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ABSTRACT 

FINITE ELEMENT ANALYSIS OF MIXED MODE FRACTURE 

AND FAILURE IN IOSIPESCU SPECIMENS 

Natarajan Sukumar, M.S. 

Oregon Graduate Institute of Science & Technology, 1992 

Supervising Rofessor: Maciej S. Kumosa 

The absence of an established mixed mode test method for the characterization of 

unidirectional composites has proven to be a stumbling block in the understanding of 

intralaminar failure mechanisms in these materials. In this thesis, a numerical study of 

the In-Plane Biaxial Iosipescu Test is carried out. The stress state in Iosipescu specimens 

is numerically investigated for notch angles from 60' to 150' under various mixed mode 

loading conditions. The materials modeled in the analysis are polyester resin (isotropic 

material), glass/polyester and carbon/epoxy unidirectional composites respectively. The 

singular stress fields at sharp notches in isotropic as well as orthotropic media are 

analyzed by the application of the Finite Element Iterative Method. In addition, the case 

of skew-symmetric splits in 0-deg unidirectional composite Iosipescu specimens is also 

studied, wherein fracture parameters like the mixed mode energy release rates and stress 

intensity factors are computed as a function of the crack length, loading angle, and 

orthotropy ratio. 

A finite element andysis of the biaxial Iosipescu test method is pafonned, in 

which, Iosipescu specimens in either shear or a combination of shear, transverse tension 

xvi 



and compressive loadings are considered. Fom-couple boundary conditions arc used to 

analyre the strtss state in the mid-section of the specimen. A complex stress distribution 

exists in isotropic as well as orthotropic Iosipescu specimens. The stresses at the notch 

root arc singular in nature, and the stress distribution in the. immediate vicinity of the 

notch root consists of a combination of nonnal and shear stresses. 

The stress singularities at angular sharp notches in isotropic as well as orthotropic 

media arc computed by the Finite Element Iterative Method. 'Zhrce different loading 

conditions are considered in the numerical analysis: tension, shear, and a combination of 

tension and shear. In tension, the strong singularity ?La is obtained, while under shear, 

convergence is to the weak singularity ?Lb. When the loading is a combination of tension 

and shear, convergence is always to li,. The stress singularities ?La and & are found to be 

strongly dependent on the notch angle a, as well as on the elastic properties of the 

material. There exists a critical angle a, above which lib vanishes under shear loading 

conditions. For all notch angles a 2 qr, the stress field at the notch root is non-singular 

in nature. The values obtained for a, are of particular significance to practitioners 

involved in the analysis of the Iosipescu shear test for composite materials. 

In 0-deg unidirectional composite Iosipescu specimens, a particular mode of frac- 

ture is the propagation of skew-symmetric splits along the fiber direction. The energy 

release rates GI, GII, and Gbb1 are evaluated by three different numerical schemes: dis- 

placement extrapolation, J-integral, and the modified crack closure integral. Using beam 

theory analysis, an analytical solution for the energy release rates is also proposed. Axial 

splits in Iosipescu specimen propagate under mixed mode conditions, with GI and Gn 

varying with the crack length a. For short cracks (a S 4mm), GI > Gn, while for long 

cracks (a ZlOmm), Gn is dominant. The merits and limitations of the numerical schemes 

xvii 



in the mixed modc fracture analysis of orthotropic compsitcs pre evaluated and dis- 

cussed in detail. 
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CHAPTER 1 

INTRODUCTION 

The use of composite materials has increased significantly in the past two decades. The 

high specific modulus and high specific strengths of composites make them an attractive 

prospect for structural applications, both, in terms of weight reduction as well as greater 

load carrying capacity. With the increasing difficulty of improving the weight-efficiency 

of metal alloys and the development of high modulus, high strength fibers (i.e. carbon, 

aramid and boron) since the 1960's, there has been a dramatic increase in the application 

of fiber/polymer composites within the aerospace industry. 

Fiber/polymer composites consist of continuous or short fibers embedded in either a 

thermoset (i.e. epoxy, polyester or phenolic resins), or thermoplastic (i.e. nylon, polysul- 

. phone and polyether-ether-ketone (PEEK)) matrix material. Continuous carbon fiber 
... . 

filaments have been commercially available since 1961, and are cumntly the predom- 

- inant reinforcing material in fiber composites used for high stiffness/strength applica- 
f - 

tions. 

Carbon fiber composite structures are generally in the form of unidirectional plies 

laminated together at various orientations, or filament-wound configurations. These lam- 

inated fiber composites are highly susceptible to the presence of geometric discontinui- 

ties. The discontinuities may be deliberately introduced, such as design-cuts, or there 

may be inevitable defects produced during manufacturing or service. In particular, 

crack-like defects can be critical, as they can greatly reduce the stiffness and strength of 

composites, and can thus lead to catastrophic failure. 



In laminated composites there are three principal failure modes (i.e. delaminations, 

intralaminar transverse cracking and fiber-breakage) which adversely affect the mechani- 

cal properties. Delarninations may be single or multiple planar cracks parallel to the larn- 

inate plies, and are often the result of some combination of mode I (tensile mode), mode 

I1 (in-plane shear mode) and mode III (anti-plane shear mode) fracture processes (Figure 

1.1). 

The ability to predict the mechanical properties and to understand the failure 

mechanisms in fiber-reinforced composites under mixed mode (shear dominated) loading 

conditions is important for the further development of fiber/pol ymer composite materials. 

Some of the important requirements for adequate predictions are reliable material data 

(elastic moduli, Poisson's ratios, and failure strengths), a suitable failure criterion, and an 

accurate component model. In most engineering applications, unidirectional composite 

laminae are subjected to biaxial or even triaxial type of loading. Hence, from an 

engineering design and application perspective, it is critical to characterize the mechani- 

cal behavior and response of these materials under mixed mode loading conditions. 

In this thesis, a preliminary numerical investigation of the In-Plane Biaxial Iosi- 

pescu Test is conducted. Chapter 2 is a literature swey  on the Iosipescu shear test as 

well as on the biaxial Iosipescu test method, along with details of mixed mode fracture 

phenomena in unidirectional composite Iosipescu specimens. In addition, relevant back- 

ground about the Finite Element Iterative Method (FEIM), a numerical scheme for 

analyzing singular stress fields at points of discontinuities (cracks, sharp notches, inter- 

faces etc.), is also presented. In Chapter 3, the numerical results are outlined: finite ele- 

ment analysis of uncracked as well as cracked isotropic and composite Iosipescu speci- 

mens, and stress singularity computations at sharp notches by the Finite Element Iterative 



Method. The important results are discussed in Chapter 4, and the main conclusions 

obtained from this study are listed in Chapter 5. Chapter 6 looks at possible future 

research-work in regard to the biaxial Iosipescu test mthod. In Appendix A, the deriva- 

tion of the load components used in the finite element analysis are outlined. In Appendix 

B, some of the most representative von Mises stress contours are presented, while in 

Appendix C, the expressions for the energy release rates in the Iosipescu specimen using 

beam theory analysis are listed. The test problem of an orthotropic strip with an edge 

crack under uniaxial tension is considered in Appendix D; the numerical results obtained 

for the stress intensity factors are presented. The energy release rate computations for 

coplanar cracks along the fiber direction in Iosipescu specimens are listed in Appendix E. 

In Appendix F, the hardware configuration along with the execution times involved in the 

numerical analyses are presented. 



TENSILE MODE 
(MODE I) 

SHEAR MODE 
(MODE 11) 

2 
F i p  1.1 Independent modes of crack propagation in aligned fiber composites. 



CHAPTER 2 

BACKGROUND 

2.1. Intralaminar Shear Test Methods 

To fully exploit the potential of composite materials in structural applications, it is neces- 

sary to have a complete and accurate description of their mechanical properties. The 

accurate determination of the in-plane shear properties (elastic modulus, ultimate shear 

strength and failure strain) and overall shear stress-strain behavior for advanced compo- 

site materials is much more difficult than for tensile or compressive properties. The 

problem stems from a difficulty in obtaining a pure shear stress state for a defined speci- 

men geometry and loading condition. In highly anisotropic materials, coupling between 

the normal and shear deformation modes is common and a state of pure shear stress 

rarely occurs in composites. There have been numerous attempts to develop reliable test 

methods to determine the in-plane shear stress-strain response for advanced composite 

materials. The most commonly applied testing methods are: (1) two rail, (2) thre!e rail, 

(3) cross-beam sandwich, (4) picture-frame panel, (5) thin-walled tube torsion, (6) 10 

degree off-axis tensile, (7) f 45 degree off-axis tensile, (8) Iosipescu and (9) slotted- 

tensile. An evaluation of the above nine shear test methods by the decision analysis tech- 

nique, rated the Iosipescu and f 45' off-axis tensile shear tests as the best available for 

measuring in-plane shear properties. In an in-depth study on shear-dominated properties 

of unidirectional carbon fiber composites, ~ r o u ~ h t o n ~  has presented a comprehensive 

review of the most important intralaminar testing methods. 



2.1.1. Iosipeseu9s Method 

The ideal test method is one that is relatively simple to conduct, employs small, easily 

fabricated specimens, and is capable of measuring both shear strength and shear 
/ 

modulus. 1osipescu3 in 1967 proposed a method to determine the shear properties of 

metals. In this procedure, a state of pure shear stress is "achieved" at the mid-length of 

an isotropic double V-notched planar specimen, by the application of two counteracting 

force couples (Figure 2.1). A state of constant shear exists in the mid-section of the test 

specimen, with the induced moments canceling exactly at the mid-length, and thereby 

producing a pure shear stress state at this location. Figure 2.1 shows the force, shear and 

momnt diagrams. 

Originally, cylindrical test specimens were used, with a 90' circumferential V-notch 

cut completely around the mid-section. This specimen geometry transforms the para- 

bolic shear stress distribution (associated with beams of constant cross-section) to a uni- 

form shear distribution in the regions between the notches. The reduced area also pro- 

motes shear failure in this region. The two sides of the angular notches, which are the 

isostatics of the stress-free surfaces, must be inclined at an angle of 45'. Hence, the 

included angle of the V-notch is 90'. The applied force P divided by the net cross- 

sectional area A between the notch roots gives the nominal shear stress: 

- 
T = P/A (2.1) 

Adams and ~ a l r a t h ~ . ~  showed that the Iosipescu shear test method was suitable for 

determining in-plane and through-the-thickness shear properties of fiber composite 

materials (i.e. unidirectional carbodfiber and sheet moulding compounds). Fiber compo- 

site shear tests use flat rectangular specimens with notches machined at the top and bot- 



tom edges (Figure 2.2). Shear strain is measured at the center of the notch axis using two 

strain gauges oriented at f 45' to the longitudinal axis of the test specimen. 

1osipescu3 postulated that a uniform stress state resulted from the coincidence of the 

principal stress directions at f 45' to the longitudinal axis with the 90' notch angle in the 

region of zero bending stress. It was argued &at, since the sides of the notch are aligned 

with the plane of principal stress, the principal stresses would be zero at thc notch root. 

Hence, there should be no shear stress concentrations or normal stresses present at the 

notch roots. However, numerous numerical and experimental studies have demonstrated 

this argument to be incorrect. 

Finite element analysis shows that there is a complex stress distribution in the speci- 

men, particularly in the vicinity of each notch root. Stress distributions (i.e. normal and 

shear) have been found to be dependent on the notch geometry (i.e. depth, angle and 

radius), orthotropy ratio, fiber orientation and loading boundary conditions. *S8 

For specimens with fibers oriented parallel to the longitudinal axis (Odeg fiber 
,.* . 

orientation), the shear stress concentration factor K, at the notch roots, defined as the 

ratio of the shear stress at the notch root to the shear stress at the specimen center, 

increases with increasing orthotropy ratio El1IEU (i.e. Kt > 1). 5-8 The shear stress 

increases rapidly in the vicinity of the notch roots to a maxima. In the case of specimens 

with fibers oriented transverse to the longitudinal axis (90-deg fiber orientation), Kt 

decreases with an increase in Ell/E22 (i.e. Kt < 1). The shear stress decreases rapidly to 

a minimum at the notch root. 5'8 

Walrath and ~ d a m s ~ v ~ - ~ ~  have attempted to optimize the Iosipescu specimen 

geometry and Iosipescu shear test fixture. In a comprehensive investigation, the authors 

analyzed the stress distribution in the Iosipescu specimen as a function of the notch 



geometry and orthotropy ratio. This work resulted in a re-designed University of Wyom- 

ing Iosipescu test specimen and fixture. l2 For orthotropic materials, it was demonstrated 

that an increase in notch angle or notch radius definitely reduces the shear stress concen- 

tration around the notch roots. The effect of notch depth on the stress concentration was 

minimal compared to the effects of notch angle and radius. Barnes et al. ti considered 

the effect of fiber orientation and orthotropy ratioion the measured shear properties of 

unidirectional glass/polyester. The apparent measured shear modulus was almost the 

same for Odeg and 90-deg Iosipescu specimens, though the apparent intralaminar shear 

strength was strongly dependent on fiber orientation. 

In an isotropic material, the influence of longitudinal stresses is minimal, but the 

transverse normal compressive stresses induced by the inner loading points intrude into 

the test section. It has been recommended that the inner loading points be moved away 

from the test region in order to reduce these compressive stresses. 5*9-12* l4 

Kumosa and ~ u l l ~  showed that there is a simple relationship between the shear 

stress concentration factor Kt at the notch roots, and the orthotropy ratio and fiber orien- 

tation: 

where A is a numerical factor related to the stress concentration in an isotropic specimen. 

Kumosa et al. 7*8 employed finite element analysis in order to determine the 

influence of elastic properties and boundary loading conditions on the stress distribution 

in the Iosipescu specimen. The loading of the finite element models was chosen to simu- 

late the boundary conditions representative oE 

(a) the loading originally proposed by Iosipescu with two force couples as illustrated in 



Figure 2.3a (force-couple condition); and 

@) the displacement boundary conditions used by Adarns and Walrath, 5 9 9  which 

assumes no rotations of the ends of the specimen in the loading fixtun, as illustrated 

in Figure 2.3b (displacement condition). 

A comparative study on isotropic and orthotropic Iosipescu specimens was per- 

formed to show that the force-couple conditions were representative of the actual experi- 

mental configurations. This involved comparing the isochromatic fringe patterns 

observed for the test specimens with numerically generated normalized von Mises con- 

tours7v8 for both force-couple and displacement boundary conditions. 

2.2. In-Plane Biaxial Iosipescu Test Method 

In most engineering applications, unidirectional fiber composite laminae are subjected to 

biaxial and triaxial loads. Therefore, it is important to obtain the mechanical properties 

and failure criteria under multi-stress conditions. Currently, there are only a few tests 

available for the biaxial characterization of these materials. The tests which have been 

most frequently used for the intralarninar mixed mode failure (uncracked specimens) and 

fracture (specimens with pre-cracks) investigations are: the unidirectional off-axis tensile 

test, l9 filament wound thin-walled hoop wound tubes (with or without circumferential 

pre-cracks) under either torsion or combined tension and torsion loadings, 2*20,*21 and the 

Arcan method. 22923 In all  of these tests, however, end-constraint effects, buckling, and 

bending moments introduce errors in the measured elastic properties. 

