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ABSTRACT

FINITE ELEMENT ANALYSIS OF MIXED MODE FRACTURE
AND FAILURE IN IOSIPESCU SPECIMENS

Natarajan Sukumar, M.S.
Oregon Graduate Institute of Science & Technology, 1992
Supervising Professor: Maciej S. Kumosa

The absence of an established mixed mode test method for the characterization of
unidirectional composites has proven to be a stumbling block in the understanding of
intralaminar failure mechanisms in these materials. In this thesis, a numerical study of
the In-Plane Biaxial Iosipescu Test is carried out. The stress state in Iosipescu specimens
is numerically investigated for notch angles from 60° to 150° under various mixed mode
loading conditions. The materials modeled in the analysis are pblycster resin (isotropic
material), glass/polyester and carbon/epoxy unidirectional composites respectively. The
singular stress fields at sharp notches in isotropic as well as orthotropic media are
analyzed by the application of the Finite Element Iterative Method. In addition, the case
of skew-symmetric splits in 0-deg unidirectional composite Iosipescu specimens is also
studied, wherein fracture parameters like the mixed mode energy release rates and stress
intensity factors are computed as a function of the crack length, loading angle, and

orthotropy ratio.

A finite element analysis of the biaxial Iosipescu test method is performed, in

which, Iosipescu specimens in cither shear or a combination of shear, transverse tension

XVi




and compressive loadings are considered. Force-couple boundary conditions are used to
analyze the stress state in the mid-section of the specimen. A complex stress distribution
exists in isotropic as well as orthotropic Iosipescu specimens. The stresses at the notch
root are singular in nature, and the stress distribution in the immediate vicinity of the

notch root consists of a combination of normal and shear stresses.

The stress singularities at angular sharp notches in isotropic as well as orthotropic
media are computed by the Finite Element Iterative Method. Three different loading
conditions are considered in the numerical analysis: tension, shear, and a combination of
tension and shear. In tension, the strong singularity A, is obtained, while under shear,
convergence is to the weak singularity A,. When the loading is a combination of tension
and shear, convergence is always to A,. The stress singularities A, and A, are found to be
strongly dependent on the notch angle o, as well as on the elastic properties of the
material. There exists a critical angle o, above which A, vanishes under shear loading
conditions. For all notch angles a 2 0y, the stress field at the notch root is non-singular
in nature. The values obtained for o, are of particular significance to practitioners

involved in the analysis of the Iosipescu shear test for composite materials.

In 0-deg unidirectional composite Iosipescu specimens, a particular mode of frac-
ture is the propagation of skew-symmetric splits along the fiber direction. The energy
release rates Gy, Gyj, and Gy, are evaluated by three different numerical schemes: dis-
placement extrapolation, J-integral, and the modified crack closure integral. Using beam
theory analysis, an analytical solution for the energy release rates is also proposed. Axial
splits in Josipescu specimen propagate under mixed mode conditions, with G; and Gy
varying with the crack length a. For short cracks (a S 4mm), Gy > Gy, while for long

cracks (@ 210mm), G is dominant. The merits and limitations of the numerical schemes
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in the mixed mode fracture analysis of orthotropic composites arc evaluated and dis-
cussed in detail.
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CHAPTER 1

INTRODUCTION

The use of composite materials has increased significantly in the past two decades. The
high specific modulus and high specific strengths of composites make them an attractive
prospect for structural applications, both, in terms of weight reduction as well as greater
load carrying capacity. With the increasing difficulty of improving the weight-efficiency
of metal alloys and the development of high modulus, high strength fibers (i.e. carbon,
aramid and boron) since the 1960’s, there has been a dramatic increase in the application

of fiber/polymer composites within the aerospace industry.

Fiber/polymer composites consist of continuous or short fibers embedded in either a
thermoset (i.e. epoxy, polyester or phenolic resins), or thermoplastic (i.e. nylon, polysul-

‘_ phone and polyether-ether-ketone (PEEK)) matrix material. Continuous carbon fiber
filaments have been commercially available since 1961, and are currently the predom-

- inant reinforcing material in fiber composites used for high stiffness/strength applica-

tions.

Carbon fiber composite structures are generally in the form of unidirectional plies
laminated together at various orientations, or filament-wound configurations. These lam-
inated fiber composites are highly susceptible to the presence of geometric discontinui-
ties. The discontinuities may be deliberately introduced, such as design-cuts, or there
may be inevitable defects produced during manufacturing or service. In particular,

crack-like defects can be critical, as they can greatly reduce the stiffness and strength of

composites, and can thus lead to catastrophic failure.




In laminated composites there are three principal failure modes (i.e. delaminations,
intralaminar transverse cracking and fiber-breakage) which adversely affect the mechani-
cal properties. Delaminations may be single or multiple planar cracks parallel to the lam-
inate plies, and are often the result of some combination of mode I (tensile mode), mode
II (in-plane shear mode) and mode III (anti-plane shear mode) fracture processes (Figure
L.1).

The ability to predict the mechanical properties and to understand the failure
mechanisms in fiber-reinforced composites under mixed mode (shear dominated) loading
conditions is important for the further development of fiber/polymer composite materials.
Some of the important requirements for adequate predictions are reliable material data
(elastic moduli, Poisson’s ratios, and failure strengths), a suitable failure criterion, and an
accurate component model. In most engineering applications, unidirectional composite
laminae are subjected to biaxial or even triaxial type of loading. Hence, from an
engineering design and application perspective, it is critical to characterize the mechani-
cal behavior and response of these materials under mixed mode loading conditions.

In this thesis, a preliminary numerical investigation of the In-Plane Biaxial osi-
pescu Test is conducted. Chapter 2 is a literature survey on the Iosipescu shear test as
well as on the biaxial Iosipescu test method, along with details of mixed mode fracture
phenomena in unidirectional composite Iosipescu specimens. In addition, relevant back-
ground about the Finite Element Iterative Method (FEIM), a numerical scheme for
analyzing singular stress fields at points of discontinuities (cracks, sharp notches, inter-
faces etc.), is also presented. In Chapter 3, the numerical results are outlined: finite ele-

ment analysis of uncracked as well as cracked isotropic and composite Iosipescu speci-

mens, and stress singularity computations at sharp notches by the Finite Element Iterative




Method. The important results are discussed in Chapter 4, and the main conclusions
obtained from this study are listed in Chapter 5. Chapter 6 looks at possible future
research-work in regard to the biaxial Iosipescu test method. In Appendix A, the deriva-
tion of the load components used in the finite element analysis are outlined. In Appendix
B, some of the most representative von Mises stress contours are presented, while in
Appendix C, the expressions for the energy release rates in the Iosipescu specimen using
beam theory analysis are listed. The test problem of an orthotropic strip with an edge
crack under uniaxial tension is considered in Appendix D; the numerical results obtained
for the stress intensity factors are presented. The energy release rate computations for
coplanar cracks along the fiber direction in Iosipescu specimens are listed in Appendix E.

In Appendix F, the hardware configuration along with the execution times involved in the

numerical analyses are presented.







CHAPTER 2

BACKGROUND

2.1. Intralaminar Shear Test Methods

To fully exploit the potential of composite materials in structural applications, it is neces-
sary to have a complete and accurate description of their mechanical properties. The
accurate determination of the in-plane shear properties (elastic modulus, ultimate shear
strength and failure strain) and overall shear stress-strain behavior for advanced compo-
site materials is much more difficult than for tensile or compressive properties. The
problem stems from a difficulty in obtaining a pure shear stress state for a defined speci-
men geometry and loading condition. In highly anisotropic materials, coupling between
the normal and shear deformation modes is common and a state of pure shear stress
rarely occurs in composites. There have been numerous attempts to develop reliable test
methods to determine the in-plane shear stress-strain response for advanced composite
materials. The most commonly applied testing methods are: (1) two rail, (2) three rail,
(3) cross-beam sandwich, (4) picture-frame panel, (5) thin-walled tube torsion, (6) 10
degree off-axis tensile, (7) £45 degree off-axis tensile, (8) Iosipescu and (9) slotted-
tensile. An evaluation of the above nine shear test methods by the decision analysis tech-
nique, ! rated the Iosipescu and +45° off-axis tensile shear tests as the best available for
measuring in-plane shear properties. In an in-depth study on shear-dominated properties

of unidirectional carbon fiber composites, Broughton? has presented a comprehensive

review of the most important intralaminar testing methods.




2.1.1. Iosipescu’s Method

The ideal test method is one that is relatively simple to conduct, employs small, easily
fabricated specimens, and is capable of measuring both shear strength and shear
modulus. Iosipescu in 1967 proposed a tr;ethod to determine the shear properties of
metals. In this procedure, a state of pure shear stress is "achieved" at the mid-length of
an isotropic double V-notched planar specimen, by the application of two counteracting
force couples (Figure 2.1). A state of constant shear exists in the mid-section of the test
specimen, with the induced moments canceling exactly at the mid-length, and thereby
producing a pure shear stress state at this location. Figure 2.1 shows the force, shear and

moment diagrams.

Originally, cylindrical test specimens were used, with a 90° circumferential V-notch
cut completely around the mid-section. This specimen geometry transforms the para-
bolic shear stress distribution (associated with beams of constant cross-section) to a uni-
form shear distribution in the regions between the notches. The reduced area also pro-
motes shear failure in this region. The two sides of the angular notches, which are the
isostatics of the stress-free surfaces, must be inclined at an angle of 45°. Hence, the
included angle of the V-notch is 90°. The applied force P divided by the net cross-

sectional area A between the notch roots gives the nominal shear stress:
T1=P/A @.1)
Adams and Walrath#5 showed that the Iosipescu shear test method was suitable for

determining in-plane and through-the-thickness shear properties of fiber composite

materials (i.e. unidirectional carbon/fiber and sheet moulding compounds). Fiber compo-

site shear tests use flat rectangular specimens with notches machined at the top and bot-




tom edges (Figure 2.2). Shear strain is measured at the center of the notch axis using two

strain gauges oriented at +45° to the longitudinal axis of the test specimen.

Iosipescu3 postulated that a uniform stress state resulted from the coincidence of the
principal stress directions at +45" to the longitudinal axis with the 90° notch angle in the
region of zero bending stress. It was argued that, since the sides of the notch are aligned
with the plane of principal stress, the principal stresses would be zero at the notch root.
Hence, there should be no shear stress concentrations or normal stresses present at the
notch roots. However, numerous numerical and experimental studies have demonstrated

this argument to be incorrect.

Finite element analysis shows that there is a complex stress distribution in the speci-
men, particularly in the vicinity of each notch root. Stress distributions (i.e. normal and
shear) have been found to be dependent on the notch geometry (i.e. depth, angle and

radius), orthotropy ratio, fiber orientation and loading boundary conditions. 2,5-18

For specimens with fibers oriented parallel to the longitudinal axis (0-deg fiber
orientation), the shear stress concentration factor K; at the notch roots, defined as the
- ratio of the shear stress at the notch root to the shear stress at the specimen center,
increases with increasing orthotropy ratio E;;/Ex» (i.e. K; > 1). 58 The shear stress
increases rapidly in the vicinity of the notch roots to a maxima. In the case of specimens
with fibers oriented transverse to the longitudinal axis (90-deg fiber orientation), K
decreases with an increase in E;;/Ep; (i.e. K; < 1). The shear stress decreases rapidly to

a minimum at the notch root. 3-8

Walrath and Adams>-%-12 have attempted to optimize the Iosipescu specimen

geometry and Iosipescu shear test fixture. In a comprehensive investigation, the authors

analyzed the stress distribution in the Iosipescu specimen as a function of the notch




geometry and orthotropy ratio. This work resulted in a re-designed University of Wyom-
ing Josipescu test specimen and fixture. 12 For orthotropic materials, it was demonstrated
that an increase in notch angle or notch radius definitely reduces the shear stress concen-
tration around the notch roots. The effect of notch depth on the stress concentration was
minimal compared to the effects of notch angle and radius. 5 Barnes et al. ® considered
the effect of fiber orientation and orthotropy ratio-on the measured shear properties of
unidirectional glass/polyester. The apparent measured shear modulus was almost the
same for 0-deg and 90-deg Iosipescu specimens, though the apparent intralaminar shear

strength was strongly dependent on fiber orientation.

In an isotropic material, the influence of longitudinal stresses is minimal, but the
transverse normal compressive stresses induced by the inner loading points intrude into
the test section. It has been recommended that the inner loading points be moved away

from the test region in order to reduce these compressive stresses. 5,9-12,14

Kumosa and Hull” showed that there is a simple relationship between the shear
stress concentration factor K; at the notch roots, and the orthotropy ratio and fiber orien-

tation:
K; = A(Ep1/Egp)' 2.2)
t 11/E22 .
where A is a numerical factor related to the stress concentration in an isotropic specimen.

Kumosa et al. -8 employed finite element analysis in order to determine the
influence of elastic properties and boundary loading conditions on the stress distribution
in the Iosipescu specimen. The loading of the finite element models was chosen to simu-

late the boundary conditions representative of:

(a) the loading originally proposed by Iosipescu with two force couples as illustrated in




Figure 2.3a (force-couple condition); and

(b) the displacement boundary conditions used by Adams and Walrath, 5-9 which
assumes no rotations of the ends of the specimen in the loading fixture, as illustrated
in Figure 2.3b (displacement condition).

A comparative study on isotropic and orthotropic Iosipescu specimens was per-
formed to show that the force-couple conditions were representative of the actual experi-
mental configurations. This involved comparing the isochromatic fringe patterns
observed for the test specimens with numerically generated normalized von Mises con-

tours’-8 for both force-couple and displacement boundary conditions.

2.2. In-Plane Biaxial Iosipescu Test Method

In most engineering applications, unidirectional fiber composite laminae are subjected to
biaxial and triaxial loads. Therefore, it is important to obtain the mechanical properties
and failure criteria under multi-stress conditions. Currently, there are only a few tests
available for the biaxial characterization of these materials. The tests which have been
most frequently used for the intralaminar mixed mode failure (uncracked specimens) and
fracture (specimens with pre-cracks) investigations are: the unidirectional off-axis tensile
test, 19 filament wound thin-walled hoop wound tubes (with or without circumferential
pre-cracks) under either torsion or combined tension and torsion loadings, 2-20:21 and the
Arcan method. 22:23 In all of these tests, however, end-constraint effects, buckling, and

bending moments introduce errors in the measured elastic properties.

As a result of the study conducted by Broughton, 2 a new In-Plane Biaxial Test Fix-
ture, based on the Iosipescu shear test (Figure 2.1) and the Arcan in-plane stress method

(Figure 2.4) was designed. 8 The biaxial fixture (marketed by Instron Corporation) is
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shown in Figure 2.5. The fixture is capable of measuring mixed mode failure and frac-
ture properties of isotropic and composite materials. In this study, it will be referred to as
the biaxial Iosipescu test method. For biaxial in-plane stress tests, the compressive load

P is applied at various angles ¢ to the normal, where ¢ is the angle between P, and P
(Figure 2.6).

2.3. Mixed Mode Fracture in Unidirectional Composites

Continuous fiber composites are heterogeneous materials with inherent micro-flaws (i.e.
voids, matrix cracks, and fiber-interface debonds). The formation and propagation
mechanisms of a crack are governed by the material microstructure and the stress state in
the immediate vicinity of the crack front. In contrast to isotropic and homogeneous
materials which often exhibit self-similar crack growth, fiber composites will often have
cracks that do not propagate along the original crack orientation because of the local
heterogeneity in front of the crack. In isotropic materials, the direction of crack growth
is determined by the loading conditions: for example, in uniaxial tension, crack growth
by mode I occurs on the plane normal to the maximum tensile stress. For a unidirec-
tional composite material, the plane of fracture is determined both by the loading condi-
tions, and the fiber orientation, and hence many different paths can be envisaged. Each
crack growth direction has its own characteristic toughness and the lowest toughness is
observed when the crack plane is parallel to the fiber direction. A crack lying on such a
plane as a result of one type of loading conditions is likely to continue to grow in the

plane even when the loading conditions are changed.

Since fiber composites exhibit multiple modes of fracture with no certainty of self-

similar crack propagation, the principles of linear elastic fracture mechanics (LEFM)
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may not necessarily apply to composite fracture. However, for unidirectional fiber com-
posites in which cracks propagate along the fiber direction, the principles of LEFM are
applicable. 2% In the case of cracks oriented along the fiber direction, the crack tip dis-
placements can be separated into mode I, mode II, and mode 25 (refer to Figure 1.1)

where the stress intensity factors K, Ky and Ky govern the stress state at the crack tip.

There are few published results 7,13,15,26,27 concerned with the fracture mechanics
aspects of the Iosipescu test. According to Swanson et al., 15 failure of 0-deg specimens
was initiated at the notch roots when two axial splits occurred parallel to the fiber direc-
tion. Walrath and Adams> 11 assume that the actual failure is a result of longitudinal
crack formation throughout the mid-section. This interpretation is based on the observa-
tion that specimens first crack at the notch roots, but then sustain load until the specimen
fails catastrophically. Finite element analysis by Kumosa and co-workers®® demon-
strated that the nucleation and propagation of cracks in 0-deg and 90-deg specimens were

controlled by different combinations of normal and shear stresses at the notch roots.

