standard ML syntax,

that is, Standard ML without the module system.

There are seven datatypes used to represent program fragments. Each datatype is

parameterized with a type variable a, used for the representation of identifier names.

Firstify is concerned only with the datatypes instantiated at type string, since these

are the datatypes used by CRML to represent program fragments. The datatypes are

erep (expressions), drep (declarations), trep (types), pattern (patterns), datadec (in-

dividual datatype declarations), fundec (individual function declarations), and valdec

(individual value declarations). Generally we will abbreviate type names, leaving out

19
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the string parameter. The transformations discussed herein primarily use the erep and

drep datatypes, explained in Tables 3.1 and 3.2.

Rather than explicitly using the datatype constructors to represent program frag-

ments, CRML provides syntactic sugar in the form of object brackets. A program frag-

ment within the object brackets (( and)) is not evaluated in the meta language, but is a

value in one ofthe CRML datatypes (i.e. the object language). CRML actually provides

four sets of object brackets (for expressions, declarations, patterns, and types), but we

will just use (( and )) since the variety of program fragment will be apparent from the

context.

Expressions within object brackets can be "escaped" with the backquote character

('). Backquoted expressions are evaluated at compile time as meta language expressions,

and the meta language value of the expression is used rather than the representation

of the value. For example, ((x + y)) represents the program fragment consisting of the

expression x + y, but (('x + y)) is some program fragment ((E + y)), where E is the

value of the variable x in the meta language. For (('x + y)) to be well typed, x must be

an erep. So if x evaluates to App(Id "f",Id "z"), the program fragment represents the

expression (f z) + y.

3.2 Control Structure

A fold function (also known as a reduce function or catamorphism [MFP91]) is a useful

control structure for performing computations on values in a sum-of-products datatype.

There is a fold function specific to each such datatype. The arguments to a fold function

include a set of accumulator functions and a value in the datatype. Each accumulator

function calculates over values of one constructor in the datatype. When called with

a set of a accumulator functions and a value, the fold function traverses the structure

of the value, performing computations (as defined by the accumulator functions) on

the constituent subvalues in the value. Fold functions can be used to implement map

functions, that compute on subvalues in a value but leave the structure of the value
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Table 3.1: The a erep Datatype, Representing Expressions

Constructor Domain
Description of Use

Id a

Identifier. Id "x" represents the expression x.
Iconst int

Integer constant. Iconst 42 represents the expression 42.
B const bool

Boolean constant. Bconst true represents the expression true.
Sconst string

String constant. Sconst "foo" represents the expression ''/00''.
App a erep * a erep

Function application. App(Id ''/'', Id "x'') represents the expression f x.
Tuple a erep list

Tuple expression. Tuple [Id"a",Bconst false] represents the expression
(a, false).

Seq a erep list

Sequence of expressions.

Seq [App(Id "print", Sconst "test"),Id "some_value"] represents the expres-
sion (print "test"; some_value).

Record (string * a erep) list
Record value. Record [( "name", Sconst "Smiley"), ("job", Sconst "spy"JT
represents the expression {name = "Smiley",job= "spy"}.

Project string

Projection (to apply to a record value). App(Project "name",Id "myrec")
represents the expression #name myrec.

Abs (a pattern * a erep) list
Lambda abstraction.

Abs [«(nil}), Bconst false), «(x :: xs}},Bconst true)] represents the ex-
pression fn nil => false Ix :: xs => true.

Letrec a drep * a erep

let expression. Letrec( «val z = 17)), Id "z"J represents the expression
let val z = 17 in z end.

Case a erep * (a pattern * a erep) list
case expression.

Case(Id "I", [«(nil}), Bconst false), «(x :: xs}},Bconst true)] represents
the expression case I of nil => false Ix :: xs => true.

Handle a erep * (a pattern * a erep) list
handle expression. Handle(App(Id "hd",Id "ilist"), [(«H d)}, Iconst 0)])
represents the expression hd ilist handle Hd => o.

Raise a erep

raise expression. Raise(Id "Hd") represents the expression raise Hd.
Exp TypeC a erep * a trep

Explicitly typed expression. Exp TypeC(Id "x", «(int}}) represents the ex-
pression (x : int).
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Table 3.2: The a drep Datatype, Representing Declarations

intact. Fold functions can also be used to implement functions that return values of an

entirely different type than the input value.

Since most of the transformations done by Firstify (with the exception of those

that add or copy declarations) are done at the granularity of expressions, a natural

control structure for performing these transformations is a fold function over ereps. For

any of these transformations, most of the accumulator functions used by a fold would

simply reconstruct the expression unmodified, with perhaps one or two accumulator

functions that actually modify an expression. It would be useful to have a mechanism

for maintaining a set of these "identity" accumulator functions that could be modified

as needed to perform specific transformations.

Fortunately, reflection gives us such a mechanism. In the Firstify implementation, a

set of accumulator functions is stored as a list of ereps. At compile time, the accumulator

function expressions are evaluated and used in a fold function. To perform different

transformations, one or more of the expressions in the list are replaced by new expressions

representing the appropriate accumulator function.

Constructor Domain

Description of Use

Exception a * a trep

Exception declaration.

TypeSynonym a list * a * a trep

Type synonym.
Mutual Val a valdec list

Set of mutually recursive val declarations.
MutualFun a fundec list

Set of mutually recursive function declarations.
MutualData a datadec list

Set of mutually recursive datatype declarations.
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3.2.1 Dependent Folds

Environment information is needed to perform all transformations. This information can

be computed by a fold. It is desirable to combine the environment-computing fold with

an expression-transforming fold in such a way that environment information is available

to the transformation computation. Such a combination is possible with a dependent

fold, or depfold.

A depfold takes two sets of accumulator functions and a value and essentially com-

putes two folds in parallel on the value. Thus, a dependent fold returns a pair of values,

each of which is the result of a fold. In a normal fold function, the accumulator functions

compute with values of the same type as the result type of the fold, wherever a recur-

sive reference to the datatype occurs. However, in a depfold only one set of accumulator

functions compute with values in the result type of the depfold (i. e. pairs of values). The

other set of accumulator functions compute a normal fold with one set of accumulator

functions. The accumulator functions that compute over pairs of values returned from

each set of functions are thus "dependent" on the computation done by the other set of

"independent" accumulator functions.

The following example demonstrates a depfold for a datatype representing lambda

calculus terms with some added features. We will use the depfold to insert "apply"

functions and transform function values into data values when a function parameter is

applied as a function. The datatype is as follows:

datatype Term =
Var of string

Abs of string * Term

Appof Term * Term

Let of string * Term * Term

Rep of Term

The constructors Var, Abs, and App are as one would expect. Let is used for local

declarations. Using Let, a variable (the string) is assigned a value (the first Term) but

that variable is declared only in the scope of the second Term. The Rep constructor is
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used for the representation of a Term as a data value. This constructor will be used

when a function value needs to be transformed into a data value.

The depfold for this datatype, depfoldTerm, is as follows. The function fold Term is

a normal fold over Terms.

fun depfoldTerm ( (f as (fVar,JAbs,JApp, !Let, fRep)),

(g as (gVar,gAbs,9App,gLet,gRep))) t =

( fVar a,

gVar a)

( fAbs (a, depfoldTerm (f,g) t),

gAbs (a,JoldTerm 9 t))

( fApp (depfoldTerm (f,g) tI, depfoldTerm (f,g) t2),

gApp (fold Term 9 tI,foldTerm 9 t2))

( !Let (a, depfoldTerm (f,g) d, depfoldTerm (f,g) b),

gLet (a, fold Term 9 d,JoldTerm 9 b))

( fRep (depfoldTerm (f,g) t),

gRep (fold Term 9 t))

The type of depfoldTerm, without any accumulator function types except those for the

Abs accumulator functions, is as follows:

(... * (string * (a * {3) -+ a) * ...) * (... * (string * {3-+ {3)* ...)

-+ Term -+ a * {3

The types of the accumulator functions illustrate the dependency of one set of accu-

mulator functions on the other set. Types of dependent accumulators have the type

(a * {3)in place of recursive references to the datatype, since a is the return type of

the dependent accumulators and {3is the return type of the independent accumulators.

Types of independent accumulators have just the type {3in place of recursive references

to the datatype.

We will use this depfold to perform a simple program transformation on Terms. The

independent portion of the depfold will calculate environment values for Terms, similar

to the environment calculations performed in Firstify. An environment value for a Term

case t of
Vara =?

Abs (a, t) =?

App (tI, t2) =?

Let (a, d, b) =?

Rept =?
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is either Param, indicating that the Term is a parameter, or Unknown. The depen-

dent portion of the depfold will transform App constructors when the environment value

of the first Term in the App is Paramo The transformation converts the App into an

application of the function "apply" to the two Terms in the App, and applies the Rep con-

structor to the first Term in the App (indicating that the function value is transformed

into a data value). For example, if the environment value of Var "p" is Param, then

App( Var "p", Var "x") is transformed into App(App( Var "apply", Rep( Var "p")), Var "x").

The function insert.-apply, shown in Figure 3.1, performs this transformation. The

env parameter is the environment, which is a function that takes a string and returns

either Param or Unknown. The dependent accumulator function for the App construc-

tor performs the transformation. Each of the independent accumulator functions return

an environment value. The independent accumulator function for the Var construc-

tor computes an environment value by applying env to the string. The environment

value returned by the independent accumulator function for the Let constructor is the

environment value of the body (i. e. the second Term) of the Let.

This function does not work entirely as desired. In particular, environment informa-

tion is not updated and propagated when environment bindings are created by Abs and

Let constructors. This problem is addressed by introducing suspended computation, as

described in the next Section.

Clearly this function could be coded more simply (and lucidly) with a normal fold.

However, the depfold in this example demonstrates (a) the clear separation of the "trans-

formation" functionality from the "environment computing" functionality; and (b) the

dependence of the "transformation" functionality on the "environment computing" func-

tionality.

A mutually recursive version of a depfold over ereps and dreps, similar to the one

shown in the example, is used to perform transformations in Firstify. Accumulator func-

tions for performing transformations are used for the dependent portion of the depfold,

and accumulator functions for calculating environment values are used for the indepen-

dent portion. Again, the functionality of this depfold could be obtained using a normal



fun inserLapply t env =
let val f = ((* Var *) Var,

(* Abs *) ,\ (a, (t, ten'll)).Abs (a, t),

(* App *) A ((tI, t~n'll),(t2, t~n'll)).

if t~n'll= Param then
App (App (Var "apply", Rep tl), t2)

else

App (tI, t2),

(* Let *),\ (a, (d,den'll)'(b,ben'll)).Let (a,d,b),

(* Rep *) ,\ (t, ten'll).Rept)

val 9 = ((* Var *) env,

(* Abs *) ,\ _. Unknown,

(* App *) ,\ _. Unknown,

(* Let *) A (a,d,b).b,
(* Rep *) A _' Unknown)

val (t', t~n'll)= depfoldTerm(/,g) t
in

t'
end

Figure 3.1: A simple program transformation on Terms

26
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fold, but the depfold allows for a clean separation of environment computation from

transformation computation.