As a result of the study conducted by Broughton, a new In-Plane Biaxial Test Fix- 

ture, based on the Iosipescu shear test (Figure 2.1) and the Arcan in-plane stress method 

(Figure 2.4) was designed. The biaxial fixture (marketed by Instron Corporation) is 



shown in Figure 2.5. The fix- is capable of measuring mixed mode failure and frac- 

tun properties of isotropic and composite materials. In this study, it will be referred to as 

the biaxial Iosipescu test method. For biaxial in-plane stress tests, the compressive load 

P is applied at various angles $ to the normal, where + is the angle between Po and P 

(Figure 2.6). 

23. Mixed Mode Fracture in Unidirectional Composites 
- 

Continuous fiber composites are heterogeneous materials with inherent micro-flaws (i.e. 

voids, matrix cracks, and fiber-interface debonds). The formation and propagation 

mechanisms of a crack are governed by the material microstructure and the stress state in 

the immediate vicinity of the crack front. In contrast to isotropic and homogeneous 

materials which often exhibit self-similar crack growth, fiber composites will often have 

cracks that do not propagate along the original crack orientation because of the local 

heterogeneity in front of the crack. In isotropic materials, the direction of crack growth 

is determined by the loading conditions: for example, in uniaxial tension, crack growth 

by mode I occurs on the plane normal to the maximum tensile stress. For a unidirec- 

tional composite material, the plane of fracture is determined both by the loading condi- 

tions, and the fiber orientation, and hence many different paths can be envisaged. Each 

crack growth direction has its own characteristic toughness and the lowest toughness is 

observed when the crack plane is parallel to the fiber direction. A crack lying on such a 

plane as a result of one type of loading conditions is likely to continue to grow in the 

plane even when the loading conditions are changed. 

Since fiber composites exhibit multiple modes of fracture with no certainty of self- 

similar crack propagation, the principles of linear elastic fracture mechanics (LEFM) 



may not necessarily apply to composite fracture. However, for unidirectional fiber com- 

posites in which cracks propagate along the fiber direction, the principles of LEFM are 

applicable. 24 In the case of cracks oriented along the fiber direction, the m c k  tip dis- 

placements can be separated into mode I, mode 11, and mode 11125 (refer to Figure 1.1) 

where the stress intensity factors KI, Kn and Km govern the stress state at the crack tip. 

There are few published results ' 9  13* 15*26,n concerned with the fracture mechanics 

aspects of the Iosipescu test. According to Swanson et al., l5 failure of 0-deg specimens 

was initiated at the notch roots when two axial splits occurred parallel to the fiber direc- 

tion. Walrath and ~ d a t n s ~ *  l1 assume that the actual failure is a result of longitudinal 

crack formation throughout the mid-section. This interpretation is based on the observa- 

tion that specimens first crack at the notch roots, but then sustain load until the specimen 

fails catastrophically. Finite element analysis by Kumosa and co-workers68 demon- 

strated that the nucleation and propagation of cracks in 0-deg and 90-deg specimens were 

controlled by different combinations of normal and shear stresses at the notch roots. 1 
23.1. Basic Failure Modes in Composite Iosipescu Specimens 

The modes of failure in the Iosipescu test are strongly dependent on the material aniso- 

tropy. Three basic failure modes are illustrated in Figure 2J7. Failure mode T is charac- 

teristic of brittle isotropic materials and has been reported4 for a vinyl-ester material. 

The cracks start at the roots of the notches and propagate on the plane of the principal 

tensile stress. Failure is catastrophic and results in complete fragmentation of the test 

specimen. Failure mode S occurs in unidirectional composite materials with fibers in B- 

type orientation. Fracture is controlled primarily by shear; cracks start at the notch roots 

and propagate in an unstable mode parallel to the fibers. When unidirectional composite 



material is tested with A-type orientation, failure mode M is observed. Cracks form 

parallel to the fibers and extend on one side of the notch tip, away from the loading 

points. Failure nucleation is caused by the shear stress concentration at the notch tip and 

crack growth in the plane of the principal tensile stress is prevented by the aligned fibers. 

The actual stresses associated with the initiation and propagation of cracks in mode M 

are complex although the shear stresses are dominant at the notch root. Similar mode of 

failure was observed by Kumosa and ~ ~ 1 1 ~  for a glass fiber-polyester resin unidirectional 

composite material. 

2.4. Fracture Mechanics in Composite Materials 

2.4.1. Constitutive Material Relations 

The stress-strain relations in the principal material directions 1, 2 for an elastic anisotro- 

pic medium are given by28 

involving 6 independent material constants due to the symmetry of the compliance 

matrix. For plane anisotropy, this number reduces to four (Ell, E22, 1112, G12) with 

&tj = 1/G12, a16 = a26 = 0 

and in the case of isotropic material only two independent constants are left (E and v or 



G) with 

all = a= = 1/E, a12 = -v/E 

a66 =2(all -al2) = 1/G, a16 =azs = O  

for plane stress. 28 

2.4.2. Numerical Schemes for Extraction of Fracture Parameters 

The testing as well as design of composites requires the ability to calculate fracture 

parameters such as the energy release rates and the stress intensity factors. There is con- 

siderable literature on numerical analysis aimed at this problem. Most use finite ele- 

ments and then compute the energy release rate by various schemes based on nodal 

forces or displacements. The methods which are most frequently used in the numerical 

fracture investigation of isotropic as well as composite materials are: stiffness derivative, 

29 virtual crack extension, 309 J-integral, 32 the displacement extrapolation method33 

. (the stress intensities and then the energy release rates are calculated from the numerical 

displacements along the crack face), and the virtual crack closure technique. 34-38 Most 

of the above schemes are well established in linear elastic fracture mechanics of homo- 

geneous isotropic materials; however, they may not be strictly applicable or extendible to 

typical fracture processes in composite materials. One of the exceptions is the very 

straight-forward and numerically highly effective crack closure integral technique or the 

virtual crack closure method. In the following sections, the principles and important 

equations in the displacement extrapolation method, J-integral formulation and virtual 

crack closure technique an outlined. 



2.4.2.1. Displacement Extrapolation Method 

The theory of linear elastic fracture mechanics provides two basic concepts which are the 

stress intensity factor (SF) and the energy release rate G. The concept of the stress 

intensity factor is based on the analytical solutions for the stress or displacement field in 

the near vicinity of the crack tip. For a plane problem, the general form for these rela- 

tions arc given by: 

1 - 1 - 
with KI = 0, (na) and Kn = s, (na) ; r and 0 are polar coordinates at the crack tip. 

The SIFs K1 and Kn, associated with the basic fracture modes (refer to Figure 1. l), 

describe the intensities of the crack tip field in relation to the crack length a and the 

applied far field stresses 0; and z&. In the displacement extrapolation scheme, the stress 

intensity factors KI and Kn are evaluated by extrapolating (linear regression analysis) a 

displacement parameter, associated with the crack opening or sliding profile to the crack 

tip. 33 At the crack tip, quarter-point elements, 39940 with the assumed square-root singu- 

larity, are used in the analysis. Quadratic isoparametric elements with the mid-side 

nodes placed at the quarter position (quarter-point elements) have been employed 39-44 

for obtaining the stress intensity factors for elastic problems. The SIF extraction pro- 

cedure was chosen by Kumosa and ~ u l l ~  and Buchholz et al. 26 in their fracture analyses 

of the Iosipescu specimen. The relevant plane stress relations for isotropic materials are 



given by 

where K = (3 - v)/(l + v), and 

(2.1 Oa) 

with ml = cos (0) + pl sin (0) and m2 = cos (0) + p2 sin (0) for orthotropic material 



behavior. Taking into account the presence of the quarter-point node in the displacement 

variation along the crack-tip element, Shih et 01. 42 proposed the following formula: 

where u is evaluated from the points B and C (Figure 2.8). The displacement method - 
equation (2.11) is applicable to isotropic as well as orthotropic fracture analyses. The 

displacements u, and u,,, as estimated from the above formula have to be substituted into 

2 (2.10) in which pi and qi are defined as pi=al lp i  +a12-a16pi9 

Q = a12 u + az21p, - a26, i = 1,2. p1 and p2 are the roots of the following equation, and 

- 25 they always occur in conjugate pairs as p1, il, p2, pz: 

where aij are anisotropic compliances which can be calculated from the elastic properties 

of the orthotropic material (refer Section 2.4.1). 

Equations (2.10a) and (2.10b) express the relationship between the crack tip dis- 

placements and the stress intensity factors. The values of KI and Kn obtained by the 

above method are considered to be good estimates of their true values in the case when 

f 
the distance from the node to the crack tip is taken to be 1 or 2 percent of the total crack 

t length. 45 

I 

p 24-22. The J Contour Integral 

The J contour integral has had great success as a fracture characterizing parameter for 

linear elastic as well as nonlinear elastic materials. By idealizing elastic-plastic deforma- 



methodology well btyond the validity limits of LEFM. 

 ice^^ presented a path-independent contour integral for the analysis of cracks. 

Consider an arbitrary counter-clockwise path (T) around the tip of a crack, as illustrated 

in Figure 2.9. The J-integral is given by: 

where w is the strain energy density, Ti are components of the traction vector, ui are the 

displacement vector components, and ds is a length increment along a contour T. The 

strain energy density is defined as 

where Oij and %j are the stress and strain tensors, respectively. The components of the 1 

traction vector are given by 
h* 

where nj are the components of the unit vector normal to T. 

Rice 32 showed that the value of the J-integral is independent of the path of integral 

around the crack. Thus J is called a path-independent integral. 

The numerical evaluation of the J-integral in 2-D linear elastic as well as nonlinear 

elastic problems is fairly straight-forward. The computation of the J-integral for 2-D 

problems is readily available in most general- purpose finite element programs; however, 

the J-integral in three-dimensions is much more complex, and has yet to reach the 

general-purpose program stage. 



2,423, Virtual Crack Closure Method 

Figure 2.10a shows a crack tip in an infinite isotropic plate subjected to remote mode I 

type loading. If the crack extends from a to a + &, then, for infinitesimal values of &, 

the crack opening displacements behind the new crack tip will be approximately the 

same as those behind the original crack tip. Hence, the work necessary to extend the 

crack from a to a + & is the same as that necessary to close the crack tip from a + 6a to 

a. Irwin46 computed this, and thereafter the energy release rate associated with the crack 

extension from a to a + &. Referring to Figure 2.10a and its notation for a pure mode I 

condition, Irwin' s crack closure integrals are given by46 

J q,(r=x,0=0,a)uy(r=6a-x,0=x,a+6a)dx (2.16) GI (a) = lim - 
&I4 2& 

and 

where (2.17) covers a superimposed or pure mode I1 crack tip condition. Substituting the 

analytical stress and displacement fields ((2.6) and (2.7)) into (2.16) and (2.17), the fol- 

lowing relations have been obtained by 



where K = 1 for plane stress and r = 1/(1- v2) for plane strain problems. Comsponding 

relations have been given by Sih, Paris and Irwin25 for orthotropic materials with cracks 

in the principal material directions 

Equations (2.16) and (2.17) represent the energy release rates Gj(a), j = I, 11 on the basis 

of the work to be done in order to close the crack of length a + & by an amount &. 

According to O'Brien, 35 equations (2.16) and (2.17) can be transformed into the follow- 

ing finite element representation 

1 Gn (a) = - 
2Aa [~~i(a)~ux~~2(a+~a)+~,i+l(a)~ux.~l(a+~a)] (2.22b) 

which holds for the discretization shown in Figure 2.10b. In the above equations, 

F** i (a) and FxrL9 (a) denote the nodal point forces, while Audy, j-2 (a + Aa) and 

Audy/y.j-l (a+ Aa) are the relative nodal displacements. From (2.22a) and (2.22b), it can 

be seen that before obtaining one value of Gj(a), j = I, I1 two finite element analyses have 

to be performed, with crack lengths a and a + Aa. Therefore, this scheme is also referred 

to as the 2C-method (two calculations). As opposed to (2.16) and (2.17), the 2C-method 

has been found to be applicable for finite crack extensions Aa >> 0. 



In order to avoid the disadvantage of the 2C-method, wherein two finite element 

calculations need to be c&ed out, Buchholz, 36 Krishnamurthy et of., 37 and Raju, 38 

have established the following formulae 

in combination with the linear strain element discretization of Figure 2.10b. This is 

refemd to as the improved modified crack closure integral method or 1C-method (one 

calculation). In contrast to the 2C-method given by (2.22), only one finite element 

analysis for the crack length a is required by the 1C-method. This decisive difference 

reduces the computational effort to one half. In case of mixed mode problems, the 

separated energy release rates Gj(a), j = I, I1 are simultaneously obtained from (2.22a) 

and (2.22b) or (2.23a) and (2.23b). 

As mentioned earlier, the virtual crack closure method is well-suited for numerical 

implementation. Since it is an energy-based method, the accuracy of the numerical 

values of the crack tip displacement and stress fields aren't critical, and hence neither 

mesh refinement nor the usage of singular elements (e.g., quarter-point elements, 39*40 

with square-root singularity) at the crack-tip are essential in order to obtain accurate 

results. The modified crack closure integral schemes can be applied to 2-D and 3-D frac- 

ture analyses in isotropic as well as orthotropic materials. The added advantage of this 

method is that the total energy release rate G can be partitioned into its components: G1 

for the opening mode I, and Gn for the sliding mode 11. 



2.4.3. Beam Theory Solutions 

An important fail= mode of cornpositc laminates is the propagation of interlaminar and 

intralaminar defects. When thc laminate is loaded, these defects can propagate to give a 

significant deterioration in pcrfonnance. The energy release rate G has been widely used 

as a fracture parameter for the analysis of crack-like flaws in composite materials. The 

finite element method has been used to compute the G values from the nodal forces or 

displacements. The rtsults, however, are rather complex to interpret, and hence there is a 

need for analytical solutions. ~ i l l i a m s ~ ~  has proposed a beam theory solution for the 

evaluation of the energy release rate G in cracked beams. The approach was applied to 

many popular mode I, mode I1 and mixed mode testing methods, wherein the mode parti- 

tions GI and Gn were also estimated by the analysis. 47-49 

2.4.3.1. Total Energy Release Rate G 

A delamination, such as one shown in Figure 2.1 1 is under consideration. This is a thin 

sheet of thickness 2h and width B containing a crack, a distance hl from one surface. 

The crack tip contour along with the rotations is shown in Figure 2.12. M1 and M2 are 

bending moments applied to the upper and lower sections respectively at the section AB. 

The crack is taken to be originally at 0 on AB and moves to 0' on CD. The initial and 

final rotations on the upper and lower arms are shown in Figure 2.12. G may be defined 

for the contour as 

where U, is the external work performed and Us is the strain energy. 



The total energy release rate G can be expressed as 47 

G =  3 ( l + ~ )  [L[~W] '+  [!%]'-[$+!!$]'I (2.25) 
S B E A  6 da (1-5) da 

where v is Poisson's ratio, E is Young's modulus parallel to the crack, A is the crack 

area, B is the thickness of the specimen, and 6 is a dimensionless quantity (6  = hl/ 2h). 

