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Abstract

Memory Allocation
in

Adaptive External Sorting

Kevin L. Beck, M.S.
Oregon Graduate Institute of Science &. Technology, 1994

Supervising Professor: Calton Pu

An adaptive external sorting algorithm is proposed where individual sorts vary the

amount of memory they use during their lifetimes based on both the availability of

memory and the needs of the sort. Algorithms for allocating memory among multiple

concurrent instances of this algorithm are also investigated.

Most previous work in this area has investigated how to partition memory among

queries that receive a static memory allocation when they begin. Other work has inves-

tigated adaptive algorithms, but has not considered strategies for partitioning memory

among multiple concurrent instances of queries based on these algorithms. The pro-

posed strategy combines these two approaches using a central agent, called the "memory

broker", to dynamically partition memory among concurrent sorts that use an adap-

tive algorithm. The adaptive algorithm used in the sorts takes advantage of fluctuating

memory allocations by intelligently adjusting the size of the sort's own working set to

reduce page faulting. Simulation results are presented to show that this approach results

in faster response time than traditional methods of memory allocation.

x



Chapter 1

Introduction

In a multi-user database, a crucial factor in performance is how memory is partitioned

among competing queries. Although commercial database systems are beginning to

incorporate more sophisticated algorithms for memory allocation, many current systems

still use simple hueristics to allocate memory to memory-intensive operators such as sort

and join. For example, there may be a tuning parameter that simply sets a maximum for

the size to which an operator's workspace may grow [Ger93]. Another common solution

is to allocate as much memory to an operator as it can use and depend on the operating

system's virtual memory mechanism to manage it. This solution is simple to implement

and may be appropriate for small data sets, but Verkamo has shown that it results in

poor performance for large sorts [Ver86].

In this thesis we propose a combination of "adaptive algorithms" that are capable

of modifying their behavior to compensate for varying amounts of memory available to

them during their lifetime, and a "central agent" to partition memory among concurrent

queries. We show that this combination of techniques gives substantial performance

improvements over traditional methods of allocating memory. While there has been some

recent work on adaptive algorithms and on central agents to partition memory among

queries, we believe that our work is the first to show the performance implications of

combining these two techniques.

In the area of memory allocation, one of the earliest investigations was by Chou and

DeWitt [CD85], who proposed allocating different amounts of memory to different types

of queries. More recent work on memory allocation has proposed strategies based on

1
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marginal gains, where concurrent queries are given more or less memory based on their

expected improvement in performance [NFS91, YC93]. While these ideas are indeed a

step forward, they assume that queries will use a set amount of memory for their duration.

This assumption can result in situations where more memory becomes available later, but

ends up being wasted because all active queries have already received their allocations.

In the area of adaptive algorithms, Pang, Carey and Livny propose a family of algo-

rithms for adaptive sorting and hashing [PCL93a, PCL93b], but do not investigate mem-

ory allocation strategies. Zeller and Gray implemented an adaptive hash join [ZG90],

but relied on the operating system for memory allocation. Our work is the first of which

we are aware that investigates the use of a central agent to allocate memory among

competing instances of adaptive algorithms.

We call this central agent the "memory broker" to emphasize that its role is to

moderate the exchange of memory among competing queries. Since sorting is such an

important component of query processing, we concentrate our efforts on an adaptive

external sort. We call our proposed algorithm BAS (Brokered Adaptive Sorting).

Our goal in this investigation is to increase the performance of the whole DBMS by

reducing the average of the response time of all queries. As a simple example of the

increased performance that BAS can provide, consider two sorts running concurrently,

one sorting much more data than the other. Using a traditional method of memory

allocation, both sorts would be allocated constant amounts of memory for their duration.

H the large sort is given all of memory in order to maximize its performance, then the

sorts can not be run concurrently. One of the sorts would be delayed until the other

had completed. Alternatively, if the larger sort is allocated only a portion of the total

memory so that the smaller sort can run concurrently, then memory will be wasted after

the smaller sort has completed. Our solution is to have the large sort use all, or nearly

all, of memory when it is available, and to temporarily give up memory during the time

that the smaller sort is executing.

An easy way to visualize the effects of memory allocation on the execution time of a

query using an adaptive algorithm is to draw a space-time graph that shows each query
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as a block that is as long as the query took to execute, and as tall as the memory in

use at a given time. In Figure 1.1(a), we illustrate a small sort (labeled 81) running

concurrently with a large sort (labeled 82) using static memory allocations.

Mem

!

I~
Used I~ I

Total

Memory

Time .
(a) Sort Using Static Memory Allocation

Mem

l

IT!
U"d ~ I

Total

Memory

(b) Sort Using Adaptive Memory Allocation

Figure 1.1: Space Time Diagrams Comparing Performance of Non-Adaptive and Adap-
tive Algorithms

Our strategy allows a sort to dynamically adjust the amount of memory it uses during

its lifetime. In Figure 1.1(b), we show how the larger sort could use the memory that

becomes available after the smaller sort finishes. This strategy allows the large sort to

complete sooner, without affecting the small sort. In this example, the improvement in

average response time for the two sorts is 29%. (See Appendix A for a detailed derivation

of this example). Our simulations have shown that for more realistic workloads, an overall

improvement of 10% to 20% is more typical (see Chapter 5).

This simple example illustrates how our method can reduce the average response time

of all queries in the workload. The same ideas also work well for workloads involving

more than two sorts. In addition, these ideas can be extended naturally to other memory

intensive database algorithms including the various join algorithms. We discuss how an
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adaptive hash join might be made to work with our memory broker in Section 1.3.

The remainder of this introduction is structured as follows: Section 1.1 contains a

brief overview of the algorithm used for the external sort in BAS. Section 1.2 presents

overviews of the algorithms used in the memory broker portion of the two variants of

BAS.

1.1 Overview of Algorithm for Adaptive External Sort

The adaptive sort algorithm used by BAS is a modification of a classic external sort

algorithm presented by Knuth [Knu73]. This classic algorithm begins by repeatedly

reading a memory full of data from the input, sorting it, and writing it to disk as a

temporary file called a run. Following the nomenclature used by Knuth we refer to these

initial runs as "level-O" runs. After all of the data has been partitioned into runs in this

manner, the sort reads data from some subset of the runs, merging the data in them

into progressively larger runs. (The number of runs in this subset is generally referred to

as the fan in.) Eventually, this merging process reduces the number of runs to a small

enough number that all runs can be merged into the final output. Each round of merging

a subset of runs is called a merge phase.

Our adaptive sort differs from the classic one in that it can use different amounts

of memory at different points in its lifetime. The way it changes its memory allocation

is to "check in" with the memory broker at points when it could change its memory

allocation at low cost cost. These points are just before starting to create a new run and

just before beginning a merge phase. Thus some runs may be larger by virtue of having

been created when the sort was using more memory. Likewise, some merge phases merge

more runs than others.

Conceptually, checking in consists of sending a message to the memory broker and

waiting for a reply. In an actual implementation, checking in could be accomplished in

any number of ways, e.g. through the use of signals and sockets. In Section 3.5 we present

a more detailed discussion of possible implementations of checking in. In any event, the
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amount of information exchanged at a checkpoint is quite small and algorithms do not

check in very often.

Our algorithm contains two refinements of the main ideas presented above. The first

refinement has to do with planning ahead during run creation so that the last few blocks

of the input data can be held in memory rather than written to temporary files. The

second also involves planning ahead, but during the merge phases to avoid unnecessary

passes through the data. These refinements are presented in Sections 3.3.3.1 and 3.3.3.2

of the detailed description of the sort algorithm of BAS in Chapter 3.

1.2 Overview of Algorithms for Memory Broker

Recall that our goal is to lower the average response time of all queries in the DBMS. The

way that BAS helps achieve this goal is to allow queries to adapt the amount of memory

they use in response to changes in the system workload. The intent of this adaptation

is to allow each query to use as much memory as possible at any given moment while

ensuring that the total amount in use by all queries never exceeds the total amount

available in the system.

To keep track of how much memory is in use and which query should receive memory

as it becomes available, we propose a central agent that we call the "memory broker" .

There are any number of possible strategies that the memory broker might use in allocat-

ing memory to queries using adaptive algorithms. We simulated and compared two such

strategies, plus a third strategy to compare against (the control in our experiments):

1. Equal Allocation. This algorithm is a simple memory allocation strategy that takes

advantage of our adaptive external sort algorithm. Using this strategy, the memory

broker tries to give each query an equal share of the available memory.

2. Marginal Gains. This is a more sophisticated algorithm that takes into account the

needs of each query when allocating memory. Queries receiving memory allocations

from a memory broker using marginal gains submit "bids" for how much each
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additional block of memory would be worth to them. These bids are based on the

expected 10 savings of an additional block of memory.

3. Static allocation. In addition to our two algorithms that take advantage of our

adaptive sort algorithm, we implemented a third memory allocation algorithm

that is intended to be a baseline to measure how much the performance of a system

might be improved by incorporating BAS. We call this algorithm static, since the

amount of memory which it allocates to a sort is fixed for the life of the sort.

All variants of the memory broker keep track of how much memory is currently

available in the system. At each checkpoint, a query sends a message to the memory

broker requesting permission to use more memory or announcing that it has finished

using memory. Depending on the needs of other queries in the system, the memory

broker may allocate more, less or the same amount of memory in response to requests

for more memory. Queries block, waiting acknowledgment of their requests. This gives

the memory broker the option of holding a request until the memory necessary to satisfy

it becomes available.

The equal allocation and marginal gains variants of BAS both include a tuning pa-

rameter, but one of the strengths of BAS is that this parameter turned out to be largely

unnecessary. In Section 5.3 we show that the performance of BAS is equally good for a

wide range of the possible values of this parameter.

1.2.1 Equal Allocation

In the equal allocation variant of the memory broker for BAS, we model a memory broker

that attempts to allocate an equal amount of memory to every query in the system. The

basic strategy is to give each query a maximum of 1/nth of the total memory every time

it checks in, where n is the number of queries currently active in the system. In Section

3.4.1 we present a more detailed description of this algorithm.