3.2.2 Propagating Environment Information

One of the characteristics of fold-like functions is that information is propagated one

direction only. In particular, if a value in a datatype is viewed as a tree, then informa-

tion is propagated from the leaves to the root, but not in the opposite direction. But

the transformation depfolds need to propagate environment information in both direc-

tions. Environments need to be propagated down to sub expressions, such as in a let

expression, where the environment bindings created by the declarations need to be in

the environment used in transforming the let body. To augment the environment with

bindings from the declaration, the bindings need to propagate upward, but this is the

natural propagation direction for fold-like functions.

Propagating environment information downwards is accomplished in the transfor-

mation depfolds via suspended computation. The value returned by a transforma-

tion depfold over ereps is (environ - erep * environ - enventry) rather than

(erep * enventry) as one might expect. Thus, no value is computed until the environ-

ment in which the value exists is available.

Propagation of environment information in a fold function is similar to the propa-

gation of state information via a state transformer monad. However, we need to have

finer control over the way in which state information is propagated than the control

possible with a state transformer monad. With the monad, the state is threaded in a

particular direction. For example, with left to right threading the state available for a

particular subterm computation is the state after computing over subterms to the left

of the current subterm. This is too restrictive for propagating environment information,

since environment values need sometimes to propagate left to right, sometimes right to

left, and sometimes "in parallel" over subterms. An example of "parallel" threading is

when computing over the values in a tuple. Each computation requires environment

information, but no computation requires environment information for other values in
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the tuple.

We will now modify the Term example to propagate environment information down-

wards by introducing suspended computations. A new version of the transformation

function, inserLapply', is shown in Figure 3.2. Each accumulator function now ab-

stracts over the current environment (currenv) to introduce suspended computation.

In the independent (environment value computing) accumulator functions, the current

environment is used in determining environment values. The dependent accumulator

functions also use the current environment to determine values of sub- Terms. Also note

that in the dependent accumulator functions for the Abs and Let constructors, the envi-

ronment used for determining the values of some sub- Terms is augmented with bindings

introduced in the Term. In the Abs dependent accumulator function, the variable bound

in the abstraction (attached to the environment value Param) is added to the environ-

ment used to process the body of the abstraction. In the Let dependent accumulator

function, the variable defined in the Let (attached to the environment value of its corre-

sponding Term) is added to the environment used to process the body of the Let. This

environment augmentation is done with the function augment.

3.2.3 Understanding Transformation Code Samples

As stated above, most of the transformations performed by Firstify are coded as a set

of mutually recursive depfolds over ereps and dreps. Thus, the most significant portions

of the code that perform transformations are accumulator functions for the dependent

part of a depfold over ereps or dreps. Most code samples in the remainder of this thesis

are such accumulator functions. The type of one of these functions is

DOMAIN --+ environ --+ REP

where REP is either erep or drep, and DOMAIN is the domain of the constructor mod-

ified so that each erep in the domain is replaced with

environ --+ erep * environ --+ enventry
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fun inserLapply' t env =
let fun augment env (s, e) = ,Xx.if x = s then e else env x

val f = (( * Var *) ,Xa.'x currenv. Var a,
(* Abs *) ,X(a, (t, tenv)).'x currenv.

Abs (a, t (augment currenv (a, Param))),

(* App *) ,X((tl, tinv), (t2, t~nv)).,Xcurrenv.

if tinv = Param then
App (App (Var "apply", Rep (tl currenv)), (t2 currenv))

else

App ((tl currenv), (t2 currenv)),

(* Let *)'x (a, (d, denv), (b,benv)).'x currenv.

Let (a, d currenv, b (augment currenv (a, denv currenv))),

(* Rep *) ,X(t, tenv).'x currenv.Rep (t currenv))

val g = ((* Var *) currenv a,

(* Abs *) ,X_.'x currenv. Unknown,

(* App *) ,X_.'x currenv. Unknown,

(* Let *)'x (a,d,b).b currenv,

(* Rep *) ,X_.'x currenv. Unknown)

val (t',t~nv) = depfoldTerm (f,g) t
in

t' env
end

Figure 3.2: Modified Term program transformation
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and each drep in the domain is replaced with

environ -+ drep * environ -+ (string * enventry) list

The meanings of function and variable values used by an accumulator function are

indicated in a table below the code sample. The most commonly used function and

variable values are described in Appendix B.

3.3 Execution Phases

Firstify transforms a source program in a series of four phases, described below. The

series is repeated for each HOF set, until no more HOFs are found to be transformed.

Phases II and III are repeated within the series, once for each HOF in the HOF set being

transformed. A diagram illustrating phase execution order can be found in Figure 3.3.

All phases are executed by making a pass over the input program, and processing

declarations as required by the phase. A common set of functions, parameterized on

phase information, is used to execute all phases.

3.3.1 Phase I-Searching for a HOF

This phase is executed by looking for a parameter value applied as a function (a Fvp).

As soon as a Fvp that has not already been detected is found, the Fvp is recorded in

the transformation list and Phase I ends. The transformation list is stored in a ref vari-

able. If more than one Fvp is detected simultaneously (such as when a case statement

with several functional values is applied to an argument) only one Fvp is recorded, as

the others will be detected and recorded in Phase II. No program transformations are

performed in this phase. Information recorded in the transformation list is used in the

subsequent phases.

Fvps are encoded as values in the type fparm. Definitions of this type and related

types follow.
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Phase I

Phase IV

Figure 3.3: Firstify phase execution order

Phase II For
For each
each HOF
HOF ina
set HOF

Phase ill set
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)..(fct, arg). )..env. let val fcLenv
val side_eJ.Tect

- lookup_enventryenv ((second fct) env)
= if refs_param fcLenv then

add_new_xform (geLparam_info fcLenv)
else

o
in

App((first fct) env, (first arg) env)
end

Figure 3.4: Phase I App accumulator function

type function_id

datatype parameter _id

=string * int
=UnknownPosition

I Position of int

I NestedAt of int * parameter_id

=function_id * parameter_idtype fparm

The string in function_id is the name of the function, and the int is the scope level at

which the function is defined. Examples will omit the scope level when it is insignificant,

representing functions simply by the function name.

The parameter_id datatype encodes the position of a value in a tuple. If a function's

parameter is a singleton rather than a tuple, it is encoded as Position o. NestedAt

encodes positions that are within nested tuples. For example, the position of the b in

the tuple (a,((b,c),d» would be encoded as NestedAt (2, NestedAt (1, Position 1)).

Figure 3.4 shows the accumulator function for the App constructor that is used in

Phase I. In this function, Fvps are detected and recorded in the transformation list

when the function being applied is a parameter value to some surrounding function.

Context

Identifier Type

Description

add_new_xform fparm list -+ 0
Adds one Fvp from the fparm list to the transformation list.
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,X (Jct, arg).'x env.

let val fcLenv = lookup_enventry env «second fct) env)

val fcLexp = (first fct) env

val arg_exp = (first arg) env
in

if refs_param fcLenv then

if member fvp (geLparam_info fcLenv) then

App(make_id "apply_" base_fvp "", Tuple [fcLexp, arg_expD
else

App(JcLexp, arg_exp)
else

App(JcLexp, arg_exp)
end

Figure 3.5: Phase II App accumulator function

3.3.2 Phase II-Transforminga HOF

The body of a HOF is transformed by changing calls to the Fvp into calls to the appro-

priate apply function for the Fvp. Also, multiple alternate expressions are transformed

if one alternate evaluates to the Fvp, as described in Section 3.7.

Figure 3.5 shows the accumulator function for the App constructor that is used in

Phase II. In this function, apply functions are inserted into the input program when the

function being applied is the Fvp currently being processed.

3.3.3 Phase III-Transforming Calls to a HOF

Any declaration that contains a call to the HOF is transformed in this phase, by trans-

forming the function value passed to the HOF into a value in the Fvp datatype. The

HOF is also transformed (specialized) by tagging the function name based on the type

of the Fvp, as discussed in Chapter 5.

Complications to these transformations arising from let expressions are discussed in

Chapter 4; representing functions in the Fvp datatype is discussed in Section 3.6, and
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HOF and Fvp expressions with multiple alternates are discussed in Section 3.7.

As Fvps are transformed, information about them is recorded in the apply informa-

tion list, used to construct the Fvp datatype and apply function used to interpret Fvp

representations. The apply information list is stored in a ref variable. This information

is used in Phase IV.

Figure 3.6 shows the accumulator function for the App constructor that is used in

Phase III. This function turns a Fvp expression into a value in the Fvp datatype via the

modify_fvp function. M odify-fvp both converts a Fvp expression and records information

about it in the apply information list.

3.3.4 PhaseIV-Specializing HOFS and Adding Apply Functions

All HOF declarations in a HOF set are transformed in this phase, by creating multiple

copies of the HOF declarations, one copy for each specialization group. Specialization is

discussed in detail in Chapter 5.

Also in this phase, an apply function and Fvp datatype are added to the source

program. In fact, several sets of apply functions and Fvp datatypes might be added due

to specialization. When these declarations are added, the source program is reordered,

as discussed in Section 3.8.

3.4 Detecting HOFS with Shared Fvps

In Phase I, information about HOFs is added to the transformation list. In order to

execute all necessary transformations, other HOFs sharing Fvps with the HOF currently

being processed need also to be included in the transformation list. HOFs with shared

Fvps are detected in Phases II and III, and added to the transformation list during those

phases.

In Phase II, shared Fvps can be detected in HOF declarations in two ways. First, if

the Fvp is used as an argument to another function, then the other function shares a

Fvp with the surrounding HOF. In the example below, when executing Phase II on the



>. (Jct,arg).>.env.

let val fcLenv

val fcLexp

val arg_exp -

val fvp_pos =
val flist

- lookup_enventry env ((second fct) env)

- (first fct) env

(first arg) env

second fvp

- geL function_info fcLenv env
in

if member (first fvp) flist then

let val actuaLfvp = extracLparam_exp arg_exp fvp_pos

val actuaLfvp_rep = modify-fvp actuaLfvp fvp base_fvp scope env

in

App(JcLexp, inserLparam_exp actuaLfvp_rep arg_exp fvp_pos)

end

else

A pp(JcLexp, ar g _exp)

end

Context

Figure 3.6: Phase III App accumulator function
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Identifier Type

Description

modify_fvp string erep -+ fparm -+ fparm -+ int -+ environ -+ string erep

Turns a function name or lambda expression into a expression that
represents the function. The first fparm is the Fvp currently being
transformed, and the second fparm is the base Fvp. The int is the
scope level at which to update the apply information list, which is
done as a side effect.
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Fvp (high, Position 1), the shared Fvp (high', Position 2) is detected.

fun high (f,x) = (high' (x,!), f x)

Figure 3.7 shows the accumulator function for the App constructor used in Phase II,

enhanced to include detection of shared Fvps as described. Lines which were added to

this function that were not in Figure 3.5 are marked with add~.

Second, if the Fvp is one alternate in a multiple alternate expression, and another

parameter (to the HOF or some other surrounding function) is another alternate of the

expression, then the other parameter is a Fvp, shared with the current Fvp. In the

example below, when executing Phase II on the Fvp (high, Position 1), the shared Fvp

(high, Position 2) is detected.

fun high (f,g,x) = (case x of
nil => f

x:: xs => g) x

Figure 3.8 shows the accumulator function for the Case constructor used in Phase

II, that detects shared Fvps as described. Note that no transformations are performed

by this function.

