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Abstract

Filter lenses have long been available which are able to resolve
beam energies down to tenths of a voilt. However, these lenses suffered a
high degree of spherical aberration. A modulator lens was designed 1o
reduce the spherical aberration without sacrificing the resolution of the
filter lens.

Since preliminary computer calculations were unable to adequately
determine the spherical aberration of the modulator lens, an experimental
evaluation of this characteristic was undertaken. The technique used was
based on the arrangement suggested by Spangenberg and Field in which
grids placed before and after the lens are imaged onto a fluorescent screen.
The resulting images are then used to measure the spherical aberration.

Although the resolution of the modulator lens was expected to be
fower than that for a traditional filter lens, there was an intended lower
limit of this resolution. The second phase in the characterization of the
modulator lens was therefore to measure the energy resolution of the lens

1o determine whether or not it satisfied these predetermined conditions.



Chapter 1

Introduction

A perusal of a portion of the literature 1.2.3 on electron optics
shows that the terminology and concepts in the field are very similar to
those in light optics. The duality of light and matter aside, one would
expect the mechanisms and forces in light optics to be quite different from
those in charged particle optics. For insiance, light optics is based on the
fact that [ight travels at different velocities in different materials, and it is
through this property that lenses and mirrors interact with light. Electron
optics on the other hand is driven by electric and magnetic fields which
interact in vastly different ways, both from each other and from the way
light interacts with transparent media. In order to utilize the tools of light
optics in discussions of electron optics, it is necessary to prove the
equivalence of the two fields. The derivations which follow will justify,
through quantum mechanical and electrodynamical arguments, this
equivalence.

The first consideration wifl be from a quantum mechanical point of

view. Schrodinger’s equation4 for a particle in a potential V(r) is

[462/2m 92 + V(£)] $(rt) = fha/at §(rt). (1-1)



Consider a wave function solution of the {orm

P(rt) = A(rt) explih S(r.t)], (1-2)
where A(r,t) and S(r.t) are real functions. Substituting this expession into
Schrodinger's equation and separating the rea! and imaginary parts one
obtains

3S/at + (98)2/2m + V = £2/2m v2A/A (1-3)

m aA/at + (VA . ¥S) + A/2 v2S = 0. (1-4)
Muitiplying equation (1-4) by 2A and simplifying gives

aA2/at + v . (A29S)/m = O, (1-5)
which is simply the continuity equation in which the probability density is
given by AZ, the mass density p by Azm, and the current density ] by

Azgrads. The velocity may be written

v = J/p = A295/A%m = vS/m, (1-6)
which shows that the trajectories of a set of electrons are normal to the
surfaces of constant phase S. In terms of light optics these constant
surfaces would be called wave fronts and the trajectories would be called
the light rays.

The quantum mechanical derivation may be taken a step further if

the wave function § is taken to be a stationary state of energy E, in which

case

aS/at = -E aA/at = 0, (1-7)

which reduces equations (1-3) and {(1-4) respectively to



(v$)2 - 2m(E-V) = £2v2A/A (1-8)

v . (A2vS) = 0. (1-9)
Taking the reduced wavelength to be given by

A = f/[2m(E-V)) 172 (1-10)

and substituting into equation (1-8) one obtains

(v8)2 = £2/2 (1 + AZv2A/A), (1-11)
which in the short wavelength approximation is reduced to

(v8)2 = £2/\2 (1-12)
Equation (1-12) is the electron optical equivalent of the eikonal equation
for a geometrical wave front in light optics.5

It should now be clear that the quantum mechanical consideration
of an electron in a potential results in several theoretical relations which
are similar to those in light optics. The next step wilt be 10 show that
electron optics may in fact be considered a subset of the electrodynamical
development of light optics.

Any electrodynamical derivation must begin with Maxwell's

equations6
V.D = 4wp (1-13)
v.B=20 (1-14)
vxE = -1/c aB/at (1-15)
vxH=4w/c]+ t/caD/at (1-16)

which are here given in gaussian units. Consider the harmonic solution to

Maxwell's equations



E = E(r) "l H=H(@)el,  (1-17)
with [ields of the form

E'(r) = el(r) elkL(r) (1-18)

H'(r) = h(r) kL) (1-19)

These expressions, taken with the vector identity

Vx(pA}= vp x A + p(v x A) (1-20)
and the assumption that the current and charge densities are zero, reduce

Maxwell's equations to

e . vL = -1/ik [e . v(log €) + v . e] (1-21)
R .VL = -1/ik [t . v(log p) + v . h] (1-22)
vL«e - ph = -1/ik vx e (1-23)
VL x h + €e = -1/ik v x h. (1-24)

Studying the electron optical case one needs only to consider wavelengths
which are very short. Since kK = w/c = Z¥/Ac, it is obvious that k—= as

A—0 . Therefore in the limit A approaches zero, 1/ik also approaches zero
and terms containing this factor can be ignored. The simplified results from

equations (1-21) - (1-24) are

e.vWw=20 (1-25)
h vL=20 (1-26)
VL xe - ph = 0 (1-27)
VL x h + €e = 0. (1-28)

To solve this set of equations one first notices that equations (1-25) and

(1-26) are the dot product of vL with equations (1-27) and (1-28)



respectively. Therefore one needs only to solve one pair of the equations.
Rewriting equation (1-27)
h = I/ VL ~ e, (1-29)
and substituting into equation (1-28) gives
vL x (1/p VL x e) + €e = 0. (1-30}
By the bac-cab vector identity, equation (1-30) becomes

1/p [VL(VL . e) - e(VL . VL)] + €e = 0 (1-31)
which, by referring back to equation (1-25) finalty gives
(VL)2 = uE. (1-32)

The term (u€) 1/2 i3 defined to be the light optical index of refraction.
This result, in the short wavelength electron optical limit, is equivalent to
the light optical eikonal equation7 which reiates the optical path (L) of a
light wave to the index of refraction.

It has thus been shown, through quantum mechanical and
electrodynamical arguments, that electron optics is for mally similar to light
optics. The electrodynamical derivations even show that electron optics
may be considered a subset of light optics. Therefore, the applicability of
optical ter minology to electron optics is adequately justified.

A fens is defined by a set of values cafled cardinal points3. The
following derivations of the cardinal points are taken from Born and Wolf
(reference S), and will make use of projective transformations. Such
transfor mations project lines in the object space into lines in the image
space, and to [irst order can describe any optical system.

Let a point P in the object space with coordinates (x,y.z) correspond



to a point P' in the image space with coordinates (x.y'z') through a

projective transfor mation Let that transfor mation be expressed as

X' = F]/FO (1-33a)

y = Fa/Fy (1-33b)

A FS/FO (1"336)
where

Fl = aix + blx ¥ cix + dl (l = 0,1,2,3)- (1"34)

One can also solve for 1, y, and z to obtain the relations

x=F /Fy (1-35a)
1= F.3/FI0 (1"35(3)
Fi= a0 +byy +ciz+ & (i=0,123) (1-36)

For simplicity consider only cases which are axially symmetric. 1t follows
that the image of any point Py lies in the plane defined by P and the lens
axis. Consider an object point on the y-axis so that the image point lies in
the y-z piane (the z-axis taken to be the axis of symmetry of the lens). The
projective transformation then transforms the object point (0,y,2) to the
image point (0,y"z’). Hence

y =1Fy/Foly - o (1-37a)

z'=[F3/Fgly _ o (1-37b)

may be written



y =Ibyy + cpz+ dy)/Ibgy + cox + dp) (1-38a)
z=[bgy+ c3Z+ d3]/lb0y + ¢z + dgl. (1-38b)

Due to the stipulation of axial symmetry it follows that changing y to -y
should also change y' o -y’, but that 2’ should be unaffected. The second of

these results holds true if b3 = bo = 0, which eliminates the y-dependence
of z'. The [lirst is satisfied when cy = dz = 0 which, along with the previous

condition, gives y’ a direct dependence on y. Equations (1-39a) and (1-39b)

are then reduced to

y' = byy/(cpz + dg) (1-39a)

2’ = [esx + d3l/legz + dpl. (1-39b)
Solving for y and 2 gives

y = ylegz + dg)/b, (1-40a)

z=[dz - dgz1/lcyz’ - ¢4l (1-40b)
which by substituting z into equation (1-40a) gives

y=(y'/by) [egds - c3dgllcgz’ - €3] (1-41)
The focal planes are defined to be

Fpmegz+dp=0 (1-42a)

Fo gz -c3=0. (1-42b)
Hence the focal planes intersect the lens (z) axis &t the points

Z= —d0/CO (1-43a)



z'=c3/ch, (1-43b)
The two points (1-43a) and (1-43b) are taken to be the focat point39 of the
lens, and are the first two of the six cardinal points which define a lens.
One may simplify the derivation of several important oplical
relations by changing the coordinate system 8o that the z and z' coordinates
are measured from their respective focal points. This results in the

coordinate transformation

y-Y (1-44a)

cgZ + dg = ¢l (1-44b)

y =Y (1-44c)

coZ - €3 = ¢l (1-44d)
If one now substitutes these new coordinates into equations (1-39) one
obtains

Y = {byY)/(cpl) (1-458)

2 - (cqdy - ¢3d0)/(co2L) (1-45b)
which, with the substitutions

f=by/cy (1-46a)

f'=(cqdg - c3dg)/(coby) (1-46b)
gIve

Y/NY=(/L=7/1. (1-47)

10

This relation is Newton's equation which is nor malty written in the form
7 = ff' (1-48)



where [ is the focal lengih of the object space and [ is the local length of
the image space. The lateral magnification can now be calculated as the
derivative of equation (1-47)11

(dY/dY'), = byY/ZL=Y'/Y. (1-49)
Similarly the derivative of (1-46b) shows the longitudinal magnification to
be

d2/dL = (cgd3 - c3dp)/(eg? 22) = -2 /L (1-50)
The lateral and longitudinal magnifications are then related as

dz'/dZ = -f'/f (dY'/dY),2. (1-51)
From (1-49} it is clear that the lateral magnification is unitary when Z = f
and 7' = {". The planes which satisfy the condition of unitary lateral

object space feris image space
4
L4 h
L] \ ¥
F p P' F Y'
€ X f— f ¥— X —
€ 2 F———2z —>

Figure 1-1. Cardinal Points
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magnification are called the principle planes, and the points where those
planes intersect the lens axis are called the principle pointslz P and P'. The
principle points are where lateral magnification equals one {see figure 1-1).