This simple algorithm proved to perform surprisingly well.
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1.2.2 Marginal Gains

In our implementation of marginal gains, the memory broker maintains a "reserve" of

memory to sell to queries that need it more than other active queries. There is a tunable

parameter that determines the maximum size to which this reserve may grow. Of course,

the reserve will grow to all of memory if there are no queries running.

To gather the information that it needs to decide when to buy and when to sell,

the memory broker solicits a "bid" from each query that checks in. This bid is the

amount by which an additional block of memory would reduce the total number of 10

operations necessary to complete the query. (See Appendix B for the formula used to

calculate bids and its derivation.) The memory broker keeps track of the average bid of

all active queries. If the query currently checked in is bidding below the current average

bid value, and the memory broker's reserve is not yet at its maximum size, then the

memory broker will "buy" memory from the query to give to other queries that are

bidding higher. Conversely, if the query is bidding higher than the current average, then

the memory broker will sell it memory until either it exhausts its reserve or the query's

bid drops below the average.

Surprisingly, marginal gains actually performs worse than equal allocation for most

of the workloads that we tested. The reasons for this behavior are discussed in detail in

Section 3.4.2.2.

1.2.3 Static Allocation

The static allocation strategy causes the memory broker to always allocate the same

amount of memory to every query. This has the effect of making our adaptive sort

algorithm act like an ordinary, non-adaptive external sort. Using this algorithm, the

memory broker gives each query a maximum of P.stx M blocks of memory, where M is the

total number of blocks of physical memory, and P.stis a tunable parameter 0 < P.st~ 1.

If a new query is submitted to the system and all memory is already in use, the new

query is queued until memory becomes available for it.
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Static is intended to be similar to how many commercial databases have traditionally

allocated memory to operators. Although commercial database systems are beginning

to use more sophisticated methods, it is still common for them to allocate memory to

an operator based on a constant or tuning parameter [Ger93].

1.3 How Our Ideas Could Apply to Joins

Although we chose to concentrate on sorts, we believe that our ideas could be extended to

joins as well. In this section we present our thoughts on how our ideas could be extended

to hash joins, but leave detailed investigation of adaptive joins for future research.

As mentioned above, queries "check in" with the memory broker at times when it is

convenient for them to change memory allocation. For sorts, these times are:

1. Before creating a new run.

2. Before beginning a new merge phase.

3. When the sort is done (to hand memory used back to the system).

Our strategy for making hash joins adaptive would be to have them over-partition

their input, similar to GRACE by Nakayama, Kitsuregawa and Takagi [NKT88]. Some

hueristic could be used to estimate how much memory a join would eventually be allowed

to use. Based on this estimate, some number of partitions in excess of the amount

that would be correct for a static hash join would be created initially. Twice as many

partitions as the static version might be a reasonable choice. The join would then proceed

much as a traditional hash join, but trying to hold as many partitions as possible in

memory instead of immediately spooling them to disk. If the join eventually received

more memory than originally expected, it could hold more partitions. Conversely, if it

got less memory than expected, more partitions would end up on disk. If memory were

squeezed very severely, it might be necessary to start combining partitions.

Zeller and Gray have implemented an adaptive hash join [ZG90]. Our proposal

differs from theirs in that our memory broker would explicitly track the total amount



9

of memory in use by all queries currently running in the system. In contrast, their

implementation had no central agent corresponding to our memory broker. Instead,

each join monitored the page fault rate and reduced its memory consumption if this rate

rose above a threshold. We believe that our approach would prevent page faulting.

1.4 Thesis Overview

The remainder of this thesis is organized as follows: Chapter 2 summarizes related work

by other authors. Each of their ideas is compared and contrasted against BAS. Chapter 3

presents in detail the main algorithms used in BAS, along with the goals and assumptions

on which these algorithms are based. In Chapter 4 we explain the simulator used to

investigate the behavior of BAS. This chapter also contains a detailed description of the

workloads used in our investigations. Chapter 5 contains the results of our investigation.

Results are analyzed as they are presented. Where possible, we compare our results to

those of other investigators. In Chapter 6 we present our conclusions and summary.



Chapter 2

Related Work

In this chapter we present brief summaries of related work by other authors. After each

summary we compare and contrast our work with theirs.

To provide a framework for comparing our work to that of other authors, we catego-

rize ideas using two properties. First, whether an idea makes use of adaptive algorithms.

Second, whether it uses a central broker. In Table 2.1 we show where we believe the

ideas discussed in this chapter fall.

Table 2.1: Classification of Related Work

2.1 DBMIN - Memory Allocation

One of the earliest investigations of memory management that directly addressed is-

sues of partitioning memory among concurrent queries was done by Chou and DeWitt

10

Not Adaptive Adaptive
No Global LRU Adaptive Hash Join [ZG90]
Central
Broker DBMIN [CD85] Partially Preemptible Hash Join [PCL93b]

Memory-Adaptive External Sort [PCL93a]
Central MG-x-y [NFS91] BAS
Broker

ROC [YC93]
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[CD85]. They presented an algorithm, called DBMIN, that showed the advantage of giv-

ing each query a separate share of the buffer space, as opposed to depending entirely on

a global pool of buffer pages. DBMIN was largely concerned with replacement strategies

for different types of queries to use within their private buffer pools. With respect to

the allocation of memory to queries, DBMIN in most cases gave each query a minimum

amount of buffer space and left the rest in a global pool. If there was insufficient mem-

ory available to allocate the recommended minimum, DBMIN would queue the query

until more memory became available. Later work by Ng, Faloutsos, and Sellis [NFS91]

investigated the application of marginal gains to decide when it would be advantageous

to start queries with less than their recommended minimum allocation of memory.

DBMIN differs from BAS in at least two important ways:

. DBMIN did not use adaptive algorithms. Queries were given a share of the buffer

space that was calculated based on the situation at the moment that they were

admitted to the system. DBMIN did include a "global buffer pool". This global

pool contained all the buffers which were not currently assigned to a particular

query. Under some circumstances queries could end up using buffers from the

global pool in addition to ones that they owned, but there was no provision to

assign these buffers intelligently. In contrast, the sorting algorithm in BAS changes

its behavior when its memory allocation changes.

. Queries in DBMIN had no knowledge of how many buffer pages were allocated to

them. In BAS, queries not only know exactly how much memory they have, but

continuously adjust their execution strategy to make the best use of what they

have.

2.2 MG-x-y - Marginal Gains

Ng, Faloutsos and Sellis proposed a family of algorithms they called MG-x-y [NFS91].

These were direct extensions of DBMIN by Chou and DeWitt [CD85]. MG-x-yallocated
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memory to concurrent queries based on marginal gains. It also allowed queries to proceed

with sub-optimal allocations of memory, overcoming a deficiency in DBMIN.

Our work differs from MG-x-y by allowing a query to adapt by using different amounts

of memory during its lifetime based on how much is available. Because MG-x-y allocates

memory to jobs once, when they start, it runs the risk of giving away all of memory to a

few jobs because it cannot know that more are about to be submitted. At the same time,

MG-x-y must be careful not to allocate memory too cautiously, else jobs end up starved

for memory. To deal with this problem, the authors introduced two parameters for

tuning their algorithm (hence the "x" and "y" in. "MG-x-y") and investigated methods

of setting these parameters optimally. BAS, on the other hand, is self-tuning for the

most part, as we show in Section 5.3.

In a later paper, the authors added "predictive load control" to their MG-x-y algo-

rithm so that it would not need to be parameterized [FNS91]. Predictive load control

uses the recent history of the workload to predict the effect of different distributions of

buffers among queries waiting for admission to the system. While this eliminates the

need to set parameters for MG-x-y, it assumes a workload such that there are normally

jobs queued up waiting to enter the system. It is not clear that MG-x-y with predictive

load control would do much for a system that was not saturated. Predictive load control

also depends on a predictable workload. In contrast, BAS can provide a considerable

benefit in lightly loaded systems and in systems with varying workloads, as we show in

Chapter 5.

2.3 Return on .Consumption

Yu and Cornell use a. combination of simulation and analytical techniques to investigate

optimal partitionings of buffer space among concurrent queries [YC93]. They argue

persuasively that the space-time product of memory consumption should be used in

calculating the marginal utility of memory allocations. They apply their ideas to three

methods of joins: hash, sort-merge and nested loops.
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While the goals of Yu and Cornell's work are similar to those of BAS, their work

differs substantially from ours in that they do not consider adaptive algorithms.

2.4 Adaptive Hash Join

Zeller and Gray have implemented an adaptive hash join algorithm as a prototype in

Tandem's NonStop SQL [ZG90]. Their algorithm uses an operating system service to

monitor the page fault rate of the entire system. When the rate of page faults exceeds

some threshold, their hash join algorithm adjusts to use less memory. Conversely, when

page faults fall below a threshold, the algorithm adjusts to take advantage of more

memory.

While Zeller and Gray showed this to be an improvement over the join algorithm

previously implemented in Tandem's NonStop SQL, we see their reliance on monitoring

the page fault rate of the entire system as a serious weakness. In their implementation,

the adaptive mechanism can only be triggered when a join uses more memory than is

physically available. It has been shown that database algorithms perform significantly

better when they manage their own memory, rather than relying on the virtual memory

manager of the operating system [Ver86, Sto81]. In contrast, since BAS knows exactly

how much memory is in use by all queries in the system, it can arrange memory usage

such that the sum total of memory used by all queries never exceeds the physical memory

available. As a result, BAS will never cause page faults during the execution of a query.

To illustrate this difference between BAS and adaptive hash join, imagine that the

system is currently running a single query that is large enough to use most of the physical

memory on the system. When another large query enters the system, BAS would initially

give the new query only as much memory as was currently unused. Soon, the first query

would check in, and the memory broker could reduce its memory allocation. The memory

freed by this new allocation could then be allocated to the second query. At no time

would the queries use more memory than was physically available. In contrast, adaptive

hash join would deal with such a situation by intentionally giving the second query more
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memory than is actually available, depending on the first query to notice that it is now

causing page faults and adjust accordingly. Page faulting by queries in a DBMS is an

expensive way to get attention.

