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Abstract 

This thesis addresses the problem of how to perform local register allocation on 

variable live ranges that span basic block boundaries. Register allocation is often 

performed in two passes. Local register allocation applies to variables with live ranges 

contained in single basic blocks. Global register allocation assigns registers to variables 

with live ranges that cross basic block boundaries. We propose to extend the 

applicability of local register allocation by using a fast algorithm to allocate registers 

whose lifetimes span basic blocks but are local to control regions that we call a 

supertrace. We present basic block cloning and loop unrolling as optimizations to 

increase the size of supertraces. Two basic block register allocation algorithms and two 

supertrace register allocation algorithms are presented in detail. 

Our goal in this research is to provide evidence that supertrace optimization is a 

viable method of increasing the number of register references processed by the local 

register allocation routine. 



CHAPTER 1 
REGISTER ALLOCATION 

Discussion of Problem 

Basic block local register allocation has the shortcoming that variables eligible for 

allocation must have live ranges wholly contained within the basic block. This thesis 

addresses the problem of how to extend the live ranges of variables beyond basic block 

boundaries by identifying single entry, multiple exit regions in a control flow graph. 

Performing local register allocation using the granularity of a region or superfrace can 

potentially increase the number of variables eligible for local register allocation. 

This thesis presents algorithms for local register allocation demonstrating the 

concepts and functions of local register allocation within basic blocks and supertraces. 

We also present algorithms to create larger supertraces by unrolling loops cloning basic 

blocks. Analysis of the cosubenefit trade-offs support future implementation. 

Terminology 

In this chapter we introduce terms and concepts for the register allocation phase 

in a typical compiler. Register allocation determines which variables are stored in 

physical registers and which variables are referenced from memory. Heuristics drive the 

register allocation process, taking into account the number of registers available on a 

given architecture, the usage patterns for variables, and a number of cosubenefit trade 

offs. We present the three heuristics for register allocation algorithms, noting the 



benefits and shortcomings of each. Figure 1-1 illustrates the phases in a 'common' 

language compiler that converts a source program file into a target program file. 

In the sequence of compiler phases required to convert a source program into a 

target program, register allocation happens before code generation. Because we use a 

flow graph representation, information about variable usage and flow control structures 

is available to the register allocation algorithms. It is beyond the scope of this research 

to explain the operation of each phase in detail; we refer the reader to a compiler 

textboo k[l 1. 

source program 
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The input to the register allocation phase is a flow graph constructed from a 

subroutine or function. Groups of instructions in the flow graph create basic blocks. A 

basic block has a single entry and exit point. Instructions or operations contained in a 

basic block have no external entry points or branches out of the basic block to interfere 

with the sequential execution of every instruction. Register allocation algorithms replace 

variable references with register references. Register allocation is often a two pass 

operation. The local register allocation pass deals with variables whose live range is 
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whether the live range for a variable spans several basic blocks. 

I 
I I 

I I 

lexical analysis 
I 
I I 

I 

I 
I 

I 
I 

I I 4 I I 

I I 

I 
I 

I I 

I I 
I 

semantic analysis 
I 

I 

I 4 I I 
I 

i 
I 

i intermediate code generation 
I 

I 

I 
I 

I 4 I I 

I 
I I 

I a 

I 
I I 

I I 
I 

I 

I I I 

code optimization 



Register allocation heuristics must consider the number and type of physical 

registers, instruction set limitiations for operands, the memory hierarchy, and the 

efficiency of accessing a value within the memory hierarchy. All register allocators must 

provide a mechanism to temporarily free an assigned register by storing the value in 

memory and then retrieve the value before its next use. 

Assigning all virtual registers to physical registers is an aggressive approach to 

register allocation. Values stored in physical registers alleviate the need for memory 

stores and fetches of instruction operands. The benefit of immediate access to values 

stored in a register cannot be realized without a sufficient pool of general purpose 

registers. The hardware architecture may dictate the use of this register allocation 

policy, as in arithmetic operations on loadlstore architectures. Many Reduced 

Instruction Set Computer (RISC) machines are loadlstore architectures. 

Storing loop indices in physical registers is another approach to register 

allocation. Accessing memory for variables references in the loop is costly. Secondary 

heuristics can optimize or refine the allocation registers based on other criteria. 

Secondary heuristics might include allocation based on the length of the lifetime for the 

virtual register. 

Keeping all virtual registers in memory is costly in terms of memory access 

during program execution. Implementing this strategy in a compiler would cause delays 

or bottlenecks due to insufficient memory bandwidth between the processor and 

memory. This policy does not provide the benefit of long register lifetimes since every 

virtual register has a life span of one instruction. Reading each operand from memory 

before execution and storing it after execution would increase execution time for 

generated code. Perhaps the only benefit to this model is the freedom from register 

pressure caused by overlapping live ranges. Different processor architectures may or 

may not support this model for register allocation, making portability a concern. 



Structure of Thesis 

In Chapter two we present information from graph theory pertinent to our 

research. We use information from general graph theory as a basis to discuss interval 

graphs, circular arc graphs, and the graph coloring problem. We address the similarities 

and differences between several approaches to register allocation. We relate previous 

research to our efforts. 

Chapter three provides detailed information and algorithms for spanning trees 

and live variable analysis. Algorithms presented in this chapter analyze the flow graph 

and variable usage patterns for the register allocation process. 

We present two basic block register allocation algorithms in Chapter four. The 

basic block register allocation algorithms use live variable analysis to identify basic block 

local variables. The register allocation algorithms assign registers for basic block local 

variables. We discuss the benefits and shortcomings of this approach to local register 

allocation and the behavior of the algorithms when there are too few physical registers 

to hold all simultaneously live variables in the basic blocks. 

In Chapter five we present our main result, two register allocation algorithms that 

permit local register allocation of variables that span basic block boundaries. We find 

single entry, multiple exit regions in the flow graph called supertraces. We present the 

algorithms and examples of local register allocation within supertraces. We discuss the 

benefits and shortcomings of these algorithms, and study their optimality. 

Creating larger supertraces is the topic of chapter six. We investigate two 

optimizations; basic block cloning and loop unrolling. Algorithms and examples are 

presented for each of the optimizations. We discuss the applicability of the 

optimizations when used with each of our local register allocation algorithms. Areas of 

future research and investigation are also presented. 



CHAPTER 2 
RELATED WORK 

Introduction 

In this chapter we will discuss previous work pertaining to register allocation and 

several different methods to optimize the assignment of variables to registers. Many of 

the techniques presented do not use separate local and global register allocation 

phases; instead the algorithms rely on heuristic graph coloring approaches for global 

register allocation. Although our register allocation algorithms do not perform general 

graph coloring, it is important to understand the principles and designs of these methods 

in order to compare our techniques. 

Register lifetime is the number of instructions where the value of a variable 

stored in a register is active. Figure 2-1 shows a code fragment and several register 

lifetimes. 



The lifetime of a variable begins with a definition and terminates after the last use of the 

variable. Variables a and b are live coming into statement L1, meaning the definition for 

the variables is in a previous statement. Because there is no use of variables a and b 

after statement L2, both variables are dead following statement L2. Dots represent the 

definition of variables c, d, and e at statements L1, L2, and L3 in the register lifetime 

chart. We show that variables d and e are live after statement L3 by the extended lines. 

Drawing a horizontal line across the register lifetimes after statement L1 shows that a, b 

and c are live at the same time. We cannot use the same physical register for variables 

a, b, and c. The number registers required to store live variables at some point is often 

called the register pressure. In the following section we present an overview of graph 

theory. Techniques from graph theory enable us to study the register allocation process 

in greater detail. 

Overview of Graph Theory 

We begin this section with definitions pertaining to graph theory. A graph is a 

set of objects connected by edges; formally G=(V,E) where the set of edges 

E={E,, EZ, E3,. . ., En} connect the objects or vertices V={V,, V2, V, . . ., Vn}. Vertices VI, V, 

associated with edge Ek are end vertices. When a vertex, Vi is an end vertex of some 

edge, E, then Vi and E, are incident to each other. Self-loops represent the case where 

end vertices connected by an edge are the same vertex. Multiple edges connecting the 

same end vertices are parallel edges.. Nonparallel edges are adjacent if they are 

incident to a common vertex. The number of edges incident to a vertex V, is the degree 

of VI or degree(Vi). Directed graphs have the property that edges connecting vertices 

have only one direction. Given a pair of vertices (V, 4) and a connecting edge Ek, it is 

only possible to go from Vi to V, or from V, to V, depending upon the direction associated 

with the edge. Undirected graphs do not have a direction associated with the edges. 

Connected graphs have paths between any two vertices. 

Dividing graphs into smaller graphs creates subgraphs. A subgraph g must 

contain only vertices and edges present in graph G. Edge disjoint subgraphs occur 

when two or more subgraphs do not share a common edge. Subgraphs of a graph that 



do not share vertices are vertex disjoint subgraphs. We can apply set operations of 

union, intersection and ring sum to graphs. These operations make it possible to join 

and decompose graphs. The union of two graphs G1=(V1, El) and G2=(V2, E2) generates 

a third graph G3=(V3E3) such that V3=V1uV2 and E3=E1uE2. The intersection of two 

graphs, written as GlnG2 create a new graph containing only the vertices and edges 

that are in both GI and G2. The ringsum of two graphs, written as G10G2, generates a 

graph consisting of vertices V1uV2 and edges that are in either G1 or G2, but not both. 

Deletion of a vertex from graph G, denoted G-Vi, removes vertex V, from graph G. 

Deletion of a vertex also implies the deletion of all edges incident on the vertex[8]. If E, 
is an edge in graph G, then G-E, is a subgraph of G obtained by removing E, from G. 

Deletion of an edge does not imply deletion of its end vertices. We can say G-E,=G@E,. 

Figure 2-2 shows examples of union, intersection, and ringsum for graphs GI and G2. 

a a a 

b e3 e4 e3 b b< e3 b =  e7 :B e4 

e5 e5 e6 
e5 e6 

e e e e e 

graph GI graph G2 GI union G, GI intersect G, G I  ringsum G2 

GRAPH OPERATIONS 
FIGURE 2-2 

Graph traversal follows incident edges between end vertices. The path of a 

traversal is the sequence of vertices and edges used to go from the starting vertex to 

the ending vertex. A simple or elementary path contains only unique vertices. If the 

same vertex appears more than one time in the traversal, we use the term walk to 

describe the sequence of vertices and edges. Using graph G, from Figure 2-2 the 

sequence {a e l  b e3 d e5 e} is a path from vertex a to vertex e. The sequence {a e l  b 

e3 d e5 e e6 a} from graph G2 in Figure 2-2 is a walk because vertex a appears more 

than one time. The number of edges traversed in a path is the length of the path. A 



circuit is a closed nonintersecting walk in which no vertex except initial and final vertex 

appear more than once. 

Graphs with a finite number of vertices and edges are finite graphs. If there is at 

least one path between every pair of vertices in graph G, the graph is connected. If a 

connected graph has n vertices and n-I edges, the graph is minimally connected. A 

tree is a connected graph without self-loops or parallel edges. The following equivalent 

definitions identify a tree, given a graph G with n vertices[8]: 

(I) G is connected and circuitless. 

(2) G is connected and has n-I edges. 

(3) G is circuitless and has n-I edges. 

(4)There is exactly one path between every pair of vertices in graph G. 

(5) Graph G is minimally connected. 

Rooted trees have one vertex distinguishable from all other vertices in the graph. Binary 

trees have one vertex of degree two and all other vertices as having degree one or 

three. 

Graph coloring is a technique to uniquely identify vertices in a graph such that no 

two adjacent vertices have the same color. There are many alternative colorings for 

most graphs. Optimal solutions to the graph coloring problem use the minimum number 

of colors for a graph G=(V,E). It is possible to compute the minimum number of colors 

or chromatic number, Y(G) for a graph[16]. If dm is the maximum degree of the 

vertices in a graph G, then Y(G) < 1 + dm. 

Register assignment may be viewed a graph coloring problem. Using this 

paradigm, vertices in a graph represent variable lifetimes and edges connect vertices 

that are live at the same time. Graph coloring algorithms represent the number of 

registers with k and attempt to create a k coloring of the input. Performing global 

register allocation with such an algorithm has the disadvantage of being an NP- 

complete problem for general graphs[lO]. Coloring nodes of a graph with a finite 

number of colors may require time exponential to the size of the graph. 



Graph Coloring Algorithm 

In the common approach, three phases are used in the graph coloring register 

allocation algorithm[5,6]. The first phase replaces variables with pseudo registers and 

constructs a register interference graph that identifies which pseudo registers are live at 

the same time. The second phase simplifies the graph if possible by removing vertices 

from the graph. The third phase accepts input from the second phase assigning 

physical registers to the pseudo registers. Each phase of the graph coloring algorithm 

is defined in greater detail below. 

The input to the first phase is an intermediate language(lL) representation of a 

procedure or function. Variables used in the procedure are replaced with pseudo 

registers. Temporary symbolic registers are used when an operation requires several 

machine instructions. From this input, the first phase constructs the register 

interference graph. 

The interference graph may be viewed as a matrix, where rows and columns 

represent symbolic (virtual) registers. If two symbolic registers are live at the same time, 

an entry is made in the matrix. The degree of each vertex in the interference graph is 

the sum of the number of entries across its row (or down its column). Construction of 

the interference graph can include architecture dependent information concerning 

register pairing, and general purpose versus special use registers[5,6]. The interference 

graph is an undirected graph. 