2.3.1. Basic Failure Modes in Composite Iosipescu Specimens

The modes of failure in the Iosipescu test are strongly dependent on the material aniso-
tropy. Three basic failure modes are illustrated in Figure 2.77. Failure mode T is charac-
teristic of brittle isotropic materials and has been reported14 for a vinyl-ester material.
The cracks start at the roots of the notches and propagate on the plane of the principal
tensile stress. Failure is catastrophic and results in complete fragmentation of the test
specimen. Failure mode S occurs in unidirectional composite materials with fibers in B-

type orientation. 8 Fracture is controlled primarily by shear; cracks start at the notch roots

and propagate in an unstable mode parallel to the fibers. When unidirectional composite
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material is tested with A-type orientation, failure mode M is observed. Cracks form
parallel to the fibers and extend on one side of the notch tip, away from the loading
points. Failure nucleation is caused by the shear stress concentration at the notch tip and
crack growth in the plane of the principal tensile stress is prevented by the aligned fibers.
The actual stresses associated with the initiation and propagation of cracks in mode M
are complex although the shear stresses are dominant at the notch root. Similar mode of
failure was observed by Kumosa and Hull” for a glass fiber-polyester resin unidirectional

composite material.
24. Fracture Mechanics in Composite Materials

2.4.1. Constitutive Material Relations

The stress-strain relations in the principal material directions 1, 2 for an elastic anisotro-

pic medium are given by28

€11 a11 312 a6 O11
€0 | = | a2 axp ay C12 (2.3)
Y12 a16 26 a66 T12

involving 6 independent material constants due to the symmetry of the compliance

matrix. For plane anisotropy, this number reduces to four (E;;, Ex, V12, Gj2) with

a;; = 1/Eyy, ayn = 1/Exp, a1 =—Vi2/Eq =-Vva1/Ex 24

ags = 1/Gy3, a1 =226 =0

and in the case of isotropic material only two independent constants are left (E and v or
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G) with

a;; =ay =1/E, aj; =-V/E 2.5)

ags =2(a;; —212)=1/G, aj6 = a3 =0

for plane stress. 28

2.4.2. Numerical Schemes for Extraction of Fracture Parameters

The testing as well as design of composites requires the ability to calculate fracture
parameters such as the energy release rates and the stress intensity factors. There is con-
siderable literature on numerical analysis aimed at this problem. Most use finite ele-
ments and then compute the energy release rate by various schemes based on nodal
forces or displacements. The methods which are most frequently used in the numerical
fracture investigation of isotropic as well as composite materials are: stiffness derivative,

29 virtual crack extension, 30-3! J-integral, 32 the displacement extrapolation method33

(the stress intensities and then the energy release rates are calculated from the numerical

displacements‘v along the crack face), and the virtual crack closure technique. 34-38 Most
of the above schemes are well established in linear elastic fracture mechanics of homo-
geneous isotropic materials; however, they may not be strictly applicable or extendible to
typical fracture processes in composite materials. One of the exceptions is the very
straight-forward and numerically highly effective crack closure integral technique or the
virtual crack closure method. In the following sections, the principles and important
equations in the displacement extrapolation method, J-integral formulation and virtual

crack closure technique are outlined.
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2.4.2.1. Displacement Extrabolation Method

The theory of linear elastic fracture mechanics provides two basic concepts which are the
stress intensity factor (SIF) and the energy release rate G. The concept of the stress
intensity factor is based on the analytical solutions for the stress or displacement field in
the near vicinity of the crack tip. For a plane problem, the general form for these rela-

tions are given by:

1
1 0 = [ﬁ] * [Kuth® + ku )] @6)
1
N W I 3% X I
ui=op [21:] [Kx 8:(©®)+Kng; (9)] 2.7)
1 1

with K| = oy (1ta)7 and Ky = T,y (ua)—i; r and O are polar coordinates at the crack tip.
The SIFs K] and Kj, associated with the basic fracture modes (refer to Figure 1.1),
describe the intensities of the crack tip field in relation to the crack length a and the
applied far field stresses 0'3 and to. In the displacement extrapolation scheme, the stress
intensity factors Kj and Ky are evaluated by extrapolating (linear regression analysis) a
displacement parameter, associated with the crack opening or sliding profile to the crack
tip. 33 At the crack tip, quarter-point elements, 39,40 with the assumed square-root singu-
larity, are used in the analysis. Quadratic isoparametric elements with the mid-side
| nodes placed at the quarter position (quarter-point elements) have been cmployed39‘44
for obtaining the stress intensity factors for elastic problems. The SIF extraction pro-

cedure was chosen by Kumosa and Hull? and Buchholz et al. 26 in their fracture analyses

of the Iosipescu specimen. The relevant plane stress relations for isotropic materials are
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given by
1
Ki|l r |2
u = E [E] [( 1+v) {(21( 1) cos(6/2) cos(SOIZ)H 2.8)
1
Kp|r |2 .
+ ?}é— E] [(1 + V){(ZK + 3)sin(6/2) + sm(30/2)H
1
K; 2
uy = 2E 21:] [(1 +V) {(2!( + 1) sin(6/2) - s1n(39/2)}] 2.9)
1
[Er;] 2 {-(1 +V) {(ZK - 3)cos(6/2) + cos(39/2)H
where x= (3 -Vv)/(1 +vV), and
1 1 1
uy =Ky | 22| * Re | ———4 pipp (M) 2 — popy (my) 2 (2.108)
n H1 — M2
2 7 1 3 7
+ Ky [‘1‘:‘] Re [ -1 {Pz (my) % —p; (my)? H
1 1 1
uy = K| 2| * Re | ——1{ u1qp (my) 2 — oy (my) 2 (2.100)
Y T Hi — H2

1 1
1 2 2
R —
C[ = iy {QZ (mp) © —qy (my) H

with m; =cos(8) + H; sin(8) and m, =cos(0) + p; sin(0) for orthotropic material
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behavior. Taking into account the presence of the quarter-point node in the displacement

variation along the crack-tip element, Shih et al. 42 proposed the following formula:
u=4ug —uc (2.11)

where u is evaluated from the points B and C (Figure 2.8). The displacement method -
equation (2.11) is applicable to isotropic as well as orthotropic fracture analyses. The
displacements uy and uy, as estimated from the above formula have to be substituted into
(210) in which p; and q; are defined as p;=ap uiz +app —aje Mis
q; =ap Wi +an/l; —ax, i=1,2. 4 and Y, are the roots of the following equation, and

they always occur in conjugate pairs as p;, Hi, K2, ﬁzz 25

agy B = 2a16 3 + (2212 + a6 ) W? — 225+ 2 =0 (2.12)

where a;; are anisotropic compliances which can be calculated from the elastic properties

of the orthotropic material (refer Section 2.4.1).

Equations (2.10a) and (2.10b) express the relationship between the crack tip dis-
placements and the stress intensity factors. The values of K; and Kp obtained by the
above method are considered to be good estimates of their true values in the case when

the distance from the node to the crack tip is taken to be 1 or 2 percent of the total crack
length. 45

2.4.2.2. The J Contour Integral

The J contour integral has had great success as a fracture characterizing parameter for

linear elastic as well as nonlinear elastic materials. By idealizing elastic-plastic deforma-

tion as nonlinear elastic, Rice32 provided the basis for extending fracture mechanics
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methodology well beyond the validity limits of LEFM.
Rice32 presented a path-independent contour integral for the analysis of cracks.
Consider an arbitrary counter-clockwise path (I") around the tip of a crack, as illustrated

in Figure 2.9. The J-integral is given by:

alli
J=I [Wdy—Ti 'X'ds} (2.13)
r

where w is the strain energy density, T; are components of the traction vector, u; are the
displacement vector components, and ds is a length increment along a contour I'. The
strain energy density is defined as
&
w = [ oy de;; (2.14)
0
where o;; and €;; are the stress and strain tensors, respectively. The components of the

traction vector are given by
Ti = 0j; n; (215)
where n; are the components of the unit vector normal to I'.

Rice 32 showed that the value of the J-integral is independent of the path of integral

around the crack. Thus J is called a path-independent integral.

The numerical evaluation of the J-integral in 2-D linear elastic as well as nonlinear
elastic problems is fairly straight-forward. The computation of the J-integral for 2-D
problems is readily available in most general-purpose finite element programs; however,

the J-integral in three-dimensions is much more complex, and has yet to reach the

general-purpose program stage.
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2.4.2.3. Virtual Crack Closure Method

Figure 2.10a shows a crack tip in an infinite isotropic plate subjected to remote mode I
type loading. If the crack extends from a to a + 8a, then, for infinitesimal values of a,
the crack opening displacements behind the new crack tip will be approximately the
same as those behind the original crack tip. Hence, the work necessary to extend the
crack from a to a + 8a is the same as that necessary to close the crack tip from a + 8a to
a. Irwin?6 computed this, and thereafter the energy release rate associated with the crack
extension from a to a + da. Referring to Figure 2.10a and its notation for a pure mode I

condition, Irwin’s crack closure integrals are given by*0

x=8a
G @)= 330—2—;—; J o, (r=x,0=0,2) u,(r=8a—x, 0=m,a+Sa)dx  (2.16)
and
x=8a
Gu @ = Jim 5%; Ty (r=x, 0=0, 2) u,r=8a—x, O=m,a+da)dx  (2.17)

XxX=

where (2.17) covers a superimposed or pure mode II crack tip condition. Substituting the
analytical stress and displacement fields ((2.6) and (2.7)) into (2.16) and (2.17), the fol-

lowing relations have been obtained by Irwin*0

2
Gr = K;éa) (2.18)
K2 (@)
oy = KLY (2.19)
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where x = 1 for plane stress and x = 1/(1 - v2) for plane strain problems. Corresponding
relations have been given by Sih, Paris and IrwinZ> for orthotropic materials with cracks
in the principal material directions

; 1 1
2| anaxn |2 [[an {2 2a;+ae |2
3 _ — —_ T — 2.20
1 Gr=Ki [ 2 | [a" 2a; 20
: o .
2 |an| |32 |2  2a12+a
= _ 2.21)
Cn =K _‘]2=] a1 ] 2ay;

Equations (2.16) and (2.17) represent the energy release rates G;(a), j =1, II on the basis
of the work to be done in order to close the crack of length a + 8a by an amount da.
According to O’Brien, 35 equations (2.16) and (2.17) can be transformed into the follow-

ing finite element representation

1
Gi(@) = 2Aa [Fy' i(@)Auy ;2(a+Aa) +Fy iy (a)Auy ;- (a+Aa)] (2.22a)

Gr(@) = 3—2; [F,, i@Auy ;2@a+Aa) + Fy s @)Auy j..l(a+Aa)] (2.22b)

which holds for the discretization shown in Figure 2.10b. In the above equations,
Fuy,i (@) and Fyy i1 (2) denote the nodal point forces, while Au,y ;2 (a+Aa) and
Auyjy ;-1 (a+Aa) are the relative nodal displacements. From (2.22a) and (2.22b), it can
be seen that before obtaining one value of G;(a), j = I, II two finite element analyses have
to be performed, with crack lengths a and a + Aa. Therefore, this scheme is also referred
to as the 2C-method (two calculations). As opposed to (2.16) and (2.17), the 2C-method

has been found to be applicable for finite crack extensions Aa >> 0.




In order to avoid the disadvantage of the 2C-method, wherein two finite element
calculations need to be carried out, Buchholz, 36 Krishnamurthy er al., 37 and Raju, 38
have established the following formulae

Gi® = 3 5= [P i@y, 128 + By a0y, 11 @) (2.23)
Gu@ =+ 55 [Fri@ug 2@ + Fy 1 @dug 110 (223b)

in combination with the linear strain element discretization of Figure 2.10b. This is
referred to as the improved modified crack closure integral methpd or 1C-method (one
calculation). In contrast to the 2C-method given by (2.22), only one finite element
analysis for the crack length a is required by the 1C-method. This decisive difference
reduces the computational effort to one half. In case of mixed mode problems, the
separated energy release rates G;(a), j = I, II are simultaneously obtained from (2.22a)
and (2.22b) or (2.23a) and (2.23b).

As mentioned earlier, the virtual crack closure method is well-suited for numerical
implementation. Since it is an energy-based method, the accuracy of the numerical
values of the crack tip displacement and stress fields aren’t critical, and hence neither
mesh refinement nor the usage of singular elements (e.g., quarter-point elements, 39-40
with square-root singularity) at the crack-tip are essential in order to obtain accurate
results. The modified crack closure integral schemes can be applied to 2-D and 3-D frac-
ture analyses in isotropic as well as orthotropic materials. The added advantage of this

method is that the total energy release rate G can be partitioned into its components: G;

for the opening mode I, and Gy for the sliding mode II.
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2.4.3. Beam Theory Solutions

An important failure mode of composite laminates is the propagation of interlaminar and
intralaminar defects. When the laminate is loaded, these defects can propagate to give a
significant deterioration in performance. The energy release rate G has been widely used
as a fracture parameter for the analysis of crack-like flaws in composite materials. The
finite element method has been used to compute the G values from the nodal forces or
displacements. The results, however, are rather complex to interpret, and hence there is a
need for analytical solutions. Williams%7 has proposed a beam theory solution for the
evaluation of the energy release rate G in cracked beams. The approach was applied to
many popular mode I, mode II and mixed mode testing mcthodé, wherein the mode parti-

tions Gy and G; were also estimated by the analysis. 47-49

2.4.3.1. Total Energy Release Rate G

A delamination, such as one shown in Figure 2.11 is under consideration. This is a thin
sheet of thickness 2h and width B containing a crack, a distance h; from one surface.
The crack tip contour along with the rotations is shown in Figure 2.12. M; and M; are
bending moments applied to the upper and lower sections respectively at the section AB.
The crack is taken to be originally at O on AB and moves to O" on CD. The initial and
final rotations on the upper and lower arms are shown in Figure 2.12. G may be defined

for the contour as

(2.24)

where Uy, is the external work performed and U is the strain energy.
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The total energy release rate G can be expressed as 47

dM; ]2 1 [szr_ [dMl 4 sz]z] (2.25)

da +(1-§) da da daJ

=3d+v) (1
G="SBEA [g

where Vv is Poisson’s ratio, E is Young’s modulus parallel to the crack, A is the crack

area, B is the thickness of the specimen, and & is a dimensionless quantity (§ = h;/2h).

2.4.3.2. Mode Partitioning

The critical values for G are different for the opening mode I and the sliding mode II. It
is therefore necessary to separate, or partition, the total G mentioned in the previous sec-

tion into the opening component Gy and the sliding, or shear component G;. The mode

partitions can be written as?’
Mf  (1+B)
Gy = 2.26
and
M 3 (1-§)
= - 1 2.2
Cu=Fgrig g (1P @27)
where

3
_|1=8 _ M -pM; MM,
B—[ » Mi= 1+B and My 1+B

2.5. Singular Stress Fields at Sharp Notches .

Sharp notches or re-entrant corners are introduced in isotropic as well as composite struc-

tures, usually to facilitate fabrication. Within the limits of linear elastic analysis, the
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stress field is unbounded at the tip of a sharp notch, with the strength of the singularity
varying with the angle included in the notch. This was reported as early as 1952 by Wil-
liams. 30 The term singularity is used to denote cases where the elastic stresses become
unbounded. If r is the distance from the notch tip, and A is the stress singularity (or
singular power), the stress field is of the order r which becomes singular as r tends to
zero. From a physical viewpoint, unbounded elastic fields are meaningless. Neverthe-
less, stress singularities cannot be ignored, as their presence indicates that new
phenomenon (e.g. plasticity, fracture etc.) may occur, leading to localized damage in
practical situations. The high stress concentration at these "singularity-dominated"
regions make them likely sites for crack iﬁitiation, and therefore the potential source of
ultimate failure. The ability to accurately evaluate the singularities and angular distribu-

tions around sharp notches is of great importance in design and failure analysis.

Williams0 studied the stress singularities at the tip of a sharp notch in an isotropic
plate under extension. The first eigenvalues for the entire range of notch angles were cal-
culated. The boundary conditions on the radial edge were free-free, clamped-free, and
clamped-clamped. Gross and Mendelson, 51 Lin and Tong, 52 and Portela et al. 53 have
also investigated the stress singularity at V-notches. Gross and Mendelson3! obtained
numerical solutions for V-notched plates using the boundary collocation method, while
Lin and Tong>2 applied hybrid finite elements to solve a similar problem. Portela et al.
53 evaluated the singularities in V-notched plates by coupling boundary element method
to a singularity subtraction technique. The bimaterial wedge problem has been studied
by analytical methods of solution. 54-56 In case of a homogeneous wedge, the eigen equa-

tion for a sharp notch with free-free edges reduces to that proposed by Williams. 50 Car-

penter57’58 has studied the eigenvector solutions and Rosel?? has evaluated the eigen-




values corresponding to the eigen solution at a sharp notch. Fracture parameters like the
stress intensity factor and stress concentration factors at sharp notches have been the sub-

ject of study by some researchers, 60.61

The initial studies conducted on the Iosipescu specimen reveal that, in orthotropic
materials, the stress field in the gage section is significantly non-uniform, and that there
exists a high stress concentration at the notch root (refer Section 2.1.1). However, in
spite of these observations, there have been very few studies so far to determine the exact
nature of the stress field at the notch, due to the complex nature of the problem. The
complexities involve, for example, the strong material anisotropy, complex specimen
geometry, and unusual loading configuration. In the absence of critical information
about the basic nature of the stresses at the notch root, researchers have resorted to vari-
ous approximate methods, such as incorporating a radius at the notch root, so as to allevi-
ate these difficulties. On the basis of anisotropic elasticity considerations
(eigenfunction-expansion technique), Wang and Dasgupta‘f‘2 showed that above a critical
angle, the stress field at the notch root is no longer singular and the shear stress, Ty, goes
to zero there. In case of isotropic-Iosipescu specimens, they determined the critical notch

angle to be 102.6°".

25.1. Stress Singularity at Sharp Notches

There are no analytical solutions for the singular power at sharp notches subjected to
biaxial stress conditions in composite materials. Therefore, one has to seek solutions by
numerical schemes. Within the framework of numerical methods, the finite element

method has been widely applied to singularity problems. Of late, the Finite Element

Iterative Method (FEIM)%3-7! has proven to be a powerful tool in the evaluation of
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asymptotic singular fields for complex problems in fracture mechanics.

2.5.2. Analytical Solution for Homogeneous Isotropic Materials

The analytical solution for the stress singularity in a homogeneous isotropic plate under
extension was proposed by Williams. 30 The analysis using the Airy stress function

approach is summarized below.