2.5 Partially Preemptible Hash Joins

Pang, Carey and Livny investigate a family of hash join algorithms designed to adapt to

fluctuations in available memory [PCL93b]. Their work uses the simulation tool DeNet

to study a model in which a single hash join is subjected to random fluctuations in the

amount of memory it is allowed to use. Our work investigates issues of memory allocation

in the case of multiple adaptive queries running concurrently.

2.6 Memory-Adaptive External Sorting

Pang, Carey and Livny have investigated a family of external sorting algorithms designed

to adapt to fluctuations in available memory [PCL93a]. This paper appears to be a

companion paper to [PCL93b]. It also uses the simulation tool DeNet to study a similar

model of a single external sort adapting to random fluctuations in available memory.

Our work investigates methods of allocating memory to multiple concurrent adaptive

external sorts with the goal of minimizing the average response time.



Chapter 3

Algorithms Used

In this chapter we give the details of the key algorithms used in this thesis. In Section

3.1 we list our assumptions. Section 3.2 discusses the goals these algorithms are intended

to achieve and the measure used to quantify their behavior. Section 3.3.1 gives a little

background on how existing external sorts work, then 3.3.2 and 3.3.3 show what mod-

ifications we made to make them adaptive. In Section 3.4 we discuss two alternative

algorithms for the memory broker. In Section 3.5 we discuss briefly why we chose to

design BAS using check points rather than interrupts. The results of these two different

algorithms will be compared in Chapter 5.

There are two principal entities investigated in this work: our version of an adaptive

sorting algorithm and the memory broker. We refer to the combination of these two

algorithms as BAS (Brokered Adaptive Sort). Since we investigated two possible algo-

rithms for the memory broker portion of BAS, we will sometimes distinguish between

the variants as "the equal allocation variant of BAS" and "the marginal gains variant of

BAS". Both variants make use of the same sorting algorithm.

3.1 Assumptions

We make the following assumptions and simplifications:

. We investigate only the behavior of sorts. While our ideas are applicable to joins,

we leave that topic for future research.

15
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. We model sorts whose input starts and ends on magnetic disk. That is, none of

them read their input from a pipe or another process nor do any of them write

their output directly to another process.

. We assume that sorts know exactly how much data they are sorting. This a.llows

them to calculate the potential value of a proposed memory a.llocation. In contrast,

it would be difficult to apply the more sophisticated of our two memory broker

algorithms (marginal gains) to a sort that was required to be able to handle an

unknown amount of data emerging from a pipe.

. We model a DBMS running on a single CPU system with multiple disks. We as-

sume that there are sufficient disks that some reasonable number of sorts can run

concurrently without resulting in significant disk contention. During our experi-

ments, the maximum number of concurrent sorts was arbitrarily set to four.

. We assume that the database system as a whole has a fixed amount of physical

memory assigned to it permanently and furthermore that it is aware of this amount.

. We assume a buffer manager for the DBMS where queries use pointers to records

maintained in a global buffer. In this scheme, operators "pin" and "unpin" buffers

as they use them. This model is inspired by Volcano [Gra90a]. The important

point is that queries need to have some control over how much memory is available

to them.

. We ignore issues of data sharing. That is, our simulation does not model multiple

queries reading from the same base input.

. In our formulas, we ignore certain sma.ll uses of memory. In particular, we ignore

any memory needed for pointer arrays in sorting and the single output buffer needed

for assembling blocks of sorted or merged data to be written back to disk.
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3.2 Goals

The goal of BAS is to improve the performance of the DBMS. Traditionally, there are two

main measures of the performance of a DBMS: throughput and response time. We have

chosen to use average response time as our measure of the performance of the system.

Our primary reason for choosing response time as our measure of system performance

is that we feel it better reflects the concerns of current users of interactive database

systems. Throughput is of more concern in older style batch-oriented systems. Another

reason for choosing response time over throughput is that it is easier to measure directly.

We define response time as the time from when a job is submitted until when it com-

pletes. This time includes time that the job spends waiting in a queue to be admitted to

the system. Some sources define response time as the time from when a job is submitted

until the user first sees output. While this definition is useful in other contexts, it raises

issues such as whether improvements in response time are legitimate, or simply reflect

jobs using more resources early, and then deferring work once they have reached the

point of presenting output. Our definition gives a more honest measure of how quickly

work is being accomplished in the system.

By using a straight average of the response time of all jobs in the workload as our

measure, we will naturally give more weight to improvements in the response times of

larger jobs. This bias is desirable, since jobs that are small eriough to finish quickly

regardless of the memory allocation scheme used are of less concern anyway. As an

example, consider a workload that consists of two jobs, one of which takes about 10

seconds and another which takes about 10 minutes. Our measure would give preference

to a system that completed the two jobs in 15 seconds and 9 minutes, respectively,

over one that completed them in 5 seconds and 11 minutes. Thus, the two minute

improvement in response time for the large job outweighs the 10 second penalty for the

small job because it is a larger quantity, even though the difference in response time for

the smaller job is proportionally smaller.
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3.3 Algorithm for External Sort

We begin our presentation of the external sort algorithm used in BAS by reviewing how

external sorts are normally done. Then we present the differences between ordinary

external sorts and the adaptive external sort algorithm we use in BAS.

3.3.1 Overview of Classic External Sort Algorithm

Sorts are normally categorized as internal or external depending on whether all of the

data to be sorted can fit in memory (internal) or not (external). There are many algo-

rithms for external sorting [Knun]. We have picked what we believe to be a common,

robust, and efficient. version of external sorting as the basis for BAS.

The algorithm that we have chosen to for our external sort is composed of two stages:

run creation and merging. These stages are illustrated schematically in Figure 3.1.

During run creation, as much data as will fit is read into memory. An array of pointers

is then created where each pointer points to one record in the input data. The pointers

are then sorted using an efficient internal sort algorithm - presumably quicksort. The

use of pointers accomplishes two purposes. First, it is much faster to exchange pointers

in memory than to copy entire records. Second, it makes it straightforward to sort data

containing variable-sized records.

After the data has been sorted, it is written in sorted order to a temporary file on

disk called a run. Since consecutive records are not contiguous in memory, they must be

copied to an output buffer to assemble blocks of contiguous sorted data.

This process of run creation is repeated until all of the data resides in sorted runs

on disk. For sorts below a certain size, there is a small refinement possible, wherein a

portion of the data is kept in memory to reduce the amount of 10. This refinement is

explained in detail in Section 3.3.3.1 below.

Following the nomenclature of Knuth, we refer to these initial runs as "level-O" runs.

After all of the input has been sorted into level-O runs, the algorithm begins its first

merge phase. If there is sufficient memory for all of the level-O runs to be merged into
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Figure 3.1: Schematic Diagram of Classic External Sorting

the final output, then there will be only one merge phase. Otherwise, the sort merges

as many of the existing sorted runs as possible into a larger sorted run. This process is

repeated until the number of runs is reduced to a small enough number that they can

all be merged into the final output. We call each round of merging smaller runs into a

larger one a "merge phase" .

In this thesis, we are primarily concerned with sorts where the data is too large to

merge in a single pass. The number of runs that can be merged at a time is referred to as

the "fan in" of the merge. The fan in depends partly on the amount of memory available,

but mostly on the characteristics of the 10 subsystem. 10 to disks is typically more
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efficient for larger block sizes [Gra90b]. Hence the best performance is not necessarily

obtained by maximizing the fan in. Often, better performance is obtained by using larger

blocks for more efficient 10, even at the expense of a smaller fan in and hence extra passes

through the data. Since finding the ideal block size is not part of this investigation, we

measure memory in terms of the number of blocks, rather than kilobytes or megabytes.

3.3.2 Overview of External Sort Algorithm in BAS

The external sort algorithm for BAS differs from the classic external sort algorithm in

that it can use different amounts of memory at different points in its lifetime, in order to

adjust to changes in the amount of memory available. Our goal is to use as much memory

as is available in order to reduce the number of 10 operations necessary to complete the

sort, without using so much that paging occurs. The result, as far as the sort algorithm

is concerned, is that some runs are larger than others and some merge phases involve

more runs than others. See Figure 3.2 for a schematic of what might result.

The way sorts adjust their memory allocation is to "check in" with the memory broker

at points when they could change their memory allocation without too much cost. These

points are just before starting to create a new run (except for the final run) and just

before beginning a merge phase (except for the final merge phase). These restrictions on

not changing memory just before the last run or merge are discussed in Sections 3.3.3.1

and 3.3.3.2.

Conceptually, checking in consists of sending a message to the memory broker and

waiting for a reply. We discuss possible implementations of this process in Section 3.5.

At a minimum, the message sent to the memory broker by the sort needs to contain the

following information:

1. The amount of memory currently allocated to the sort.

2. The maximum amount of memory that the sort could use.

Depending on the sophistication of the memory broker, it may need additional informa-

tion on which to base its memory allocation:
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3. Amount of data remaining to be sorted.

4. Number of runs on disk.

Because we assume that sorts manage their own buffer space, the memory broker need

do nothing more than inform the sort how much memory it is allowed to use after each

checkpoint. There is no need for the memory broker to actually allocate any memory in

the sense of manipulating page tables or managing blocks of free space.

An interesting consequence of the fact that checkpoints only occur at points when

the sort is about to create a run or begin a merge phase, is that the more memory a sort
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is allocated the longer it is until it checks in again. The reason that this happens is that

the size of the run created (or data merged during a merge phase) is proportion to the

size of the memory used. Since more data takes more time to sort or merge, it is longer

until the sort is finished with that step and ready to check in again.