It is possible to simplify the interference graph by coalescing nodes. During the 

assignment of pseudo registers, many register to register copies are performed. An 

example of unnecessary register to register copying is the assignment of a new pseudo 

register for arguments to functions. Function arguments are often copied to other 

pseudo registers immediately after function calls. The subsumption of pseudo registers 

assigns one register to two noninterfering vertices resulting from a register copy 

operation. It is necessary to update the IL and rebuild the interference graph after 

subsumption; this is computationally expensive. There are cases where subsumption is 



possible but not permitted due to interference. Subsumption of two variables may 

create interference with a third variable because the third variable is defined within the 

live range of one (or both) of the subsumption candidates. 

During the second phase, the register interference graph is simplified. Vertices 

with degree(v) < k are removed from the graph and either colored immediately or placed 

on a stack for later coloring. The heuristic algorithm used to determine which vertex to 

remove from the graph may select the highest or lowest degree vertex. If a vertex is 

colored immediately, we say the algorithm uses a largest first or smallest first heuristic. 

If the algorithm places the removed vertex on a stack for later coloring, we say the 

algorithm uses either a largest last or smallest last heuristic. Choosing graph vertices 

with the largest degree last has been shown empirically to work best[2]. The degree for 

the neighbors of the removed vertex are reduced by one, creating more opportunity for 

graph coloring without the added cost of inserting spill code. Removing all vertices from 

the graph with fewer than k neighbors will result in an empty graph or a graph containing 

only vertices with more than k neighbors. 

If the degree(v) 2 k, for all remaining vertices n in the interference graph, a 

vertex is selected for spilling by some cost heuristic. Spilling is the temporary storage of 

a variable outside the register set after each definition and the return of the variable to 

the register set before each use. Instructions are inserted into the intermediate program 

representation to save values to memory after each definition and fetch the value from 

memory before each use. Several heuristics may be used to identify which vertex to 

spill based on variable usage, loop nesting level, additional execution time incurred by 

the spill code, or the degree of the vertex. Vertices identified for spilling are removed 

from the interference graph. The second phase is complete when the register 

interference graph is empty. 

If a vertex is selected for spilling, the IL form must be updated to reflect the 

changes. The process of updating the IL, building the register interference graph, and 

simplifying it is repeated until no spill code is required. This iterative process is 

computationally expensive. Given a sufficiently large pool of registers, most programs 

do not require spill code. Programs requiring spill code usually converge quickly[6]. 



Phase three accepts input from phase two, rebuilding the register interference 

graph and coloring each vertex. Using the largest last or smallest last heuristic, the 

register interference graph is reconstructed by popping a vertex from the stack and 

giving it a different color than its neighbors. With the largest first or smallest first 

heuristic, each vertex is colored in phase two as it is removed from the graph. 

Techniques to optimize register allocation by graph coloring focus on delaying 

the insertion of spill code[3] or the selection of cost heuristics for spill decisions[4]. One 

optimization limits the number of variables spilled from each basic block[2]. 

Register allocation by graph coloring fails to represent control flow information. 

The allocation algorithms must generate an interference graph, reduce the interference 

graph and generate global register assignments based on the reconstructed 

interference graph. If there are insufficient registers for simultaneously live variables, 

the intermediate form of the program must be modified and the entire process repeated. 

The local register allocation algorithms presented in chapters four and five have several 

advantages. We include control flow information in our representation making it 

possible to determine the live ranges with finer granularity. We do not need to rebuild 

the intermediate form of the program to spill registers. 

Overview of Interval & Circular-Arc Graphs 

Interval graphs show the intersection of a family of intervals along a real line. 

Vertices in the graph represent line segments, in our case they represent register 

lifetimes. Edges connect two vertices if there is any overlap between the segments. A 

sequence of vertices [Vo, V1, V2, ..., Vl, VO] is a cycle of length 1 +I if Vi.lVi E E for i = 1, 

2,  ..., I and V,Vo E E. A cycle is a simple cycle if Vi + Vj for i +  j. A simple cycle [Vo, V1, 

V2, ..., Vl, VO] is chordless if ViVj ~j E for i and j differing by more than 1 mod I +I .  

Comparability graphs are undirected graphs where each edge can be assigned a one 

way direction resulting in an oriented graph (V,F) satisfying the following condition[9]: 

ab E F and bc E F imply ac E F where (V a,b,c E V )  

We present an example of line segments and the derived interval graph in Figure 2-3. 



Line Segments & Interval Graph 
Figure 2-3 

Properties from graph theory identify whether an undirected graph is an interval 

graph[9]: 

(1) The graph G, contains no chordless 4-cycles and its complement GJ is a 
comparability graph. 

(2) The maximum cliques of G can be linearly ordered such that, for every vertex of 
G, the maximal cliques containing x occur consecutively. 

(3) An interval graph cannot branch in more than two directions, nor can it circle 
back onto itself. 

Circular-arc graphs present intervals around a circle. Every interval graph is a 

circular-arc graph, however not every circular-arc graph is an interval graph. The graph 

on the right side of Figure 2-5 shows a circular-arc graph. An undirected graph, 

G=(V,E) is a circular-arc graph if and only if its vertices can be (circularly) indexed V1 , V, 

, V3 ,.. . Vn SO that that for all i and j: 

ViV, E E 3 { either V,+l, ..., V, E Adj(V,) or V,+l, ..., Vi E Adj(V,) ) 

if i < j, then V,+l , ..., V, means V,+l ,... , Vn, V1 ,..., Vi 

Line segments used in a period or cyclic period graph can be assigned a 

beginning time index, ti and an ending time index, 4, where ti < 4. We use the notation 

[th$) to include the first endpoint and exclude the second endpoint or [ti,$] to include both 

endpoints. If all line segments repeat in a pattern, we can divide the family of segments 



into periods. We represent a line segment in multiple periods as P,[t,$), P2[th$), ..., 

P,,[ti,$). The graph in Figure 2-4 shows a period graph for the code fragment. 

Cyclic period graphs permit line segments to loop back on themselves. We 

redefine the term cyclic intewal[l3] to cyclic period. Instead of representing segments 

in increasing periods, cyclic period graphs use arrows to denote line segments that wrap 

around endpoints. Cyclic period graphs use time index notation to represent line 

segments. The graph on the left side of Figure 2-5 is a cyclic period graph. The 

following definitions apply to intervals in cyclic period graphs[l3]. 

p r i o d  I period , 
(1) A time t is covered by a line segment S1:[ti,$)), if (ti 5 t < $), or by a line segment 

sl ': [ti,$] if (ti 5 t 5 0, or by a cyclic period S2: ([ti,$), [tklti]) if [ti, b) Or [tk, ti] covers t. 

for i=l ,n do 
a=c 
b=d+2 - 
c=a c i b  

d=b+c d 

done 

(2) Two segments S1, S2 overlap if there exists a time t that is covered by both S1 
and S2. 

- 

We redefine hierarchical cyclic intewal graph[l3] to hierarchical cyclic period 

graph in this work. Hierarchical period graphs permit nesting of cyclic period graphs. 

This family of graphs can represent conditional entry and exit of cyclic period graphs. 

Modeling complex control flow and nested iteration is the strength of hierarchical period 

graphs. The graph reads from left to right; increasing time indices place the segments 

in order. The graph identifies control flow and loops by drawing boxes around the line 

segments. Arrows on a line segment at the entry and exit of loop boundaries identifies a 

cyclic period. The appearance of nested boxes in a hierarchical cyclic graph illustrates 

1 2 3 4  1 2 3 4  



nested cyclic periods. The graph in Figure 2-6 shows an example of a hierarchical 

cyclic period graph. 

Cyclic Period Graph Coloring Algorithm 

The cyclic period graph algorithm uses control flow information about the loop 

nesting level of variables. Standard graph coloring algorithms do not consider the level 

of loop nesting where interference occurs. Standard graph coloring algorithms do not 

consider the length of interference (the number of instructions where variables are 

simultaneously live). This heuristic algorithm uses cyclic period graphs as an approach 

to register allocation. Cyclic period graphs are capable of recording the program 

structure and relative time where live ranges coincide, as shown in Figure 2-4. The first 

assignment statement in the loop, a=c, shows that c is live coming into the loop and that 

the live range for a does not carry around the loop. Subsequent iterations will use the 

loop carried value of c from statement three. The second assignment statement, 

b=d+2, defines b within the loop. The use of variable b in the fourth assignment 

statement, d=b+c, establishes a live range for b that is within the same iteration. The 

third and fourth assignment statements demonstrate variables that are live around the 

loop, c and d. Sequence numbers along the base of the graph represent instruction 

numbers. 

In Figure 2-5 we show the cyclic period graph and circular arc graph 

representations for the program fragment from Figure 2-4. 



Variables carried around a loop create cyclic line segments. Cyclic period graphs 

represent live ranges across iterations of a loop. The arrows on line segments show 

loop carried variables. The baseline values to-t5 represent time points. Note that to and 

t5 are entry and exit points respectively; they do not represent executable instructions. 

Line segments represent the live ranges for variables. 

Coloring cyclic period graphs begins by examining the number of live ranges 

present at a point in graph. An area in the graph where register pressure is high is a fat 

spot. The number of simultaneously live variables determines the width of the period 

graph. The width has a minimum, Wmin(G), and a maximum Wmax(G). The fat cover 

algorithm uses two phases to color the cyclic period graph. In the first phase the fat 

cover algorithm locates a set of nonoverlapping line segments that cover all the fat 

spots. Giving this set of nonoverlapping line segments the same color reduces the 

width of each included fat spot by one. The algorithm continues to perform this left-to- 

right search and coloring until the graph is empty or the only remaining line segments 

overlap. If m cyclic line segments exist, the first phase attempts to color each of the m 

cyclic segments with a unique color since the graph is colorable in Wmax(G) colors. If a 

fat cover exists, a right-to-left traversal colors the other members of the line segment 

set. Removing the colored line segment set F from the graph allows coloring the 

remaining graph in k-7 colors. Three theorems are the basis for this conclusion[l3]: 

(2.1) Let G be a cyclic period graph containing no cyclic line segments. Then G is 
optimally colorable with Wmax(G) colors. 

(2.2) Let G be a cyclic period graph containing cyclic line segments. Then G is 
optimally colorable with Wmax(G) <k < Wmax(G) + Wmjn(G) colors. 

(3.1) If a cyclic period graph G is colorable in k + Wmax(G) colors, then for each 
cyclic line segment I, of G, there exists a fat cover for G relative to I,, call it F, 
such that G - F is k - 7 colorable. 

The second phase uses a left-to-right algorithm to color the remaining periods. If the 

first phase succeeds in coloring the m cyclic line segments, then graph G is optimally 

colorable in k = Wm,(G) colors. 

We redefine Chameleon intervals[l3] as chameleon segments in this work. 

Chameleon segments provide temporary storage for line segments that are subject to 



spilling otherwise. The name chameleon segment refers ta cyclic line segments given a 

different color in the region of interference. Floating register values is less expensive 

than spill code because register to register moves do not require external memory 

accesses. The dependence of values may require the use of a temporary register to 

store the floated value. This algorithm introduces chameleon segments in situations 

where cyclic segments do not have a fat cover. 

An alternative to the fat cover algorithm called the sweep and split algorithm. 

The algorithm uses a left to right pass to process a cyclic period graph. At each time 

index i, the graph has a measurable width of W,,,(G,i) < k. During time i+7,  two 

possibilities exist; the graph continues to have W,,,,,(G,i) < k or W,,(G,i) = k', where k'> 

k. In the first case the algorithm increments the time index. In the latter case the 

algorithm must select K - k line segments to split by introducing spill code. The 

algorithm splits line segments with the furthest next use from i at the point of overlap. 

Time index values used to compute the furthest next use are readily available from the 

cyclic period graph. Secondary heuristics determine which line segment to split when 

there is a choice between multiple candidates. The secondary heuristics select which 

line segment to split by comparing the number of load and store instructions in each of 

the candidate segments. Secondary heuristics choose segments containing only load 

instructions before segments with load and store instructions. If all line segments 

require a store instruction, then the selection heuristics consider whether line segments 

extend beyond loop boundaries. 

Hierarchical Period Graph Algorithm 

We redefine the term hierarchical interval graph[13] to hierarchical period graph 

in this work. This algorithm extends the cyclic period graph algorithm to cover nested 

loops and conditional statements. Processing nested loops begins with the innermost 

loop, then the next outer loop, and so forth. Conditional statements have separate, 

parallel period graphs within the cyclic period graph, as shown in Figure 2-6. As with the 

other period graph algorithms, line segments represent the live ranges of variables. The 

graph in Figure 2-6 demonstrates the joining of line segments that are live beyond the 

end of a conditional statement. The algorithm also joins line segments for variables 



carried around the loop. Line segments connected on inputs represent the same value; 

this is of critical importance for loop carried variables. 

The algorithm uses techniques from the cyclic period graph algorithm in two 

phases. During the first phase (bottom-up), two steps are repeated[l3]. 

LOOP ....................................................................................... 
I I 
0 I I 
0 I 
I IF (cond) I 

(1) Solve the innermost nested construct (either loop or conditional). In the case of 
a loop it is already a cyclic period graph. In the case of a conditional, create the 
proper cyclic period graph by joining the input and output variables that are 
common to both the IF-THEN and ELSE parts of the conditional. 

I 

for i= 1, ndo 0 I 

I I 
I if (condition) I 

c, i a=c 
I 

d=a+2 I 

I 

else l 
I I 

(2) Given the solution from 1, replace the nested structure with simple intervals. 

The second phase is a top-down register allocation using chameleon segments to 

resolve cyclic periods entering and exiting conditional. An alternative to introducing 

chameleon segments is to repeat the first phase using additional coloring constraints. 

a 

d. 