Consider an isotropic material with a sharp V-notch of notch angle a (Figure 2.13).
A polar coordinate system with 0 =0 along the -Y direction is assumed. The bihar-

monic equation in polar coordinates is

Viy=0 . (2.28)
where
2 2
V2= %+%%+%% and Wy = Airy stress function

The stresses can be written in terms of the Airy stress function by the following relations:

_12y 13y
C; = 2 302 + = or (2.29)
Go:%:_} (2.30)
re=-LlO¥ 123y @2.31)

r a0 T 2 08

The solution for the stress function y, for a sharp notch, takes the form30

y= P [bycos (A+1)0 + b,sin (A+1)0 + bycos (A—1)0 + bysin(A-1)0] (2.32)
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For the free-free edges, the boundary conditions are
Co(T, T+ 0/2) = Op(T, T — /2) = To(r, X+ 0/2) =TT, *—W2) =0 (2.33)
which leads to four linear algebraic homogeneous equations in b; (i=1,2,3,4), namely

by (A + Dsin[(A+ 1) — 0/2)] + bs(A - D)sin[A-1)(r - a/2)] = 0  (2.34a)

b (A + Dcos[(A+ 1)(x — a/2)] + b3 (A + 1)cos[(A ~ 1)(n ~ &/2)]

0 (2.34Y)

by (A + 1)cos[(A+ 1)( — 0/2)] + by(A — 1)cos[(A — 1)(1t — 0/2)]

]

0 (2.34¢0)

by (A + 1)sin[(A+ 1)( — a/2)] +bg(A + Dsin[A-D(® - /2)] = 0  (2.34d)

For a non-trivial solution, the determinant of (2.34) must vanish. Thus, the sym-

metric terms b;, b3 have a non-trivial solution0
A sin(a) — sin[AQ2r — a)] =0, (2.35a)
while the anti-symmetric terms have a non-trivial solution 50

A sin(a) + sin[AQ2w - )] = 0. (2.35b)

The stresses in (2.29)—(2.31) vary as the second derivative of y, while the displace-
ments are dependent on the first derivative of y. From the stress and displacement vari-
ations, it can be inferred that a value of Re A such that 0 < Re A < 1 will give unbounded
stresses at the notch root. From (2.35a) and (2.35b), two real values, A; and A, are
obtained corresponding to the symmetrical and anti-symmetrical terms respectively. The
above two singular powers can be related to the strong singularity A, (Ssymmetric term)
by A, =1-X;, and to the weak singularity A, (anti-symmetric term) by A, =1-2;,
where 0 < Ay, <A, £0.5. Williams 30 has only considered the strong singularity A,. This

is well justified at points very close to the notch tip. Nevertheless, the relative
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importance of the singular terms at moderate distances from the singular point depends

on the value of the absolute intensities of the respective singular fields. 56
2.5.3. The Finite Element Method

The finite element method has been used to analyze the stress distributions around points
of discontinuities. 72-74 The stress distribution along a radial line from the singular point

can be expressed as
o =A; 1t +0(r™M (2.36)

where r is the distance from the singularity, A; and A are the strength and power of the

r—Ml

singular field, and o™ represents terms of the order and higher. For small dis-

tances r, the singular term dominates and (2.36) can be approximated by

Gij=Ar* (2.37)

Hence a log 6;; versus logr plot would be a line with a slope of —A and a o;; intercept of
A;.

There are many drawbacks in evaluating the stress singularity by the above method.
In a finite element analysis, the displacements around a crack or comer will comprise of
the contribution of the structure as well as that of the discontinuity. Therefore, the true
stress field in the vicinity of the crack-tip or corner is not realized. In cases where A is
not known a priori, ordinary eight-noded isoparametric elements at the crack- or notch-
tip disturb the singular stress field, since the assumed linearity of stresses in the crack- or
notch-tip element is erroneous. To obtain reasonable results, the region dominated by the

singular field must be sufficiently large. Moreover, mesh refinement in the vicinity of the

singular point is also required, which drastically increases the computation time and costs
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involved in the analysis.
2.5.4. The Finite Element Iterative Method (FEIM)

The Finite Element Iterative Method (FEIM)53-66 was originally developed for evaluat-
ing fields in elastic media. The method relies on the use of general purpose finite ele-
ment programs in performing the iterations on the circular mesh shown in Figure 2.14b.
The FEIM does not require the usage of quarter-point elements3%-40 at the crack-tip, for
crack problems in homogeneous media (square-root singularity); nor are elements with
embedded singularity75 needed, in cases where the singularity is not known a priori.
The method has been applied to many problems in fracture mechanics, which includes,
bimaterial interface cracks of elastic and non-linear media, %4-%8 and also to three-

dimensional interface surface cracks. /0
2.5.4.1. Basis of the FEIM Approach

The basis of the Finite Element Iterative Method has been discussed in detail by Bar-
soum. 93 The method is based on the use of a circular domain around the singularity for
evaluating the eigenvalues of the transfer matrix of the inner and outer radii of the
domain. 63:65 It is obtained from the overall stiffness matrix of the domain in Figure

2.14a. The equilibrium equations of the circular domain are

[0 ]
UR;

(K] 1 g, =10} (2.38)

URb
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where [K] is the stiffness matrix of the circular domain, ug is the displacement of the
origin of the singularity, and ug; is the displacement at any radius R; except the inner
radius R, and the outer boundary radius R,. By a process of elimination, the transfer
matrix [ T] can be obtained. In FEIM, the imposed boundary displacements are obtained

from the resulting displacements ug;.

Therefore, at the mth iteration we obtain®>

{urs } =[TI{ uR ) (2.39a)
and
{upy )= Am {ugs —ug' } (2.39b)

where Ap, is a scalar multiplier for normalizing the vector ugs. Using the Rayleigh quo-

tient argument, 65 at convergence we obtain
Ap oA asm— oo (2.39¢)

where A is the first dominant eigenvalue of the matrix [T]. It was shown’! that A in

general is given by
A=g(Ryp/Ry) (2.40a)

where g(r)/r is a general singular function. For the case of power singularity, then

A=(Ry /Ry (2.40b)

where — A is the power of the singular stress field. Therefore, for a self-adjoint case, the

displacement u is given by

u=kr!"*£0) (2.40¢)

This form is referred to as a separable function.
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For a non-symmetric matrix [ T], the system is non-self adjoint, and A is complex.

Therefore,
u=Re[(k; +iky )i "2+ 22D (¢ 9) 4 ify(0) 1] (2.40d)

where i =‘J: and Re[] designates the real part of the function. This form of the

asymptotic field is termed a product form.
2.5.4.2 Evaluation of the Second Term of the Asymptotic Field

In order to describe the asymptotic field around a discontinuity, there may arise a need to

evaluate the first as well as the second term of the asymptotic expansion. The transfer

matrix [ T] has N eigenvalues Aj, ...., AN. At any iteration m, the resulting solution
can be expressed as a linear sum of the complete set of eigenfunctions x;, . ..., XN: 10
N (2.41a)

m m - m-= _ m
{upp } =Ay 01 X1 +A) 01 X3 + Y A 5%,
3

where x; and X; are the dominant eigenvector and its conjugate. At convergence, as per
the Rayleigh quotient, the whole field is dominated by the first term in the expansion, and
hence (2.41a) reduces to

{uRb }=AT ayx; +A] a1 Xy (2.41b)

The FEIM will always converge to the first term of the expansion, which represents
the dominant eigenvalue A; and eigenvector x; respectively. The second term in the
expansion of the asymptotic field is of the same form as (2.40c) or (2.40d) depending on
whether it is a real or complex singularity. For the case of real singularities (self adjoint

case), the second term of the asymptotic field can be obtained by selecting the trial vec-

tors to be orthogonal to x;. Therefore, if the resulting vector from an iteration is V™,
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then the trial vector for the new iteration is given by®
Umtl-ym (V™ x,)x; (2.42)

where U™*1 js to be used as the trial vector for the next iteration, which is always

orthogonal to the first eigenvector x;.
2.5.4.3 Convergence of the FEIM

The FEIM is similar to the power sweep method for finding the eigenvalues and eigen-
functions. 76 The displacement field from the circular domain in Figure 2.14 can be writ-

ten in the general form68

u=3g0h®+ Y h0), (2.43a)

which contains regular as well as singular terms in 7. When the asymptotic field dom-
inates the domain surrounding the singularity, the leading singular term in the resulting

singular displacements will either be
u-g @fH0), (2.43b)

for which casé the FEIM will converge, leading to a separable function or a product form
((2.40c) and (2.40d)), or, in the case of a non-separable field the second term will dom-

inate, thus
u-hy,0) (2.43¢c)

for a non-separable function. If the function in (2.43c) is a strong non-separable func-

tion, the FEIM will not converge, because of the circular domain of iteration. 68
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Figure 2.1 Force, shear and moment diagrams of the Iosipescu shear test.
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Figure 2.3 Boundary conditions for finite element calculations.”
(a) force-couple condition; and
(b) displacement condition.
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Figure 2.5 Biaxial Iosipescu fixture.
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Figure 2.6 Load diagram for inducing an in-plane biaxial stress state.
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Figure 2.7 Schematic diagram of failure modes in the losipescu specimen.7
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Figure 2.9 Arbitrary contour around the tip of a crack.
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Figure 2.10 Crack closure integral method. (a) analytical; and (b) numerical (VCC).




38

\\.

RO

NN

Figure 2.11 Delamination geomctry."

Figure 2.12 Crack tip contour with rotations 47
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Figure 2.14 FEIM analysis for a sharp notch. (a) Domain of iteration; and (b) Mesh for
the Finite Element Iterative Method.
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CHAPTER 3

NUMERICAL RESULTS

3.1. Finite Element Analysis of the Biaxial Iosipescu Test Method
3.1.1. Introduction

There is a strong need to accurately determine and thereafter analyze the stress state in
the mid-section of the Iosipescu specimen. This is primarily due to two factors: firstly,
the stress state at the center of the Iosipescu specimen is of importance in regard to the
determination of the elastic properties of isotropic as well as composite matenials;
secondly, the stresses at the notch roots govern the initiation of the failure process. In
this part of the study, a linear elastic finite element analysis under generalized plane
stress was conducted to determine the macroscopic stress distribution in the Iosipescu
specimen. The analysis was performed for notch angles a from 60° to 150°, and for
loading angles ¢ in the range —45° < ¢ <38°. The materials considered in the analysis
were polyester resin (isotropic), glass/polyester and carbon/epoxy unidirectional compo-
sites respectively. Analytical solutions for the external load components as a function of
the loading angle ¢ (see Appendix A) were firstly obtained. In order to verify the suita-
bility of the model, von Mises stress contours from the finite element analysis were com-
pared to isochromatic fringe patterns taken from the literature. 2.8 The stress state at the
center of isotropic as well as composite specimens were evaiuatcd under biaxial loading
conditions. The nature of the stress concentration at the notch root was explored by

studying the stress variation as a function of the notch-root element size. Finally, the

41
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stress distribution in the notch-root region was analyzed for loading angles in the range
-45° < ¢ <30°, in order to obtain an understanding of the failure mechanisms in the Iosi-
pescu specimen for the specimen geometry, material orientation and loading conditions

under consideration.

3.1.2. Finite Element Model

The finite element code ANSYS 4.4A77 was used in the numerical computations, which
were performed on an IBM RS/6000 workstation (see Appendix F for details). Eight-
noded isoparametric quadrilateral and six-noded triangular elements with both isotropic
and orthotropic elastic properties were used. The effect of orthotropy ratio was examined
with E;;/Ey, (ER) ranging from 1 to 14.2; the input elastic properties 8 are shown in
Table 3.1. With reference to the material coordinates, the 1- and 2-axes will be defined
as the in-plane coordinate axes. Material orientations A and B were used to model 0-deg
and 90-deg unidirectional fiber composite materials respectively. In both orientations,
the 1-direction corresponds to the fiber direction (Figure 3.1). From the photoelastic
results of a study conducted by Broughton and co-workers, 2.8 it was concluded that the
force-couple loading condition best approximates the actual experimental loading
configuration. Therefore, in this study, the force-couple boundary conditions were used

in the finite element model of the Iosipescu specimen.

The Iosipescu specimen dimensions are shown in Figure 3.2. The mesh for the Iosi-
pescu specimen along with the force-couple boundary conditions are shown in Figure
3.3. The total compressive load P was arbitrarily taken as 115N. The entire specimen
had to be modeled due to the asymmetric loading conditions. The notch-root radius p

was taken as zero in the finite element model. The external load was applied to the

2 3INY 2 i-d4 =
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specimen with the force-couple condition in the form of a set of nodal forces which did
the same amount of work on the structure as the two force couples. The finite element
model shown in Figure 3.3 is for the particular case of &=90" and ¢ =0’ (pure shear); it
consists of 1964 isoparametric elements and 5281 nodes. The mesh was constructed in
such a manner that the density of elements was highest around the notches and in the

vicinity of the loading points.

3.1.3. Stress Distribution in Iosipescu Specimens
3.1.3.1. von Mises Stress Contours

In any modeling attempt, it is critical to firstly evaluate the suitability of the chosen
boundary conditions. From a finite element analysis, the von Mises stress contours can
be obtained, which when compared to isochromatic fringe patterns, give a good measure
of the models predictions vis-a-vis the actual stress state realized in an experiment. In
Figures 3.4 and 3.5, the von Mises stress contours are shown along with the isochromatic
 fringe patterns?8 for « =90 and ER = 1, while in Figures 3.6 and 3.7 the same are
presented for LER = 14.2 in orientations A and B respectively. The contour values indi-
cated in Figures 3.4 - 3.7 correspond to those obtained for the von Mises stress contours.
Some of the most representative stress contours for ER = 14.2 (orientations A and B) and

a=60", 75, 120°, and 150" are presented in Appendix B.

3.1.3.2. Stress Distribution at the Center

The stresses (jj) at the center of the Iosipescu specimen were evaluated numerically as

well as analytically, as a function of the loading angle ¢, and orthotropy ratio ER. The
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numerical values were obtained from the finite element calculations. The analytical for-
mulac? are based on the assumption that there exists a one-to-one correspondence
between the applied load and the stress state at the center; the stresses at the center are
taken to be independent of the orthotropy ratio ER, and all notch-effects are neglected.
As indicated by the above assumptions, the approach is very straight-forward. In other
words, if the total compressive load P acts at an angle ¢ (see Figure A.1 in Appendix A),

the stress state at the center can be written as:

o} =c) =208 | (3.1a)
o, = Beose (3.1b)

where A is the net cross-sectional area between the notches.

The analytical as well as numerically computed normal (0 and Gy) and shear
stresses (Txy) for ER = 1 are shown in Figure 3.8. In Figures 3.9 and 3.10, the same is
~ presented for the highly orthotropic material (ER = 14.2) in orientations A and B respec-

tively.

3.1.3.3. Stress Distribution at the Notch Roots

An in-depth study of the shear stress concentration at the notch roots was conducted.
The shear stress distribution at the notch root was evaluated for isotropic and composite
Tosipescu specimens with notch angles in the range 60° <o <150°. In Figure 3.11, the

variation of the normalized shear stress (Txy/ ;) between the center and the notch root is

plotted as a function of o for ER = 1 and ¢ =0’. In Figures 3.12, the same is presented

Al 5 2421 £
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for ER = 14.2 (orientation A) and ¢ =0’.

Since the V-notches in the finite element model of the Iosipescu specimen were
considered to} be sharp (p =0), one expects a stress singularity to exist at the notch root.
In order to verify the above speculation, the shear stress distribution in the vicinity of the
notch root was evaluated for different notch-root element sizes. In Figure 3.13, the shear
stress plots are shown, while in Figure 3.14, the variation of K, with notch-root element
size is presented. K; is defined as the ratio of the shear stress at the notch root (t%y) to
the shear stress at the specimen center (t%y). It can be seen from Figures 3.13 and 3.14
that the shear stress appears to be unbounded at the notch root, which indicates the pres-
ence of a singular stress field at the notch root. The stress singularity computations for
angular sharp notches by the Finite Element Iterative Method will be presented in Sec-

tion 3.3.

The shear stress concentration K; at the notch root was evaluated for different ortho-
tropy ratios ER, and varying notch-root element sizes. The data is presented in Table
3.2, and the variation of K; versus ER on a logarithmic plot is shown in Figure 3.15 for
three different notch-root element sizes. From Figure 3.15, it can be seen that the varia-
tion of log K, versus log ER is linear, with increasing slopes for reducing notch-root ele-

ment sizes.

The stress distribution (o;;) around the notches determines the initiation of the
failure process at the notch root of Iosipescu specimens. The mode of failure is depen-
dent on the material (isotropic or composites) as well as on the orientation of the fibers
(0-deg or 90-deg) in case of unidirectional composites. A systematic finite element

analysis of Iosipescu specimens with 90° notch angles was carried out. The analyses

were done for isotropic (ER = 1) and composite specimens (ER = 14.2) under biaxial
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loading conditions. In Figures 3.16—3.18, the results are shown for ER = 1. In Figures
3.19-3.21, the results are presented for ER = 14.2 (orientation A), while those in Figures
3.22-3.24 are for ER = 14.2 (orientation B). The results shown in Figures 3.16-3.24

were computed with a notch-root element size of 0.5mm.

3.2. Application of the Finite Element Iterative Method to Sharp Notches

The results obtained from Section 3.1.3.3 indicate the presence of a stress singularity at
the notch root for angular sharp notches. In order to investigate the nature of the stress
singularity (also known as the singular power), the Finite Element Iterative Method
(FEIM) was applied to sharp notches in isotropic as well as orthotropic media. The

method is formalized for it’s application to sharp notches in the following section.

3.2.1. Iterative Approach for Plane Stress

The application of the Finite Element Iterative Method for a crack has been presented by
Barsoum. % A similar approach is used in this analysis to evaluate singular stress fields
at the tip of sharp notches. A generalized case of plane stress is assumed in the linear

elastic numerical analysis.

(a) A fan-shaped mesh is constructed around the notch root (Figure 3.25). Only half-
space is modeled for the notch in case of symmetry (mode I = tension) or anti-
symmetry (mode II = shear) in the loading. Under mixed mode loading, full-space
for the notch has to be modeled. The radii of the rings of elements which follow a

(r2) refinement are63-64

(/L) =0,0.25,0.5,0.75,1.0,1.625,(1.5)%, (2)%,(2.5)%,(3),(4)2,(5.5)%,(7)2,(9)%,(12)*
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where L is an arbitrary dimension.

(b) Since the singularity at the notch root is not known a priori, ordinary eight-noded

isoparametric elements are used.

(c) The boundary conditions are: free along notch face, restrained from motion along

X-direction (mode I loading) or Y-direction (mode II loading) along the line of

symmetry.

(d) Using Figure 2.14a as a schematic, the iterative procedure is as follows.

®

(ii)

(iii)

@(v)

W)

(vi)

Displacements { ugb } are applied on the boundary at radius Ry,. In this study,

mode I, mode II, and mixed mode displacements are considered.