In Phase III, shared Fvps can be detected at HOF call sites in two ways. First, if

the Fvp being passed to the HOF is a parameter to a surrounding function, then the

surrounding function shares a Fvp with the current HOF. In the example below, when

executing Phase III on the Fvp (high, Position 1), the shared Fvp (outer, Position 1) is

detected.

fun outer (f,x) = high (f,x)

Figure 3.9 shows the accumulator function for the App constructor used in Phase III,

enhanced to include detection of shared Fvps as described. Lines which were added to

this function that were not in Figure 3.6 are marked with add~. Note that if the Fvp

is shared, the Fvp expression is not transformed.

Second, if the HOF is one alternate of a multiple alternate expression, and a different

HOF is another alternate of the expression, this HOF has a shared Fvp with the current
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,X (Jct,arg).'x env.

let val fcLenv = lookup_enventry env ((second fct) env)

val fcLexp = (first fct) env

val arg_exp = (first arg) env

val arg_env = lookup_enventry env ((second arg) env)

val side_effect =
if refs_param arg_env then

map (,X(Param fvp',p). if fvp'= fvp then

add-xform_fun base_fvp [( exp_to_fid fct, p)]

else

o
I (-,p).O)

(values_in arg_env)
else

nil

in

if refs_param fcLenv then

if member fvp (geLparam_info fcLenv) then

App(make...id "apply_" base_fvp "", Tuple [JcLexp,arg_expD
else

App(JcLexp, arg_exp)

else

App(JcLexp, arg_exp)

end

Context

Figure 3.7: Phase II App accumulator function, modified to detect shared Fvps

Identifier Type

Description
exp_to_fid string erep - function_id

Converts an expressionrepresenting a function into a function_id.
values_in string erep - (string erep * parameter_id) list

Returns a list of the expressions and their corresponding positions
contained in a tuple expression.
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>. (ce,pelist). >.env.

let val p_expJist -

map (>' (p, (e_exp, e_env)).(p, e_exp (enrich env p (e_env env)))) pelist

val expJist = map second p_expJist

val envJist = map (>' (p,e).(second e) env) pelist
val side_effect =

case fparrrLin fvp expJist of

just pos ::::}

let val sharedJist = mult(map geLembedded_param_info envJist)

val sharedJist' = filter (>' (fparm,pos').pos = pos') sharedJist
in

add-xform_fun base_fvp (map first sharedJist')
end

nothing ::::} 0
in

Case((first ce) env,p_expJist)
end

Context

Figure 3.8: Phase II Case accumulator function

Identifier Type

Description
fparm_in fparm - string erep list - parameter_idmaybe

If the fparm value is found in any of the expressions in the list,
then returns just the position of the fparm value in the expression.
Otherwise returns nothing.

geLembedded_param_info enventry - (fparm * parameter_id) list

Returns a list of all parameters referred to in an environment value,
paired with their corresponding positions in the expression.
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>. (Jct,arg).>. env.
let val fcLenv = lookup_enventry env ((second fct) env)

val fcLexp = (first fct) env

add I> val arg_env = lookup_enventry env ((second arg) env)

val arg_exp = (first arg) env

val fvp_pos = second fvp

val ftist = geLfunction_info fcLenv env
in

add I>

if member (first fvp) ftist then

let val actuaLfvp = extracLparam_exp arg_exp fvp_pos

val actuaLfvp_env = extracLparam_env arg.-env fvp_pos

val actuaLfvp_rep = modify_fvp actuaLfvp fvp base_fvpscope env
in

add I>

add I>

add I>

add I>

if refs_param actuaLfvp_env then

(add_xform_fun base_fvp(geLparam_info actuaLfvp_env)j

App(JcLexp, arg_exp))
else

App( fcLexp,

inserLparam_exp actuaLfvp_rep arg_exp fvp_pos)
end

else

App(JcLexp, arg_exp)
end

Figure 3.9: Phase III App accumulator function, modified to detect shared Fvps
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Fvp. In the example below, when executing Phase III on the Fvp (high, Position 1), the

shared Fvp(high', Position 1) is detected.

fun calLhigh x = (case x of

nil ~ high

x:: xs ~ high') (f,x)

Figure 3.10 shows the accumulator function for the Case constructor used in Phase

III, that detects shared Fvps as described. Note that no transformations are performed

by this function.

3.5 New Identifiers Introduced by Transformations

Firstify introduces new declarations to the source program in the form of apply functions

and Fvp datatypes. The names of a.ll identifiers declared in these declarations are

constructed using the base Fvp in the HOF set to which a HOF belongs.

Apply function names are a.llof the form apply _position_ofJunction-name_tags

Datatype names are a.llof the form type_position_ofJunction-name_tags

Constructor names are a.llof the form fvp-id_position_ofJunction-name_tags

where fvp-id is either the string "P _" followed by the name of the function

being passed, or "P ..8ectionn", where n is a number, if the

function being passed is a lambda abstraction.

position is an encoding of the position of the base Fvp in the param-

eter of the base HOF as a sequence of integers separated by

underscores.

function-name is the name of the base HOF.

tags are one or more uppercase letters separated by underscores.

Tags are introduced by specializing a HOF. Tags are omitted

in examples shown in this thesis until Chapter 5.

Currently, no provision is made in the implementation to ensure that these identifiers

are not already declared in the source program. Thus, it is assumed that the input

program does not declare identifiers that conflict with those created by Firstify.
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A (ce,pelist). A env.

let val p_expJist -

map (A (p, (e_exp, Lenv)).(p, e_exp (enrich env p (Lenv env)))) pelist

val expJist = map secondp_expJist
val env_Iist = map (A (p, e).(second e) env) pelist

val side_effect =
case function_in (first fvp) expJist of

just pos =>

let val shared_fcUist = mult(map geLembedded_fcLinfo envJist)

val shared_fcUist' = filter (A (fid,pos').pos = pos') shared_fcUist

val shared_fvp_Iist =
map (A (fid, _). (fid, (second fvp))) shared_fcUist'

in

add_xform_fun base_fvp (map first shared_fvp_Iist)
end

nothing => 0
in

Case( (first ce) env,p_expJist)
end

Figure 3.10: Phase III Case accumulator function

Context

Identifier Type

Description

function_in function_id --+ string erep list --+ parameter_id maybe

H the function_id is found in any of the expressions in the list, then
returns just the position of the function in the expression. Otherwise
returns nothing.

geLembedded_fcLinfo enventry --+ (Junction_id * parameter_iff) list

Returns a list of all functions referred to in an environment value,
paired with their corresponding positions in the expression.
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3.6 Representing Functions and Interpreting the Repre-

sentations

Functions passed as Fvps are assumed to be in one of two forms at the HOF call site-a

simple identifier or a section. Sections are lambda abstractions of the following formI:

Ap.f(..., p, ...)

Where f is a function, p is a pattern, and p is the expression equivalent of p.

Each function passed as a Fvp is represented with a constructed value in a Fvp

datatype. Each identifier passed as a Fvp is represented by a nullary constructor which

merely encodes the name of the function. For example, consider the following HOF call

site (where (high, Position 1) is the Fvp).

val z = high (f,x)

The identifier f would be represented by a nullary constructor, resulting in the following

transformed declaration.

val z = high (P_f_Lof_high,x)

Each section passed as a Fvp is represented by a constructor with the domain being

a product of type variables, each type variable representing a variable in the section that

is free in the context of the lambda abstraction but bound in the context of some sur-

rounding function. The section is represented at the call site by applying the constructor

to these variables. Variables that are free in the section but not bound in the context of a

surrounding function are defined at a more outer scope than the surrounding function(s),

and thus do not need to be represented in the datatype. For an example, consider the

following HOF call site.

fun calLhigh x = high (AZ.g(X,y,z),O)

1According to the definition, abstractions in Standard ML can have multiple patterns, each with a
corresponding expression. Pattern matching is used to select an expression to execute. This feature is
not supported by Firstify.
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In the section, x and y are free variables. However, only x is bound in the context of

calLhigh. Thus, the only value that needs to be a constructor argument is x. The

section would be represented by a constructor with argument x, as follows.

fun calLhigh x = high (P_SectionLLof_highx, 0)

The Fvp datatype for representing the two calls to high presented above would need

to be parameterized on a single type variable that represents the type of x in the section

Fvp. This datatype declaration is as follows.

datatype Q: type_Lof_high =
P-f-Lof_high

P_SectionLLof_high of Q:

In general, in a Fvp datatype a type variable is needed for each constructor argument.

However, suppose datatype D has a constructor C with a domain (Tl * ... * Tn) where

1i is D for some i. In this case, D is not parameterized with a type variable for 1i.

Instead, the Fvp datatype needs to be recursive. A recursive datatype is necessary if

the following two conditions are met.

1. A section Fvp is passed in Position n in a recursive call to a HOF.

2. The formal parameter to the HOF in Position n occurs freely in the section.

For example, consider the following program fragment, containing two calls to the HOF

map_with.:policy .

fun Policy (J,x) = if x = 0 then 0 else f x

fun map_with.:policy (J, nil) = nil

I map_with.:policy (J,x:: xs) = (J x):: (map_with.:policy()..y.Policy(J,y),xs))
val calLmwp = map_with.:policy (J00,1)

The first argument to map_with_policy (i. e. the argument in Position 1) is a Fvp. In

the recursive call to map_with.:policy, the section )..y.Policy(J, y) is passed as this Fvp.

Since f is a free variable in the section but is bound in the context of a surrounding



44

function (map_with-policy), it needs to be an argument to the constructor representing

the section. Suppose we use a type variable for the type of this constructor argument in

the datatype declaration, which results in the following declaration.

datatype a type_Lof_map_with_policy =
P_SectionLLof_map_with_policy of a

I P_foo_Lof_map_with_policy

Since f (in the declaration of map_with_policy) is of type type_Lof_map_with_policy, the

datatype needs to be instantiated with a as a type_Lof_map_with_policy. This instanti-

ation is not possible in ML. Thus, the datatype should not be parameterized, and instead

the domain of P_SectionLLof_map_with_policy should be type_Lof_map_with_policy. This

datatype is recursive.

datatype type_Lof_map_with_policy =
P_SectionLLof_map_with_policy of type_Lof_map_with_policy

P _foo_Lof_map_with_policy

Apply functions for a HOF set have two parameters-the representation of a function

(in the Fvp datatype) and the argument to that function. The apply function for a HOF

set interprets function representations to apply the appropriate function to the argument.

Interpreting representations of function identifiers is trivial. Representations of sections

are interpreted by evaluating the body of the section, modified as follows:

. Each variable value stored in the constructor representing the section is substituted

into the section body as appropriate.

. The argument to the represented function is substituted into the section body as

appropriate.

The apply functions for the two examples above are:
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fun apply_Lof_high (function_rep,junction_arg)

case function_rep of

P_f_Lof-high ~ function_arg

I P_SectionLLof_high x ~ g(x,y,function_arg)

fun apply_Lof_map_with_policy (function_rep, function_arg) =
case function_rep of

P_SectionLLof_map_with_policyf ~ Policy(f, function_arg)

I P_foo_Lof_map_with_policy~ foo function_arg

and Policy (f,x) = if x = 0 then 0 else apply_Lof_map_with_policy (f,x)

Note that apply_Lof_map_with_policy now must be mutually recursive with Policy. In-

troduction of mutual recursion is described in Section 3.8.

