
Local Register Allocation Spanning Basic Blocks

Lynn Thompson
B.S., Portland State University, 1983

A thesis submitted to the faculty of the

Oregon Graduate Institute of Science & Technology

in partial fulfillment of the

requirements for the degree

Master of Science

in

Computer Science and Engineering

April 1996

The thesis 'Register Allocation Spanning Basic Blocks" by Lynn Thompson has been

examined and approved by the following Examination Committee:

Michael Wolfe, thesis advisor
Professor

James Hook
Associate Professor

James Reinders
Microcomputer Software Lab

Acknowledgements

I thank the faculty of OGI for the opportunity to study at this institution and Intel
Corporation for their support of continuing education.

iii

Table of Contents

ACKNOWLEDGEMENTS .. iii
.. LIST OF TABLES vi

. . LIST OF FIGURES .. VII

ABSTRACT .. ix

CHAPTER 1 = REGISTER ALLOCATION .. 1

.. . CHAPTER 2 RELATED WORK 5

INTRODUCTION ... 5
OVERVIEW OF GRAPH THEORY .. 6
GRAPH COLORING ALGORITHM .. 9
OVERVIEW OF INTERVAL & CIRCULAR-ARC GRAPHS ... 11
CYCLIC PERIOD GRAPH COLORING ALGORITHM .. 14
HIERARCHICAL PERIOD GRAPH ALGORITHM ... 16
LIVE RANGE SPLIITING ... 17
LIVE RANGE SPLIITING ALGORITHM ... 18
MULTIPLE REGISTER OPERANDS ... 19
FLOW GRAPH TECHNIQUES ... 22

CHAPTER 3 - COMPILER FRAMEWORK ... 25

DATA FLOW ANALYSIS .. 25
SPANNING TREES IN DIRECTED GRAPHS .. 27
CONTROL FLOW CONSTRUCTS .. 28
LIVE VARIABLE ANALYSIS .. 29
REGISTER ASSIGNMENT .. 32

CHAPTER 4 = LOCAL REGISTER ALLOCATION ... 34

... BACKWARD PASS ALGORITHM 34
FORWARD PASS ALGORITHM ... 36

.. CONCLUSION 39

CHAPTER 5 . REGISTER ALLOCATION ACROSS BASIC BLOCKS 41

SUPERTRACE FORMATION .. -41
SUPERTRACE LOCAL VARIABLES ... 43
FORWARD PASS SUPERTRACE ALGORITHM ... -43
OPTIMALITY CRITERIA ... 50
VARIABLE RENAMING IN MODIFIED SUPERTRACE ALGORITHM .. 51
MODIFIED SUPERTRACE ALGORITHM .. 56
CONCLUSION .. 61

CHAPTER 6 = CREATING LARGER SUPERTRACES ... 62

CHAPTER 7 = FUTURE WORK AND CONCLUSIONS .. 74

BIBLIOGRAPHY .. 77

.. BIOGRAPHICAL INFORMATION 7 9

List of Tables

CHAPTER 3

CHAPTER 5

List of Figures

CHAPTER 1

CHAPTER 2

... REGISTER LIFETIMES 5
.. GRAPH OPERATIONS 7

LINE SEGMENTS AND INTERVAL GRAPH .. 12
... PERIOD GRAPHS 13

... CYCLIC PERIOD GRAPH AND CIRCULAR ARC GRAPH 14
.. HIERARCHICAL PERIOD GRAPH 17

GRAPH OF TWO REGISTER TRIPLES AND A REGISTER PAIR ... 21
GRAPH WITHOUT ~ M P L ~ C ~ T EDGES .. 21
NORMALIZED GRAPH WITHOUT lMPLlClT EDGES .. 22

CHAPTER 3

CHAPTER 4

CHAPTER 5

SUPERTRACE .. 42
DRIVER ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION 44
~N~T~AL~ZAT~ON ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION 45
ALLOCATION ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION 46
STATE SAVING ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION 47
EXAMPLE FLOW GRAPH FOR SUPERTRACE REGISTER ALLOCATION 48
DRIVER ALGORITHM FOR VARIABLE RENAMING ... 52

....................................... BACKWARD TRAVERSAL ALGORITHM FOR VARIABLE RENAMING 53
... FORWARD TRAVERSAL ALGORITHM FOR VARIABLE RENAMING 54

EXAMPLE FLOW GRAPH BEFORE VARIABLE RENAMING ... 55
EXAMPLE FLOW GRAPH AFTER VARIABLE RENAMING .. 55
DRIVER ALGORITHM FOR MODIFIED SUPERTRACE REGISTER ALLOCATION 56
~NlTlALlZATlON ALGORITHM FOR MODIFIED SUPERTRACE REGISTER ALLOCATION 57
ALLOCATION ALGORITHM FOR MODIFIED SUPERTRACE REGISTER ALLOCATION 58

CHAPTER 6

.. DRIVER ALGORITHM FOR BASIC BLOCK CLONING 66
TRAVERSALIGENERATION ALGORITHM FOR BASIC BLOCK CLONING 67

vii

viii

Abstract

This thesis addresses the problem of how to perform local register allocation on

variable live ranges that span basic block boundaries. Register allocation is often

performed in two passes. Local register allocation applies to variables with live ranges

contained in single basic blocks. Global register allocation assigns registers to variables

with live ranges that cross basic block boundaries. We propose to extend the

applicability of local register allocation by using a fast algorithm to allocate registers

whose lifetimes span basic blocks but are local to control regions that we call a

supertrace. We present basic block cloning and loop unrolling as optimizations to

increase the size of supertraces. Two basic block register allocation algorithms and two

supertrace register allocation algorithms are presented in detail.

Our goal in this research is to provide evidence that supertrace optimization is a

viable method of increasing the number of register references processed by the local

register allocation routine.

CHAPTER 1
REGISTER ALLOCATION

Discussion of Problem

Basic block local register allocation has the shortcoming that variables eligible for

allocation must have live ranges wholly contained within the basic block. This thesis

addresses the problem of how to extend the live ranges of variables beyond basic block

boundaries by identifying single entry, multiple exit regions in a control flow graph.

Performing local register allocation using the granularity of a region or superfrace can

potentially increase the number of variables eligible for local register allocation.

This thesis presents algorithms for local register allocation demonstrating the

concepts and functions of local register allocation within basic blocks and supertraces.

We also present algorithms to create larger supertraces by unrolling loops cloning basic

blocks. Analysis of the cosubenefit trade-offs support future implementation.

Terminology

In this chapter we introduce terms and concepts for the register allocation phase

in a typical compiler. Register allocation determines which variables are stored in

physical registers and which variables are referenced from memory. Heuristics drive the

register allocation process, taking into account the number of registers available on a

given architecture, the usage patterns for variables, and a number of cosubenefit trade

offs. We present the three heuristics for register allocation algorithms, noting the

benefits and shortcomings of each. Figure 1-1 illustrates the phases in a 'common'

language compiler that converts a source program file into a target program file.

In the sequence of compiler phases required to convert a source program into a

target program, register allocation happens before code generation. Because we use a

flow graph representation, information about variable usage and flow control structures

is available to the register allocation algorithms. It is beyond the scope of this research

to explain the operation of each phase in detail; we refer the reader to a compiler

textboo k[l 1.

source program
...........................

I
I

The input to the register allocation phase is a flow graph constructed from a

subroutine or function. Groups of instructions in the flow graph create basic blocks. A

basic block has a single entry and exit point. Instructions or operations contained in a

basic block have no external entry points or branches out of the basic block to interfere

with the sequential execution of every instruction. Register allocation algorithms replace

variable references with register references. Register allocation is often a two pass

operation. The local register allocation pass deals with variables whose live range is

within a basic block. Global register allocation applies to variables with live ranges

spanning several basic blocks. Live range analysis (presented in Chapter 3) determines

whether the live range for a variable spans several basic blocks.

I
I I

I I

lexical analysis
I
I I

I

I
I

I
I

I I 4 I I

I I

I
I

I I

I I
I

semantic analysis
I

I

I 4 I I
I

i
I

i intermediate code generation
I

I

I
I

I 4 I I

I
I I

I a

I
I I

I I
I

I

I I I

code optimization

Register allocation heuristics must consider the number and type of physical

registers, instruction set limitiations for operands, the memory hierarchy, and the

efficiency of accessing a value within the memory hierarchy. All register allocators must

provide a mechanism to temporarily free an assigned register by storing the value in

memory and then retrieve the value before its next use.

Assigning all virtual registers to physical registers is an aggressive approach to

register allocation. Values stored in physical registers alleviate the need for memory

stores and fetches of instruction operands. The benefit of immediate access to values

stored in a register cannot be realized without a sufficient pool of general purpose

registers. The hardware architecture may dictate the use of this register allocation

policy, as in arithmetic operations on loadlstore architectures. Many Reduced

Instruction Set Computer (RISC) machines are loadlstore architectures.

Storing loop indices in physical registers is another approach to register

allocation. Accessing memory for variables references in the loop is costly. Secondary

heuristics can optimize or refine the allocation registers based on other criteria.

Secondary heuristics might include allocation based on the length of the lifetime for the

virtual register.

Keeping all virtual registers in memory is costly in terms of memory access

during program execution. Implementing this strategy in a compiler would cause delays

or bottlenecks due to insufficient memory bandwidth between the processor and

memory. This policy does not provide the benefit of long register lifetimes since every

virtual register has a life span of one instruction. Reading each operand from memory

before execution and storing it after execution would increase execution time for

generated code. Perhaps the only benefit to this model is the freedom from register

pressure caused by overlapping live ranges. Different processor architectures may or

may not support this model for register allocation, making portability a concern.

Structure of Thesis

In Chapter two we present information from graph theory pertinent to our

research. We use information from general graph theory as a basis to discuss interval

graphs, circular arc graphs, and the graph coloring problem. We address the similarities

and differences between several approaches to register allocation. We relate previous

research to our efforts.

Chapter three provides detailed information and algorithms for spanning trees

and live variable analysis. Algorithms presented in this chapter analyze the flow graph

and variable usage patterns for the register allocation process.

We present two basic block register allocation algorithms in Chapter four. The

basic block register allocation algorithms use live variable analysis to identify basic block

local variables. The register allocation algorithms assign registers for basic block local

variables. We discuss the benefits and shortcomings of this approach to local register

allocation and the behavior of the algorithms when there are too few physical registers

to hold all simultaneously live variables in the basic blocks.

In Chapter five we present our main result, two register allocation algorithms that

permit local register allocation of variables that span basic block boundaries. We find

single entry, multiple exit regions in the flow graph called supertraces. We present the

algorithms and examples of local register allocation within supertraces. We discuss the

benefits and shortcomings of these algorithms, and study their optimality.

Creating larger supertraces is the topic of chapter six. We investigate two

optimizations; basic block cloning and loop unrolling. Algorithms and examples are

presented for each of the optimizations. We discuss the applicability of the

optimizations when used with each of our local register allocation algorithms. Areas of

future research and investigation are also presented.

CHAPTER 2
RELATED WORK

Introduction

In this chapter we will discuss previous work pertaining to register allocation and

several different methods to optimize the assignment of variables to registers. Many of

the techniques presented do not use separate local and global register allocation

phases; instead the algorithms rely on heuristic graph coloring approaches for global

register allocation. Although our register allocation algorithms do not perform general

graph coloring, it is important to understand the principles and designs of these methods

in order to compare our techniques.

Register lifetime is the number of instructions where the value of a variable

stored in a register is active. Figure 2-1 shows a code fragment and several register

lifetimes.

The lifetime of a variable begins with a definition and terminates after the last use of the

variable. Variables a and b are live coming into statement L1, meaning the definition for

the variables is in a previous statement. Because there is no use of variables a and b

after statement L2, both variables are dead following statement L2. Dots represent the

definition of variables c, d, and e at statements L1, L2, and L3 in the register lifetime

chart. We show that variables d and e are live after statement L3 by the extended lines.

Drawing a horizontal line across the register lifetimes after statement L1 shows that a, b

and c are live at the same time. We cannot use the same physical register for variables

a, b, and c. The number registers required to store live variables at some point is often

called the register pressure. In the following section we present an overview of graph

theory. Techniques from graph theory enable us to study the register allocation process

in greater detail.

Overview of Graph Theory

We begin this section with definitions pertaining to graph theory. A graph is a

set of objects connected by edges; formally G=(V,E) where the set of edges

E={E,, EZ, E3,. . ., En} connect the objects or vertices V={V,, V2, V, . . ., Vn}. Vertices VI, V,

associated with edge Ek are end vertices. When a vertex, Vi is an end vertex of some

edge, E, then Vi and E, are incident to each other. Self-loops represent the case where

end vertices connected by an edge are the same vertex. Multiple edges connecting the

same end vertices are parallel edges.. Nonparallel edges are adjacent if they are

incident to a common vertex. The number of edges incident to a vertex V, is the degree

of VI or degree(Vi). Directed graphs have the property that edges connecting vertices

have only one direction. Given a pair of vertices (V, 4) and a connecting edge Ek, it is

only possible to go from Vi to V, or from V, to V, depending upon the direction associated

with the edge. Undirected graphs do not have a direction associated with the edges.

Connected graphs have paths between any two vertices.

Dividing graphs into smaller graphs creates subgraphs. A subgraph g must

contain only vertices and edges present in graph G. Edge disjoint subgraphs occur

when two or more subgraphs do not share a common edge. Subgraphs of a graph that

do not share vertices are vertex disjoint subgraphs. We can apply set operations of

union, intersection and ring sum to graphs. These operations make it possible to join

and decompose graphs. The union of two graphs G1=(V1, El) and G2=(V2, E2) generates

a third graph G3=(V3E3) such that V3=V1uV2 and E3=E1uE2. The intersection of two

graphs, written as GlnG2 create a new graph containing only the vertices and edges

that are in both GI and G2. The ringsum of two graphs, written as G10G2, generates a

graph consisting of vertices V1uV2 and edges that are in either G1 or G2, but not both.

Deletion of a vertex from graph G, denoted G-Vi, removes vertex V, from graph G.

Deletion of a vertex also implies the deletion of all edges incident on the vertex[8]. If E,
is an edge in graph G, then G-E, is a subgraph of G obtained by removing E, from G.

Deletion of an edge does not imply deletion of its end vertices. We can say G-E,=G@E,.