Finite element analysis is performed and the displacements { ugs } at radius R;

from the notch root are obtained.

The notch root displacement { ug } is subtracted from { ugs } and scaled by a

factor A, to obtain the new boundary displacement { u;lu, }

{ugo ) =A({ugs }-(ug}) where, A=(Ry/Ry)' ™

The value of Ag as well as subsequent values (A;,i=1, 2, 3,..., n), where i
refers to the ith iteration, are evaluated by a linearized least square curve-fit of

displacements along a ray emanating from the notch root.

Steps (ii) to (iv) are repeated a number of times until convergence of A is

achieved.

Convergence is said to have been attained when two consecutive values of A

are the same (i.e., A; = A;41) up to the 4th significant digit after the decimal.
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3.2.2 Stress Singularity Computations

The stress singularity at the notch root was evaluated for notch angles a in the range
0’ S« <180°, under three different loading conditions: mode I, mode II, and mixed
mode. The effect of orthotropy ratio on the stress singularity at the notch root was exam-
ined with ER varying from 1 to 14.2 (Table 3.1): material orientations A and B were con-
sidered in the numerical analysis (see Figures 2.13 and 3.1).

In order to develop an FEIM program, the programming features of Ansys
Parametric Design Language (APDL)77 were utilized. A parametric model, comprising
of a set of user-defined macros were develéped for the implementation of the Finite Ele-

ment Iterative Method at sharp notches.

3.2.2.1. Mode I Loading

A fan-shaped mesh was constructed around the notch tip (Figure 3.25a). Arbitrary initial
mode I displacements were prescribed on the outer ring: {uyx } =0.001 mm. All dis-

placements are in the Cartesian coordinate system (Figure 2.13).

The FEIM approach was applied as outlined in Section 3.2.1. The numerical and
analytical stress singularities are presented in Table 3.3, with precision up to the 4th
significant digit after the decimal. It can be seen that the numerical and analytical
results30 for the isotropic case are in excellent agreement. The numerically evaluated
stress singularities are within 0.5% of the analytical results. The stress singularities were
evaluated by considering the u, displacements along a particular ray emanating from the

notch root to the outer ring. A linearized least square curve-fitting algorithm was used in

the computations. The listed values of A, in Table 3.3 are the average values of A,
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evaluated along three different rays emanating from the notch root. In addition, the vari-
ation of A,, as a function of notch angle a for different orthotropy ratios is shown in Fig-

ure 3.26a.

In all cases, convergence was attained in two or three iterations. Moreover, the con-
verged values were the same along different rays. As an example, the convergence along
three different rays, for the particular case of .=90" and ER =1 is shown in Figure
3.27a. In addition, a finite element representation of the deformed structure overlapped

with the original structure at convergence is shown in Figure 3.28.

The stress singularity at the notch root was also studied under compression. The

stress singularities in the above case were the same as those in tension (Table 3.3).

3.2.2.2. Mode II Loading

In this case, the fan-shaped mesh around the notch tip was identical to that used in ten-
sion (Figure 3.25a). Arbitrary initial mode II displacements were prescribed on the outer
ring: { uy } =—0.001 mm. All displacements are in the Cartesian coordinate system (Fig-
' ure 2.13}. After imposing the initial boundary displacements, the FEIM approach was
applied.

The stress singularities were evaluated by considering the uy displacements along a
particular ray emanating from the notch root to the outer ring. A linearized least square
curve-fitting algorithm was used in the computations. The singularities under mode II
loading are listed in Table 3.4, with precision up to the 4th significant digit after the
decimal. Based on the results of individual iterations, convergence was not observed in

three cases (o= 105", 120°, 150°) for ER = 14.2 (A). The listed values in Table 3.4, for

the above cases, are intermediate values during the analysis, where convergence is

L2l is
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’expected’. But for the above three anomalies, convergence was observed for all the
other cases. The listed values of the stress singularities in Table 3.4 are the average
values evaluated along three different rays emanating from the notch root. The variation
of the singularity under mode II loading, as a function of the notch angle a for different

orthotropy ratios is shown in Figure 3.26b.

The number of iterations for convergence under mode II loading was much higher
than in the case of mode I loading, and was dependent on the notch angle a and the
orthotropy ratio ER. The converged values were the same along different rays. In Figure
3.27b, the convergence along three rays is shown, for the particular case of o =90" and
ER =1. In addition, a finite element representation of the deformed structure overlapped

with the original structure at convergence is presented in Figure 3.29.

3.2.2.3. Mixed Mode Loading

A full fan-shaped mesh around the notch tip was considered, due to the non-symmetrical
loading conditions (Figure 3.25b). The stress singularity at the notch root was studied as
a function of the loading angle ¢, for the notch angle o.=90". The loading angle ¢ was
used as a measure of the tension to shear ratio in the loading. The elastic properties con-
sidered in this part of the analysis were those for ER = 1 and 14.20. The loading angle ¢
was varied from 45 (tension = shear) to 89.9° (almost pure shear). The initial displace-
ment distribution (in mm) prescribed on the right half of the outer ring was:
{ux } =0.01cos ¢, {uy } =—0.01sin¢, while that on the left half of the outer ring was:
{ux } =—0.01cos¢, { uy } =0.01sin¢. All displacements are in the Cartesian coordinate

system (Figure 2.13). The FEIM approach was subsequently applied to the fan-shaped

mesh. The stress singularities were evaluated by considering the u, displacements along

L abadi §
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a particular ray emanating from the notch root to the outer ring. A linearized least square
curve-fitting algorithm was used in the computations. The evaluated singularities under
mixed mode loading are listed in Table 3.5, with precision up to the 4th significant digit
after the decimal. The listed values of A in Table 3.5 are the average values evaluated

along three different rays emanating from the notch root.

The number of iterations for convergence was strongly dependent on the loading
angle ¢, but did not significantly vary with the orthotropy ratio ER. The number of itera-
tions (along one particular ray ) increases from 5 for ¢ = 45" to 8 for o= 89.9 (Figure
3.30). The stress singularity values are listed in Table 3.6, and a finite element represen-
tation of the deformed structure overlapped with the original structure for ¢ = 89.9" is

shown in Figure 3.31.

3.2.3. Interpolation Formulas

In Section 3.2.2, the stress singularities A, and A, were computed as a function of the
notch angle o and orthotropy ratio ER. Simple interpolation formulas which could
dcscribe the variation of A, and A, with o and ER are of particular significance to a prac-
ticing engineer. By using them, one can estimate the singularities without having to rely
on time-consuming and cost-intensive numerical analysis. It is with this in mind that an

attempt was made to propose interpolation formulae for A, and A;.

The dependency of A, and A, on a and ER is complex in nature; hence, a straight-
forward polynomial interpolation will not yield accurate results. Considering the trends
observed in the results obtained in Section 3.2.2, power products of log(ER) and cos(a/2)

were chosen as basis functions. A least square fitting algorithm in the sense of the norm

was developed (code was written in Fortran 77) to estimate the coefficients in the
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assumed expansion of A, and A;,.

3.2.3.1. Strong Singularity A,

The data set for the interpolation of A, was taken from Table'3.3, wherein 0’ S« < 180°
and ER = 1/14.2, 1/3.45, 1, 3.45, and 14.2. The orthotropy ratios 1/14.2 and 1/3.45
represent the values in orientation B (Figure 2.13). The interpolation formula obtained

for A, can be written as:

A, = 1.6580739 cos (o/2) + 0.11315084 cos (0v/2) log(ER)
- 2.6567626 cosz(uﬂ) - 0.1212517 cosz(a/2) log(ER) 3.2

+ 2.2679832 cos (a/2) — 0.77275658 cos*(a/2)

where a is in radians.

The values obtained for A, from the above interpolation formula were found to
match well with the numerical results presented for A, in Table 3.3. As an example, in
Figures 3.32a and 3.32b, the predictions by the interpolated formula - equation (3.2) are
shown along with the analytica150 and numerically computed singularities for ER = 1 and
ER = 14.2 (A). The values for A, obtained from the interpolation can be expected to
have errors of 10% or less. For values of o in the vicinity of 0" or those in the neighbor-
hood of 180°, one may obtain A, >0.50rA, <0 respectively. In the former case,
A, = 0.5 must be assumed, while in the latter case, A, = 0 must be taken. Equation (3.2)

may breakdown for very low or very high values of ER, which lie far away from the

lower and upper bounds of ER considered in this study.
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3.2.3.2. Weak Singularity A,

The data set for the interpolation of A, was taken from Table 3.4. As opposed to the case
of A,, above a certain value of o, Ay vanishes, which can be seen from Table 3.4. Hence,
firstly a regression analysis of o, versus log ER was performed to determine an expres-
sion for the critical angle o, as a function of ER. An R square value of 0.99869 was
considered to be acceptable for a cubic interpolation. Then, on the remaining data (non-
zero values of Ay), a similar analysis to that performed in tension was carried out. The

interpolation formula obtained for A;, can be written as:

[ —1.6241827 cos (0/2) + 0.3206903 cos (0/2) log(ER)
+5.0457487 cos2(a/2) — 0.3120525 cos?(a/2) log(ER)

— 5.6477222 cos®(@/2) + 2.7200093 cos*(0/2) for o < O,
y (3.3)

0.0 for @ 2 Q4

where a is in radians and o, is given by

Qi = 1.7961 + 0.201580 log(ER) + 0.023773 [log(ER) )
+ 0.006406 [log(ER) I (3.3b)

where a,, is in radians and ER > 1 in orientation A, while ER < 1 in orientation B.

In Figures 3.32a and 3.32b, the predictions by the interpolated formula - equation
(3.3) are shown along with the analyticalso and numerically computed singularities for
ER =1 and ER = 14.2 (A) respectively. The accuracy and limitations of the above inter-
polation formula for A are the same as those that were discussed for the case of A, (see

Section 3.2.3.1).
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3.3. Mixed Mode Fracture in Iosipescu Specimens
3.3.1. Introduction

The design and development of composite materials relies on the fundamental
knowledge of the failure processes in these advanced materials. From an 'enginecring
perspective, the knowledge of single crack-tip fracture parameters like the stress intensity
factor or the energy release rate is required to predict the strength and life of cracked
structures. The above information, in conjunction with experimentally determined criti-
cal values (Kj. or G.) and crack growth rates for structural materials make such predic-
tions possible. Since exact solutions of the elasticity problem formulated for cracked
composite structures are very difficult or nearly impossible to obtain, recourse is taken to
numerical methods such as the finite element method to obtain the fracture parameters.
In this part of the study, a finite element analysis of coplanar cracks along the fiber direc-
tion in Iosipescu specimens (o= 90°) was carried out. Mixed mode crack propagation
was studied for loading angles ¢ in the range —45" < ¢< 30°, and for crack lengths a
from 1mm to 13mm. Stress intensity factors (Kj, Kpy) and energy release rates (Gj, Gy,
Giota) Were evaluated as a function of the crack length a and loading angle ¢. Beam
theory solutions for the energy release rates in Iosipescu specimens were also proposed

and subsequently compared to the results obtained from the finite element computations.

3.3.2. Finite Element Model

The finite element mesh of the losipescu specimen with two skew-symmetric cracks

(a = 10mm) is shown in Figure 3.33; the mesh consists of 1426 elements and 4339 nodes.

Force-couple boundary conditions for ¢ = 0’ are also illustrated in Figure 3.33. The total
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compressive load P was assumed to be 1kN. A fan-shaped mesh was constructed around
both the crack tips; the maximum separation between the crack faces was taken as 1% of
the crack length a. There are 12 elements in the circumferential direction around the
crack-tip. In Figure 3.34, the inner mesh along with the crack-tip elements (non-singular
elements) are shown. Ordinary six-noded triangular elements were used at the crack tip
for the energy release rate computations by the J-integral and the virtual crack closure
schemes (2C- and 1C-methods); for the displacement extrapolation method, quarter-point
elements3%-40, with the mid-side nodes moved to the quarter-position were used. The
crack-tip element size was 0.025mm for all crack lengths. The fan-shaped mesh around
the crack tip facilitated easier mesh refinement without unduly increasing the total
number of elements; in addition, the circular nodal paths were well-suited for the J-

integral calculations.

The orthotropy ratios considered were those for ER = 1 (isotropic) and ER = 14.2
(A-type); the elastic properties are listed in Table 3.1. The isotropic case has physically
no meaning since such cracks cannot form in isotropic materials; it was taken more

as a means to compare the G values with those obtained for the orthotropic case.
3.3.3. Computation of Fracture Parameters

3.3.3.1. Numerical Schemes

There have been very few numerical studies concerned with the fracture mechanics
aspects of the Iosipescu shear test. 7.26,27 Hence, there is a need for further work in this

direction. The displacement extrapolation technique, J-integral, and VCC-methods are

very well established in linear elastic fracture mechanics of homogeneous isotropic
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materials. However, the extrapolation and VCC-schemes haven’t been thoroughly inves-
tigated for orthotropic fracture analysis. Since the code development for orthotropic
material behavior is not the same in all commercially available finite element programs
(ANSYS 4.4A77 in this study), one can’t rely on the fracture parameters obtained without
any prior validation. Moreover, considering the fact that this is the first attempt at
numerically investigating mixed mode fracture under biaxial loading conditions in
orthotropic Iosipescu specimens, it was all the more necessary to firstly validate the
chosen numerical schemes. In order to verify the numerical schemes for orthotropic frac-
ture analysis, a single edge-crack in an orthotropic strip under uniaxial tension was con-
sidered. The reference solution by Kaya and Erdogan78 provided a simple means for
comparison, and thereby to check the accuracy of the numerical schemes. In an earlier
study, Buchholz and co-workers26-27 chose the same test problem in order to validate the
VCC-scheme for orthotropic Iosipescu specimen under pure shear (¢ = 0°) loading condi-
tions. The numerical results obtained by the VCC schemes (2C- and 1C-methods) and
the displacement method — equation (2.11), for the above test problem, are listed in
Appendix D. It can be seen from Tables D.1-D.3, that there is very good agreement
between the numerical and reference solution’ results. Due to the excellent results
obtained for the test problem, some confidence was attained in the methods, prior to their

application to the case of coplanar cracks in the Iosipescu specimen.

The stress intensity factors K; and Ky are widely used in the fracture analysis of
isotropic materials; however, in composite fracture mechanics, the energy release rates
G1, G, and G are more frequently applied. In keeping with the norm, all the numerical

results that follow in Section 3.3.4 are expressed in terms of Gy, Gyj, and G. In the fol-

lowing sub-sections, the implementation of the displacement extrapolation methods, J-
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integral, and the VCC-schemes are outlined.

(i) Displacement Method — Equation (2.11)

The displacement method using (2.11) provides a simple means to evaluate the stress
intensity factors Kj and Ky from the crack-tip displacements. Using (2.10) and (2.11),

the stress intensity factors in orthotropic materials for plane stress problems can be writ-

ten as
T Wil 4ug —uCy]
K== Y 34
! \/2 822(H1+M2)[ L J ©.4)
and
= 1 dup, — ucy |
Kgy= V— 35
1 2 311(1-11"'112)[ L _| ¢.3)

where L is the crack-tip element size; B and C are the evaluation points — B is the
quarter-point node, while C is the corner node along the crack-tip element (Figure 2.8);
{1 and 1, are the roots of the transcendental equation (2.12); and, a;; and aj; are the

elastic compliances (Section 2.4.1).

The stress intensity factors were evaluated by the above approach, and subsequently
the energy release rates Gy and Gy were computed from (2.20) and (2.21). Since the
problem under consideration is for orthotropic materials under mixed mode loading con-
ditions, the stress intensity values obtained from the upper and lower crack faces may
differ; hence, K; and K; were calculated from the nodal displacements at points B and C
(Figure 2.8) on either crack face.
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(ii) Displacement Extrapolation Method

The most accurate results for the stress intensity factor from the crack-tip displacements
are obtained by the displacement extrapolation method. For cracks in homogeneous iso-
tropic materials, the KCALC command on ANSYS 4.4A77 was used to automatically
evaluate the stress intensity factors by a displacement extrapolation technique. However,
for the orthotropic cracked-Iosipescu specimen, the analysis had to be manually per-
formed. A linear regression of the displacements scaled by r'2 fromr = 0.025mmtor =
0.4mm was carried out; the analysis was performed separately for the upper and lower
crack faces (Figure 3.35a). The best-fit straight line was obtained and extrapolated to the
crack-tip (r = 0). Using the x-displacements in the analysis, the parameter u; was
obtained at r = 0, while the y-displacements yielded the parameter u; atr = 0 (Figure
3.35b). Substituting uy and uy instead of (4upx — uc,)/VL and (4upy — uc,)/‘lf in (3.4)
and (3.5) respectively, the stress intensity factors, and thereafter the energy release rates

were computed.

(iii) J-Integral

The J—intcgral32 characterizes the crack-tip stress state in linear as well as nonlinear elas-
tic materials. In case of isotropic materials (linear elastic), the J-integral is equivalent to
the energy release rate G. Since J is a path-independent integral, the J results obtained
along any path around the crack-tip must yield the same value. The macro JIN2.MAC,

which is available on ANSYS 4.4A, 77 was used in the estimation of the J-integral; two

different paths were considered in the J-integral calculations (Figure 3.36).
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(iv) Virtual Crack Closure (2C-method)

The virtual crack closure (2C-method) scheme was outlined in Section 2.4.2.3. Two
finite element analyses at crack lengths a and a + Aa respectively were performed. From
the first analysis (crack length a), the forces ahead of the crack tip were determined,
while from the second analysis (crack length a+ Aag), the displacements behind the
crack-tip were evaluated. Using the nodal displacements and the nodal forces, the mode
partitions Gy and G; were estimated from (2.22a) and (2.22b) respectively.

(v) Virtual Crack Closure (1C-method)

The modified virtual crack closure (1C-method) technique, wherein only one analysis is
required to be performed, was outlined in Section 2.4.2.3. The displacements behind the
crack tip, and the nodal forces ahead of the crack tip were computed. Subsequently, the
G-components, namely, G; and Gy were evaluated using (2.23a) and (2.23b) respec-

tively.