Live Range Splitting 

I 

a=c+2 * 1 
d=a+4 I 

I I 

fi I 

I 8 

c=a+d 0 
I 0 

Live range splitting is possible during local or global register allocation to divide a 

register lifetime into two or more lifetimes. The graph coloring register allocation 

algorithm treats the new live ranges as variables. The interference graph requires 
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updating to reflect the new live ranges. Creating short live ranges provides greater 

flexibility in assigning virtual registers to physical registers. Increasing the number of 

live ranges has the potential of reducing the amount of spill code. 

Live Range Splitting Algorithm 

This algorithm defines a live range as a set of contiguous basic blocks in a 

control flow graph where a variable or virtual register is live. Definitions of the variable 

inside the live range do not reach outside the live range. Definitions of the variable that 

occur outside the live range do not reach a reference of the variable inside the live 

range. The algorithm calculates the execution time savings for each live range in a 

procedure or function. The algorithm then assigns a unique color to each live range 

using the greatest estimated time savings to order the live ranges. Color assignment 

halts when there are no unique colors for unassigned live ranges. For each uncolored 

neighboring live range conflicting for the register pool, the live range, lr splits in the 

following manner. 

(1) A new vertex is created in the interference graph for the new live range, lrl. The 
first basic block added to lr, is a definition block from lr, preferably an entry point 
to Ir. This basic block is removed from Ir. 

(2) Adjacent basic blocks are added to lrl from lr until the number of colored 
neighbors is one less than the total number of available colors. Updating 
neighbors in the interference graph is required when moving a basic block from lr 
to lrl. Adding basic blocks to lrl in this fashion creates the largest possible live 
range that is colorable. 

(3) If Irl is complete and has fewer than the maximum allowable neighbors, it is 
placed in a pool of low degree vertices. After removing basic blocks from lr, it is 
possible that it has fewer than the maximum neighbors, in which case it is also 
added to the low degree vertices. Basic blocks in the low degree vertex pool are 
not considered for live range splitting. 

(4) If lr or lrl have more than or equal to the maximum number of neighbors that are 
colored after splitting, the estimated cost savings is computed for lr and lrl. The 
live range with the greatest cost savings is assigned a color. Splitting is 
repeated on lr until it has one less than the maximum number of colored 
neighbors. Computing the estimated cost in this step is based on "...the total 
number of occurrences of the variable in the live range, weighted by loop nesting 
depths and normalized by the length of the live range."[7] 



(5) Vertices that were previously in the low degree pool may need to transition into 
the high degree pool because of live range splitting if it is now a neighbor to both 
Ir and Ir,. 

Finding a vertex in the high degree subgraph that has the greatest execution 

time savings determines which live range splits. The cost of building the interference 

graph makes this algorithm computationally expensive. The complexity for this 

algorithm is O(k(I - k)); where k represents the maximum number of registers (colors) 

and I represents the number of live ranges[?]. 

We use a form of live range splitting in our modified supertrace register 

allocation algorithm. We chose to implement live range splitting by renaming variables. 

Chapter 5 contains the details of our implementation. 

Multiple Register Operands 

Language constraints (C unions, volatile variables and pointer addressing) and 

architectural support complicates the decision of which values to store in registers. 

Register allocation uses virtual registers for every static variable except unions, global 

data, pointer targets, array elements or other data requiring address computation. This 

algorithm addresses the problem of how to allocate registers or group of registers 

efficiently when instruction operands do not fit in a single register. We do not address 

the problem of multiple register operands in our experiments, though consideration for 

this topic is necessary in a compiler. Target architectures have limitations imposed by 

their design that system software (assemblers, compilers, linkers, ...) must deal with to 

create optimal register allocations. 

Dealing with processors that can address multiple registers for an operand does 

not fit into the typical graph coloring algorithm. Allocation for single and multiple register 

operands must occur at the same time[l5]. Pre-allocating instructions that use multiple 

register operands results in artificially enhancing the priority of the instruction. Allocating 

multiple register operands after single register operands extends the schedule because 

of the difficulty in finding the required word and double word alignment (register number 

divisible by 2 or 4 respectively). 



Groups of registers used for multiple register operands are a pair, triple or quad. 

The register allocator can not assign members of the register cluster to the same 

physical register. Cluster alignment is another restriction. In an eight register (RO..R7) 

processor, pairs could be assigned to RO-R1, R2-R3, R4-R5, and R6-R7. Assignment 

of triples and quads can occur at RO or R4. Assigning a pair and two triples at the same 

time is not possible due to alignment constraints. Members of a register cluster will 

interfere with members of another cluster if both virtual registers are assigned to the 

same physical register. Pruning the graph and simplifying interference edges with 

normalization solves the problem of how to assign the register clusters onto the physical 

registers. Determining the order of cluster removal is based on weighted-degree for 

each cluster computed as: 

weighted-degree = constraints * ~ e i g h t _ f a ~ t ~ r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ )  + ~ e i g h t _ b i a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

Constraints placed on a cluster are not equal to the constraints placed on graph vertices 

using the original formula for computing the degree of a vertex. The constraint value for 

a cluster is the number of interference edges to other clusters. Each cluster has a 

weight-factor based on the number of words required to store the cluster. Depending 

upon instruction argument size, Nickerson uses the values I ,  2, 4, and 4 as 

weight-factors for clusters of word size 1, 2, 3, and 4 respectively. Adding a 

weight-bias insures a positive value for the weighted-degree of clusters with few 

interference edges. The first clusters removed from the graph are unconstrained 

clusters with the largest weighted-degree. Heuristics based on the minimum cost, area, 

and weighted-degree determine the order for removal of clusters. 

Instead of inserting spill code for constrained clusters with degree(c) > k, the 

cluster is pruned from the graph and the spill decision is delayed until the coloring 

phase[3]. It is possible that the coloring phase will be able to assign an unused color to 

the cluster that was not apparent during the removal of clusters. Normalization of the 

interference graph reduces the number of edges depicting implicit constraints. Consider 

two triples (AO,Al,A2), (BO,Bl,B2), and a pair (C0,CI) as shown in Figure 2 - 7 ~  with all 

implicit edges. 



GRAPH OF TWO REGISTER TRIPLES AND A REGISTER PAIR 
FIGURE 2 - 7 ~  

Removing implicit edges as shown in Figure 2 - 7 ~  simplifies the graph. The 

graph edges representing implicit conflicts between members of the same cluster, or 

between the members of clusters that cannot occupy the same register due to 

alignment are removed in this step. 

GRAPH WITHOUT ~MPLICIT EDGES 
FIGURE 2 - 7 ~  



Normalizing the graph removes synonamous interference edges. Note the lack 

of graph edges between A7, 67, and C7 in Figure 2 - 7 ~ .  The constraints between 

cluster members still exist through the relationship to the cluster boss. The interference 

graph contains the minimum information necessary to depict constraints between 

clusters after normalization. 

NORMALIZED GRAPH WITHOUT ~MPLICIT EDGES 
FIGURE 2-7c 

Delaying spill decisions until the coloring phase optimizes graph coloring. The 

heuristics select the least costly coloring when multiple colorings exist. When 

necessary, the coloring phase uses information from the three spill heuristics to decide 

which variable to spill. If the coloring step spills a variable, the intermediate form of the 

program requires modification to reflect the changes. The graph coloring algorithm 

iterates through the first and second passes to rebuild the interference graph and 

reduce it when modifications to the intermediate form take place. 

Flow Graph Techniques 

Algorithms discussed in this section offer different methods of allocating 

registers and dealing with spill code. Viewing the intermediate form of the program as a 

sequence of definitions and uses of variables controlled by selection and iteration is 

limiting. Increasing the granularity to basic blocks allows identification of local and 

global variables that we use in our research effort. The following algorithms abstract the 

tree into basic blocks or collections of straight line code separated by control operations. 

We present these techniques as an introduction to the following chapter. 



Representing a program as a tree of tiles is one approach [4]. This algorithm 

addresses the problem of local register allocation by encapsulating basic blocks within 

loops and conditional control constructs into a tile. Using a control flow graph has the 

advantage of maintaining loop and conditional information available during register 

allocation. This information is useful in selecting infrequently executed areas in the 

program to insert spill code, should it be necessary. This technique is uses a coarser 

granularity for local register allocation than our basic block algorithms. Heuristics used 

to identify tile boundary is very similar to the boundaries used in creating supertraces. 

The authors' definition for a graph is G = (B, E, start, stop)[4]. The set of basic 

blocks B, the set of edges between basic blocks is E and the unique single entry and 

exit points to the graph are start and stop respectively. Tile creation occurs in a bottom 

up traversal of the control flow graph. The algorithm assigns a tile to each loop and 

conditional structure. Each tile is disjoint from other tiles or is a proper subset of 

another tile. Initial coloring on each tile assigns pseudo registers in a local interference 

graph. Information from this coloring elevates to the parent tile. The interference graph 

for the parent tile incorporates each of the local interference graphs for its children into 

its interference graph. Each tile may create spill code at basic block boundaries using 

heuristics derived from local usage patterns. Following the bottom up traversal, a top 

down traversal assigns pseudo registers to the physical registers. Final coloring uses 

the delayed spill code decision technique[3]. 

A Clique separator is, "a completely connected subgraph whose removal 

disconnects the graph into two subgraphs."[l I ]  This algorithm divides the program into 

code segments and colors each independently during a later phase. Final coloring of 

the individual cliques may involve register copying. The authors assert that using 

register copying eliminates the need for a local register allocation phase, due to the 

efficiency of the underlying algorithm. This algorithm addresses the problem of finding 

points in the flow graph of a program where creation of subgraphs can occur. This 

'divide and conquer' technique is similar in principle to the creation of supertraces in our 

work. The clique separator algorithm differs from ours in that we do not use graph 

coloring, and we perform only local register allocation. 



The structure of the program determines clique separators, not the structure of 

the interference graph[17]. The algorithm generates three sets during a top down 

traversal of the code segments. CLIQUE contains members of the current clique. PRE 

contains the live ranges that have already ended but overlap one of the members of 

CLIQUE. The set POST contains live ranges that have not begun, but overlap members 

of the set CLIQUE. The clique separator formed by members of CLIQUE is chosen if 

and only if it can be divided into disjoint sets CLIQUE, and CLIQUE,. Valid 

separators have spans from PRE that do not overlap spans from CLIQUEps, and the 

spans from POST must not overlap spans from CLIQUE,. The final requirement for 

selecting the clique separator is that the sets PRE and POST are not empty. The 

algorithm chooses clique separators so that the resulting subgraphs are smaller than 

the original graph creating less need for spill code. 



CHAPTER 3 
COMPILER FRAMEWORK 

We describe flow graphs, graph trees and live variable analysis in this chapter. 

Data flow analysis is a technique to examine the flow of information through computer 

programs. Modeling programs using data flow analysis captures information from 

branches, joins, and loops. Use of data flow analysis permits identification and 

examination of variable live ranges. We present terms and concepts from data flow 

analysis pertinent to our research. We present live variable analysis techniques and the 

algorithms. Register allocation and register assignment terminology is presented as an 

introduction to subsequent chapters. 

Data Flow Analysis 

We can model a computer program using a directed flow graph, where nodes 

are computations and edges depict control flow by adding a unique entry point. 

Constructing the graph so that all nodes in the graph are reachable from a unique node, 

ENTRY, creates a control flow graph (CFG). The CFG of a subroutine captures branch 

and loop information necessary for our optimization techniques presented in later 

chapters. Representing selection, iteration, and sequence is possible by inserting the 

appropriate edges between nodes in the graph. 

A variable reference in the flow graph of a computer program is either a use or a 

definition, def. If the variable reference establishes a new value for a variable, then the 

variable reference is a def. Variable references in the right hand side of an assignment 

statement or in conditional expressions are examples of uses. 



Basic blocks contain consecutive statements. The only entry and exit points in a 

basic block are at the beginning and end of the basic block. Entry into a basic block 

under these conditions insures the uninterrupted execution of every statement in the 

basic block. Figure 3-1 shows an example of a conditional statement and the derived 

control flow graph. Associated with each basic block is a list of variable uses and defs 

derived from the statements. 

Data flow analysis requires a single entry point to the CFG. The conditional 

statement at node B l  compares the values of a and c to determine the whether to 

branch to node 82 or continue to node 83. Graph edges marked T and F identifies the 

true and false conditional control paths. Basic block 8 2  contains three assignment 

statements that execute when the condition tested in B l  is true. Statements in B3 will 

always execute. The directed flow graph also shows variable uses and defs for each 

basic block. The constant value 5 is not in the list of variables for B2 because it is an 

immediate value. 

ENTRY 

v 

if (act) 
B1 =a,=c 

a=a*5 
C=C-b 
d=a+c 

fi F 
e=a+d 

B2 =a,a=,=c,=b,c=,=a,=c,d= 

g=g*c 

B3 =a,=d,e=,=g,=c,g= 



Spanning Trees in Directed Graphs 

A spanning tree is rooted at the ENTRY of a CFG. Spanning trees contain all 

vertices of the CFG and sufficient edges to permit a unique path from ENTRY to any 

vertex represented in the CFG. Four types of CFG edges exist in a spanning tree[l6]. 

(1) Edges contained in the spanning tree are called tree edges. 

(2) Advancing (forward) edges are edges v -+ w that are not tree edges but where 
w is a proper descendant of v in the spanning tree. 

(3) Edges v + w such that such that v = w or where w is a ancestor of v are called 
retreating (back) edges. 

(4) Cross edges in the CFG are edges v -+ w such that w is neither an ancestor nor 
descendant of v in the spanning tree. 

Given an edge in the CFG v -+ w, we say that v is a predecessor of w and that w is a 

successor of v. We can create a list of successor vertices to V, SUCCM = {W I (V,W) 

is an edge); where SUCCM is the list of vertices that are heads of edges with tail V. 

We create a depth first spanning tree (DFST) with a depth first search of the CFG. 

Figure 3-2 shows the depth first search algorithm. 