2.4.3.2. Mode Partitioning 

The critical values for G are different for the opening mode I and the sliding mode 11. It 

is therefore necessary to separate, or partition, the total G mentioned in the previous set- 
\ 

tion into the opening component GI and the sliding, or sheq component Gn. The mode 

partitions can be written as4' 

and 

k 
where 

25. Singular Stress Fields at Sharp Notches. 

Sharp notches or re-entrant comers are introduced in isotropic as well as composite struc- 

tures, usually to facilitate fabrication. Within the limits of linear elastic analysis, the 



stress field is unbounded at the tip of a sharp notch, with the strength of the singularity 

varying with the angle included in the notch. This was reported as early as 1952 by Wil- 

liams. 50 The term singularity is used to denote cases where the elastic stresses become 

unbounded. If r is the distance from the notch tip, and A is the stress singularity (or 

singular power), the stress field is of the order r-A which becomes singular as r tends to 

zero. From a physical viewpoint, unbounded elastic fields are meaningless. Neverthe- 

less, stress singularities cannot be ignored, as their presence indicates that new 

phenomenon (e.g. plasticity, fracture etc.) may occur, leading to localized damage in 

practical situations. The high stress concentration at these "singularity-dominated 

regions make them likely sites for crack initiation, and therefore the potential source of 

ultimate failure. The ability to accurately evaluate the singularities and angular distribu- 

tions around sharp notches is of great importance in design and failure analysis. 

~ i l l i ams~O studied the stress singularities at the tip of a sharp notch in an isotropic 

plate under extension. The first eigenvalues for the entire range of notch angles were cal- 

culated. The boundary conditions on the radial edge were be-free, clamped-free, and 

clamped-clamped. Gross and Mendelson, 51 Lin and Tong, 52-and Portela et al. 53 have 

also investigated the stress singularity at V-notches. Gross and ~ende l son~ l  obtained 

numerical solutions for V-notched plates using the boundary collocation method, while 

Lin and   on^^^ applied hybrid finite elements to solve a similar problem. Portela et al. 

53 evaluated the singularities in V-notched plates by coupling boundary element method 

to a singularity subtraction technique. The bimaterial wedge problem has been studied 

by analytical methods of solution. 54-56 In case of a homogeneous wedge, the eigen equa- 

tion for a sharp notch with fke-free edges reduces to that proposed by Williams. 50 Car- 

penter57*58 has studied the eigenvector solutions and ~ o s e 1 ~ ~  has evaluated the eigen- 



values corresponding to the eigen solution at a sharp notch. Fractum parameters like the 

stress intensity factor and stress concentration factors at sharp notches have been the sub- 

ject of study by some rcscarchers. 

The initial studies conducted on the Iosipescu specimen reveal that, in orthotropic 

materials, the stress field in the gage section is significantly non-uniform, and that there 

exists a high stress concentration at the notch root (refer Section 2.1.1). However, in 

spite of these observations, there have been very few studies so far to determine the exact 

nature of the stress field at the notch, due to the complex nature of the problem. The 

complexities involve, for example, the strong material anisotropy, complex specimen 

geometry, and unusual loading configuration. In the absence of critical infomation 

about the basic nature of the stresses at the notch root, researchers have resorted to vari- 

ous approximate methods, such as incorporating a radius at the notch root, so as to allevi- 

ate these difficulties. On the basis of anisotropic elasticity considerations 

(eigenfunction-expansion technique), Wang and ~ a s g u ~ t a ~ ~  showed that above a critical 

angle, the stress field at the notch root is no longer singular and the shear stress, T,,,, goes 

to zero there. In case of isotropic-Iosipescu specimens, they determined the critical notch 

angle to be 102.6'. 

25.1. Stress Singularity at Sharp Notches 

There are no analytical solutions for the singular power at sharp notches subjected to 

biaxial stress conditions in composite materials. Therefore, one has to seek solutions by 

numerical schemes. Within the framework of numerical methods, the finite element 

method has been widely applied to singularity problems. Of late, the Finite Element 

Iterative Method ( F E I M ) ~ ~ - ~ ~  has proven to be a powerful tool in the evaluation of 



asymptotic singular fields for complex problems in fracture mechanics. 

2.51 Analytical Solution for Homogeneous Isotropic Materials 

The analytical solution for the stress singularity in a homogeneous isotropic plate under 

extension was proposed by Williams. The analysis using the Airy stress function 

approach is summarized below. 

Consider an isotropic material with a sharp V-notch of notch angle a (Figure 2.13). 

A polar coordinate system with 8 = 0' along the -Y direction is assumed. The bihar- 

monic equation in polar coordinates is 

v4y = o 
where 

a2 1 a 1 a2 and y = Any stress function 
r a r  ?a2 v2=s+--+-- 

The stresses can be written in terms of the Airy stress function by the following relations: 

The solution for the stress function y, for a sharp notch, takes the forms0 



For the free-fiee edges, the boundary conditions are 

ae(r,-Ir+a/2)=ae(r,x-a/2)=~(r,-Ir+CJ2)=~(r,x-a/2)=O (2.33) 

which leads to four linear algebraic homogeneous equations in bi (i = 1,2,3,4), namely 

bl(h+l)sin[(L+l)(~-a/2)]+~(li-l)sin[(k-l)(rr-a/2)] = 0 (2.34a) 

bl (k + l)cos[(k+ l ) ( ~  - aR)] + (h + l)cos[(L - l)(x - a ) ]  = 0 (2.34b) 

~ ( h + l ) c 0 ~ [ ( h + l ) ( ~ ~ - ~ ) ] + b ~ ( h - l ) c 0 ~ [ ( h - l ) ( ~ - a / 2 ) ]  = 0 (2.34~) 

~ ( h + l ) s i n [ ( k + 1 ) ( ~ - a / 2 ) ] + b ~ ( ~ + l ) s i n [ ( ~ - l ) ( ~ - ~ ) ]  = 0 (2.34) 

For a non-trivial solution, the determinant of (2.34) must vanish. Thus, the sym- 

metric terms bl, have a non-trivial solutionSo 
I 

li sin(a) - sin[h(2x - a)] = 0 ,  

while the anti-symmetric terms have a non-trivial solution 

h sin(a) + sin[X(2~ - a)] = 0. (2.35b) 

The stresses in (2.29)-(2.31) vary as the second derivative of y, while the displace- 

ments are dependent on the first derivative of v. From the stress and displacement vari- 

ations, it can be inferred that a value of Re X such that 0 < Re h < 1 will give unbounded 

stresses at the notch root. From (2.35a) and (2.35b), two real values, X1 and X2 are 

obtained corresponding to the symmetrical and anti-symmetrical terms respectively. The 

above two singular powers can be related to the strong singularity 5 (symmetric term) 

by La = 1 -hl, and to the weak singularity 1Lb (anti-symmetric term) by &, = 1 -h2, 

where 0 S &, S & S 0.5. Williams has only considered the strong singularity ha. This 



importance of the singular terms at moderate distances from the singular point depends 

on the value of the absolute intensities of the respective singular fields. 56 

25.3. The Finite Element Method 

The finite element method has been used to analyze the stress distributions around points 

of discontinuities. 72=14 The stress distribution along a radial line from the singular point 

can be expressed as 

where r is the distance from the singularity, Al and k are the strength and power of the 

singular field, and ~(r-'") represents terns of the order r-'" and higher. For small dis- 

tances r, the singular term dominates and (2.36) can be approximated by 

Hence a log Gij versus log r plot would be a line with a slope of - k and a Gij intercept of 

A1 

There are many drawbacks in evaluating the stress singularity by the above method. 

In a finite element analysis, the displacements around a crack or comer will comprise of 

the contribution of the structure as well as that of the discontinuity. Therefore, the true 

stress field in the vicinity of the crack-tip or comer is not realized. In cases where h is 

not known apriori, ordinary eight-noded isoparametric elements at the crack- or notch- 

tip disturb the singular stress field, since the assumed linearity of stresses in the crack- or 

notch-tip element is erroneous. To obtain reasonable results, the region dominated by the 

singular field must be sufficiently large. Moreover, mesh refinement in the vicinity of the 

singular point is also required, which drastically increases the computation time and costs 



involved in the analysis. 

25.4. The Finite Element Iterative Method (FEIM) 

The Finite Element Iterative Method ( F E I M ) ~ ~ - ~  was originally developed for evaluat- 

ing fields in elastic media. The method relies on the use of general purpose finite ele- 

ment programs in performing the iterations on the circular mesh shown in Figure 2.14b. 

The FEIM does not require the usage of quarter-point  element^^^.^^ at the crack-tip, for 

crack problems in homogeneous media (square-root singularity); nor are elements with 

embedded singularity7s needed, in cases where the singularity is not known apriori. 

The method has been applied to many problems in fracture mechanics, which includes, 

bimaterial interface cracks of elastic and non-linear media, 64-68 and also to three- 

dimensional interface surface cracks. 70 

2.5.4.1. Basis of the FEIM Approach 

The basis of the Finite Element Iterative Method has been discussed in detail by Bar- 

soum. 63 The method is based on the use of a circular domain around the singularity for 

evaluating the eigenvalues of the transfer matrix of the inner and outer radii of the 

domain. 63965 It is obtained from the overall stiffness matrix of the domain in Figure 

2.14a. The equilibrium equations of the circular domain are 



where [K] is the stiffness matrix of the circular domain, uo is the displacement of the 

origin of the singularity, and u ~ i  is the displacement at any radius Ri except the inner 

radius R, and the outer boundary radius Rb. By a process of elimination, the transfer 

matrix [T J can be obtained. In FEIM, the imposed boundary displacements are obtained 

h m  the resulting displacements UR,. 

merefore, at the mth iteration we obtains 

and 

where A, is a scalar multiplier for normalizing the vector UR,. Using the Rayleigh quo- 

tient argument, 65 at convergence we obtain 

where A is the first dominant eigenvalue of the matrix [TI. It was shown71 that A in 

general is given by 

where g(r)/r is a general singular function. For the case of power singularity, then 

where -)L is the power of the singular stress field. Therefore, for a self-adjoint case, the 

displacement u is given by 

u = krl-"(0) 

This form is referred to as a separable function. 



For a non-symmetric matrix [TI, the system is non-self adjoint, and k is complex. 

Therefore, 

where i == and Re[] designates the real part of the function. This form of the 

asymptotic field is termed a product form. 

25.43 Evaluation of the Second Term of the Asymptotic Field 

In order to describe the asymptotic field around a discontinuity, there may arise a need to 

evaluate the first as well as the second term of the asymptotic expansion. The transfer 

matrix [TI has N eigenvalues A1, . . . . , AN. At any iteration m, the resulting solution 

can be expressed as a linear sum of the complete set of eigenfunctions XI, . . . . , x ~ :  70 

where xl and iiil are the dominant eigenvector and its conjugate. At convergence, as per 

the Rayleigh quotient, the whole field is dominated by the first term in the expansion, and 

hence (2.41 a) reduces to 

The FEIM will always converge to the first term of the expansion, which represents 

the dominant eigenvalue A1 and eigenvector xl respectively. The second term in the 

expansion of the asymptotic field is of the same fonn as (2.40~) or (2.40d) depending on 

whether it is a real or complex singularity. For the case of real singularities (self adjoint 

case), the second term of the asymptotic field can be obtained by selecting the trial vec- 

tors to be orthogonal to xl. Therefore, if the resulting vector from an iteration is Vm, 



then the trial vector for the new iteration is given by66 

um+l =vm -(Vrn .xl)xl 

where urn+' is to be used as the trial vector for the next iteration, which is always 

orthogonal to the first eigenvtctor XI. 

2.5.43 Convergence of the FEIM 

The FEIM is similar to the power sweep method for finding the eigenvalues and eigen- 

functions. 76 The displacement field from the circular domain in Figure 2.14 can be writ- 

ten in the general form68 

which contains regular as well as singular terms in r. When the asymptotic field dom- 

inates the domain surrounding the singularity, the leading singular term in the resulting 

singular displacements will either be 

u + gl (r) fl(0) 9 (2.43b) 

for which case the FEIM will converge, leading to a separable function or a product form 

((2.40~) and (2.40d)), or, in the case of a non-separable field the second term will dom- 

inate, thus 

u + hl(r, 0) (2.43~) 

for a non-separable function. If the function in (2.43~) is a strong non-separable func- 

tion, the FEIM will not converge, because of the circular domain of iteration. 68 
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Figure 2.1 Force, shear and moment diagrams of the Iosipescu shear test. 



Figure 2.2 Iosipescu shear test loading configuration. 

(b) U 

7 Figure 2.3 Boundary conditions for fini tc clement calculations. 
(a) forc~couple condition; and 
@) displacement condition. 
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Figure 2.4 Arcan test method.22
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Figure 2.5 Biaxial Iosipescu fixture.
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Figure 2.6 Load diagram for inducing an in-plane biaxial stress 



7 Figure 2.7 Schematic diagram of failure modes in the Iosipescu specimen. 

'CRACK TIP 

Figure 2.8 Details of crack tip (isoparametric quarter-point elements). 

Figure 2.9 Arbitrary contour around the tip of a crack. 



Figure 2.10 Crack closure integral method. (a) analytical; and @) numerical (VCC). 



Figure 2.1 1 Delamination 

Figure 2.12 Crack tip contour with rotations? 



Figure 2.13 Notch geometry. 

Figure 2.14 FEIM analysis for a sharp notch. (a) Domain of iteration; and (b) Mesh for 
the Finite Element Iterative Method. 





CHAPTER 3 

NUMERICAL RESULTS 

3.1. Finite Element Analysis of the Biaxial Iosipescu Test Method 

3.1.1. Introduction 

There is a strong need to accurately determine and thereafter analyze the stress state in 

the mid-section of the Iosipescu specimen. This is primarily due to two factors: firstly, 

the stress state at the center of the Iosipescu specimen is of importance in regard to the 

determination of the elastic properties of isotropic as well as composite materials; 

secondly, the stresses at the notch roots govern the initiation of the failure process. In 

this part of the study, a linear elastic finite element analysis under generalized plane 

stress was conducted to determine the macroscopic stress distribution in the Iosipescu 

specimen. The analysis was performed for notch angles a from 60' to 150', and for 

loading angles $ in the range -45' S $ S 38'. The materials considered in the analysis 

were polyester resin (isotropic), glass/polyester and carbon/epoxy unidirectional compo- 

sites respectively. Analytical solutions for the external load components as a function of 

the loading angle @ (see Appendix A) were firstly obtained. In order to verify the suita- 

bility of the model, von Mises stress contours from the finite element analysis were com- 

pared to isochromatic fringe patterns taken from the literature. * * *  The stress state at the 

center of isotropic as well as composite specimens were evaluated under biaxial loading 

conditions. The nature of the stress concentration at the notch root was explored by 

studying the sotss variation as a function of the notch-root element size. Finally, the 



stress distribution in the notch-root region was analyzed for loading angles in the range 

-45' S + S 30', in order to obtain an understanding of the failure mechanisms in the Iosi- 

pescu specimen for the specimen geometry, material orientation and loading conditions 

under consideration. 

3.1.2. Finite Element Model 

The finite element code ANSYS 4 . 4 ~ ~ ~  was used in the numerical computations, which 

were performed on an IBM RS16000 workstation (see Appendix F for details). Eight- 

noded isopararnetric quadrilateral and six-noded triangular elements with both isotropic 

and orthotropic elastic properties were used. The effect of orthotropy ratio was examined 

with El1/Eu (ER) ranging from 1 to 14.2; the input elastic properties * are shown in 

Table 3.1. With reference to the material coordinates, the 1- and 2-axes will be defined 

as the in-plane coordinate axes. Material orientations A and B were used to model 0-deg 

and 90-deg unidirectional fiber composite materials respectively . In both orientations, 

the 1-direction corresponds to the fiber direction (Figure 3.1). From the photoelastic 

results of a study conducted by Broughton and co-workers, 2*8 it was concluded that the 

force-couple loading condition best approximates the actual experimental loading 

configuration. Therefore, in this study, the force-couple boundary conditions were used 

in the finite element model of the Iosipescu specimen. 