When we first designed BAS, we were worried that this phenomenon would cause

sorts with large allocations to "hog" memory. To avoid this problem, we created tunable

parameters for the adaptive algorithms to cap the amount of memory allocated to a single

sort (see Sections 3.4.1 and 3.4.2). Fortunately, this turned out not to be a problem, and

the tuning parameters are largely unnecessary (see Section 5.3).

3.3.3 Refinements

Our algorithm contains two refinements of the main ideas presented above. The first

refinement has to do with planning ahead during run creation so that blocks of data

can be held in memory rather than written to temporary files. The second also involves

planning ahead, but during the merge phases to avoid unnecessary passes through the

data.

3.3.3.1 Refinements During Run Creation

If the sort is given the use of enough memory during its lifetime that it can merge all runs

in a single merge phase, then it is possible to arrange the sizes of the last few runs such

that the final run generated can be retained in memory. Every block of data retained

in memory in this manner saves two 10 operations; one to write the block to a run, and

one to read it back in during merging.

During the run creation phase of the sort, the sort initially makes each run as large

as its memory allocation. However, the memory allocations during the course of run

creation are unlikely to be such that the last run exactly fills memory. Instead, the

last run created is almost certainly going to be smaller than memory. Our refinement

is to make the penultimate run smaller than it would otherwise have been so that the

maximum amount of input data is deferred to the final "in memory" run. This strategy
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is complicated by the fact that the final run must be somewhat smaller to leave room

for input buffers, used to read runs which were written to disk.

The following examples show what could happen if a sort proceeds first without and

then with the use of this refinement. The case of sorting without the run-size refinement

is presented first. This scenario is illustrated in Figure 3.3.

Memory:

I I
20 Blocksof Sorted Output

Runs on Disk:
I I

19 Blocksin Disk Run

Figure 3.3: Sorting Without Run Size Refinement

1. Sort of 20 blocks of data submitted to system.

2. On first checking in, the memory broker allocates 19 blocks of memory to the sort.

3. The sort naively sorts 19 blocks of data and writes it out to a single disk run.

4. The sort checks in again. Nothing much has changed and the sort could still get

19 blocks of memory. It can't use that much now, so instead it gets 3 blocks: one

to read and sort the remaining data, one to read the disk run for merging and one

to assemble sorted blocks from the in-memory run.

5. Now the sort reads and sorts the remaining block.

6. Finally, the 19 blocks in the disk run are read and merged with the one block of

sorted data held in memory.
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The total I/O for this scenario is:

1. 19+19 to read, sort, write first run

2. 1 to read and sort final block

3. 19 to read disk run for merging

4. 20 to write final output

for a total of 78 I/O's. Contrast this result with what happens when the sort plans

ahead a little bit:

Original Input: I I

I I
20 Blocksof Input

3 Blo~ in Mem

D
blocks stay in memory during merge...

Memory:

I I
20 Blocks of Sorted Output

Runs on Disk: D
H

3 Blocksin Disk Run

Figure 3.4: Sorting With Run Size Refinement

1. Sort of 20 blocks of data submitted to system.

2. On first checking in, the memory broker allocates 19 blocks of memory to the sort.

3. The sort sorts only 3 blocks of data and writes it out to a single disk run.

4. Now, even though the sort is at a point where it could check in, it doesn't. The

reason is that it couldn't use any more memory than it already has, and any less

would lead to a performance disaster similar to the one outlined above.
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5. Sort reads in remaining 17 blocks of input data and holds them in memory.

6. Finally, the 3 blocks of sorted data on disk are read and merged with the 17 blocks

of sorted data held in memory.

The total I/O for this is

1. 3+3 to read, sort, write first run

2. 17 to read and sort final (in-memory) run

3. 3 to read disk run for merging

4. 20 to write final output

For a total of 46 I/O's. This strategy works whenever the sort can get a large enough

memory allocation while still executing in the run creation phase. "Large enough" means

that the remaining data can be sorted in two runs, while still leaving space for the final

in-memory run to coexist with the input buffers for the merge.

3.3.3.2 Refinements During Merge Phases

Knuth presents numerous refinements to merging in external sorts [Knu73]. Most of

them involve adjusting the number of runs merged in early merge phases so as to reduce

the total 10 of the sort. None of these can be applied directly by BAS because they all

depend in one way or another on planning ahead. Since the amount of memory allocated

to the sort may change from one merge phase to the next in BAS, it is not possible to

plan ahead in this manner. At the same time, the performance penalty for merging

naively can be so great that it is worthwhile to do some optimization. Our compromise

is to do this type of planning ahead only when th~ number of runs has been reduced to a

value that the sort could merge in only two phases using the current memory allocation.

This decision to optimize the final two merge phases is a compromise. If BAS were

to optimize all of the merge phases, then it would not be possible for it to adapt after it

finished run creation. On the other hand, doing no merge optimization at all can greatly
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increase the number of 10 operations necessary to complete the sort. Optimizing only

the last two merge phases gives a significant performance improvement while sacrificing

very little of BAS's adaptive nature.

3.4 Algorithms for the Memory Broker

We implemented and compared two adaptive algorithms for the memory broker:

1. Equal Allocation. This algorithm attempts to equalize the memory allocation of all

queries currently active in the system. It is intended to be a very simple memory

allocation strategy that takes advantage of our adaptive external sort algorithm.

2. Marginal Gains. This algorithm takes into account the needs of each query when

allocating memory.

For comparison purposes we also implemented a third, non-adaptive, algorithm that

we call static. It is intended to be an approximation of how memory allocation has

traditionally been done in many commercial database systems [Ger93]. Static gives each

query some fixed amount of memory, regardless of the current workload. Not knowing a

priori what fixed amount would be a fair comparison, we made this a tunable parameter

Pst. In the simulator, Pst is the largest fraction ofthe total memory that will be allocated

to a query. (Dnless the query is so small that it cannot use that much memory - even

under the static scheme we do not give a query more memory than it can use.) If a new

query is submitted to the system and all memory is already in use, the new query is

queued until memory becomes available for it.

The memory broker keeps track of how much memory is currently available in the

system. Queries send messages to the memory broker requesting permission to use more

memory or announcing that they have finished using memory. Queries block waiting

acknowledgment of their requests. This gives the memory broker the option of holding

a request until the memory necessary to satisfy it becomes available.

In our model of the computer system on which our algorithms run, we assume that

there is no disk contention as long as the number of concurrent sorts is limited to some
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reasonable value. To ensure that the memory broker does not launch more sorts than

this limit, we introduced a parameter called "load control". Load control is an inte-

ger specifying the maximum number of concurrent jobs allowed. When the number of

concurrent jobs reaches the load control limit, further jobs are queued until a running

job finishes and exits the system. All variants of the memory broker observe the limit

specified by the load control parameter.

Each of the adaptive algorithms for the memory broker is discussed in more detail

below.

3.4.1 Equal Allocation

In the equal allocation variant of BAS, we model a memory broker that attempts to

allocate equal shares of memory to all active queries. Furthermore, it attempts to keep

as much of the memory in use as possible.

To achieve these two goals, each query should receive an allocation of M / n, where

M is the total memory in the system and n is the number of queries currently running.

However, simply passing out M/n blocks of memory every time a query checks in won't

work because the first large query will grab all of memory and hold it, locking out any

new queries. Four modifications to this simple strategy are necessary to make it work

correctly:

1. The value n must include queries that have been queued for lack of memory (up

to a maximum of the load control limit). For example: imagine that there are

currently two queries running, each using half of the memory. When a third query

enters the system, it will be queued since there is not memory available. Now, the

two queries which are running will eventually check in. When they do, they will

each get one third of memory, rather than one half as they had before. This new

allocation frees up memory that the queued job can use.

2. Queries should be started as soon as there is enough memory available for them

to make progress. When there are several queries running and a new one wants to
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enter the system, it can take a significant amount of time for the memory broker

to free up its full share of memory. Instead, the query should be given as much

memory as is available as soon as there is enough to guarantee that it can make

progress.

3. There needs to be a limit on how much memory can be allocated to anyone query.

The reason is that the adaptive sort algorithm used by BAS does not check in after

it starts the final merge. If one query were given all of the memory in the system,

it could end up preventing new queries from entering the system for a considerable

length of time during its final merge.

To prevent these sorts of problems, the memory broker uses a tunable parameter

Peg where 0 < Peg $ 1. Peg is the largest fraction of the total memory which a

single sort can ever be allocated. For the main experiments presented in this thesis,

Peg was set to 0.5. In Section 5.3 we show that BAS performs well over a wide

range of values for this parameter.

4. A query should not be allocated more memory than it can use effectively. Since

most of the sorts in the workloads investigated in our experiments are much larger

than the total memory, this issue rarely comes into play. Regardless, the memory

broker does make sure that the memory allocation to a sort does not exceed the

maximum that it could use.

The algorithm can be summarized as follows: Each time a query requests memory it

is given the smallest of:

. M/n blocks of memory (where n includes queries queued for lack of memory, but

does not exceed the limit set by load control).

. All of the remaining free memory in the system.

. M x Peg (the maximum memory allowed to a single query).

. The maximum memory that the query could use.
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Not that for the equal allocation variant of BAS, the operation of the memory broker

does not depend on the size of the sort. Hence, our assumption that sorts know how

much data they are sorting (see Section 3.1) is irrelevant for this variant.

Figure 3.5: Space-Time Diagram for Equal Allocation

Figure 3.5 shows a space-time diagram of this algorithm in action. The vertical bars

inside the space-time blocks represent checkpoints.