To derive the final pair of cardinal points, let a ray leaving the axis

in the object space at an angle y intersect the principle plane of the object

space at a height h. This ray is imaged into the principie plane of the image
space at unit magnification, and then intersects the axis again at an angle v’
in the image space. From figure (1-1) it is clear that tany = h/(f-x) (x

measured in the negative direction) and tany = h/(x'-f") (y' a negative
angle) The angular magnification13 is then taken to be the ratio of these
lerms

tany /tany = (f-x}/(x"-f") (1-52)
which multiplying top and bottom by Z, and then substituting ff" for x¥’
gives

x/f' =1/x (1-53)
When x=f" and [-x", the ratios are unitary, and the two points which satisfy
these conditions are the final cardinal points called the nodal poims\14 The
nodal points are the two points characterized by the property that
conjugate rays (rays which pass from the object/image tip to the
corresponding principle plane) which pass through them are parallel to
each other.

Now that the cardinal properties of lenses have been defined, it is

important to realize that the above idealized lens does not exist, especially



1A

in electron optics. Every reat lens has a variety of imperfections called
aberrations. To truly define a lens it is necessary to know not only the
cardinal points, but also the relative value of each aberration.

Aberration theory uses the Seidel coefficients to describe the
relative amounts of the different aberrations present in a lens. The theory
in this instance is taken directly from the light optical theory as described
by Born and Wolf.

The Seidel coefficients can be derived from the ecmal.ious15

Ax' = x(2cx? - B2 - Fp?)
+ 2,(Bp2 + Dr2- 2Fx2) (1-54)

Ay = YO(Zan - Er2 -Fp 2)

+ 'H(BPZ + Dr - 2m2) (1-55)
with the variabies given by
2 . xgz + y02 (1-56)
k2 = 302 + Youy (1-57)
Ly = psin® (1-58)
Ny = pcosd. (1-59)

Substituting these expressions into equations (1-54) and (1-55) one obtains
Ax' = Bp3sin® - Fp2(21sin 26 + 2ycosOsin® - 1)

+2Cpx(xsin® + ycos®) + DpsinO(x 2, yz)
- Ex(x 2 4 y?) (1-60)
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Ay' = Bp3oose - sz(Zyeos 2g 4 230080506 - 1)
+ 2Cpy(xsin® + ycos®) + Dpcoso(x 2 42
“By(x 2 + y2), (1-61)
Within this format the Seidel coefficients are represented by the variables
BCDEand F.

Even in the “clarified” form of equations (1-60) and (1-61), the
mathematical and conceptual meanings of the Seidel coefficients are very
complicated. Therefore, to best describe and explain these coefficients each
one wili be considered individually with ali other coefficients set to zero

during that explanation.

B: SPHERICAL ABERRATION

AY' - Bp3sin® (1-62)

Ay' = Bp3cose (1-63)
Consider a pencii of electrons (that is to say a bundie of electron rays)
emerging from a point on the aris of the object plane z, The electrons
which leave at very small angles to the axis (paraxial rays) intercept the
axis further away from the object plane than those which emerge with
larger angles (calied zonal rays). The aberration curves are therefore

concenteic circles whose centers are on axis, but whose radii increase as the

cube of the zonal radius as stated in equations (1-62) and (1-63).
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This aberration is clearty minimized, that is to say the spot size is
minimized, at some point along the axis. This minimum beam diameter is
called the “circle of least confusion”16.

EXIT
LENS STRUCTURE APERTURE

= /£

\\\\ ...........................

N

GAUSSIAN IMAGE PLANE

Figure 1-2. Spherical Aberration
F. COMA

Coma aberration terms can be written
AT = -Fp %(2xsin 28 + 2ycosOsin® - 1)  (1-64)
Ay’ = -Fp 2(2ycos 26 + 23c080sin8 + y) (1-65)
which in the simplified case of x=0 reduce to
AY' = -2Fp2c0s8 sin® = -Fyp 2sin 20 (1-66)
Ay'=-Fyp Z(2c0820+1) =-Pyp 2(c0826+2).  (1-67)
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Consider points off the axis from which paraliel rays begin (see figurel-3).
Coma causes an asymmetrical deformation of the image points resulting in
a comet-like appearance. If the lens were perfect, all the beams would be

focused to the point A.

3.2.1

%

GAUSSIAN
IMAGE
PLANE

AN
N
/

— N W s N D

Figure 1-3. Coma

Coma causes rays with small angles of incidence (rays 1,2,3) with the lens
to be focused close to A, while those rays with larger angles of incidence
(rays 4,5,6) will be focused elsewhere.

C: ASTIGMATISM

The aberration components for astigmatism are
Ax' = 2Cox(xsin® + ycos©) (1-68)
Ay' = 2Coy{18in6 + ycos8). (1-69)
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Once again considering the special case of x = 0, equation {1-68) reduces to
zero and equation {1-69) reduces to

Ay’ = 2Cpy Zcose. (1-70)
This may be best understood by consideration of the following figure. Here
the central ray intersects the z-axis at 0, and the sagittal and tangential
rays behave as shown. The point (circle) in the object plane is imaged into
an ovoid. From the 3=0 case of the aberration components it is clear that

there is no x’ deviation in the image, and that the y' deviation goes as

Figure 1-4. Astigmatism

the square of y. One can also see that with the different focii for the sagittal
and tangential rays, the best image possible is again at a “circle of
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least confusion”.

D: CURVATURE OF FIELD

This aberration has the components

Ax’ = Dpsin®(x 2 + y2) (1-71)

Ay’ ~ Dpcosd(x 2 + y2) (1-72)
which at x=0 reduce to

Ax' = Dpy 2sin® (1-73)

Ay’ = Dpy 2c0s8. (1-74)

These components are very simifar to those descibing astigmatism (see
equation (1-70)). Curvature of field is the instance when the gaussian
image plane becomes a curved surface. The image is focused onto a curved

surface rather than a planar one (see figure).

FAUSSIAN IMAGE PLANE

SURFACES GF
ACTUAL FOCUS

Figure 1-5. Curvature of Field
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The primary wave aberrations for an electrostatic lens have been

discussed. These charactieristics are reviewed in the table below17 )

Table 1-1
PRIMARY LENS ABERRATIONS
COEFFICIENT ERROR CAUSE EFFECT
B spherical excessive of paraxial and zonal
aberration deficient refraction rays have different
with increasing intersection on the
aperture axis
F coma aberration for comet tails at
slanting parallel image points
rays
C astigmatism bundies of rays meet off axis image
different curvatures points are not
of equipotentials imaged as points
D curvature of same as image of plane
field astigmatism object is curved
B distortion residual error of straight lines are

spherical aberration
and position of
aperture stop

curved at the
margin of image
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1.
12.
13.
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15.
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17.
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Chapter 11
Theoretical Basis for the Experimental Technique

From the time in 1871 that C F. Varley first deflected cathode rays
with an electrostatic field‘, electron lenses have taken on a2 myriad of
shapes and designs. From the conceptual simplicity of parallel plate
deflectors to the highly complicated "elkhorn” shaped beam spreaders
found in modern oscilloscopes, it is evident that many electron optical
devices have very little in common. There are however many electron
lenses which consist of axially symmetric elements, as does the lens which
is the basis for this thesis. It has five avially and longitudinally sym metric
plates which are operated in an electrostatic mode. The longitudinat

le o
[ d _':

-
- a

...........

= V CENTRAL =

V rocus
Figure 2-1. Beam Modulator Lens
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symmetry is both physical and electrodynamical (see figure 2-1). This type
of lens is called a beam modulation lens.

A lens which had the same general properties as the beam
modulator was first utilized about thirty years ago in a three element form.
That lens was used by Boersch? to filter out low energy electrons with
modest energy resolution. Besides the mediocre energy resolution, the lens
performance was also hampered by an inherently short focal length and a
strong dependence of the focal length on the degree of filtering. A five
element device later designed by Simpson alleviated these problems. This

lens was

retarding
plene

|
ﬂ

anode bas bias shode

electrode electrode
je—— decelerating R accelerasting ——

Figure 2-2.Simpson's Filter Lens

essentially two lenses in which the potentials in the object and image space
of each are constant and unequal. The [ive element device is similar to two
immersion lenses placed back-1o-back in which the first fens retards the

beam to a real image at the midplane, and the second accelerates it to
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another plane (see figure 2-2).

Simpson's lens worked very well as an energy dependent beam
filter. Laboratory results have shown that voltage changes as small as 0.10
volts on the central electrode can block an electron beam3. In fact, the
cases in which this was measured were limited by the 0.10 volit resolution
in the beam energy, so the actual resolution of the lens may be even
higher. With such resolution capabilities the utility of this lens as a
high-pass filter, energy analyzer, or high frequency beam modulator is
quite evident.

Although Simpson's lens transmitted images better than the earlier
three element device, it still had an annoyingly large spherical aberration.
In an attempt to rectify this problem Dr. Jon Orioff modified Simpson's
design so that the central electrode would be substantialty thicker than any
of the other electrodes (see figure 2-1). The computer simulations which
were used in the design process showed that the modifications may have
corrected the aberration problem, but the computed results were not
conclusive. Therefore experimental means were used to test the lens to
clarify the conclusions of the numerical calculations.

The properties to be evaluated were the cardinal lengths, the
beam cut-off capabilities, and the spherical aberration of the lens. The
basis for the technique used was a paper published by Spangenberg and
Field in 1942 (reference 4), which reviewed numerical techniques for the
calculation of electron paths, and gave an experimental method for the
measurement of focal distances, spherical aberration, and minimum spot
size. The essence of their method was (o determine the magnifications of
measuring grids placed before and after the lens. A grid of paralle] wires

was placed on the front part of the lens which cast a shadow on a
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fluorescent screen following the lems. Another grid of parallel wires,
perpendicular to the first, was placed at the rear of the lens in the same
fashion. With this arrangement one could observe the magnifications of the
itwo grids as the voltage ratio of the lens electrodes was varied. The
experiment was then repeated with the efectron source at a different

distance from the fens. Thus two complete runs were made at each of two
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Figure 2-3. Spangenberg's and Field's Experimental Technique
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distances. As will be shown below, this data enabied one to caiculate four
of the cardinal distances and the spherical aberration of a lens.
Spangenberg's and Field's derivation was used, with an alternate
sign convention and added detaits. The basic point of the derivation was
to show that object and image distances could be expressed in terms of
lateral magnifications and focal distances, and hence that the spherical

aberration could be determined. From figure 2-3 it is clear that

z=X+§ (2-1)

2= +¢g, (2-2)
which, taken with the basis for Newton's formufa given by

m={/x=x/f (2-3)
coultd be reduced to

z=-f/m+g (2-4)

z=fm-+g, (2-5)

where the sign convention is that distances are measured positively to both
the right and the left of the reference piane. The unknown variables in
these two equations are f, {', g, and g implying that there are only two
equations with four unknowns. To sotve for these variables it is necessary
to have two more equations, which one obtains from a second set of data at

a different value of z for a given lens voltage ratio. This gives the

equations
zy={/m; +g (2-6)
ry=fmy+g¢ (2-7)
Zg=f/m5 + g (2-8)

Zy=fmy+g (2-9)
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in which the z, z‘i. and m j are known. It is then straightforward to sotve

for the four cardinal lengths.