Figure 2-2 shows examples of union, intersection, and ringsum for graphs GI and G2.

a a a

b e3 e4 e3 b b< e3 b = e7 :B e4

e5 e5 e6
e5 e6

e e e e e

graph GI graph G2 GI union G, GI intersect G, G I ringsum G2

GRAPH OPERATIONS
FIGURE 2-2

Graph traversal follows incident edges between end vertices. The path of a

traversal is the sequence of vertices and edges used to go from the starting vertex to

the ending vertex. A simple or elementary path contains only unique vertices. If the

same vertex appears more than one time in the traversal, we use the term walk to

describe the sequence of vertices and edges. Using graph G, from Figure 2-2 the

sequence {a e l b e3 d e5 e} is a path from vertex a to vertex e. The sequence {a e l b

e3 d e5 e e6 a} from graph G2 in Figure 2-2 is a walk because vertex a appears more

than one time. The number of edges traversed in a path is the length of the path. A

circuit is a closed nonintersecting walk in which no vertex except initial and final vertex

appear more than once.

Graphs with a finite number of vertices and edges are finite graphs. If there is at

least one path between every pair of vertices in graph G, the graph is connected. If a

connected graph has n vertices and n-I edges, the graph is minimally connected. A

tree is a connected graph without self-loops or parallel edges. The following equivalent

definitions identify a tree, given a graph G with n vertices[8]:

(I) G is connected and circuitless.

(2) G is connected and has n-I edges.

(3) G is circuitless and has n-I edges.

(4)There is exactly one path between every pair of vertices in graph G.

(5) Graph G is minimally connected.

Rooted trees have one vertex distinguishable from all other vertices in the graph. Binary

trees have one vertex of degree two and all other vertices as having degree one or

three.

Graph coloring is a technique to uniquely identify vertices in a graph such that no

two adjacent vertices have the same color. There are many alternative colorings for

most graphs. Optimal solutions to the graph coloring problem use the minimum number

of colors for a graph G=(V,E). It is possible to compute the minimum number of colors

or chromatic number, Y(G) for a graph[16]. If dm is the maximum degree of the

vertices in a graph G, then Y(G) < 1 + dm.

Register assignment may be viewed a graph coloring problem. Using this

paradigm, vertices in a graph represent variable lifetimes and edges connect vertices

that are live at the same time. Graph coloring algorithms represent the number of

registers with k and attempt to create a k coloring of the input. Performing global

register allocation with such an algorithm has the disadvantage of being an NP-

complete problem for general graphs[lO]. Coloring nodes of a graph with a finite

number of colors may require time exponential to the size of the graph.

Graph Coloring Algorithm

In the common approach, three phases are used in the graph coloring register

allocation algorithm[5,6]. The first phase replaces variables with pseudo registers and

constructs a register interference graph that identifies which pseudo registers are live at

the same time. The second phase simplifies the graph if possible by removing vertices

from the graph. The third phase accepts input from the second phase assigning

physical registers to the pseudo registers. Each phase of the graph coloring algorithm

is defined in greater detail below.

The input to the first phase is an intermediate language(lL) representation of a

procedure or function. Variables used in the procedure are replaced with pseudo

registers. Temporary symbolic registers are used when an operation requires several

machine instructions. From this input, the first phase constructs the register

interference graph.

The interference graph may be viewed as a matrix, where rows and columns

represent symbolic (virtual) registers. If two symbolic registers are live at the same time,

an entry is made in the matrix. The degree of each vertex in the interference graph is

the sum of the number of entries across its row (or down its column). Construction of

the interference graph can include architecture dependent information concerning

register pairing, and general purpose versus special use registers[5,6]. The interference

graph is an undirected graph.

It is possible to simplify the interference graph by coalescing nodes. During the

assignment of pseudo registers, many register to register copies are performed. An

example of unnecessary register to register copying is the assignment of a new pseudo

register for arguments to functions. Function arguments are often copied to other

pseudo registers immediately after function calls. The subsumption of pseudo registers

assigns one register to two noninterfering vertices resulting from a register copy

operation. It is necessary to update the IL and rebuild the interference graph after

subsumption; this is computationally expensive. There are cases where subsumption is

possible but not permitted due to interference. Subsumption of two variables may

create interference with a third variable because the third variable is defined within the

live range of one (or both) of the subsumption candidates.

During the second phase, the register interference graph is simplified. Vertices

with degree(v) < k are removed from the graph and either colored immediately or placed

on a stack for later coloring. The heuristic algorithm used to determine which vertex to

remove from the graph may select the highest or lowest degree vertex. If a vertex is

colored immediately, we say the algorithm uses a largest first or smallest first heuristic.

If the algorithm places the removed vertex on a stack for later coloring, we say the

algorithm uses either a largest last or smallest last heuristic. Choosing graph vertices

with the largest degree last has been shown empirically to work best[2]. The degree for

the neighbors of the removed vertex are reduced by one, creating more opportunity for

graph coloring without the added cost of inserting spill code. Removing all vertices from

the graph with fewer than k neighbors will result in an empty graph or a graph containing

only vertices with more than k neighbors.

If the degree(v) 2 k, for all remaining vertices n in the interference graph, a

vertex is selected for spilling by some cost heuristic. Spilling is the temporary storage of

a variable outside the register set after each definition and the return of the variable to

the register set before each use. Instructions are inserted into the intermediate program

representation to save values to memory after each definition and fetch the value from

memory before each use. Several heuristics may be used to identify which vertex to

spill based on variable usage, loop nesting level, additional execution time incurred by

the spill code, or the degree of the vertex. Vertices identified for spilling are removed

from the interference graph. The second phase is complete when the register

interference graph is empty.

If a vertex is selected for spilling, the IL form must be updated to reflect the

changes. The process of updating the IL, building the register interference graph, and

simplifying it is repeated until no spill code is required. This iterative process is

computationally expensive. Given a sufficiently large pool of registers, most programs

do not require spill code. Programs requiring spill code usually converge quickly[6].

Phase three accepts input from phase two, rebuilding the register interference

graph and coloring each vertex. Using the largest last or smallest last heuristic, the

register interference graph is reconstructed by popping a vertex from the stack and

giving it a different color than its neighbors. With the largest first or smallest first

heuristic, each vertex is colored in phase two as it is removed from the graph.

Techniques to optimize register allocation by graph coloring focus on delaying

the insertion of spill code[3] or the selection of cost heuristics for spill decisions[4]. One

optimization limits the number of variables spilled from each basic block[2].

Register allocation by graph coloring fails to represent control flow information.

The allocation algorithms must generate an interference graph, reduce the interference

graph and generate global register assignments based on the reconstructed

interference graph. If there are insufficient registers for simultaneously live variables,

the intermediate form of the program must be modified and the entire process repeated.

The local register allocation algorithms presented in chapters four and five have several

advantages. We include control flow information in our representation making it

possible to determine the live ranges with finer granularity. We do not need to rebuild

the intermediate form of the program to spill registers.

Overview of Interval & Circular-Arc Graphs

Interval graphs show the intersection of a family of intervals along a real line.

Vertices in the graph represent line segments, in our case they represent register

lifetimes. Edges connect two vertices if there is any overlap between the segments. A

sequence of vertices [Vo, V1, V2, ..., Vl, VO] is a cycle of length 1 +I if Vi.lVi E E for i = 1,

2, ..., I and V,Vo E E. A cycle is a simple cycle if Vi + Vj for i + j. A simple cycle [Vo, V1,

V2, ..., Vl, VO] is chordless if ViVj ~j E for i and j differing by more than 1 mod I +I .

Comparability graphs are undirected graphs where each edge can be assigned a one

way direction resulting in an oriented graph (V,F) satisfying the following condition[9]:

ab E F and bc E F imply ac E F where (V a,b,c E V)

We present an example of line segments and the derived interval graph in Figure 2-3.

Line Segments & Interval Graph
Figure 2-3

Properties from graph theory identify whether an undirected graph is an interval

graph[9]:

(1) The graph G, contains no chordless 4-cycles and its complement GJ is a
comparability graph.

(2) The maximum cliques of G can be linearly ordered such that, for every vertex of
G, the maximal cliques containing x occur consecutively.

(3) An interval graph cannot branch in more than two directions, nor can it circle
back onto itself.

Circular-arc graphs present intervals around a circle. Every interval graph is a

circular-arc graph, however not every circular-arc graph is an interval graph. The graph

on the right side of Figure 2-5 shows a circular-arc graph. An undirected graph,

G=(V,E) is a circular-arc graph if and only if its vertices can be (circularly) indexed V1 , V,

, V3 ,.. . Vn SO that that for all i and j:

ViV, E E 3 { either V,+l, ..., V, E Adj(V,) or V,+l, ..., Vi E Adj(V,))

if i < j, then V,+l , ..., V, means V,+l ,... , Vn, V1 ,..., Vi

Line segments used in a period or cyclic period graph can be assigned a

beginning time index, ti and an ending time index, 4, where ti < 4. We use the notation

[th$) to include the first endpoint and exclude the second endpoint or [ti,$] to include both

endpoints. If all line segments repeat in a pattern, we can divide the family of segments

into periods. We represent a line segment in multiple periods as P,[t,$), P2[th$), ...,

P,,[ti,$). The graph in Figure 2-4 shows a period graph for the code fragment.

Cyclic period graphs permit line segments to loop back on themselves. We

redefine the term cyclic intewal[l3] to cyclic period. Instead of representing segments

in increasing periods, cyclic period graphs use arrows to denote line segments that wrap

around endpoints. Cyclic period graphs use time index notation to represent line

segments. The graph on the left side of Figure 2-5 is a cyclic period graph. The

following definitions apply to intervals in cyclic period graphs[l3].

p r i o d I period ,
(1) A time t is covered by a line segment S1:[ti,$)), if (ti 5 t < $), or by a line segment

sl ': [ti,$] if (ti 5 t 5 0, or by a cyclic period S2: ([ti,$), [tklti]) if [ti, b) Or [tk, ti] covers t.

for i=l ,n do
a=c
b=d+2 -
c=a c i b

d=b+c d

done

(2) Two segments S1, S2 overlap if there exists a time t that is covered by both S1
and S2.

-

We redefine hierarchical cyclic intewal graph[l3] to hierarchical cyclic period

graph in this work. Hierarchical period graphs permit nesting of cyclic period graphs.

This family of graphs can represent conditional entry and exit of cyclic period graphs.

Modeling complex control flow and nested iteration is the strength of hierarchical period

graphs. The graph reads from left to right; increasing time indices place the segments

in order. The graph identifies control flow and loops by drawing boxes around the line

segments. Arrows on a line segment at the entry and exit of loop boundaries identifies a

cyclic period. The appearance of nested boxes in a hierarchical cyclic graph illustrates

1 2 3 4 1 2 3 4

nested cyclic periods. The graph in Figure 2-6 shows an example of a hierarchical

cyclic period graph.

Cyclic Period Graph Coloring Algorithm

The cyclic period graph algorithm uses control flow information about the loop

nesting level of variables. Standard graph coloring algorithms do not consider the level

of loop nesting where interference occurs. Standard graph coloring algorithms do not

consider the length of interference (the number of instructions where variables are

simultaneously live). This heuristic algorithm uses cyclic period graphs as an approach

to register allocation. Cyclic period graphs are capable of recording the program

structure and relative time where live ranges coincide, as shown in Figure 2-4. The first

assignment statement in the loop, a=c, shows that c is live coming into the loop and that

the live range for a does not carry around the loop. Subsequent iterations will use the

loop carried value of c from statement three. The second assignment statement,

b=d+2, defines b within the loop. The use of variable b in the fourth assignment

statement, d=b+c, establishes a live range for b that is within the same iteration. The

third and fourth assignment statements demonstrate variables that are live around the

loop, c and d. Sequence numbers along the base of the graph represent instruction

numbers.

In Figure 2-5 we show the cyclic period graph and circular arc graph

representations for the program fragment from Figure 2-4.

Variables carried around a loop create cyclic line segments. Cyclic period graphs

represent live ranges across iterations of a loop. The arrows on line segments show

loop carried variables. The baseline values to-t5 represent time points. Note that to and

t5 are entry and exit points respectively; they do not represent executable instructions.

Line segments represent the live ranges for variables.

Coloring cyclic period graphs begins by examining the number of live ranges

present at a point in graph. An area in the graph where register pressure is high is a fat

spot. The number of simultaneously live variables determines the width of the period

graph. The width has a minimum, Wmin(G), and a maximum Wmax(G). The fat cover

algorithm uses two phases to color the cyclic period graph. In the first phase the fat

cover algorithm locates a set of nonoverlapping line segments that cover all the fat

spots. Giving this set of nonoverlapping line segments the same color reduces the

width of each included fat spot by one. The algorithm continues to perform this left-to-

right search and coloring until the graph is empty or the only remaining line segments

overlap. If m cyclic line segments exist, the first phase attempts to color each of the m

cyclic segments with a unique color since the graph is colorable in Wmax(G) colors. If a

fat cover exists, a right-to-left traversal colors the other members of the line segment

set. Removing the colored line segment set F from the graph allows coloring the

remaining graph in k-7 colors. Three theorems are the basis for this conclusion[l3]:

(2.1) Let G be a cyclic period graph containing no cyclic line segments. Then G is
optimally colorable with Wmax(G) colors.

(2.2) Let G be a cyclic period graph containing cyclic line segments. Then G is
optimally colorable with Wmax(G) <k < Wmax(G) + Wmjn(G) colors.

(3.1) If a cyclic period graph G is colorable in k + Wmax(G) colors, then for each
cyclic line segment I, of G, there exists a fat cover for G relative to I,, call it F,
such that G - F is k - 7 colorable.

The second phase uses a left-to-right algorithm to color the remaining periods. If the

first phase succeeds in coloring the m cyclic line segments, then graph G is optimally

colorable in k = Wm,(G) colors.

We redefine Chameleon intervals[l3] as chameleon segments in this work.

Chameleon segments provide temporary storage for line segments that are subject to

spilling otherwise. The name chameleon segment refers ta cyclic line segments given a

different color in the region of interference. Floating register values is less expensive

than spill code because register to register moves do not require external memory

accesses. The dependence of values may require the use of a temporary register to

store the floated value. This algorithm introduces chameleon segments in situations

where cyclic segments do not have a fat cover.