The action shown in Figure 3.5 is taken from the beginning of a typical run of our

simulator. Characteristics of the workloads we investigated using our simulator are

presented in more detail in Section 4.3. For this example, Peq has been set to 0.5 and

M, the total memory devoted to input buffers in the system, is 64 blocks. The first

sort submitted to the system is to sort 2337 blocks. Since this sort is much larger than

the total memory in the system, it is allocated the maximum allowed for a single sort:

M x Peq, or half the memory in this case. A second sort of 1537 blocks is submitted to the

system some time later. Now that there are two sorts in the system, each should receive
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M /2 blocks of memory. The first sort already has this much, and since an equal amount

is currently available the second sort immediately receives is full allocation and begins

executing. Toward the end of the diagram, a third sort is submitted to the system. At

this point all of the memory is in use, so sort #3 is queued until one of the active sorts

checks in. The next sort to check in is sort #1. Sort #1 is now allocated M/3 blocks

of memory. Sort #3 can now begin executing, but it does not receive its full allocation

because only M/6 blocks of memory are available (M/2 - M/3 just freed by sort #1).

Soon sort #2 checks in and is also allocated M /3 blocks of memory. This new allocation

frees just enough memory that when sort #3 checks in it can now be allocated its full

M/3 blocks of memory. As desired, the memory broker has quickly converged to an

allocation of M /n blocks of memory for each of the n sorts active in the system.

Notice that this variant of the memory broker is so simple that it would not even need

to be implemented as a separate process. Since all the queries using the memory broker

are part of the DBMS and hence trusted entities, the memory broker could be as simple

as a couple of shared variables and semaphores to protect them. The small amount of

computation necessary on each "call" to the memory broker could be implemented in

the query itself.

In spite of its simplicity, the equal allocation variant of BAS turned out to perform

surprising well. Full results of its performance are reported in Chapter 5.

3.4.2 Marginal Gains

Previous work in memory allocation in a multi-query environment has shown the value

of using marginal gains [NFS91, YC93, FNS91]. Generally, marginal gains is taken

to mean that queries receive memory based on the marginal gain in performance that

will result from the proposed memory allocation. While marginal gains works well with

static algorithms, we have found that a straight application of marginal gains to adaptive

algorithms actually yields worse performance than our equal allocation memory broker

algorithm.

In Section 3.4.2.1 we present our implementation of marginal gains. Section 3.4.2.2

\
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analyzes why it fails to perform better than our implementation of equal allocation.

3.4.2.1 Our Implementation of Marginal Gains

There are two aspects of marginal gains that need to be dealt with in order to implement

it. The first is the calculation of the value of each additional block of memory to a query.

Following the lead of Faloutsos, Sellis and Ng in their implementations of MG~x-y and

its variants [FNS91], we make the value of a block of memory equal to the expected

change in the number of 10 operations that a query could expect from one additional

page of memory. The detailed derivation of the formula used to calculate this value is

presented in Appendix B. The second aspect of implementing marginal gains is how

to apply this value in distributing memory among competing queries. When memory

becomes available, it should be given to those queries to which it is most valuable. The

tricky part is that as memory is allocated to a query, its need for more memory decreases

until eventually it is no longer the "neediest" query, and the rest of the memory should

be given to other queries that now need it more. Here, the adaptive nature of BAS

required a more sophisticated algorithm than that used in MG-x-y.

The difficulty is that in MG-x-y, memory is distributed only among queries waiting to

enter the system. This is acceptable in MG-x-y because queries receive a fixed allocation

when they start. In contrast, the whole point of BAS is to allocate memory to queries

multiple times during their life. The equivalent in BAS to the memory distribution

algorithm of MG-x-y would be to make a query wait each time it checked in for a

couple more queries to also check in before any of them could receive their new memory

allocation. Given the frequency with which queries check in under BAS, this strategy

would lead to queries spending an unacceptable amount of time waiting.

To achieve the goal of distributing memory to those queries to which it is most

valuable, we made the memory broker maintain a reserve of memory to pass out to

needy queries. The intent is that if a query checks in and is found to need memory worse

than the average query currently active in the system, it can be allocated some from the

memory broker's reserve. Conversely, if a query checks in and needs memory less than
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the average query, some of its memory should be taken away and saved in the reserve

for queries that need it worse.

We implemented this strategy by making each query submits a "bid" every time it

checks in with the memory broker. This bid is the number of 10 operations that the

query estimates it could save if it were allocated one more block of memory. The bid is

calculated using the formula derived in Appendix B. The memory broker maintains an

average of the most recent bids of all queries currently active in the system. It then buys

memory from queries that are bidding below average and sells memory to those that are

bidding above the current average.

The exact steps taken by the marginal gain version of the memory broker when a

query checks in are as follows:

1. Recalculate the average bid not including the bid of the current query. It makes

no sense for the query to bid against itself. If there are no other queries in the

system, set the "average" to zero. This effectively allows the current query to buy

as much memory as it can use, up to the maximum allowed for a single query.

2. Conceptually, all of the memory in the memory broker's reserve and all but two

blocks of the memory currently allocated to the query are temporarily placed in a

pool of memory to be auctioned to the highest bidder. For each block of memory

in this pool, the memory broker allocates it to the highest bidder. The bidders are

the memory broker, the current query and possibly a query that has been queued

for lack of memory. A query in the queue can participate in the bidding if there

is enough memory in the pool to give it two blocks to start bidding with. Recall

that sorts make no progress with fewer than two input buffers.

The bids of the current query (and the query in the queue, if there is one) are

calculated using the formula derived in Appendix B. The memory broker bids 0 if

its reserve is full, or the average bid of all other queries in the system otherwise.

In effect, the memory broker bids on behalf of queries that cannot because they

are not at a checkpoint.
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This algorithm for partitioning memory between the current query and the memory

broker was chosen because it is intuitive and simple. In an actual implementation,

a less intuitive but more efficient algorithm that achieves the same effect would be

more appropriate than auctioning each block individually.

3. Check that no query has been allocated more than the maximum that it can

effectively use. Queries can be allocated more memory than they need because

the formula used to calculate the bids is a continuous approximation of the actual

marginal gain value. If a query has been allocated more than it can use, return

the excess to the memory broker's reserve.

4. After completing the steps outlined above, check that the memory allocated to

each query does not exceed the maXimum allowed. Recall that no query should

be allocated more than Pmg X M blocks of memory. If more than this amount has

been allocated, put the excess back in the memory broker's reserve. This event is

generally a result of the query being the only one in the system. If this check were

not performed, the query would likely buy all of memory, preventing other queries

from entering the system. Note that the more memory given to a query, the less

often it checks in. Hence the concern about not giving all of memory to a single

query.

The formula used by the marginal gains variant of BAS makes use of the size of the

sort (B in the formula derived in Appendix B). This is the reason for the assumption

in Section 3.1 that the sort is aware of how much data it is sorting. Yet, the algorithm

should still work well if it were to use an estimate rather than the exact value for B.

There are two reasons to believe this. First, B would be known exactly by the time the

sort begins the first merge phase. Since the sorts that we investigate are of sufficient

size that they spend more time merging than generating runs, the value of B would

be known exactly rather than estimated during most of the life of the sort. Second, as

shown by BAS's insensitivity to parameter settings (see Section 5.3), the adaptive nature

of the algorithms can smooth over the effect of small mis-allocations of memory. While
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we have not performed any experiments to prove it, we believe that this property would

also reduce the cost of small errors in estimating the size of sorts.

We present two graphs of the behavior of the marginal gains function. The formula

that the simulation uses to calculate marginal gains attempts to estimate the change in

number of 10 operations necessary to complete the sort if one more block of memory

were allocated to the sort for the remainder of its life. Since.more memory reduces the

number ofIO operations necessary, the formula always yields a negative number. These

graphs show the formula exactly as it is calculated. In speaking of the formula, we will

actually use the more intuitive notion of a "higher" bid when in reality the bid would

be more accurately described as "of larger magnitude" .

Marginal Gain
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o

50
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-100

-150

-200
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Blocks of Data Not Yet Read from Input
o

Figure 3.6: Marginal Gains During the Run Creation Phase of a Small and Large Sort

In Figures 3.6 and 3.7 we show how the marginal gain varies during the life of two

different sized sorts. The smaller sort sorts 1000 blocks of data, the larger one sorts

3500. Both sorts are assumed to have been working with 32 blocks of data since they

I I I I I I

Sorting 1000Blocks -
Sorting 3500Blocks - -

-- --

""" -

I I
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Figure 3.7: Marginal Gains During the Merge Phases of a Small and Large Sort

began executing. These numbers are chosen to match typical values from the workload

used in our simulation. As can be seen in the figures, memory becomes progressively less

valuable to the sorts as they progress. Also, the larger sort has a greater need of memory

than the smaller one. These observations are true in general. Larger sorts avoid more

10 operations for a given increase in memory allocation and any sort benefits more from

memory allocated earlier.

In Figure 3.8 we show how the marginal gain varies as a function of the amount of

memory that a sort has been allocated in the past. For this graph, we again show two

sorts of 1000 and 3500 blocks respectively. Each is assumed to be half way through its

run creation phase. The graph shows what the marginal gain for each sort is as a function

of the amount of memory previously allocated to it. We assume a constant allocation

thus far in the life of the sort. Large sorts are more sensitive to memory starvation. By

this we mean that a large sort that has a history of small memory allocations will be in
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Figure 3.8: Marginal Gains for a Small and a Large Sort with Different Past Memory
Allocations

greater need of memory than a small sort in the same situation.

The amount of memory bought by the memory broker is controlled by a tunable

parameter Pmg where 0 < Pmg :::;1. This parameter is the minimum fraction of the

total memory in the system which the memory broker should ensure is allocated to sorts

rather than kept in its reserve. In other words, the memory broker will refrain from

buying more than (1 - Pmg) X M blocks of memory no matter how low the price seems

to be. Pmg is also used to cap the memory allocation of a query when it is the only one

running in the system. In this case, the query will never be given more than Pmg x M

blocks of memory. This limit is imposed so that there will be some memory free to start

new queries.

Figure 3.9 shows the marginal gains algorithm in action. This example shows exactly

the same sequence of sorts admitted to the system as the example at the end of the

presentation of the equal allocation in Section 3.4.1. As in the previous example, the
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-
Figure 3.9: Space-Time Diagram for Marginal Gains

vertical bars indicate checkpoints and the total memory devoted to input buffers in the

system is 64 blocks. The parameter Pmg is set to 0.8 in this example.