To solve for the focal length of the object space {, one first solves
equations (2-6) and (2-8) for the object principle length g. This gives
respectively

Zy-f/mj =g (2-10)

2, -f/my =g (2-11)
Subtracting equation (2-11) from equation (2-10) gives

2y -f/m( -25+f/m,y -0, (2-12)
which, upon solving for { reduces to

f=(z)-25)/(1/m - {/mj). (2-13)
Although equation (2-13) is the negative of the equation reached by
Spangenberg and Field, it follows from the alternate sign convention, and it
agrees with their cited rererenoes.

The calculation for the focal length in the image space f on the
other hand gives the same resuit as that reached by Spangenberg and
Field. Beginning as before, one soives equations (2-7) and (2-9) for the
image principle fength g’

g =2y -mf (2-14)

g =25 - myf". (2-19)
Subtracting equation {2-15) from equation (2-14) gives

Zy-25+f(my-my)=0. (2-16)
Slight rearrange ment gives the result

f'=(z'2-z‘1)/(m2-m1). (2-17)
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The derivations of g and g’ utilize the same techniques as are used
in the derivations of f and . One solves the two equations for f (or '),
subtracts them, and then rearranges them to solve for g (or g'). The

solutions, this time in agreement with Spangenberg and Field, are
g=(zymy -~ Z,m5) / (my - m,) (2-18)
8 =(zy/my-25/my)/ (1/my - 1/mp).  (2-19)
To prove the applicability of this experimental technique, it

remains to be shown that the lateral magnifications m; could be
determined from the data. The angular magrification m , is taken to be

m, =lana’ /tan o = o/ax, (2-20)

where a is the angle between the ray and the axis in the object space and

o is the angle in the image space. Referring to figure 2-3, one sees that for
a ray which passes through the front grid an arbitrary height E off of the

axis, equation (2-20) may be written

m [E/ql / le/a) (2-21)

o

which reduces to

m aB/eq. (2-22)

o

Using Lagrange's equation
o = Xa (2-23)
it s clear that the lateral and angular magnifications are related as

/Y =o/a — my o= 1/m,. (2-24)

I

Thus the lateral magnification is given by
m, - eq/ak. {2-25)
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From figure 2-3 one may note that q, the distance between the
screen and the gaussian image plane, is the only pertinent variable which
has not been derived. Although figure 2-3 shows the image plane beyond
the fluorescent screen, it is possible that the image plane would be
between Lhe screen and the lens. Therefore the variable q could be related
to the other lens dimensions in one of two ways. Figure 2-4 exemplifies the

case when the image plane is behind the screen. By simple irigonometric

argument
tan o = E/Q = e'/(d+q) (2-26)
i 1
E
i } o’
fe 4 " q |

Figure 2-4. Calculation of the Distance between the Fluorescent Screen and

the Image Plane

giving

Eq + Ed = ge, (2-27)
which may be solved for g to obtain

q=d/(e'/E - 1). (2-28)

The case of the image pfane falling between the screen and the lens may be

treated similarty 1o give
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q=d/(e/E+ 1). (2-29)
One must therefore determine from the photographic data the location of
the gaussian image plane to calculate q, and subsequently to calculate the
magnification and spherical aberration.
The justifications for the experimental derivation of the sphericat
aberration follow. The method suggested by Spangenberg and Field utilizes

a graphical measurement. They recommended that a ray diagram be drawn
which connected the image points to their corresponding object points {see

figure 2-5). From this diagram it

‘
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Figure 2-5. Cross-Over Method

would then be possible to plot the change in the location of the focal points

versus the radial distance of the rays.
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The calculation of the spherical aberration used for this
project was based on a more thorough analysis of the phenomena as was
discussed by Gertrude F. Rempfert‘. The basis of her argument was that
since the principal surfaces of a lens are in general not planar, the
calculation of the spherical aberration must take into account the change in
focal length as well as the change in the focal distance. The difference
between the two is that the focal distance is measured from a fixed
reference plane, while the focal length is measured relative to the principal
surface.

Figure 2-6 contains basic optical equations and distances as a
compilation of previously covered material for reference purposes. Figure
2-7 on the following page contains the lens and beam information which is
directly pertinent to the discussion of the spherical aberration calculation.
The sign convention is the same as was earlier stated, that is, distances to
both the right and left of the reference plane will be taken to be positive.
Also, primed variables refer to image-side values, and variables with an “o"
subscript refer to the paraxial value for that variable. In figure 2-7 a ray
from a virtual point source at z passes through the lens, forms a
demagnified image at z', and then lands on a fluorescent screen which is
(b+d) from the reference plane. The front grid is a distance (a) from the
source while the rear grid is a distance (b) from the reference plane. The
front and rear grid magnifications are respectively given by

M=E/e (2-30)

M =E/e’. (2-31)

By using small angle approximations of tana and tana, the image distance
7' may be written
Z=b-c=b-d/(M-1), (2-32)
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object space lens image space

AAAN
2

Relations

Ix' = {[" (Newtonian Lens) f'/1 = (V‘/V)“2

m =[Y'/Y| = x'/f" = f/1 (Linear Magnification)

m

n

o = o070 = 1/@(V/V)1/2 (Angular Magnification)
r/x - m?(v/v)l/2 C = (:3111'4(V'/\,’)3/2

S=(1+1/m) S=(1+m)

Figure 2-6. Basic Optical Relations
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Figure 2-7. Nomenclature for the Calculation of the Spherical Aberration

and the lateral magnification m becomes
me=o/a =(M/M)/(c/a). (2-33)

The spherical aberration of the lens will tend to distort the grid shadows on
the fluorescent screen. The malformation of the shadows looks like either
pin-cushion or barrei distortion. However, this shadow distortion is in fact
caused by the spherical aberration induced variations in 2’ and m versus
the height of incidence of the rays at the fens. The amount of malfor mation
of the shadow of the front grating can therefore be written to second order

in terms of the height e at which the ray intersects the front grid
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M = M (1 + gn?), (2-34)
where M, is the paraxial shadow magnification and g is a dimensionless

distortion coefficient, and n=e/e with e the unit height above the axis.

Similarly the rear grid magnification is expressed as

M - 1 ey 10711+ gn), (2-35)
Note that the rear grid magnification M' depends on the object-side ray
height n. It therefore becomes necessary to determine that value of n
which corresponds to the n' at which the image-side data are taken. This
conversion is undertaken by plotting E versus n and n' and reading the

value of n which corresponds to n' for a given E value. Plots of M versus n2

2

and (M’ - 1)°! versus n? are used to determine the distortion coefficients p

and g, and the paraxial magnifications M, and M. [n the object-side plot,

M, is the axis-intercept and the slope of the best fitting line is taken to be

M, 8. The image-side information is obtained similarly, recalling of course

that the plot is in terms of (M - 1)'1. With the determination of the
paraxial grid magnifications, the calculation of the paraxial image distance
and magnification is then straight forward from eqations 2-32 and 2-33.

From the relations for linear magnification in figure 2-6, noting
that 1 (1') may be given as the difference between z and g (2’ and g'), and
using the fact that the symmetry of the lens implies f={" and g-g’, one has
the relation

m={/(z-g)=(z -g)/L, (2-36)

which may be reduced to

f=(z-2)/(1/m-m) (2-37)
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g=2-fm. (2-38)
Insertion of the paraxial values z'j and m, will give the paraxial values f,
and g.,.

To determine the changes in the focal distance and the focal
lengths, let the difference operator act on a modified for m of equation 2-36
to give

(Az-Ag)z'-g) + (Az-Ag)(z-g) = 2fAf, (2-39)
which upon substitutions from equation 2-36 may be reduced 1o

m2(Az - Ag) + A7 - Ag = 2mAf. (2-40)
Assuming that the position of the source s fixed, implying that Az=-0,
equation 2-40 may be reduced to

Az = (1+m2)Ag + 2mAf. (2-41)

Professor Rempfer continues the derivation by noting that the

variations of both f and g with ray height P can be expressed to second

order by
A/, = S¢P2/8,2 = (1 + 1/m)2a? (2-42)
BB/, = SgPE/GE = S(1+ t/mYPa?, (2-43)
where a is the angle of the incident ray. and S; and Sg are dimensioniess

spherical aberration coefficients for the focal length and focal distance,
respectively. By considering the cases of z = » and z # =, which give zero

and finite magnifications respectivefy, she continues by expressing Sy and

Sg in terms of experimentally determined quantities

Sp = - [(1+m 2)C, - mgCol / 1(1-m 2)(1+ 1/m ) 2] (2-44)
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Sg= - (Cp - 2meCy) 7 1(1-m 2 (11 /mpda V21, (2-45)
where the constanis are given by Cy = B-p/M';, C, = c,p/f,, and

o 1-e1/a is taken 1o be the angle subtended at the source by a single front
grating spacing. With substitutions {rom equations 2-42 and 2-43, equation
2-41 then reduces to,

Az = ((1em2)Sy + 2moSel(1 + mo)2f a2 (2-46)
If the spherical aberration is defined in terms of the image resolution
fimit”

t'g=Cqad = Aza/ 4 (2-47)
one then obtains a relation for the image side spherical aberration as

Cy=-Az/{2a) 2 (2-48)
in which Az’ is taken from equation 2-46. The full form of the object-side
spherical aberration is then

Co = -l(1+1/m2)s, + 25p/ml(1+1/m)21/4, (2-49)
where the minus sign is due to a difference in sign conventions. Therefore,
in the limiting case of m==, the object-side aberration becomes

Cyl=) = C4(0) = Sofo/4. (2-50)

A simpler, less rigorous technique would simply entail
Spangenberg’'s and Field's technique of piotting the variation of the
crossover point of the image-side rays versus radial distance. Professor
Rempfer’'s technique on the other hand gives a complete theoretical
explanation of the process, and is therefore more interesting and more

infor mative.
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Chapter 111

Experimental Arrangement

Measurement of the pertinent properties of the beam modulating
lens necessitated two separate experimental arrangements. The [irst phase
utitized photographic data of the measurement grid images to determine
the magnification of the lens al various voltage configurations. With this
information, along with the necessary cardinal lengths which were
measured in a similar fashion, it was possible to calculate the spherical
aberration coefficient of the lens from a completely experimental basis. The
second phase of measuremenl entailed the determination of the voltage
change on the central electrode needed to block, or cut-off the electron
beam. These experiments were pertinent since it was necessary to
delermine the energy resolution of the lens. As with the first phase of
experimentation, several experimental arrangements were used before a
satisfactory one was discovered. The following will describe both the
successful and the unsuccessful techniques in the belief that knowing what
not to do is often as important as knowing the technique used. Note that all

the potentials quoted were negative, and were referenced to ground.