3.7 Multiple Alternate Expressions

Multiple alternate expressions contain several explicit possible values, or alternates. It

is not possible to statically determine which of the alternates will be selected when the

expression is evaluated. Thus, transformations done by Firstify that are performed on

one alternate of a multiple alternate expression will require transformations on the other

alternates. The alternates must have unifiable types. Examples of multiple alternate

expressions in ML are case, handle, and if . . .then statements, and applications of

lambda abstractions that have more than one pattern.

Since Firstify transforms expressions that evaluate to HOFSand Fvps, it must be ca-

pable of transforming multiple alternate expressions where one of the alternates contains

a HOF or a Fvp. In particular, Firstify must transform multiple alternate expressions

with alternates containing one of the following values:

1. A Fvp, when in the body of a HOF.

2. A Fvp, at the call site of a HOF.

3. A HOF, at the call site of a HOF.
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Firstify transforms case and handle expressions in these three contexts. If . . . then

statements are represented in the CRML abstract syntax as case statements, obviating

the need to deal with them explicitly. Also, since it is assumed that the only lambda

abstractions in the input to Firstify are sections that are passed as Fvps, lambda abstrac-

tion applications are not handled by Firstify. However, the transformations described in

this chapter would work on if ...then statements and lambda abstraction applications

if such transformations were required.

3.7.1 Fvp Alternates in HOF Bodies

Multiple alternate expressions with Fvp alternates in HOF function bodies affect the

transformations performed by Firstify in two ways.

1. Shared Fvps are detected, as described in Section 3.4. Shared Fvps with HOFs

declared at different scopes are discussed in Section 4.3.2.

2. Alternates of a multiple alternate Fvp expression that are not parameters to some

surrounding function need to be transformed, as described below.

Consider a multiple alternate expression with an alternate that evaluates to the Fvp

currently being transformed. H an alternate is not a parameter to a surrounding function

(i. e. a shared Fvp), it must be transformed into a function representation. For example,

consider the following program fragment.

fun high (f, x) = (case x of

nil => id

x :: xs => f) x

val z = high (faa, [1])
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When the declarations are transformed so that a call to the appropriate apply function

is inserted where f is called, the resulting declarations are:

fun high (f,x) = apply_Lo/_high «case x of

nil => id

y:: ys => I),x)

val z = high (P_/oo_Lo/_high, [1])

In this version, f is no longer a function type. It now has the type type_Lof_high. For

the case expression to be well typed, both alternates must have unifiable types. Thus

id needs to be transformed into something of type type_Lo/_high, as follows:

fun high (f,x) = apply_Lof_high «casex of

nil => P_id_Lo/_high

y:: ys => I),x)

val z = high (P_/oo_Lof_high, [1])

In this example, each alternate evaluates to a function value. In general, each al-

ternate might evaluate to some data structure containing a function value. The data

structure might include tuples, records, or constructed values in a datatype. Firstify

will correctly transform function values contained in a tuple, but not function values

that are part of a record or constructed datatype values. This applies to all transfor-

mations, not just those for multiple alternate expressions. Transforming function values

contained in other data structures is discussed in Section 6.1.

3.7.2 Fvp Alternates at HOF Call Sites

At a HOF call site, the Fvp expression can have multiple alternates. This affects the

transformations done by Firstify in two ways.

1. Functions passed as Fvps need to be transformed into representations of the func-

tions. If the Fvp expression has multiple alternates, then each alternate needs to

be transformed. This is done by the modify_/vp function, described in Section 5.2.
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2. All functions passed as Fvps in a multiple alternate Fvp expression must be co-

erced into the same specialization group. See Chapter 5 for more information.

3.7.3 ROF Alternates at ROF Call Sites

At a HOF call site, the HOF expression can have multiple alternates. This affects the

transformations done by Firstify in two ways.

1. Shared Fvps are detected, as described in Section 3.4. Alternates of the HOF ex-

pression containing HOFs declared at different scopes are discussed in Section 4.3.2.

2. Specialization requires that names of HOF functions be modified. ITthe HOF ex-

pression has multiple alternates, each alternate needs to be modified. See Chapter 5

for more information.

3.8 Ordering Declarations

When declarations are added to the input program, they must be added so that decla-

rations referring to an identifier occur after the declaration of that identifier. Firstify

ensures this by reordering declarations each time a set of Fvp datatype and apply func-

tion declarations are added to a program.

The algorithm operates by constructing and manipulating a directed graph containing

declaration information. Each node contains one or more mutually recursive declarations

and a unique identification number. Arcs indicate dependencies between one declara-

tion and another. When a declaration Dl references an identifier declared in another

declaration D2, there is an arc from Dl to D2.

After the initial graph is built from the current program (list of declarations) and

declarations to be inserted, cycles are detected and eliminated. Cycles are detected

using a depth first search, which keeps tracks of nodes visited and returns a list of node

numbers found in a cycle. Cycles are eliminated by combining the nodes in a cycle into

one node and adjusting arcs pointing to any node in the cycle to point to the one node.
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When all cycles have been eliminated, a reordered program is constructed. This is

done with a topological sort of the graph.

This algorithm requires unique naming of all identifiers declared at the same scope

level. This is an input assumption for Firstify.



Chapter 4

Local Declarations

Modern functional languages often allow declarations that are local to another declara-

tion. ML provides this feature with the let statement. A let statement has two parts: a

let declaration and a let body. The identifiers declared in the let declaration are visible

only in the let body.

The effects of local declarations on the transformations performed by Firstify are

discussed in this chapter. Although it is assumed that the input to Firstify has all

functions declared at the "top level", some of what is discussed in this chapter has been

implemented in Firstify. In particular, the details discussed in Sections 4.1 and 4.2 have

been implemented.

4.1 Scopes and Scope Levels

Each let declaration defines a new scope!. At runtime, value bindings for identifiers

declared in the new scope supersede previous bindings for the same identifiers. Likewise,

an environment binding created by Firstify is superseded by a new environment binding

created where an identifier is redeclared at a new scope.

Scopes are encoded in Firstify as an integer called the scope level. The initial scope

level is O. Each time a let declaration is entered, the scope level is incremented. When

the let body is exited, the scope level is decremented. Thus, lower scope levels refer

lEach let statement may in fact have several declarations. However, the CRML abstract syntax
represents multiple declarations as nested lets, and so each declaration is really declared in a new scope.

50
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to more "outer" scopes, and higher scope levels refer to more "inner" scopes. In the

following example, x, facLsq, and facLx_sq are declared at scope level 0; fact is declared

at scope level 1; sq is declared at scope level 2.

val x = 5

fun facLsq n =
let fun fact 0 = 1

fact n = n * (Jact(n- 1))
in

let fun sq x = x * x

in sq(Jact n) end
end

val facLx_sq = facLsq x

Scope levels are used in environment bindings to record the scope at which an iden-

tifier is defined. This information is recorded in the LocalDec constructor, and is used

in performing transformations. Environment bindings for the identifiers declared in the

above program are:

4.2 Transforming Local Declarations

Clearly, locally declared functions can be higher order, or can be used as Fvps. Thus,

Firstify must be able to correctly transform locally declared HOFS, represent locally de-

clared functions that are Fvps, and insert apply function and Fvp datatype declarations

at the appropriate scope level.

Identifiers declared at a particular scope are visible only at that scope and more

"inner" scopes. Thus, HOFs declared at scope level n are visible only at scope levels

b
LocalDec(O, "x")x ---*

facLsq
b

LocalDec(O, "facLsq")---*

fact
b

LocalDec(l, "fact")---*
b

LocalDec(2, "sq")sq ---*

facLx_sq
b

LocalDec(O, ''facLx_sq'')---*
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2: n. As a result, transformations to a HOF and calls to the HOF only occur at the

scope level of the HOF definition or greater scope levels. To ensure this, in Phase I

Firstify performs "local defunctionalization" on each scope. Local defunctionalization

is performed by transforming the declaration and body of the let statement into a

complete program (i. e. a list of declarations), and calling the top level function of

Firstify recursively on this program. The transformation and apply information lists

used for a local defunctionalization are unique to that particular call to Firstify. Thus,

only HOFs declared in the current "program" are transformed. Figure 4.1 shows the

accumulator function for the Letrec constructor used in Phase I, which performs local

defunctionalization as described.

Transforming a let statement into a list of declarations is a straightforward process

of appending the let declaration with a declaration built by assigning the let body to

some identifier not declared or referenced in the let statement.

Local defunctionalization ensures that the apply function and Fvp datatype decla-

rations created by Firstify are placed in the program at a scope level less than or equal

to the scope level where the HOF is declared. This is the desired placement, since the

HOF refers to these declarations.

4.3 Problems with Local Declarations

A declaration Dl precedes another declaration D2 if

. the scope level of Dl is less than the scope level of D2

or

. the scope levels of the two declarations are equal and either

- Dl comes before D2 in the list of declarations declared at that scope level

or

- Dl and D2 are mutually recursive
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)..(letdec,letbody).)..env.

let val letdec_env = lookup_enventry env ((second letdec) env)

val letdec_dec = (first letdec) env
val letbody_exp = (first letbody) (add..bindings letdec_body env)

val new_ident = unused_id (Letrec(letdec_dec,letbody_exp))
fun rebuild.1et nil body = body

rebuild.1et ((dec as ((val 'i = 'e))) :: rest)) body -
if i = new_ident then rebuild.1et rest e

else Letrec(dec, rebuild.1et rest body)

rebuild.1et (dec :: rest) body = Letrec(dec, rebuildJet rest body)

val program = letdec_dec:: ((val 'new_ident = 'letbody_exp)) :: nil
in

rebuild.1et (run_firstifyprogram env (scope+ 1)) nil
end

Figure 4.1: Phase I Letrec accumulator function

Context

Identifier Type

Description

add_bindings (string * enventry)list --t environ --t environ

Add bindings to an environment, yielding a new environment.

run_firstify string drep list --t environ --t int --t string drep list

Defunctionalize a program, using the given environment and scope
level.

unused_id string erep --t string

Return an identifier not declared or referenced in an expression.



54

For a transformed program to execute properly, the following restrictions on decla-

rations are required:

1. Declarations of functions passed as Fvps must precede the apply function decla-

rations for the HOF set.

2. An Fvp datatype declaration must precede the corresponding apply function dec-

laration.

3. Apply function declaration(s) must precede the corresponding HOF declaration(s).

4. A HOF declaration must precede all declarations containing calls to the HOF.

Restriction 4 is assumed to be met by the input program, and will be maintained by the

the declaration reordering method used by Firstify, which is discussed in Section 3.8.

Section 4.3.1 discusses the difficulties in meeting restriction 1. Section 4.3.2 discusses

the difficulties in meeting restrictions 2 and 3.

4.3.1 HOF and Fvp Declared at Different Scope Levels

From the four restrictions we can see that declarations of functions passed as Fvps must

precede the declaration of the HOF to which the functions are passed. If the Fvps

and HOF are all declared at the same scope level, this restriction can be met by the

reordering method. However, if an Fvp is declared at a scope level greater than the HOF

declaration's scope level, another solution is needed.