Procedure Depth-First-Search(v) 
mark v "old"; 
Number,,(v) = n++ 
for each vertex w on L[v] do 

if w is marked "new" then 
add (v,w) to T 
CALL Depth-First-Search(w) 

fi 
ro f 
Numbervst(v) = p++ 

end 

begin program 
T = 0 ;  n = p = O  
for all v in V do 

mark v "new" 
rof 
Call Depth-First-Search(entry) 

end 
Depth First Search Algorithm 

Figure 3-2 



We use a left-to-right preorder numbering for basic blocks in the depth first 

spanning tree. Each basic block in the spanning tree has a unique left-to-right preorder 

number, Numberpre( ). Comparing the preorder numbers for two basic blocks v and w, 

NumberPre(v) < NumberPre(w), will not discern whether v is an ancestor of w in the DFST 

or if v is 'to the left' of w. Determining the ancestor relationship between basic blocks 

requires adding an additional sequencing number to each basic block in the depth first 

spanning tree. Performing a right-to-left bottom-up traversal of the DFST generates 

Numberpst( ) for each basic block. Our equation for the ancestor function is: 

ancestor(v,w) = NumberPre(v) < Number,,(w) A Numberwst(v) > Numberpost(w) 

In the context of a DFST we have additional properties associated with the vertices v 

and w. We can show v is an ancestor of w in the DFST iff ancestor(v,w) is true. 

Control Flow Constructs 

Cycles in control flow graphs permit iteration among one or more basic blocks. 

We define a natural loop to have two properties: 

(1) There is one basic block that permits entry into the loop, known as a loop 
header. 

(2) There is an edge in the graph to the loop header that permits iteration. 

Detecting loops in reducible graphs requires finding the target node of a successor edge 

that points to a DFST ancestor. Nodes may loop back to themselves; such references 

are self loops. It is possible to construct loops with more than one member or have 

loops nested inside other loops. In the case of nested loops, the inner loop is the most 

deeply nested loop within the loop construct[l]. 

Figure 3-3 shows a program fragment and its CFG. The alphanumeric strings next to 

the basic blocks in the first CFG represent program statements. The basic blocks in the 

second CFG have a preorder and postorder traversal numbers. The DFST algorithm 

generates the preorder numbering, Number,,, in the second CFG shown in Figure 3-3; 

tree edges are shown in bold. Statements L3, L4 and L6, L7 merge into the respective 

basic blocks because the assignment statements execute without interruption. Arrows 

denote control flow between the entry point and the basic blocks. The natural loop 



formed between L10 and L1 represents the control structure of the "repeat - until" loop. 

Links between basic blocks accurately represent the input program. This example 

demonstrates iteration, selection and sequence. 

Live Variable Analysis 

L1: repeat 
L2: if (cond-2) then 
L3: a=c 
L4: d=a+2 
L5: else 
L6: a=c+2 
L7: d=a+4 
L8: fi 
L9: c=d 

L10: until (cond-1) 

In this chapter the granularity used to determine whether a variable is local or 

global is the basic block. We use the live variable analysis algorithm in our search for 

local variables. The terms local and global in the context of live variable analysis have 

the following definitions. A variable is global if a definition exists in a basic block and 

has a reference in another basic block. When a variable is global, it is live-out from the 

basic block where it is defined and live-in to the basic block where the first reference of 

the variable is a use. The use of variable v is a local use when v is not a member of the 

LIVEBEFORE set of the basic block. If every use of variable v is local, then v is basic 

block local. Given a flow graph of several basic blocks, local register allocation is 
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possible for any variable that is not a member of the LIVEBEFORE set of any basic 

block. The following equations compute LIVEBEFORE and LIVEAFTER for variables in 

basic blocks. 

The live variable analysis algorithm, shown in Figure 3-4, operates on variable 

uses and definitions contained in an ordered list of instructions for each basic block. 

Each of the sets (LIVEBEFORE, LIVEAFTER, UPWARDUSES, NOTKILLED) is a 

separate bit vector in each basic block. In this algorithm it is necessary to traverse the 

list of instructions in the basic block in a last to first order. Traversing the instruction list 

in reverse order finds variable uses live coming into the basic block, also called 

upwardly exposed uses. The order for visiting basic blocks is not important. 

The LIVEBEFORE vector contains variables used before they are defined or 

redefined. The UPWARDUSES vector contains variables from the current basic block 

that are first referenced as a use. Variable definitions cause removal of the variable 

from the UPWARDUSES bit vector. Earlier uses of variables update the 

UPWARDUSES vector. Initialization of the NOTKILLED bit vector assigns all variables 

present in the basic block. Definitions found in the instruction list remove the variable 

from the NOTKILLED bit vector. During the second pass of the algorithm, the 

LIVEAFTER bit vector becomes the union of the LIVEBEFORE bit vectors for all basic 

block successors. The algorithm shows how the NOTKILLED and UPWARDUSES 

vectors update the LIVEBEFORE bit vector. 

The algorithm accepts a CFG as input. Each basic block contains bit vectors 

initialized and assigned based upon the presence or absence of uses and defs. We 

then update the LIVEAFTER and LIVEBEFORE vectors by iterating over the basic 

blocks in bottom up traversal. The second pass does not require a bottom up traversal, 

however it is more efficient and minimizes additional iterations over all the basic blocks. 

Several iterations through the CFG may occur in the second part of the live variable 

analysis algorithm before the LIVEAFTER bit vector stabilizes. 



-- 

PROC LiveVar(GRAPH) 
for all basic blocks, V in flowgraph, GRAPH do 

LIVEAFTER(V,*) = 0 
UPWARDUSES(V,*) = 0 
NOTKILLED(V,*) = 1 
for all useldef references, UD in V in reverse order do 11 upward exposed 

useslkills 
NUM = SYMTABNUMBER(SYMBOL(UD)) 
if UD is a use then 
UPWARDUSES[V,NUM] = 1 I/ set use bit 

elsif UD is a def then 11 not preserved, killed 
NOTKILLED[V,NUM] = 0 
UPWARDUSESD/,NUM] = 0 

fi 
rof 
LIVEBEFORE(V,*) = UPWARDUSESO/,*) I/  initialize livebefore vector 

ro f 
repeat 
CHANGED = FALSE 
for basic blocks, V of flowgraph, GRAPH in reverse order do 
TVECT(*) = 0 
for all SUCC(V). SV do 
TVECT(*) = TVECT(*) v LIVEBEFORE(SV,*) 

ro f 
if TVECT(*) != LIVEAFTERO/,*) I/  no convergence of LIVEAFTER vector yet 
LIVEAFTER(V,*) = TVECT(*) 
LIVEBEFORE(V,*) = (TVECT(*) A NOTKILLED(V,*)) v UPWARDUSES(V,*) 
CHANGED = TRUE 

fi 
rof 

until not CHANGED 
END LiveVar 

We present an example in Table 3-1 and Table 3-2 using the live variable 

analysis algorithm to show the LIVEBEFORE and LIVEAFTER sets for the program 

fragment from Figure 3-3. First pass operations, shown in Table 3-1, compute the 

UPWARDUSES, NOTKILLED and LIVEBEFORE bit vectors. Processing instructions in 

each basic block from last to first to preserves information about variables that are live 

coming into the basic block. Table 3-1 shows instructions arranged in the processing 

sequence used by the live variable analysis algorithm. Additional lines are present 

showing (re)initialization of the bit vectors during the first pass. 



The second pass, shown in Table 3-2, will iterate until the LIVEAFTER bit vector 

contains the same variables as its successor's LIVEBEFORE bit vector. It is important 

to note that computing the LIVEAFTER bit vector must precede computing the 

LIVEBEFORE bit vector. During the convergence step in live variable analysis the 

algorithm visits basic blocks in reverse, or Numberwst order. In this example the 

algorithm will iterate twice during convergence, no changes to the LIVEBEFORE or 

LIVEAFTER bit vector occur during the second iteration. Table 3-2 shows two series of 

computations, with no changes after the second series. The order of basic blocks in 

Table 3-2 reflects the sequence in which processing occurs. In this example the global 

variables are c and d. The variable a is local and basic block local by our previous 

definition. 
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TABLE 3-1 
LIVE VARIABLE ANALYSIS INITIALIZATION 

Register Assignment 

BLOCK 
1 
2 
3 

4 
5 
6 

TABLE 3-2 
LIVE VARIABLE ANALYSIS CONVERGENCE 

This phase determines which physical register will store the variables or virtual 

registers identified during register allocation[l]. There are many ways to select the 

specific register given the constraints of how many general purpose registers are 

INSTRUCTION 
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=a,d= 
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UPWARDUSES 

0 
0 
{a) 
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0 
{a) 
{ C) 

BLOCK 
5 
4 
3 
6 
2 
1 

LIVEAFTERtl 

{ c) 
{c) 
{d ) 
{d ) 
{c) 
{ c) 

LIVEAFTER 

0 
0 
0 

0 
0 
0 

NOTKILLED 

{a,c,d) 
{a,c,d) 
{alc) 
{c) 
{a,d) 
{a,c,dl 
{al c) 
{ c) 

LIVEBEFOREtl 

{ c) 
{d ) 
{ C) 

{ C) 

{c) 
{ c) 

LlVEAFTERto 

0 
0 
{d ) 
{ d ) 
{c) 
{ C) 

LIVEBEFORE 

0 
0 
{c) 

{ d ) 

LIVEBEFOREto 
0 
{d ) 
{ C) 

{ C) 

{c) 
{ C) 



available. Another consideration is whether to use register pairs, triples or quads to 

store multiple word values. Many of the register assignment techniques presented in 

Chapter 2 use a one pass algorithm to achieve global register assignment. In this 

section we describe the benefits of having a local and a global register assignment pass 

compared to a single global register allocation policy. 

Assigning physical registers to the values in virtual registers requires information 

from live variable analysis. Our first goal is to identify live virtual registers within a basic 

block. If the live range of a virtual register is wholly within a single basic block, meaning 

the virtual register is not live coming into or leaving the basic block, we can use a linear 

time algorithm to assign a physical register to that value. Assignment of physical 

registers for virtual registers with live ranges across basic block boundaries is by a 

global assignment algorithm executing in polynomial time. The benefit of using a local 

register assignment is that the algorithm is fast, and it removes variables from global 

assignment which is slow. Global register assignment is left with fewer variables and 

will take less time. Subsumption and dead code elimination are optimizations that apply 

to local and global register assignment. 



CHAPTER 4 
LOCAL REGISTER ALLOCATION 

We present detailed information about two basic block register allocation 

algorithms in this chapter. We describe the relative merits and shortcomings of each 

algorithm. We examine how the local register allocation algorithms use live variable 

analysis. These algorithms assign registers for variables that are local to a basic block. 

Backward Pass Algorithm 

In this register allocation algorithm, we associate two properties with each 

variable. We define the property STATE with values {local, global) to represent live 

variable analysis results for variables in the symbol table. Each basic block contains its 

own local list of variable uses and defs and a property called LIVESTATE with values 

{live,dead) to identify if a variable is active at some point in the basic block. Live 

variable analysis provides necessary information about local and global variables to the 

initialization and register assignment passes of the backward pass register allocation 

algorithm. 

Processing the control flow graph involves one traversal of the basic blocks. The 

order of visiting basic blocks in the control flow graph is not important because we have 

already computed which variables are local and global during live variable analysis. For 

each basic block the backward pass register allocation initializes LIVESTATE to dead 

for all local variables. 

Register allocation and assignment follow initialization. This algorithm processes 

instructions in each basic block from last to first. Our first test is for definitions that are 



live due to a later use. Live variable definitions receive registers before operands. The 

algorithm removes local variable definitions without subsequent uses as dead code. 

Variable uses local to the basic block receive a register. Local uses have their 

LIVESTATE set to live after being assigned a register. Free registers are kept on a 

stack, the most recently freed register is the first one used. Using a stack for free 

registers is a requirement for optimality. In Figure 4-1 we show the backward pass 

register allocation algorithm. 

Procedure BackwardPass(GRAPH) 
for all variables, V l  of symbol table do 

if STATE(V1) == local then 
LIVESTATE(V1) = dead 

fi 
rof 
for all basic-blocks, B of flowgraph, GRAPH do 

1 for all instructions, I of B in reverse order do 
for all variables, V1 of I do 

1 if DEF(V1) A STATE(V1) == local then 
if LIVESTATE(V1) == dead then 

I CALL DeadCode(1 ,V1) 
else 

I CALL FreeReg(V1) 
LIVESTATE(V1) = dead 

fi 
else if USE(V1) A STATE(V1) == local then 

CALL AllocReg(V1) 
LIVESTATE(V1) = live 

f i 
rof 

rof 
ro f 

END Backwardpass 
BACKWARD PASS BASIC BLOCK REGISTER ALLOCATION ALGORITHM 

We now present an example of register allocation using the backward pass 

algorithm. The code fragment represents instructions stored in a single basic block. 

Live variable analysis of the instructions identify variables (b, d, g) as global. Variables 

(a, c, e, f) are local and assigned to registers. Table 4-1 shows the instructions in 

reverse order, the order used by the backward pass algorithm. We show registers live 

coming into the instruction on the same line as the statement number. Register 

assignments to the operands are on the next line unless the operands are constants or 

global variables. The last line used for each instruction replaces the target with a 



register except where the target is a global variable. We compare the input to the 

results in Table 4-2, with the instructions in sequential order. 