The cathode used was a cold (room temperature) tungsten <310»
field emitter, which effectively provided a point source of iliumination. it

was held at a potential between 1500 and 2300 volts to deliver a beam

current between 1 and 30 pA. The B8-ring or anode was therefore kept at
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zero potential along with the first and fifth elements of the lens. The two
intermediate or focusing electrodes were set al identical potentials within
the range of 0 to 1800 volts for a given run, usually at a potential between
80% and 90% of that on the central electrode. The central electrode voltage
was the one of main interest, since it would determine the beam cut-off
capabilities of the fens. It was operated within the range of 1500 - 2000
volts depending on whether photograghic data or beam cut-off data were
being measured.

The lens was afways operated in an electrically symmetric fashion,
centered on the central electrode with the outermost electrodes always at
ground. This greatly reduced the number of possible voftage configurations.
For example, given N voltage ratios possible in the symmetric arrangement
used, running the lens asymmetrically with non-zero potentials on the
outer electrodes could provide up to N4 possible voitage configurations.
Although there could theoretically be an optimal operating configuration in
that larger pool, it was deemed extremely unlikely that asymmetrical
operation would improve the characteristics of the lens. This conclusion
was based on the fact that the lens was designed to be run symmetrically,
and on the understanding of Simpson's filter lens which is run in a
symmetric mode.

Both phases of this experiment necessitated the use of high voltage
power supplies to operate the lens and the cathode. Three such devices
were used, each of which was verified to have output fluctuations of less
than two volts at 1000 volts of output. This was the limit of resolution of
the test apparatus which included a Tektronix 475 oscilloscope and a

Tektronix high-voltage oscilloscope probe. The power supplies used were a
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Fluke model 4108 to drive the emitter, a Power Designs model HV-1543
connected to the intermediate or focusing electrodes, and either a Bertan
Associates mode! 315, or modef 205N on the central electrode, depending
on the experimental phase.

The theoretical basis for the experimental arrangement to
determine cardinal lengths and the spherical aberration coefficient of the
lens was discussed earlier as the technique developed by Spangenberg and
Field! (see chapter II). Figure 3-1 shows the physical arrangement and
important dimensions of the lens, the measurement grids, and the

fluorescent screen. The diameter of the beam limiting aperture was 1000

pm, so that several measurement grids could be seen. The cathode was

mounted on 2 three dimensional (plus rotation) stage3 allowing alignment

of the emitter in the z-axis to within | pm. Opposite the emitter and the
stage was & high vacuum window through which the back of the
fluorescent screen was viewed and photographed.

Several photographic arrangements were tried before an
acceptable method was discovered. The first method used a Polaroid
microscope camera, photographing the screen image through a microscope.
{t was hoped that a higher degree of photographic magnification would be
attained through the microscope. This method was abandoned however
because of poor focusing ability and because the image lost so much
intensity through the microscope that exposure times of several minutes
could not resolve the image.

The second method attempted was based on a 35mm camera
equipped with a macro lens attachment. The film used in this attempt was

a Polaroid? 35mm type which allowed immediate, non-darkroom



development. This film however proved to have a reflectance so much
higher than standard 35mm films that once again, exposure times of
several minutes were unable to resolve any image. The conclusion from
these results is that Polaroid process films are poorly suited to
photographing relatively dim fluorescent screen images.

The final method used standard color print film, ASA 100, in the
35mm camera with the macro lens attachment. The choice of the ASA 100
film was based on a compromise between exposure speed and high
contrast capability. This arrangement allowed for fast and convenient
commercial developing, and was perfectly adequate for measurement
purposes.

The photographic negatives were enlarged and printed in a black
and white format. The enlargements were made using a Polycontrast #1
filter set at to exposure time of 10 seconds with an f-stop setting of 3.5.
The paper used was Polycontrast 11 RC Rapid Paper, a high contrast type to
emphasize the relatively dim images of the grid wires.

There were two resulting photographic data sets. In the first set
the emitter was positioned at 18.190mm on the z-axis, whife in the second
set the emitter was at 12.000mm. The tip of the emitter was approximately
20 mm (0.793 inches) from the front grid at the 12.000mm setting. With
the change in emitter to lens distance between the two cases being
6.190mm, the percentage change in the emitter to lens distance is
approximately {5%. Such a difference in the operating distances 1is
nonnegligible, and therefore useful in the determination of the spherical
aberration coefficient of the lens.

The importance of the size of voltage swing needed to cut-off the
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beam is based on the fact that the lens is intended to run at high
frequencies. As such, the lower the voltage change necessary to block the
beam, the lower the voltage which has to be switched at high frequencies.
The target for this lens design was that it be able to cut-off an electron
beam with a five volt change on the central electrode.

The experimental arrangement used in the first coarse
measurements of the cut-of properties is the same as that used in the first
phase of testing. It was taken in a completely manual fashion in which for
a given focus voltage, the central electrode voltage was increased until the
image on the fluorescent screen went blank. This was simply done to
quickly check that the fens did in fact block the beam. Again, as it always
was, the emitter was mounted on a 3-dimensional (plus rotation) stage.

During these tests the screen image would flicker a great deal. In
fact, the diameter of the image would occasionally change by a factor of
approximately two, very quickly. The behavior seemed to indicate that
some part of the test apparatus was charging and discharging. To alleviate
the problem, the lens was surrounded by a grounded, conductive shield,
and the fluorescent screen was better grounded to its mount by painting
carbon paste onto the contact area. It was hoped that the shield would
eliminate most problems due to the surface charging of the glass rods on
which the lens was mounted, and that it wouid shield the beam from the
sea of scattered electrons floating about the chamber. These precautions
eliminated the problem.

Following the above tests, several modifications were made to
determine the cut-off potential more quantitatively. A Faraday cup

replaced the phosphor screen as the cut-off measurement device. The
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Faraday cup was connected to a Keithley 600A electrometer which
measured the current, with grounded shielding protecting all exposed
electrical parts of the Faraday cup both inside and outside the chamber.
Also, the limiting aperture was replaced so that the electron beam entering
the lens better approximated the paraxial case. The aperture used in the
cut-off experiments was 150 micrometers (6 mils) in diameter. Under the
operating conditions used, this gave an acceptance half angle of about 3.3
milliradians from the emitter 1o the limiting aperture.

Since the initial observations showed a great deal of noise on the
Faraday cup current reading, an arrangement was implemented to average
the current readings over time. This was done with a Transera brand A/D
converter used in conjunction with a Tektironix 4051 microcomputer. With
this arrangement, 1500 current readings were taken and averaged for each
focus voltage setting.

Afthough this arrangement gave semi-quntitative results, it was
still an inefficient and error prone technique. First of all, the long sampling
limes of several minutes needed to obtain 1500 readings aggravated the
problem of emitter contamination over time. Secondly, and more
importantly, the extreme noise measured from the Faraday cup was
actually symptomatic of other experimental problems which needed to be
rectified. These problems were resolved by 1) running the tests at a lower
chamber pressure to increase the “clean time” of the emitter; 2) completely
automating the testing technique to shorten the running time of the
emitter; and 3) plotting the analog resuits with a X-Y recorder to obtain a
continuous record of the current.

All of the experimental design alterations were accomplished by
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driving the central electrode with a filter lens power supply uvnit. This unit

{s mainly a floating ramp generator within a range of 20 volts, floated on
top of a Bertan Associates model 205N high voltage power supply. The
upper and lower limits of the ramp can be set, as well as the rate and
direction of the ramp. The [loating ramp is fed into the central elecirode of
the lens, while the ramp alone drives the 1-axis and a signal relative to the

Faraday cup current drives the Y-axis of an X-Y recorder (see figure 3-2).

Keithley 60CN

Bertsn Assoc 205N
Electromeler

High Yoltege Power

dupply sut  1n
Faraday
Cup
Hyn
Flosting Ramp Generator
(Filter Lens Supply) Vooyly Recorder
out x
(Ramp)
HY + Remp
Central
—{ EIictrodﬂ Power Designs HY- 1543
) ,J High Yoltage Power
— Supply
Focus —
flectrode )

Figure 3-2. Diagram ol electronics used for 1-V plot of beam current versus
Faraday cup current.

Since the rate of the ramp could be set, sweeps took less than a



minute each. The resulting plots were relatively noise free because of the
complementary effects of pressures in the low 1079 or high 10710 1orr
range, and short run times. Collecting the -V data with this apparatus gave

clean, repeatable, and conclusive resuits.
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possible to plot a distinctive map of both the front and rear sets of grids.
The asymmetries in the grid placement enabled a detailed determination of
the ray paths through the lens. From the sample photograph betow and the
actual grid arrangements in Figure 4-1, it is evident that the wires in front
of the the lens cast an inverted shadow on the screen (the horizontal wires)
while the wires after the lens formed an Uninverted shadow, implying that
the image plane lay between the lens and the rear grid. In addition, since

the rear grid was flush with the lens, this

Figure 4-2. Screen Image Sample

implied that the rays crossed the lens axis within the lens, as they were
predicted to by the computer calculations performed earlier.

The experimental parameters pertinent to the calculation of the
spherical aberration are shown in figure 2-7. The values for the modutator
lens experiment were: a=0.793" which was the distance between the
electron source and the front grid, z=1.815" was the distance between the
source and the reference plane (taken to be the center of the lens),
b=3.169" was the distance between the the reference plane and the rear

grid, and d=2.365" was the distance between the rear grid and the
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[luorescent screen
In accordance with the theoretical derivation of the spherical
aberration calculation in chapter 2, the first measurements to be made
were the shadow radii versus the grid radii for both the front and rear
grids. The results of these measurements, along with best fitting lines are
shown in figures 4-3 and 4-4. For each of the four data photographs used,
one may refer to these two figures to find the front grid radivs (n) which
corresponds to the rear grid radius (n') for a given value of E.
Since the grid magnifications are given by
M =E/e (4-1)
M =E/e, (4-2)
the measurements taken for the plots in figures 4-3 and 4-4 can also be
used to plot the grid magnifications. Recalling that the spherical aberration
was taken to be a manifestation of second order perturbations in the grid

magnifications of the form

M= M(1 +ge?) (4-3)

M- D s - Dl pe?), (4-4)
plotsof M and (M’ - 1)"! versus eZ can be used to determine the paraxial

grid magnifications M, and M, as well as the magnification distortion

0!
coefficients g and g'. Figures 4-5 contains the plots of M versus eZ for the
four data photographs, and figure 4-6 contains the corresponding
information for the rear grids. The results of these plots are listed in table
4-1.