Although the problem has not been thoroughly examined, the solution appears to be

to represent the body of the function passed as the Fvp in the same way sections are

represented, as discussed in Section 3.6. Thus the apply function will directly execute the

body of the function passed as a Fvp rather than call that function. This technique could

in fact be extended to all functions passed as Fvps, although a considerable amount of

the input program's structure would be lost by such a transformation.

In the following program, high is a HOF declared at scope level 0, and concaLto_x is

passed as a Fvp to high, but is declared at scope level 1.
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fun high (f,x) = f x

fun comma_separate (x,y) =

let fun concaLto..xs = x . ii,'" S

in high (concaLto..x, y) end

To transform this program, the body of concaLto_x needs to be executed in the apply

function for high, and the identifier concaUo_x in the call to high must be replaced by a

constructor representing the body of concaLto..x.

datatype a type_Lof_high =

P-LambdaLLof_high of a

fun apply_Lof_high (function_rep,function_arg) =

case function_rep of

P-LambdaLLof_high x ~ x' ii,'" function_arg

fun high (f, x) = apply_Lof..high(f, x)

fun comma_separate (x,y) =

let fun concaLto..x s = x . ii,'" S

in high (P_LambdaLLof_high x,y) end

Note that in this example, the declaration of concaUo_x could be removed from the

program, but of course this is not true in general.

It would pose some problems to include this solution in the current implementa-

tion of Firstify. All other transformations (with the exception of those in Phase IV

that copy declarations and rename declared variables) can be performed at the level

of an expression, where the only "state" information available is the environment, the

transformation list, type information, and environment values of constituent parts of

the expression. This transformation would require the propagation of function bodies

to HOF call sites, which could be done by either (significantly) extending the state or

adding an additional phase to the implementation.
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4.3.2 Shared Fvps for HOFS Declared at Different Scope Levels

According to restrictions 2 and 3, the apply function and Fvp datatype declarations for

a Fvp function must precede declarations of all HOFSwhich share that Fvp. Recall that

apply function and Fvp datatype declarations are added to a program at the scope level

of the base HOF, that is, the first HOF detected in a HOF set. Thus, the simplest way

to ensure that restrictions 2 and 3 are met is to require the base HOF to be one of the

"outermost" HOFs (i.e. a HOF declared at the least scope level of all HOF scope levels

in the set).

However, Firstify detects HOFs in the order in which they are declared in the input

program, and cannot guarantee that a base HOF is the outermost one in its HOF set.

Also, since HOFs are detected only when a parameter is applied as a function, if the

outermost HOF never applies its Fvp, it might never be directly detected as a HOF2.

For example, in the following program, inner shares a Fvp with both outer and high.

It would be desirable for either outer or high to be the base HOF. However, since outer

never applies its Fvp, and inner comes before high in the program inner will be detected

first and will be the base HOF for this HOF set.

fun dec x = x-I

fun outer (f,x) =

let fun inner (g,x) = x * (outer(g,g x))
in

if x = 0 then 1

else inner(f,x)
end

fun high (f, n) = (f n, outer(f, n))

fun dec_and_fact n = high(dec, n)

This problem is compounded by local defunctionalization, because even if either outer

2If higher order functions were detected by type analysis, this would not be a problem
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Phase I

Phase IV

Figure 4.2: Phase execution order for first solution to local declarations problem

or high were the base HOF, local defunctionalization would cause the apply function and

Fvp datatype declarations for inner to be inserted at the same scope level as inner.

There appear to be two approaches to solve this problem. Both ensure that the base

HOF for a HOF set is declared at the outermost scope.

The first approach is to modify phase execution order and Phase I of Firstify. In this

approach, Phase I would find and record all HOFSat one time, creating a transformation

list for each scope. Each transformation list would contain the HOF sets consisting of

HOFs declared at that scope associated with the appropriate base HOF. The remaining

phases will thus always use the correct base HOF in performing transformations. A

diagram illustrating this modified phase execution order is shown in Figure 4.2.

Phase II I
I For

each
HOF

For I

. ina

each
r 1 1 HOFHOF Phase ill set

set
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This approach is "clean", and for the most part relies on code that is already devel-

oped, but would require substantial modifications to the Firstify implementation.

The second approach would be simpler to implement, but is perhaps less "elegant"

than the first. Suppose Hinner is a HOF declared at scope level SLinner, Hauter is a

HOF declared at scope level SLauter, and SLinner > SLauter. Suppose also that while

performing transformations for Hinner it is discovered that Hinner shares a Fvp with

Hauter. At this point, Hinner could be recorded in the transformation list as a HOF with

a Fvp shared with the base HOF for Hauter. If transformations for Hinner had already

been performed, then they would need to be re-performed with the appropriate base

HOF. This would require a new phase (call it Phase IlIa), in which transformations for

a particular base HOF could be "undone". This phase would execute as needed after

Phase II or III. After executing this new phase, Phases II and III would be repeated

with the correct base HOF. A diagram illustrating this modified phase execution order

is shown in Figure 4.3.

Neither approach to solving this problem has yet been implemented. As stated

above, it appears that the first approach is superior in terms of elegance, but the second

approach would be simpler to implement.
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Phase I

Phase IV Phase illa

Figure 4.3: Phase execution order for second solution to local declarations problem
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Chapter 5

Specialization

Consider the following program:

According to Reynold's algorithm, a defunctionalized version of this program is:

fun plusl (x : int) = x + 1
fun java s = s. "java"
datatype type_Lof_high

J>_plusl_l_of_high

I J>_java_Lof..high

fun apply_Lof..high (function_rep, function_arg) =

case function_rep of

J>_plusLLof_high => plusl function_arg

I J>_java_Lof..high => java function_arg

fun high (J, x) = apply_Lof_high (J, x)

val two = high (J>_plusLLof_high,l)

val coffee = high (J>_java_Lof_high,"mocca-'~

The function apply_Lof_high is not well typed. In particular, the function applica-

tion plusl function_arg implies that function_arg is an int, but the function application

java function_arg implies that function_arg is a string. One way to fix this problem is

60

fun plusl (x : int) = x + 1

fun java s = s. "java"
fun high (J,x) = f x
val two = high (plusl,l)

val coffee = high (java, "mocca-'
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to create two versions of the apply function-one that handles int arguments, and one

that handles string arguments. This would require two copies of high, each copy call-

ing a different version of the apply function. The calls to high would then need to be

modified to call the appropriate version of high. Finally, we should split the datatype

into two datatypes-one for representations of functions of type int --t int and another

for representations of functions of type string --t string. The following program shows

these changes. All declarations in this program are well typed.

fun plusl (x : int) = x + 1
fun java s = s A "java"

datatype type_Lof_high_int =
J>_plusl_l_of_high_int

datatype type_Lof_high_string -

J>_java_Lof_high_string

fun apply_Lof_high_int (function_rep, function_arg) =
case function_repof

J>_plusLLof_high_int => plusl function_arg

fun apply_Lof_high_string (function_rep, function_arg) -
case function_rep of

J>_java_Lof_high_string => java function_arg

fun high_int (I,x) = apply_Lof_high_int(I, x)
fun high-Btring (I, x) = apply_Lof_high_string(I, x)
val two = high.int (J>_plusLLof_high_int,1)

val coffee = high-Btring (J>_java_Lof_high_string,"mocca-'~

Creating multiple copies of HOFS and their associated apply functions and datatypes

is known as type specialization, since a copy of each declaration is made especially for

Fvps of a particular type. In general, specialization is a program transformation that

creates specialized copies of a declaration based on some criterion. Higher order removal

as described in Section 1.2 is an example of specialization, in this case based on the

function values passed to a higher order function. Although specialization has this more

general meaning, references to specialization in this thesis refer to type specialization.
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In the above program, all identifiers that are added to the program by Firstify, as

well as the names of the HOFS,are tagged with an additional string (or tag) which makes

the identifier unique. In the actual Firstify implementation, single uppercase letters are

used for tags rather than type names.

To specialize a program, the Fvps passed to any HOF in a HOF set are divided

into specialization groups. Each specialization group requires its own unique tag, Fvp

datatype, apply function, and copies of the HOFSin the HOF set. Specialization groups

are defined over the types of FvPs. Each group corresponds to a unique type. In the

above example there are two specialization groups-one for Fvps of type int -t int,

and the other for Fvps of type string -t string. The process of determining the

specialization group for a Fvp via type unification is discussed in Section 5.2.

5.1 The Specialization Transformations

Specialization entails the following transformations:

1. At the HOF call site, the specialization group and corresponding tag must be

determined. The constructor name representing the Fvp and HOF function name

are tagged with this tag.

2. Tagged copies of all HOFSin a HOF set must be created.

3. Tagged copies of apply functions must be created.

4. Tagged copies of Fvp datatypes must be created.

Transformation 1 is performed in Phase III. The other three are performed in Phase IV.

5.1.1 Specializing HOF Calls

At a HOF call site, the type of the function passed as a Fvp determines the specialization

group and corresponding tag. The HOF name and constructor used to represent the Fvp

must be tagged with this tag. Figure 5.1 shows the accumulator function for the App
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constructor used in Phase III, enhanced to determine the specialization group and tag

identifiers. Lines that were changed in this function from the version in Figure 3.9 are

marked with change 1>.In this function, the constructor is tagged by calling modify_fvp,

which now returns a pair consisting of the tagged constructor name representing the Fvp

and the tag for the specialization group. A partial declaration of modify-fvp is shown

in Figure 5.2. This function handles only two kinds of Fvp expressions-identifiers and

sections. Multiple alternate Fvp expressions are discussed in Section 5.2. Other kinds of

Fvp expressions are not included because of assumed restrictions on the input to Firstify

(e.g, there are no let expressions).

In modify_fvp, the type of the Fvp expression is determined via geLfvp_type, as

discussed in Section 5.3. Information about the Fvp is stored in the apply information

list with either store_fvp_info or stoTe_section_fvp_info. Finally, the constructor and tag

are returned.

The tag returned by modify-fvp is passed to add_tag, which tags the HOF name.

Figure 5.3 shows the definition of add_tag. As with modify-fvp, not all kinds of expressions

are handled because of assumed restrictions on the input to Firstify.

5.1.2 Creating Specialized HOFS

In Phase IV, all HOFs in a HOF set need to be specialized. Specializing a HOF declaration

involves the following transformations.

1. One copy of the HOF is created for each specialization group. The name of the

HOF is tagged with the tag for the specialization group.

2. In the HOF body, references to names of other HOFS in the same HOF set are

tagged with the tag for the specialization group.

3. In the HOF body, references to the apply function for the HOF set are tagged with

the tag for the specialization group.