The Iosipescu specimen dimensions are shown in Figure 3.2. The mesh for the Iosi- 

pescu specimen along with the force-couple boundary conditions are shown in Figure 

3.3. The total compressive load P was arbitrarily taken as 115N. The entire specimen 

had to be modeled due to the asymmetric loading conditions. The notch-rod radius p 

was taken as zero in the finite element model. The external load was applied to the 



specimen with the force-couple condition in the form of a set of nodal forces which did 

the sam amount of work on the structure as the two force couples. The finite element 

model shown in Figure 3.3 is for the particular case of a = 90' and $ = 0' (pure shear); it 

consists of 1964 isopararnetric elements and 5281 nodes. The mesh was constructed in 

such a manner that the density of elements was highest around the notches and in the 

vicinity of the loading points. 

3.1.3. Stress Distribution in Iosipescu Specimens 

3.1.3.1. von Mises Stress Contours 

In any modeling attempt, it is critical to firstly evaluate the suitability of the chosen 

boundary conditions. From a finite element analysis, the von Mises stress contours can 

be obtained, which when compared to isochromatic fringe patterns, give a good measure 

of the models predictions vis-8-vis the actual stress state realized in an experiment. In 

Figures 3.4 and 3.5, the von Mises stress contours are shown along with the isochromatic 

fringe for a = 90' and ER = 1, while in Figures 3.6 and 3.7 the same are 

presented for ER = 14.2 in orientations A and B respectively. The contour values indi- 

cated in Figures 3.4 - 3.7 correspond to those obtained for the von Mises stress contours. 

Some of the most representative stress contours for ER = 14.2 (orientations A and B) and 

a = 60°, 75', 120°, and 150' are presented in Appendix B. 

3.1.3.2. Stress Distribution at the Center 

The stresses (aij) at the center of the Iosipescu specimen were evaluated numerically as 

well as analytically, as a function of the loading angle +, and orthotropy ratio ER. The 



numerical values were obtained from the finite element calculations. The analytical for- 

mulae2 are based on the assumption that there exists a one-to-one comspondence 

between the applied load and the stress state at the centtr, the stresses at the center are 

talcen to be independent of the orthotropy ratio ER, and all notch-effects are neglected. 

As indicated by the above assumptions, the approach is very straight-forward. In other 

words, if the total compressive load P acts at an angle $ (see Figure A.l in Appendix A), 

the stress state at the center can be written as: 

(3. la) 

where A is the net cross-sectional area between the notches. 

The analytical as well as numerically computed normal (a, and oy) and shear 

stresses (zxy) for ER = 1 are shown in Figure 3.8. In Figures 3.9 and 3.10, the same is 

presented for the highly orthotropic material (ER = 14.2) in orientations A and B respec- 

tively. 

3.1.3.3. Stress Distribution at the Notch Roots 

An in-depth study of the shear stress concentration at the notch roots was conducted. 

The shear stress distribution at the notch root was evaluated for isotropic and composite 

Iosipescu specimens with notch angles in the range 60' 5 a 1 150'. In Figure 3.1 1, the 

variation of the normalized shear stress (zxy/F) between the center and the notch root is 

plotted as a function of a for ER = 1 and $ = 0'. In Figures 3.12, the same is presented 



for ER = 14.2 (orientation A) and + = 0'. 

Since the V-notches in the finite element model of the Iosipescu specimen were 

considered to bc sharp (p = O), one expects a s a s s  singularity to exist at the notch root. 

In ordcr to verify the above speculation, the shear stress distribution in the vicinity of the 

notch root was evaluated for different notch-root element sizes. In Figure 3.13, the shear 

stress plots are shown, while in Figure 3.14, the variation of I& with notch-root element 

size is presented. Kt is defined as the ratio of the shear stress at the notch root (rg) to 

the shear stress at the specimen center (T&). It can be seen from Figures 3.13 and 3.14 

that the shear stress appears to be unbounded at the notch root, which indicates the pres- 

ence of a singular stress field at the notch root. The stress singularity computations for 

angular sharp notches by the Finite Element Iterative Method will be presented in Sec- 

tion 3.3. 

The shear stress concentration Kt at the notch root was evaluated for different ortho- 

tropy ratios ER, and varying notch-root element sizes. The data is presented in Table 

3.2, and the variation of Kt versus ER on a logarithmic plot is shown in Figure 3.15 for 

three different notch-root element sizes. From Figure 3.15, it can be seen that the varia- 

tion of log I& versus log ER is linear, with increasing slopes for reducing notch-root ele- 

ment sizes. 

The stress distribution (aij) around the notches determines the initiation of the 

failure process at the notch root of Iosipescu specimens. The mode of failure is depen- 

dent on the material (isotropic or composites) as well as on the orientation of the fibers 

(0-deg or 90-deg) in case of unidirectional composites. A systematic finite element 

analysis of Iosipescu specimens with 90' notch angles was carried out. The analyses 

were done for isotropic (ER = 1) and composite specimens (ER = 14.2) under biaxial 



loading conditions. In Figures 3.16-3.18, the results are shown for ER = 1. In Figures 

3.19 - 3.21, the results are presented for ER = 14.2 (orientation A), while those in Figures 

3.22-3.24 arc for ER = 14.2 (orientation B). The results shown in Figures 3.16 - 3.24 

were computed with a notch-root element size of 0.5mm. . 
1 

3.2. Application of the Finite Element Iterative Method to Sharp Notches 
i 

The results obtained from Section 3.1.3.3 indicate the presence of a smss singularity at 

the notch root for angular sharp notches. In order to investigate the nature of the stress 

singularity (also known as the singular power), the Finite Element Iterative Method 

(FEIM) was applied to sharp notches in isotropic as well as orthotropic media. The 

method is formalized for it's application to sharp notches in the following section. 

3.2.1. Iterative Approach for Plane Stress 

The application of the Finite Element Iterative Method for a crack has been presented by 

I 
Barsoum. 64 A similar approach is used in this analysis to evaluate singular stress fields 

at the tip of sharp notches. A generalized case of plane stress is assumed in the linear 
k 

elastic numerical analysis. 

(a) A fan-shaped mesh is constructed around the notch root (Figure 3.25). Only half- 

space is modeled for the notch in case of symmetry (mode I E tension) or anti- 

symmetry (mode I1 r shear) in the loading. Under mixed mode loading, full-space 

for the notch has to be modeled. The radii of the rings of elements which follow a 
I 

(3) refinement 
i: 



where L is an arbitrary dimension. 

Since the singularity at the notch root is not known a priori, ordinary eight-noded 

isopararmtric elements are used. 

The boundary conditions are: fkee along notch face, restrained from motion along 

X-direction (mode I loading) or Y-direction (mode 11 loading) along the line of 

symmetry* 

Using Figure 2.14a as a schematic, the iterative procedure is as follows. 

0 
(i) Displacements { u ~ b  } are applied on the boundary at radius Rb. In this study, 

mode I, mode 11, and mixed mode displacements are considered. 

0 
(ii) Finite element analysis is performed and the displacements { UR, } at radius Rs 

from the notch root are obtained. 

0 0 
(iii) The notch root displacement { uo ) is subtracted from { UR, } and scaled by a 

1 
factor A, to obtain the new boundary displacement { U R ~  } 

1 
{ uRb } = A ( { } - { U: } ) where, A = (R~&)'-' 

(iv) The value of as well as subsequent values (hi, i=l, 2,3, ..., n), where i 

refers to the ith iteration, are evaluated by a linearized least square curve-fit of 

displacements along a ray emanating from the notch root. 

(v) Steps (ii) to (iv) are repeated a number of times until convergence of k is 

achieved. 

(vi) Convergence is said to have been attained when two consecutive values of k 

are the same (i.e., & = L 1 )  up to the 4th significant digit after the decimal. 



3.2.2 Stress Singularity Computations 

The stress singularity at the notch root was evaluated for notch angles a in the range 

0' S a S 180', under three different loading conditions: mode I, mode 11, and mixed 

mode. The effect of orthotropy ratio on the stress singularity at the notch root was exam- 

ined with ER varying from 1 to 14.2 (Table 3.1): material orientations A and B were con- 

sidered in the numerical analysis (see Figures 2.13 and 3.1). 

In order to develop an FEIM program the programming features of Ansys 

Parametric Design Language (APDL)~~  were utilized. A parametric model, comprising 

of a set of user-defined macros were developed for the implementation of the Finite Ele- 

ment Iterative Method at sharp notches. 

3.2.2.1. Mode I Loading 

A fan-shaped mesh was constructed around the notch tip (Figure 3.25a). Arbitrary initial 

mode I displacements were prescribed on the outer ring: { u, ) = 0.001 mrn. All dis- 

placements are in the Cartesian coordinate system (Figure 2.13). 

The FEIM approach was applied as outlined in Section 3.2.1. The numerical and 

analytical stress singularities are presented in Table 3.3, with precision up to the 4th 

significant digit after the decimal. It can be seen that the numerical and analytical 

resultsso for the isotropic case are in excellent agreement. The numerically evaluated 

stress singularities are within 0.5% of the analytical results. The stress singularities were 

evaluated by considering the u, displacements along a particular ray emanating from the 

notch root to the outer ring. A linearized least square curve-fitting algorithm was used in 

the computations. The listed values of ka in Table 3.3 are the average values of h, 



cvaluotcd along thnx different rays emanating fkom the notch root. In annition, the vari- 

ation of &, as a function of notch angle a for different orthotropy ratios is shown in Fig- 

ure 3.26a. 

In all cases, convergence was attained in two or three iterations. Moreover, the con- 

verged values were the same along different rays. As an example, the convergence along 

three different rays, for the particular case of a = 90' and ER = 1 is shown in Figure 

3.27a. In addition, a finite element representation of the deformed structure overlapped 

with the original structure at convergence is shown in Figure 3.28. 

The stress singularity at the notch root was also studied under compression. The 

stress singularities in the above case were the same as those in tension uable 3.3). 

32.22. Mode I1 Loading 

In this case, the fan-shaped mesh around the notch tip was identical to that used in ten- 

sion (Figure 3.25a). Arbitrary initial mode I1 displacements were prescribed on the outer 

ring: { uy } = - 0.00 1 rnm. All displacements are in the Cartesian coordinate system (Fig- 

ure 2.13). After imposing the initial boundary displacements, the FEIM approach was 

applied. 

The stress singularities were evaluated by considering the uy displacements along a 

particular ray emanating from the notch root to the outer ring. A linearized least square 

curve-fitting algorithm was used in the computations. The singularities under mode II 

loading are listed in Table 3.4, with precision up to the 4th significant digit after the 

decimal. Based on the results of individual iterations, convergence was not observed in 

three cases ( a  = 105', 120°, 150') for ER = 14.2 (A). The listed values in Table 3.4, for 

the above cases, are intermediate values during the analysis, where convergence is 



'expected'. But for the above three anomalks, convergence was observed for all the 

other cases. The listed values of the stress singularities in Table 3.4 are the average 

values evaluated along three different rays emanating from the notch root. The variation 

of the singularity under mode I1 loading, as a function of the notch angle a for different 

orthotropy ratios is shown in Figure 3.26b. 

The number of iterations for convergence under mode 11 loading was much higher 

than in the case of mode I loading, and was dependent on the notch angle a and the 

orthotropy ratio ER. The converged values were the same along different rays. In Figure 

3.27b the convergence along three rays is shown, for the particular case of a = 90' and 

ER = 1. In addition, a finite element representation of the deformed structure overlapped 

with the original structure at convergence is presented in Figure 3.29. 

333.3. Mixed Mode Loading 

A full fan-shaped mesh around the notch tip was considered, due to the non-symmetrical 

loading conditions (Figure 3.25b). The stress singularity at the notch root was studied as 

a function of the loading angle $, for the notch angle a = 90'. The loading angle @ was 

used as a measure of the tension to shear ratio in the loading. The elastic properties con- 

sidered in this part of the analysis were those for ER = 1 and 14.20. The loading angle @ 

was varied from 45' (tension E shear) to 89.9' (almost pure shear). The initial displace- 

ment distribution (in mm) prescribed on the right half of the outer ring was: 

{ u, } = 0.01 cos @, { u, ) = -0.01 sin 0, while that on the left half of the outer ring was: 

{ u, } = -0.0 1 cos @, { u, ) = 0.0 1 sin @. All displacements are in the Cartesian coordinate 

system (Figure 2.13). The FEIM approach was subsequently applied to the fan-shaped 

mesh. The stress singularities were evaluated by considering the u, displacements along 



a particular ray emanating fiom the notch root to the outer ring. A linearized least square 

curve-fitting algorithm was used in the computations. The evaluated singularities under 

mixed mode loading are listed in Table 3.5, with precision up to the 4th significant digit 

after the decimal. The listed values of k in Table 3.5 a .  the average values evaluated 

along three different rays emanating from the notch root 

The number of iterations for convergence was strongly dependent on the loading 

angle $, but did not significantly vary with the orthotropy ratio ER. The number of itera- 

tions (along one particular ray ) increases from 5 for @ = 45' to 8 for @ = 89.9' (Figure 

3.30). The stress singularity values are listed in Table 3.6, and a finite element represen- 

tation of the deformed structure overlapped with the original structure for $ = 89.9' is 

shown in Figure 3.31. 

33.3. Interpolation Formulas 

In Section 3.2.2, the stress singularities & and kb were computed as a function of the 

notch angle a and orthotropy ratio ER. Simple interpolation formulas which could 

describe the variation of ha and kb with a and ER are of particular significance to a prac- 

ticing engineer. By using them, one can estimate the singularities without having to rely 

on time-consuming and cost-intensive numerical analysis. It is with this in mind that an 

attempt was made to propose interpolation formulae for li, and kt,. 

The dependency of k, and on a and ER is complex in nature; hence, a straight- 

forward polynomial interpolation will not yield accurate results. Considering the trends 

observed in the results obtained in Section 3.2.2, power products of log(ER) and cos(a/2) 

were chosen as basis functions. A least square fitting algorithm in the sense of the norm 

was developed (code was written in Fortran 77) to estimate the coefficients in the 



assumed expansion of and b. 

33.3.1. Strong Singularity & 

The data set for the interpolation of La was taken from Table 3.3, wherein 0' 5 a S 180' 

and ER = 1114.2, 113.45, 1, 3.45, and 14.2. The orthotropy ratios 1114.2 and 113.45 

represent the values in orientation B (Figure 2.13). The interpolation formula obtained 

for li, can be written as: 

where a is in radians. 

The values obtained for k, from the above interpolation formula were found to 

match well with the numerical results presented for La in Table 3.3. As an example, in 

Figures 3.32a and 3.32b, the predictions by the interpolated formula - equation (3.2) are 

shown along with the analytical50 and numerically computed singularities for ER = 1 and 

ER = 14.2 (A). The values for La obtained from the interpolation can be expected to 

have errors of 10% or less. For values of a in the vicinity of 0' or those in the neighbor- 

hood of 180°, one may obtain k, > 0.5 or ha < 0 respectively. In the former case, 

ha = 0.5 must be assumed, while in the latter case, La = 0 must be taken. Equation (3.2) 

may breakdown for very low or very high values of ER, which lie far away from the 

lower and upper bounds of ER considered in this study. 