With ali the above results in hand, one is now adequately equipped
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to calculate Sy and Sg. the dimensionless spherical aberration coefficients
for the focal length and the focal distance, respectively

S¢ = -1(1+m,2)C, - m Cpl / l1-m 2)(1+1/m )ax )?1 (4-5)

Sg = -IC5 - 2m €41/ 1(1-m 2 )(1+ 1/m e )2, (4-6)
where Cl, C2, and oy are described in chapter 2. The calcufation of any

spherical aberration term is now possible, where specifically Cs(m ) becomes

Cel=) = -Sgly/4. (4-7)

Table 4-1. Paraxial Grid Magnifications and Magnification Distortion
Coefficients

Photo M, M, B g

(mil?) (mil?)
111 6.05 492 -2.88x1074 2.56x1074
151 475 5.17 -1.44x1074 2.20%1074
161 475 7.49 -2.97x10™4 0.0
171 6.10 6.71 -2.668107 1.75%10°4

With the ability to now calculate all the spherical aberration, focal
length, and focal distance information, the immediately pertinent results

will be listed in table 4-2. The results to be listed will be the operating
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voltages of the lens, the paragial shadow magnification m, the paraxial
focal length fo, the aberration coefficients Sf and Sg, and the infinite case
object-side spherical aberration Ci(=). The spherical aberration value listed
is the one of interest for the immediate concerns of the project. With the 5¢

and S8 values listed, spherical aberration coefficients at other

magnifications can be calcufated. The data used for these calculations are

listed in detail at the end of the chapter.

Table 4-2. Spherical Aberration Results for the Modulator Lens

Photo Emitter Central Focus m, ° S S Cy()

Potential Potential Potential (mm) (mm)
(-volts) (-volts) (-volts)

111 2000 1850 1500 0619 41 74  -76.7 789
151 2000 1825 1750 0.779 80 82 -102 2040
161 2000 1825 1650 0.725 54 106 -101 1353

171 2000 1829 1450 0574 31 442 -49.1 339

The original intention of the eXperiment was to measure the
spherical aberration at a central electrode voltage nearly equal to the beam
cut-off voltage This experimental format would have determined the

spherical aberration under the normal operating conditions of the fens.
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However, the grid images became useless at potentials much less than
beam cut-off voltage. For example, with the focus voltage equal to 1700
volts and the emitter voltage equai to 2000 voits, the grid image was

extremely distorted at a central electrode voltage of 1932 volts, and at

voenttal = 1963 volts the image was focused to a point. Therefore, the

spherical aberration measurement was made with the central electrode
potential much lower than originally intended. The reason for this is that
under the normal operating conditions, the filter lens is not truly acting
like a lens, in the usual sense. When operated near cut-off, the [ilter lens is
supposed to behave like two immersion lenses back-to-back, with a
cross-over produced at the center of the central electrode. A parailel beam
entering the lens from the object side should be decelerated to a very fow
energy at the cross-over, and then be accelerated out on the image side as
a parallel beam once again. This implies no lens action overall and that a
more sensitive technique will be required to determine the optical

properties of the system near cut-off Since later results determined that
the lens had other fundamental problfems, the inability to measure Cg
under normal operating conditions became a moot point.

The beam cut-off characteristics of the lens were measured at
either of two focus voltages for each emitter potential. The emitter voltages
used were 1400 volts and 1600 volts, and the first set was taken with the

emitter at 1400 volts. The focal voltage which oplimizes the cut-off
properties of the lens is expecied to be approximately Vigeys =
0.95V,miter- The focus voltages to be tested were therefore centered on

this value.

The following figures plot the Faraday cup current versus the
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central electrode voltage over a range of focus voltages. The [first set of

plots had a beam limiting aperture of 1000um with V = 1400 volts

emiiter

and then V 1600 volts. The second set used a 150 um aperture

emitter”

and V = 1600 volts. The data which was taken with a 1000pm

emitter
diameter aperture corresponded to a half angle of 15.2 milliradians. This
aperture was used for lack of availability of a smaller one at the time,

resulting in an excessively large half angle. The daia obtained using a

150p m aperture corresponded to a half angle of 3.3 mr, which is within the
preferred limit of Smr in electron lens operation.

Table 4-3 lists the measurement and operational details from the

I-V data graphs. V,,.1 is the voltage at which the Faraday cup current

leveled out, and was therefore taken to be the maximum current for that

run. Vgang IS the voitage at which the current reached its minimum
value. cht—off is the difference between VmaxI and Vblankedl' and is the

voltage change necessary 10 block the beam. Ipay Was the maximum

X
current value reached by the Faraday cup.

By plotting the information in Table 4-3, it is evident that there is
no clear relation between the focus potential and the voltage swing needed

to block the beam (V ¢). However, interesting results may be noticed

cut-of

in plots of Viyianred] Versus Vioo,s and 1 versus Voo, (see Figures

max
4-12 through 4-17. Note that in cases where there are two values for a

data point, the average of those values is plotted.}). Except for the first data

point in the 150 ym case, Vobtanked IS 20 increasing function of the focus



57

Table 4-3. Results of Beam Cut-off Experiments

Figure Veminter Veocus VYmaxl Vblankedi Yeut-off max
(volts) (volts)  (volts} (volts) (volts) (1072 amps)

4-43 1400 1300 13835 1392 85 40
4-4b 1400 1320 1381 1392 11 85
4-Sa 1400 1350 1385 =1396 11 5.0
4-5b 1400 1330 1381 13935 125 8.0
4-6a 1600 1500 1581 1593 12 9.5
4-6b 1600 1530 =1585 1596 11 12
4-7 1600 1560 1584 15975 135 6.0
4-8a 1600 1500 1581 1592 .4 114 7.5
4-8b 1600 1510 1583 15935 10.5 75
4-8¢c 1600 1520 1584 15938 11.8 6.0
4-9a 1600 1530 1583 1595.8 12.8 7.2
4-9b 1600 1540 =1580 1596 16 9
4-10a* 1600 1520 1580.25 1595 14.75 0.65
4-10b* 1600 1500 1581 1596 15 0.85
4-11a* 1600 1560 1582 1598 14 0.48
4-11b* 1600 1540 1581 1596 17 0.79

* This plot was taken with a limiting aperture of 150 pm. All others used a
1000 ym aperture.

potential. This refation implies that a greater blanking potential is needed
to block a beam which is exposed to a higher focus voltage. One possible
explanation for this relation is that greater focusing of the beam (ie. a
higher focus potential) decreases the beam diameter in which case the
blanking potential must be increased to "tighten” the innermost annular

surface of the blanking equipotential. Except for the initial point in Figure
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4-14, this relation is consistent throughout the data. In fact, comparison of

Figure 4-13 (1000pm, V = 1600 volts) with Figure 4-14 (150 pm,

emitter

A = 1600 volts ) is consistent with this hypothesis in that the 1000

emitter

um case has blanking potentials which are typically lower than the 150 ym
case. The two plots then appear Lo converge when the focus potential is
relatively large. Although this relation could not be safely extrapolated to
focus voltages higher than those measured, it does seem to explain the

focus voltage dependence on the blanking potential.

The plots of focus potential versus Imax in Figures 4-15 through

4-17 are also quite interesting. Although it could be argued that the

important relation s Vfocus versus V f it can be seen in Table 4-3

cut-of

that such a relation is extremely scattered and unitelligibie. By plotting

Vfocus versus Imax- one is able 1o discern a consistent relation in each set

of data in which ]max reaches 2 maximum value. The maxima reached can

be read from Figures 4-15 through 4-17. It is clear that a convincing
deter mination of this relation would necessitate a larger body of data, for
example to determine whether or not the maxima in Figures 4-16 and 4-17
are the same. Nevertheless, there is a consistent relation outlined in the

data plotted from which the optimal operation of the lens may be

determined, that is, the value of Viocus Which mazximizes [, ..
One would expect that for a constant beam current and a constant

limiting aperture size that Imax should be constant. It is however clear

that such is not the case since there is consistently some lens configuratjon

which maximizes Imax- It is therefore clear that in those lens
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configurations other than the one giving | that some fraction of the

max

beam entering the lens does not arrive at the Faraday cup. In fact, there is
no reason to believe that some fraction of the beam in the I - case is not
also being "lost” within the lens. Such losses can occur in either of two
ways. The electrons are either being deflected into one of the lens
electrodes, or they are being deflected clear out of the lens assembly into

the surounding shield, with the former being much more likely.

Further experimentation could be used to determine where these

“lost” electrons go. Since the values for I, ., fall off from the maximum

1 hay fOr both increasing and decreasing values of Vi, ... it seems possible

that the beam is being overfocused and underfocused, respectively. The
experiment would entail measuring the current on the central electrode

and each of the focusing elements while the focus voltage is varied. An

increase in the current on an electrode accompanied by a decrease in I,y

would isolate the point at which the electrons are lost.
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Figure 4-4 Faraday Cup Current versus Central Electrode Voliage
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Figure 4-5 Faraday Cup Current versus Central Electrode Voliage

0.6 [

0.4

Vemiller = 1400 volis
a VIOCUS = 1350 volts
b: ¥rocus = 1330 voits

Aperture Diameter ~ {000 Ko

L

1396

1392

1388

Voltage {volts)

1384

1380

19



(s313dwe o 1) jwainy

Figure 4-6 Faraday Cup Currenl versus Central Etectrode Voltage
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Figure 4-7 Faraday Cup Current versus Ceatral Elecirode Vollage
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Figure 4-8 Faraday Cup Current versus Central Electrode Voltage
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Figure 4-9 Faraday Cup Current versus Central Electrode Voltage
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Figure 4-10 Faraday Cup Current versus Central Electrode Vollage
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Figure 4-11 Faraday Cup Currenl versus Central Electrode Voltage
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Figure 4-12. Blanksd Voltage versus Focus Vollage
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Figure 4-14. Blanked Vollage versus Focus Vollage
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Figure 4-16. Maximum Currenl versus Focus

Vollage
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Table 4-4. Shadow Measurement Data

Photo N E E2 E3 E a4 ES Eé £7 ES8 EQ
(mil) (i) {mil) (mil) {mil) (mil) (mi))  (mil)  (mn)

1) 093 74 23 25 92 62 23 25 58 91

151 094 44 13 i5 S8 61 24 25 59

161 116 57 18 20 73 36 3q 84

171 082 78 23 26 100 &4 35 32 74

Grid Radii el P2 e3 ed e’ eb e’ e'8 eg
(i) (mil)  (mi) (milY mi)) (mad) (ml)  (mid) (dd)
133 38 a2 162 128 428 52 11.2 197