The first sort admitted to the system will sort 2337 blocks of data. Since it is the

only query in the system, it is allocated Pmg XM = 51 blocks of memory. The remaining

13 blocks are kept "on reserve" by the memory broker for starting new queries. When

the second sort (sorting 1537 blocks of data) is submitted, it is allocated these 13 blocks

of memory and can begin execution immediately.

Now, marginal gains comes into play. During the next two times that sort #1

checks in, the memory broker all<:>catesless memory to it so that it can allocate more

to sort #2. Sort #2 is checking in more often, so sometimes there is no new memory

to allocate to it, but gradually its memory allocation is increased. At some point, sort

#2 has been allocated enough memory that the value of additional memory for it is less

than for sort # 1. At this point, the memory broker ends up passing out blocks of its

-
h
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reserve to both sorts until all memory is in use. This process is visible in the space-time

diagram for sort #1 as a small upward correction just before the allocations stablize.

When the allocations have stablized, sort #1 has considerably more memory than

sort #2 (36 blocks versus 28). This is because sort #1 is sorting more data (2377 blocks

versus 1537).

Eventually, a third sort is submitted to the system. As when the second sort was

submitted, memory is taken away from the sorts currently active in the system and

passed out on the basis of which sort finds the memory most valuable. With three

participants in the exchange, there is a little more oscillation, but the allocations quickly

converge to a stable distribution where memory is equally valuable to all queries in the

system.

3.4.2.2 Challenges in Applying Marginal Gains

In the course of investigating marginal gains as applied to adaptive algorithms, we have

come to believe that a straight application of marginal gains is not the right technique for

adaptive algorithms. However, there may be other approaches to partitioning memory

based on some calculated value of the memory that would work. For example, it may be

possible to adapt recent work by Yu and Cornell [YC93] that is based on the space-time

product of queries and avoid the problems outlined below. In any case, we see two major

problems with naive application of marginal gains to adaptive algorithms.

First, in a static scheme, the memory only needs to be partitioned among the queries

that are queued waiting to enter the system. Since the queries that are already executing

are by definition static, they can neither receive nor give up memory and hence do

not need to be taken into account when memory is partitioned. When the queries are

adaptive, any query in the system might participate not only with the new query entering

the system, but even with other queries already in the system. This adds greatly to the

cost of computing how to partition memory simply through the sheer increase in number

of possible partitionings.

Second, when the algorithms are adaptive, there is no guarantee of how much a given
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query's response time will be reduced by a given change in its memory allocation. This

uncertainty results from the fact that the query may change its allocation again in the

future. This weakness in marginal gains is more serious than it might seem at first.

A naive application of marginal gains to adaptive algorithms will often give very bad

answers for common situations. As an illustration, we present an example of a large

sort in progress when a small sort enters the system. In Figure 3.10 we show space-time

diagrams of various re-allocations of memory for this example.

Number of 10 operations

Small sort uses 16 blocks of memory,

completes in 234 10 operations.

ITotal Memory

mall sort uses 9 blocks of memory,

completes in 254 10 operations. Large sort completes in 5760

10 operations in all 3 scenarios.

(a) Small Sort Queued. Mean response: 587710 ops.

(b) Best Solution (found by trial and error). Mean response: 3007

Small sort uses 3 blocks of memory,

completes in 506 10 operations.

(c) Solution Found Through Marginal Gains. Mean response: 313310 ops.

Marginal gains projects 770010 operations for completion of large sort.

(d) Erroneous Projection of Marginal Gains Formula. Mean response: 397710 ops.

Figure 3.10: Space Time Diagrams for Large Sort in Progress, Small Sort Starting

In this example, the large sort sorts 1024 blocks of data, starting at time zero. The



40

small sort sorts 64 blocks of data after the large sort has had just enough time to complete

4 runs of data. The total amount of memory available for input buffers is 16 blocks. The

results of the different scenarios were obtained by hard wiring BAS to give the jobs the

allocations shown in the scenario rather than using one of its regular memory broker

algorithms.

As the example starts, the large sort is using all of memory. When the small sort

enters the system after 12810 operations (1.28 seconds) the large sort needs to give up

some its memory so that the smaller sort can begin to make progress. The alternative

of simply queuing the smaller sort until the large one is done (see Figure 3.10(a)) results

in an average response time of 58.77 seconds. It is possible to do much better than this.

The question then is how much memory the large sort should give up. To find out

what the optimal solution might be, we simulated what would happen if the large sort

gave 2, 3, 4, ... , 14 of its 16 blocks to the small sort. (Remember that external sorts

make no progress with fewer than two input buffers.) The best of these solutions is shown

in Figure 3.10(b). The average response time of the two sorts here is 30.07seconds.

This solution is not too surprising, but it is not what would be found through a

naive application of marginal gains. Using the marginal gains formula from Appendix

B, we would arrive at the solution shown in Figure 3.10(c). This solution has an average

response time of 31.33 seconds.

The source of the difficulty is that the marginal gains formula fails to take into

account the fact that the memory used by the smaller sort will soon be available again.

In effect, the marginal gains formula projects the situation illustrated in Figure 3.10(d),

which has an average response time of 39..77seconds.

This problem really stems from the fact that we cannot predict the future. If the

small sort that has just arrived hi actually the first of a steady stream of similar sized

sorts, then the scenario shown in Figure 3.10(d) may be closer to the truth than our

"best solution" shown in Figure 3.10(b).

One of the interesting results of our work is that any reasonable partitioning of the

memory in a situation like this yields very similar average response times. One reason
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is that the more memory given to the smaller sort, the sooner it finishes and makes

the memory available to the large sort again. Another reason is that large sorts have a

certain amount of "slack" in their memory requirements. This slack comes from the fact

that the memory allocation is unlikely to divide exactly into the size of the data. As a

result, there will be a merge phase that does not use all of the input buffers. Interestingly,

brief memory shortages during run creation result in more runs of a smaller size, but

there are still the same number of passes through the data. This happens because these

extra runs will be merged at no extra cost by simply using more of the available input

buffers during the merge phase, which would not otherwise have used them all.

3.5 CheckpointsVersus Interrupts

In our model, the interaction between queries and the memory broker occurs at "check

points". The idea here is that when the query reaches a point where it can conveniently

change its memory usage, it sends a message to the memory broker.

An alternative would be for the memory broker to send interrupts or signals of some

sort to a query when it needs to change its memory allocation. Both approaches have

merit. Checkpoints are simpler and easier to implement, interrupts would likely result

in better performance.

3.5.1 Advantages of Checkpoints

The biggest advantage of using checkpoints is that they are easier to implement. Since

queries only check in at times when it would be convenient for them to adjust the size

of their working set, the adaptive algorithms are much simpler and more intuitive. Even

if you did implement an adaptive algorithm based on interrupts, there are some points

in a query's execution when it would be impractical to change the working set size. The

result would be that interrupts would often end up behaving like checkpoints anyway.
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There are several alternatives for implementing checkpoints:

Messages

Perhaps the best implementation of checkpoints would be with actual messages.

The query sends a message to the memory broker when it is time to check in and

blocks waiting for the response. The memory broker acts on the message, and

sends the query its new maximum working set size via a return message. In this

alternative, the memory broker is truly a separate process or thread.

Shared Variables

If the algorithms used by the memory broker are very simple, it may be easier to

build the functionality into the query itself. The equal allocation variant of BAS

is simple enough that it lends itself especially well to this scheme. The critical

data structures for the algorithm would be kept in a shared variable protected by

a some sort of mutual exclusion protocol (a semaphore, for example). Each query

would perform its own calculation to determine its allowed working set size based

on the values of the shared variables. One of the reasons this method would work

is that all of the query algorithms are trusted members of the DBMS. There is no

possibility of queries intentionally "cheating".

Polling

One aspect of BAS that is apparent from examining traces of our simulator is that

the majority of checkpoints do not result in any change to the size of the query's

memory allocation. This fact suggests that it may be better for queries to check in

only when necessary. Checkpoints implemented with polling would be identical to

those implemented with messages, except that queries would only check in if the

memory broker had set a flag for them since their last checkpoint. This scheme

would avoid the overhead of messages except when there is something that actually

needs to be communicated.
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3.5.2 Advantages of Interrupts

The advantage of interrupts is that the system can be made to adapt more quickly. For

example, if all of the memory in the system is in use and a new query is submitted the

memory broker would not need to wait for an active query to check in in order to find

memory for the new query. Rather, the memory broker could choose one or more queries

and interrupt them immediately. For interrupts to work well, the adaptive algorithms

would need to be more sophisticated than those investigated in BAS. Pang, Carey and

Livny have explored the algorithms necessary for this approach [PCL93a, PCL93b].



Chapter 4

Simulation

In this chapter we discuss details of how we simulated our ideas. Section 4.1 contains a

brief description of the simulation tool that we used. Section 4.2 describes the system

modeled by the simulator. The workloads used in our experiments are described in

Section 4.3.

4.1 Simulation Tool

We wrote the simulator in the simulation language DeNet [Liv90]. DeNet is a simulation

language based on Modula-2. It provides a rich set of functions and data types for man-

aging events, queues, and other components of a discrete event simulation. Constructs

built into the language facilitate message passing between modules of the simulation,

which correspond to components of the system being modeled.

4.2 Model

We model a simple system consisting of a single CPU connected to a set of disks. Jobs

submitted to the system are modeled internally as data structures containing all the fields

necessary to completely' describe the current state of a job. Our workload is discussed

in detail in Section 4.3.

DeNet, the simulation tool we used, encourages a model in which separate entities

of the system being modeled are cast as separate modules in the simulator. In keeping

with this approach, our simulator consists of the following modules:

44
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. Source

. CPU

. Disks (All disks are grouped in one module)

. Memory Broker

. Sink

The relationships of these modules are illustrated in Figure 4.1. Each of these modules

and their interactions are explained below.