Transformation 1 is straightforward. Before each copy is inserted into the input pro-

gram, transformations 2 and 3 are performed on the copy to tag identifiers. Figure 5.4
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.A(Jet,arg)..Aenv.
let val fcLenv -

val fcLexp
val arg_env -
val arg_exp -
val fvp_pos -
val flist

lookup_enventry env ((second fct) env)

= (first fct) env

lookup_enventry env ((second arg) env)

(first arg) env

second fvp

- geLfunction_infofcLenv env
in

change I>

if member (first fvp) flist then

let val actuaLfvp = extract..:param_exp arg_exp fvp_pos

val actuaLfvp_env = extract..:param_env arg_env fvp_pos

val (actuaLfvp_rep, group_tag) =
modify_fvp actuaLfvp fvp base_fvp scope env

in

if refs_param actuaLfvp_env then

(add-xform_fun base_fvp (geLparam_info actuaLfvp_env) j

A pp(JcLexp, ar 9_exp) )

else

change I> App( add.1ag fcLexp group_tag env,

insert..:param_exp actuaLfvp_rep arg_exp fvp_pos)

end

else

App(JcLexp, arg_exp)
end

Figure 5.1: Phase III App accumulator function, modified to specialize HOF calls
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fun modify_fvp fvp_ezpr fvp base_fvp scope env =
let val fvp_type = geLfvp_type fvp_ezpr
in

case fvp_expr of
Id nm ~

let val id_to_use = deref_id a env

val tag = store_fvp_info base_fvpid_to_use fvp_type
in

(Id (make..id ("P_". id_to_use' "_") base_fvptag), tag)
end

Abs pelist ~
let val vars..in_section =

val (tag, section_num)

section_vars pelist env

= store_section_fvp_info base_fvp vars..in_section

pelist fvp_type env

val rep = make..id ("P_Section" . section_num' "_") base_fvp tag
in

if vars_in_section = nil then

(Id rep, tag)
else

(App(Id rep, Tuple(map Id vars_in_section)),tag)
end

end

Figure 5.2: modify-fvp

Context

Identifier Type
Description

section_vars (string pattern * string erep) list -+ environ -+ string list

Returns a list of variables that are free in the body of a lambda
abstraction but bound in the context of a surrounding function.

store_fvp_info fparm -+ string -+ string trep -+ string

Stores Fvp information in the apply information list when the Fvp
expression is an identifier. The arguments, in order, are the base
Fvp, the name of the Fvp function, and the type of the Fvp func-
tion. Returns the tag for the Fvp's specialization group.

stoTe_section_fvp_info fparm -+ string list -+ (string pattern * string erep) list

-+ string trep -+ environ -+ string
Stores Fvp information in the apply information list when the Fvp
expression is a section. The arguments, in order, are the base Fvp,
a list of free variables used in the section, the body of the section,
and the type of the section. Returns a pair consisting of the tag for
the Fvp's specialization group and a number uniquely identifying
this section in the set of sections passed to the HOF.
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fun add.iag exp tag env =
case exp of

Id x

I Case(cexp,pelist)

Handle(exp,pelist) ~

~ Id((deref_id x env) A "_" A tag)

~ Case( cexp,

map (>.(p,e).(p, add.iag e tag (augment env p cexp)))

pelist)

Handle( add.iag exp tag env,

map (>.(p,e).(p,add.iag e tag env)) pelist)
x

Figure 5.3: add_tag

shows the accumulator function for the Id constructor used in Phase IV to perform this

transformation. Note that this transformation is performed only on the declarations of

functions in the HOF set, not on all declarations in the program.

5.1.3 Creating Specialized Apply Functions and Fvp Datatypes

The apply information list contains all necessary information for constructing apply func-

tion and Fvp datatype declarations. Each HOF set recorded in the apply information

list yields a set of declarations-one apply function and Fvp datatype for each special-

ization group for the HOF set. Each Fvp recorded in the apply information list yields

one constructor for the Fvp datatype and one case alternate in the apply function.

5.2 Determining Specialization Groups

Specialization groups and the types associated with them are stored in the apply infor-

mation list. Once the type of the Fvp is determined (see section 5.3), the specialization

group can be ascertained by systematically comparing the Fvp type with the specializa-

tion group types already recorded in the apply information list.
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>.a.>.env.if member a hof_seLnames then

Id(a A tt_" A tag)

else if a = apply_name then

Id(a A tag)
else

Id a

Figure 5.4: Phase IV Id accumulator function

5.2.1 Forced Specialization Groups

A complication to this method arises when several Fvps are forced to be in the same

specialization group. For example, consider this program:

fun plusl (x: int) = x + 1
fun id x = x

fun high (f, x)
fun one_or_two b

- f x
= (case b of

true => id

I false => plusl) 1

In the function one_or_two, both of the Fvps id and plusl must be in the same special-

ization group. If they are not, then the constructor values used to represent the two

Fvps will be constructors for different datatypes, and thus the case expression will not

be well typed.

Context

Identifier Type

Description

apply_name string

Apply function name (ends with "_").

hof_seLnames string list
Names of functions in HOF set.



68

To force all alternates in a multiple alternate Fvp expression to be in the same

specialization group, the least general type of all alternates in the multiple alternate

expression is determined and used as the type of the Fvp expression. The least general

type is determined via type unification. The unification algorithm used for this is taken

from [Pau91]. This algorithm either successfully unifies a list of type representations

and returns a list of substitutions or fails. If the unification succeeds, the substitutions

are performed on one of the type representations, yielding the least general type of the

types. In this case we know that the unification will succeed, since all alternates in a

multiple alternate expression must have unifiable types.

In the above example, the least general type of id and plusl is int --+ int, and so id

and plusl will both be in the specialization group corresponding to this type.

Figure 5.5 shows the definition of modify-fvp', a version of modify-fvp enhanced to

deal with multiple alternate expressions. Lines which were changed from the version in

Figure 5.2 are marked with change 1>,and new lines are marked with add 1>. The only

multiple alternate expression constructor shown is Case, although the computation for

the Handle constructor is similar.

Note that modify_fvp' has an additional parameter of type string trep maybe. This

parameter is used to force the Fvp type to a particular value. It is only needed for

recursive calls to modify_fvp', so the call to modify_fvp' in Figure 5.1 should pass the

value nothing as this parameter. Note also that the function geLfvp_type must be able to

calculate the type of a multiple alternate Fvp expression. This is discussed in Section 5.3.

5.2.2 Fvps in All Specialization Groups

In two instances, a Fvp must be included in all specialization groups for the HOF set.

The instances are:

1. Either the name of a function defined at the top level or a section occurs in an

alternate of a multiple alternate expression in the body of the HOF, where some

other alternate is the Fvp to the HOF. Since the function name or section must be

transformed into a constructor value (see Section 3.7.1), the constructor must be
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fun modify_fvp' fvp_expr fvp base_fvp scope env fvp_type =
change t> let val fvp_type = case fvp_type of

change t> nothing :::} geLfvp_typefvp_exprenv
change t> I just t :::} t

in

case fvp_expr of
Id nm :::}

let val id..to_use = deref_id a env

val tag = store_fvp_info base_fvpid_to_use fvp_type
in

(Id (make..id (tip _" . id_to_use . tI_") base_fvp tag, tag)
end

Abs pelist :::}

let val vars..in_section = section_vars pelist env

val (tag, section_num) = store_section_fvp_info base_fvp var s..in-section

pelist fvp_type env

val rep = make..id (tiP_Section" . section_num . tI_") base_fvp tag
in

if vars..in_section = nil then

(Id rep, tag)
else

(App(Id rep, Tuple(map Id vars..in_section)), tag)

add t>

add t>

add t>

add t>

add t>

add t>

end

Case (cexp, (Phd,ehd) :: pelist) :::}

let fun one..alt (p, e) =

modify_fvp' e fvp base_fvp scope (augment env p cexp) fvp_type

val (ehd' tag) = one..alt (Phd,ehd)

val pelist' = map (first 0 one_alt) pelist

in (Case((phd, ehd) :: pelist'), tag) end
end

Figure 5.5: modify_fvp " which handles multiple alternate expressions
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tagged with the specialization group tag. However, since the expression is within

the body of the HOF, the tag must correspond to the tag used in each copy of the

HOF. Thus, the Fvp occurs in all specialization groups for the HOF set. For an

example, consider a modified version of the previous example program.

fun plusl (x : int)

fun java s

fun high (f, x, switch) -
val two

val coffee

- x+1

_ S A "java"

(case switch of 0 => id I-=> J) x

high (plusl, 1,1)
= high (java, "mocca-",1)

The transformed version of this program follows. Note that a representation of id

is included in both apply functions and Fvp datatypes for high, and the represen-

tation is used in both copies of high with the appropriate tag in each case.
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fun plusl (x : int) = x + 1
fun java s = s. "java"
datatype type_Lof_high-.A-

P _plusLLof_high-.A

P_id_l_of_high-.A

datatype type_Lof_high..B-
P_java_l_of_high..B

P_id_l_of_high..B

fun apply_Lof_high-.A (function_rep, function_arg) -

case function_rep of

P_plusLLof_high-.A => plusl function_arg

I P_id_Lof_high-.A => id function_arg

fun apply_l_of_high_B (function_rep,function_arg) =
case function_rep of

P_java_Lof_high_B=> java function_arg

I P_id_Lof_high..B => id function_arg

fun high-.A (f,x,switch) =
apply_Lof-.high-.A(case switch of

o => P_id_Lof_high-.A

I-=> f,x)
fun high..B (f,x,switch) =

apply_l_of_high_B(case switch of
o => P_id_Lof-.high..B

I-=> f,x)

val two = high-A. (P_plusLLof_high_A,1)

val coffee = high..B (P_java_Lof_high..B, "mocca-'~

2. A recursive call to a HOF is made with a section Fvp where the function called in

the section is a parameter to the H0F. The constructor representing the section

must be tagged with the specialization group tag. However, since the section is

within the body of the HOF, the tag must correspond to the tag used in each copy

of the HOF. Thus, the Fvp occurs in all specialization groups for the HOF set.

The transformation is similar to the one above.
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5.3 Determining Fvp Expression Types

The types of Fvp expressions that are identifiers can be determined from the type

information that is globally stored for each identifier. Type information is gathered at

the beginning of the transformation process, by compiling the input program and using

ML system functions to determine the types of all identifiers declared at the top level.

This information is stored in a ref variable of type (string * string trep) list, where the

string is an identifier name, and the string trep is the type of that identifier. ITFirstify

were enhanced to allow for local function declarations in the input program, then type

information would need to be gathered at each scope level.

The type of a Fvp expression that is a section can be determined as follows. Consider

the following section:

Ap.f(..., p, ...)

The range of the section is the range of f. The domain of the section can be determined

by examining the domain of f and determining the type of the argument in the position

where p is placed. This type is the domain of the section.

IT f is a function declared at the top level, then the type of f is stored in the type

information list and so the type of the section can be determined. However, if f is

a parameter to a surrounding function, then its type is not readily available. IT the

section occurs within the body of a HOF and f is a parameter to that HOF, then the

section type does not need to be determined since the section will be represented in

every Fvp datatype for the HOF set, as described in Section 5.2. But if f is a parameter

and the section is not in a HOF, then the type of f cannot be determined with the

type information known to Firstify. This problem is exacerbated if f is a polymorphic

function. The problem of determining the type of such sections remains unsolved.