Fotward Pass Algorithm 

TABLE 4-2 

This basic block register allocation algorithm traverses the basic blocks in the 

CFG in a top down fashion. Live variable analysis determines basic block local and 

basic block global variables. We use STATE, with the values {local, globar) to represent 

live variable analysis results for each variable. This algorithm allocates registers for the 

Register Allocation Results 
Backward Pass Results 
R3=b+d 
R2=R3+3 
R3=R3+R2 
R1 =g/2 
d=R3+2 
R1 =Rl +d*R2 
g=d+RI - 

Backward Pass Basic Block 
Stmt. # 
i I 
i 2 
i 3 
i4 
i 5 
i6 
i 7 

Original Program 
a=b+d 
c=a+3 
a=a+c 
e=g12 
d=a+2 
f=e+d*c 
g=d+f 



targets (defs) after operands (uses) to maintain the data dependence relations[8] 

between statements in the basic block. Figure 4-2 shows the forward pass basic block 

register allocation algorithm. 

Procedure ForwardPass(GRAPH) 
for variables, V1 in symboltable do 

LIVESTATE(V1) = dead 
rof 
for all basic blocks B, of flowgraph, GRAPH do 
for all instructions, I of B in reverse order do I1 BEGIN PASS # I  
V2 = target(1) 
if (V2) A STATE(V2) == local then 
if LIVESTATE(V2) == dead then 
CALL DeadCode(1 ,V2) 

else 
LIVESTATE(V2) = dead 

fi 
fi 
for all operands, V1 of I do 
LASTUSE(1, V1) = FALSE 
if STATE(V1) == local A LIVESTATE(V1) == dead then 

LASTUSE(1,VI) = TRUE 
LIVESTATE(V1) = live 

fi 
rof 

rof 11 END PASS#? 
for all instructions, I of basic block B do 11 BEGIN PASS #2 
for all operands, V1 of instruction, I do 

if STATE(V1) == local then 
CALL AllocReg(V1) 
if LASTUSE(1,VI) == TRUE then 
CALL FreeReg(V1) 

fi 
fi 

rof 
V2 = target(1) 
if (V2) A STATE(V2) == local then 
CALL AllocReg(V2) 

fi 
rof 11 END PASS #2 

rof 11 for all basic blocks 
I END FORWARDPASS 

FORWARD PASS BASIC BLOCK REGISTER ALLOCATION ALGORITHM 



Before processing the instructions in the basic blocks, the algorithm sets 

LIVESTATE to dead for each variable in the symbol table. One iteration through the 

basic blocks determines the live ranges and assigns registers. Because the algorithm 

uses the granularity of a basic block, we set the LASTUSE of all variable uses to 

FALSE. The algorithm computes LIVESTATE from the instances of uses and defs. The 

algorithm's first pass goes through the list of instructions in reverse order removing dead 

code and identifies the which instance of a variable use is the last use. This pass 

identifies the live ranges of local variables. Register assignment for local variables 

occurs during the second pass. 

In this algorithm, LIVESTATE has the values {live, dead) identifying whether a 

variable is live at a point in the basic block. Variable uses encountered in an instruction 

set the LIVESTATE to live. Variable defs in the instruction reset the variable 

LIVESTATE to dead. The STATE property has values {local, global) showing which 

variables are available for allocation. The LASTUSE property has values {TRUE, 

FALSE} identifying the instance of a variable that terminates the variable live range. In 

this algorithm any variable with a STATE of local is local to the basic block and eligible 

for local register allocation. Table 4-3 shows the results of the first pass operations 

where variables (a, c, el f) are local and variables (b, dl g) are global. 

Entries in Table 4-3 combine information from LIVESTATE and LASTUSE. The 

following symbols {L,D}l{T,F) identify variable live ranges; where 'Dl represents dead, 'L' 

represents live, 'T' represents last-use and 'F' is not-last. Statements in Table 4-3 

reflect the processing order of the algorithm. Table 4-4 shows operations performed by 

TABLE 4-3 
FORWARD PASS BASIC BLOCK REGISTER ALLOCATION INITIALIZATION 
Stmt. # 

i 7 
i6 
i 5 
i4 
i3 
i 3 
i2 
i I 

Instructions 

g=d+f 
f=e+d*c 
d=a+2 
e=g/2 
a=a+c 
a=a+c 
c=a+3 
a=b+d 

Variables 
LIVESTATEILASTUSE 

a 

UT 

DI-~" 
UTUbt 

UF 
Dl- 

c 

LIT 

UF 
Dl, 

e 

UT 

Dl, 

f 
LIT 
Dl, 



the second pass where register assignment takes place. Table 4-5 shows the input and 

output from the forward pass algorithm. 

Conclusion 

2 

TABLE 4-5 
FORWARD PASS BASIC BLOCK REGISTER ALLOCATION RESULTS 

Allocating registers at the granularity of a basic block is a well defined and 

understood process. The two register allocation algorithms presented in this chapter 

achieve efficient solutions for local register assignment in basic blocks. The backward 

pass algorithm requires one iteration through the basic blocks and one iteration through 

the instructions. The backward pass algorithm does not require the LASTUSE property. 

Stmt. # 
i I 
i 2 
i 3 
i4 
i 5 
i6 
i 7 

Original Program 
a=b+d 
c=a+3 
a=a+c 
e=g/2 
d=a+2 
f=e+d*c 
g=d+f 

Forward Pass Results 
R1 =b+d 
R2=R1+3 
RI=Rl+R2 
R3=g/2 
d=R1+2 
R3=R1 +d*R2 
g=d+R3 



The backward pass register allocation algorithm is the algorithm of choice for basic 

block register allocation. The fotward pass algorithm requires one pass through the 

basic blocks and two iterations through the instructions. We present the fotward pass 

basic block register allocation algorithm because it is the basis for register allocation 

algorithms presented in the next chapter. Allocating registers for basic block local 

variables takes advantage of short register live ranges. 

Basic block register allocation guarantees to use the minimum number of 

registers if there are sufficient registers for local variables, and if a stack is used for free 

registers. In the case where there are insufficient registers for local variables, spilling 

heuristics do not provide a solution with a minimal number of spills. Reordering 

instructions will change the demand for registers. Finding a solution for minimal register 

usage with instruction reordering is beyond the scope of our research. 



CHAPTER 5 
REGISTER ALLOCATION ACROSS BASIC BLOCKS 

In this chapter, we present a technique for local register allocation that spans 

basic block boundaries. The algorithms locate and use trees of basic blocks, called 

supertraces, to extend live ranges of local variables. We discuss how the algorithms 

use control flow graph information to find the supertraces. We present the motivation 

and design criteria leading to the algorithms and their implementation. 

Supertrace Formation 

Control flow graphs contain trees of basic blocks. We define a supertrace as a 

region of the CFG with a single entry point where basic blocks form a tree. The root of a 

supertrace is a basic block located at entry of a CFG, the header of a natural loop, or a 

basic block located at a confluence point for two or more predecessors. Minimal trees 

consist of a single basic block matching the definition for a root of a supertrace. Our 

goal is to build supertraces with as many basic blocks as possible. We add basic blocks 

to a supertrace by following the successor links from each supertrace root. Basic blocks 

with a single predecessor link spanning off the supertrace head are members of the 

same supertrace. The path length from the supertrace root to confluence points in the 

CFG limits the size of a supertrace. Supertraces cannot grow beyond a confluence 

point (where basic blocks have two or more predecessors). 

Figure 5-1 shows a CFG with the basic blocks of the large supertrace in bold. 

The large supertrace contains basic blocks 2, 3, 4, 5, 6, 7, 8, 10, and 11. Minimal 

supertraces exist for basic blocks 1,9,12,13, and 14. Using this example, we can follow 

the creation of the large supertrace. Beginning at the entry to the CFG, the algorithm 



marks basic block 1 as a supertrace root. Following the successor link from block 1 to 

block 2 we find a second successor link, the loop back edge. We cannot assign basic 

block 2 to the supertrace rooted at basic block 1 because basic block 2 has more than 

one predecessor. Because basic block 1 has no more successors, the supertrace is 

complete for this root. Basic block 2 meets the definition for a supertrace root, so we 

begin the generation of a second supertrace rooted at basic block 2. Following the 

successor links from 2 to 3, from 3 to 5, and 3 to 6 permit inclusion of these basic blocks 

into the supertrace because basic blocks 3,5, and 6 have only one predecessor. 

ENTRY 
4 - 

1 

2 

3 4 

5 6 7 8 
4 4 

9 10 11 

13 

14 

Following the successor links from 5 to 9 and from 6 to 9 halts the creation of the 

supertrace on this branch because basic block 9 has two predecessors. The algorithm 

continues along the successor links from 4 to 7, from 4 to 8, from 7 to 10, and from 8 to 



11, adding all basic blocks to the supertrace rooted at basic block 2. Our supertrace 

ends at basic block 12 because basic block 12 has more than one predecessor. 

Supertrace Local Variables 

In this section we introduce and define supertrace local variables. Within each 

supertrace, variables that are not live coming into or going out of a supertrace boundary 

are local to the supertrace. Variables that are not members of any supertrace head's 

LIVEBEFORE set are supertrace~local. The supertrace register allocation algorithm 

allows live ranges to cross basic block boundaries for supertrace local variables. 

Variables identified as LIVEBEFORE to a supertrace head are superfrace global. The 

global register allocation algorithm processes supertrace global variables. Following live 

variable analysis, we find supertrace local and supertrace global variables by making a 

pass through the basic blocks of each supertrace. Our algorithm looks for uses of 

variables within the supertrace that are not members of the LIVEBEFORE set of the 

supertrace head. The algorithm scans the supertrace looking at each variable in turn, 

assigning the state supertrace-global to variables that has any nonlocal use. The 

problem arises that a variable may be supertrace-local in one supertrace and 

supertrace-global in another. We resolve this conflict by making the variable supertrace 

global in all supertraces. 

Forward Pass Supertrace Algorithm 

The foward pass supertrace register allocation algorithm allocates registers for 

local variables. This algorithm is more complex than the basic block local register 

allocation algorithms in the previous chapter. There is an initialization step, a register 

allocation step, and a traversal step in this algorithm. The initialization step identifies the 

variable live ranges and deals with dead code elimination. The register allocation step 

assigns registers for local uses and defs of instructions. The traversal step in this 

algorithm is unique in that we save and restore the state of register assignment before 

visiting the next basic block in the supertrace. Successful register allocation based on 

supertraces requires assignment of all basic blocks in the CFG to supertraces. The 

allocation algorithm must visit all supertraces in the CFG. We present the main 

procedure for the algorithm in Figure 5-2. 



PROC Forward-ST(CFG) 
CALL Forward-lnit(CFG) 
for all basic blocks, B of flowgraph, CFG do 

if SupertraceHead(B) then 
CALL Supertrace-Pass(B) 

fi 
ro f 

END Forward-ST 
DRIVER ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION 

In this algorithm it is necessary to keep track of variables assigned to registers 

and registers assigned to variables. We use two data constructs REGREF and 

VARREF to keep this information. In VARREF we store information about registers 

assigned to variables. The REGREF data structure stores which variable is in a given 

register. 

We show the initialization step for this algorithm in Figure 5 - 2 ~ .  lnitialization of 

variable state information occurs before live range calculations or register allocation. 

The algorithm initializes REGREF and VARREF to null. lnitialization visits all 

instructions within each basic block in a last to first order. This order permits finding the 

last use of a variable. LASTUSE and LIVESTATE store the computed live range of 

variables. The field LASTUSE can have the values {TRUE, FALSE); the field 

LIVESTATE can have the values {live, dead). We initialize LASTUSE of all operands to 

FALSE. Local variable definitions not used in subsequent instructions as an operand 

cause dead code removal of the instruction. lnitialization sets LIVESTATE to dead for 

local definitions of a variable. Local variable uses not live beyond a basic block 

boundary (determined by LIVEAFTER membership) have LASTUSE set to TRUE and 

LIVESTATE set to live. These local uses mark the end of a variable's live range. 



PROC Forward-lnit(CFG) 
REGREF(*) = 0 
VARREF(*) = 0 
for all basic blocks, B of flowgraph, CFG do 
for all variables, V1 in symboltable do 

LIVESTATE(V1) = LIVEAFTER(B,Vl) // {live, dead) 
rof 
for all instructions, I of B in reverse order do 
V l  = TARGET(1) 
if DEF(V1) A STATE(V1) == local then 
if LIVESTATE(V1) == dead then 
CALL DeadCode(1 ,V1) 

else 
LIVESTATE(V1) = dead 

fi 
fi 
for all operands, V2 of I do 

LASTUSE(I,V2) = FALSE 
if STATE(V2) == local A LIVESTATE(V2) == dead then 

LASTUSE(I,V2) = TRUE 
LIVESTATE(V2) = live 

fi 
rof 

rof 
* 

rof 
END Forward-lnit 

~ N ~ T ~ A L ~ Z A T ~ O N  ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION 

We show the register allocation step of the forward supertrace register allocation 

algorithm in Figure 5-28. This modified forward basic allocator accepts a single basic 

block. We process variable uses before definitions to maintain data dependence 

relations between instructions in the basic block. Immediately after assigning a register 

for a variable use, we check if this is the last use of the variable and possibly free the 

register. The algorithm assigns variable definitions a register after processing 

instruction operands. Register allocation for each basic block uses the same sequence 

of operations shown in the forward pass basic block register allocator. 



PROC Supertrace-Pass2(BASIC-BLOCK) 
for all instructions, I in BASIC-BLOCK do 
for all operands, V1 in I do 

if STATE(V1) == local then 
CALL AllocReg(V1) 
if LASTUSE(V1 ,I) == TRUE then 
VARREF[REGREF[Vl]] = 0 
REGREFW] = 0 

fi 
fi 

rof 
V l  = TARGET(1) 
if DEF(V1) A STATE(V1) == local 

REG = GetReg() 
REGREFWI] = REG 
VARREF[REG] = V1 

fi 
rof 

END Supertrace-Pass2 
ALLOCATION ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION 

We show the traversal routine in Figure 5-2c. The traversal step is responsible 

for calling the register allocation routine for each basic block in the supertrace. After the 

register allocation step returns, the traversal routine saves the state of register 

assignments in SAVEREGS.. We assign the same register state to all basic blocks that 

are successors and members of the supertrace. Transfer of the register state from 

SAVEREGS is only for variables live before the successor basic block. 