Phaoto M1 M2 M3 M4 M'S M6 M7 M8 M'Q

Pil 56 6.1 60 57 48 48 48 5.2 a6

15 I3 34 36 K3 48 50 4.t 53

1h ] 43 47 483 45 7.5 75 75

1T 59 £ &2 6.2 £ 06 73 €2 6 &

Explanation of Terms:

N = enlargement ncrma’ization factor; in addition
to this term, thc neasurements of each photo are
divided by 16 to account for photographic magnification
E(i) = the normalized shadow measurements
e(i) = the grid separations

M(i) = E(i)/e(1)
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Table 4-5. Summary of Spherical Aberration Results

Result 111 151 161 171

My 6.05 475 475 6.10

M, 492 5.17 7.49 6.7t
c,(in)  0.603 0.567 0.364 0.413
z4(in) 0201 0.237 0.440 0.319
o, 0619 0779 0725 0.574
1/m, 162 128 1.38 1.74
1/m,-m, 0.996 0.501 0.655 (.17
z-25lin} 161 1.58 1.38 1.42
flin) 162 3.15 2.11 121
golin)  -0.802 -2.25 -1.09 -0.304
B(mil2) -2.88x10°% -1.44x107% -2.97x10°% -2.66x1074
g(mil 2) 256x107% 220%1073 00 175%1074

Cy(mi12) -340x10°% -1.87x107% -2.97x10% -2.92x1074

Co(mil 2) 0.953x107% 0.396x10™% 0.0 0.597x10°%
S¢ 74 82 106 442
Sg 767 -102 -101 -49.1
Cy(=Nin) 31 80 53 13.4
Cy{=)mm) 789 2040 1353 339
Constants
z-1815 a-0792"

b= 0.804" d-2365"
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Photo 111

Photo 151

Figure 4-18. pata Enlargements of Photographs 111 and 151



Photo 16T

Photo 171

Figure 4-19. Data Enlargements of Photographs 161 and 171
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Chapter V

Conclusions

The beam modulating lens was designed to give high frequency,
low spherical aberration modulation of an electron beam. Preliminary
computer calculations gave approximate resuits on these parameters, but
needed to be clarified with experimental data.

The data on the beam cut-off properties of the lens were better

documented and more conclusive than the Cs data. The results from these

tests showed very conclusively that the present design of the modulator

lens could biock an electron beam with a voltage swing of no less than 8.5

volts (V 1400 volts, Vgo.us=1300 volts) in the 1000um aperture

emitter”

case, and commonly needed a swing of approximately 14 volts

(V =1600 volts, Vp,.,s=1560 volts) in the 150 pm aperture case.

emitter
Since the limiting value of this parameter was 5 volts for acceptable
operation, the present form of the modulator lens is not adequate for high
speed operation, and it must therefore be redesigned.

Since the beam cut-off data so conclusively showed that the
modulator lens was not adegaute for its planned application, the inability

to measure the spherical aberration with the fens operated near beam
cut-off became a moot point. The Cs measurements were taken under those
operating conditions which were the closest to the normal operating

parameters while also lending themselves to our particular experimental

technique. Therefore, while the spherical aberration results do not apply to



76

the modulation behavior of the lens, the determination of C3 did prove to

be an interesting electron optical exercise.
Although the spherical aberration data could be much more
detailed, 1t does enable one to estimate the object side spherical aberration

for the infinite magnification case. For a beam potential of 2300 volts, the

results were as low as 339 mm for vfocus=1450 volts and V 1825

central®

volts, and as high as 2040 mm for Vfocus=1750 volts and Vcentral=1825

volts. The lower result is the best of the four tabulated, and also had the
smallest degree of scatter of the Cg value. This value for the spherical
aberration is much lower than would be expected of z filter lens, although
it was not obtained in the cut-off operating region.

Modifications to the beam modulator lens have been considered in
light of the beam cut-off results. The expected modification would be to
reduce the thickness the central electrode since this is the main element 8o
far as the cut-off properties of the lens are concerned. Again, computer

calculations would be used to optimize the modified configuration.
Furthermore, modification to the experimental determination of C would
entail placement of a 150 mesh SEM grid in {ront of the lens and removal
of the rear grid altogether. Since points in front of the lens are the only

ones suitable to C; measurement, such an arrangement would produce 10 -

20 data points per photograph which should enable a much more accurate

determination of Cs*
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Appendixr A

Electron Emission

Emission can occur through one of two general mechanisms. The
first mechanism involves imparting adequate kinetic energy on a charged
particle to drive it off of the emitting surface. Two examples of this type of
emission are thermionic emission and photoemission. The second general
mechanism for charged particle emission is to draw charged particles off of
an emitting surface in the presence of powerful electric fields. This type of
charged particle emission is called field emission. Of course, combinations
of these mechanisms exist, for example in the form of thermionic field
emitters. The discussion to follow however, will emphasize field and
thermionic emission. Thermionic emission will be discussed to give a
conceptual framework from which to understand field emission.

All materials maintain their chemical identity by keeping their
constituent particles from leaking away. This is actually true, to some
degree, of molecules down to the atomic level. For the sake of simplicity
however, the discussion will be narrowed to solids, solid-vacuum
interfaces, electrons, and efeciron emission.

A solid keeps its electrons because of a wall of potential energy
between itself and the vacuum beyond. For an electron to escape in a
classical way, the sum of its original potential energy and some amount of

absorbed kinetic energy must be greater than the potential energy of the
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wall. Two sources of this kinetic energy are heat and light, in which case
the emission of electrons from a surface is called thermionic emission and
photoemission, respectively.

These two types of emission are consistent with the ciassical notion
of emission in that the particle must have more energy than the barrier in
order to get over it. It must be emphasized that the barrier is energetic, not
physical, and that it only makes sense in the context of an energy diagram.

As an example, consider the energy diagram for thermionic emission in

Figure A-1.
(8)
(b)
- Ny . {8) The potential enerqy barrier
/ /’f when the 1mage force 13 19nored
? (b) The potentisl enerqy barrier
@ %] which 1nctudes the 1mage force
w between the emitted electron and
o the metallic surface
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f - '//","/' /'_///,:/,"’. /
7
SIS
T
v “ yrd /]
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G l 2
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Distance Qutside Metal

Figure A-1. Thermionic Emission

Field emission on the other hand violates this classical notion. In field
emission the barrier is deformed by an applied electric field to such a
degree that the electron can tunnef through the barrier in a quantum
mechanical fashion. This behavior is in utter violation of the tenets of
classical physics, and can only be understood from its quantum mechanical

Origins.
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With the discussion limiled to metals and metal surfaces, the
free-electron model!2 of solids becomes applicable. Based on the
Fer mi-Dirac statistical distribution,

f(e) = (ele /KT 4 gyl (A-1)
this model considers the most weakly bound valence electrons to be free to
roam about the volume of a solid without being locked to one particular

atom or molecule. The above equation gives the probability that an orbital
at energy ¢ will be occupied in an ideal electron gas at thermal

equilibrium. The value p is the temperature dependent chemical potential
which, at T equal to absolute zero, is equal to the Fermi energy. The Fermi
energy is also considered to be the energy of the topmost filled orbital at
absolute zero. The constant k in the expression is the Boltzmann constant.
The forces between these conduction electrons and the ion cores are
neglected.

Under relaxed or equilibrium conditions the electrons within the
molecules have energies corresponding to the atomic energy levels of the
particular material. Within each level there may be up 1o two electrons
(with opposite spin), this limit being the result of the Pauli Exclusion
Principle3. Exacting studies of the energy leve! structure of many materials
have shown that these atomic energy levels tend to fall together in clusters
on energy diagrams. These clusters, referred to as bands, have become the
standard in discussions about electronic energy levels.

The common electrical materials each have an explanation of their
electrical properties based on their band structure. This atomic or
solid-state theory of electrical properties is consistent with the observation

that the electrical properties of materials are one of the cyclic properties on
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the periodic table. The common electrical materials are insulators,
conductors, and semiconductors. Although conductors (metals) are the main
concern of this discourse, a brief review of the band structure of the other
materials will increase the understanding of the electrical properties of
interest.

An insulator is characterized by the property that all the energy
bands are completely filled by electrons. With no electron vacancies there
is no way for electrons to move about, and therefore no way to carry
current. Note however that electron vacancies do not refer to spatial voids,
but rather to unoccupied energy levels which could potentially be filied by
an electron.

Avoiding all the perturbations and varieties of semiconductors, the
band structure of only intrinsic semiconductors will be described. Noting
that there are gaps between the energy bands of all materials, it should be
clear that such gaps are energy regions forbidden to the electrons. These
forbidden gaps, as they are sometimes called, are a part of the band
structure of every material. However, it occasionally happens that the gap
between a completely empty band and a filled band is small. In such a case
electrons can be excited (either thermally or optically) into the empty band
where they are free to conduct. Materials with this property are calied
semjconductors.

A conductor characteristically has one or more bands which are
only partially filled. As such, the electrons within those partially full bands
can be accelerated by small fields to move charge, and hence to carry
current.

When discussing the conductive properties of materials it is

common and justifiable to consider only the top portion of the top band.
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Intuitively this makes sense since all bands and levels below this area are
filled, making them non-conductive. Therefore, the following discussions

about metals (conductors) will only consider the top energy band.

‘\\\ \\ -

[v8] [v§)

[ | -

(SW] L
l/’ ' '(/J:-:
y) /8 C /6 0 T/8

F: K k

Insulator Metal Semiconductor

Figure A-2. Energy Diagrams of Insulators, Conductors, and

Semiconductors. Shaded areas designate filled energy levels.

The highest fijled energy level within the top band is calied the Fermi

level, and is denoted u. In metals it is always several voits above the
bottom of the band.

A large part of the barrier keeping the electrons within a molecule

is called the work function (denoted ¢). The two previous diagrams give
schematic views of the relationship between the Fermi level, and the work
function. Since the work function for metals is between 2-5 volts, it is clear
that thermionic emisson and photoemission require electrons to absorb at

least 2-$ volits to be emitted. For thermionic emjssion this requires that
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temperatures up to 1500°K be attained, while the threshold for
photoemission lies in the visible or near ultraviolet regions.

To examine the theoretical details behind one-dimensional
thermionic emission, consider an electron outside a metal. Using the
electrodynamical technique of image potentials, it can be shown that the
electron sees an image potential V = -e2/4x , where Y denotes the distance
between the electron and the surface of the metal. This results in 2 force on
the electron F = -dV/dx - -e2/(21)2. With the metal surface at 3=0, the
energy diagram across the surface takes on the form in figure A-1(b).