An alternative to the fat cover algorithm called the sweep and split algorithm.

The algorithm uses a left to right pass to process a cyclic period graph. At each time

index i, the graph has a measurable width of W,,,(G,i) < k. During time i+7, two

possibilities exist; the graph continues to have W,,,,,(G,i) < k or W,,(G,i) = k', where k'>

k. In the first case the algorithm increments the time index. In the latter case the

algorithm must select K - k line segments to split by introducing spill code. The

algorithm splits line segments with the furthest next use from i at the point of overlap.

Time index values used to compute the furthest next use are readily available from the

cyclic period graph. Secondary heuristics determine which line segment to split when

there is a choice between multiple candidates. The secondary heuristics select which

line segment to split by comparing the number of load and store instructions in each of

the candidate segments. Secondary heuristics choose segments containing only load

instructions before segments with load and store instructions. If all line segments

require a store instruction, then the selection heuristics consider whether line segments

extend beyond loop boundaries.

Hierarchical Period Graph Algorithm

We redefine the term hierarchical interval graph[13] to hierarchical period graph

in this work. This algorithm extends the cyclic period graph algorithm to cover nested

loops and conditional statements. Processing nested loops begins with the innermost

loop, then the next outer loop, and so forth. Conditional statements have separate,

parallel period graphs within the cyclic period graph, as shown in Figure 2-6. As with the

other period graph algorithms, line segments represent the live ranges of variables. The

graph in Figure 2-6 demonstrates the joining of line segments that are live beyond the

end of a conditional statement. The algorithm also joins line segments for variables

carried around the loop. Line segments connected on inputs represent the same value;

this is of critical importance for loop carried variables.

The algorithm uses techniques from the cyclic period graph algorithm in two

phases. During the first phase (bottom-up), two steps are repeated[l3].

LOOP ...
I I
0 I I
0 I
I IF (cond) I

(1) Solve the innermost nested construct (either loop or conditional). In the case of
a loop it is already a cyclic period graph. In the case of a conditional, create the
proper cyclic period graph by joining the input and output variables that are
common to both the IF-THEN and ELSE parts of the conditional.

I

for i= 1, ndo 0 I

I I
I if (condition) I

c, i a=c
I

d=a+2 I

I

else l
I I

(2) Given the solution from 1, replace the nested structure with simple intervals.

The second phase is a top-down register allocation using chameleon segments to

resolve cyclic periods entering and exiting conditional. An alternative to introducing

chameleon segments is to repeat the first phase using additional coloring constraints.

a

d.

Live Range Splitting

I

a=c+2 * 1
d=a+4 I

I I

fi I

I 8

c=a+d 0
I 0

Live range splitting is possible during local or global register allocation to divide a

register lifetime into two or more lifetimes. The graph coloring register allocation

algorithm treats the new live ranges as variables. The interference graph requires

0 , ,
I
I , I
0

a
I

I

0

0 I

I

I

l
I I

,
1
I I

0

, I
I

I

I ,
ro f

I

I

0 I g=2+c I

I

ELSE

a*

I I I

I I
'--?

a

d
I
I
0
I
I
I
I ,
I
I I

updating to reflect the new live ranges. Creating short live ranges provides greater

flexibility in assigning virtual registers to physical registers. Increasing the number of

live ranges has the potential of reducing the amount of spill code.

Live Range Splitting Algorithm

This algorithm defines a live range as a set of contiguous basic blocks in a

control flow graph where a variable or virtual register is live. Definitions of the variable

inside the live range do not reach outside the live range. Definitions of the variable that

occur outside the live range do not reach a reference of the variable inside the live

range. The algorithm calculates the execution time savings for each live range in a

procedure or function. The algorithm then assigns a unique color to each live range

using the greatest estimated time savings to order the live ranges. Color assignment

halts when there are no unique colors for unassigned live ranges. For each uncolored

neighboring live range conflicting for the register pool, the live range, lr splits in the

following manner.

(1) A new vertex is created in the interference graph for the new live range, lrl. The
first basic block added to lr, is a definition block from lr, preferably an entry point
to Ir. This basic block is removed from Ir.

(2) Adjacent basic blocks are added to lrl from lr until the number of colored
neighbors is one less than the total number of available colors. Updating
neighbors in the interference graph is required when moving a basic block from lr
to lrl. Adding basic blocks to lrl in this fashion creates the largest possible live
range that is colorable.

(3) If Irl is complete and has fewer than the maximum allowable neighbors, it is
placed in a pool of low degree vertices. After removing basic blocks from lr, it is
possible that it has fewer than the maximum neighbors, in which case it is also
added to the low degree vertices. Basic blocks in the low degree vertex pool are
not considered for live range splitting.

(4) If lr or lrl have more than or equal to the maximum number of neighbors that are
colored after splitting, the estimated cost savings is computed for lr and lrl. The
live range with the greatest cost savings is assigned a color. Splitting is
repeated on lr until it has one less than the maximum number of colored
neighbors. Computing the estimated cost in this step is based on "...the total
number of occurrences of the variable in the live range, weighted by loop nesting
depths and normalized by the length of the live range."[7]

(5) Vertices that were previously in the low degree pool may need to transition into
the high degree pool because of live range splitting if it is now a neighbor to both
Ir and Ir,.

Finding a vertex in the high degree subgraph that has the greatest execution

time savings determines which live range splits. The cost of building the interference

graph makes this algorithm computationally expensive. The complexity for this

algorithm is O(k(I - k)); where k represents the maximum number of registers (colors)

and I represents the number of live ranges[?].

We use a form of live range splitting in our modified supertrace register

allocation algorithm. We chose to implement live range splitting by renaming variables.

Chapter 5 contains the details of our implementation.

Multiple Register Operands

Language constraints (C unions, volatile variables and pointer addressing) and

architectural support complicates the decision of which values to store in registers.

Register allocation uses virtual registers for every static variable except unions, global

data, pointer targets, array elements or other data requiring address computation. This

algorithm addresses the problem of how to allocate registers or group of registers

efficiently when instruction operands do not fit in a single register. We do not address

the problem of multiple register operands in our experiments, though consideration for

this topic is necessary in a compiler. Target architectures have limitations imposed by

their design that system software (assemblers, compilers, linkers, ...) must deal with to

create optimal register allocations.

Dealing with processors that can address multiple registers for an operand does

not fit into the typical graph coloring algorithm. Allocation for single and multiple register

operands must occur at the same time[l5]. Pre-allocating instructions that use multiple

register operands results in artificially enhancing the priority of the instruction. Allocating

multiple register operands after single register operands extends the schedule because

of the difficulty in finding the required word and double word alignment (register number

divisible by 2 or 4 respectively).

Groups of registers used for multiple register operands are a pair, triple or quad.

The register allocator can not assign members of the register cluster to the same

physical register. Cluster alignment is another restriction. In an eight register (RO..R7)

processor, pairs could be assigned to RO-R1, R2-R3, R4-R5, and R6-R7. Assignment

of triples and quads can occur at RO or R4. Assigning a pair and two triples at the same

time is not possible due to alignment constraints. Members of a register cluster will

interfere with members of another cluster if both virtual registers are assigned to the

same physical register. Pruning the graph and simplifying interference edges with

normalization solves the problem of how to assign the register clusters onto the physical

registers. Determining the order of cluster removal is based on weighted-degree for

each cluster computed as:

weighted-degree = constraints * ~ e i g h t _ f a ~ t ~ r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~) + ~ e i g h t _ b i a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Constraints placed on a cluster are not equal to the constraints placed on graph vertices

using the original formula for computing the degree of a vertex. The constraint value for

a cluster is the number of interference edges to other clusters. Each cluster has a

weight-factor based on the number of words required to store the cluster. Depending

upon instruction argument size, Nickerson uses the values I , 2, 4, and 4 as

weight-factors for clusters of word size 1, 2, 3, and 4 respectively. Adding a

weight-bias insures a positive value for the weighted-degree of clusters with few

interference edges. The first clusters removed from the graph are unconstrained

clusters with the largest weighted-degree. Heuristics based on the minimum cost, area,

and weighted-degree determine the order for removal of clusters.

Instead of inserting spill code for constrained clusters with degree(c) > k, the

cluster is pruned from the graph and the spill decision is delayed until the coloring

phase[3]. It is possible that the coloring phase will be able to assign an unused color to

the cluster that was not apparent during the removal of clusters. Normalization of the

interference graph reduces the number of edges depicting implicit constraints. Consider

two triples (AO,Al,A2), (BO,Bl,B2), and a pair (C0,CI) as shown in Figure 2 - 7 ~ with all

implicit edges.

GRAPH OF TWO REGISTER TRIPLES AND A REGISTER PAIR
FIGURE 2 - 7 ~

Removing implicit edges as shown in Figure 2 - 7 ~ simplifies the graph. The

graph edges representing implicit conflicts between members of the same cluster, or

between the members of clusters that cannot occupy the same register due to

alignment are removed in this step.

GRAPH WITHOUT ~MPLICIT EDGES
FIGURE 2 - 7 ~

Normalizing the graph removes synonamous interference edges. Note the lack

of graph edges between A7, 67, and C7 in Figure 2 - 7 ~ . The constraints between

cluster members still exist through the relationship to the cluster boss. The interference

graph contains the minimum information necessary to depict constraints between

clusters after normalization.

NORMALIZED GRAPH WITHOUT ~MPLICIT EDGES
FIGURE 2-7c

Delaying spill decisions until the coloring phase optimizes graph coloring. The

heuristics select the least costly coloring when multiple colorings exist. When

necessary, the coloring phase uses information from the three spill heuristics to decide

which variable to spill. If the coloring step spills a variable, the intermediate form of the

program requires modification to reflect the changes. The graph coloring algorithm

iterates through the first and second passes to rebuild the interference graph and

reduce it when modifications to the intermediate form take place.

Flow Graph Techniques

Algorithms discussed in this section offer different methods of allocating

registers and dealing with spill code. Viewing the intermediate form of the program as a

sequence of definitions and uses of variables controlled by selection and iteration is

limiting. Increasing the granularity to basic blocks allows identification of local and

global variables that we use in our research effort. The following algorithms abstract the

tree into basic blocks or collections of straight line code separated by control operations.

We present these techniques as an introduction to the following chapter.

Representing a program as a tree of tiles is one approach [4]. This algorithm

addresses the problem of local register allocation by encapsulating basic blocks within

loops and conditional control constructs into a tile. Using a control flow graph has the

advantage of maintaining loop and conditional information available during register

allocation. This information is useful in selecting infrequently executed areas in the

program to insert spill code, should it be necessary. This technique is uses a coarser

granularity for local register allocation than our basic block algorithms. Heuristics used

to identify tile boundary is very similar to the boundaries used in creating supertraces.

The authors' definition for a graph is G = (B, E, start, stop)[4]. The set of basic

blocks B, the set of edges between basic blocks is E and the unique single entry and

exit points to the graph are start and stop respectively. Tile creation occurs in a bottom

up traversal of the control flow graph. The algorithm assigns a tile to each loop and

conditional structure. Each tile is disjoint from other tiles or is a proper subset of

another tile. Initial coloring on each tile assigns pseudo registers in a local interference

graph. Information from this coloring elevates to the parent tile. The interference graph

for the parent tile incorporates each of the local interference graphs for its children into

its interference graph. Each tile may create spill code at basic block boundaries using

heuristics derived from local usage patterns. Following the bottom up traversal, a top

down traversal assigns pseudo registers to the physical registers. Final coloring uses

the delayed spill code decision technique[3].

A Clique separator is, "a completely connected subgraph whose removal

disconnects the graph into two subgraphs."[l I] This algorithm divides the program into

code segments and colors each independently during a later phase. Final coloring of

the individual cliques may involve register copying. The authors assert that using

register copying eliminates the need for a local register allocation phase, due to the

efficiency of the underlying algorithm. This algorithm addresses the problem of finding

points in the flow graph of a program where creation of subgraphs can occur. This

'divide and conquer' technique is similar in principle to the creation of supertraces in our

work. The clique separator algorithm differs from ours in that we do not use graph

coloring, and we perform only local register allocation.

The structure of the program determines clique separators, not the structure of

the interference graph[17]. The algorithm generates three sets during a top down

traversal of the code segments. CLIQUE contains members of the current clique. PRE

contains the live ranges that have already ended but overlap one of the members of

CLIQUE. The set POST contains live ranges that have not begun, but overlap members

of the set CLIQUE. The clique separator formed by members of CLIQUE is chosen if

and only if it can be divided into disjoint sets CLIQUE, and CLIQUE,. Valid

separators have spans from PRE that do not overlap spans from CLIQUEps, and the

spans from POST must not overlap spans from CLIQUE,. The final requirement for

selecting the clique separator is that the sets PRE and POST are not empty. The

algorithm chooses clique separators so that the resulting subgraphs are smaller than

the original graph creating less need for spill code.

CHAPTER 3
COMPILER FRAMEWORK

We describe flow graphs, graph trees and live variable analysis in this chapter.

Data flow analysis is a technique to examine the flow of information through computer

programs. Modeling programs using data flow analysis captures information from

branches, joins, and loops. Use of data flow analysis permits identification and

examination of variable live ranges. We present terms and concepts from data flow

analysis pertinent to our research. We present live variable analysis techniques and the

algorithms. Register allocation and register assignment terminology is presented as an

introduction to subsequent chapters.

Data Flow Analysis

We can model a computer program using a directed flow graph, where nodes

are computations and edges depict control flow by adding a unique entry point.

Constructing the graph so that all nodes in the graph are reachable from a unique node,

ENTRY, creates a control flow graph (CFG). The CFG of a subroutine captures branch

and loop information necessary for our optimization techniques presented in later

chapters. Representing selection, iteration, and sequence is possible by inserting the

appropriate edges between nodes in the graph.

A variable reference in the flow graph of a computer program is either a use or a

definition, def. If the variable reference establishes a new value for a variable, then the

variable reference is a def. Variable references in the right hand side of an assignment

statement or in conditional expressions are examples of uses.

Basic blocks contain consecutive statements. The only entry and exit points in a

basic block are at the beginning and end of the basic block. Entry into a basic block

under these conditions insures the uninterrupted execution of every statement in the

basic block. Figure 3-1 shows an example of a conditional statement and the derived

control flow graph. Associated with each basic block is a list of variable uses and defs

derived from the statements.