If the successor basic block does not reference a variable that its predecessor 

defines, we free the register making it available. An example of where this occurs, 

taken from Figure 5-3, is the variable d. This variable is live coming out of basic block 

one because of the variable use in basic block five. Basic blocks two, three, and four 

have no uses of d. It is unnecessary to save the register assignment for variable d 

established in basic block one and have it present during register allocation of basic 

blocks two, three, and four. The register state saves variable d for basic block five 

because of the use in the first assignment statement. 



PROC Supertrace-Pass(BASIC-BLOCK) 
CALL Supertrace_Pass2(BASIC-BLOCK) 11 see FIGURE 5 - 2 ~  
SAVEREGS(*) = REGREF(*) 
for all SUCC(BASIC-BLOCK), S do 

if S != SUPERTRACE-HEAD(BASIC-BLOCK) A 

SUPERTRACE-HEAD(S) == SUPERTRACE-HEAD(BASIC-BLOCK) then 
for J = 1 to numregs do 

REGREF[J] = SAVEREG[J] 
if REGREF[J] != 0 then 
V1 = REGREF[J] 
if LIVEBEFORE(S,VI) then 
VARREF[REGREF[J]] = J 

else 
REGREF[J] = 0 

fi 
f i 

ro f 
CALL Supertrace-Pass(S) 

fi 
rof 

END Supertrace-Pass 
STATE SAVING ALGORITHM FOR FORWARD SUPERTRACE REGISTER ALLOCATION 

FIGURE 5-2c 

We now present an example showing the operations performed by the forward 

supertrace register allocation algorithm. The CFG shown in Figure 5-3 has two 

supertraces. The first supertrace contains basic blocks one, two, three, five, and six. 

The second supertrace contains a single basic block, basic block four. Variables a, b, d, 

and e are supertrace local because they are not live coming in to the two supertrace 

heads (basic blocks one and four). Variables c, g, and k are supertrace global in our 

example. Variable c is live coming in to basic block two and because there is no 

definition in basic block one, it must be a global variable or parameter to a subroutine. 

Variables g and k are supertrace global because they are live coming into the 

supertrace head at basic block four. The local variable dl defined in basic block one is 

not live along the path from basic block one to basic block two. The variable d is live 

along the path from basic block one to basic block five. In the first assignment 

statement of basic block five, the variable a subsumes d. 



EXAMPLE FLOW GRAPH FOR SUPERTRACE REGISTER ALLOCATION 
FIGURE 5-3 

ENTRY 

Table 5-1 shows the initialization step of the forward register supertrace register 

allocation algorithm. Entries in the table show the LIVESTATE values of {live, dead) as 

'L' and 'D' respectively. The LASTUSE values of {TRUE, FALSE) are 'T' and 'F' in the 

table. Note that LASTUSE is not important for variable definitions; we show this as an 

' - ' character. The table shows the LIVESTATE and LASTUSE for all instructions in the 

basic block. Instructions in each basic block are in reverse order, the same order used 

by the algorithm. During initialization we compute the LIVESTATE and LASTUSE for 

local and global variables. The subsequent allocation pass deals with local variables 

only. 

1 d=2 

2 a=c 
b=a+2 

v 

5 

3 

a=d 
b=a*4 
e=a+b 

k=b+e g=a+b 
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6 

a=g+k 



TABLE 5-1 
FORWARD PASS SUPERTRACE REGister Allocation Initialization 
Block Instr. LIVESTATEILASTUSE 

LOCAL GLOBAL 
a b d e c Sl k 

1 =d Dl- 
2 =al b= UF D L  

=c, a= Dl- DIF 

Table 5-2 shows the register allocation for our example. Supertrace register 

allocation saves the register state and permits LIVEAFTER variables to pass through to 

successors that are members of the same supertrace. 

TABLE 5-2 
FORWARD PASS SUPERTRACE REGISTER ASSIGNMENT 

Block 

1 

2 

3 

5 

6 

4 

R1 

d 

a 

0 

a 

e 

0 

Instruction 

d= 
R1= 
=c,a= 
=clR1 = 
=a, b= 
=R1 ,R2= 
=a,=b,g= 
=RIl=R2,g= 
=d,a= 
=R1 ,R1= 
=a, b= 
=R1 ,R2= 
=a,=b,e= 
=R1 ,=R2,R1= 
=b,=e,k= 
=R2,=RI1 k= 

dead 
dead 

VARREF 
R2 

b 

0 

b 

0 

a 

R1 

0 

R1 

0 

REGREF 
b 

R2 

0 

R2 

0 

d 

R1 

0 

e 

R1 

0 
- ----- 



The first table column shows the basic block numbers assigned during the depth first 

traversal of the CFG. The table also shows the original instructions and the register 

replacements that occur during register allocation and supertrace traversal. Global data 

constructs, REGREF and VARREF, show the assignment and clearing of registers and 

variables. We use the symbol '0' to represent clearing a value in REGREF or VARREF. 

The sequence of basic blocks in the table reflect the depth first sequence used in 

traversing the supertrace. 

Statements from the input program and results from forward pass register 

assignment is in TABLE 5-3. Rows in the table show basic blocks in DFST order, 

statements are in first to last order. 

Optimality Criteria 

TABLE 5-3 
FORWARD PASS SUPERTRACE REGISTER ALLOCATION RESULTS 

Our algorithm generates an optimal register allocation in that no allocation can 

use fewer registers. We demonstrate this by casting the register allocation problem into 

a graph coloring framework. The CFG of a supertrace is a tree, and each variable live 

range is a subtree of the supertrace. We construct an undirected register interference 

graph where each node represents a live range. An edge connects two nodes if the live 

ranges intersect. It is well known that the interference graph of subtrees of a tree forms 

a triangulated or chordal graph[ll]. The allocation of registers to live ranges 

corresponds directly to a coloring of the interference graph, where adjacent nodes must 

have different colors. 

Forward Supertrace Results 
R1=2 
R1 =c 
R2=R1+2 
g=R1 +R2 
R1 =R1 
R2=R1*4 
R1 =R1 +R2 
k=R2+R1 
<dead code, instruction removed> 

Block 
1 
2 

3 
5 

6 
4 

Original Program 
d=2 
a=c 
b=a+2 
g=a+b 
a=d 
b=a*4 
e=a+b 
k=b+e 
a=g+k 



Any interference graph coloring must use at least as many colors as the size of 

the largest clique (a completely connected subset of nodes). Our algorithm requires a 

new register only when all the previously used registers are already allocated to 

variables at some point in the supertrace. The live ranges needing the new register 

interferes with all the live ranges currently allocated registers, and so all the variables at 

any point in the supertrace form a clique. Thus, our algorithm finds a coloring that uses 

exactly the number of colors in the largest clique, and so is optimal. 

Variable Renaming in Modified Supertrace Algorithm 

Modifying the supertrace register allocation algorithm to use a bottom up 

traversal of the supertrace eliminates the need to save register state between basic 

blocks. We need variable renaming in this algorithm to preserve dependence relations 

of instructions between basic blocks. Our motivation in creating this algorithm is to 

reduce the number of iterations over basic blocks and their instructions. A feature of 

this algorithm is that it does not save the register state between basic blocks in a 

supertrace. It is possible to implement variable renaming as part of the modified 

supertrace algorithm. We chose to implement this algorithm separately because of 

expedience and data collection requirements for our research. 

The following algorithm renames local variables in supertraces that otherwise 

would cause incorrect register allocation in the modified supertrace register allocation 

algorithm. Unlike the forward pass supertrace algorithm, we do not save the state of 

register assignments in the modified supertrace algorithm. Definitions of a variable in 

two or more branches of the supertrace require that we must rename the variable. 

Renaming the variable removes the possibility that register values differ between 

branches of the supertrace. Renaming variables splits the live range of the original 

variable. 

The algorithm to rename variables seeks the definitions of supertrace local 

variables. Starting at a basic block defined as a supertrace head and proceeding 

through the successors we build a list of variable definitions. If a basic block has only 



one successor there is no need to rename variables in the basic block or its successor 

because variables live across this basic block boundary do not change. When a basic 

block has more than one successor, it is necessary to determine if there are any 

redefinitions of variables from our list in either successor subtree. The algorithm 

renames variables from our list if definitions exist for the variable in a successor's 

subtree. It is not necessary to rename all instances of the variable, as this would 

compound the problem we are trying to solve. We find the last definition in the 

instructions of the basic block and rename it. The algorithm renames subsequent uses 

of the variable found in later instructions of the basic block. In some cases, we must 

traverse through the basic block's predecessors to find the last definition and begin the 

renaming at that point in the supertrace. For each successor subtree we rename all 

uses of the variable up to the first definition. In summary, we rename variables from the 

last definition and subsequent uses in the basic block up to (but not including) the first 

definition of the variable in each of the successor subtrees. We show the main function 

in Figure 5-4. 

PROC St-Var-Rename(BLOCK, STHEAD) 
for instructions, I in BLOCK do 

LlST = LlST + TARGET(1) 
rof 

if BLOCK has more than 1 successor then 
for LIST, J=l  ,N do 

if definitions exist in either successor chain for LIST[J] then 
CALL Rename-Last Def-Fwd(BLOCK, STHEAD, LIST[J], NEW-VAR-NAME) 
for succ(BLOCK), SBLOCK do 

CALL Rename-Upto-FirstDef(SBLOCK, STHEAD, LIST[J], NEW-VAR-NAME) 
rof 

fi 
ro f 

fi 

for all SUCC(BLOCK), SBLOCK do 
if Supertrace-Child(SBLOCK, STHEAD) then 
CALL St-Var-Rename(BLOCK, STHEAD) 

fi 
1 rof I 
1 end St-Var-Rename 

DRIVER ALGORITHM FOR VARIABLE RENAMING 



Clearly, if a supertrace local variable is live out of a basic block and live coming 

into two or more successors, the variable represented by a register must have the same 

value and reflect the original definition. The problem we address with renaming arises 

when definitions in one branch of the supertrace overwrite the values used in the other 

branch. Note that the list of variable definitions, LIST, is initially NULL. 

The functions shown in Figures 5 - 4 ~  and 5-48 perform variable renaming by 

recursively visiting basic blocks within a supertrace. There are two 'directions' in 

renaming variables within a supertrace. The algorithm in Figure 5 - 4 ~  renames a 

variable from the most recent definition through all subsequent uses. This form of 

variable renaming will traverse basic block predecessors to find the instruction where a 

variable definition occurs. The other 'direction' used to rename a variable involves 

following basic block successors until finding the variable definition in an instruction list. 

The algorithm in Figure 5 - 4 ~  renames all uses of a variable up to the definition of the 

variable. 

PROC Rename-LastDef-Fwd(BLOCK, STHEAD, VAR, NEW-VAR-NAME) 
FOUND=FALSE 
for instructions, I of BLOCK in reverse order and FOUND == FALSE do 
for operands, V1 of I do 

if V1 == VAR then 
V1 = NEW-VAR-NAME 

fi 
ro f 
if Target(1) == VAR then 
Target(1) = NEW-VAR-NAME 
FOUND = TRUE 

fi 
rof 
if FOUND == FALSE and Supertrace-Child(PRED(BLOCK), STHEAD) then 

Call Rename-LastDef-Fwd(PRED(BLOCK), STHEAD, VAR, NEW-VAR-NAME) 
fi 

1 end Rename-LastDef-Fwd 
BACKWARD TRAVERSAL ALGORITHM FOR VARIABLE RENAMING 



PROC Rename-Upto-FirstDef(BLOCK, STHEAD, VAR, NEW-VAR-NAME) 
FOUND = FALSE 
for instructions, I of BLOCK and FOUND == FALSE do 

for operands, V1 of I do 
if V1 == VAR then 

V l  = NEW-VAR-NAME 
fi 

rof 
if TARGET(1) == VAR then 

FOUND = TRUE 
fi 

rof 
if FOUND == FALSE then 

for succ(BLOCK), SBLOCK do 
if Supertrace-Child(SBLOCK, STHEAD) then 

CALL Rename-Upto-FirstDef(SBLOCK, STHEAD, VAR, NEW-VAR-NAME) 
fi 

rof 
fi 

end Rename-Upto-FirstDef 
FORWARD TRAVERSAL ALGORITHM FOR VARIABLE RENAMING 

It is beneficial to perform dead code elimination before live range splitting. The 

assignment statement (b=2) in basic block six is dead because there are no subsequent 

uses of the variable 'b'. Because we did not perform dead code elimination before live 

range splitting it is necessary to rename the assignment in basic block four (b=6) and 

the use in basic block seven (=a+b). Performing live range splitting after dead code 

elimination has the potential of reducing the number of statements in the flow graph. 

The positive side effect of performing dead code elimination before variable renaming is 

reducing the number of variables renamed. 

We present an example of variable renaming in Figures 5-5 and 5-6. Figure 5-5 

shows the original CFG; Figure 5-6 shows the CFG after renaming. 





Modified Supertrace Algorithm 

The entry point for the modified supertrace algorithm is in Figure 5-7. 

Initialization sets the LIVESTATE of all variables to dead. Using this algorithm requires 

renaming variables defined on two or more branches. The second pass, shown in 

Figure 5-7a, calculates the live ranges and performs dead code elimination. Variable 

uses local to the basic block with a dead LIVESTATE result in the LIVESTATE being set 

to live and LASTUSE being set to TRUE. Dead code elimination removes local 

definitions from the instruction list having a LIVESTATE of dead. The register allocation 

step, shown in Figure 5-7b, assigns registers for uses and definitions that are local to 

the supertrace. The register allocation pass requires processing basic blocks in the 

opposite order of the first pass. This algorithm has the effect of treating all basic blocks 

in a supertrace as one 'congealed' basic block. 