3.3.3.2. Beam Theory Solutions

47 an analytical

On the basis of Williams’ beam theory analysis for cracked laminates,
model for the energy release rates in cracked Iosipescu specimens under biaxial loading
conditions was proposed. 79 The details of the approach and the expressions obtained for
G, Gj, and Gy are presented in Appendix C. The moment M; and it’s derivative dM;/da
were evaluated from (C.1)—(C.6) in Appendix C, and then substituted into equations

(C.7)—(C.9), to obtain the estimates for G, Gy, and Gy respectively. Since the mixed

mode energy release rate G obtained from the analytical solution was significantly




different in comparison to the J-integral values, the analytical results for G from (C.7)
were not considered in this study; instead, the sum Gy + Gy was taken to be the analytical

estimate for the mixed mode energy release rate G.

3.3.4. Energy Release Rates G, Gy, and G

The mode partitions Gy and Gy, and the mixed mode energy release rate G (G + Gyp)
were evaluated by all the schemes discussed in the previous section. A detailed listing of
all the numerical and analytical results is included in Appendix E. The J-integral values
along the paths I'} and I'; (Figure 3.36) differed by 2% or less; the J-integral values
listed in Appendix E are the average of the two path calculations. Herein, some of the

important results and observable trends are presented.v

It can be seen from the results obtained for the edge-crack in an orthotropic strip
under tension (Appendix D), that the VCC-2C method is the most accurate among all the
numerical schemes considered in this study. Hence, the VCC-2C results were taken as
the representative numerical solution for Gy, Gy, and G. In Table 3.7, the numerical
results obtained by the displacement method — eqﬁation (2.11) for the particular case of
6 =0 and ER = 14.2 (A-type) are compared to the VCC-2C results. The loading angle
¢ =0" (pure shear) is used by practitioners involved in the analysis of the Iosipescu shear
test; also, based on the experimental findings of Broughton, 2 crack lengths of 10-13mm
are observable in the Iosipescu shear test, for the specimen dimensions shown in Figure
3.2. In light of the above two facts, the VCC-2C and beam solution results will be

presented for the above conditions.

In Figure 3.37a, the deformed structure for ¢ = 10mm, ¢ =0", and ER = 14.2 (A-

type) is shown, while in Figure 3.37b, the deformation of the crack-tip region is
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illustrated. It is apparent from the above deformed plots that the displacements around
the crack tip exhibit mixed mode fracture conditions. In Table 3.8, the total energy
release rates are listed for @ = 10mm and ER = 1, while in Table 3.9, the results are
presented for ER = 14.2 (A-type). In Figures 3.38a and 3.38b, the above data is shown
for isotropic and orthotropic (A-type) Iosipescu specimens respectively. The total energy
release rate G monotonically decreases as ¢ is varied from ¢ =—45" to ¢ = 30°. The only
exception is ¢ =—45" for ER = 14.2 (A-type), where there is a noticeable decrease in the
G value. In Table 3.10, the total energy release rates are listed as a function of the crack
length a, for the loading angle ¢ =0’ and ER = 1, while in Table 3.11, the results are
presented for ER = 14.2 (A-type). In Figures 3.39a and 3.39b, the above data is illus-
trated for isotropic and orthotropic (A-type) Iosipescu specimens respectively. For short
and medium length cracks, there is very poor agreement between the G values obtained
by the beam solution and those from the VCC-2C scheme; however, for long cracks
(a 2 10mm), there is a reasonable match between the beam solution and VCC-2C results.
In Table 3.12, the energy release rates Gy (opening mode) and Gy (shearing mode) are

listed for a = 10mm and ER = 1, while in Table 3.13, the results are presented for ER =
14.2 (A-typc): In Figures 3.40a and 3.40b, the above data is shown for isotropic and
orthotropic (A-type) Iosipescu specimens respectively. The trends exhibited by G; and
Gy are similar to those observed for G; both, G; and Gp; decrease as ¢ changes from —¢
to +¢, with ¢ =—45" and ER = 14.2 (A-type) being the sole and notable exception to the
general trend. In Table 3.14, the mode partitions G; and Gy are listed as a function of
the crack length a, for the loading angle ¢ =0 and ER = 1, while in Table 3.15, the
results are presented for ER = 14.2 (A-type). In Figures 3.41a and 3.41b, the above data

is illustrated for isotropic and orthotropic (A-type) losipescu specimens respectively. It
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can be seen from Tables 3.12 —3.15, that the results for G; and G by the beam solution
are in total disagreement with the VCC-2C results.
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Table 3.1. Input elastic properties8 of the materials used in the analysis for
the finite element and Finite Element Iterative Method.

Material Isotropic Glass/polyester Carbon/epoxy
ER 1.00 3.45 14.20
El 1 (GPa) 3.60 37.00 137.90
E» (GPa) 3.60 10.70 9.70
Vi2 0.36 0.27 0.25

Gy, (GPa) 1.40 4.00 420

Table 3.2. Shear stress concentration (K;) at the notch root as a function of
notch-root element size.

Notch-root element Orthotropy ratio Shear stress
size (mm) ER concentration K
14.2 (B) 0.5149
3.45(B) 0.7009
0.50 1.0 1.1023
345 (A) 1.5120
14.2 (A) 2.1579
14.2 (B) 0.4740
3.45 (B) 0.6889
0.25 1.0 1.1699
345 (A) 1.7081
14.2 (A) 2.5409
14.2 (B) 0.4225
3.45(B) 0.6738
0.10 1.0 : 1.2435
345 (A) 2.0071

142 (A) 3.1562




Table 3.3. Stress singularity (A,) in tension.

ER Strong Singularity (A,)
a=0" a=60" a=75 a=90" a=105 a=1200 a=150

142(B) 0.4989 0.4601 04390 04128 0.3802 0.3386  0.2149
345() 0.4990 0.4758 0.4587 - 04358 04055 03652 0.2378
1 0.4992 0.4873 04747 04547 04248 03823  0.2452
| 1 0.5000" 0.4878" 0.4752" 04555" 0.4261° 0.3843" 0.2480"
345(A) 04976 0.4926 04869 04777 04627 04390  0.3321

142 (A) 04890 04900 0.4869 04894 04793 04698  0.4072

* Theoretical solution by Williams>?




65

Table 3.4 Stress singularity (Ay) in shear.

ER Weak Singularity ()
o=0 a=60" a=75 a=90" a=105" a=120" =150

142(B) 0.4975 0.0430 0.0046 0.0001  0.0000  0.0000  0.0000
345() 04970 0.1476 0.0647 = 0.0083 0.0002 0.0000  0.0000
1 0.4978 02715 0.1889 0.0924 0.0093  0.0000  0.0000
1 0.5000° 0.2691° 0.1868° 0.0915* 0.0000° 0.0000°  0.0000°
345(A) 0.4981 0.3072 0.2453  0.1758  0.0957  0.0157  0.0000

142 (A) 0.4979 03403 0.2878 0.2329 0.1577* 0.0980" 0.0116*

* Theoretical solution by Williams?
+ "Expected’ values; convergence wasn’t observed




Table 3.5. Stress singularity under mixed mode loading for & =90".

ER Stress Singularity
0=45 0=60" 0=75 0=89.5" 0=89.9°
14.2 (B) 0.4128 0.4128 0.4128 0.4128 0.4128
1 0.4547 0.4547 0.4547 0.4547 0.4547
14.2 (A) 0.4861 0.4861 0.4861 0.4861 0.4861

P . Table 3.6. Convergence under mixed mode loading (ER =1 and a = 900).

Number of Stress Singularity

iterations ¢=45" 0=60" =175 ¢=89.5" $=89.9°
1 0.4620 0.4675 0.4834 03116 0.0471
2 0.4562 0.4571 0.4595 0.6868 -0.3786
T 3 0.4553 0.4554 0.4558 0.4790 0.6252
4 0.4551 0.4551 0.4552 0.4588 0.4747
. 5 0.4551 0.4551 0.4551 0.4557 0.4582
1 6 0.4551 0.4551 0.4551 0.4552 0.4556
| 7 04551  0.4551 0.4551 0.4551 0.4551

8 0.4551 0.4551 0.4551 0.4551 0.4551
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Table 3.7. Comparison of energy release rates (Gy, Gy, G) by the displacement
method and the VCC-2C scheme: ER = 14.2 (A-type) and ¢ =0 .

Displacement method! — equation (2.11) VCC-2C
scheme

a GY GF G G Gh off* GY G G G Gp G
(mm) (kJ/m?) (kJ/m?)

1 0.810 0.240 0.525 0.045 0.095 0.070 0.855 ‘0.335 0.595 0.952 0.088 1.040
4 0.642 0.204 0.423 0.132 0.204 0.168 0.774 0.408 0.591 0.774 0.218 0.992
7 0.388 0.132 0.260 0.166 0.228 0.197 0.554 0.360 0.457 0.482 0.255 0.736
10 0.204 0.073 0.139 0.146 0.187 0.167 0.350 0.261 0.306 0.258 0.216 0.474

| 13 0.095 0.037 0.066 0.111 0.136 0.124 0.206 0.173 0.190 0.125 0.159 0.284

+ Superscripts U and L refer to values computed from the upper and lower crack faces
respectively.
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Table 3.8. Mixed mode energy release rate G (Gj + Gyp) for ER =1 and @ = 10mm.
¢ GBE GVvee-2¢
(degree) (k)/m?) (kJ/m?)
-45 126.447 33.660
-30 34.094 21.644
-15 17.840 15.219
0 10.030 9.381
15 '5.147 4415
‘.
30 2.116 1.111
1
Table 3.9. Mixed mode energy release rate G (G + Gy) for ER = 14.2 (A-type) L
and a = 10mm. *T
¢ GBE GVCC—ZC
(degree) (kJ/m?) (kJ/m?)
-45 3.301 0.524
-30 0.890 0.643
-15 0.466 0.605
0 v 0.262 0.474
15 : 0.134 0.298

30 0.055 0.131
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Table 3.10. Mixed mode energy release rate G (G; + Gy;) forER=1and ¢ = 0.

GBE
(kJ/m?)

GVCC—ZC

(kJ/m?)

D Y O )

10
13

0.000
0.199
3.177
7.823

10.030
8.575

0.000
5.211
9.087
10.302
9.381
7.488

Table 3.11. Mixed mode energy release rate G (Gj + G) for ER = 14.2 (A-type)

and $=0.

PP © Y W U gy

GBE
(kJ/m?)

GVCC-ZC

(kJ/m?)

10
13

0.000
0.005
0.083
0.204
0.262
0.224

0.000
1.040
0.993
0.736
0.474
0.284




Table 3.12. Mode partitions Gy and Gy for ER =1 and @ = 10mm.
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Beam solution Virtual crack closure
) GPE GHE GIVCC-QC GHCC—2C
(degree) &J/m?) kJ/m?) &J/m?) kJ/m?)
-45 3.986 122.461 16.203 17.457
-30 1.075 33.019 10.387 11.256
-15 0.562 17.278 7.290 7.929
0 0.316 9.714 4.484 4.897
15 0.162 4984 2.104 2.311
30 0.067 2.049 0.525 0.586
Table 3.13. Mode partitions Gy and Gy for ER = 14.2 (A-type)
and a = 10mm.
Beam solution Virtual crack closure
o GBE ' GBE Gyce-2¢ Gce-2¢
(degree) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?)
-45 0.104 3.197 0.224 0.301
-30 0.028 0.862 0.325 0.318
-15 0.015 0.451 0.321 0.284
0 0.008 0.254 0.258 - 0.216
15 0.004 0.130 0.166 0.132
30 0.002 0.054 0.075 0.056
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Table 3.14. Mode partitions Gy and Gy forER=1and ¢ =0".

, Beam solution Virtual crack closure
‘5 a GE GEE Gyce-c GYjec-2C
(mm) (kI/m?) (kI/m?) W/m?) /m?)
4 0 0.000 0.000 0.000 0.000
i 1 0.006 0.192 4.183 1.028
4 0.100 3.077 5.697 3.390
7 0.247 1.577 5.515 4.787
10 0.316 9.714 4.484 4.897 1
13 0.270 8.305 3.289 4.199 ﬁ

Table 3.15. Mode partitions Gy and Gy for ER = 14.2 (A-type) and
=0.

Beam solution Virtual crack closure
a GIBE GIBIE GIVCC—ZC GHCC-2C
(mm) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?)
0 0.000 0.000 0.000 0.000
1 0.000 0.005 0.952 0.088
4 0.003 0.080 0.774 0.218
7 0.006 0.198 0.482 0.255
10 0.008 0.254 0.258 0.216

13 0.007 0.217 0.125 0.159
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vvo

®)

Figure 3.1 Fiber orientations in Iosipescu specimen.
(a) 0-deg (orientation A); and
(b) 90-deg (orientation B).

|
3

F:——Ii

t = 1mm (plane stress)
h'=20mm

We= 3h1 = 12mm

L= 80mm

Figure 3.2 Schematic of Iosipescu specimen.
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(MPa)

0.587717
13.874
27.16
40.445
53.731
67.017
80.303
93.589
106.875
120.161

(MPa)

0.149321
6.215
12.281
18.347
24.413
30.479
36.544
42.61
48.676
54.742

(b)

vL

Figure 3.4 von Mises stress contours and isochromatic fringe patterns | for a =90 and
ER = 1 under shear-tension. (a) ¢ = - 45 ;and (b) ¢ = - 30°.
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0.459095
2.967
5.475
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18.016
20.525
23.033

g P=115N

(MPa)

0.366499 1
3.677 |
6.988

10.298

13.609

16.919

20.23

23.54

26.851

30.161

(b)

SL

Figure 3.5 von Mises stress contours and isochromatic [ringe pallernszfor a=90" and
ER = 1. (a) ¢ = 0" (pure shear); and (b) ¢ = =30 (shear-compression).
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Figure 3.6 von Mises stress contour and the isochromatic fringe pattern for o = 90" and
ER = 14.2 (A-type) under pure shear.

P=11SN

Figure 3.7 von Mises stress contour and the isochromatic fringe paltcrnzfor a=90" and
ER = 14.2 (B-type) under purc shear.
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Stresses (MPa)

-10.0 . 1 . Tk —— N
-45.0 -30.0 -16.0 0.0 15.0 30.0

Loading angle ¢ (degree)

Figure 3.9 Normal and shear stresses at the center of orthotropic losipescu specimens
(A-type) obtained from numerical and analytical computations.
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N | L 1
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Loading angle ¢ (degree)

-15.0
-4

Figure 3.10 Normal and shear stresses at the center of orthotropic Iosipescu specimens
(B—-type) obtained from numerical and analytical computations.
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3
3
-10.
% 0.0
S o——e Notch-root element size = 0.1 mm
2 =——a Notch-root element size = 0.01 mm
@ 4 5.0 =90 a&——a Notch-root element size = 0.001 mm  _
¢=0
‘ i ER=1
b 4 -20.0 S T Y E— ‘.
0.00 0.05 0.10 0.15 0.20 0.25 3
Radial distance r (mm) 1
4!
“ Figure 3.13 Shear stress distribution as a function of the notch-root element size. ;
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z 7]
' ®
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5 £
(7]

n } n 1 1 | s 1 L
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Notch-root element size (mm)

Figure 3.14 Plot of K, versus the notch-root element size.
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1.0 log K, = 0.3889 log ER + 0.1629 4
log K; = 0.3254 log ER + 0.1011
05 | J
logK; = 0.2773 log ER + 0.0522
0.0 f a=90" i
¢=0
e——e Notch-root element size = 0.50 mm
0.5 =——= Notch-root element size = 0.25 mm |
A~——a Notch-root element size = 0.10 mm
-1.0 ) 1 s 1 1
-4.0 -2.0 0.0 2.0
log ER

Figure 3.15 Plot of log K, versus log ER for different notch-root element sizes.
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Figure 3.17 Normal stresses (G, ) near the notch root in isotropic specimens along the
line y = w/2 as a function of the loading angle ¢.
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Figure 3.22 Normal stresses (G,) between the notch roots in orthotropic specimens
(B-type) as a function of the loading angle ¢.
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Figure 3.23 Normal stresses (Gy) between the notch roots in orthotropic specimens
(B-type) as a function of the loading angle ¢.
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Figure 3.24 Shear stresses (T,y) between the notch roots in orthotropic specimens
(B—type) as a function of the loading angle ¢.
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mode II loading; and (b) Mixed mode loading.

Figure 3.25 FEIM mesh. (a) Mode I or
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Weak Singularity
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O ER =1 (Analytical Solution) :
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Figure 3.26 Stress singularity at sharp notches as a function of notch angle and
orthotropy ratio. (a) Mode I loading; and (b) Mode II loading.
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Figure 3.27 Convergence along three different rays for a = 90" and ER = 1. (a) Mode I
loading; and (b) Mode II loading.
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prescribed displacements

Figure 3.29 Deformed structure at convergence (13th iteration)
under mode II loading.
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Figure 3.31 Deformed structure under mixed mode load
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Figure 3.32 Interpolated stress singularities. (a) ER = 1; and (b) ER = 14.2.
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Figure 3.34 Inner mesh. (a) Fan-shaped mesh around the crack tip; and
(b) Crack-tip elements (non-singular).
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Upper Crack Fac
PP ®  Ra= R, = 0.025mm
8 A Re= Rp= 0.4mm
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>
Crack tip

Lower Crack face
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o—eo u, (A-B)

0.0060 | »—= uy (A-B) §
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Figure 3.35 Displacement extrapolation method (a = 10mm, ¢ = 0°, ER = 14.2).
(a) Regression paths A-B (upper crack face) and C-D (lower crack
face); and (b) Linear regression.
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R, = 0.05mm

Figure 3.36 Paths for J-integral calculations.
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Figure 3.38 Mixed mode energy release rate G (Gj + Gyp) as a function of loading
angle ¢ for a = 10mm. (a) ER =1; and (b) ER = 14.2 (A-type).
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4l  Figure 3.39 Mixed mode energy release rate G (Gy + Gyp) as a function of crack length
il afor¢=0". (a) ER = 1; and (b) ER = 14.2 (A-type).
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Figure 3.40 Variation of G; and Gy with loading angle ¢ for a = 10mm. (a) ER = 1; and
(b) ER = 14.2 (A-type).
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CHAPTER 4

DISCUSSIONS

4.1. Stress Distribution in Iosipescu Specimens

A linear elastic finite element analysis under generalized plane stress was performed to
determine the macroscopic stress distribution in the mid-section of the Iosipescu speci-
men. The analysis was carried out for notch angles a in the range 60° Sa<150° in
cither shear (¢ = O°) or a combination of shear, transverse tension (—¢) or compression
(+¢) loading conditions. The materials modeled in this analysis were polyester resin
(isotropic), glass/polyester and carbon/epoxy unidirectional composites respectively,

with orthotropy ratios ER = 1, 3.45, and 14.20 respectively.