Figure 4.1: Modules of the Simulator

4.2.1 Source Module

The source generates the job stream. It accepts parameters that completely specify the

characteristics of the job stream to produce. We give details of the workloads produced

by the source in Section 4.3.

Source ) Disks

Jm-8
Memory F=:(

Jm-8
Broker

CPU ...
Sink Jm-8
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4.2.2 CPU Module

The CPU in our cases acts as a dispatcher to route jobs to the service they need next.

Since disk accesses are the bottleneck in most DBMSs, we do not model CPU time.

Furthermore, the amount of memory devoted to a sort has very little impact on the total

CPU time used. In particular, taking memory away from an external sort reduces the

amount of CPU time used to sort runs by almost exactly the amount of additional CPU

time needed to merge the larger number of runs that result.

4.2.3 Disk Module

Disk accesses are modeled as a constant lOms delay. We assume that there are sufficient

disks that some number of jobs can run concurrently without significant disk contention.

For the experiments reported in this thesis, we restricted the maximum number of con-

current jobs to four.

4.2.4 Memory Broker Module

The CPU module dispatches jobs to the memory broker when they need to check in. The

memory broker generally makes a memory allocation for. the job and returns it to the

CPU immediately. In a few situations, the algorithms used by the memory broker require

that the job be queued until memory becomes available for it. The algorithms employed

by the memory broker were described in Section 3.4. The calculations performed by the

memory broker are actually quite simple. Hence, those memory allocations that do not

require that the job be queued for some period are modeled as taking zero time.

Because our memory broker ensures that the sum total of the sizes of the working

sets of all queries in the system is strictly bounded, there will be no page faulting in

BASI. Hence, we do not model memory access.

IDepending on how memory is managed in the DBMS, there may be some small number of page
faults when a query first starts, or when one query's working set grows at the expense of another.
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4.2.5 Sink Module

Completed jobs are sent to the sink. The sink collects statistics and performs cleanup

necessary for the internal workings of the simulator.

4.3 Workload

We investigated the behavior of BAS on two different workloads. The first is what we

call the "bursty" workload, which consists of short bursts of jobs separated by periods of

qUlessence. The second workload is a more traditional one, consisting of a steady stream

of jobs.

There are two features common to all the experiments reported here. First, in both

workloads, each job sorts a random amount of data. The amount of data sorted is

distributed exponentially with a mean of2500 blocks. Second, in all experiments reported

here, the simulator simulates 100 jobs from submission to completion.

We measure the size of sort jobs in blocks of data to be sorted. Memory is also

measured in units of the same size. Although we refer to this unit as a "block", it is

not necessarily a physical block of the disk. Rather it is the preferred amount of data

that the DBMS reads or writes in a single call. Graefe (who uses the word "cluster"

where we use the word "block") reports that performance for external sorting in Volcano

is greatly improved by increasing the block size from 4 KB to 16KB [Gra90b). Smaller

performance gains are achieved by continuing to increase the block size, until somewhere

around 40 KB.

Keeping in mind the discussion above, our average sort size of 2500 blocks corresponds

to sorts with an average size of 40 - 100MB depending on whether you choose your block

size to be 16KB, 40 KB or something in between. The sorts execute in a workspace where

64 blocks (1 MB - 2.5 MB) are devoted to input buffers. We see no reason why our results

would not scale to larger sorts in larger amounts of memory. Keep in mind also that this

amount of memory is for only enough disks to allow four concurrent jobs. More disks

would allow more concurrency and hence require more memory.
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The bursty workload is described in more detail in Section 4.3.1. The exact param-

eters for the steady workload are presented in Section 4.3.2.

4.3.1 Bursty Workload

One of the strengths of BAS is its ability to perform well with workloads where the num-

ber of active jobs varies greatly over time. In order to demonstrate this, we investigated

what we term a "bursty" workload.

In the bursty workload, jobs arrive in bursts of from one to four jobs. The number

of jobs in a burst is uniformly distributed. Within a burst, jobs have a mean interarrival

time of one second. This interarrival time is exponentially distributed. Since the average

response time for jobs in this workload is measured in hundreds of seconds, the jobs

in a burst can be thought of as starting nearly simultaneously. There is also a mean

interarrival time between the bursts themselves. For the experiments reported in Chapter

5, we varied this interarrival time from 500 seconds (corresponding to a fairly light

workload) down to 75 seconds, at which point the workload was heavy enough to nearly

saturate the system.

Bursty workloads could occur naturally in a couple of ways. For example, if the

DBMS implemented pipelined multi-way joins using sort-merge, the individual sorts

that make up a single join would appear in a sudden burst.

4.3.2 Steady Workload

We also ran BAS against a more traditional workload. In the steady workload, jobs

arrive with a mean interarrival time that varies from 120 down to 30 seconds in our

experiments. The interarrival time is exponentially distributed. As in the bursty work-

load, each sort sorts 2500 blocks of data on average and the simulator does 100 jobs

from submission through completion. While we have performed no formal analysis of

variance, observations of the simulator against workloads with fewer jobs show that runs

of 100 jobs are more than sufficient to guarantee statistically significant results.
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Simulation Results and Analysis

We ran BAS against two types of workloads: bursty and steady. The bursty workload

consists of bursts of one to four jobs in an otherwise quiet system. The steady workload

is a more traditional workload consisting of a steady stream of jobs.

The bursty workload shows how BAS can yield improved performance in an environ-

ment where the number of concurrent jobs varies greatly over time. Here, the perfor-

mance improvement ranged from about 7% to 20% depending on the mean interarrival

time between the bursts. The longer the time between bursts, the greater the benefit of

using BAS.

The steady workload shows that there is still a performance improvement when using

BAS on a more ordinary workload. Here, BAS also outperforms our simulation of a

traditional method of memory allocation, but not by as wide a margin.

In Section 5.1 we present the results of our simulations. Section 5.2 shows how these

results compare with those obtained by authors of related work. Finally, we present

results of experiments that show that the two variants of BAS give good results for a

wide range of settings of their parameters.

5.1 Results and Analysis

In Figure 5.1 we graph the average response times of jobs for the bursty workload with

different mean interarrival times between the bursts. When there is enough space be-

tween bursts, the marginal gains variant of BAS works best. However, as the bursts come

49



50

Response Time in Seconds
300

150

Equal Allocation ~
Marginal Gains -t-

Static -e-
250

200

100

50

o
o 50 100 150 200 250 300 350 400 450 500

Mean Interarrival Time in Seconds

Figure 5.1: Average Response Time of All Jobs in Bursty Workload

closer together and begin to overlap, the equal allocation variant of BAS becomes the

better choice. In fact, for very heavy workloads marginal gains does not even beat static

allocation. The properties of marginal gains that lead to this behavior were discussed in

Section 3.4.2.2.

Note that even in the region where marginal gains is better than equal allocation, the

difference is very slight. Given that marginal gains is also a considerably more complex

algorithm than equal allocation, and hence would be more difficult to implement, it is

doubtful that this version of marginal gains is worth the trouble. On the other hand,

there may be other methods of applying marginal gains to adaptive algorithms that are

worth exploring.

To demonstrate that BAS is not only useful for special workloads like our bursty

workload, we ran it against a more traditional workload. The results of this experiment

are shown in Figure 5.2. This workload, consists of a steady stream of randomly sized
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Figure 5.2: Average Response Time of All Jobs in Steady Workload

jobs. The exact parameters of the workload were described in Section 4.3.2.

For this workload, equal allocation turns out to give the best performance at any

interarrival rate. We attribute this surprising result to the problems of applying marginal

gains to an adaptive algorithm which we outlined in Section 3.4.2.2.

When the workload is very heavy, static allocation begins to do better than marginal

gains and about as well as equal allocation. This is not surprising: the strength of

memory adaptive algorithms comes from their ability to make use of memory that would

otherwise be idle. When the system is close to saturation, there will be very little idle

memory. In this case, the best performance is obtained by running just enough jobs to

keep all the disks busy. This is precisely what a static allocation of 25% does.

The static memory allocation against which we have been comparing BAS has a

parameter Pst. To show that we have chosen a reasonable setting for this parameter, we

ran the static memory allocation algorithm against the bursty workload for Pst set to
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Figure 5.3: Average Response Time of All Sorts Using Static Memory Allocation

0.50, 0.33 and 0.25. These values correspond to running 2, 3 or 4 jobs concurrently.

The results of this experiment are shown in 5.3. A setting of 0.50 (50%) is obviously

worse than the other two settings. At 33%, the algorithm does very slightly better than

25% for most workloads, but saturates considerably sooner than 25%. Since heavier

workloads are the more interesting ones anyway, we chose to set this parameter to 25%.

This setting gives the best performance for heavy workloads, and reasonable performance

for lighter ones.

5.2 Comparison to Previous Work

In this section we compare our simulation results with results obtained by authors of

related works.
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5.2.1 DBMIN

Chou and DeWitt in their paper on DBMIN [CD85] investigate a much different workload

from that investigated using BAS. In particular, the workloads investigated by Chou and

DeWitt include no sorts. In contrast, the workloads for BAS consist of nothing but sorts.

Visual inspections ofthe graphs in Chou and DeWitt's paper on DBMIN shows that

the performance improvement over the baseline results offered by DBMIN is of roughly

the same magnitude as that of BAS. However, the reader must keep in mind that the

very different workloads make it difficult to compare the two proposals directly.

5.2.2 MG-x-y

MG-x-y [NFS91, FNS91] is a direct extension of DBMIN and like DBMIN, the workloads

used to investigate MG-x-y include no sorts.

Visual inspection ofthe graphs in Ng, Faloutsos and Sellis's papers on MG-x-y shows

that it gives a substantial performance benefit over DBMIN. This is especially true of

MG-x-y using predictive load control. However, both DBMIN and MG-x-y are really

concerned with page replacement policies. In contrast, BAS is concerned with allocating

workspace for sorts and other memory-intensive database operators. It may be possible

to adapt some of the ideas of DBMIN for use in conjunction with BAS.