PROC ForwardModPass(GRAPH) 
for all basic blocks, B of flowgraph, GRAPH do 

if SupertraceHead(B) then 
for all variables, V1 in SYMBOL-TABLE do 
LiveState(V1) = dead 

rof 
CALL ST-Var-Rename(B, B) I1 see FIGURE 5-4 
CALL Mark(B) 
CALL Alloc(B) 

fi 
rof 

END ForwardModPass() 
DRIVER ALGORITHM FOR MODIFIED FORWARD SUPERTRACE REGISTER ALLOCATION 

Before computing the live ranges, we set the LIVESTATE of all variables to 

dead. It is not important that global variables have any attribute values at this point. We 

compute the live range and then assign registers for supertrace local variables for each 

supertrace encountered in the CFG. Because every basic block in the CFG is a 

supertrace or a member of a larger supertrace, we know the algorithm will visit every 

basic block in CFG. 

We present the live range function Mark() in Figure 5 - 7 ~ .  It visits each basic 

block in the supertrace in a bottom up depth first traversal. It is necessary to use a 



bottom-up traversal of nodes in the supertrace to maintain the LIVESTATE information 

for variables. We process instructions from last to first. 

PROC Mark(BASIC-BLOCK, STHEAD) 
for all SUCC(BASIC-BLOCK), SBLOCK do 

if SupertraceChild(SBLOCK, STHEAD) then 
CALL Mark(SBLOCK, STHEAD) 

fi 
rof 
for all instructions, I of BASIC-BLOCK in reverse order do 
for all variables, V1 of I do 

LASTUSE(1,VI) = FALSE 
rof 
V1 = TARGET([) 
if (VI) A STATE(V1) == local then 
if LIVESTATE(V1) == dead then 
CALL REMOVE-INSTR(I,Vl) 

else 
LIVESTATE(V1) = dead 

fi 
fi 
for all operands, V2 of instruction I do 

if STATE(V2) == local A LIVESTATE(V2) == dead then 
LASTUSE(I,V2) = TRUE 
LIVESTATE(V2) = live 

fi 
rof 

rof 
END Mark 

~ N ~ T ~ A L ~ Z A T ~ O N  ALGORITHM FOR MODIFIED FORWARD SUPERTRACE REGISTER ALLOCATION 
FIGURE 5-7A 

We present the register allocation function in Figure 5 - 7 ~ .  Register allocation 

and assignment for this algorithm is complicated by the need to traverse basic blocks in 

the supertrace in exactly the opposite order used to compute variable live ranges. We 

perform a top-down preorder left to right traversal of the supertrace. The sequence we 

use for allocating instructions in basic blocks is necessary to maintain valid register 

assignments across basic blocks. 



PROC Alloc(BASIC-BLOCK) 
for all instructions, I of BASIC-BLOCK do 
for all operands, V1 of I do 

if STATE(V1) == local then 
CALL AllocReg(V1) 
if LASTUSE(1,Vl) = TRUE then 

CALL FreeReg(WhichReg(V1)) 
fi 

fi 
rof 
V2 = TARGET(1) 
if (V2) A STATE(V2) == local then 
CALL AllocReg(V2) 

fi 
rof 
for all SUCC(BASIC-BLOCK), SBLOCK in reverse order do 

if Supertrace-Child(SBLOCK, BASIC-BLOCK) then 
CALL Alloc(SBL0CK) 

fi 
ro f 

end Alloc 
ALLOCATION ALGORITHM FOR MODIFIED FORWARD SUPERTRACE REGISTER ALLOCATION 

FIGURE 5-78 

Using the CFG from Figure 5-6, we show the results of register allocation with 

the modified supertrace algorithm in Table 5-4 and Table 5-5. We show the states 

LIVESTATE {live, dead) and LASTUSE {TRUE, FALSE) as {L,D}I{T,F) along with the 

basic block number and instruction. The algorithm traverses basic blocks in the 

supertrace using a depth first left to right traversal. Processing statements or 

instructions within each basic block from last to first order maintains data dependence 

relations. Table 5-4 shows the initial state of each variable and the results after live 

range calculations. We use the word 'dead' in the following tables when referring to 

dead code removed from the flow graph by the allocation algorithm. 



Table 5-5 presents the register assignment for our example. Traversal of the 

basic blocks in the register allocation pass must be in the exact opposite order used 

during variable live ranges calculations. We use a top down preorder traversal to 

accomplish the register assignment traversal of the supertrace. Register assignment 

processes instructions within each basic block in order, from first to last. We show 

instructions before and after local register assignment. Register assignment for local 

variables is in Table 5-5. Scanning down the columns beneath the REGISTER 

ASSIGNMENT title permits finding register live ranges that coincide. There are three 

coinciding register live ranges in the supertrace at basic block four after the third 

instruction (b2=6). We show the return of a register to the free register pool with the 

symbol, '0'. 

TABLE 5-4 

We show the results from the modified forward pass supertrace register 

allocation algorithm in Table 5-6, comparing the original instructions to the output. The 

word 'dead' replaces instructions removed from the flow graph. 

MODIFIED 

block 
5 

3 

6 

7 

4 

2 

1 

SUPERTRACE 

instr 
=b+a 
a=3 
b= I 
a=O 
=bl +a1 
b=2 
=a1 +b2 
a=5 
=a1 +b2 
b2=6 
=bl 
=a1 +bl  
=a1 
a1 =4 
=a+bl 
bl=2 

. a=l 

REGISTER ALLOCATION INITIALIZATION 

a 
LJT 
DIF 

dead 

dead 

LJT 

. DIF 

b l  

LJT 

UF 
UF 

UF 
DIF 

b2 

LIT 

UF 
DIF 

a1 

LJT 
UF 

UF 

UF 
UF 
DIF 

LIVESTATEILASTUSE 
b 
LJT 

DIF 

dead 



TABLE 5-5 

TABLE 5-6 

MODIFIED 

block 
I 

2 

4 

7 

6 

3 

5 

ASSIGNMENT 

RESULTS 
Modified Supertrace Results 
R1 = I  
R2=2 
=R1 +R2 
R1=4 
=R1 
=R1 +R2 
=R2 
R3=6 
=R1 +R2 
dead 
=R1 +R3 
dead 
=R2+R1 
dead 
R1 = I  
R2=3 
=R1 +R2 

MODIFIED 
block 
1 

2 

4 

7 

6 

3 

5 

SUPERTRACE 

instr 
a=l  
bl=2 
=a+bl 
a1 =4 
=a1 
=a1 +bl 
=bl  
b2=6 
=a1 +bl 
a=5 
=a1 +b2 
b=2 
=bl+al 
a=O 
b=l 
a=3 
R2=3 
=b+a 

SUPERTRACE REGISTER ALLOCATION 
original instruction 
a=l 
bl=2 
=a+bl 
a1 =4 
=a1 
=a1 +bl 
=bl  
b2=6 
=a1 +b2 
a=5 
=a1 +b2 
b=2 
=bl +a1 
a=O 
b=l 
a=3 
=b+a 

REGISTER 

alloc 
R1 = I  
R2=2 
=RI+R2 
R1=4 
=R1 
=R1 +R2 
=R2 
R3=6 
=R1 +R2 

=R1 +R3 

=R2+R1 

R l = l  
R2=3 
R2=3 
=RI+R2 

b2 

R3 

0 

a 
R1 

0 

dead 

dead 

R2 

0 

b 

dead 

R1 

0 

REGISTER 
a1 

R1 
R1 
R1 

R1 

R1 

0 

ASSIGNMENT 
b l  

R2 
R2 

R2 
R2 

R2 

0 



Conclusion 

The supertrace register allocation algorithm is a forward pass basic block 

register allocation algorithm. Modifications in the supertrace algorithm permit variable 

live ranges to span basic block boundaries. The supertrace register allocation algorithm 

is similar to interval graph algorithms[lO], operating in polynomial time. Solutions for 

register allocation without spilling are optimal, given the fact supertrace register 

allocation is a modified version of the basic block forward pass register allocation 

algorithm. Register allocation involving spill code provides a non-optimal solution. The 

forward supertrace algorithm makes two passes through the basic blocks; once during 

initialization and once during register allocation. The algorithm visits instructions within 

each basic block twice; once during initialization and once during register allocation. 

The algorithm incurs the cost of saving and restoring register state once for every basic 

block assigned to a supertrace. 

The modified supertrace algorithm visits all basic blocks in a CFG three times. 

When the algorithm finds a basic block that is a supertrace head initialization of all 

variables in the symbol table occurs before live range computations or register 

assignment. The algorithm visits instructions within each basic block twice; once during 

live range calculations and once during register assignment. The requirement for 

variable renaming creates an additional cost of using our nonlinear algorithm to perform 

live range splitting. Performing variable renaming is possible with a less costly algorithm 

or by integrating live range splitting directly into the modified supertrace algorithm. 



CHAPTER 6 
CREATING LARGER SUPERTRACES 

Introduction 

This chapter presents two mechanisms to create larger supertraces; basic block 

cloning and loop unrolling. The supertrace register allocation algorithms depend on 

trees of basic blocks to allocate local variables. By modifying the structure of a flow 

graph with basic block cloning, register lifetimes for supertrace local variables can span 

more basic blocks. Increasing the depth of supertraces by cloning flow graph merge 

points reduces the number of supertraces present in a given flow graph. Cloning basic 

blocks during the creation of a supertrace increases the number of variables available 

for local register allocation. 

Without cloning, supertrace branches end at the point where basic block 

successor chains join. Cloning basic blocks with more than one predecessor permits 

the supertrace to grow larger and include more basic blocks. The following discussion 

of basic block cloning is in the context of creating larger supertraces for the supertrace 

register allocation algorithms. Basic block cloning has no benefit for basic block register 

allocation. We examine two different flow graph traversals, depth first and breadth first, 

to create supertraces. Descriptions of several different limits are in the following section 

that affect the size and form of supertraces. Loop back edges form barriers that limit 

supertrace growth. 

Loop unrolling increases the number of basic blocks by copying the flow graph 

structure that exists between the start and end of a loop. Loop unrolling by itself offers 



no direct benefit toward increasing larger trees of basic blocks. Combining loop 

unrolling with basic block cloning increases the number of basic blocks in a CFG 

dramatically. Because the number of basic blocks can increase so quickly, we impose 

limits to control the growth rate of the flow graph. 

Limits 

We use limits in the basic block cloning algorithm and the loop unrolling 

algorithm to establish upper limits on the number of basic blocks in a supertrace or loop, 

respectively. Both optimization techniques increase the number of basic blocks in the 

CFG. Using limits to control the number of basic blocks added to the CFG balances 

code size against the number of variables allocated locally by the supertrace register 

allocation algorithms. 

Basic block cloning permits the application of several different limits. Creating 

supertraces with the maximum number of basic blocks is possible using basic block 

cloning. Loop structures create boundaries that supertraces can not cross. Creating a 

supertrace without limits, by depth first or breadth first traversals generates identical 

results. We may choose to establish a limit for the total number of basic blocks in a 

supertrace, block-count-limit. Adding basic blocks to the supertrace continues until the 

number of basic blocks approaches the block-count-limit. The second limit we can 

impose on supertrace formation is the maximum-depth of a supertrace, calculated by 

the number of successor links between the supertrace head and any supertrace 

member. The implication of using a block-count-limit versus maximum-depth is 

dependent on the structure of the flow graph. To obtain the maximum number of 

supertrace local variables for a given flow graph, the source program requires careful 

examination. Limits imposed on supertrace size, the number of basic blocks, and the 

method of traversing the supertrace have an impact on the number of supertrace local 

variables available for local register allocation. 

The first loop unrolling limit we examine is unrolling all loops once. The number 

of instructions in each loop is: l 0 0 p ~ ~ ~ ~ ~ ~ ~ ~ = l 0 0 p ~ ~ ~ ~ ~ ~ ~ ~ * 2 .  In the case of nested loops, 



where loop[O] is the innermost loop, and loop[n] is the outermost loop, our equation for 

the number of instructions at the outermost loop after unrolling each loop once is: 

lo0pCnIinstrvc~ looP[nIinstrvct*2+looP[n-l Iinstmt*2+ +looP[OIinstrvct*2 

Setting a limit on the number of iterations to unroll has the effect of increasing 

the number of instructions by: l ~ ~ p ~ ~ ~ ~ ~ ~ ~ ~ = l ~ ~ p ~ ~ ~ ~ ~ ~ ~ ~ * ~ n ~ ~ l l ~ ~ ~ ~ ~ .  This unrolling technique 

is the most arbitrary of the limits we examine. Unrolling loops with this limit causes a 

loop containing few instructions to be unrolled the same number of times as loops 

containing hundreds or thousands of instructions. The use of this technique requires 

careful characterization of the input program to insure applicability. 

It is possible to create an upper limit on the number of instructions contained in a 

loop. Setting a limit on the number of instructions contained in a loop creates uniformly 

sized loops. This technique requires counting the number of instructions in a loop and 

unrolling the loop until the number of instructions approaches rloopinstmCtl. In the case of 

nested loops, the inner loop unrolls up to the l ~ ~ p ~ ~ ~ ~ ~ ~ ~  limit, outer loops remain 

unchanged. 