In Figures 3.4-3.7, the von Mises stress contours and isochromatic fringe pat-
terns2-8 are presented for isotropic as well as orthotropic Iosipescu specimens. The con-
tours for isotropic and orthotropic specimens are found to match well with the iso-
chromatic fringe patterns. It can be seen from Figures 3.4 and 3.5 that the stress contours
for ER = 1 are distributed anti-symmeuically about the notch-root axis. In Figures 3.4
and 3.5, stress concentrations near the notch root and in the vicinity of the loading points
are clearly visible. In Figure 3.5, the fringe patterns and von Mises contours are shown
for orthotropic Iosipescu specimens in orientations A (0-deg) and B (90-deg) respec-
tively. As opposed to the isotropic case, in B-type unidiregﬁonal fiber composites, the

maximum stress-regions are near the center of the specimen.

In Figures 3.8 —3.10, analytical as well as numerical predictions for the stress state
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at the center of Iosipescu specimens are illustrated. It is apparent from the above figures
that there is a significant difference between the stresses predicted by the analytical for-
mulae vis-3-vis those obtained from the finite element calculations. Even though the
trends for at least the shear stress Ty, are similar, there is a marked difference in the
analytical (T3y) and numerical (t3y) values. As one would expect, the simplistic analyti-
cal approach is not sufficient to predict the stress field at the center of the losipescu speci-
men. The non-linear behavior, notch geometry, specimen dimensions, orthotropy ratio,
fiber orientations and other factors need to be considered in the analytical model for

accurate results.

In Figures 3.11 and 3.12 the variation of the normalized stress along the notch-root
axis is presented as a function of the notch angle a.. For the isotropic Iosipescu specimen
under pure shear (¢ = 0°), the normalized shear stress at the notch root Txy " > 1 for all
a<90°, while Ty <1 for all a2 105°. In case of the orthotropic specimen (A-type)
with ER = 14.2, 135™ > l\for all & < 120°, while Ty " <1fora2 150°.

The shear stress along the notch-root axis is plotted in Figure 3.13, while the varia-
tion of the shear stress concentration K, with notch-root element size is shown in Figure
3.14 (@=90",ER =1, $ =0°). It can be seen from Figures 3.13 and 3.14 that the stress
concentration factor K, increases with decreasing notch-root element size. Similar trends
in the shear stress concentration were also seen for ER = 3.45 (A-type) and ER = 14.2
(A-type). The shear stress concentration K; as a function of the notch-root element size
is presented in Table 3.2; the same data is plotted in Figure 3.15. Kumosa and Hull’
have proposed the relation K; = A(ER)”4 (refer equation (2.2) in Section 2.1) for the

variation of the shear stress concentration with fiber orientation. It can be clearly seen

from Figure 3.15 that the shear stress concentration at the notch-root is a function of the
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notch-root element size. The slopes of the lines increase with decreasing notch-root ele-
ment sizes, and thus the above mentioned relation is inapplicable at the notch-root. All
the above findings clearly indicate that the stress field is singular at the notch-root in iso-

tropic as well as orthotropic materials.

The stress distribution around the notch-root region was studied under mixed mode
loading conditions for o = 90° (Figures 3.16 —3.24). The stresses were calculated along
the x- and y-directions. A complex state of stress, with both normal and shear stresses
are present around the notch-root region. An important feature of the normal stresses
(ox and oy) that can be seen for all ¢ >0 in Figures 3.16 and 3.17 is the changing of
sign as one traverses across the vertical center-line of the specimen. When the loading
changes from pure shear (¢ =0°) to shear-tension (—¢), the normal stresses tend to
become tensile on either side of the notch. In Figure 3.19, the longitudinal normal stress
o,; for the orthotropic specimen (A-type) shows a gradual transition from tension to
compression as the loading changes from — ¢ (shear-tension) to + ¢ (shear-compression).
However, the transverse normal stress (Oy) shows a distinct change in sign across the
center-line of the specimen. For all ¢, Oy is tensile on the opposite side of the loading
points, while it is compressive on the same side of the loading points for orthotropic
specimens (A-type). In Figures 3.22 and 3.23, the normal stresses for the orthotropic
specimen (B-type) show marked differences in comparison to ER = 1 or ER = 14.2 (A-
type). Both the normal stresses for the B-type specimen show an appreciable rate of
change from tension to compression as the loading changes from —¢ (shear-tension) to
+ ¢ (shear-compression). From Figures 3.20 and 3.23, the respective transverse normal
stresses for the A-type and B-type orthotropic specimens can be compared. Under pure

shear (¢ = 0°) there exists a small transverse-tensile stress at the notch root for the B-type
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specimen (Figure 3.23), while in case of the A-type specimen, the stress is compressive
in nature (Figure 3.20). This difference is responsible for the lower shear strengths
recorded in orthotropic Iosipescu specimens tested in the B-type fiber orientation. This
observation has been found to be true from earlier experimental as well as numerical stu-

dies on the Iosipescu shear test. 6-8

4.2. Singular Stress Fields at Sharp Notches

The Finite Element Iterative Method was applied to sharp notches for evaluating the
singular power at the notch root. The stress singularity was studied as a function of the
notch angle o, and the orthotropyl ratio ER. The simplicity and accuracy of the FEIM
approach was demonstrated in the determination of the stress singularity at the notch

root, in either isotropic or orthotropic materials.

The analytical solution by Williams? indicates that there are two stress singulari-
ties at the notch root: the strong singularity A,, and the weak singularity A,. The FEIM
results always converges to the dominant singularity at the notch root, when multiple
singular powers exist. It can be seen from the data presented in Table 3.3 that the numer-
ically evaluated stress singularity at the notch root under mode I loading always con-
verges to A,: The numerical results for the isotropic case (ER = 1) are in excellent agree-
ment with the analytical solution proposed by Williams. 30 As the notch angle is
decreased, the singular power increases, attaining a maximum value of 0.5 for o =0",
which is the limiting case when a notch becomes a crack. The same trend can be seen in
Figure 3.26a with increasing ER (orientation A), though the rate of increase in the stress

singularity is significantly greater. In orientation B, the stress singularity values are

lower than those computed for the isotropic case. In all cases, two or three iterations
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were sufficient for convergence. The few iterations needed for convergence were due to
two factors: the presence of a strong singular field A,, and a large region dominated by it

in comparison to the A, singular field.

The numerically evaluated stress singularity under mode II loading always con-
verges to Ay, which implies that the dominant singular power at the notch root is the
weak singularity. Even though A, still exists at the notch root, the intensity of the A,
field is zero, and hence the asymptotic term involving A, makes no contribution to the
stress field in the immediate vicinity of the notch tip. There exists a critical angle
above which A;, vanishes under shear loading conditions (see Table 3.4). For the iso-
tropic case, O, is approximately 103°. This suggests that the stress field at the notch root
is non-singular in the above case. Moreover, the critical angle o, varies with the ortho-
tropy ratio ER. With increasing ER, o ir'lcreases in orientation A, but decreases in
orientation B, with respect to the isotropic case. The above findings can explain some of
the finite element results obtained in regard to the shear stress distribution near the notch
root in isotropic and orthotropic Iosipescu specimens under pure shear (Figures 3.11 and
. 3.12). The numerically computed critical angle o, for ER = 1 and ER = 14.2 (A-
type) are ap['.)roximately 105° and 150° respectively. Since the stress fields are non-
singular for a. > d;, one would expect the normalized shear stress (Txy) to be less than
1 for all notch angles greater than ;. These very results were obtained in Section
3.1.1.3, and the discussions that followed on the same in Section 4.1 corroborate the

above inferences drawn from the stress singularity computations.

The rate of convergence under mode II loading was observed to be much slower

than that for mode I loading. This suggests, apart from the fact that the singular power

Ap is much weaker than A,, that the region dominated by the A, singular stress field is
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also much smaller than that of the A, stress field.

The mathematical and numerical basis for the convergence to the weak singularity
Ay under mode II loading needs to be elaborated. The mathematical formulation for the
case when there are two terms in the asymptotic expansion of the singular field is out-
lined in Section 2.3.4. The numerical scheme to evaluate both the singularities (strong
and weak singularities in this study) is also discussed. The displacement field at the nth
iteration {uﬁb } can be represented as a linear sum of the complete set of eigenfunctions.
Let u, ahd u, be the eigenvectors corresponding to A, and A, respectively. At conver-
gence, only the dominant eigenvector u, is present in the expansion. Since the system is
self-adjoint, and the transfer matrix [T] is real (real A), the eigenvectors are orthogonal
(uf .up =0). Hence, if the trial vector in the numerical analysis is taken to be orthogo-
nal to u,, the second term in the asymptotic expansion (A, in this study) can be
evaluated. 70 In a mode I analysis, A, was obtained. Since the initial displacement vector
for a mode II analysis is orthogonal to that in a mode I analysis, convergence to Ay is

realized in a mode II analysis.

Under mixed mode loading, convergence was always to the strong singularity A,,
irrespective of the loading angle ¢. This suggests that the dominant singular power at the
notch root for any mixed mode loading is always A,. Since the weak singularity Ay still
exists at the notch root, the stress state at the notch root is always a biaxial one. This
indicates that failure at the notch root is always under mixed mode stress conditions. It is
apparent from Figure 3.30 that with increasing ¢, the number of iterations for conver-

gence increases. Qualitatively, this indicates that the region dominated by the A, singu-

lar stress field decreases as the loading changes from mixed mode to mode II.
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Interpolation formulas for A, and A, as a function of the notch angle a and ortho-
tropy ratio ER were proposed. In Figure 3.32a, the interpolated values obtained for ER =
1 from equations (3.2) and (3.3) are shown along with the results from Williams’ solu-
tion, 3¢ while in Figure 3.32b, the interpolated values for ER = 14.2 (A-type) are com-
pared to the numerically computed stress singularities (refer Tables 3.3 and 3.4). The
stress singularity predictions by equations (3.2) and (3.3) were found to be within 10% of
the numerically computed values for the entire range of o and ER considered in this
study. Hence, the interpolation formulas can be viewed as a simple and adequate tool for

an engineer who does not need high-precision in the singularity-estimations.

4.3. Mixed Mode Fracture in Iosipescu Specimens

A linear elastic finite element analysis under generalized plane stress was performed to
compute the energy release rates (Gy, Gy, G) for two skew-symmetric splits along the
fiber direction in Iosipescu specimens. The computations were carried out for specimens
with notch angle a = 90° in either shear = 0’) or a combination of shear, transverse
tension (—¢) or compression (+¢). The energy release rates were evaluated for crack
lengths @ from 1mm to 13mm in isotropic as well as orthotropic Iosipescu specimens
(A-type).

In order to validate the VCC-schemes for orthotropic fracture analysis, the bench-
mark test of an edge-crack in an orthotropic strip in tension was considered; the numeri-
cally and analytically’® determined stress intensity factors are listed in Appendix D
(Tables D.1-D.3). The numerical and reference solution résults are in good agreement.

It can be seen that, for orthotropic fracture analysis, a crack-tip element size of the order

of 2% or less of the crack length gives accurate results, with the VCC-2C method giving
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the best results among the numerical tecl;;iiqucs used in this study. The above observa-
tion of VCC-2C being more accurate than the VCC-1C approach is expected, since the
2C-approach is applicable for finite crack extensions Aa >> 0, while the 1C-scheme is
strictly exact only in the limit Aa — 0. In contrast to the VCC-schemes, the displacement
method results are less accurate, and are also a stronger function of the crack-tip element
size. Since only two values from the finite element calculations (ug and uc — Figure
2.8) are needed for the displacement method, it is by far the easiest to apply. However, it

leads to the least accurate results, a finding which is supported by other studies too. 43,44

In Table 3.7, the energy release rates obtained in orthotropic (A-type) Iosipescu
specimens by the displacement method — equation (2.11) are compared to the VCC-2C
scheme. The losipescu test loading configuration is rather unusual in the sense that the
upper crack face is stressed, while the lower one is unstressed (Figure 4.1). Hence, in a
mixed mode fracture analysis of the Iosipescu specimen, it is likely that the G values
obtained from the upper and lower crack faces will differ. It can be seen from Table 3.7
that there is a significant difference in the G values computed from the upper and lower
crack faces. The displacement method results from either crack face or even their aver-
age are in poor agreement with the VCC-2C results for the orthotropic composite speci-
men. Kumosa and Hull” used the average value of the corner-node displacements in
their orthotropic fracture analysis of the Iosipescu specimen under pure shear (¢ = 0°).
The energy release rates reported in their study are erroneous; Buchholz et al. 26 have
subsequently correctly recalculated the G values using the virtual crack closure tech-
nique. The above findings indicate that the stress intensity factors obtained by con-

sidering only two nodal displacements in the mixed mode orthotropic fracture

analysis of the Iosipescu specimen are fraught with inaccuracies.
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In Appendix E, the detailed listing of the energy release rate computations for iso-
tropic as well as orthotropic (A-type) fracture analyses are presented. Due to the poor
results of the displacement method for orthotropic (A-type) Iosipescu specimens, a linear
regression (displacement extrapolation method) of the displacements along cither crack
face (Figure 3.35a) was performed; the results are listed in Table E.4. For isotropic
specimens, all the numerical estimates match very well (Tables E.1 and E.2); however,
for orthotropic (A-type) fracture analysis, there is a marked difference in the G values
obtained from the energy methods (VCC) vis-a-vis the displacement extrapolation tech-
nique. The results obtained from the VCC-1C scheme are within 2% of those from the
VCC-2C method; however, the results from the displacement extrapolation vary as much
as 10 to 20% from the VCC-2C results. In order to facilitate the discussions for this part,
some of the results listed in Tables E.3 and E.4 are reproduced in Table 4.1. From Table
4.1, a direct comparison of the results obtained from the dispacement extrapolation
method and the VCC-2C scheme can be made. It can be seen that even in case of the
extrapolation technique, there are marked differences in the G values computed from the
upper and lower crack faces. A striking observation is that the Gy ,Gyj, and G values
from the upper crack face are by and large much greater than those computed from the
lower crack face. This appears to be so, because the upper crack face is stressed, while
the lower one is unstressed. Taking into account the average values for Gj, Gyj, and G,
an error of 10-20% with respect to the reference numerical solution (VCC-2C) is observ-
able. However, if the results from only the upper crack face are taken into consideration,
the errors involved are 5% or less. Even though the displacement extrapolation scheme

tends to give conservative estimates for the energy release rates, it is undoubtedly much

more accurate than the displacement method — equation (2.11).
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In Tables 3.8 -3.15, the energy release rates obtained from the beam solution are
compared to those from the VCC-2C method (the representative numerical scheme),
while in Figures 3.38 —3.41, the same data are graphically illustrated. From the data, it is
apparent that there is a disagreement between the beam solution and numerical results.
The disparity is especially large for short cracks. In a study conducted by Broughton, 2
cracks lengths of 10-13 mm were observed in composite specimens tested in the Iosi-
pescu shear test (Figure 4.2). Considering the above fact, it is appropriate to discuss the
results for long cracks only. From Tables 3.8 and 3.9, it can be seen that even for — ¢ and
+ ¢ loading angles, there is a significant disagreement; however, from Tables 3.8 -3.11,
it can be observed that, for long cracks (a 2 10mm) under pure shear ¢ =0, there is rea-
sonable agreement between the beam solution and the VCC-2C results. The G values for
long cracks under pure shear from the beam theory solutions are within 10% of the
numerical results. The estimates for the mode partitions G; and Gy from the beam

theory solution do not match the 2C-results (Tables 3.12 —3.15) at all.

The cause for the disagreement between the predictions from the analytical model
in comparison to the numerical results needs to be elaborated. The beam theory is appli-
cable to beams of constant cross-section, with the well-known parabolic shear stress dis-
tribution. As opposed to a beam, in the Iosipescu specimen, the shear stress distribution
is uniform aiong the notch-root axis due to the presence of two sharp V-notches. In case
of short cracks, the constant shear stress distribution affects the G calculations, and hence
a marked difference between the analytical and numerical G values is observable. For
long cracks, the notch-effects are reduced, and therefore, the Iosipescu specimen can be

considered to be equivalent to a beam. In this case, the G values from the beam solution

are found to be in fair agreement with the VCC-2C results.
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In Figure 3.41, the variation of Gy and Gy with crack length for ¢ =0, and ER = 1
and ER = 14.2 (A-type) is shown. The crack-tip loading conditions are always mixed
mode, with the normal- and shear-components varying with the crack length a. For short
cracks (a £4mm), mode I is dominant (Gy > Gy), while for long cracks (@ 2 10mm),
mode II is dominant (G > Gj). The above trends are also evident in Tables E.1 -E.4 for
all other loading angles too. It is seen from Tables E.1 —E.4 that for a particular crack
length a and ER = 1, the mixed mode energy release rate G monotonically decreases as
the loading changes from ¢ = —45° (shear-tension) to ¢ = 30" (shear-compression). Simi-
lar trends are also observable for ER = 14.2 (A-type), although for ¢ = —45", there is a
drop in the G value. Taking into account the observable trends in the G values, it can be
inferred that orthotropic composites are more prone to fracture under shear-tension (—¢)

loading conditions than under shear-compression (+¢) loading conditions.