The polential energies at the top of the diagram are given by

V=-W x40 (A-2)

V=-e2/(4x+e?/w) 1> 0 (A-3)
noting that all molecular potentials are referenced below zero, and that the
e2/w term is a factor to satisf y the boundary condition at x = 0. It is clear
from equation (A-3) that V » 0 in the limit as x > », implying that the
potential barrier between the metal surface and vacuum is infinitely wide
due 10 the image potential. Therefore thermal excitation alone will not be
able to induce electron emission, some electric field is needed to deform
the potential barrier so that its width becomes finite.

Taking the simplest case of a constant electric field, F, the potential

beyond the surface due to the field is given by V = -eFx. Equation (A-3)

becomes

V- -e2/(4x + e2/w) - eFx 1 > 0. (A-4)
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This relation shows that in the limit a8 x » «, thai now V- -= implying
that the barrier is in fact finite in width from the point of view of an
electron at the Fermi level. If the field is of moderate strength, no

appreciable tunneling will occur.

With such a simple algbraic relation, it is possible to calculate the
location and maximum height of the potential barrier. A local extremum is
given by the condition

dV/dx = 0 - 4e2/(4x + €2/w)? - ¢F (A-5)
which, since d2V/dx? < 0. is the mazximum value of V(3). Solving for x gives

X - (e/4F)/2 - e2/4w, which when inserted into equation {A-4) gives
max

3 _(a3p)\i/2 )

Vmag = (€7F/4w) - (e°F)V<, (A-6)
Using typical values for e, F, and w it becomes apparent that the first term
in the expression is less than 1% of the second. Therefore, vmax can be

approximated by the second term, which is called the "Schottky barrier

potential”,

(8)
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As was stated earlier, the condition for electron emission is that the
particle must have an energy greater than that of the potential barrier.

Figure (A-3) shows that electrons within the metal see the height of the

barrier as (using the approximated V...) B = w - (e3F)1’2 where w = e

max
+ P From these relationships, and the Fer mi-Dirac energy distribution of

the electrons, the [lux of the electrons can be approximated by

Fa2kT/h3 exp-lted -e¥2FV3)/kT) »
I exp-[(py2+pzz)/2ka] dp,,dp, (A-7)
where the p;'s are the momenta in the i-directions, and the integrals are

over the range t=. This expression can be evaluated and, by muftiplication
with the electronic charge e, gives the current density for a thermionic

emitter in (A/cm?) to be
Jo = 4wem(kT)2/h3 exp-lled -e¥2F/2)/kT].  (A-8)

The very strong temperature dependence of the thermionic current density
is quite clear in the form of the T2, Typical current densities for a tungsten
thermionic emitter are on the order of ! to 10 A/cm?.

Field emission is defined as the emission of charged particles
from the surface of a condensed phase into another phase (usually
vacuum) under the action of powerful electrostatic fields (0.3 - 0.6V/A).
Since the device used was made of tungsten, the discussion will be {imited
lo the case of emission from solid metal surfaces into a vacuum. The
discussion will invoke the tools of quantum mechanics to give a theoretical
basis for the phenomenon. Unlike the fields used in thermionic emission,
the electric fields in field emission are intended to deform the potential

barrier so that tunneling does occur. Figure A-4 indicates the deformation
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of the barrier in field emission.
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Figure A-4. Field Emission Energy Diagram

Under common operating conditions, the electron undergoing field emission
has a tunneling distance of approximately 15A.

The theory which describes the operation of field emitters was
developed in 1928 by Fowler and Nordheim (reference 4). The result was
the commonly used Fowler-Nordheim equation which relates the field
emission current to the applied field and the work function of the emitting

material. Fowler and Nordheim first reduced the problem to the

one-dimensional case at 0°K, from which they calculated the transmission

coefficient of electrons passing through the potential barrier (with an

energy E; normal to the surface) Lo be

D(EV) = 4[Eg(¢ + p -EIM2 « (6 + 1) (A-9)

exp{-4/3(2m/H2) 40 + u - E)W2rFe)
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The calculation was done by treating quantum mechanical tunneling with
the WKB method. Using Fermi-Dirac statistics, it is possible to determine

the distribution of electrons with velocities along the emission direction X

(within the range vy and vy + dvy ) by integrating over Lhe energies ¢

Nvp) = 4rm2/m3 o [ 11 vexpl(By + ¢ - AT de (A-10)
The differentials of the kinetic energy and the velocity are related by dE, =
mvydv,. It is therefore possible to integrate the product of D(E;) and Nlvy)
over the normal energies E; to obtain the energy distribution normal to the
surlace,
I(Ey) = 16mmAIE (¢ + A)]YZexpl-b(¢ + AVZ/F] = (¢ + an3.
(A-11)
This is the result in the range E; < u, which corresponds to the pure field
emission case. The factor b is a constant, and A = p - E;. The graphs

below of I(Ex) versus Ex show how the distribution broadens and the

maximum shifts as the field is increased. This results from lower energy

electrons being emitted as the field is increased.
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6

The total current density is calculated by integrating” the normal
energy distribution 1(E;) over E;
)= [16wme(dp) Y2exp(-be¥2/F) + n3(d + p)l «
-oo_[*‘ exp(3/2b¢/2A/F)A dE,. (A-12)

This integral is of the form [ye®Y dy, and results in the equation
J= 64wme(dp) V2F2 exp(-b0¥2/F) + 303(0 + pb 2 (A-13)
Inserting the constants and evaluating the expression gives

J=62x 105 uV2F2 exp(-6.8 x 107 ¢ ¥2/F)+ 0V3( + p) (A-14)
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which is the well-known Fowler-Nordheim equation for the current density

of a coid (0°K) field emitter.
The Fowler-Nordheim equation relates the beam current versus
the applied electric field in cases of high fields and low temperatures. A

Fowler-Nordheim plot of ln(l/Fz) versus | /F will have & slope proportional
1o ¢ ¥2 Such a graph of experimental data aliows the determination of the

work function ¢ when the refationship betweens | and |, and V and F, are

known. Under typical operating conditions, the current densities of a field

emitter are within the range 100 to 10,000 A/cm?.
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Appendix B
Vacuum Technology

The vacuum requirements for these experiments were determined

by the use of a cold field emitter. Such emitters have a practical operating

pressure threshold of approximately S x IO‘9 torr. This value is due to the

rule of thumb assumption that a surface will adsorb one monolayer per

second at 1078 torr. At S = 1079 tore pressure, 300 - 1000 seconds (about S
- 1S minutes) are available to run an experiment before the emitter needs
to be cleaned. Higher pressures give such a short amount of time between
cleanings as to be virtually useless.

The vacuum system used was a standard stainless steel ultrahigh
vacuum system capable of attaining pressures down to 10‘1 ! torr or fower.
Without oplimizing the pressure obtained, pressures were reached
consistently in the low 1072 and occasionally in the high 10710 torr range.

Although such pressures are commonly used in experimental
physics, a novice facing his first vacuum chamber has little hope of
reaching such pressures. Since a large portion of time on this project was
spent learning aboutl vacuum techniques, it seemed logical 10 write-out this
information for those beginners to follow. Therefore, the topics to be
covered will be the methods and importance of cleaning and baking, the
mechanisms and operation of thermocouple and ionization gauges, and the

uses and operation of mechanical, sorption, sublimation, and ion pumps.
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The main concern with the cleaning of surfaces to be used in high
vacuum applications is to remove materials which have high vapor
pressures, and which are difficult to pump. Such materials under vacuum
conditions are able to vaporize or outgas at rates which may be equal to
the available pumping speed, and as such would fimit the attainable
pressure $o long as the substance is in the chamber. In the system that was
used for these experiments, the main high vacuum pump was an ion pump.
Such pumps for example are rather inefficient at pumping hyrocarbon
materials, $o it is very import that these materials in particular never enter
the system.

The cleaning process used mainly entails degreasing each
component. The degreasing process begins with thorough rinses with
acetone to dissolve any hydrocarbons. Subsequent rinses use methanol to
remove any remaining acetone and contaminants, and then water to
remove the remaining residue. Drying the device should NOT be done with
in-house compressed air. Such lines are usually driven by oil-sealed
mechanical pumps, and as such could recontaminate a [reshly cleaned
surface with pump oil. The drying should be done with a dust-free
disposable towel, or heating. It should be noted that this process may not
necessarily be the best one to foilowl, but it has proven to be acceptable
and is sufficiently effective to warrant its use. The cleaning process and
any subsequent handling of the device should be done while wearing clean
gloves. A single fingerprint can leave enough of a residue to cause a
non-trivial outgassing problem. Care should also be taken to keep the
device dust-free between the time of cleaning and placement into the
system. Dusting with a zero residue aeroso! blower before placement into

the system will fulfill this requirement.
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If cleaning is done to reduce the surface causes of outgassing,
baking is done to reduce both surface and subsurface causes of outgassing.
Although a part may be baked before placing it inlo the vacuum system2'3,
such precautions are only rarely necessary. On the other hand, each time
the chamber is opened its interior walls are contaminated with
atmospheric gases. Some of these gases desord slowly, and would thus be
pumped slowly. To speed the pumping, these surface gases are driven off
the walls by baking the chamber.

Since the vast majority of surface area within our vacuum system
was stainless steel, the discussion will be limited to the outgassing

properties of this material. By far the most plentiful gas to outgas from
stainless steel is water, which is followed by H,, CO,, CO, and Arl*z. For ail
outgassing phenomena it has been found that the rate of outgassing is

proportional to the temperature of the system (the baking temperature),

and the duration of the bake. This relation has been found to be4'5

m-ktZexp(B - A/T) (B-1)
where m is the amount of gas evolved, t is the time, T is the absolute
Table B-1

The Theoretical Time to Reach an Outgassing
Rate of 10"!3 W/m? in Stainless Steet!

t T
(s) (*C)
105 (11 days) 300

861109 (24 hours) 420
1.1 2 104 (3 hours) 570
361 103 (1 hour) 635

temperature, and k, A, and B are constants. From this relation it is clear
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that rapid outgassing is much more dependent on temperature than time

{see table B-1). The preferred method for baking a system is to place an

oven over it which is capable of temperatures in the 600 "C range. When
this is not possible (due to either lack of availability of an oven or the
inclusion of non-bakeable components) one may use either heating bands
or, as a last resort heat tapes. Care should also be taken to heat (with a heat
gun) any glass surfaces (such as windows or ionization gauge tubes) and
any high surface area metal baffles which cannot be baked with the above
methods.