3.233. Weolr Singularity & 

Tk data set for the interpolation of & was taken from Table 3.4. As opposed to the case 

of &, above a certain value of a, bvanishes, which can be seen from Table 3.4. Hence, 

firstly a regression analysis of qa versus log ER was performed to determine an expres- 

sion for the critical angle ai, as a function of ER. An R square value of 0.99869 was 

considered to be acceptable for a cubic interpolation. Then, on the remaining data (non- 

zero values of kb), a similar analysis to that performed in tension was carried out. The 

interpolation formula obtained for & can be written as: 

f - 1.6241827 cos ( a )  + 0.3206903 cos (a) log(ER) 

- 5.6477222 cos3 (~42) + 2.7200093 cos4 (a )  for a < qCr 
(3.3a) 

for a 2 q, 

where a is in radians and 4, is given by 

a,, = 1.7961 + 0.201580 log(ER) + 0.023773 [ log(ER) l2 
+ 0.006406 [ log(ER) l3 (3.3b) 

where a, is in radians and ER > 1 in orientation A, while ER < 1 in orientation B. 

In Figures 3.32a and 3.32b, the predictions by the interpolated formula - equation 

(3.3) are shown along with the analytica150 and numerically computed singularities for 

ER = 1 and ER = 14.2 (A) respectively. The accuracy and limitations of the above inter- 

polation formula for kb are the same as those that were discussed for the case of k, (see 

Section 3.2.3.1). 



3.3. Mixed Mode Fracture in Ioeipescu Specimens 

33.1. Introduction 

The design and development of composite materials relies on the fundamental 

knowledge of the fail- processes in these advanced materials. From an engineering 

perspective, the knowledge of single crack-tip fracture parameters like the stress intensity 

factor or the energy release ratc is required to predict the stnngth and life of cracked 

structures. The above information, in conjunction with experimentally determined criti- 

cal values (K1, or GI=) and crack growth rates for structural materials make such predic- 

tions possible. Since exact solutions of the elasticity problem formulated for cracked 

composite structures are very difficult or nearly impossible to obtain, recourse is taken to 

numerical methods such as the finite element method to obtain the fracture parameters. 

In this part of the study, a finite element analysis of coplanar cracks along the fiber k c -  

tion in Iosipescu specimens (a = 90') was carried out. Mixed mode crack propagation 

was studied for loading angles + in the range -45' 5 + S 30°, and for crack lengths a 

from lmm to 13mm. Stress intensity factors (KI, Kn) and energy release rates (GI, GII, 

Gbw) were evaluated as a function of the crack length a and loading angle $. Beam 

theory solutions for the energy release rates in Iosipescu specimens were also proposed 

and subsequently compared to the results obtained from the finite element computations. 

33.2. Finite Element Model 

The finite element mesh of the Iosipescu specimen with two skew-symmetric cracks 

(a = 1Omrn) is shown in Figure 3.33; the mesh consists of 1426 elements and 4339 nodes. 

Force-couple boundary conditions for $ = 0' are also illustrated in Figure 3.33. The total 



compressive load P was assumed to be 1kN. A fan-shaped mesh was constructed around 

both the crack tips; the maximum separation between the crack faces was talcen as 1% of 

the crack length a. There are 12 elemnts in the circumferential direction around the 

crack-tip. In Figure 3.34, the inner mesh along with the crack-tip elements (non-singular 

elements) are shown. Ordinary six-noded triangular elements were used at the crack tip 

for the energy release rate computations by the J-integral and the virtual crack closure 

schemes (2C- and 1C-methods); for the displacement extrapolation method, quarter-point 

with the mid-side nodes moved to the quarter-position were used. The 

crack-tip element size was 0.025mm for all crack lengths. The fan-shaped mesh around 

the crack tip facilitated easier mesh refinement without unduly increasing the total 

number of elements; in addition, the circular nodal paths were well-suited for the J- 

integral calculations. 

The orthotropy ratios considered were those for ER = 1 (isotropic) and ER = 14.2 

(A-type); the elastic properties are listed in Table 3.1. The isotropic case has physically 

no meaning since such cracks cannot form in isotropic materials; it was taken more 

as a means to compare the G values with those obtained for the orthotropic case. 

33.3. Computation of Fracture Parameters 

33.3.1. Numerical Schemes 

There have been very few numerical studies concerned with the fracture mechanics 

aspects of the Iosipescu shear test. 7926927 Hence, there is a need for further work in this 

direction. The displacement extrapolation technique, J-integral, and VCC-methods are 

very well established in linear elastic fracture mechanics of homogeneous isotropic 



materials. However, the extrapolation and VCC-schems haven't been thoroughly inves- 

tigated for orthotropic fracture analysis. Since the code development for orthotropic 

material behavior is not the same in all commercially available finite element programs 

(ANSYS 4 . 4 ~ ~ ~  in this study), one can't rely on the fracture parameters obtained without 

any prior validation. Moreover, considering the fact that this is the first attempt at 

numerically investigating mixed mode fracture under bianial loading conditions in 

orthotropic Iosipescu specimens, it was all the more necessary to firstly validate the 

chosen numerical schemes. In order to verify the numerical schemes for orthotropic frac- 

ture analysis, a single edge-crack in an orthotropic strip under uniaxial tension was con- 

sidered. The reference solution by Kaya and ~ r d o ~ a n ~ ~  provided a simple means for 

comparison, and thereby to check the accuracy of the numerical schemes. In an earlier 

study, Buchholz and c o - ~ o r k e r s ~ ~ . ~ ~  chose the same test problem in order to validate the 

VCC-scheme for orthotropic Iosipescu specimen under pure shear (@ = 0') loading condi- 

tions. The numerical results obtained by the VCC schemes (2C- and 1C-methods) and 

the displacement method - equation (2.11), for the above test problem, are listed in 

Appendix D. It can be seen from Tables D.l -D.3, that there is very good agreement 

between the numerical and reference solution78 results. Due to the excellent results 

obtained for the test problem, some confidence was attained in the methods, prior to their 

application to the case of coplanar cracks in the Iosipescu specimen. 

The stress intensity factors K1 and Kn are widely used in the fracture analysis of 

isotropic materials; however, in composite fracture mechanics, the energy release rates 

GI, Gn, and G are more frequently applied. In keeping with the norm, all the numerical 

results that follow in Section 3.3.4 are expressed in terms of GI, Gn, and G. In the fol- 

lowing sub-sections, the implementation of the displacement extrapolation methods, J- 



integral, and the VCC-schemes are outlined. 

(i) Displacement Method - Equarion (2.1 1)  

The displacement method using (2.1 1) provides a simple means to evaluate the stress 

intensity factors KI and Kn from the crack-tip displacements. Using (2.10) and (2.1 I), 

the stress intensity factors in orthotropic materials for plane stress problems can be writ- 

ten as 

and 

where L is the crack-tip element size; B and C are the evaluation points - B is the 

quarter-point node, while C is the comer node along the crack-tip element (Figure 2.8); 

p1 and p2 are the roots of the transcendental equation (2.12); and, a1 1 and a22 are the 

elastic compliances (Section 2.4.1). 

The stress intensity factors were evaluated by the above approach, and subsequently 

the energy release rates GI and Gn were computed from (2.20) and (2.21). Since the 

problem under consideration is for orthotropic materials under mixed mode loading con- 

ditions, the stress intensity values obtained from the upper, and lower crack faces may 

differ; hence, KI and Kn were calculated from the nodal displacements at points B and C 

(Figure 2.8) on either crack face. 



(ii) Displacement Extrapolation Method 

The most accurate results for the stress intensity factor from the crack-tip displacements 

are obtained by the displacement extrapolation method. For cracks in homogeneous iso- 

tropic materials, the KCALC command on ANSYS 4 . 4 ~ ~ ~  was used to automatically 

evaluate the stress intensity factors by a displacement extrapolation technique. However, 

for the orthotropic cracked-Iosipescu specimen, the analysis had to be manually per- 

formed. A linear regression of the displacements scaled by rlR from r = 0.025mm to r = 

0.4mm was canied out; the analysis was performed separately for the upper and lower 

crack faces (Figure 3.35a). The best-fit straight line was obtained and extrapolated to the 

crack-tip (r = 0). Using the x-displacements in the analysis, the parameter u: was 

obtained at r = 0, while the y-displacements yielded the parameter u; at r = 0 (Figure 

3.35b). Substituting ui and u; instead of (4uBX - uc, )K and ( h B y  - uCy)/K in (3.4) 

and (3.5) respectively, the stress intensity factors, and thereafter the energy release rates 

were computed. 

(iii) J-Integral 

The ~ - i n t e ~ r a l ~ ~  characterizes the crack-tip stress state in linear as well as nonlinear elas- 

tic materials. In case of isotropic materials (linear elastic), the J-integral is equivalent to 

the energy release rate G. Since J is a path-independent integral, the J results obtained 

along any path around the crack-tip must yield the same value. The macro JIN2.MAC, 

which is available on ANSYS 4.4A, 77 was used in the estimation of the J-integral; two 

different paths were considered in the J-integral calculations (Figure 3.36). 



(iv) Virtual Crack Closure (2C-method) 

The virtual crack closure (2C-method) scheme was outlined in Section 2.4.2.3. Two 

finite element analyses at crack lengths a and a + & respectively were performed. From 

the first analysis (crack length a), the forces ahead of the crack tip were determined, 

while from the second analysis (crack length a +  Aa), the displacements behind the 

crack-tip were evaluated. Using the nodal displacements and the nodal forces, the mode 

partitions GI and Gn were estimated from (2.22a) and (2.22b) respectively. 

(v) Virtual Crack Closure ( I  C-method) 

The modified virtual crack closure (1C-method) technique, wherein only one analysis is 

required to be performed, was outlined in Section 2.4.2.3. The displacements behind the 

crack tip, and the nodal forces ahead of the crack tip were computed. Subsequently, the 

G-components, namely, GI and Gu were evaluated using (2.23a) and (2.23b) respec- 

tively. 

33.33. Beam Theory Solutions 

On the basis of Williams' beam theory analysis for cracked laminates, 47 an analytical 

model for the energy release rates in cracked Iosipescu specimens under biaxial loading 

conditions was proposed. 79 The details of the approach and the expressions obtained for 

G, GI, and Gn are presented in Appendix C. The moment M2 and it's derivative dM2/da 

were evaluated from (C.l)-(C.6) in Appendix C, and then substituted into equations 

(C.7)-(C.9), to obtain the estimates for G, GI, and GII respectively. Since the mixed 

mode energy release rate G obtained from the analytical solution was significantly 



different in comparison to the J-integral values, the analytical results for G from (C.7) 

were not considered in this study; instead, the sum GI + Gn was taken to be the analytical 

estimate for the mixed mode energy release rate G. 

33.4. Energy Release Rates GI, Gn, and G 

The mode partitions GI and Gn, and the mixed mode energy release rate G (GI + GII) 

were evaluated by all the schemes discussed in the previous section. A detailed listing of 

a l l  the numerical and analytical results is included in Appendix E. The J-integral values 

along the paths and r2 (Figure 3.36) differed by 2% or less; the J-integral values 

listed in Appendix E are the average of the two path calculations. Herein, some of the 

important results and observable trends are presented. 

It can be seen from the results obtained for the edge-crack in an orthotropic strip 

under tension (Appendix D), that the VCC-2C method is the most accurate among all the 

numerical schemes considered in this study. Hence, the VCC-2C results were taken as 

the representative numerical solution for GI, Grr, and G. In Table 3.7, the numerical 

results obtained by the displacement method - equation (2.11) for the particular case of 

$ = 0' and ER = 14.2 (A-type) are compared to the VCC-2C results. The loading angle 

$ = 0' (pure shear) is used by practitioners involved in the analysis of the Iosipescu shear 

test also, based on the experimental findings of Broughton, crack lengths of 10-13mm 

are observable in the Iosipescu shear test, for the specimen dimensions shown in Figure 

3.2. In light of the above two facts, the VCC-2C and beam solution results will be 

presented for the above conditions. 

In Figure 3.37a, the deformed structure for a = lOmm, 9 = oO, and ER = 14.2 (A- 

type) is shown, while in Figure 3.37b, the deformation of the crack-tip region is 



illustrated. It is apparent from the above deformed plots that the displacements around 

the crack tip exhibit mixed mode fracture conditions. In Table 3.8, the total energy 

release rates are listed for a = lOmm and ER = 1, while in Table 3.9, the results are 

presented for ER = 14.2 (A-type). In Figures 3.38a and 3.38b, the above data is shown 

for isotropic and orthotropic (A-type) Iosipescu specimens respectively. The total energy 

release rate G monotonically decreases as $ is varied from t) = -45' to @ = 30'. The only 

exception is $ = -45' for ER = 14.2 (A-type), where there is a noticeable decrease in the 

G value. In Table 3.10, the total energy release rates are listed as a function of the crack 

length a, for the loading angle $ = 0' and ER = 1, while in Table 3.1 1, the results are 

presented for ER = 14.2 (A-type). In Figures 3.39a and 3.39b, the above data is illus- 

eated for isotropic and orthotropic (A- type) Iosipescu specimens respectively . For short 

and medium length cracks, there is very poor agreement between the G values obtained 

by the beam solution and those from the VCC-2C scheme; however, for long cracks 

(a 2 l o r n ) ,  there is a reasonable match between the beam solution and VCC-2C results. 

In Table 3.12, the energy release rates GI (opening mode) and GII (shearing mode) are i 

listed for a = lOmm and ER = 1, while in Table 3.13, the results are presented for ER = 

14.2 (A-type): In Figures 3.40a and 3.40b, the above data is shown for isotropic and 

orthotropic (A-type) Iosipescu specimens respectively. The trends exhibited by GI and 

Gn are similar to those observed for G; both, GI and Gn decrease as + changes from -$ 

to +$, with $ = -45' and ER = 14.2 (A-type) being the sole and notable exception to the 

general trend. In Table 3.14, the mode partitions GI and GII are listed as a function of 

the crack length a, for the loading angle + = 0' and ER = 1, while in Table 3.15, the 

results are presented for ER = 14.2 (A-type). In Figures 3.41a and 3.41b, the above data 

is illustrated for isotropic and orthotropic (A-type) Iosipescu specimens respectively. It 
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3.12- 3.15, that the results for GI and Gn by the beam solution 

with the VCC-2C results. 



Table 3.1. Input elastic properties8 of the materials used in the analysis for 
the finite element and Finite Element Iterative Method. 

Material Isotropic Glass/polyester Carbon/epoxy 

ER 1.00 

Ell  @pa) 3.60 

E22 @pa) 3.60 

V12 0.36 

G12 (GPa) 1.40 

Table 3.2. Shear stress concentration (Kt) at the notch root as a function of 
notch-root element size. 

Notch-root element 
size (mm) 

Orthotropy ratio Shear stress 
ER concentration Kt 

14.2 (B) 
3.45 (B) 

1 .o 
3.45 (A) 
14.2 (A) 

14.2 (B) 
3.45 (B) 

1 .o 
3.45 (A) 
14.2 (A) 

14.2 (B) 
3.45 (B) 

1 .o 
3.45 (A) 
14.2 (A) 





Table 3.4 Stress singularity (&,) in shear. 

ER Weak Singularity (xb) 
a=oO a=60° a=75' a=90° a=105' a=120° a=150° 

14.2 (B) 0.4975 0.0430 0.0046 0.0001 0.0000 0.0000 0.0000 

3.45 (B) 0.4970 0.1476 0.0647 0.0083 0.0002 0.0000 0.0000 

1 0.4978 0.2715 0.1889 0.0924 0.0093 0.0000 0.0000 

1 0.5000' 0.269 1 0.1868' 0.09 15' 0.0000' 0.0000' 0.0000' 

3.45 (A) 0.4981 0.3072 0.2453 0.1758 0.0957 0.0157 0.0000 

14.2(A) 0.4979 0.3403 0.2878 0.2329 0.1577+ 0.0980' 0.0116+ 

* Theoretical solution by williarnGo 
+ 'Expected' values; convergence wasn't observed 





Table 3.7. Comparison of energy =lease rates (GI, Gn, G) by the displacepent 
method and the VCC-2C scheme: ER = 14.2 (A-type) and + = 0 . 