Types of Fvp expressions are calculated by the function geLfvp_type, shown in Fig-

ure 5.6. This function can calculate the type of functions declared at the top level and

the type of sections, provided the function called in the section is a function declared
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at the top level. It also can calculate the type of a multiple alternate expression, as

described in the previous section.
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fun geLfvp_type fvp_exp env =
case fvp_exp of

Id a => lookup..type( deref_id a env)

Abs [(P,App(f, arg))] =>

let val (('d -+ 'r)) = geLfvp_type f env

val domain = geLtype_aLpos (find_exp_pos (pat2exp p) arg) d

in (('domain-+ 'r)) end

Case(cexp,pelist) =>

19t (map ()..(p,e).geLfvp_type e (augment env p cexp))) pelist

Handle(hexp,pelist) =>

19t «geLfvp_type hexp env) :: (map ()..(p,e).geLfvp_type e env) pelist))

Exp TypeC(e, t) => t

Figure 5.6: geLfvp_type

Context

Identifier Type

Description

find_exp_pos string erep -+ string erep -+ parameter_id

Returns the tuple position of the first expression in the section ex-
pression.

geLtype_aLpos parameter_id -+ string trep -+ string trep

Returns the type at the given tuple position within another type.

19t string trep list -+ string trep

Returns the least general type of a list of types.

lookup_type string -+ string trep

Returns the type of an identifier, according to the information stored
in the type information list.

pat2exp string pattern -+ string erep

Converts a pattern to an expression.



Chapter 6

Other Problems

This chapter discusses some unsolved or partially solved problems in the Firstify imple-

mentation.

6.1 Functions Contained in Data Structures

As has been noted, Firstify does not transform function values contained in data struc-

tures other than tuples. In particular, Firstify cannot handle functions contained in ML

records or datatype values.

Extending Firstify to transform functions contained in records would be a straight-

forward process, since records are very similar to tuples. The mechanism for maintaining

environment information would need to be extended to keep track of field tags, so that

when a function value is "extracted" from the record, the field in which it was contained

is stored in the environment. The parameter _id type would also need to be extended to

track the positions of function values in records.

It is believed that similar extensions can be made to Firstify to handle functions

contained in datatype values. However, an alternative method of transforming such

functions would be to treat a constructor with a functional domain like a HOF, and

transform it as such. The transformations would be very similar to those currently done

on "real" HOFs and calls to them. For example, consider the following program fragment.

75
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datatype Changes =
Change With of int -+ int

I Unchanged

fun change_number (change, x) =
case change of

Change With f => f x

Unchanged => x

val two = change_number (Change With increment, 1)

In this program fragment, the argument to the constructor Change With is a function. H

Change With is treated as a HOF (and hence (Change With, Position 0) is a Fvp), then

the following transformations are needed:

1. An Fvp datatype and apply function must be constructed to represent functional

arguments to Change With.

2. Each time a functional argument to ChangeWith is applied, the application must

be transformed into a call to the apply function.

3. Each "call" to Change With (i. e. applications of ChangeWith to an argument) must

be transformed so that the argument is a value in the Fvp datatype.

This results in the following transformed program fragment.
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datatype type_O_of_ChangeWith =
P _incremenLO_of_Change With

datatype Changes =
Change With of type_O_of_Change With

Unchanged

fun apply_O_of_ChangeWith (function_rep,function_arg) -

case function_rep of

P_incremenLO_of_ChangeWith :::} increment function_arg

fun change_number (change, x) =
case change of

Change With f :::} apply_O_of_ChangeWith (f, x)

Unchanged :::} x

val two = change_number (Change With P_incremenLO_of_Change With, 1)

Some complications to this approach include:

. The domain of the constructor needs to be explicitly modified (as in Changes,

above) .

. Constructors can have shared Fvps with other constructors or with HOFs.

. To specialize constructor "HOFS," the datatype needs to be specialized. In the

above example, no specialization is necessary since the function type is mandated

to be of type int - int, but this is not true in general.

There is another unsolved problem relating to functions contained in data structures.

Firstify does not transform functions that are "extracted" from a data structure via a

function call. This is true for tuples as well as other data structures. For example,

consider the following declaration fragment of a HOF high.

fun high (twofuns as (f,g),x) =

... (first twofuns) x ... (second twofuns) x
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If we know that first and second are the first and second projection from a pair, then it

is clear that both f and g are Fvps. However, Firstify has no means to determine this.

It appears that the only solution to this problem involves analysis of the declarations of

"extraction" functions like first and second.

6.2 HOFs with Higher Order Fvps

Consider the following program fragment:

fun high (J,x) = f x

fun higher (J,g,x) = f (g,x)
val calLhigher = higher(high, id, 1)

Both high and higher are HOFS. However, high is never explicitly called. Although high

will be detected as a HOF, no functions are explicitly passed as Fvps to high. Analysis

reveals that id is a Fvp for high, and so id should be represented in the Fvp datatype

for high and interpreted in the apply function for high. But without an explicit call to

high, the Fvp datatype and apply function for high are not created. If we run Firstify

on the program fragment, we would get something like the following:

datatype type_Lof_high =
?

fun apply_Lof_high (function_rep,function_arg) =

case function_rep of
?

datatype type_LofJ1.igher =
P _high_l_of_higher

fun apply_Lof_higher (function_rep, function_arg) -

case function_rep of

P_high_Lof_higher:::} high function_arg

fun high (J,x) = apply_Lof_high(J,x)
fun higher (J,g,x) = apply_Lof_higher(J,(g,x»

val callJ1.igher = higher(P_high_Lof_higher,id, 1)
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Notice that there is now an explicit call to high in apply_Lo!_higher. Thus, a solu-

tion to this problem would be make sure that we execute Phase III and Phase IV for

(high, Position 1) after executing Phase IV for (higher, Position 1). Thus, the call to

high would be detected, a representation for id would be included in type_Lo!_high,

and the identifier id in the declaration of calLhigher would be transformed into the

identifier P_id_Lo!_high1. In this example, if (higher, Position 1) is detected before

(high, Position 1), all this will take place. But since we cannot guarantee the order

in which HOFS are detected, we need a more general solution.

The proposed solution is to look for untransformed HOF calls after all HOFs have been

transformed. This would be performed in two new phases, Phase V and VI, which would

be similar to Phases III and IV. A diagram illustrating this modified phase execution

order is shown in Figure 6.1.

6.2.1 Phase V-Transforming HOF Calls in Apply Functions

This phase is similar to Phase III, except that only apply functions are examined for

calls to HOFs. When a HOF call is found in any apply function, the apply function will

be detected as HOF, with a Fvp shared with the HOF being called. This is desirable

because the functions passed as Fvps will be passed to the apply function, so calls to

the apply function will need to be transformed.

This phase would require that functions contained in datatype values could be de-

tected and transformed, as discussed in Section 6.1. This is because HOF calls in apply

functions might use as the Fvp a function contained in a datatype value, where the

datatype value is the representation of a section.

1This last transformation would occur

because (high, Position 1) is shared with (apply_LofJtigher, N estedAt (2, Position 1)) which is shared
with (higher, Position 1).
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6.2.2 PhaseVI-Respecialization and Adding/Modifying Apply Func-
tions

If a new HOF call is detected in Phase V, a constructor representing the Fvp function

needs to be added to an apply function and Fvp datatype for the HOF. If no other calls

to the HOF exist (as in the example above) then this is straightforward. However, if

other HOF calls exist, the constructor must be added to the appropriate Fvp datatype

and corresponding apply function based on the specialization group of the Fvp (i. e. the

type of the Fvp expression).

When a HOF call is found, it may also be discovered that the Fvp is shared with

other HOFs that were previously transformed. This requires that the Fvp datatypes

and apply functions for the two HOFs be merged. For example, consider the following

modified version of our original example:

fun high (I, x) = f x
fun higher (I,g,x) = (I (g,x),g x)

val calLhigher = higher(high, id, 1)
val two = high(increment,1)

In this example, (high, Position 1), (higher, Position 1), and (higher, Position 2) will all

be detected as HOFs in Phase r. However, it will not be detected that (high, Position 1) is

a shared Fvp with (higher, Position 2) until phase V, after Fvp datatypes for both these

Fvps have been created. Thus, the two datatypes and apply functions corresponding

to them must be merged. Merging Fvp datatypes and apply functions must take into

account specialization groups so that the resulting program is well-typed.

6.2.3 The Current Implementation

Currently, Firstify does not implement the solution described in this section. Instead, it

analyzes the input program before executing phase I and "seeds" the transformation list

with HOFSthat have HOFs as parameters. These are detected by exa.mining the type of

each function. By seeding the transformation list, it is ensured that these functions will
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be the first ones transformed, and so calls to HOFs in apply functions will be introduced

as early as possible.

During this analysis phase, the bodies of HOFs with higher order Fvps are also

examined, looking for applications of the higher order Fvp with some other parameter

as a Fvp to the higher order Fvp. If such applications are found, they are recorded.

This information is used as follows. Suppose a higher order function h has a higher order

parameter g, passed to h in position Pl. Analysis of h shows that another parameter

to h (say (h, Position P2» is a Fvp to g, passed to 9 in position P3. As calls to hare

transformed, the function passed as the higher order Fvp (in position Pl) is recorded in

the transformation list as a HOF. Furthermore, this HOF shares its Fvp in position P3

with (h, Position P2), and this information is also recorded in the transformation list.

This technique will correctly transform many HOFs that have HOFs as Fvps. How-

ever, the analysis is incomplete, and will not work in two situations:

1. If the function is polymorphic in the domain of the Fvp that is a HOF, then the

analysis does not work, because it cannot tell that the Fvp is higher order.

2. If the function has a Fvp that is a higher order function that has a Fvp that is a

higher order function, the analysis does not work. This problem extends to further

levels-that is, higher order functions with higher order Fvps that are higher order

functions with Fvps that are higher order functions, and so on.

It is believed that the analysis can be extended to detect functions in the second situation.

However, even with this extension the analysis will still fail if the function is polymorphic

in the domain of the Fvp that is a HOF. The only solution to this appears to be

requiring that higher order functions are monomorphic (which would obviate the need

for specialization as well).

6.3 HOF Call Site Limitations

The current implementation of Firstify assumes that at the HOF call" site the HOF

expression is an identifier or multiple alternate expression with each alternate an identifier
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(or another multiple alternate expression). Also, the Fvp expression must either be

an identifier or a section, or a multiple alternate expression with all alternates being

identifiers or sections or another multiple alternate expression. This enables Firstify to

make the transformations to the HOF name (tagging with a specialization group tag)

and Fvp expression (transforming into a data value) at the call site.

This seems to be a reasonable restriction, particularly because of the assumption

that there are no let declarations in the input program. If lets were allowed, then

transformations to HOF names or Fvp expressions might be necessary in a let declaration

preceding a HOF call site rather than at the call site. This is because the Fvp or HOF

expression could be an identifier declared locally that refers to another expression, and

the other expression would require transformation.

However, even without lets, the problem remains. Because of val declarations at

scope level 0 and certain uses of case expressions, it is possible for an identifier at the

call site to refer to another expression that would require transformation. The following

five instances of this problem have been identified.

1. The parameter to the HOF is an identifier declared at scope level 0, and the iden-

tifier refers to a tuple containing the Fvp expression and other values. Example:

val params = (increment, 1)

val calLhigh = high params

2. The HOF call is in an alternate of a case expression, and the parameter to the HOF

is the pattern for that alternate. The selection expression is a tuple containing the

Fvp expression and other values. Example:

case (increment, 1) of params ~ high params

3. The HOF call is in an alternate of a case expression. The selection expression is

another multiple alternate expression, each alternate of which is a HOF expression.
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The pattern for the alternate containing the HOF call is used as the HOF expression.