The two pressure gauges used were chosen for their compatibility
and their simplicity. The thermocouple gauge has an effective range
between 760 torr - 1 mtorr, while the ionization gauge is effective in the
range 10'3-10'12 torr. With these gauges the operator has the capability
1o measure vacuum pressure over all ranges of interest. It should be noted
however, that the accuracy of these gauges is generally no better than
about +10%, but that this is an acceptable range of accuracy in most
instances.

The thermocouple gauge is usuvally connected to the roughing
manifold of the system because it is during this phase of the pumping that
the pressure is within its range. The gauge does not measure the actual
pressure, but rather the pressure dependent heat flow which is also
dependent on the type of gas present (this is one source of the 10% error in
the pressure reading). In principle a constant current is passed through the
heater wire with a thermocouple, often copper - constantan, connected at
the midpoint. As the pressure increases, heat flows to the walls of the
ther mocouple gauge, and the temperature of the heater wire decreases.

The pressure is read from & d-c microammeter which is connected to the
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thermocouple and calibrated in pressure units. A thermocouple gauge is
extremely simple to use and is very useful in determining when to switch
from rough pumping techniques to others.

lonization gauge is actually a very loose term describing a class of
quite distinct gauges whose unifying trait is their common principles of
operation. The type of gauge to be described falls into the hot cathode
category as a Bayard Alperi-gauge, which was designed by Bayard and
Alpert in 19506. Such a gauge, as with the thermocouple gauge above,
does not measure the actual pressure. In this case the gauge measures the
molecufar density of a gas. The operation of the gauge is based on the
tonization of gas molecules by collisions with electrons, and the subsequent
collection of these ions. The collected ion current is proportional to the
particle density which is proportional to the pressure.

The Bayard-Alpert gauge is run by an ionization gauge tube
controller which maintains the necessary potentials and takes the
necessary measurements to obtain a pressure reading. The pressure is

calculated as
P-= ip/(S'ie) (B-2)

where ip and i, are the plate and emission currents, and S is the

sensitivity of the gauge tube. Each controller is calibrated for nitrogen, so
the tubes sensitivity for other gases will vary depending on the ionization
potentials of the other gases (see table B-2). However, there was not a

great need for such accuracy in our experimental arrangement. In fact,

from the table it is clear that the main atmospheric components (N5, 05,

and H,0) are within about 10% of the standard sensitivity, so that when

pumping from atmoshpere one would still be near the 10% error range that
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is expected.

Table B-2
Approximate Relative Sensitvity of
Bayard- Aipert Gauge Tubes to

Different Gases6

Gas Relative
Sensitivity

i, 0.42 - 0.53

He 0.18

0, 0.8-09

H,0 09

Ne 0.25

N2 1.00

CO 1.05-1.1

Ar 1.2

Hg 3.5

Acetone S

The ion gauge used had a2 mechanism for degassing in which it was
directly heated. The grid wire is heated by connecting it to a low-voltage,
high-current source. The tube should receive an initial heating of at least
20 minutes to degas the glass tubing. After that, an occasional heating for
about 15 seconds will be needed to clean the electrodes.

Like the pressure gauges described above, the four pumps used to
run this vacuum system are also matched Lo complement each other's
abifities. Check the table to obiain the basic operating parameters of each
pump. Following will be brief outlines of some practical considerations for

the use of each.
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Table B-3
Basic Notes on the Operation of
Four Vacuum Pumps
pump pressure pumping saturation

range mechanism limjted?

(torr)
carbon vaned 760 - 200 mechanical no
rotary pump gas-transfer
cryosorption  760-1 03 gas capture yes
pump
titanium 1073 gas capture yes
sublimation
pump
getter-ion Sx 10'4 gas capture yes
pump and

ion pumping

The first pump used differs from the most common mechanical
pumps in that the rotary vanes seal with solid carbon vanes rather than
with the more common oil. As such, this pump runs fouder and hotter than
the oil sealed pump, but there is much less of a chance of oil backstreaming
into the system. Since the main jon pump is rather ineffective with
hydrocarbons, the carbon vaned pump poses less of a risk of
contamination. Although the cryosorption pumps are capable of pumping
from atmospheric pressures, inftial roughing with the mechanical pump

helps to reduce the frequency at which the sorption pumps become
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saturated.

The cyrosorption, or more commonly sorption pumps, use an

adsorbent cooled to liquid nitrogen (77°K) temperatures to pump gas
molecules from the system. At this temperature most gases other than
neon, hydrogen, and helium will be pumped until the molecular sieve
saturates. If cooled to §5°K all gases would be pumped until saturation,
with the partial pressure of hydrogen being about 5 x 1078 torr”. The high
surface area adsorbent (surface area of up to 600 square meters per gram)
s also an attractive roughing pump because there is no possibility of
hydrocarbons backstreaming into the system with this type of pump. The
performance of these pumps can be, and in fact was, enhanced with the
practice of staged roughing. This method entails using one sorption pump
to go from the shut-off of the mechanical pump down to about 100 mtorr.
That pump is then valved off and another is opened to pump from there
downto S x 10"4 torr (the easy starting point for the ion pump). In using
staged roughing it is important that the second sorption pump be

sufficiently precooled before it is opened.
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Figure B-1. Pumping Times for Systems of One or Two Sorption Pumps
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Since water vapor seriously affects the performance of these
pumps, it occasionally becomes necessary to bake the pump to drive off
trapped water vapor. A bake of 5 hours with another pump drawing the
vapor is usually sufficient. However, be certain 1o not use an oil sealed
mechanical pump in this process due to the likelihood of contaminating the
molecular sieve with pump oil.

If the sorption pumps are having a difficult time getting the

pressure downto S x 104 torr for the ion pump, flashing or heating the

Table B-4

Initial Sticking Coefficient and Quantity Sorbed
for Various Gases on Titam'urn8

Initial Sticking Quantity Sorbed?
Coefficient (x 1613 molecules/cm?)
Gas (300°K) (78°K) (300°K) (78°K)

H, 0.06 0.4 8-2300  7-70
D, 0.1 0.2 6-11P -
H50 05 - 30 -

co 0.7 0.95 5-23 50-160
N, 0.3 07 03-12  3-60
0, 0.8 1.0 24 -

Co, 0.5 - 4-24 -

He 0 0

Ar 0 0

CH, 0 0.05

2 For fresh film thickness of 1019 Ti atoms/cm?.

b The quantity of hydrogen and deuterium sorbed at saturation
may exceed the number of Ti atoms/cm2 in the fresh film
through diffusion into the underlying films at 300°K.
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titanium sublimation pumps usually provides the added pumping needed
to reach the starting point. The pumping mechanism for these pumps is the
chemical reaction of gases with the surface of the active metal Since the
mechanism depends on chemical reaction, the inert gases such as helium,
neon, and argon will not be pumped by a titanium sublimation pump (see
table B-4).

The active metal surface of the titanium sublimation pump is actually the
entire chamber surface which is in the line of sight of the titanium
filaments. Heating the titanium filaments with a current of 35-40A
deposits a fiilm of titanium on all of these surfaces. In some vacuum
systems, the sublimators are located in a relatively narrow stretch of
chamber. As such, heating them soon heats the surrounding chamber walls
enough to cause more thermally induced outgassing than the pumps are
pumping. Thus to use the titanium sublimation pumps to their maximum
ability, it is in this instance necessary to water cool the chamber wall
surrounding the filaments to prevent the heating of that surface.

The terminology surrounding iom pumps is confused and
contradictory. References are made to sputter-ion, getter-ion, and simply
ton pumps with contradictory definitions for each. To exemplify this
situation, the ijon pumps to be discussed are called sputter-ion pumps by
P.A. Redhead, et. al. while the same pumps are called getter-ion pumps by
O'Hanlon. Since the form and operation of this particular pump will be
discussed, its type will be clear and it will be referred to simply as an ion
pump.

The ion pump operates by a combination of two mechanisms. The
first entails chemical reactions on active surfaces (as in the titanium

sublimation pump above), the second entails ionization of gas molecules by
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electron bombardment, followed by burial of the newly created ions in the
pump wall. Most modern ion pumps are composed of modules which are
made up of Penm'n39 cells, external permanent magnets of about 0.1-0.2
Tesla strength, and cathode voltages of about SkV at optimal operating
conditions.

The electromagnetic fields in each Penning cell create a potential
well which traps electrons between the two cathodes. The axial magnetic
field sets the electrons inio circular orbils which both prevent their
reaching the anode, and which increase the probability that they will

collide with and ionize a gas molecule

Schematic diagram showing sputter
deposition and pumping in a Penning
cell: @ chemically active gases

buried as neutral particles; A
chemically active gases ionized before
burial; 0 inert gases buried as
neutral particles; A inert gases
ionized before burial.

777, Anode 77

8poy|oY

Figure B-2. Schematic Diagram of a Penning Cell

As with the titanium sublimation pumps above, ion pumps tend to
have different pumping rates for the various types of gases present. The
active gases are in general easy to pump since they tend to form stable
titanium compounds. The rates of pumping of the different gases can be

obtained from the following table.
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Tabie B-5

Pumping Speeds of lon Pumps Relative to Nitrogen

Gas Diode pump Triode pump
H, 27 2.1
€O, 1.0 1.0
H,0 1.0 1.0
0, 0.57 0.59
Light Hydrocarbons 09-16 09-10
He 0.1 0.3
Ne 0.04
Ar 0.01 03

The difference between the diode and triode ion pumps is best explained
through the use of a diagram. The main difference between the two pumps

1$ the presence of a titanium sputter cathode in the triode pump.

* - <+ -
._4|[)1 'I’j
Cathode Anode Anode Collector
Diode = = Triode
lon Pump = D= [{ TiSputter
= =] Cathode lon Pump
0 (]
g =)
D
0D (&=
() (==
() [
= = = I:' =
B — B—

Figure B-3. Schematic Diagrams of Diode and Triode Ion Pumps
While the diode pump operates as was stated above, the triode pump has

the honeycombed sputter cathodes placed beiween the anode and the
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collector plates. lons strike the sputter cathode at small angles sputtering
titanium in the process. The sputtered titanium lands mostly on the
collector where it binds with gas molecules. Although this type of pump is
more complicated than the diode type, it is clear from the table above that
the triode design is much more effective with noble gases. Hence the
experimenter has the opportunity to tailor his ion pump mechanism to the
type of gases to be pumped.

The operation of ion pumps is nearly fool-proof. The time when
most caution is needed is when the pump first is being started. Since the
operating current of the ion pump is directly proportional to the pressure,
the relatively high pressure when the pump is turned on means that there
1s a relattvely high current being drawn through the pump power supply.
It is sometimes necessary under these conditions to disable the high
current protection mechanism in the pump control unit in order to get the
pump started. This should be done with a great deal of attention to the
pump current. With the high current mechanism by-passed, it is possible
to seriously damage the pump control unit with extended high current

operation.
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