5.2.3 Return on Consumption

Visual inspection of the results of Yu and Cornell's buffer management strategy based on

return on consumption [YC93] indicates that they obtained a performance improvement

of as much as 30% over their baseline algorithm. In contrast, our best improvement was

about 20%.

We attribute much of this to the fact that Yu and Cornell investigated hash joins.

Hash joins are more sensitive to memory allocation than sorts are. Consider a sort and

join too large to fit in memory, but small enough to be completed in two passes through

the data (i.e. one merge phase for the sort). If the sort is executed with one fewer page
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of memory, then one additional page will need to be written to a run on disk and read

back in. In contrast, the hash join would have to write two additional pages to disk and

read them back in, one from the inner relation and one from the outer.

5.2.4 Adaptive Hash Join

Zeller and Gray measured the performance of their adaptive hash join algorithm against

that of a non-adaptive sort-merge join. Their best improvement was 59%.

While this improvement over the baseline is much greater than we obtained from

BAS, it must be noted that they have switched not only from a non-adaptive to an

adaptive algorithm, but also from sort-merge to hash join. Shapiro has shown that hash

join is superior to merge-join for sufficiently large inputs [Sha86]. It is not clear how

much of the performance improvement that Zeller and Gray found should be attributed

to adaptive algorithms and how much to using hashing instead of sort-merge as their base

algorithm. Also, the greater sensitivity of hash joins to differences in memory allocation

discussed in the previous section applies here as well.

5.2.5 Memory-Adaptive External Sorting and Partially Preemptable
Hash Joins

Pang, Carey and Livny present and compare a variety of algorithms for memory adaptive

external sorting [PCL93a]. The focus of. their investigation is to evaluate the relative

performance of their different algorithms. Too this end, their experiments all simulate a

single adaptive sort that is subjected to random fluctuations in its memory allocation.

They do not compare any of their algorithms to a non-adaptive sort.

In contrast, our experiments investigate the merits of adaptive sorting algorithms

over non-adaptive ones. While their work is very significant and relevant to ours, their

experiments are too different for any direct comparison of results.

The experiments in their companion paper on partially preemptible hash joins [PCL93b]

are also too different for direct comparison of the results for much the same reasons.
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5.3 Sensitivity of BAS to Parameter Settings
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Figure 5.4: Sensitivity of Equal Allocation and Marginal Gains to Parameter Settings

One of the strengths of BAS is that although the algorithms for the memory broker

are parameterized, they work nearly as well for any reasonable value of their respective

parameters. To show this, we ran the simulator against the bursty workload with a

mean interarrival rate between bursts of 50 seconds and varied the parameters of the

algorithms (Peq for equal a.llocation and Pmg for marginal gains). The results are shown

in Figure 5.4. In the graph, it is clearly visible that the performance is close to the best

possible (for the given algorithm) over a wide range of values for the parameter.

A similar experiment for static a.llocation was illustrated earlier in Figure 5.3. Note

that for static allocation, the parameter does matter a great deal.



Chapter 6

Conclusion

In this investigation, we proposed a combination of memory adaptive algorithms and a

central agent to allocate memory.

We simulated our ideas as applied to external sorting and showed that they performed

consistently better than a simulation of the hueristics traditionally used in commercial

DBMSs. Surprisingly, equal allocation, the simpler of our two algorithms for allocating

memory, outperformed our more sophisticated marginal gains algorithm. The reason for

this was discussed at length. Essentially, our application of marginal gains fails to take

into account the memory fluctuations inherent in an environment of memory adaptive

algorithms. Although we had anticipated this weakness, we were surprised at its severity.

On the other hand, BAS turns out to require very few modifications to the normal

architecture of a DBMS. Especially in view of the effectiveness of the simpler equal

allocation memory broker algorithm, it seems to offer much potential for actual imple-

mentation.
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Appendix A

Derivation of Introductory Example

In this appendix we present the numbers behind the graphical example in the intro-

duction. Recall that the example consisted of two sorts: SI (the smaller sort, meaning

that it sorts less data) and S2 (the larger sort). This example was constructed using

the values listed below. As elsewhere in this text, memory is measured in blocks, time

is measured in number of 10 operations completed, and CPU time is ignored. In this

example we also assume that there is no disk contention.

Total Memory

The amount of memory available for input buffers is 12 blocks. There would also

be two additional blocks used to buffer output for the two sorts. We count these

separate from the 12 input buffers to simplify the calculations.

Sort SI

This sort is the smaller one. It sorts 6 blocks of data starting at time O.

This sort is the larger one. It sorts 16 blocks of data, and also starts at time O.

A.l Static Memory Allocation

Since SI uses so little memory, a reasonable static allocation is to give SI as much

memory as it can use and leave the rest for S2. This also happens to be exactly half
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the memory, so this example matches what the equal allocation variant of the simulator

would do with this workload.

In any case, 31 g~ts 6 blocks of memory in this example, making it an internal sort.

Thus, the sequence of events for 31 is:

Time 0-5

Read all six blocks to be sorted from the input. Six 10 operations.

Time 5

Sort the data.

Time 6-11

Write all six blocks of sorted data to the final output. Six 10 operations.

31 takes a total of 12 10 operations.

The 6 blocks of memory not used by 31 are allocated to 32. 32 sorts 16 blocks of

data, so it will need to create 3 runs of sorted data on the disk. Using the run creation

optimization described in Section 3.3.3.1, 32 can save 4 10 operations by holding a run

of 2 blocks in memory rather than writing them to disk. As a result, the third disk run

will contain only 2 blocks of data, rather than the 4 that would happen without the

optimization. The sequence of events for 32 is as follows:

. Time 0-11

Create a sorted run of 6 blocks on disk. 1210 operations.

. Time 12-23

Create another sorted run of 6 blocks on disk. 12 10 operations.

. Time 24-27

Create a run of 2 blocks on disk. 4 10 operations.

. Time 28-29

Create a sorted run of 2 blocks in memory. 2 10 operations.
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. Time 30-59

Merge disk runs with memory run and write all of it to final output. 30 10

operations (14 blocks read from disk, all 16 written to final output).

For a total of 60 10 operations.

The grand total of both sorts is 72 10 operations.

A.2 Dynamic Memory Allocation

Using dynamic memory allocation, it is possible for S2 to use all ofthe available memory

during most of its lifetime. Only during the execution of Sl does S2 restrict its memory

allocation to 6 blocks for the duration of creating one run. To best present the sequence

of events that occurs when Sl and S2 run using dynamic algorithms, we recreate the

space-time diagram of Figure 1.1(b) in Figure A.l, this time showing the internal events.

I Small (Internal) Sort / Final merge of all 16

I blocks of data to output

Read 10 blocks from input into "in memory" run

Write 6 blocks of sorted data to disk run

Read 6 blocks from input

Figure A.l: Space Time Diagram of Adaptive Sorts Showing Run Creation

The total number of 10 operations in this case is 56. This is a 29% improvement

over the number required when using static memory allocation.



Appendix B

Marginal Gains Formula and its
Derivation

The following variables will be used in the discussion and formulas of this appendix:

E Existing runs of sorted data on disk. (Does not include runs not yet created, when

considering a sort still in progress.)

B Total blocks of data to sort.

b Blocks remaining to be sorted.

M Memory allocation (measured in blocks).

Ro Total number of level-O runs.

Marginal gains in BAS measures the change in the number of I/O operations which

would be caused by each additional block of memory allocated. It would be impractical

to try to calculate this value exactly because it would require simulating the rest of

the sort's lifetime. Instead, we use an analytical approximation based on the number

of times the data is passed. We have checked the formula for this approximation by

comparing it against hand simulation of various examples. It is exact in cases where the

data is passed an integral number of times. In the remaining cases it gives a value that

is slightly higher than the true value.

To illustrate the derivation of the formula, consider as an example sorting 64 blocks

of data. If 8 input buffers are used, then the sort must read and write all of the data two
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times, once to split all of the input into level-O runs on disk, and once more to merge

all of the level-O runs into the final output. Sorting the same 64 blocks of data using 4

input buffers would require three complete passes through the data.

In general, the number of passes through the data will be

(B.1)

But this only works right before any of the input has been consumed. We want to be

able to estimate the number of I/O operations remaining at an arbitrary checkpoint. At

any check point there remain ! passes through the data to finish creating the level-O

runs. After all the level-O runs have been created, there will be

(B.2)

additional passes through the data to merge the Ro level-O runs into the "single run",

which is the final output. Ro will be E, the number of existing runs plus t level-Oruns

yet to be created with the current memory allocation. Thus, the total number of passes

remaining to be made through the data at any checkpoint is:

~ + logM(E + ~) (B.3)

The total amount number of 10 operations is the number of passes through the data

times the number of blocks of data times 2 (read and write):

2B [~ + logM(E + ~)]
(BA)

This can be simplified:

[

b

(
EM + b

)]2B B +logM M

2B [~ + logM(EM+ b)-logM(M)]

2B [~ + logM(EM+ b)- 1]

[

b- B
]2B logM(EM+ b)+ ~

(B.5)

(B.6)

(B.7)

(B.8)
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2 [BlogM(EM + b) + b - B] (B.9)

The marginal gain is the derivative of this with respect to memory:

d
dM2 [BlogM(EM + b) + b - B] (B.IO)

This is not immediately differentiable because the independent variable (M) occurs as

the base of the log function. We use the laws of logarithms to convert to natural logs:

~2
[
Bln(EM + b) b _ B

]dM In(M) +
(B.ll)

Now we can differentiate:

2B.~ln(EM+b)
dM In(M)

[

I d In(EM+b) d
]2B In(M)' dM In(EM + b) - (In(M))2 . dM In(M)

[

I E In(EM + b) I
]2B In(M) EM + b - (In(M))2 M

2B
[

E In(EM + b)
]In(M) EM + b Mln(M)

(B.I2)

(B.I3)

(B.I4)

(B.I5)

The marginal gains variant of BAS uses this formula to estimate marginal gains.
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