Data flow analysis requires a single entry point to the CFG. The conditional

statement at node B l compares the values of a and c to determine the whether to

branch to node 82 or continue to node 83. Graph edges marked T and F identifies the

true and false conditional control paths. Basic block 8 2 contains three assignment

statements that execute when the condition tested in B l is true. Statements in B3 will

always execute. The directed flow graph also shows variable uses and defs for each

basic block. The constant value 5 is not in the list of variables for B2 because it is an

immediate value.

ENTRY

v

if (act)
B1 =a,=c

a=a*5
C=C-b
d=a+c

fi F
e=a+d

B2 =a,a=,=c,=b,c=,=a,=c,d=

g=g*c

B3 =a,=d,e=,=g,=c,g=

Spanning Trees in Directed Graphs

A spanning tree is rooted at the ENTRY of a CFG. Spanning trees contain all

vertices of the CFG and sufficient edges to permit a unique path from ENTRY to any

vertex represented in the CFG. Four types of CFG edges exist in a spanning tree[l6].

(1) Edges contained in the spanning tree are called tree edges.

(2) Advancing (forward) edges are edges v -+ w that are not tree edges but where
w is a proper descendant of v in the spanning tree.

(3) Edges v + w such that such that v = w or where w is a ancestor of v are called
retreating (back) edges.

(4) Cross edges in the CFG are edges v -+ w such that w is neither an ancestor nor
descendant of v in the spanning tree.

Given an edge in the CFG v -+ w, we say that v is a predecessor of w and that w is a

successor of v. We can create a list of successor vertices to V, SUCCM = {W I (V,W)

is an edge); where SUCCM is the list of vertices that are heads of edges with tail V.

We create a depth first spanning tree (DFST) with a depth first search of the CFG.

Figure 3-2 shows the depth first search algorithm.

Procedure Depth-First-Search(v)
mark v "old";
Number,,(v) = n++
for each vertex w on L[v] do

if w is marked "new" then
add (v,w) to T
CALL Depth-First-Search(w)

fi
ro f
Numbervst(v) = p++

end

begin program
T = 0 ; n = p = O
for all v in V do

mark v "new"
rof
Call Depth-First-Search(entry)

end
Depth First Search Algorithm

Figure 3-2

We use a left-to-right preorder numbering for basic blocks in the depth first

spanning tree. Each basic block in the spanning tree has a unique left-to-right preorder

number, Numberpre(). Comparing the preorder numbers for two basic blocks v and w,

NumberPre(v) < NumberPre(w), will not discern whether v is an ancestor of w in the DFST

or if v is 'to the left' of w. Determining the ancestor relationship between basic blocks

requires adding an additional sequencing number to each basic block in the depth first

spanning tree. Performing a right-to-left bottom-up traversal of the DFST generates

Numberpst() for each basic block. Our equation for the ancestor function is:

ancestor(v,w) = NumberPre(v) < Number,,(w) A Numberwst(v) > Numberpost(w)

In the context of a DFST we have additional properties associated with the vertices v

and w. We can show v is an ancestor of w in the DFST iff ancestor(v,w) is true.

Control Flow Constructs

Cycles in control flow graphs permit iteration among one or more basic blocks.

We define a natural loop to have two properties:

(1) There is one basic block that permits entry into the loop, known as a loop
header.

(2) There is an edge in the graph to the loop header that permits iteration.

Detecting loops in reducible graphs requires finding the target node of a successor edge

that points to a DFST ancestor. Nodes may loop back to themselves; such references

are self loops. It is possible to construct loops with more than one member or have

loops nested inside other loops. In the case of nested loops, the inner loop is the most

deeply nested loop within the loop construct[l].

Figure 3-3 shows a program fragment and its CFG. The alphanumeric strings next to

the basic blocks in the first CFG represent program statements. The basic blocks in the

second CFG have a preorder and postorder traversal numbers. The DFST algorithm

generates the preorder numbering, Number,,, in the second CFG shown in Figure 3-3;

tree edges are shown in bold. Statements L3, L4 and L6, L7 merge into the respective

basic blocks because the assignment statements execute without interruption. Arrows

denote control flow between the entry point and the basic blocks. The natural loop

formed between L10 and L1 represents the control structure of the "repeat - until" loop.

Links between basic blocks accurately represent the input program. This example

demonstrates iteration, selection and sequence.

Live Variable Analysis

L1: repeat
L2: if (cond-2) then
L3: a=c
L4: d=a+2
L5: else
L6: a=c+2
L7: d=a+4
L8: fi
L9: c=d

L10: until (cond-1)

In this chapter the granularity used to determine whether a variable is local or

global is the basic block. We use the live variable analysis algorithm in our search for

local variables. The terms local and global in the context of live variable analysis have

the following definitions. A variable is global if a definition exists in a basic block and

has a reference in another basic block. When a variable is global, it is live-out from the

basic block where it is defined and live-in to the basic block where the first reference of

the variable is a use. The use of variable v is a local use when v is not a member of the

LIVEBEFORE set of the basic block. If every use of variable v is local, then v is basic

block local. Given a flow graph of several basic blocks, local register allocation is

\ ' l \ '

SAMPLE LISTING FLOW GRAPH Nurnber,,[N~mber~~J

L 1

+
L2

~ 3 , ~ 4

a51

~ 6 , ~ 7 3131

~9

4
L10

6[41

4[21

5[1 I

possible for any variable that is not a member of the LIVEBEFORE set of any basic

block. The following equations compute LIVEBEFORE and LIVEAFTER for variables in

basic blocks.

The live variable analysis algorithm, shown in Figure 3-4, operates on variable

uses and definitions contained in an ordered list of instructions for each basic block.

Each of the sets (LIVEBEFORE, LIVEAFTER, UPWARDUSES, NOTKILLED) is a

separate bit vector in each basic block. In this algorithm it is necessary to traverse the

list of instructions in the basic block in a last to first order. Traversing the instruction list

in reverse order finds variable uses live coming into the basic block, also called

upwardly exposed uses. The order for visiting basic blocks is not important.

The LIVEBEFORE vector contains variables used before they are defined or

redefined. The UPWARDUSES vector contains variables from the current basic block

that are first referenced as a use. Variable definitions cause removal of the variable

from the UPWARDUSES bit vector. Earlier uses of variables update the

UPWARDUSES vector. Initialization of the NOTKILLED bit vector assigns all variables

present in the basic block. Definitions found in the instruction list remove the variable

from the NOTKILLED bit vector. During the second pass of the algorithm, the

LIVEAFTER bit vector becomes the union of the LIVEBEFORE bit vectors for all basic

block successors. The algorithm shows how the NOTKILLED and UPWARDUSES

vectors update the LIVEBEFORE bit vector.

The algorithm accepts a CFG as input. Each basic block contains bit vectors

initialized and assigned based upon the presence or absence of uses and defs. We

then update the LIVEAFTER and LIVEBEFORE vectors by iterating over the basic

blocks in bottom up traversal. The second pass does not require a bottom up traversal,

however it is more efficient and minimizes additional iterations over all the basic blocks.

Several iterations through the CFG may occur in the second part of the live variable

analysis algorithm before the LIVEAFTER bit vector stabilizes.

--

PROC LiveVar(GRAPH)
for all basic blocks, V in flowgraph, GRAPH do

LIVEAFTER(V,*) = 0
UPWARDUSES(V,*) = 0
NOTKILLED(V,*) = 1
for all useldef references, UD in V in reverse order do 11 upward exposed

useslkills
NUM = SYMTABNUMBER(SYMBOL(UD))
if UD is a use then
UPWARDUSES[V,NUM] = 1 I/ set use bit

elsif UD is a def then 11 not preserved, killed
NOTKILLED[V,NUM] = 0
UPWARDUSESD/,NUM] = 0

fi
rof
LIVEBEFORE(V,*) = UPWARDUSESO/,*) I/ initialize livebefore vector

ro f
repeat
CHANGED = FALSE
for basic blocks, V of flowgraph, GRAPH in reverse order do
TVECT(*) = 0
for all SUCC(V). SV do
TVECT(*) = TVECT(*) v LIVEBEFORE(SV,*)

ro f
if TVECT(*) != LIVEAFTERO/,*) I/ no convergence of LIVEAFTER vector yet
LIVEAFTER(V,*) = TVECT(*)
LIVEBEFORE(V,*) = (TVECT(*) A NOTKILLED(V,*)) v UPWARDUSES(V,*)
CHANGED = TRUE

fi
rof

until not CHANGED
END LiveVar

We present an example in Table 3-1 and Table 3-2 using the live variable

analysis algorithm to show the LIVEBEFORE and LIVEAFTER sets for the program

fragment from Figure 3-3. First pass operations, shown in Table 3-1, compute the

UPWARDUSES, NOTKILLED and LIVEBEFORE bit vectors. Processing instructions in

each basic block from last to first to preserves information about variables that are live

coming into the basic block. Table 3-1 shows instructions arranged in the processing

sequence used by the live variable analysis algorithm. Additional lines are present

showing (re)initialization of the bit vectors during the first pass.

The second pass, shown in Table 3-2, will iterate until the LIVEAFTER bit vector

contains the same variables as its successor's LIVEBEFORE bit vector. It is important

to note that computing the LIVEAFTER bit vector must precede computing the

LIVEBEFORE bit vector. During the convergence step in live variable analysis the

algorithm visits basic blocks in reverse, or Numberwst order. In this example the

algorithm will iterate twice during convergence, no changes to the LIVEBEFORE or

LIVEAFTER bit vector occur during the second iteration. Table 3-2 shows two series of

computations, with no changes after the second series. The order of basic blocks in

Table 3-2 reflects the sequence in which processing occurs. In this example the global

variables are c and d. The variable a is local and basic block local by our previous

definition.

32

TABLE 3-1
LIVE VARIABLE ANALYSIS INITIALIZATION

Register Assignment

BLOCK
1
2
3

4
5
6

TABLE 3-2
LIVE VARIABLE ANALYSIS CONVERGENCE

This phase determines which physical register will store the variables or virtual

registers identified during register allocation[l]. There are many ways to select the

specific register given the constraints of how many general purpose registers are

INSTRUCTION

=a,d=
=c,a=
=dl c=

=a,d=
=c,a=

UPWARDUSES

0
0
{a)
{ C)

{ d)
0
{a)
{ C)

BLOCK
5
4
3
6
2
1

LIVEAFTERtl

{ c)
{c)
{d)
{d)
{c)
{ c)

LIVEAFTER

0
0
0

0
0
0

NOTKILLED

{a,c,d)
{a,c,d)
{alc)
{c)
{a,d)
{a,c,dl
{al c)
{ c)

LIVEBEFOREtl

{ c)
{d)
{ C)

{ C)

{c)
{ c)

LlVEAFTERto

0
0
{d)
{ d)
{c)
{ C)

LIVEBEFORE

0
0
{c)

{ d)

LIVEBEFOREto
0
{d)
{ C)

{ C)

{c)
{ C)

available. Another consideration is whether to use register pairs, triples or quads to

store multiple word values. Many of the register assignment techniques presented in

Chapter 2 use a one pass algorithm to achieve global register assignment. In this

section we describe the benefits of having a local and a global register assignment pass

compared to a single global register allocation policy.

Assigning physical registers to the values in virtual registers requires information

from live variable analysis. Our first goal is to identify live virtual registers within a basic

block. If the live range of a virtual register is wholly within a single basic block, meaning

the virtual register is not live coming into or leaving the basic block, we can use a linear

time algorithm to assign a physical register to that value. Assignment of physical

registers for virtual registers with live ranges across basic block boundaries is by a

global assignment algorithm executing in polynomial time. The benefit of using a local

register assignment is that the algorithm is fast, and it removes variables from global

assignment which is slow. Global register assignment is left with fewer variables and

will take less time. Subsumption and dead code elimination are optimizations that apply

to local and global register assignment.

CHAPTER 4
LOCAL REGISTER ALLOCATION

We present detailed information about two basic block register allocation

algorithms in this chapter. We describe the relative merits and shortcomings of each

algorithm. We examine how the local register allocation algorithms use live variable

analysis. These algorithms assign registers for variables that are local to a basic block.

Backward Pass Algorithm

In this register allocation algorithm, we associate two properties with each

variable. We define the property STATE with values {local, global) to represent live

variable analysis results for variables in the symbol table. Each basic block contains its

own local list of variable uses and defs and a property called LIVESTATE with values

{live,dead) to identify if a variable is active at some point in the basic block. Live

variable analysis provides necessary information about local and global variables to the

initialization and register assignment passes of the backward pass register allocation

algorithm.

Processing the control flow graph involves one traversal of the basic blocks. The

order of visiting basic blocks in the control flow graph is not important because we have

already computed which variables are local and global during live variable analysis. For

each basic block the backward pass register allocation initializes LIVESTATE to dead

for all local variables.

Register allocation and assignment follow initialization. This algorithm processes

instructions in each basic block from last to first. Our first test is for definitions that are

live due to a later use. Live variable definitions receive registers before operands. The

algorithm removes local variable definitions without subsequent uses as dead code.

Variable uses local to the basic block receive a register. Local uses have their

LIVESTATE set to live after being assigned a register. Free registers are kept on a

stack, the most recently freed register is the first one used. Using a stack for free

registers is a requirement for optimality. In Figure 4-1 we show the backward pass

register allocation algorithm.

Procedure BackwardPass(GRAPH)
for all variables, V l of symbol table do

if STATE(V1) == local then
LIVESTATE(V1) = dead

fi
rof
for all basic-blocks, B of flowgraph, GRAPH do

1 for all instructions, I of B in reverse order do
for all variables, V1 of I do

1 if DEF(V1) A STATE(V1) == local then
if LIVESTATE(V1) == dead then

I CALL DeadCode(1 ,V1)
else

I CALL FreeReg(V1)
LIVESTATE(V1) = dead

fi
else if USE(V1) A STATE(V1) == local then

CALL AllocReg(V1)
LIVESTATE(V1) = live

f i
rof

rof
ro f

END Backwardpass
BACKWARD PASS BASIC BLOCK REGISTER ALLOCATION ALGORITHM

We now present an example of register allocation using the backward pass

algorithm. The code fragment represents instructions stored in a single basic block.