Table 4.1. Comparison of energy release rates (G, Gj, Gyj) by the displacement
extrapolation method and the VCC-2C scheme: ER = 14.2 (A-type)
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Displacement extrapolation' VCC-2C
— linear regression scheme
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0.011 0.073 0.054 0.040 0.065 0.114 0.075 0.056 O.
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1.207 0.644 0254 0.178 1461 0.822 1.009 0.256 1.265
0.884 0.548 0.310 0.233 1.194 0.780 0.772 0.324 1.096
0.565 0.403 0.369 0.275 0.933 0.679 0.520 0.381 0.901
0.225 0.200 0.300 0.214 0.525 0413 0224 0.301 0.524
0.076 0.100 0256 0.179 0332 0.279 0.093 0.253 0.346

1.130 0.610 0.083 0.069 1.213 0.679 0.952 0.088 1.040
0.830 0.594 0.203 0.161 1.033 0.754 0.774 0.218 0.993
0483 0.404 0240 0.188 0.723 0.592 0.482 0.255 0.736
0234 0.245 0.207 0.157 0.441 0402 0258 0.216 0.474
0.096 0.138 0.155 0.116 0.251 0253 0.125 0.159 0.284

0.578 0.258 0.007 0.010 0.585 0.268 0.451 0.009 0.460
0.376 0.250 0.051 0.041 0427 0291 0.339 0.055 0.394
0.182 0.147 0.066 0.052 0.248 0.198 0.177 0.070 0.247

131

.027 0.055 0.060 0.027 0.037 0.064

+ Superscripts U and L refer to values computed from a linear regression along the upper and
lower crack faces respectively (see Figure 3.35a).
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Figure 4.1 Crack faces.

Figure 4.2 Two skew-symmetric cracks in a APC-2 carbon/PEEK Iosipescu
specimen tested under shear loading conditions (¢ = 0 ).2




CHAPTER §

CONCLUSIONS

In this study, a preliminary numerical investigation of the biaxial Iosipescu test method
was carried out. The numerical study, using linear elastic finite element analysis under
generalized plane stress, can be broadly divided into three parts: stress distribution in iso-
tropic and orthotropic Iosipescu specimens; evaluation of the stress singularity at angular
sharp notches by the Finite Element Iterative Method; and extraction of fracture parame-
ters (Gy, G, G) for skew-symmetric splits along the fiber direction in Iosipescu speci-
mens. The results obtained in this study lead to the following conclusions:

(1) The stress distribution in the Iosipescu specimen strongly depends on the specimen
geometry, elastic properties, and the biaxial loading conditions.

(2) There exists a complex stress distribution in the vicinity of the notch roots. The
transverse normal stresses are tensile on the opposite side of the loading points,
while they are compressive on the same side of the loading points along the hor-
izontal line passing through the notch roots.

(3) Singular stress fields are present at the notch roots (p = 0) in isotropic as well as
orthotropic materials. Hence, the usage of the term "stress concentration factor K;
at the notch root" is meaningless.

(4) The relation K, = A(E;;/Ex;)"4, proposed by Kumosa and Hull’, is inapplicable at
the notch root of sharp V-notches (p =0). The above equation breaks-down in the

region dominated by the singular stress field; however, outside the singular domain,
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the relation between the orthotropy ratio and the shear stress is valid. This fact has
been demonstrated by Broughton and co-workers2 8 who have successfully applied
the above relationship as a shear correction factor in the estimation of shear

modulus for unidirectional composite materials.

The Finite Element Iterative Method is a simple and accurate tool to determine the
power of the singular field at sharp notches in either isotropic or orthotropic materi-
als.

The strong singularity A,, and the weak singularity A, are dominant at the notch

root, under mode I and mode II loadings respectively.

There exists a critical angle o, above which A, and A, vanish under shear loading
conditions. With increasing ER, the critical angle a., increases when the stiffness is
greater along the X-axis, but decreases when the stiffness is greater along the Y-

axis, with respect to o, = 103°, which is the critical angle for the isotropic case.

The stress singularities at the notch root are a function of the orthotropy ratio ER,
and also depend on the material orientation. With increasing ER, A, and A,
increase when the stiffness is greater along the X-axis, but decrease when the stiff-

ness is greater along the Y-axis, with respect to the isotropic case.

Under mixed mode loading, the strong singularity A, is always dominant at the

notch root.

(10) In composite Iosipescu specimens, with fibers along the X-direction, skew sym-

metric splits, originate from the notch roots, and propagate along the fiber direction.
The axial splits propagate under mixed mode conditions, with Gy > Gy for short

cracks (a < 4mm), and Gy > Gy for long cracks (@ 2 10mm).
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(11) The fracture-parameter estimations for axial splits in Iosipescu specimens is
strongly dependent on the material behavior: accurate results for isotropic materials
are obtained by all the numerical schemes considered in this study; however, the
same isn’t true for orthotropic materials. The numerical results obtained for the
energy release rates by the modified crack closure integral schemes (energy-based

methods) are much more accurate than the displacement extrapolation techniques.

(12) The analytical estimations for the energy release rates by the beam theory solution
are in poor agreement with the numerical results obtained from the modified crack
closure integral schemes, especially for short and medium crack lengths. However,
for long crack lengths (a 2 10mm), the G values from the beam solution are found

to be in fair agreement with those from the crack closure schemes.
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CHAPTER 6

SUGGESTIONS FOR FUTURE WORK

This work has raised several interesting questions in regard to the fracture and
failure aspects of losipescu specimens under biaxial loading conditions. Some of

the subject areas that can be explored in future research-studies are as follows:

The material behavior and the notch geometry are two critical parameters that
govern the stress state in the vicinity of the notch roots in the Iosipescu specimen.
An elasto-plastic analysis, with finite notch-root radius would be a much better
computational model, in order to represent the actual stress state realized in an
experiment, wherein, plasticity-effects are always present at the notch root of the
specimen. Furthermore, from a 3-D analysis, it would be possible to ascertain if
through-the-thickness effects are pronounced, and also if the loading points and
other constraints in the experimental set-up have an influence on the stress distribu-
tion.in the specimen.

In this study, the finite element meshes for uncracked as well as cracked Iosipescu
specimens were not optimized. Future studies could look into the optimization of
the finite element meshes, which could lead to a standardization of the finite ele-

ment meshes used in the numerical analysis of the biaxial Iosipescu test.

In order to develop the "ideal" specimen geometry for shear testing, the optimum
notch angle and orthotropy ratio for which there is pure shear in the specimen can

be investigated.
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Extensive experimental studies need to be conducted in order to determine the elas-
tic properties and strengths of the materials. The failure envelope of isotropic as
well as composite materials must be obtained in order to evaluate the test method
for biaxial characterization of isotropic as well as composite materials. The experi-
mental data would be of tremendous importance for the development of better com-

putational models in the future.

The application of the Finite Element Iterative Method to sharp notches can be
extended by investigating the eigenfunctions (angular distribution) associated with

the eigenvalue problem.

There have been very few studies on the nature of the singular stress field in 3-D
anisotropic wedges. The power of the singular stress field in 3-D wedges would
probably be a function of the through-the-thickness depth, apart from the wedge
angle being a parameter that influences A. The FEIM would be an ideal candidate
to apply, in order to compute the eigenvalues and eigenfunctions associated with the

3-D singular stress field.

Even for finite notch radius, singular stress fields theoretically exist. The FEIM
mesh and approach for finite notch-radii can be studied in order to come-up with a
suitable formulation that can be implemented on any general-purpose finite element
program.

Many questions still remain unanswered in the orthotropic fracture analysis of the
JTosipescu specimen. Firstly, an in-depth study of all the numerical schemes (their
pros and cons) for mixed mode fracture analysis needs to be carried out. This
would establish firm guidelines in regard to the "best" approach for analyzing mixed

mode fracture in the Iosipescu specimen.
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(9) The crack closure integral schemes can only be applied to linear elastic analysis.
Hence, especially for mixed mode fracture in three-dimensional nonlinear problems,
the scope of other numerical techniques such as the virtual crack extension30.31 and

the equivalent domain integra18°‘83 can be investigated.

(10) Experimental studies on the Iosipescu specimen under biaxial loading conditions
will yield the critical values for mode I (Gy.) and mode II (Gyyc) crack propagation.
The above data, in conjunction with the numerically obtained values (Gj, G, G) in
this study, will be able to give further insights in regard to the dominant fracture
mechanisms in 0-deg unidirectional composites. The above analyses (experimental
and numerical) can also be carried out for cracks along the notch-root axis in 90-deg

unidirectional composites.

(11) In this study, the beam theory results were not in agreement with the numerical
results, especially for short and medium crack lengths. Attempts at modifying the
beam theory for the Iosipescu specimen configuration and loading conditions can be
looked into, in order to come-up with a suitable analytical model for the energy

release rates in Iosipescu specimens.

(12) Finally, the biaxial Iosipescu fixture is currently being used to investigate unidirec-
tional composite materials, as well as adhesively-bonded composite systems. Since
the fixture has the capability of testing specimens under cyclic loading, fatigue and

the problems that come with it are another new-dimension that can be explored

using the biaxial Iosipescu fixture.
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APPENDIX A

In this Appendix, using moment and force balance, the external loads in the biaxial
Iosipescu stress test are derived. The loads P; and P, are expressed in terms of the total

compressive load P, loading angle ¢, and specimen dimensions.

A.l. Derivation of Load Components

In the biaxial Iosipescu test method, the total compressive load P is applied at various
loading angles ¢, where ¢ is the angle between P, and P (see Figure 2.6 in Chapter 2).
The angle ¢ is taken as positive when the specimen is rotated in a counter-clockwise
direction and negative when the rotation is clockwise. The test specimen is loaded in
shear-compression for positive loading angles (+¢) and in shear-tension for negative
loading angles (—¢). The analytical models of the Iosipescu specimen for the two cases
(+ ¢ and — ¢) are shown in Figures A.1a and A.1b respectively.

By simple moment and force balance considerations, the following expressions for

the load components as a function of ¢ are obtained:

P P

P; =+ . and P, = ; (A1)
[1_{2c-htang}] [{21+htang}_1]
2/ +h'tan¢ 2c -h'tan¢

where the orientation of P; and P, for + ¢ and —¢ loading angles are shown in Figures

A.la and A.1b respectively.

In the load component calculations, the values of ¢ are to be taken as positive for
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+¢ and negative for —¢ loading angles. From (A.1l), the critical loading angle for

counter-clockwise rotation (+ ¢) can be written as:
¢& =tan™! (2c/h) (A2)
while that for clockwise rotation (- ¢) can be expressed as:
0o =tan”' (-(/~c)/h") (A3)
From (A.2) and (A.3), it can be inferred that the expressions for the load com-

ponents are admissible only for values of ¢ in the range ¢ < ¢ < 9% (Note: ¢ is a

negative value).
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Figure A.1 Iosipescu specimen under in-plane biaxial stress state. (a) anti-clockwise
rotation (+ ¢); and (b) clockwise rotation (- ¢).
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(MPa)
0.389445
16.567
30.746
45.924
61.102
76.28
91.458
106.636
121.814
136.992

(MPa)
0.241393
5.744
11.247
16.75
22.252
87755
33.258
38.76
44.263
49.766

(®)

Figure B.1 von Mises stress contours for a = 90" and ER = 14.2 (A- type).
(@) ¢ = - 30" (shear—tension); and (b) ¢ = + 30 (shear-compression).
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P=115N

(MPa)
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11.009
16.421
21.832
27.243
32.655
38.066
43.478
48.889

(@)

(MPa)
1.409
3.912
6.415
8.918
11.421
13.924
16.427
18.93
21.433
23.936

(®)

Figure B.2 von Mises stress contours for a = 90" and ER = 14.2 (B-type).
&P (a) ¢ = - 30 (shear-tension); and (b) ¢ = +30 (shear—compression).
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(®)
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0.620064
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18.013
23.811
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41.204
47.002
52.799

©

Figure B.3 von Mises stress contours for o = 120° and ER = 14.2 (A-type).
(@) ¢=- 30 (shear—tension); (b) ¢ = O (pure shear); and
©¢=+ 30° (shear-compression).
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131.738
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261.939
305.339
348.739
392.139

(MPa)
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102.883
116.56
130.237

P=115N

(b)

(MPa)
3.447
13.021
22.595
32.169
41.743
51.317
60.89
70.464
80.038
89.612

Figure B.4 von Mises stress contours for o = 150° and ER = 14.2 (A-type).
@)o=- 30 (shear-tension); (b) ¢ = 0 (pure shear); and
©) o= +30(ﬁwm4mmpw&mm)
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P=11SN
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34.696

Figure B.5 von Mises stress contours for a = 60’ and ER = 14.2 (B-type).
(a) ¢ = —30_ (shear-tension); (b) ¢ = O (pure shear); and
(¢) ¢ = +30 (shear-compression).
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(MPa)

0.243826
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3.086
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25.284
28.336

Figure B.6 von Mises stress contours for o = 75° and ER = 14.2 (B-type).
(a) ¢ = — 30_ (shear-tension); (b) ¢ = 0 (pure shear); and

(c) ¢ = +30 (shear-compression).



APPENDIX C

In this Appendix, the derivation of the energy release rates G, Gy and Gy in the Josipescu
specimen is outlined using beam theory analysis. 1 ‘The analysis is applied for isotropic as
well as unidirectional composite (orthotropic) Iosipescu specimens under combined shear

and compression or tension loading conditions.

C.1. Analytical Solution

The beam solution proposed by Williams! for cracked laminates was applied to the
Iosipescu specimen with skew-symmetric cracks. The crack configuration, along with
the loading conditions and specimen dimensions are shown in Figures C.1a and C.1b.
Thé moments M; and M, acting on the two arms of the right crack are firstly determined
as a function of the crack length a and the loading angle ¢. Then, on applying (2.25),
(2.26), (2.28) and (2.27), the total energy release rate G, the opening component Gy, and

the shear component Gy are respectively evaluated.

C.1.1. Moments M; and M,

The moment M; is zero for all crack lengths and loading angles. Hence, only M,, and
thereafter dM,/da need to be determined. P is the total compressive load, while P; and
P, are the individual components for the inner and outer force-couples respectively. In
the equations presented in this Appendix, the expressions for P; and P, in terms of P

have been substituted from the results obtained in Appendix A.

148




149

The Josipescu specimen with positive loading angle (+¢) is shown in Figure C.1a,
while that with negative loading angle (—¢) is shown in Figure C.1b. As mentioned ear-
lier, M; =0; hence it follows that dM;/da =0 for all crack lengths a. There are three
cases to be considered, 2 namely: a<c;, ¢ <a<cj; anda>c;. The moment M, is

evaluated separately for the three different cases.
(i) as C1

In this case, the moment contribution will come from the loads on the left section

(P; and P,) of the specimen. M, and dM;/da can be expressed as:

M, = (Pcos¢)a + LS5 o Peoso C.1)
-2 X
y X

— Psin¢ [Yy‘_*—:] [h?] + Psin¢ [%]
and

dM
—Z. Pcos¢ (C.2)
da

(i) ¢;<asc

In this case, the moment contribution will consist of two parts. The loads on the left sec-
tion will contribute wholly; there will be partial contribution from the distributed load p;

of the right section (the inner force-couple). M, and dM;/da can be expressed as:

M, = (Pcos¢)a + Pcos ¢ [Ey:Li"] — Psin¢ [)'y—’:—:] [h?] (C.3)
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¢ —-¢C C2—¢C
y y

+Psin¢[l]— Pcosy  (a—cp)? Psing (a-c))(h'+w)
2

and
dM a-c i ¢
2 _Pcos¢ - Pcos¢ (a—-¢c1)  Psing (h+w) C4)
da X C—C X 02—
1-= 2 1-—}
y y
(iii) a>cy

In this case, the moment contribution will come from the left section (P; and P,) as well
as from the inner force-couple on the right section (P;). The distributed load p; of the

right section acting over a length ¢, — c¢; will contribute wholly. M, and dM,/da can be

expressed as:

M, = (Pcos¢)a + Pcos ¢ [EL”‘} — Psin¢ [M] [h—] (C.5)

y-—Xx y-x||2
+ Psing [y_] _ Peosd ,_ . _ Psing (W+w
2] 12 1-x 2
y y

and

dM; _ —Pcos¢ C6)

da Y _4

X

where x =2c — h’tan ¢, and y = 2/ + h’tan ¢ in (C.1)—(C.6).
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C.1.2. Calculation of G, Gy and Gy

From (2.25) in Section 2.4.3.1, the total energy release rate G can now be written as

_3(1+v) & [aMp)?
G=SBEa (1-§) [ da ] €D

From (2.26) in Section 2.4.3.2, Gj can now be expressed as

=M 1 (C.8)
'" BEI 16(1+p)(1-£)’ ’
From (2.27) in Section 2.4.3.2, Gy can now be written as
M3 _
Gy = —t - —{1-8) (C9)

" BEI 16 (1+B)¢2

where E =E;; (orientation A) in (C.7)—(C.9), and in case of orthotropic materials, the

shear modulus G, should be used instead of E/2(1 + v) in (C.7).

By substituting the expressions derived for M; and dM,/da from Section C.1.1 into

(C.7)—(C.9), the energy release rates G, Gy and Gy can be computed.
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Figure C.1 Crack configuration in composite (A-type) Iosipescu specimen.
(a) anti-clockwise rotation (+ ¢); and (b) clockwise rotation (- ¢).
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APPENDIX D

In this Appendix, the stress intensity factors in an orthotropic strip with a single edge-
crack are numerically evaluated. The accuracy of the displacement method and VCC-
schemes for orthotropic fracture analysis is evaluated by comparing the numerical values

to the reference solution results provided by Kaya and Erdogan. 1

D.1. Single Edge-Crack in an Orthotropic Strip under Tension

In Figure D.1, an orthotropic strip with an edge-crack under uniaxial tension is
illustrated. The material properties! and specimen dimension are also indicated in Figure
D.1. The finite element mesh (one-half) for a/w =0.4 and L =0.1a is shown in Figure

D.2. The finite element computations were carried out for a/w =0.1,0.2,0.3,....,0.8.

The displacement method - equation (2.11), VCC-2C (two calculations), and the
VCC-1C method (one calculation) were applied as outlined in Section 2.4.2. The
analysis was carried out for three different crack-tip element sizes, namely, L = 0.1mm,
0.02mm, and 0.01mm, so as to evaluate the influence of the crack-tip element size on the
stress intensity values. The results obtained for the aforementioned cases are presented

in Tables D.1-D.3.
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Table D.1. Stress intensity factors in an orthotropic strip with an edge crack
under uniaxial tension L = 0.1a.