Displacement methodt - equation (2.1 1) VCC-2C 
scheme 

a GY ~ f .  G Y ~ .  GI ~b ~fivg- G' G"I* GI Gn G 

(mm) &Vm2) (kJ/m2 ) 

t Superscripts U and L refer to values computed from the upper and lower crack faces 
respectively. 
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Table 3.8. Mixed mode energy release rate G (GI + %) for ER = 1 and a = 10mm. 

Table 3.9. Mixed mode energy release rate G (GI + GII) for ER = 14.2 (A-type) 
and a = 10mm. 
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Table 3.10. Mixed mode energy release rate G (GI + Gn) for ER = 1 and @ = 0'. 

Table 3.11. Mixed m@e energy release rate G (GI + Gn) for ER = 14.2 (A-type) 
and@=O. 



Table 3.12. Mode partitions GI and Gn for ER = 1 and a = 1Omm. 

Beam solution Virtual crack closure 

0 GBE cflE ~ r ~ ~ - ~ ~  Ggcc-ZC 

(degree) ( k ~ l m ~ )  wlm2)  w lm2)  ( k ~ l m ~ )  

Table 3.13. Mode partitions GI and GII for ER = 14.2 (A-type) 
and a = 10mm. 

Beam solution Virtual crack closure 

0 G B ~  aE I ~ ? i ~ ~ - ~ ~  GVCC-?~ 

(degree) w lm2)  W/m2 ) (kJ/m2) w lm2)  



Table 3.14. Mode partitions GI and Gn for ER = 1 and 9 = 0'. 

Beam solution Virtual crack closure 

a GpE G ! ~  G y s 2 c  G ~ C C - ~ C  

(mm) w/m2) (urn2) w/m2) (k J I ~ ~  ) 

Table 3.15. Mode partitions GI and GII for ER = 14.2 (A-type) and 
$ = 0". 

Beam solution Virtual crack closure 

a G B ~  ~8~ G Y ~ ~ - ~ ~  ~ 8 ~ ~ - ~ ~  
(mm) (kJ1m2) (Wm2) (Wm2 ) ( k ~ l m ~  



Figure 3.1 Fiber orientations in Iosipescu specimen. 
(a) 0-deg (orientation A); and 
@) 90-deg (orientation B). 

t - lmm (plane stress) 
h'- 20mm 
w- 3hl - 12mm 
L- 80mm 

Figure 3.2 Schematic of Iosipescu specimen. 





(a)

(b)

Figure 3.4 von Mises stress contours and isochromatic fringe patterns2fora ... 90° and
ER = 1 under shear-tension. (a) <p= - 45°; and (b) <p... - 30°.
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(a)

(b)

Figure 3.5 von Mises stress contours and isochromatic fringe patterns2fora. - 900 and
ER = 1. (a) <p... 00 (pure shear); and (b) <p... 300(shear-compression).
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Figure 3.6 von Mises stress contour and the isochromatic fringe pattern for a-90° and
ER = 14.2(A-type)underpureshear. ..
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Figure 3.7 von Mise..,stress contour and the isochromatic fringe pattern2fora-90° and
ER = 14.2 (B-type) under pure shear.
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Figure 3.9 Normal and shear stresses at the center of orthotropic Iosipescu specimens 
(A-type) obtained froem numerical and analytical computations. 
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Figure 3.10 Normal and shear stresses at the center of orthotropic Iosipescu speciinens 
(B-type) obtained from numerical and analytical computations. 
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Figure 3.13 Shear stress distribution as a function of the notch-root element size. 
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Figure 3.14 Plot of K, versus the notch-root element size. 
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Figure 3.15 Plot of log K, versus log ER for different notch-root element sizes. 





Figure 3.17 Nonnal stresses (oy) near the notch root in isotropic specimens along the 
line y = w/2 ;IS a function of the loading angle $. 











Figure 3.22 Normal stresses (4) between the notch roots in orthotropic specimens 
(B-type) as a function of the loading angle +. 



P = q-q =115N 



Figure 3.24 Shear stresses (z,,,) between the notch roots in orthotropic specimens 
(B-type) as a function of the loading angle $. 
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Figure 3.26 Stress singularity at sharp notches as a function of  notch angle and 
orthotropy ratio. (a) Mode I loading; and (b) Mode 11 loading. 
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Figure 3.27 Convergence along three different rays for a - 90' and ER = 1. (a) Mode I 
loading; and @) Mode I1 loading. 





Figure 3.29 Deformed structure at convergence (13th iteration) 
under mode I1 loading. 
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Figure 3.31 Deformed structure under mixed mode loading (41 - 89.9'). (a) 0th iteration; 
and @) At convergence (8th iteration). 
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Figure 3.32 Interpolated stress singularities. (a) ER = 1; and @) ER = 14.2. 
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Figure 3.34 Inner mesh. (a) Fan-shaped mesh around the crack tip; and 
@) Crack-tip elements (non-singular). 
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Figure 3.35 Displacement extrapolation method (a - lOmm, + = oO, ER = 14.2). 
(a) Regression paths A-B (upper crack face) and C-D (lower crack 
face); and (b) Linear regression. 



Figure 3.36 Paths for J-integral calculations. 
! 

b 







1 1 . I 1 I 1 1 I 

t 
\ 
\ - - - .  
\ Beam Solution - \ 

\ 
Virtual Crack Closure (VCG2C) 

\ 
\ 
\ 
\ 
\ 
\ 
\ - 
\ 

IDAD P = lltN a 

\ 

0.0 
-45.0 -30.0 -1 5.0 0.0 15.0 30.0 

Loading angle + (degree) 

0.0 
-45.0 -30.0 -1 5.0 0.0 15.0 30.0 

Loading angle + (degree) 

1 I I I 1 1 1 I 1 

4 
\ - 
\ 

- - - - .  
\ 

Beam Solution 
\ Virtual Crack Closure (VCC-2C) 
\ 
\ 
\ - \ - 

\ 
\ 
\ 
\ 

LOAD P = lkN 
\ - \ - 

\ 
\ 
\ 

L 

- 
% - -  - - - - - - - I - - 

I I I 
------- 

1 1 1 1 1 

Figure 3.38 M i x 4  mode energy release rate G (GI + GIr) as a function of loading 
angle $ for a = 1Omm. (a) ER = 1; and (b) ER = 14.2 (A-type). 
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Figure 3.39 Mixed mope energy release rate G (GI + GII) as a function of crack length 
a for $ = O  . (a) ER = 1; and (b) ER = 14.2 (A-type). 
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Figure 3.40 Variation of GI and Gn with loading angle @ for a = 1Omm. (a) ER = 1; and 
(b) ER = 14.2 (A-type). 
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Figure 3.41 Variation of GI and Gn with crack length a for $ = 0'. (a) ER = 1; and 
(b) ER = 14.2 (A-type). 



CHAPTER 4 

DISCUSSIONS 

4.1. Stress Distribution in I& pescu Specimens 

A linear elastic finite element analysis under generalized plane stress was performed to 

determine the macroscopic stress distribution in the mid-section of the Iosipescu speci- 

men. The analysis was carried out for notch angles a in the range 60' S a 5 150' in 

either shear ($ = 0') or a combination of shear, transverse tension (-$) or compression 

(+$) loading conditions. The materials modeled in this analysis were polyester resin 

(isotropic), glasslpolyester and carbon/epox y unidirectional composites respectively, 

with orthotropy ratios ER = 1,3.45, and 14.20 respectively. 

In Figures 3.4-3.7, the von Mises stress contours and isochromatic fringe pat- 

t e rn~**~ are presented for isotropic as well as orthotropic Iosipescu specimens. The con- 

tours for isotropic and orthotropic specimens are found to match well with the iso- 

chromatic fringe pattems. It can be seen from Figures 3.4 and 3.5 that the stress contours 

for ER = 1 are distributed anti-symmetrically about the notch-root axis. In Figures 3.4 

and 3.5, stress concentrations near the notch root and in the vicinity of the loading points 

are clearly visible. In Figure 3.5, the fringe patterns and von Mises contours are shown 

for orthotropic Iosipescu specimens in orientations A (0-deg) and B (90-deg) respec- 

tively. As opposed to the isotropic case, in B-type unidirectional fiber composites, the 

maximum stress-regions are near the center of the specimen. 



at the center of Iosipescu specimens are illustrated. It is apparent from the above figures 

that there is a significant difference between the stresses predicted by the analytical for- 

mulae vis-8-vis those obtained from the finite element calculations. Even though the 

trends for at least the shear stress G~ are similar, there is a marked difference in the 

analytical (T:~) and numerical (T;) values. As one would expect, the simplistic analyti- 

cal approach is not sufficient to predict the stress field at the center of the Iosipescu speci- 

men. The non-linear behavior, notch geometry, specimen dimensions, orthotrop y ratio, 

fiber orientations and other factors need to be considered in the analytical model for 

accurate results. 

In Figures 3.1 1 and 3.12 the variation of the normalized stress along the notch-root 

axis is presented as a function of the notch angle a. For the isotropic Iosipescu specimen 

under pure shear (q = oO), the normalized shear stress at the notch root zgm > 1 for all 

a S go0, while zgm < 1 for all a 2 105'. In case of the orthotropic specimen (A-type) 

with ER = 14.2,zGm > 1 for all a 5 120°, while z!Fm < 1 for a 2 150'. 

The shear stress along the notch-root axis is plotted in Figure 3.13, while the varia- 

tion of the shear stress concentration Kt with notch-root element size is shown in Figure 

3.14 ( a  = 90°, ER = 1, @ =oO). It can be seen from Figures 3.13 and 3.14 that the stress 

concentration factor increases with decreasing notch-root element size. Similar trends 

in the shear stress concentration were also seen for ER = 3.45 (A-type) and ER = 14.2 

(A-type). The shear stress concentration Kt as a function of the notch-root element size 

is presented in Table 3.2; the same data is plotted in Figure 3.15. Kurnosa and HUH' 

have proposed the relation Kt = A (ER)''~ (refer equation (2.2) in Section 2.1) for the 

variation of the shear stress concentration with fiber orientation. It can be clearly seen 

h m  Figure 3.15 that the shear stress concentration at the notch-root is a function of the 



notch-root element size. The slopes of the lincs increase with decreasing notch-root ele- 

ment sizes, and thus the above mentioned relation is inapplicable at the notch-root. All 

the above findings clearly indicate that the stress field is singular at the notch-root in iso- 

tropic as well as orthotropic materials. 

The stress distribution around the notch-root region was studied under mixed mode 

loading conditions for a = 90' (Figures 3.16 - 3.24). The stresses were calculated along 

the x- and y-directions. A complex state of stress, with both normal and shear stresses 

are present around the notch-root region. An important feature of the normal stresses 

(ax and oY) that can be seen for d l  $ 2  0' in Figures 3.16 and 3.17 is the changing of 

sign as one traverses across the vertical center-line of the specimen. When the loading 

changes from pure shear (+ = 0') to shear-tension (- $), the normal stresses tend to 

become tensile on either side of the notch. In Figure 3.19, the longitudinal normal stress 

ox for the orthotropic specimen (A-type) shows a gradual transition from tension to 

compression as the loading changes from - $ (shear-tension) to + $ (shear-compression). 

However, the transverse normal stress (o,,) shows a distinct change in sign across the 

center-line of the specimen. For al l  $, ay is tensile on the opposite side of the loading 

points, while it is compressive on the same side of the loading points for orthotropic 

specimens (A-type). In Figures 3.22 and 3.23, the normal stresses for the orthotropic 

specimen @-type) show marked differences in comparison to ER = 1 or ER = 14.2 (A- 

type). Both the normal stresses for the B-type specimen show an appreciable rate of 

change from tension to compression as the loading changes from - + (shear-tension) to 

+ $ (shear-compression). From Figures 3.20 and 3.23, the respective transverse normal 

stresses for the A-type and B-type orthotropic specimens can be compared. Under pure 

shear ($ = 0') there exists a small transverse-tensile stress at the notch root for the B-type 
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specimen (Figure 3.23), while in casc of the A-type specimen, the stress is compressive 

in nature (Figure 3.20). This difference is responsible for the lower shear strengths 

recorded in orthotropic Iosipescu specimens tested in the B-type fiber orientation. This 

observation has been found to be true from earlier experimental as well as numerical stu- 

dies on the Iosipescu shear test. 68 

4.2. Singular Stress Fields at Sharp Notches 

The Finite Element Iterative Method was applied to sharp notches for evaluating the 

singular power at the notch root. The stress singularity was studied as a function of the 
, 

notch angle a, and the orthotropy ratio ER. The simplicity and accuracy of the FEIM 

approach was demonstrated in the determination of the stress singularity at the notch 

root, in either isotropic or orthotropic materials. 

The analytical solution by ~illiarns~O indicates that there are two stress singulari- 

ties at the notch root: the strong singularity L, and the weak singularity A+. The FEIM 

results always converges to the dominant singularity at the notch root, when multiple 

singular powers exist. It can be seen from the data presented in Table 3.3 that the numer- 

ically evaluated stress singularity at the notch root under mode I loading always con- 

verges to La. The numerical results for the isotropic case (ER = 1) are in excellent agree- 

ment with the analytical solution proposed by Williams. s As the notch angle is 

decreased, the singular power increases, attaining a maximum value of 0.5 for a = o', 
which is the limiting case when a notch becomes a crack. The same trend can be seen in 

Figure 3.26a with increasing ER (orientation A), though the rate of increase in the stress 

singularity is significantly greater. In orientation B, the stress singularity values are 

lower than those computed for the isotropic case. In all cases, two or three iterations 



were sufficient for convergence. The few iterations needed for convergence were due to 

two factors: the presence of a strong singular field L, and a large region dominated by it 

in comparison to the kb singular field. 

The numerically evaluated stress singularity under mode I1 loading always con- 

verges to &,, which implies that the dominant singular power at the notch root is the 

weak singularity. Even though li, still exists at the notch root, the intensity of the & 

field is zero, and hence the asymptotic term involving Ata makes no contribution to the 

stress field in the immediate vicinity of the notch tip. There exists a critical angle 

above which vanishes under shear loading conditions (see Table 3.4). For the iso- 

tropic case, a, is approximately 103'. This suggests that the stress field at the notch root 

is non-singular in the above case. Moreover, the critical angle a, varies with the ortho- 

tropy ratio ER. With increasing ER, a, increases in orientation A, but decreases in 

orientation B, with respect to the isotropic case. The above findings can explain some of 

the finite element results obtained in regard to the shear stress distribution near the notch 

root in isotropic and orthotropic Iosipescu specimens under pure shear (Figures 3.1 1 and 

- 3.12). The numerically computed critical angle a, for ER = 1 and ER = 14.2 (A- 

type) are approximately 105' and 150' respectively. Since the stress fields are non- 

singular for a > hr, one would expect the normalized shear stress @Ern) to be less than 

1 for all notch angles greater than %. These very results were obtained in Section 

3.1.1.3, and the discussions that followed on the same in Section 4.1 corroborate the 

above inferences drawn from the stress singularity computations. 