Live variable analysis of the instructions identify variables (b, d, g) as global. Variables

(a, c, e, f) are local and assigned to registers. Table 4-1 shows the instructions in

reverse order, the order used by the backward pass algorithm. We show registers live

coming into the instruction on the same line as the statement number. Register

assignments to the operands are on the next line unless the operands are constants or

global variables. The last line used for each instruction replaces the target with a

register except where the target is a global variable. We compare the input to the

results in Table 4-2, with the instructions in sequential order.

Fotward Pass Algorithm

TABLE 4-2

This basic block register allocation algorithm traverses the basic blocks in the

CFG in a top down fashion. Live variable analysis determines basic block local and

basic block global variables. We use STATE, with the values {local, globar) to represent

live variable analysis results for each variable. This algorithm allocates registers for the

Register Allocation Results
Backward Pass Results
R3=b+d
R2=R3+3
R3=R3+R2
R1 =g/2
d=R3+2
R1 =Rl +d*R2
g=d+RI -

Backward Pass Basic Block
Stmt. #
i I
i 2
i 3
i4
i 5
i6
i 7

Original Program
a=b+d
c=a+3
a=a+c
e=g12
d=a+2
f=e+d*c
g=d+f

targets (defs) after operands (uses) to maintain the data dependence relations[8]

between statements in the basic block. Figure 4-2 shows the forward pass basic block

register allocation algorithm.

Procedure ForwardPass(GRAPH)
for variables, V1 in symboltable do

LIVESTATE(V1) = dead
rof
for all basic blocks B, of flowgraph, GRAPH do
for all instructions, I of B in reverse order do I1 BEGIN PASS # I
V2 = target(1)
if (V2) A STATE(V2) == local then
if LIVESTATE(V2) == dead then
CALL DeadCode(1 ,V2)

else
LIVESTATE(V2) = dead

fi
fi
for all operands, V1 of I do
LASTUSE(1, V1) = FALSE
if STATE(V1) == local A LIVESTATE(V1) == dead then

LASTUSE(1,VI) = TRUE
LIVESTATE(V1) = live

fi
rof

rof 11 END PASS#?
for all instructions, I of basic block B do 11 BEGIN PASS #2
for all operands, V1 of instruction, I do

if STATE(V1) == local then
CALL AllocReg(V1)
if LASTUSE(1,VI) == TRUE then
CALL FreeReg(V1)

fi
fi

rof
V2 = target(1)
if (V2) A STATE(V2) == local then
CALL AllocReg(V2)

fi
rof 11 END PASS #2

rof 11 for all basic blocks
I END FORWARDPASS

FORWARD PASS BASIC BLOCK REGISTER ALLOCATION ALGORITHM

Before processing the instructions in the basic blocks, the algorithm sets

LIVESTATE to dead for each variable in the symbol table. One iteration through the

basic blocks determines the live ranges and assigns registers. Because the algorithm

uses the granularity of a basic block, we set the LASTUSE of all variable uses to

FALSE. The algorithm computes LIVESTATE from the instances of uses and defs. The

algorithm's first pass goes through the list of instructions in reverse order removing dead

code and identifies the which instance of a variable use is the last use. This pass

identifies the live ranges of local variables. Register assignment for local variables

occurs during the second pass.

In this algorithm, LIVESTATE has the values {live, dead) identifying whether a

variable is live at a point in the basic block. Variable uses encountered in an instruction

set the LIVESTATE to live. Variable defs in the instruction reset the variable

LIVESTATE to dead. The STATE property has values {local, global) showing which

variables are available for allocation. The LASTUSE property has values {TRUE,

FALSE} identifying the instance of a variable that terminates the variable live range. In

this algorithm any variable with a STATE of local is local to the basic block and eligible

for local register allocation. Table 4-3 shows the results of the first pass operations

where variables (a, c, el f) are local and variables (b, dl g) are global.

Entries in Table 4-3 combine information from LIVESTATE and LASTUSE. The

following symbols {L,D}l{T,F) identify variable live ranges; where 'Dl represents dead, 'L'

represents live, 'T' represents last-use and 'F' is not-last. Statements in Table 4-3

reflect the processing order of the algorithm. Table 4-4 shows operations performed by

TABLE 4-3
FORWARD PASS BASIC BLOCK REGISTER ALLOCATION INITIALIZATION
Stmt. #

i 7
i6
i 5
i4
i3
i 3
i2
i I

Instructions

g=d+f
f=e+d*c
d=a+2
e=g/2
a=a+c
a=a+c
c=a+3
a=b+d

Variables
LIVESTATEILASTUSE

a

UT

DI-~"
UTUbt

UF
Dl-

c

LIT

UF
Dl,

e

UT

Dl,

f
LIT
Dl,

the second pass where register assignment takes place. Table 4-5 shows the input and

output from the forward pass algorithm.

Conclusion

2

TABLE 4-5
FORWARD PASS BASIC BLOCK REGISTER ALLOCATION RESULTS

Allocating registers at the granularity of a basic block is a well defined and

understood process. The two register allocation algorithms presented in this chapter

achieve efficient solutions for local register assignment in basic blocks. The backward

pass algorithm requires one iteration through the basic blocks and one iteration through

the instructions. The backward pass algorithm does not require the LASTUSE property.

Stmt. #
i I
i 2
i 3
i4
i 5
i6
i 7

Original Program
a=b+d
c=a+3
a=a+c
e=g/2
d=a+2
f=e+d*c
g=d+f

Forward Pass Results
R1 =b+d
R2=R1+3
RI=Rl+R2
R3=g/2
d=R1+2
R3=R1 +d*R2
g=d+R3

The backward pass register allocation algorithm is the algorithm of choice for basic

block register allocation. The fotward pass algorithm requires one pass through the

basic blocks and two iterations through the instructions. We present the fotward pass

basic block register allocation algorithm because it is the basis for register allocation

algorithms presented in the next chapter. Allocating registers for basic block local

variables takes advantage of short register live ranges.

Basic block register allocation guarantees to use the minimum number of

registers if there are sufficient registers for local variables, and if a stack is used for free

registers. In the case where there are insufficient registers for local variables, spilling

heuristics do not provide a solution with a minimal number of spills. Reordering

instructions will change the demand for registers. Finding a solution for minimal register

usage with instruction reordering is beyond the scope of our research.

CHAPTER 5
REGISTER ALLOCATION ACROSS BASIC BLOCKS

In this chapter, we present a technique for local register allocation that spans

basic block boundaries. The algorithms locate and use trees of basic blocks, called

supertraces, to extend live ranges of local variables. We discuss how the algorithms

use control flow graph information to find the supertraces. We present the motivation

and design criteria leading to the algorithms and their implementation.

Supertrace Formation

Control flow graphs contain trees of basic blocks. We define a supertrace as a

region of the CFG with a single entry point where basic blocks form a tree. The root of a

supertrace is a basic block located at entry of a CFG, the header of a natural loop, or a

basic block located at a confluence point for two or more predecessors. Minimal trees

consist of a single basic block matching the definition for a root of a supertrace. Our

goal is to build supertraces with as many basic blocks as possible. We add basic blocks

to a supertrace by following the successor links from each supertrace root. Basic blocks

with a single predecessor link spanning off the supertrace head are members of the

same supertrace. The path length from the supertrace root to confluence points in the

CFG limits the size of a supertrace. Supertraces cannot grow beyond a confluence

point (where basic blocks have two or more predecessors).

Figure 5-1 shows a CFG with the basic blocks of the large supertrace in bold.

The large supertrace contains basic blocks 2, 3, 4, 5, 6, 7, 8, 10, and 11. Minimal

supertraces exist for basic blocks 1,9,12,13, and 14. Using this example, we can follow

the creation of the large supertrace. Beginning at the entry to the CFG, the algorithm

marks basic block 1 as a supertrace root. Following the successor link from block 1 to

block 2 we find a second successor link, the loop back edge. We cannot assign basic

block 2 to the supertrace rooted at basic block 1 because basic block 2 has more than

one predecessor. Because basic block 1 has no more successors, the supertrace is

complete for this root. Basic block 2 meets the definition for a supertrace root, so we

begin the generation of a second supertrace rooted at basic block 2. Following the

successor links from 2 to 3, from 3 to 5, and 3 to 6 permit inclusion of these basic blocks

into the supertrace because basic blocks 3,5, and 6 have only one predecessor.

ENTRY
4 -

1

2

3 4

5 6 7 8
4 4

9 10 11

13

14

Following the successor links from 5 to 9 and from 6 to 9 halts the creation of the

supertrace on this branch because basic block 9 has two predecessors. The algorithm

continues along the successor links from 4 to 7, from 4 to 8, from 7 to 10, and from 8 to

11, adding all basic blocks to the supertrace rooted at basic block 2. Our supertrace

ends at basic block 12 because basic block 12 has more than one predecessor.

Supertrace Local Variables

In this section we introduce and define supertrace local variables. Within each

supertrace, variables that are not live coming into or going out of a supertrace boundary

are local to the supertrace. Variables that are not members of any supertrace head's

LIVEBEFORE set are supertrace~local. The supertrace register allocation algorithm

allows live ranges to cross basic block boundaries for supertrace local variables.

Variables identified as LIVEBEFORE to a supertrace head are superfrace global. The

global register allocation algorithm processes supertrace global variables. Following live

variable analysis, we find supertrace local and supertrace global variables by making a

pass through the basic blocks of each supertrace. Our algorithm looks for uses of

variables within the supertrace that are not members of the LIVEBEFORE set of the

supertrace head. The algorithm scans the supertrace looking at each variable in turn,

assigning the state supertrace-global to variables that has any nonlocal use. The

problem arises that a variable may be supertrace-local in one supertrace and

supertrace-global in another. We resolve this conflict by making the variable supertrace

global in all supertraces.

Forward Pass Supertrace Algorithm

The foward pass supertrace register allocation algorithm allocates registers for

local variables. This algorithm is more complex than the basic block local register

allocation algorithms in the previous chapter. There is an initialization step, a register

allocation step, and a traversal step in this algorithm. The initialization step identifies the

variable live ranges and deals with dead code elimination. The register allocation step

assigns registers for local uses and defs of instructions. The traversal step in this

algorithm is unique in that we save and restore the state of register assignment before

visiting the next basic block in the supertrace. Successful register allocation based on

supertraces requires assignment of all basic blocks in the CFG to supertraces. The

allocation algorithm must visit all supertraces in the CFG. We present the main

procedure for the algorithm in Figure 5-2.

PROC Forward-ST(CFG)
CALL Forward-lnit(CFG)
for all basic blocks, B of flowgraph, CFG do

if SupertraceHead(B) then
CALL Supertrace-Pass(B)

fi
ro f

END Forward-ST
DRIVER ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION

In this algorithm it is necessary to keep track of variables assigned to registers

and registers assigned to variables. We use two data constructs REGREF and

VARREF to keep this information. In VARREF we store information about registers

assigned to variables. The REGREF data structure stores which variable is in a given

register.

We show the initialization step for this algorithm in Figure 5 - 2 ~ . lnitialization of

variable state information occurs before live range calculations or register allocation.

The algorithm initializes REGREF and VARREF to null. lnitialization visits all

instructions within each basic block in a last to first order. This order permits finding the

last use of a variable. LASTUSE and LIVESTATE store the computed live range of

variables. The field LASTUSE can have the values {TRUE, FALSE); the field

LIVESTATE can have the values {live, dead). We initialize LASTUSE of all operands to

FALSE. Local variable definitions not used in subsequent instructions as an operand

cause dead code removal of the instruction. lnitialization sets LIVESTATE to dead for

local definitions of a variable. Local variable uses not live beyond a basic block

boundary (determined by LIVEAFTER membership) have LASTUSE set to TRUE and

LIVESTATE set to live. These local uses mark the end of a variable's live range.

PROC Forward-lnit(CFG)
REGREF(*) = 0
VARREF(*) = 0
for all basic blocks, B of flowgraph, CFG do
for all variables, V1 in symboltable do

LIVESTATE(V1) = LIVEAFTER(B,Vl) // {live, dead)
rof
for all instructions, I of B in reverse order do
V l = TARGET(1)
if DEF(V1) A STATE(V1) == local then
if LIVESTATE(V1) == dead then
CALL DeadCode(1 ,V1)

else
LIVESTATE(V1) = dead

fi
fi
for all operands, V2 of I do

LASTUSE(I,V2) = FALSE
if STATE(V2) == local A LIVESTATE(V2) == dead then

LASTUSE(I,V2) = TRUE
LIVESTATE(V2) = live

fi
rof

rof
*

rof
END Forward-lnit

~ N ~ T ~ A L ~ Z A T ~ O N ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION

We show the register allocation step of the forward supertrace register allocation

algorithm in Figure 5-28. This modified forward basic allocator accepts a single basic

block. We process variable uses before definitions to maintain data dependence

relations between instructions in the basic block. Immediately after assigning a register

for a variable use, we check if this is the last use of the variable and possibly free the

register. The algorithm assigns variable definitions a register after processing

instruction operands. Register allocation for each basic block uses the same sequence

of operations shown in the forward pass basic block register allocator.

PROC Supertrace-Pass2(BASIC-BLOCK)
for all instructions, I in BASIC-BLOCK do
for all operands, V1 in I do

if STATE(V1) == local then
CALL AllocReg(V1)
if LASTUSE(V1 ,I) == TRUE then
VARREF[REGREF[Vl]] = 0
REGREFW] = 0

fi
fi

rof
V l = TARGET(1)
if DEF(V1) A STATE(V1) == local

REG = GetReg()
REGREFWI] = REG
VARREF[REG] = V1

fi
rof

END Supertrace-Pass2
ALLOCATION ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION

We show the traversal routine in Figure 5-2c. The traversal step is responsible

for calling the register allocation routine for each basic block in the supertrace. After the

register allocation step returns, the traversal routine saves the state of register

assignments in SAVEREGS.. We assign the same register state to all basic blocks that

are successors and members of the supertrace. Transfer of the register state from

SAVEREGS is only for variables live before the successor basic block.

If the successor basic block does not reference a variable that its predecessor

defines, we free the register making it available. An example of where this occurs,

taken from Figure 5-3, is the variable d. This variable is live coming out of basic block

one because of the variable use in basic block five. Basic blocks two, three, and four

have no uses of d. It is unnecessary to save the register assignment for variable d

established in basic block one and have it present during register allocation of basic

blocks two, three, and four. The register state saves variable d for basic block five

because of the use in the first assignment statement.