Ref. VCC-1C VCC-2C Displacement
% Soln.! Method Method Method - Eqn. (2.11)
Kj Kj Kj K;
. % o ‘In_a % Error W % Error W % Error
0.1 1.1284 1.1479 1.73 1.1534 2.22 1.1513 2.03
0.2 1.3172 1.3103 0.52 1.3166 . 0.05 1.3222 0.38
0.3 1.6069 1.5880 1.18 1.5959 0.68 1.6036 0.21
0.4 2.0421 2.0148 0.99 2.0250 0.84 2.0294 0.62
0.5 27199  2.6726 1.74 2.6865 1.23 2.6750 1.65
0.6 38590 3.7674 2.37 3.7879 1.84 3.7445 2.98
0.7 6.0350 5.8185 3.59 5.8508 3.05 5.6993 5.56
0.8 11.2740 10.5500 6.42 10.6120 5.87 10.1580 9.89

t A.C.Kayaand F. Erdogan '®
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Table D.2. Stress intensity factors in an orthotropic strip with an edge crack
under uniaxial tension: L = 0.02 a.

Ref. vCC-1C VCC-2C Displacement

—  Soln.? Method Method Method - Egn. (2.11)
Kj Kj Kj K

p m o0 % % Error m;_;_— % Error ;0—\7;7 % Error
01 11284 11083 1.78 1.1139 1.29 1.1160 1.10
02 13172 13090 0.62 13124  0.36 1.3140 0.24
03 16069 15972 0.60 1.6053  0.10 1.6029 0.25
04 20421 20285 067 20389 0.16 2.0345 0.37
05 27199 26999 074 27138  0.22 2.7007 0.71
06 38590 358212 098 38412 046 3.8194 1.03
- 07 60350 59565 130 59877 0.78 5.9329 1.69
0.8 112740 11.0290 2.17 11.0890 1.64 10.9070 3.26

t A.C.Kaya and F. Erdogan ®
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Table D.3. Stress intensity factors in an orthotropic strip with an edge crack
under uniaxial tension: L = 0.01a.

Ref. VCC-1C VCC-2C Displacement
% Soln." Method Method Method - Eqn. (2.11)
K1 X % Error K % Error . % Error
coVma  ooVra coVra ooVma
0.1 1.1284  1.1248  0.32 1.1277  0.06 1.1276 0.07
0.2 13172  1.3102  0.53 1.3135 0.28 1.3151 0.16
03 1.6069 1.5981  0.55 1.6022  0.29 1.6023 0.29
04 20421 20306 0.56 2.0410 0.05 2.0375 0.23
05 27199 27010 0.69 27149 0.18 2.7052 0.54
06 3.8590 3.8282 0.80 3.8479  0.29 3.8325 0.69
0.7 6.0350 5.9682 1.11 59991  0.60 5.9608 1.23
0.8 112740 110760 176 11.1350 1.23 11.0220 2.23

t A.C.Kaya and F. Erdogan '®
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Figure D.1 Single edge-crack in an orthotropic strip under tension.
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APPENDIX E

Table E.1. Mode partitions Gy and Gy; in isotropic iosipcscu specimens.

Displacement VCC-1C VCC-2C Beam
extrapolation scheme scheme solution
¢ a G Gn G Gn Gi G G Gp
(deg) (mm) &/m?) W/m?) (/m?) (Jm?) (J/m?) (/m?) (I/m?) (Jfm?)
0 0000 0000 0000 0000 0000 0000 0.113 3.462
1 8427 3770 8515 3.869 8639 3.927 0.018 2.404
4 13035 8.560 13.170 8.792 13346 8960 0.013 0.385
-45 7 17.236 14.802 17.419 15.208 17.570 15.432 1.091 33.523
10 16.039 16.858 16.212 17.325 16203 17.457 3.986 122.461
13 14.041 17.548 14.193 18.037 14.122 18.030 5.720 175.726
0 0.000 0.00 0000 0000 0000 0.000 0.056 1.731
1 6.851 2591 6923 2658 7.023 2701 0.029 0.876
4 9875 6.518 9977 6.695 10.104 6.824 0.001 0.041
-30 7 11.341 9.895 11461 10.167 11.562 10.319 0.369 11.339
10 10.263 10.857 10.373 11.157 10.387 11.256 1.075 33.019
13 8.392 10.358 8.483 10.646 8.456 10.654 1406 43.272
0 0000 0000 0.000 0000 0.000 0.000 0.015 0.464
1 5633 1762 5.692 1807 5.776 1.838 0.002 0.066
4 7877 4955 7960 5088 8055 5.189 0.033 1.027
-15 7 8306 7.187 8393 7.385 8462 7.494 0.281 8.618
10 7204 7.648 7.281 7.860 7290 7.929 0.562 17.278
13 5602 6931 5663 7.124 5.647 7.130 0.625 19.196

Table E.1 continued ......
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APPENDIX E

Table E.1. Mode partitions G and Gy in isotropic iosipescu specimens.

Displacement VCC-1C VCC-2C Beam
extrapolation scheme scheme solution
¢ a Gi Gn G Gn G Gn G Gg
(deg) (mm) (W/m?) (J/m?) (kJ/m?) (/m?) kI/m?) (J/m?) (kI/m?) (kKI/m?)
0 0000 0000 0000 0000 0000 0.000 0.113 3462
1 8427 3770 8.515 3869 8.639 3927 0.018 2.404
4 13.035 8.560 13.170 8.792 13346 8.960 0.013 0.385
-45 7 17.236 14.802 17.419 15.208 17.570 15.432 1.091 33.523
10 16.039 16.858 16.212 17.325 16.203 17.457 3.986 122.461
13 14041 17.548 14.193 18.037 14.122 18.030 5.720 175.726
0 0.000 0.000 0000 0000 0000 0000 0.056 1.731
1 6.851 2591 6923 2658 7.023 2701 0.029 0.876
4 9875 6.518 9977 6.695 10.104 6.824 0.001 0.041
-30 7 11341 9.895 11461 10.167 11562 10.319 0.369 11.339
10 10.263 10.857 10.373 11.157 10.387 11.256 1.075 33.019
13 8392 10.358 8.483 10.646 8456 10.654 1.406 43.272
0 0000 0000 0.000 0000 0.000 0.000 0.015 0.464
1 5633 1762 5.692 1807 5.776 1.838 0.002 0.066
4 7877 4955 7960 5088 8055 5.189 0.033 1.027
-15 7 8306 7.187 8.393 7.385 8462 7.494 0.281 8.618
10 7204 7.648 7.281 17.860 7290 7.929 0.562 17.278
13 5602 6931 5.663 7.124 5647 7.130 0.625 19.196

Table E.1 continued ......
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0 0000 0000 0000 0.000 0.000 0.000 0.000 0.000

1 4078 0985 4120 1.009 4.183 1.028 0.006 0.192

4 5576 3235 5634 3323 5697 3.39 0.100 3.077

0 7 5420 4593 5477 4719 5515 4787 0.247 1.577

10 4436 4727 4484 4858 4484 4.897 0.316 9.714

4 13 3264 4.084 3300 4.197 3289 4.199 0.270 8.305
0 0000 0000 0000 0000 0000 0.000 0.015 0.464

1 2409 0369 2433 0377 2472 0.386 0.040 1.220

4 3216 1621 3250 1664 3282 1700 0.184 5.642

15 7 2810 2283 2.840 2346 2853 2378 0.217 6.658

10 2088 2235 2110 2297 2104 2311 0.162 4.984

? 13 1408 1.809 1423 1.859 1417 1.858 0.086 2.645
0 0000 0000 0000 0000 0.000 0.000 0.056 1.731

1 0990 0.037 0999 0.038 1017 0.039 0.094 2.874

4 1273 0458 1286 0470 1296 0.481 0.262 8.036

30 7 0903 0657 0913 0675 0913 0.683 0.181 5.564

10 0526 0570 0532 0585 0.525 0.586 0.067 2.049

13. 0279 0393 0.282 0404 0279 0.402 0.010 0.293
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Table E.2. Mixed mode energy release rate G (Gy + Gyp) in isotropic Iosipescu

specimens.

Displacement  J-integral VCC-1C  VCC-2C Beam
extrapolation scheme scheme solution
¢ a G J G G G

(deg)  (mm) (J/m?) @m?  @m?)  @md)  @/m?)
0 0.000 0.000 0.000 0.000 3.575

1 12.196 12.104 12.384 12.565 2.422

4 21.595 21.609 21.962 22.306 0.398

-45 7 32.038 32.227 32.627 33.020 34.614
10 32.897 33.216 33.536 33.660 126.447

13 31.588 31.995 32.230 32.152 181.446

0 0.000 0.000 0.000 0.000 1.787

1 9.442 9.348 9.581 9.723 0.905

4 16.393 16.406 16.671 16.928 0.042

-30 7 21.236 21.367 21.628 21.881 11.708
10 21.120 21.327 21.530 21.644 34.094

13 18.750 18.988 19.129 19.110 44.678

0 0.000 0.000 0.000 0.000 0.479

1 7.395 7.304 7.499 7.613 0.068

4 12.832 12.930 13.048 13.244 1.060

-15 7 15.493 15.591 15.778 15.956 8.899
10 14.852 14.999 15.141 15.219 17.840

13 12.534 12.693 12.787 12.777 19.821

Table E.2 continued ......
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|
0 0.000 0.000 0.000 0.000 0.000
1 5.063 4987 5.129 5.211 0.198
4 8.811 8.797 8.957 9.087 3.177
0 7 10.012 10.079 10.196 10.302 7.824
10 9.163 9.254 9.342 9.381 10.030
13 7.348 7.443 7.497 7.488 8.575
0 0.000 0.000 0.000 0.000 0.479
1 2.777 2.725 2.810 2.858 1.262
4 4.837 4.817 4914 4981 5.826
15 7 5.093 5.117 5.186 5.231 6.875
10 4,323 4.366 4.407 4415 5.146
13 3.217 3.260 3.283 3.275 2.731
0 0.000 0.000 0.000 0.000 1.787
1 1.027 1.004 1.037 1.056 2.968
4 1.731 1.715 1.757 1.777 8.298
30 7 1.561 1.565 1.588 1.596 5.745
10 1.095 1.106 1.117 1.111 2.116
13 0.672 0.682 0.686 0.681 0.303
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Table E.3. Energy release rates Gy, Gy, and G in orthotropic (A-type) Iosipescu

specimens.
VCC-1C VCC-2C Beam
scheme scheme solution

¢ a Gy Gn G Gp Gn G Gy Gn G
(deg.) (mm) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?) (k}/m?) (kJ/m?) (kJ/m?) (kJ/m?)

0 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.090 0.093

1 0997 0252 1249 1.009 0256 1.265 0.002 0.063 0.065

4 0770 0318 1.088 0.772 0324 1.096 0.000 0.010 0.010

-45 7 0525 0378 0.902 0.520 0381 0.901 0.029 0.875 0.904
10 0232 0301 0.533 0.224 0.301 0.524 0.104 3.197 3.301

13 0.096 0.255 0.351 0.093 0.253 0.346 0.149 4.588 4.737

0 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.045 0.047

1 1.064 0.188 1.252 1.076 0.191 1268 0.000 0.023 0.023

4 0.885 0322 1207 0.889 0.329 1.218 0.000 0.001 0.001

-30 7 0601 0373 0973 0599 0378 0.977 0.010 0.296 0.306
10 0331 0315 0.646 0.325 0318 0.643 0.028 0.862 0.890

13 0166 0250 0.416 0.164 0250 0.414 0.037 1.130 1.666

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.012

1 1063 0.138 1202 1.076 0.141 1.217 0.000 0.002 0.002

4 0.886 0284 1.170 0.890 0.290 1.180 0.001 0.027 0.028

-15 7 0581 0330 0911 0.580 0.334 0914 0.007 0.225 0.232
10 0325 0281 0.606 0.321 0.284 0.605 0.015 0.451 0.466

13 0.164 0.216 0.380 0.162 0.216 0.378 0.016 0.501 0.517

Table E.3 continued ......
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0 0000 0000 0.000 0.000 0000 0.000 0.000 0.000 0.000

1 0940 0.086 1.026 0.952 0.088 1.040 0.000 0.005 0.005

4 0771 0213 0984 0.774 0218 0.993 0.003 0.080 0.083

0 7 0483 0251 0.734 0482 0.255 0.736 0.006 0.198 0.204
10 0262 0213 0475 0.258 0.216 0474 0.008 0.254 0.262

13 0.127 0.159 0.286 0.125 0.159 0.284 0.007 0.217 0.224

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.012

1 0716 0040 0.755 0.725 0.041 0.765 0.001 0.032 0.033

4 0571 0129 0.699 0.573 0.132 0.705 0.005 0.147 0.152

15 7 0335 0.156 0491 0.334 0.158 0.492 0.006 0.174 0.180
10 0.169 0.130 0.299 0.166 0.132 0.298 0.004 0.130 0.134

13 0.075 0.093 0.169 0.074 0.093 0.168 0.002 0.069 0.071

0 0.000 0000 0.000 0.000 0.000 0.000 0.002 0.045 0.047

1 0446 0.009 0454 0451 0.009 0.460 0.002 0.076 0.078

4 0338 0054 0392 0339 0.055 0.394 0.007 0.210 0.217

30 7 0179 0.069 0.247 0.177 0.070 0.247 0.005 0.145 0.150
10 0.077 0.055 0.132 0.075 0.056 0.131 0.002 0.053 0.055

13 0028 0.037 0.065 0.027 0.037 0.064 0.000 0.008 0.008
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Table E.4. Energy release rates (Gj, Gy, and G) in orthotropic (A-type) Iosipescu
specimens by the displacement extrapolation method.

Displacement extrapolation’ — linear regression analysis
¢ a G}J : Gi‘ Gi'e GH Gh Giy'® GgY gL Ge
(deg.) (mm) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?) (kJ/m?)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1207 0.644 0.926 0.254 0.178 0.216 1.461 0.822 1.152
0.884 0548 0.716 0310 0.233 0.271 1.194 0.780 0.987
0.565 0.403 0.484 0369 0.275 0.322 0933 0.679 0.806
0.225 0.200 0.213 0.300 0.214 0.257 0.525 0413 0.470
0.076 0.100 0.088 0.256 0.179 0.217 0.332 0.279 0.305

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.242 0.720 0.981 0.190 0.139 0.164 1.432 0.859 1.145
0.957 0.679 0.818 0.309 0.240 0.275 1.267 0.919 1.093
0.609 0.495 0.552 0.358 0.277 0.318 0.967 0.772 0.870
0.303 0.303 0.303 0.308 0.230 0.269 0.611 0.533 0.572
0.131 0.175 0.153 0.246 0.180 0.213 0.377 0.356 0.366

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1253 0.710 0.981 0.135 0.106 0.121 1.388 0.816 1.103
0950 0.685 0.817 0271 0213 0.242 1.221 0.898 1.059
0.582 0485 0.533 0316 0246 0.281 0.897 0.732 0.814
0.293 0302 0.298 0.273 0.207 0.240 0.566 0.509 0.538
0.127 0.175 0.151 0.211 0.158 0.185 0.338 0.333 0.336
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Table E.4 continued ......
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0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.130 0.610 0.871 0.083 0.069 0.076 1.213 0.679 0.947
0.830 0.594 0.712 0.203 0.161 0.182 1.033 0.754 0.894
0483 0.404 0.443 0240 0.188 0.214 0.723 0.592 0.657
0.234 0.245 0.240 8 0.157 0.182 0.441 0402 0.422
0
0

0.096 0.138 0.117 0.116 0.135 0.251 0.253 0.253

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.886 0.445 0.666 0.037 0.034 0.036 0.923 0479 0.701
0.621 0433 0.527 0.122 0.098 0.110 0.743 0.531 0.637
0337 0279 0308 0.142 0.117 0.129 0.479 0.396 0.437
0.150 0.159 0.155 0.127 0.096 0.111 0.277 0.255 0.266
0.018 0.084 0.05s1 0.091 0.068 0.079 0.109 0.152 0.130

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.578 0.258 0.418 0.007 0.010 0.008 0.585 0.268 0.426
0376 0.250 0.313 0.051 0.041 0.046 0427 0.291 0.359
0.182 0.147 0.164 0.066 0.052 0.059 0.248 0.198 0.223
0.011 0.073 0.042 0.054 0.040 0.047 0.065 0.114 0.089
0.019 0.033 0.026 0.036 0.027 0.032 0.055 0.060 0.058

| o
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+ Superscripts U and L refer to values computed from a linear regression along the upper and
lower crack faces respectively (see Figure 3.35a).




APPENDIX F

F.1. Computational Platform and Execution Time

In this study, the numerical investigations were carried out on an IBM RISC
System/6000 workstation (AIX 3.1.5 Operating System). The particular RISC/6000
system was a POWERSstation/POWERserver 320 (model 7012), with a clock speed of
20.0 MHz, 29.5 MIPS, 8.5 MFL, and 24.6 SPC. The hardware configuration was: 640
MB of internal memory and 2.4 GB of external memory, with 16 MB of RAM.

The execution time (real-time) in single-user mode for the finite element analysis
(solution phase) of Iosipescu specimens with notch angle a.=90" was computed. The
finite element analysis of an uncracked Iosipescu specimen (Figure 3.3) required 110
seconds for execution. The mesh illustrated in Figure 3.3 consists of 1964 isoparametric
elements and 5281 node, with 10558 active degrees of freedom. The maximum wave-
front was 160, while the R.M.S. wavefront was 116.5. In case of cracked specimens with
two 10mm axial splits (Figure 3.33), the execution time was 115 seconds. The finite ele-
ment mesh shown in Figure 3.33 consists of 1426 isoparametric elements and 1426
nodes, with 8674 active degrees of freedom. The maximum wavefront was 218, while
the R.M.S. wavefront was 139.8.

In the evaluation of the dominant stress singularity at sharp notches by the Finite
Element Iterative Method, the computation time was a function of the number of itera-
tions for convergence, as well as on the type of loading. The average execution time per
iteration for notch angle & =90" was computed. In case of mode I or mode II analysis,

82 seconds per iteration was needed for the mesh illustrated in Figure 3.25a. The mesh
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presented in Figure 3.25a has 126 isoparametric elements and 407 nodes. The number of
active degrees of freedom was 748, and the R.M.S. wavefront was 49.9. In a mixed
mode analysis, 171 seconds per iteration was required for the mesh shown in Figure

3.35b; the mesh consists of 252 isoparametric elements and 785 nodes, with 79.0 active

degrees of freedom. The R.M.S. wavefront in this case was 79.0.
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