Example:

case (case e of PI => highl IP2 => high2) of

high => high (increment, 1)

4. The HOFcall is in an alternate of a case expression. The selection expression is

another multiple alternate expression, each alternate of which is a Fvp expression.

The pattern for the alternate containing the HOF call is used as the Fvp expression.

Example:

case (case e of PI => increment IP2 => decrement) of

fvp => high (Jvp, 1)

5. The HOF call is in an alternate of a case expression. The selection expression is

another multiple alternate expression, each alternate of which is a tuple containing

the Fvp expression and other values. The pattern for the alternate containing the

HOF call is used as the parameter to the HOF. Example:

case (case e of PI => (increment, 1) I P2 => (decrement,3)) of
params => high params

It is unclear what the best solution to instance 1 might be. It appears that any

solution would require major changes to the Firstify implementation to accommodate

the transformation.

A partial solution to the other instances of the problem is known. Notice that the

outermost case expression in each example contains only one alternate. As a result,

the case expression can be transformed by replacing the pattern occurring in the al-

ternate expression with the selection expression. Examples in instances 2-5 would be

transformed into:
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2. high (increment, 1)

3. (case e of PI => highl I P2 => high2) (increment, 1)

4. high «case e of PI => increment IP2 => decrement), 1)

5. high (case e of PI => (increment, 1) I P2 => (decrement, 3»

Each of these HOF calls can be transformed with the current Firstify implementation.

This solution is incomplete. H Firstify were extended to allow functions contained in

datatype values, then this solution would not work because the outermost case expres-

sion could then have more than one alternate.



Chapter 7

Summary

Firstify is an implementation of Reynold's method for eliminating higher order functions

from a functional language program. Firstify transforms a restricted set of Standard

ML programs expressed in the abstract syntax of CRML into semantically equivalent

programs that are first order.

The work described in this thesis addresses features of modem functional program-

ming languages not explicitly addressed in Reynold's paper or other references. These

features include pattern matching, parametric polymorphism, multiple alternate state-

ments, local declarations, and function values contained in data structures. This work

also elaborates details left out of earlier presentations of the method, including detec-

tion of higher order functions, function values that are "shared" by several higher order

functions, and higher order functions with higher order parameters.

7.1 Input Assumptions

Not all of the above features and details are implemented in Firstify. However, assuming

other relatively minor transformations to a program are performed before using Firstify,

programs using a significant portion of the core ML syntax are correctly transformed by

Firstify. Assumptions about programs transformed by Firstify include the following:

1. The program contains no let expressions. This can be ensured with a transforma-

tion that "lifts" local declarations to the top level.

86
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2. All functions in the program are "strongly uncurried"-that is, each function has

a single argument (which may be a tuple of values). This can be ensured with

another transformation.

3. The only lambda abstractions that exist are sections that are passed as function

values to higher order functions. This can also ensured via the uncurrying trans-

formation.

4. All identifiers declared at the top level are unique.

5. No identifiers declared in the program conflict with identifiers introduced by Firs-

tify. See Section 3.5 for more information.

6. At call sites of higher order function, the HOF expression must be either an identifier

referring to a function or a multiple alternate expression with each alternate an

identifier (or another multiple alternate expression). Also, the Fvp expression

must either be an identifier or a section, or a multiple alternate expression with all

alternates being identifiers or sections (or another multiple alternate expression).

7. Functions are not "contained" in record values or datatype values.

8. Higher order functions with higher order parameters are restricted, as discussed in

Section 6.2.

9. All sections have a single pattern and expression.

10. Issues concerning raise and handle have not been explored, except for treating

handle expressions as multiple alternate. Thus, it is assumed that the input

program does not use exceptions.

7.2 Future Work

Future work includes eliminating or weakening the above assumptions. It is particularly

desirable to extend Firstify as follows:
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1. Weaken the assumption about uncurrying to the assumption that all function decla-

rations and function calls include all arguments to the function, but the arguments

are not necessarily contained in a tuple. Making this assumption would require

that Firstify perform "strong" uncurrying on functions passed as Fvps, but not

on other functions.

2. Ensure that identifiers introduced by Firstify do not conflict with existing identi-

fiers.

3. Extend Firstify to handle functions "contained" in datatype values.

4. Allow sections with multiple alternates.

5. Extend Firstify to handle the module system of Standard ML with a version of

CRML that supports the module system. Presumably Firstify would then operate

on signatures and structures rather than lists of declarations.

Another topic for future work concerns specialization and monomorphism. Currently,

specialization is used to make higher order functions and their corresponding apply func-

tions monomorphic with respect to their functional parameters. In Section 6.2 it is shown

that the analysis to detect higher order functions with higher order parameters (which

occurs before specialization) is stymied when such functions are polymorphic. Therefore,

a more effective implementation might "monomorphize" input programs before applying

Reynold's method.



Appendix A

The enventry Datatype Constructors

Constructor I Domain
Description of Use

Example

NotInEnv I 0
Default enventry value, for unbound identifiers

None

NotApplicable I 0
Identifier without a meaningful binding to the transformation pro-

cess, such as a constant

let val x = 1 in BODY end

Ref To

While processing BODY, x is bound to NotApplicable.

string-
Identifier directly referring to another identifier

let val x = y in BODY end

While processing BODY, x is bound to Ref To "y".
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Constructor I Domain
Description of Use

Example

Param I function_id * parameter_id

Part of a parameter to a function. The function_id encodes which

function, and the parameter _id encodes the position of the identifier

in the function's parameter.

fun f x = BODY

LocalDec

While processing BODY, x is bound to Param (( "f",O), Position 0).

The types function_id and parameter_id are discussed in Section 3.3.1.

function_id

Identifier declared in a val, fun, datatype, exception, or type dec-

laration. The function_id encodes information about the identifier,

including the scope at which it is declared.

fun f ...

While processing all declarations occurring after the declaration of

f, f is bound to LocalDec ("f", 0). The function_id type is discussed
in Section 3.3.1.

I

TuplePartOfl int * enventry

Identifier that is contained in a tuple. The enventry represents the

tuple in which the identifier is contained, and the int encodes the

position of the identifier in the tuple.

valz=a

let val (x,y) = z in BODY end

While processing BODY, x is bound to TuplePartOf (1, Ref To "a")

and y is bound to TuplePartOf (2, Ref To "a").
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Constructor I Domain
Description of Use

Example,

ConstrPartOf enventry

Identifier to which a constructor is applied. The enventry represents

the value in the datatype, that is, the value of a constructor applied
to the identifier.

valz = a

let val Cons(x,y) = z in BODY end

While processing BODY, x and y are each bound to

ConstrPartOf (Ref To "a").I

RecordPartOf enventry

Identifier that is within a record. The enventry represents the value

in the record type, where the identifier is contained in some field of
the record value.

valz=a

let val {tl = x,t2 = y} = z in BODY end

While processing BODY, x and y are each bound to

RecordPartOf (Ref To "a").

BasedOn enventry

Identifier that is the result of a function application to another value.

The enventry represents the value to which the function is applied.

This constructor is not used in the current implementation of Firs-

tify.

valz=a

let val x = f z in BODY end

While processing BODY, x is bound to BasedOn (Ref To "a").
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Domain

Description of Use

Example
I

TupleContaining enventry list

Identifier is a tuple, containing several values. The values within

the tuple are represented in order in the enventry list.

Constructor

valy = a
val z = b

let val x = (y,z) in BODYend

While processing BODY, x

TupleContaining [RefTo "a", Ref To "b'1-

RecordContaining I (string * enventry) list

Identifier is a record, containing several values. Each

(string, enventry) pair represents a value within the record. The

string is a field tag and the enventry represents the actual value.

IS bound to

valy=a
valz=b

let val x = {tl = y, tz = z} in BODYend

While processing BODY, x is bound to

RecordContaining [( "tl", Ref To "a"), ("tz", Ref To "b")].
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Constructor I Domain

Description of Use

Example

Possible Values I enventry list

Identifier refers to several possible values, such as when a case or

handle expression is used. Each enventry in the list represents one

possible binding for the identifier.

val y = a
valz = b

let val x = case c of

o ::} Y

I _::}z

in BODY end

While processing BODY, x

Possible Values [RefTo "a", Ref To "b'l

IS bound to
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Constructor I Domain
Description of Use

Example

Closure environ * int * ((pattern * (environ --+ enventry)) list)

Identifier refers to a lambda abstraction. The environ is the envi-

ronment in which the abstraction is defined. The int is the scope

level (see Chapter 4) at which the abstraction is defined. The list

of patterns and environ --+ enventry functions provides a means for

evaluating the closure when the lambda abstraction is applied. The

environment value of an application f x, where f has the environment

value Closure(def_env, def_scope, pelist) and x has the environment

value Xenllcan be calculated as follows:

Possible Values (map'ist (-X(P,e).

e (def_env I p --+ xenll))

pelist)

Because of assumed restrictions to the input of Firstify, this con-

structor is not used in the current implementation.

let val f = -X x.x + 1 in BODY end

While processing BODY, x is bound to Closure (env, s, [(((x)), bj)]),

where env is the current environment, s is the current scope, and bfis

a function which if passed an environment will return an environment

value for the body of the lambda abstraction.
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Values Referenced in Accumulator

Functions

Non-function Values
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Identifier Type

Description

base_fvp fparm

The base Fvp for the current HOF set.

fvp fparm

The current Fvp, for which transformations are being performed.

scope int

Current scope level.



Identifier

augment

deref_id

enrich
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Function Values

Type

Description

fparm -+ fparm list -+ int -+ 0

Adds a transformation to the transformation list. The fparm

is the base HOF, and the fparm list is the HOFs with shared

Fvps (which might be just the base Fvp). The int is the

scope at which the base HOF is defined.

env~ron -+ string pattern -+ string erep -+ enmron

Augments an environment with bindings created by binding

the pattern to the environment value of an expression.

string -+ environ -+ string

"Dereferences" an identifier name by looking it up in the

environment. ITthe identifier refers to some other identifier,

returns the other identifier's name. ITnot, returns the original

name.

environ -+ string pattern -+ enventry -+ enmron

Augments an environment with bindings created by binding

the pattern to an environment value.

extracLparam_env I enventry -+ parameter_id -+ string erep

Extracts an environment value from a environment value for

extracLparam_exp I string erep -+ parameter_id -+ string erep

a tuple expression at the given position.

Extracts an expression from a tuple expression at the given

position.



97

Function Values

Identifier Type

geLfunction_info I enventry -+ environ -+ function_id list

Description

Returns a list of functions referenced by an environment

value.

enventry -+ function_id list

Gets information about parameters referenced in an enventry

inserLparam_exp I string erep -+ string erep -+ parameter_id -+ string erep

value.

lookup_enventry

Inserts an expression into a tuple expression at the given

position.

enV2ron -+ enventry -+ enventry

Looks up an environment value by chasing pointers to other

environment values.

string -+ fparm -+ string -+ string

Constructs an identifier based on a prefix string, a Fvp, and

a tag string.

enventry -+ bool

Indicates whether an environment value references a param-

eter.
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