PROC Supertrace-Pass(BASIC-BLOCK)
CALL Supertrace_Pass2(BASIC-BLOCK) 11 see FIGURE 5 - 2 ~
SAVEREGS(*) = REGREF(*)
for all SUCC(BASIC-BLOCK), S do

if S != SUPERTRACE-HEAD(BASIC-BLOCK) A

SUPERTRACE-HEAD(S) == SUPERTRACE-HEAD(BASIC-BLOCK) then
for J = 1 to numregs do

REGREF[J] = SAVEREG[J]
if REGREF[J] != 0 then
V1 = REGREF[J]
if LIVEBEFORE(S,VI) then
VARREF[REGREF[J]] = J

else
REGREF[J] = 0

fi
f i

ro f
CALL Supertrace-Pass(S)

fi
rof

END Supertrace-Pass
STATE SAVING ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION

FIGURE 5-2c

We now present an example showing the operations performed by the forward

supertrace register allocation algorithm. The CFG shown in Figure 5-3 has two

supertraces. The first supertrace contains basic blocks one, two, three, five, and six.

The second supertrace contains a single basic block, basic block four. Variables a, b, d,

and e are supertrace local because they are not live coming in to the two supertrace

heads (basic blocks one and four). Variables c, g, and k are supertrace global in our

example. Variable c is live coming in to basic block two and because there is no

definition in basic block one, it must be a global variable or parameter to a subroutine.

Variables g and k are supertrace global because they are live coming into the

supertrace head at basic block four. The local variable dl defined in basic block one is

not live along the path from basic block one to basic block two. The variable d is live

along the path from basic block one to basic block five. In the first assignment

statement of basic block five, the variable a subsumes d.

EXAMPLE FLOW GRAPH FOR SUPERTRACE REGISTER ALLOCATION
FIGURE 5-3

ENTRY

Table 5-1 shows the initialization step of the forward register supertrace register

allocation algorithm. Entries in the table show the LIVESTATE values of {live, dead) as

'L' and 'D' respectively. The LASTUSE values of {TRUE, FALSE) are 'T' and 'F' in the

table. Note that LASTUSE is not important for variable definitions; we show this as an

' - ' character. The table shows the LIVESTATE and LASTUSE for all instructions in the

basic block. Instructions in each basic block are in reverse order, the same order used

by the algorithm. During initialization we compute the LIVESTATE and LASTUSE for

local and global variables. The subsequent allocation pass deals with local variables

only.

1 d=2

2 a=c
b=a+2

v

5

3

a=d
b=a*4
e=a+b

k=b+e g=a+b

4

6

a=g+k

TABLE 5-1
FORWARD PASS SUPERTRACE REGister Allocation Initialization
Block Instr. LIVESTATEILASTUSE

LOCAL GLOBAL
a b d e c Sl k

1 =d Dl-
2 =al b= UF D L

=c, a= Dl- DIF

Table 5-2 shows the register allocation for our example. Supertrace register

allocation saves the register state and permits LIVEAFTER variables to pass through to

successors that are members of the same supertrace.

TABLE 5-2
FORWARD PASS SUPERTRACE REGISTER ASSIGNMENT

Block

1

2

3

5

6

4

R1

d

a

0

a

e

0

Instruction

d=
R1=
=c,a=
=clR1 =
=a, b=
=R1 ,R2=
=a,=b,g=
=RIl=R2,g=
=d,a=
=R1 ,R1=
=a, b=
=R1 ,R2=
=a,=b,e=
=R1 ,=R2,R1=
=b,=e,k=
=R2,=RI1 k=

dead
dead

VARREF
R2

b

0

b

0

a

R1

0

R1

0

REGREF
b

R2

0

R2

0

d

R1

0

e

R1

0
- -----

The first table column shows the basic block numbers assigned during the depth first

traversal of the CFG. The table also shows the original instructions and the register

replacements that occur during register allocation and supertrace traversal. Global data

constructs, REGREF and VARREF, show the assignment and clearing of registers and

variables. We use the symbol '0' to represent clearing a value in REGREF or VARREF.

The sequence of basic blocks in the table reflect the depth first sequence used in

traversing the supertrace.

Statements from the input program and results from forward pass register

assignment is in TABLE 5-3. Rows in the table show basic blocks in DFST order,

statements are in first to last order.

Optimality Criteria

TABLE 5-3
FORWARD PASS SUPERTRACE REGISTER ALLOCATION RESULTS

Our algorithm generates an optimal register allocation in that no allocation can

use fewer registers. We demonstrate this by casting the register allocation problem into

a graph coloring framework. The CFG of a supertrace is a tree, and each variable live

range is a subtree of the supertrace. We construct an undirected register interference

graph where each node represents a live range. An edge connects two nodes if the live

ranges intersect. It is well known that the interference graph of subtrees of a tree forms

a triangulated or chordal graph[ll]. The allocation of registers to live ranges

corresponds directly to a coloring of the interference graph, where adjacent nodes must

have different colors.

Forward Supertrace Results
R1=2
R1 =c
R2=R1+2
g=R1 +R2
R1 =R1
R2=R1*4
R1 =R1 +R2
k=R2+R1
<dead code, instruction removed>

Block
1
2

3
5

6
4

Original Program
d=2
a=c
b=a+2
g=a+b
a=d
b=a*4
e=a+b
k=b+e
a=g+k

Any interference graph coloring must use at least as many colors as the size of

the largest clique (a completely connected subset of nodes). Our algorithm requires a

new register only when all the previously used registers are already allocated to

variables at some point in the supertrace. The live ranges needing the new register

interferes with all the live ranges currently allocated registers, and so all the variables at

any point in the supertrace form a clique. Thus, our algorithm finds a coloring that uses

exactly the number of colors in the largest clique, and so is optimal.

Variable Renaming in Modified Supertrace Algorithm

Modifying the supertrace register allocation algorithm to use a bottom up

traversal of the supertrace eliminates the need to save register state between basic

blocks. We need variable renaming in this algorithm to preserve dependence relations

of instructions between basic blocks. Our motivation in creating this algorithm is to

reduce the number of iterations over basic blocks and their instructions. A feature of

this algorithm is that it does not save the register state between basic blocks in a

supertrace. It is possible to implement variable renaming as part of the modified

supertrace algorithm. We chose to implement this algorithm separately because of

expedience and data collection requirements for our research.

The following algorithm renames local variables in supertraces that otherwise

would cause incorrect register allocation in the modified supertrace register allocation

algorithm. Unlike the forward pass supertrace algorithm, we do not save the state of

register assignments in the modified supertrace algorithm. Definitions of a variable in

two or more branches of the supertrace require that we must rename the variable.

Renaming the variable removes the possibility that register values differ between

branches of the supertrace. Renaming variables splits the live range of the original

variable.

The algorithm to rename variables seeks the definitions of supertrace local

variables. Starting at a basic block defined as a supertrace head and proceeding

through the successors we build a list of variable definitions. If a basic block has only

one successor there is no need to rename variables in the basic block or its successor

because variables live across this basic block boundary do not change. When a basic

block has more than one successor, it is necessary to determine if there are any

redefinitions of variables from our list in either successor subtree. The algorithm

renames variables from our list if definitions exist for the variable in a successor's

subtree. It is not necessary to rename all instances of the variable, as this would

compound the problem we are trying to solve. We find the last definition in the

instructions of the basic block and rename it. The algorithm renames subsequent uses

of the variable found in later instructions of the basic block. In some cases, we must

traverse through the basic block's predecessors to find the last definition and begin the

renaming at that point in the supertrace. For each successor subtree we rename all

uses of the variable up to the first definition. In summary, we rename variables from the

last definition and subsequent uses in the basic block up to (but not including) the first

definition of the variable in each of the successor subtrees. We show the main function

in Figure 5-4.

PROC St-Var-Rename(BLOCK, STHEAD)
for instructions, I in BLOCK do

LlST = LlST + TARGET(1)
rof

if BLOCK has more than 1 successor then
for LIST, J=l ,N do

if definitions exist in either successor chain for LIST[J] then
CALL Rename-Last Def-Fwd(BLOCK, STHEAD, LIST[J], NEW-VAR-NAME)
for succ(BLOCK), SBLOCK do

CALL Rename-Upto-FirstDef(SBLOCK, STHEAD, LIST[J], NEW-VAR-NAME)
rof

fi
ro f

fi

for all SUCC(BLOCK), SBLOCK do
if Supertrace-Child(SBLOCK, STHEAD) then
CALL St-Var-Rename(BLOCK, STHEAD)

fi
1 rof I
1 end St-Var-Rename

DRIVER ALGORITHM FOR VARIABLE RENAMING

Clearly, if a supertrace local variable is live out of a basic block and live coming

into two or more successors, the variable represented by a register must have the same

value and reflect the original definition. The problem we address with renaming arises

when definitions in one branch of the supertrace overwrite the values used in the other

branch. Note that the list of variable definitions, LIST, is initially NULL.

The functions shown in Figures 5 - 4 ~ and 5-48 perform variable renaming by

recursively visiting basic blocks within a supertrace. There are two 'directions' in

renaming variables within a supertrace. The algorithm in Figure 5 - 4 ~ renames a

variable from the most recent definition through all subsequent uses. This form of

variable renaming will traverse basic block predecessors to find the instruction where a

variable definition occurs. The other 'direction' used to rename a variable involves

following basic block successors until finding the variable definition in an instruction list.

The algorithm in Figure 5 - 4 ~ renames all uses of a variable up to the definition of the

variable.

PROC Rename-LastDef-Fwd(BLOCK, STHEAD, VAR, NEW-VAR-NAME)
FOUND=FALSE
for instructions, I of BLOCK in reverse order and FOUND == FALSE do
for operands, V1 of I do

if V1 == VAR then
V1 = NEW-VAR-NAME

fi
ro f
if Target(1) == VAR then
Target(1) = NEW-VAR-NAME
FOUND = TRUE

fi
rof
if FOUND == FALSE and Supertrace-Child(PRED(BLOCK), STHEAD) then

Call Rename-LastDef-Fwd(PRED(BLOCK), STHEAD, VAR, NEW-VAR-NAME)
fi

1 end Rename-LastDef-Fwd
BACKWARD TRAVERSAL ALGORITHM FOR VARIABLE RENAMING

PROC Rename-Upto-FirstDef(BLOCK, STHEAD, VAR, NEW-VAR-NAME)
FOUND = FALSE
for instructions, I of BLOCK and FOUND == FALSE do

for operands, V1 of I do
if V1 == VAR then

V l = NEW-VAR-NAME
fi

rof
if TARGET(1) == VAR then

FOUND = TRUE
fi

rof
if FOUND == FALSE then

for succ(BLOCK), SBLOCK do
if Supertrace-Child(SBLOCK, STHEAD) then

CALL Rename-Upto-FirstDef(SBLOCK, STHEAD, VAR, NEW-VAR-NAME)
fi

rof
fi

end Rename-Upto-FirstDef
FORWARD TRAVERSAL ALGORITHM FOR VARIABLE RENAMING

It is beneficial to perform dead code elimination before live range splitting. The

assignment statement (b=2) in basic block six is dead because there are no subsequent

uses of the variable 'b'. Because we did not perform dead code elimination before live

range splitting it is necessary to rename the assignment in basic block four (b=6) and

the use in basic block seven (=a+b). Performing live range splitting after dead code

elimination has the potential of reducing the number of statements in the flow graph.

The positive side effect of performing dead code elimination before variable renaming is

reducing the number of variables renamed.

We present an example of variable renaming in Figures 5-5 and 5-6. Figure 5-5

shows the original CFG; Figure 5-6 shows the CFG after renaming.

Modified Supertrace Algorithm

The entry point for the modified supertrace algorithm is in Figure 5-7.

Initialization sets the LIVESTATE of all variables to dead. Using this algorithm requires

renaming variables defined on two or more branches. The second pass, shown in

Figure 5-7a, calculates the live ranges and performs dead code elimination. Variable

uses local to the basic block with a dead LIVESTATE result in the LIVESTATE being set

to live and LASTUSE being set to TRUE. Dead code elimination removes local

definitions from the instruction list having a LIVESTATE of dead. The register allocation

step, shown in Figure 5-7b, assigns registers for uses and definitions that are local to

the supertrace. The register allocation pass requires processing basic blocks in the

opposite order of the first pass. This algorithm has the effect of treating all basic blocks

in a supertrace as one 'congealed' basic block.

PROC ForwardModPass(GRAPH)
for all basic blocks, B of flowgraph, GRAPH do

if SupertraceHead(B) then
for all variables, V1 in SYMBOL-TABLE do
LiveState(V1) = dead

rof
CALL ST-Var-Rename(B, B) I1 see FIGURE 5-4
CALL Mark(B)
CALL Alloc(B)

fi
rof

END ForwardModPass()
DRIVER ALGORITHM FOR MODIFIED FORWARD SUPERTRACE REGISTER ALLOCATION

Before computing the live ranges, we set the LIVESTATE of all variables to

dead. It is not important that global variables have any attribute values at this point. We

compute the live range and then assign registers for supertrace local variables for each

supertrace encountered in the CFG. Because every basic block in the CFG is a

supertrace or a member of a larger supertrace, we know the algorithm will visit every

basic block in CFG.

We present the live range function Mark() in Figure 5 - 7 ~ . It visits each basic

block in the supertrace in a bottom up depth first traversal. It is necessary to use a

bottom-up traversal of nodes in the supertrace to maintain the LIVESTATE information

for variables. We process instructions from last to first.

PROC Mark(BASIC-BLOCK, STHEAD)
for all SUCC(BASIC-BLOCK), SBLOCK do

if SupertraceChild(SBLOCK, STHEAD) then
CALL Mark(SBLOCK, STHEAD)

fi
rof
for all instructions, I of BASIC-BLOCK in reverse order do
for all variables, V1 of I do

LASTUSE(1,VI) = FALSE
rof
V1 = TARGET([)
if (VI) A STATE(V1) == local then
if LIVESTATE(V1) == dead then
CALL REMOVE-INSTR(I,Vl)

else
LIVESTATE(V1) = dead

fi
fi
for all operands, V2 of instruction I do

if STATE(V2) == local A LIVESTATE(V2) == dead then
LASTUSE(I,V2) = TRUE
LIVESTATE(V2) = live

fi
rof

rof
END Mark

~ N ~ T ~ A L ~ Z A T ~ O N ALGORITHM FOR MODIFIED FORWARD SUPERTRACE REGISTER ALLOCATION
FIGURE 5-7A

We present the register allocation function in Figure 5 - 7 ~ . Register allocation

and assignment for this algorithm is complicated by the need to traverse basic blocks in

the supertrace in exactly the opposite order used to compute variable live ranges. We

perform a top-down preorder left to right traversal of the supertrace. The sequence we

use for allocating instructions in basic blocks is necessary to maintain valid register

assignments across basic blocks.