The rate of convergence under mode 11 loading was observed to be much slower 

than that for mode I loading. This suggests, apart from the fact that the singular power 

lib is much weaker than La, that the region dominated by the &, singular strtss field is 



also much smaller than that of the ir. stress field. 
1 

The mathematical and numerical basis for the convergence to the weak singularity 

&, under mode I1 loading needs to be elaborated. The mathematical formulation for the 

case when there are two terms in the asymptotic expansion of the singular field is out- 

lined in Section 2.3.4. The numerical scheme to evaluate both the singularities (strong 

and weak singularities in this study) is also discussed. The displacement field at the nth 

iteration {uib ) can be represented as a linear sum of the complete set of eigenfunctions. 

Let u, and ub be the eigenvectors corresponding to ha and lib respectively. At conver- 

gence, only the dominant eigenvector u, is present in the expansion. Since the system is 

self-adjoint, and the transfer matrix [TI is real (real h), the eigenvectors are orthogonal 

(uf . ub = 0). Hence, if the trial vector in the numerical analysis is taken to be orthogo- 

nal to Ua, the second term in the asymptotic expansion (hb in this study) can be 

evaluated. 70 In a mode I analysis, li, was obtained. Since the initial displacement vector 

for a mode I1 analysis is orthogonal to that in a mode I analysis, convergence to kb is 

realized in a mode 11 analysis. 

Under mixed mode loading, convergence was always to the strong singularity La, 

irrespective of the loading angle +. This suggests that the dominant singular power at the 

notch root for any mixed mode loading is always ha. Since the weak singularity & still 

exists at the notch root, the stress state at the notch root is always a biaxial one. This 

indicates that failure at the notch root is always under mixed mode stress conditions. It is 

apparent from Figure 3.30 that with increasing +, the number of iterations for conver- 

gence increases. Qualitatively, this indicates that the region dominated by the ka singu- 

lar stress field decreases as the loading changes from mixed mode to mode II. 



Interpolation formulas for La and & as a function of the notch angle a and ortho- 

tropy ratio ER were proposed. In Figure 3.32% the interpolated values obtained for ER = 

1 from equations (3.2) and (3.3) are shown along with the results from Williams' solu- 

tion, 50 while in Figure 3.32b, the interpolated values for ER = 14.2 (A-type) are com- 

pared to the numerically computed s a s s  singularities (nfer Tables 3.3 and 3.4). The 

stress singularity predictions by equations (3.2) and (3.3) were found to be within 10% of 

the numerically computed values for the entire range of a and ER considered in this 

study. Hence, the interpolation formulas can be viewed as a simple and adequate tool for 

an engineer who does not need high-precision in the singularity-estimations. 

43. Mixed Mode Fracture in Iosipescu Specimens 

A linear elastic finite element analysis under generalized plane stress was performed to 

compute the energy release rates (GI, Gn, G) for two skew-symmetric splits along the 

fiber direction in Iosipescu specimens. The computations were carried out for specimens 

with notch angle a = 90' in either shear ($ = 0') or a combination of shear, transverse 

tension (- $) or compression (+ $). The energy release rates were evaluated for crack 

lengths a from lmm to 13mm in isotropic as well as orthotropic Iosipescu specimens 

(A-type) 

In order to validate the VCC-schemes for orthotropic fracture analysis, the bench- 

mark test of an edge-crack in an orthotropic strip in tension was considered; the numeri- 

cally and analytically78 determined stress intensity factors are listed in Appendix D 

(Tables D. 1 - D.3). The numerical and reference solution results are in good agreement. 

It can be seen that, for orthotropic fracture analysis, a crack-tip element size of the order 

of 2% or less of the crack length gives accurate results, with the VCC-2C method giving 
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the best results among the numerical techniques used in this study. The above observa- 

tion of VCC-2C being more accurate than the VCC-1C approach is expactmi, since the 

2C-approach is applicable for finite crack extensions Aa > > 0, while the 1C-scheme is 

F 
strictly exact only in the limit Aa + 0. In contrast to the VCC-schemes, the displacement 

method results arc less accurate, and art also a stronger function of the crack-tip element 
1 

I 
size. Since only two values from the finite element calculations (uB and uc - Figure 

2.8) arc needed for the displacement method, it is by far the easiest to apply. However, it 

leads to the least accurate results, a finding which is supported by other studies too. 43*44 

In Table 3.7, the energy release rates obtained in orthotropic (A-type) Iosipescu 

specimens by the displacement method - equation (2.1 1) are compared to the VCC-2C 

scheme. The Iosipescu test loading configuration is rather unusual in the sense that the 

upper crack face is stressed, while the lower one is unstressed (Figure 4.1). Hence, in a 

mixed mode fracture analysis of the Iosipescu specimen, it is likely that the G values 

obtained from the upper and lower crack faces will differ. It can be seen from Table 3.7 

that there is a significant difference in the G values computed from the upper and lower 

crack faces. The displacement method results from either crack face or even their aver- 

age are in poor agreement with the VCC-2C results for the orthotropic composite speci- 

men. Kumosa and ~ u l l '  used the average value of the comer-node displacements in 

their orthotropic fracture analysis of the Iosipescu specimen under pure shear ($ = 0'). 

The energy release rates reported in their study are erroneous; Buchholz et al. 26 have 

subsequently correctly recalculated the G values using the virtual crack closure tech- 

nique. The above findings indicate that the stress intensity factors obtained by con- 

sidering only two nodal displacements in the mixed mode orthotropic fracture 

andysis of the Iosipescu specimen are fraught with inaccuracies. 
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In Appendix E, the detailed listing of the energy release rate computations for iso- 

tropic as well as orthotropic (A-type) fracture analyses are presented Due to the poor 

rcsults of the displacement mthod for orthotropic (A-type) Iosipescu specimens, a linear 

regression (displacement extrapolation method) of the displacements along either crack 

face (Figure 3.35a) was performed; the results are listed in Table E.4. For isotropic 

specimens, all  the numerical estimates match very well (Tables E. 1 and E.2); however, 

for orthotropic (A-type) fracture analysis, there is a marked difference in the G values 

obtained from the energy methods (VCC) vis-a-vis the displacement extrapolation tech- 

nique. The results obtained from the VCC-1C scheme are within 2% of those from the 

VCC-2C method; however, the results from the displacement extrapolation vary as much 

as 10 to 20% from the VCC-2C results. In order to facilitate the discussions for this part, 

some of the results listed in Tables E.3 and E.4 are reproduced in Table 4.1. From Table 

4.1, a direct comparison of the results obtained from the dispacement extrapolation 

method and the VCC-2C scheme can be made. It can be seen that even in case of the 

extrapolation technique, there are marked differences in the G values computed from the 

upper and lower crack faces. A striking observation is that the GI ,Gu, and G values 

from the upper crack face are by and large much greater than those computed from the 

lower crack face. This appears to be so, because the upper crack face is stressed, while 

the lower one is unstressed. Taking into account the average values for GI, GD, and G, 

an error of 10-20% with respect to the reference numerical solution (VCC-2C) is observ- 

able. However, if the results from only the upper crack face are taken into consideration, 

the errors involved are 5% or less. Even though the displacement extrapolation scheme 
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In Tables 3.8-3.15, the energy release rates obtained from the kam solution are 

compared to those from the VCC-2C method (the representative numerical scheme), 

while in Figures 3.38 - 3.41, the same data are graphically illustrated. From the data, it is 
I 

apparent that there is a disagreement between the beam solution and numerical rcsults. 

The disparity is especially large for short cracks. In a study conducted by Broughton, 
I 

cracks lengths of 10-13 rnm were observed in composite specimens tested in the Iosi- 

pescu shear test (Figure 4.2). Conside~g the above fact, it is appropriate to discuss the 

results for long cracks only. From Tables 3.8 and 3.9, it can be seen that even for - $ and 

+ $ loading angles, there is a significant disagreement; however, from Tables 3.8 - 3.11, 

it can be observed that, for long cracks (a 2 10mm) under pure shear 9 = oO, there is rea- 

sonable agreement between the beam solution and the VCC-2C results. The G values for 

long cracks under pure shear from the beam theory solutions are within 10% of the 

numerical results. The estimates for the mode partitions GI and Gn from the beam 

theory solution do not match the 2C-results (Tables 3.12 - 3.15) at all. 
t 

The cause for the disagreement between the predictions from the analytical model 

in comparison to the numerical results needs to be elaborated. The beam theory is appli- 

cable to beams of constant cross-section, with the well-known parabolic shear stress dis- 

tribution. As opposed to a beam, in the Iosipescu specimen, the shear stress distribution 

is uniform along the notch-root axis due to the presence of two sharp V-notches. In case 

of short cracks, the constant shear stress distribution affects the G calculations, and hence 

a marked difference between the analytical and numerical G values is observable. For 

long cracks, the notch-effects are reduced, and therefore, the Iosipescu specimen can be 

considered to be equivalent to a beam. In this case, the G values from the beam solution 

are found to be in fair agreement with the VCC-2C results. 



In Figure 3.41, the variation of GI and Gn with crack length for $ = o', and ER = 1 

and ER = 14.2 (A-type) is shown. The crack-tip loading conditions are always mixed 

mode, with the normal- and shear-components varying with the crack length a. For short 

cracks (a S 4rnm), mode I is dominant (GI > Gn), while for long cracks (a 2 lOmm), 

mode II is dominant (Gn > GI). The above trends are also evident in Tables E.l oE.4 for 

a l l  other loading angles too. It is seen from Tables E.l -E.4 that for a particular crack 

length a and ER = 1, the mixed mode energy release rate G monotonically decreases as 

the loading changes from $ = - 45' (shear-tension) to $ = 30' (shear-compression). Simi- 

lar trends are also observable for ER = 14.2 (A-type), although for @ = -4s0, there is a 

drop in the G value. Taking into account the observable mnds in the G values, it can be 

inferred that orthotropic composites are more prone to fracture under shear-tension (+) 

loading conditions than under shear-compression (+$) loading conditions. 



Table 4.1. Comparison of energy release rates (G, q, Gn) by the displacement 
extrapolation method and the VCC-2C scheme: ER = 14.2 (A-type) 

Displacement extrapolationt 
- linear regression 

VCC-2C 
scheme 

t Superscripts U and L zfer to values computed from a linear regression along the upper and 

i 
lower crack faces respectively (see Figure 3.35a). 
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Figure 4.1 Crack faces.

Figure 4.2 Two skew-symmetric cracks in a APC-2 carbon/PE~ Iosipescu
specimen tested under shear loading conditions (cj>- 0 ).2
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CHAPTER 5 

CONCLUSIONS 

In this study, a preliminary numerical investigation of the biaxial Iosipcscu test method 

was carried out The numerical study, using linear elastic finite element analysis under 

generalized plane stress, can be broadly divided into three parts: stress distribution in iso- 

tropic and orthotropic Iosipescu specimens; evaluation of the stress singularity at angular 

sharp notches by the Finite Element Iterative Method, and extraction of fracture parame- 

ters (GI, Gn, G) for skew-symmetric splits along the fiber direction in Iosipescu speci- 

mens. The results obtained in this study lead to the following conclusions: 

(1) The stress distribution in the Iosipescu specimen strongly depends on the specimen 

geometry, elastic properties, and the biaxial loading conditions. 

(2) There exists a complex stress distribution in the vicinity of the notch roots. The 

transverse normal stresses are tensile on the opposite side of the loading points, 

while they are compressive on the same side of the loading points along the hor- 

izontal line passing through the notch roots. 

(3) Singular stress fields are present at the notch roots @ = 0) in isotropic as well as 

orthotropic materials. Hence, the usage of the term "stress concentration factor Kt 

at the notch root" is meaningless. 

(4) The relation Kt = ~ ( ~ 1 1  / &)'I4, proposed by Kumosa and ~ull', is inapplicable at 

the notch root of sharp V-notches (p = 0). The above equation breaks-down in the 

region dominated by the singular s a s s  field; however, outside the singular domain, 



thc relation between the orthotropy ratio and the shear stress is valid This fact has 

been demonstrated by Broughton and c o - ~ o r k e r s ~ * ~  who have successfully applied 

the above relationship as a shear correction factor in the estimation of shear 

modulus for unidirectional composite materials. 

(5) The Finite Element Iterative Method is a simple and accurate tool to determine the 

power of the singular field at sharp notches in either isotropic or orthotropic materi- 

als. 

(6) The strong singularity &, and the weak singularity lib are dominant at the notch 

root, under mode I and mode IT loadings respectively. 

(7) There exists a critical angle a, above which La and lib vanish under shear loading 

conditions. With increasing ER, the critical angle a, increases when the stiffness is 

greater along the X-axis, but decreases when the stiffness is greater along the Y- 

axis, with respect to a, = 103', which is the critical angle for the isotropic case. 

(8) The stress singularities at the notch root are a function of the orthotropy ratio ER, 

and also depend on the material orientation. With increasing ER, ha and &, 

increase when the stiffness is greater along the X-axis, but decrease when the stiff- 

ness is greater along the Y-axis, with respect to the isotropic case. 

(9) Under mixed mode loading, the strong singularity ha is always dominant at the 

notch root. 

(10) In composite Iosipescu specimens, with fibers along the X-direction, skew sym- 

metric splits, originate from the notch roots, and propagate along the fiber direction. 

The axial splits propagate under mixed mode conditions, with GI > Gn for short 

cracks (a S 4mm), and Gn > GI for long cracks (a 2 1Omm). 



(11) The fracture-parameter estimations for axial splits in Iosipescu specimens is 

strongly dependent on the material behavior: accurate results for isotropic materials 

an obtained by all the numerical schemes considered in this study; however, the 

same isn't true for orthotropic materials. The numerical results obtained for the 

energy release rates by the modified crack closure integral schemes (energy-based 

methods) are much more accurate than the displacement extrapolation techniques. 

(12) The analytical estimations for the energy release rates by the beam theory solution 

are in poor agreement with the numerical results obtained from the modified crack 

closure integral schemes, especially for short and medium crack lengths. However, 

for long crack lengths (a 2 IOmm), the G values from the beam solution are found 

to be in fair agreement with those from the crack closure schemes. 



This work has raised several interesting questions in regard to the &hue and 

failure aspects of Iosipescu specimens under biaxial loading conditions. Some of 

the subject areas that can be explored in futum research-studies are as follows: 

The material behavior and the notch geometry are two critical parameters that 

govern the stress state in the vicinity of the notch roots in the Iosipescu specimen. 

An elasto-plastic analysis, with finite notch-root radius would be a much better 

computational model, in order to represent the actual stress state realized in an 

experiment, wherein, plasticity-effects are always present at the notch root of the 

specimen. Furthermore, from a 3-D analysis, it would be possible to ascertain if 

through-the-thickness effects are pronounced, and also if the loading points and 

other constraints in the experimental set-up have an influence on the stress distribu- 

tion in tlie specimen. 

In this study, the finite element meshes for uncracked as well as cracked Iosipescu 

specimens were not optimized. Future studies could look into the optimization of 

the finite element meshes, which could lead to a standardization of the finite ele- 

ment meshes used in the numerical analysis of the biaxial Iosipescu test. 

(3) In order to develop the "ideal" specimen geometry for shear testing, the optimum 

notch angle and orthotropy ratio for which there is pure shear in the specimen can 

be investigated. 



CHAPTER 6 

SUGGESTIONS FOR FUTURE WORK 

This work has raised several interesting questions in regard to the fiactwe and 

failure aspects of Iosipcscu specimens under biaxial loading conditions. Some of 

the subject artas that can be explored in future research-studies arc as follows: 

The material behavior and the notch geometry are two critical parameters that 

govern the stress state in the vicinity of the notch roots in the Iosipescu specimen. 