PROC Alloc(BASIC-BLOCK)
for all instructions, I of BASIC-BLOCK do
for all operands, V1 of I do

if STATE(V1) == local then
CALL AllocReg(V1)
if LASTUSE(1,Vl) = TRUE then

CALL FreeReg(WhichReg(V1))
fi

fi
rof
V2 = TARGET(1)
if (V2) A STATE(V2) == local then
CALL AllocReg(V2)

fi
rof
for all SUCC(BASIC-BLOCK), SBLOCK in reverse order do

if Supertrace-Child(SBLOCK, BASIC-BLOCK) then
CALL Alloc(SBL0CK)

fi
ro f

end Alloc
ALLOCATION ALGORITHM FOR MODIFIED FORWARD SUPERTRACE REGISTER ALLOCATION

FIGURE 5-78

Using the CFG from Figure 5-6, we show the results of register allocation with

the modified supertrace algorithm in Table 5-4 and Table 5-5. We show the states

LIVESTATE {live, dead) and LASTUSE {TRUE, FALSE) as {L,D}I{T,F) along with the

basic block number and instruction. The algorithm traverses basic blocks in the

supertrace using a depth first left to right traversal. Processing statements or

instructions within each basic block from last to first order maintains data dependence

relations. Table 5-4 shows the initial state of each variable and the results after live

range calculations. We use the word 'dead' in the following tables when referring to

dead code removed from the flow graph by the allocation algorithm.

Table 5-5 presents the register assignment for our example. Traversal of the

basic blocks in the register allocation pass must be in the exact opposite order used

during variable live ranges calculations. We use a top down preorder traversal to

accomplish the register assignment traversal of the supertrace. Register assignment

processes instructions within each basic block in order, from first to last. We show

instructions before and after local register assignment. Register assignment for local

variables is in Table 5-5. Scanning down the columns beneath the REGISTER

ASSIGNMENT title permits finding register live ranges that coincide. There are three

coinciding register live ranges in the supertrace at basic block four after the third

instruction (b2=6). We show the return of a register to the free register pool with the

symbol, '0'.

TABLE 5-4

We show the results from the modified forward pass supertrace register

allocation algorithm in Table 5-6, comparing the original instructions to the output. The

word 'dead' replaces instructions removed from the flow graph.

MODIFIED

block
5

3

6

7

4

2

1

SUPERTRACE

instr
=b+a
a=3
b= I
a=O
=bl +a1
b=2
=a1 +b2
a=5
=a1 +b2
b2=6
=bl
=a1 +bl
=a1
a1 =4
=a+bl
bl=2

. a=l

REGISTER ALLOCATION INITIALIZATION

a
LJT
DIF

dead

dead

LJT

. DIF

b l

LJT

UF
UF

UF
DIF

b2

LIT

UF
DIF

a1

LJT
UF

UF

UF
UF
DIF

LIVESTATEILASTUSE
b
LJT

DIF

dead

TABLE 5-5

TABLE 5-6

MODIFIED

block
I

2

4

7

6

3

5

ASSIGNMENT

RESULTS
Modified Supertrace Results
R1 = I
R2=2
=R1 +R2
R1=4
=R1
=R1 +R2
=R2
R3=6
=R1 +R2
dead
=R1 +R3
dead
=R2+R1
dead
R1 = I
R2=3
=R1 +R2

MODIFIED
block
1

2

4

7

6

3

5

SUPERTRACE

instr
a=l
bl=2
=a+bl
a1 =4
=a1
=a1 +bl
=bl
b2=6
=a1 +bl
a=5
=a1 +b2
b=2
=bl+al
a=O
b=l
a=3
R2=3
=b+a

SUPERTRACE REGISTER ALLOCATION
original instruction
a=l
bl=2
=a+bl
a1 =4
=a1
=a1 +bl
=bl
b2=6
=a1 +b2
a=5
=a1 +b2
b=2
=bl +a1
a=O
b=l
a=3
=b+a

REGISTER

alloc
R1 = I
R2=2
=RI+R2
R1=4
=R1
=R1 +R2
=R2
R3=6
=R1 +R2

=R1 +R3

=R2+R1

R l = l
R2=3
R2=3
=RI+R2

b2

R3

0

a
R1

0

dead

dead

R2

0

b

dead

R1

0

REGISTER
a1

R1
R1
R1

R1

R1

0

ASSIGNMENT
b l

R2
R2

R2
R2

R2

0

Conclusion

The supertrace register allocation algorithm is a forward pass basic block

register allocation algorithm. Modifications in the supertrace algorithm permit variable

live ranges to span basic block boundaries. The supertrace register allocation algorithm

is similar to interval graph algorithms[lO], operating in polynomial time. Solutions for

register allocation without spilling are optimal, given the fact supertrace register

allocation is a modified version of the basic block forward pass register allocation

algorithm. Register allocation involving spill code provides a non-optimal solution. The

forward supertrace algorithm makes two passes through the basic blocks; once during

initialization and once during register allocation. The algorithm visits instructions within

each basic block twice; once during initialization and once during register allocation.

The algorithm incurs the cost of saving and restoring register state once for every basic

block assigned to a supertrace.

The modified supertrace algorithm visits all basic blocks in a CFG three times.

When the algorithm finds a basic block that is a supertrace head initialization of all

variables in the symbol table occurs before live range computations or register

assignment. The algorithm visits instructions within each basic block twice; once during

live range calculations and once during register assignment. The requirement for

variable renaming creates an additional cost of using our nonlinear algorithm to perform

live range splitting. Performing variable renaming is possible with a less costly algorithm

or by integrating live range splitting directly into the modified supertrace algorithm.

CHAPTER 6
CREATING LARGER SUPERTRACES

Introduction

This chapter presents two mechanisms to create larger supertraces; basic block

cloning and loop unrolling. The supertrace register allocation algorithms depend on

trees of basic blocks to allocate local variables. By modifying the structure of a flow

graph with basic block cloning, register lifetimes for supertrace local variables can span

more basic blocks. Increasing the depth of supertraces by cloning flow graph merge

points reduces the number of supertraces present in a given flow graph. Cloning basic

blocks during the creation of a supertrace increases the number of variables available

for local register allocation.

Without cloning, supertrace branches end at the point where basic block

successor chains join. Cloning basic blocks with more than one predecessor permits

the supertrace to grow larger and include more basic blocks. The following discussion

of basic block cloning is in the context of creating larger supertraces for the supertrace

register allocation algorithms. Basic block cloning has no benefit for basic block register

allocation. We examine two different flow graph traversals, depth first and breadth first,

to create supertraces. Descriptions of several different limits are in the following section

that affect the size and form of supertraces. Loop back edges form barriers that limit

supertrace growth.

Loop unrolling increases the number of basic blocks by copying the flow graph

structure that exists between the start and end of a loop. Loop unrolling by itself offers

no direct benefit toward increasing larger trees of basic blocks. Combining loop

unrolling with basic block cloning increases the number of basic blocks in a CFG

dramatically. Because the number of basic blocks can increase so quickly, we impose

limits to control the growth rate of the flow graph.

Limits

We use limits in the basic block cloning algorithm and the loop unrolling

algorithm to establish upper limits on the number of basic blocks in a supertrace or loop,

respectively. Both optimization techniques increase the number of basic blocks in the

CFG. Using limits to control the number of basic blocks added to the CFG balances

code size against the number of variables allocated locally by the supertrace register

allocation algorithms.

Basic block cloning permits the application of several different limits. Creating

supertraces with the maximum number of basic blocks is possible using basic block

cloning. Loop structures create boundaries that supertraces can not cross. Creating a

supertrace without limits, by depth first or breadth first traversals generates identical

results. We may choose to establish a limit for the total number of basic blocks in a

supertrace, block-count-limit. Adding basic blocks to the supertrace continues until the

number of basic blocks approaches the block-count-limit. The second limit we can

impose on supertrace formation is the maximum-depth of a supertrace, calculated by

the number of successor links between the supertrace head and any supertrace

member. The implication of using a block-count-limit versus maximum-depth is

dependent on the structure of the flow graph. To obtain the maximum number of

supertrace local variables for a given flow graph, the source program requires careful

examination. Limits imposed on supertrace size, the number of basic blocks, and the

method of traversing the supertrace have an impact on the number of supertrace local

variables available for local register allocation.

The first loop unrolling limit we examine is unrolling all loops once. The number

of instructions in each loop is: l 0 0 p ~ ~ ~ ~ ~ ~ ~ ~ = l 0 0 p ~ ~ ~ ~ ~ ~ ~ ~ * 2 . In the case of nested loops,

where loop[O] is the innermost loop, and loop[n] is the outermost loop, our equation for

the number of instructions at the outermost loop after unrolling each loop once is:

lo0pCnIinstrvc~ looP[nIinstrvct*2+looP[n-l Iinstmt*2+ +looP[OIinstrvct*2

Setting a limit on the number of iterations to unroll has the effect of increasing

the number of instructions by: l ~ ~ p ~ ~ ~ ~ ~ ~ ~ ~ = l ~ ~ p ~ ~ ~ ~ ~ ~ ~ ~ * ~ n ~ ~ l l ~ ~ ~ ~ ~ . This unrolling technique

is the most arbitrary of the limits we examine. Unrolling loops with this limit causes a

loop containing few instructions to be unrolled the same number of times as loops

containing hundreds or thousands of instructions. The use of this technique requires

careful characterization of the input program to insure applicability.

It is possible to create an upper limit on the number of instructions contained in a

loop. Setting a limit on the number of instructions contained in a loop creates uniformly

sized loops. This technique requires counting the number of instructions in a loop and

unrolling the loop until the number of instructions approaches rloopinstmCtl. In the case of

nested loops, the inner loop unrolls up to the l ~ ~ p ~ ~ ~ ~ ~ ~ ~ limit, outer loops remain

unchanged.

Unrolling loops limited by the number of basic blocks is another option. Loop

unrolling in this fashion limits the replication of control flow constructs. Given our

definition of a basic block, if a loop contains more than one basic block there must be a

control flow construct or function call within the loop. This technique of loop unrolling is

a benefit to the supertrace register allocation algorithms when combined with basic

block cloning. We introduce basic block cloning in the following section. This technique

counts the number of basic blocks, b l ~ ~ k ~ ~ ~ ~ ~ , within each loop. The loop is unrolled until

blockmUnt*2 approaches rblockIimit 1.

Basic Block Cloning

Cloning is the duplication of basic blocks in a flow graph that have more than

one predecessor. This process is similar to tail duplication[l5]. Each predecessor

branches to a copy of the cloned basic block. An example of a basic block with more

than one predecessor is the basic block at the confluence point for an "if-then-else"

statement. This basic block has two predecessors; one from the "then" branch, and one

from the "else" branch. By cloning the basic block where the conditional branches

merge, we can expand the flow graph without changing the flow of control or

dependence relationships existing in the original flow graph. Basic block cloning creates

larger trees of basic blocks. This technique is beneficial to the supertrace register

allocation algorithms.

Depth first creation of supertraces creates 'long' chains of basic blocks. This

traversal method visits basic blocks following successor links, starting at the supertrace

head and terminating at a limit threshold, or upon encountering a basic block containing

a successor link that is loop back edge.

Breadth first traversal uses a left to right inorder sequence to build supertraces.

Supertraces constructed with breadth first traversals create 'wide' supertraces. Limiting

the size of the supertrace by the number of basic blocks or maximum depth cause the

number of supertraces in the CFG to increase.

Cloning a basic block is necessary under two circumstances. If a basic block is

already in the current supertrace and there is another successor link to the basic block

we need to clone the basic block. The other condition where basic block cloning is

necessary occurs when a basic block is already a member of another supertrace.

Cloning basic blocks under the second condition removes the possibility of branching

into the middle of a supertrace.

The algorithm presented in Figure 6-5 is the entry point for supertrace formation.

We pass a flow graph to the function and set LIMIT-CONDITION to one of the defined

limits. This function follows lexical links in the flow graph and enqueues basic blocks

identified as supertrace heads. The inner while loop builds the supertrace by dequeuing

a basic block and then calling Build-Supertrace(). Cloning basic blocks in

Build-Supertrace() requires that we rebuild the flow graph spanning tree and loop

bodies to update internal data structures.

PROC Supertrace(GRAPH)
CALL INIT-QUEUE()
LIMIT-CONDITION = maximum-size I block-count-limit 1 maximum-depth
NODE = flow graph entry
while NODE != NULL do

if NODE is a supertrace head then
SBHEAD(NODE)=NODE
ENQUEUE-HEAD(N0DE)
while queue is not empty do

TNODE = DEQUEUE-HEAD()
if LIMIT-CONDITION AND Build-Supertrace(GRAPH,TNODE) then
rebuild spanning tree for flow graph
rebuild loops in flow graph

fi
elihw

fi
NODE = GG-NEXT(N0DE)

elihw
END Supertrace

DRIVER ALGORITHM FOR BASIC BLOCK CLONING
FIGURE 6-5

The function Build-Supertrace(), presented in Figure 6 - 5 ~ , follows the successor

links from NODE, adding basic blocks to the supertrace. Successors to the basic block

that are spanning tree ancestors are targets of back edges or targets of an exit edge. If

the successor of NODE is not a member of the same loop, the successor is a member

of another supertrace.

PROC Build-Supertrace(GRAPH, NODE)
for all SUCC(NODE), S of basic block, NODE do

if S is spanning tree ancestor then
do nothing; S is target of backedge and not member of this supertrace

elsif S in supertrace & not assigned yet
if cloning is permitted v PRED-COUNT(S) == 1 then
if S is a member of the same loop as NODE then
SBHEAD(S) = SBHEAD(N0DE)

if depth-first then
ENQUEUE-HEAD(S)

elsif breadth-first then
ENQUEUE-TAIL(S)

fi
f i

elsif basic block already in supertrace
NEWNODE = COPYNODE(S)
SBHEAD(NEWN0DE) = SBHEAD(N0DE)

else basic block must be in different supertrace
if cloning is permitted A NODE is not a supertrace head then

NEWNODE = COPYNODE(S)
SBHEAD(NEWN0DE) = SBHEAD(N0DE)

fi
fi
if NEWNODE was created then
establish lexical links
for all SUCC(S), SS do

establish flowgraph links from NEWNODE to SS
ro f
add flowgraph link from NODE to NEWNODE
remove flowgraph links from NODE to S
if depth-first then

ENQUEUE-HEAD(NEWN0DE)
elsif breadth-first then

ENQUEUE-TAIL(NEWN0DE)
f i

fi
rof
if NEWNODE was created then RETURN TRUE
else RETURN FALSE

END Build-Supertrace
TRAVERSAL/GENERATION ALGORITHM BASIC BLOCK CLONING

We now present an example of creating a supertrace with unlimited basic block

cloning using a breadth-first traversal of the supertrace. The flow graph in Figure 6-6

shows a CFG with an if-then-else construct followed by an if-then construct inside a

loop. The supertrace head is the basic block labeled 'I1. Variable uses and defs are

inside the basic blocks, one line per instruction.

Two functions generate supertraces with basic block cloning. The function

Supertrace-Pass() initializes each supertrace and calls Build-Supertrace() until

exhausting the queue of potential supertrace members or reaching an imposed limit.

The Build-Supertrace() function is responsible for processing the successors of the

basic block, adding legal members or cloning and adding basic blocks already in the

supertrace. Build-Supertrace() performs basic block cloning and adjusts successor and

predecessor lists to insert cloned basic blocks into the flow graph. We start the example

in Supertrace-Pass() where basic block 1 is a supertrace head. We call

Build-Supertrace0 passing basic block 1 as an argument. In Build-Supertrace0 we

add basic block 2 into the supertrace and enqueue it so that its successors may follow

during the breadth-first traversal. Supertrace-Pass() dequeues basic block 2 and calls

Build-Supertrace(). Build-Supertrace() adds basic blocks 3 and 4 to the supertrace and

enqueues them. Supertrace-Pass() dequeues basic block 3 and calls

Build-Supertrace(). Basic block 3 has only one successor, basic block 5. At this point

we add basic block 5 to the supertrace and enqueue it. Build-Supertrace dequeues

basic block 4 and passes this as an argument to Build-Supertrace(). The only

successor of basic block 4 is basic block 5, but it is already in the supertrace. We clone

basic block 5 creating another copy of this basic block, calling it 5'. Modifications to the

successor and predecessor lists permit basic block 4 to point to basic block 5'. The

algorithm assigns basic block 5' to the same successors as basic block 5, enqueue

basic block 5' and returns to Supertrace-Pass(). We show the supertrace at this point

in its creation in Figure 6-7.

We dequeue basic block 5 and call Build-Supertrace(). We add Basic blocks 6

and 7 to the supertrace and enqueue these basic blocks. Basic block 5' is dequeued

and sent to Build-Supertrace(). Basic block 6 clones to 6'' basic block 7 clones to 7'.

Basic block 5' successors are now basic blocks 6' and 7'. Basic block 6 is dequeued

and sent to Build-Supertrace(). We need to clone basic block 7 to permit basic blocks

5 and 6 to have unique copies. Cloning basic block 7 creates basic block 7"' added to

the queue after updating successor and predecessor lists, and flow graph links. The

queue contains basic blocks 7, 6', 7'' 7". Basic block 7 is dequeued and processed by

Build-Supertrace(). We add basic block 8 to the supertrace and enqueue it. Dequeuing

and processing basic block 6' causes the creation of basic block 7"'. We add basic

block 7"' to the supertrace, enqueue it, and the necessary updating of lists and links

takes place. We show the supertrace at this point of its creation in Figure 6-8.

The final sequence of dequeuing basic blocks and cloning creates a unique copy

of basic block 8 for basic blocks 7', 7", and 7"'. The difference between this final

sequence and the addlclonelenqueue sequence is when Build-Supertrace0 processes

basic blocks 8, 8'' 8", and 8"'. The Build-Supertrace0 function performs no action

because the only successor for basic block 8 is the supertrace head. We must consider

the back edge of loops as an absolute supertrace limit. The complete supertrace is in

Figure 6-9.

Loop Unrolling

Loop unrolling is possible at the source level, in the intermediate form, or at the

machine code level. Unrolling loops in flow graphs creates a duplicate set of basic

blocks. Each set of basic blocks has an induction variable update and a branch

between the copy of the loop exit and the loop exit. Source level unrolling makes

provisions so that a single induction variable update occurs. Production compilers often

introduce preamble or postamble code to increase processor pipeline efficiency in loops

known to execute an odd number of times.

Loops in a flow graph are bound by a loop head and a back edge. Loops may

contain multiple basic blocks arranged in an arbitrary order. Unrolling loops has the side

effect of increasing the number of forward edges in flow graphs because the cloned loop

tail must have a flow graph edge to the successor(s) of the original loop tail. This

optimization has no positive effect on local register allocation.

We show the loop unrolling algorithm in Figure 6-1. The process of unrolling

loops requires the identification of loop heads, loop tails, and back edges. If a basic

block is a target of a flow graph edge from a successor, the basic block is a loop head.

The edge connecting the flow graph successor to the loop head is a back edge. The

basic block originating the back edge is a loop tail. Loop unrolling works from the most

deeply nested loop outward. Input to this optimization is the flow graph of a subroutine.

Loop heads are basic blocks targeted by a back edge. The algorithm creates clones of

original loop members. Lexical and flow graph connections establish the original loop as

a template. Loop unrolling is complete after inserting the copy of the loop into the flow

graph before the original loop. Changing loop back edges, adding an exit edge, and

modifying the loop entry edges completes the task.

PROC ~nroll(flow graph)
build reverse spanning tree for flow graph
annotate basic blocks making up loop heads, loop tails & loop membership
for each loop, innermost to outermost do

while selected limiting condition not met do
clone the loop head and all nodes which are members of the loop
add flow graph links between cloned nodes
add flow graph links between cloned loop head and PRED(origina1 loop head)
add flow graph links between cloned loop tail and original loop head
insert cloned loop before original loop head
add exit edge between cloned loop tail and original loop tail
update flow graph links tolfrom original loop head
update flow graph links tolfrom original loop tail

elihw
rof
rebuild reverse spanning tree for flow graph
annotate basic blocks in flow graph for loop heads, loop tails & loop membership

END PROC Unroll
Loop UNROLLING ALGORITHM

FIGURE 6-1

Conclusion

Loop unrolling and basic block cloning increase the number of basic blocks in

flow graphs. Loop unrolling by itself does not increase the number of local variables or

provide for the extension of local variable live ranges. Neither supertrace register

allocation algorithms benefits from loop unrolling alone. Variable live ranges and the

number of local variables do not change with loop unrolling. Supertrace formation with

basic block cloning provides the supertrace register allocation algorithms with local

variable live ranges that extend beyond basic block boundaries. We show how

supertraces can form with basic block cloning that extend beyond the confluence points

in flow graphs. We show how limits can guide basic block cloning within supertraces to

prevent the number of basic blocks from increasing at a potentially geometric rate. The

selection of breadth-first or depth-first traversal methods impacts the shape and number

supertraces within a given flow graph. The use of supertrace register allocation with

basic block cloning provides potential benefits and new insights into compiler

optimization techniques.

CHAPTER 7
FUTURE WORK AND CONCLUSIONS

To validate this research, the next step should be experimental. An

implementation of our algorithms should be compared to a global graph coloring register

allocator, both with and without a separate basic block local allocator. Some of the data

that should be collected and studied are listed here.

The first set of experiments would set the basis for our work. An experiment

should be run to study how many variables the register allocation phase must deal with,

and how many of these are basic block local variables. If only a small number of

variables are basic block local, it is hard to justify a separate allocator for them, if only

for maintenance reasons.

An experiment should be run to study the compile time of register allocation

compared to the number of variables allocated. For a graph coloring global register

allocator, we expect the compile time to grow faster than linearly with the number of

variables. The time for a global allocator without a basic block local allocator should be

compared to the time take when local variables are allocated by the linear algorithm.

The hope is that removing the basic block local variables from the interference graph will

allow the global allocator to run much faster.

The same experiment can be used to collect information about numbers of

registers used and number of register spills added. The ratio of registers used for local

variables and global variables should be collected, also. Since the basic block local

allocator has perfect knowledge about subsequent uses of variables at spill points, it

should translate into better choices of spilled variables.

The second set of experiments would study naturally occurring supertraces in

the control flow graph. First, flow graphs should be studied to find supertraces, and

data collected about their sizes. The first set of experiments should be repeated,

replacing the basic block local allocator by the supertrace local allocator. If there are

relatively few supertrace local variables, using the supertrace local allocator may give no

compile time or spill performance benefits.

The third set of experiments would study the effects of unlimited basic block

cloning. One experiment would study code growth, i.e., how much larger do programs

get if a compiler does as much basic block cloning as it needs to find maximal

supertraces. Our initial experiments along this line appear to support the claim that

most programs grow by a factor of two or less, measured in basic blocks. The second

set of experiments should be repeated on these maximal supertraces, to see the effect

of cloning. With a larger program, compile time may again become an issue; the hope

is that the faster supertrace register allocator on the larger program will allocate enough

variables that the global coloring allocator on the rest of the variables will be quite fast.

The final set of experiments would study the effects of cloning limits, and depth

first vs. breadth first supertrace creation. The limits are important only when unlimited

cloning creates a program that is too large or takes too long to compile. With different

limits used and supertrace construction order, the same program may give very different

performance results. This set of experiments will study the sensitivity of the register

allocation strategy to the cloning strategy.

In all the supertrace allocation experiments, the optimal forward allocator and

nonoptimal faster backward allocator should be compared, to see whether there are

significant performance benefits or costs for the backward allocator.

We did not study spill heuristics at all. Depending on how many variables are

found to be supertrace local, spill heuristics may be either trivial or quite important.

Some extension of the basic block local "most distant next use" spill heuristic may be

appropriate and sufficient.

Future work may also study the idea of using the supertrace allocator to allocate

global variables as well. This may require insertion of compensation or "fix-up" code

when entering a new supertrace, if the source and target of a branch have allocated

some globals to different registers. The advantages of using a fast, accurate allocator

may outweigh the performance of a true global allocator that can only approximate

control flow information.

Conclusion

We have extended the optimal basic block local register allocator to allocate

registers to variables that are live across basic block boundaries, but are local to

supertraces. We have shown two algorithms, one which is optimal in the sense that it

uses the fewest registers possible, and another which may be more efficient. We have

shown how to identify supertraces in control flow graphs. We have also shown

algorithms to enlarge supertraces through basic block cloning. We hope that

experimental evidence will support our claim this is a viable and useful alternative to

using global graph coloring allocators.

Aho, A.V., Sethi, R., Ullman, J.D., Compilers, Principles, Techniques, and Tools,
Addison-Wesley, Reading Ma., 1986.

Bernstein, D., et. al., "Spill Code Minimization Techniques for Optimizing
Compilers", ACM SIGPLAN '89 Conference on Programming Language Design
and Implementation, pp. 258-263, 1989.

Briggs, P., et. al., 'Coloring Heuristics for Register Allocation", ACM SIGPLAN
'89 Conference on Programming Language Design and Implementation, pp.
275-284, 1989.

Callahan, D., Koblenz, B., "Register Allocation via Hierarchical Graph Coloring",
Proceedings of the ACM SIGPLAN '91 Conference on Programming Language
Design and Implementation, pp. 192-203, 1991.

Chaitin, G., et. al., "Register Allocation via Coloring", Computer Languages, Vol.
6, pp. 47-57, 1 981.

Chaitin, G., "Register Allocation & Spilling Via Graph Coloring", Proceedings of
the ACM SIGPLAN '82 Symposium on Compiler Construction, pp. 98-105, 1982.

Chow, F., Hennessey, J., "Register Allocation by Priority-Based Coloring", ACM
SIGPLAN '84 Symposium on Compiler Construction, pp. 222-232, 1984.

Deo, N., Graph Theory, Prentice-Hall of India, New Dehli, India, 1987.

Golum bic, C., Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, NY., 1980.

Golumbic, C., "Interval Graphs and Related Topics", Discrete Mathematics, No.
55, pp. 113-121, 1985.

Gupta, R., Soffa, M.L., Steele, T., "Register Allocation Via Clique Separators",
ACM SIGPLAN '89 Conference on Programming Language Design and
Implementation, pp. 264-274, 1989.

[I 21 Gupta, U.I., Lee, D.T., Leung, Y.T.,"Efficient Algorithms for Interval Graphs and
Circular-Arc Graphs", Networks, Vol. 12, pp. 459-467, 1982.

[I 31 Hendren, L., Gao, G., Altman, E., Mukerji, C., "A Register Allocation Framework
Based on Hierarchical Cyclic Interval Graphs", Journal of Programming
Languages, Vol. 1, No. 3, pp. 155-185, 1993.

[I41 W. -m, Hwu, W., et. at., "The Superblock: An Effective Technique for VLlW and
Superscalar Compilation", The Journal of Supercomputing, Vol. 7, No. 1, pp.
229-248, 1993.

[I 51 Nickerson, B., "Graph Coloring Register Allocation for Processors with Multi-
Register Operands", Proceedings of the ACM SIGPLAN '90 Conference on
Programming Language Design and Implementation, pp. 40-52, 1990.

[I61 Shimon, E., Graph Algorithms, Computer Science Press, Rockville, Mo., 1979.

[I 71 Wolfe, M., Analysis and Optimizations for Modem Architectures, Oregon
Graduate Institute, Beaverton, Or., 1993.

BIOGRAPHICAL INFORMATION

Lynn Thompson was born in Portland Oregon on November 29, 1959. Lynn graduated

from Portland State University, in the Spring of 1983 with Bachelor of Science degree in

Sociology. Studies in computer science, and mathematics continued at Portland

Community College from 1984 to 1986 leading to an Associates degree in Computer

Science. Employment at Intel Corporation provided incentive and means to pursue a

Master's Degree in Computer Science. Lynn is employed as a Software Engineer in the

Microcomputer Software Labs at Intel.