An elasto-plastic analysis, with finite notch-root radius would be a much better 

computational model, in order to represent the actual stress state realized in an 

experiment, wherein, plasticity-effects are always present at the notch root of the 

specimen. Furthermore, from a 3-D analysis, it would be possible to ascertain if 

through-the-thickness effects are pronounced, and also if the loading points and 

other constraints in the experimental set-up have an influence on the stress distribu- 

tion in the specimen. 

In this study, the finite element meshes for uncracked as well as cracked Iosipescu 

specimens were not optimized. Future studies could look into the optimization of 

the finite element meshes, which could lead to a standardization of the finite ele- 

ment meshes used in the numerical analysis of the biaxial Iosipescu test. 

In order to develop the "ideal" specimen geometry for shear testing, the optimum 

notch angle and orthotropy ratio for which there is pure shear in the specimen can 

be investigated. 



(4) Extensive experimental studies need to be conducted in order to determine the elas- 

tic propaties and strengths of the materials. Tk failure envelop of isotropic as 

well as composite materials must be obtained in order to evaluate the test method 

for biaxial characterization of isotropic as well as composite materials. The experi- 

mental data would be of tremendous importance for the development of better com- 

putational models in the future. 

(5) The application of the Finite Element Iterative Method to sharp notches can be 

extended by investigating the eigenfunctions (angular distribution) associated with 

the eigenvalue problem. 

(6) There have been very few studies on the nature of the singular stress field in 3-D 

anisotropic wedges. The power of the singular stress field in 3-D wedges would 

probably be a function of the through-the-thickness depth, apart from the wedge 

angle being a parameter that influences h. The FEIM would be an ideal candidate 

to apply, in order to compute the eigenvalues and eigenfunctions associated with the 

3-D singular stress field. 

(7) Even for finite notch radius, singular stress fields theoretically exist. The FEIM 

mesh and approach for finite notch-radii can be studied in order to come-up with a 

suitable formulation that can be implemented on any general-purpose finite element 

program. 

(8) Many questions still remain unanswered in the orthotropic fracture analysis of the 

Iosipescu specimen. Firstly, an in-depth study of all the numerical schemes (their 

pros and cons) for mixed mode fracture analysis needs to be carried out. This 

would establish firm guidelines in regard to the "best" approach for analyzing mixed 

mode fracture in the Iosipescu specimen. 



(9) The crack closure integral schemes can only be applied to linear elastic analysis. 

Hence, especially for mixed mode fracture in three-dimensional nonlinear problems, 

the scope of other numtrical techniques such as the virtual crack e x t e n ~ i o n ~ ~ * ~ ~  and 

the equivalent domain integrala83 can be investigated. 

(10) Experimental studies on the Iosipescu specimen under biaxial loading conditions 

will yield the critical values for mode I (GI,) and mode 11 (Grrc) crack propagation. 

The above data, in conjunction with the numerically obtained values (GI, Gn, G) in 

this study, will be able to give further insights in regard to the dominant fracture 

mechanisms in 0-deg unidirectional composites. The above analyses (experimental 

and numerical) can also be carried out for cracks along the notch-root axis in 90-deg 

unidirectional composites. 

(11) In this study, the beam theory results were not in agreement with the numerical 

results, especially for short and medium crack lengths. Attempts at modifying the 

beam theory for the Iosipescu specimen configuration and loading conditions can be 

looked into, in order to come-up with a suitable analytical model for the energy 

release rates in Iosipescu specimens. 

(12) Finally, the biaxial Iosipescu fixture is currently being used to investigate unidirec- 

tional composite materials, as well as adhesively-bonded composite systems. Since 

the fixture has the capability of testing specimens under cyclic loading, fatigue and 

the problems that come with it are another new-dimension that can be explored 

using the biaxial Iosipescu fixture. 
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APPENDIX A 

In this Appendix, using moment and force balance, the external loads in the biaxial 

Iosipescu stress test are derived. The loads P1 and P2 are expressed in terms of the total 

compressive load P, loading angle $, and specimen dimensions. 

A.1. Derivation of Load Components 

In the biaxial Iosipescu test method, the total compressive load P is applied at various 

loading angles $, where $ is the angle between Po and P (see Figure 2.6 in Chapter 2). 

The angle + is taken as positive when the specimen is rotated in a counter-clockwise 

direction and negative when the rotation is clockwise. The test specimen is loaded in 

shear-compression for positive loading angles (+$) and in shear-tension for negative 

loading angles (-+). The analytical models of the Iosipescu specimen for the two cases 

(+ $ and - $) are shown in Figures A. la and A. 1 b respectively. 

By simple moment and force balance considerations, the following expressions for 

the load components as a function of $ are obtained: 

(A* 1) 

21 + h'tan $ 2c - h'tan$ 

where the orientation of PI and PZ for +$ and -$ loading angles are shown in Figures 

A. la  and A. 1 b respectively. 

In the load component calculations, the values of + are to be taken as positive for 



+$ and negative for -+ loading angles. From (A.l), the critical loading angle for 

counter-clockwise rotation (+ 0) can be written as: 

+& = tan-' (2c / h') ( A 3  

while that for clockwise rotation (- 4) can be expressed as: 

$, = tan-' (- ( I  - C) / h') 

From (A.2) and (A.3), it can be inferred that the expressions for the load corn- 

ponents are admissible only for values of $ in the range $& 5 $ i $& (Note: $& is a 

negative value). 



shear & 
compression shear shear & 

tension 

shear & 
tension shear shear & 

compression 

Figure A1 Iosipescu specimen under in-plane biaxial stress state. (a) anti-clockwise 
rotation (+ e); and @) clochvlse rotation (- $). 
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APPENDIX C 

In this Appendix, the derivation of the energy =lease rates G, GI and Gn in the Iosipescu 

specimen is outlined using beam theory analysis. The analysis is applied for isotropic as 

well as unidirectional composite (orthotropic) Iosipescu specimens under combined shear 

and compression or tension loading conditions. 

C.1. Analytical Solution 

The beam solution proposed by williamsl for cracked laminates was applied to the 

Iosipescu specimen with skew-symmetric cracks. The crack configuration, along with 

the loading conditions and specimen dimensions are shown in Figures C.la and C.lb. 

The moments M1 and M2 acting on the two arms of the right crack are firstly determined 

as a function of the crack length a and the loading angle $. Then, on applying (2.25), 

(2.26), (2.28) and (2.27), the total energy release rate G, the opening component GI, and 

the shear component Gn are respectively evaluated. 
I 

I 
C.1.1. Moments MI and M2 

The moment M1 is zero for all crack lengths and loading angles. Hence, only M2, and 

thereafter dMzlda need to be determined. P is the total compressive load, while PI and 

P2 art the individual components for the inner and outer force-couples respectively. In 

the equations presented in this Appendix, the expressions for PI and P2 in terms of P 

have been substituted from the results obtained in Appendix A. 



The Iosipescu specimn with positive loading angle (+ $) is shown in Figure C.la, 

while that with negative loading angle (-$1 is shown in Figure C.lb. As mentioned ear- 

lier, M1 = 0; hence it follows that dMl/da = 0 for all crack lengths a. There are three 

cases to be considered, namely: a S cl , cl < a S c2 and a > c2. The moment M2 is 

evaluated separately for the three different cases. 

(i) a S c1 

In this case, the moment contribution will come from the loads on the left section 

(PI and P2) of the specimen. M2 and dM2/da can be expressed as: 

and 

(ii) cl < a 5 cz 

In this case, the moment contribution will consist of two parts. The loads on the left see- 

tion will contribute wholly; there will be partial contribution from the distributed load p~ 

of the right section (the inner force-couple). M2 and dM2/da can be expressed as: 



and 

(iii) a > cz 

In this case, the moment contribution will come from the left section (PI and P2) as well 

as from the inner force-couple on the right section (PI). The distributed load pl of the 

right section acting over a length c2 - cl will contribute wholly. M2 and d&/da can be 

expressed as: 

and 

where x = 2c - h'tan @ , and y = 21 + h'tan $ in (C. 1 k(C.6). 



From (2.25) in Section 2.4.3.1, the total energy release rate G can now be written as 

From (2.26) in Section 2.4.3.2, GI can now be expressed as 

From (2.27) in Section 2.4.3.2, Gn can now be written as 

where E = El 1 (orientation A) in (C.7)-(C.9), and in case of orthotropic materials, the 

shear modulus G12 should be used instead of E/'2(l+ v) in (C.7). 

By substituting the expressions derived for M2 and dM2/da from Section C.l.l into 

(C.7)-(C.9), the energy release rates G, GI and GII can be computed. 



/% CRACK 

f FIBERS (A) A 

\- CRACK 

Figure C. 1 Crack configuration in composite (A-typc) Iosipescu spezimen. 
(a) anticlockwise rotation (+ 9); and @) clockwise rotation (- 0). 
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APPENDIX D 

In this Appendix, the stress intensity factors in an orthotropic strip with a single edge- 

crack arc numerically evaluated. The accuracy of the displacement method and VCC- 

schemes for orthotropic fYacnut analysis is evaluated by comparing the numerical values 

to the reference solution results provided by Kaya and Erdogan. 

D.1. Single Edge-Crack in an Orthotropic Strip under Tension 

In Figure D.l, an orthotropic strip with an edge-crack under uniaxial tension is 

illustrated. The material properties1 and specimen dimension are also indicated in Figure 

D.1. The finite element mesh (one-half) for a/w = 0.4 and L = 0.1 a is shown in Figure 

D.2. The finite element computations were canied out for a/w = 0.1,0.2,0.3, . . . . ,O. 8. 

The displacement method - equation (2.1 I), VCC-2C (two calculations), and the 

VCC-1C method (one calculation) were applied as outlined in Section 2.4.2. The 

analysis was carried out for three different crack-tip element sizes, namely, L = O.lmm, 

0.02mm, and O.Olmm, so as to evaluate the influence of the crack-tip element size on the 

stress intensity values. The results obtained for the aforementioned cases are presented 

in Tables D. 1-D.3. 



Table D. 1. Stress intensity factors in an orthotropic strip with an edge crack 
under uniaxial tension L = O.la. 

Ref. VCC- 1C VCC-2C Displacement 
a - ~ o l n .  Method Method Method - Eqn. (2.1 1) 
W 

KI KI KI KI 
'--E=T - % Error - % E m r  - % Error 

7 A. C. Kaya and F. Enlogan 



Ref. VCC- 1C VCC-2C Displacement 
a - ~ o l n ?  Method Method Method - Eqn. (2.1 1) 
W 

Table D.2. S a s s  intensity factors in an orthotropic strip with an edge crack 
under uniaxial fension: L = 0.02 a. 

K1 KI 96 Error K1 
% Error 

KI 
i&F Jz % Error 

7 A. C. Kaya and E Erdogan '' 



Table D.3. Stress intensity factors in an orthotropic strip with an edge crack 
under uniaxial tension: L = 0.0 la. 

Ref. VCC- 1C VCC-2C Displacement 
a - ~ o l n . ~  Method Method Method - Eqn. (2.11) 
W 

KI KI KI - % Error --1==. KI - - % Error % Error 

t A. C. Kaya and F. Erdogan 78 



aterial Pro~er t ie~  

Boron/epoxy composite 

Ex - 170650 MPa 

Ey - 551 60 MPa 

% - 4830 MPa 

V,= 0.1114 

Figure D. 1 Single edge-crack in an orthotropic strip under tension. 



Figure D.2 Finite element mesh (one-half): a/w = 0.4, L = 0.1~. 
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APPENDIX E 

Table E. 1. Mode partitions GI and Gn in isotropic Iosipescu specimens. 

Displacement VCC- 1 C VCC-2C Beam 
ex trapla tion scheme scheme solution 

(deg.) (mm) (kl/m2) (kJ/m2) (kJ/m2) .(kJ/m2) w/m2) (w/m2) (wm2) (wh2) 

13 5.602 6.931 5.663 7.124 5.647 7.130 0.625 19.196 

Table E. 1 continued ...... 



APPENDIX E 

Table E. 1. Mode partitions GI and GII in isotropic Iosipescu specimens. 

Displacement VCC- 1 C VCC-2C Beam 
extrapolation scheme scheme solution 

(deg.) (mm) (kl/m2) &J/rn2) (urn2) (kJ/m2) w m 2 )  w/m2) w m 2 )  ( k ~ h ' )  

Table E. 1 continued ...... 





Table E.2. Mixed mode energy release rate G (GI + Gn) in isotropic Iosipescu 
specimens. 

Displacement J-integral VCC- 1 C VCC-2C Beam 
extrapolation scheme scheme solution 

'4' a G J G G G 

(deg-1 (mm) w m 2 )  wlm2)  (kJIm2) (urn2) (kJ/m2) 

Table E.2 continued ...... 





Table E.3. Energy release rates GI, Gn, and G in orthotropic (A-typc) Iosipescu 
specimens. 

VCC- 1C VCC-2C Beam 
scheme scheme solution 

(deg.) (mm) (kJ/m2) (kJ/m2) (kJlm2) (kJ/m2) (kiJ/m2) (ki/m2) (W/mZ) @J/m2) (u/m2) 

Table E.3 continued ...... 





Table E.4. Energy release rates (GI, Gn, and G) in orthotropic (A-type) Iosipescu 
specimens by the displacement extrapolation method. 

Displacement extrapolation - linear regression analysis 

+ a GY ~f G Y ~ .  G! ~h ~ f g *  G' ~ " g *  

(deg.) (mm) (k.J/m2) (&) (kJ/m2) ( k ~ l m ~ )  (kiJ/m2) ( k ~ l m ~ )  (kJ/m2) (k.J/m2) (wm2) 

Table E.4 continued .. .... 



t Superscripts U and L refer to values computed from a linear regression along the upper and 
lower crack faces ~spectively (see Figure 3.35a). 



APPENDIX F 

F.1. Computational Platcorm and Execution T i m  

In this study, the numerical investigations were carried out on an IBM RISC 

System16000 workstation (AIX 3.1.5 Operating System). The particular RISU6000 

system was a POWERstation/POWERsmer 320 (model 7012), with a clock speed of 

20.0 MHz, 29.5 MIPS, 8.5 MFL, and 24.6 SPC. The hardware configuration was: 640 

MB of internal memory and 2.4 GB of external memory, with 16 MB of RAM. 

The execution time (real-time) in single-user mode for the finite element analysis 

(solution phase) of Iosipescu specimens with notch angle a = 90' was computed. The 

finite element analysis of an uncracked Iosipescu specimen (Figure 3.3) required 110 

seconds for execution. The mesh illustrated in Figure 3.3 consists of 1%4 isoparametric 

elements and 5281 node, with 10558 active degrees of M o m .  The maximum wave- 

front was 160, while the R.M.S. wavefront was 116.5. In case of cracked specimens with 

two lOmm axial splits (Figure 3.33). the execution time was 1 15 seconds. The finite ele- 

ment mesh shown in Figure 3.33 consists of 1426 isoparametric elements and 1426 

nodes, with 8674 active degrees of freedom. The maximum wavefront was 218, while 

the R.M.S. wavefront was 139.8. 

In the evaluation of the dominant stress singularity at sharp notches by the Finite 

Element Itemtive Method, the computation time was a function of the number of itera- 

tions for convergence, as well as on the type of loading. The average execution time per 

iteration for notch angle a = 90' was computed. In case of mode I or mode I1 analysis, 

82 seconds per iteration was needed for the mesh illustrated in Figure 3.25a. The mesh 
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