Unrolling loops limited by the number of basic blocks is another option. Loop 

unrolling in this fashion limits the replication of control flow constructs. Given our 

definition of a basic block, if a loop contains more than one basic block there must be a 

control flow construct or function call within the loop. This technique of loop unrolling is 

a benefit to the supertrace register allocation algorithms when combined with basic 

block cloning. We introduce basic block cloning in the following section. This technique 

counts the number of basic blocks, b l ~ ~ k ~ ~ ~ ~ ~ ,  within each loop. The loop is unrolled until 

blockmUnt*2 approaches rblockIimit 1. 

Basic Block Cloning 

Cloning is the duplication of basic blocks in a flow graph that have more than 

one predecessor. This process is similar to tail duplication[l5]. Each predecessor 

branches to a copy of the cloned basic block. An example of a basic block with more 

than one predecessor is the basic block at the confluence point for an "if-then-else" 



statement. This basic block has two predecessors; one from the "then" branch, and one 

from the "else" branch. By cloning the basic block where the conditional branches 

merge, we can expand the flow graph without changing the flow of control or 

dependence relationships existing in the original flow graph. Basic block cloning creates 

larger trees of basic blocks. This technique is beneficial to the supertrace register 

allocation algorithms. 

Depth first creation of supertraces creates 'long' chains of basic blocks. This 

traversal method visits basic blocks following successor links, starting at the supertrace 

head and terminating at a limit threshold, or upon encountering a basic block containing 

a successor link that is loop back edge. 

Breadth first traversal uses a left to right inorder sequence to build supertraces. 

Supertraces constructed with breadth first traversals create 'wide' supertraces. Limiting 

the size of the supertrace by the number of basic blocks or maximum depth cause the 

number of supertraces in the CFG to increase. 

Cloning a basic block is necessary under two circumstances. If a basic block is 

already in the current supertrace and there is another successor link to the basic block 

we need to clone the basic block. The other condition where basic block cloning is 

necessary occurs when a basic block is already a member of another supertrace. 

Cloning basic blocks under the second condition removes the possibility of branching 

into the middle of a supertrace. 

The algorithm presented in Figure 6-5 is the entry point for supertrace formation. 

We pass a flow graph to the function and set LIMIT-CONDITION to one of the defined 

limits. This function follows lexical links in the flow graph and enqueues basic blocks 

identified as supertrace heads. The inner while loop builds the supertrace by dequeuing 

a basic block and then calling Build-Supertrace(). Cloning basic blocks in 

Build-Supertrace() requires that we rebuild the flow graph spanning tree and loop 

bodies to update internal data structures. 



PROC Supertrace(GRAPH) 
CALL INIT-QUEUE() 
LIMIT-CONDITION = maximum-size I block-count-limit 1 maximum-depth 
NODE = flow graph entry 
while NODE != NULL do 

if NODE is a supertrace head then 
SBHEAD(NODE)=NODE 
ENQUEUE-HEAD(N0DE) 
while queue is not empty do 

TNODE = DEQUEUE-HEAD() 
if LIMIT-CONDITION AND Build-Supertrace(GRAPH,TNODE) then 
rebuild spanning tree for flow graph 
rebuild loops in flow graph 

fi 
elihw 

fi 
NODE = GG-NEXT(N0DE) 

elihw 
END Supertrace 

DRIVER ALGORITHM FOR BASIC BLOCK CLONING 
FIGURE 6-5 

The function Build-Supertrace(), presented in Figure 6 - 5 ~ ,  follows the successor 

links from NODE, adding basic blocks to the supertrace. Successors to the basic block 

that are spanning tree ancestors are targets of back edges or targets of an exit edge. If 

the successor of NODE is not a member of the same loop, the successor is a member 

of another supertrace. 



PROC Build-Supertrace(GRAPH, NODE) 
for all SUCC(NODE), S of basic block, NODE do 

if S is spanning tree ancestor then 
do nothing; S is target of backedge and not member of this supertrace 

elsif S in supertrace & not assigned yet 
if cloning is permitted v PRED-COUNT(S) == 1 then 
if S is a member of the same loop as NODE then 
SBHEAD(S) = SBHEAD(N0DE) 

if depth-first then 
ENQUEUE-HEAD(S) 

elsif breadth-first then 
ENQUEUE-TAIL(S) 

fi 
f i 

elsif basic block already in supertrace 
NEWNODE = COPYNODE(S) 
SBHEAD(NEWN0DE) = SBHEAD(N0DE) 

else basic block must be in different supertrace 
if cloning is permitted A NODE is not a supertrace head then 

NEWNODE = COPYNODE(S) 
SBHEAD(NEWN0DE) = SBHEAD(N0DE) 

fi 
fi 
if NEWNODE was created then 
establish lexical links 
for all SUCC(S), SS do 

establish flowgraph links from NEWNODE to SS 
ro f 
add flowgraph link from NODE to NEWNODE 
remove flowgraph links from NODE to S 
if depth-first then 

ENQUEUE-HEAD(NEWN0DE) 
elsif breadth-first then 

ENQUEUE-TAIL(NEWN0DE) 
f i 

fi 
rof 
if NEWNODE was created then RETURN TRUE 
else RETURN FALSE 

END Build-Supertrace 
TRAVERSAL/GENERATION ALGORITHM BASIC BLOCK CLONING 

We now present an example of creating a supertrace with unlimited basic block 

cloning using a breadth-first traversal of the supertrace. The flow graph in Figure 6-6 

shows a CFG with an if-then-else construct followed by an if-then construct inside a 

loop. The supertrace head is the basic block labeled 'I1. Variable uses and defs are 

inside the basic blocks, one line per instruction. 



Two functions generate supertraces with basic block cloning. The function 

Supertrace-Pass() initializes each supertrace and calls Build-Supertrace() until 

exhausting the queue of potential supertrace members or reaching an imposed limit. 

The Build-Supertrace() function is responsible for processing the successors of the 

basic block, adding legal members or cloning and adding basic blocks already in the 

supertrace. Build-Supertrace() performs basic block cloning and adjusts successor and 

predecessor lists to insert cloned basic blocks into the flow graph. We start the example 

in Supertrace-Pass() where basic block 1 is a supertrace head. We call 

Build-Supertrace0 passing basic block 1 as an argument. In Build-Supertrace0 we 

add basic block 2 into the supertrace and enqueue it so that its successors may follow 

during the breadth-first traversal. Supertrace-Pass() dequeues basic block 2 and calls 



Build-Supertrace(). Build-Supertrace() adds basic blocks 3 and 4 to the supertrace and 

enqueues them. Supertrace-Pass() dequeues basic block 3 and calls 

Build-Supertrace(). Basic block 3 has only one successor, basic block 5. At this point 

we add basic block 5 to the supertrace and enqueue it. Build-Supertrace dequeues 

basic block 4 and passes this as an argument to Build-Supertrace(). The only 

successor of basic block 4 is basic block 5, but it is already in the supertrace. We clone 

basic block 5 creating another copy of this basic block, calling it 5'. Modifications to the 

successor and predecessor lists permit basic block 4 to point to basic block 5'. The 

algorithm assigns basic block 5' to the same successors as basic block 5, enqueue 

basic block 5' and returns to Supertrace-Pass(). We show the supertrace at this point 

in its creation in Figure 6-7. 

We dequeue basic block 5 and call Build-Supertrace(). We add Basic blocks 6 

and 7 to the supertrace and enqueue these basic blocks. Basic block 5' is dequeued 



and sent to Build-Supertrace(). Basic block 6 clones to 6'' basic block 7 clones to 7'. 

Basic block 5' successors are now basic blocks 6' and 7'. Basic block 6 is dequeued 

and sent to Build-Supertrace(). We need to clone basic block 7 to permit basic blocks 

5 and 6 to have unique copies. Cloning basic block 7 creates basic block 7"' added to 

the queue after updating successor and predecessor lists, and flow graph links. The 

queue contains basic blocks 7, 6', 7'' 7". Basic block 7 is dequeued and processed by 

Build-Supertrace(). We add basic block 8 to the supertrace and enqueue it. Dequeuing 

and processing basic block 6' causes the creation of basic block 7"'. We add basic 

block 7"' to the supertrace, enqueue it, and the necessary updating of lists and links 

takes place. We show the supertrace at this point of its creation in Figure 6-8. 

The final sequence of dequeuing basic blocks and cloning creates a unique copy 

of basic block 8 for basic blocks 7', 7", and 7"'. The difference between this final 



sequence and the addlclonelenqueue sequence is when Build-Supertrace0 processes 

basic blocks 8, 8'' 8", and 8"'. The Build-Supertrace0 function performs no action 

because the only successor for basic block 8 is the supertrace head. We must consider 

the back edge of loops as an absolute supertrace limit. The complete supertrace is in 

Figure 6-9. 



Loop Unrolling 

Loop unrolling is possible at the source level, in the intermediate form, or at the 

machine code level. Unrolling loops in flow graphs creates a duplicate set of basic 

blocks. Each set of basic blocks has an induction variable update and a branch 

between the copy of the loop exit and the loop exit. Source level unrolling makes 

provisions so that a single induction variable update occurs. Production compilers often 

introduce preamble or postamble code to increase processor pipeline efficiency in loops 

known to execute an odd number of times. 

Loops in a flow graph are bound by a loop head and a back edge. Loops may 

contain multiple basic blocks arranged in an arbitrary order. Unrolling loops has the side 

effect of increasing the number of forward edges in flow graphs because the cloned loop 

tail must have a flow graph edge to the successor(s) of the original loop tail. This 

optimization has no positive effect on local register allocation. 

We show the loop unrolling algorithm in Figure 6-1. The process of unrolling 

loops requires the identification of loop heads, loop tails, and back edges. If a basic 

block is a target of a flow graph edge from a successor, the basic block is a loop head. 

The edge connecting the flow graph successor to the loop head is a back edge. The 

basic block originating the back edge is a loop tail. Loop unrolling works from the most 

deeply nested loop outward. Input to this optimization is the flow graph of a subroutine. 

Loop heads are basic blocks targeted by a back edge. The algorithm creates clones of 

original loop members. Lexical and flow graph connections establish the original loop as 

a template. Loop unrolling is complete after inserting the copy of the loop into the flow 

graph before the original loop. Changing loop back edges, adding an exit edge, and 

modifying the loop entry edges completes the task. 



PROC ~nroll(flow graph) 
build reverse spanning tree for flow graph 
annotate basic blocks making up loop heads, loop tails & loop membership 
for each loop, innermost to outermost do 

while selected limiting condition not met do 
clone the loop head and all nodes which are members of the loop 
add flow graph links between cloned nodes 
add flow graph links between cloned loop head and PRED(origina1 loop head) 
add flow graph links between cloned loop tail and original loop head 
insert cloned loop before original loop head 
add exit edge between cloned loop tail and original loop tail 
update flow graph links tolfrom original loop head 
update flow graph links tolfrom original loop tail 

elihw 
rof 
rebuild reverse spanning tree for flow graph 
annotate basic blocks in flow graph for loop heads, loop tails & loop membership 

END PROC Unroll 
Loop UNROLLING ALGORITHM 

FIGURE 6-1 

Conclusion 

Loop unrolling and basic block cloning increase the number of basic blocks in 

flow graphs. Loop unrolling by itself does not increase the number of local variables or 

provide for the extension of local variable live ranges. Neither supertrace register 

allocation algorithms benefits from loop unrolling alone. Variable live ranges and the 

number of local variables do not change with loop unrolling. Supertrace formation with 

basic block cloning provides the supertrace register allocation algorithms with local 

variable live ranges that extend beyond basic block boundaries. We show how 

supertraces can form with basic block cloning that extend beyond the confluence points 

in flow graphs. We show how limits can guide basic block cloning within supertraces to 

prevent the number of basic blocks from increasing at a potentially geometric rate. The 

selection of breadth-first or depth-first traversal methods impacts the shape and number 

supertraces within a given flow graph. The use of supertrace register allocation with 

basic block cloning provides potential benefits and new insights into compiler 

optimization techniques. 



CHAPTER 7 
FUTURE WORK AND CONCLUSIONS 

To validate this research, the next step should be experimental. An 

implementation of our algorithms should be compared to a global graph coloring register 

allocator, both with and without a separate basic block local allocator. Some of the data 

that should be collected and studied are listed here. 

The first set of experiments would set the basis for our work. An experiment 

should be run to study how many variables the register allocation phase must deal with, 

and how many of these are basic block local variables. If only a small number of 

variables are basic block local, it is hard to justify a separate allocator for them, if only 

for maintenance reasons. 

An experiment should be run to study the compile time of register allocation 

compared to the number of variables allocated. For a graph coloring global register 

allocator, we expect the compile time to grow faster than linearly with the number of 

variables. The time for a global allocator without a basic block local allocator should be 

compared to the time take when local variables are allocated by the linear algorithm. 

The hope is that removing the basic block local variables from the interference graph will 

allow the global allocator to run much faster. 

The same experiment can be used to collect information about numbers of 

registers used and number of register spills added. The ratio of registers used for local 

variables and global variables should be collected, also. Since the basic block local 

allocator has perfect knowledge about subsequent uses of variables at spill points, it 

should translate into better choices of spilled variables. 



The second set of experiments would study naturally occurring supertraces in 

the control flow graph. First, flow graphs should be studied to find supertraces, and 

data collected about their sizes. The first set of experiments should be repeated, 

replacing the basic block local allocator by the supertrace local allocator. If there are 

relatively few supertrace local variables, using the supertrace local allocator may give no 

compile time or spill performance benefits. 

The third set of experiments would study the effects of unlimited basic block 

cloning. One experiment would study code growth, i.e., how much larger do programs 

get if a compiler does as much basic block cloning as it needs to find maximal 

supertraces. Our initial experiments along this line appear to support the claim that 

most programs grow by a factor of two or less, measured in basic blocks. The second 

set of experiments should be repeated on these maximal supertraces, to see the effect 

of cloning. With a larger program, compile time may again become an issue; the hope 

is that the faster supertrace register allocator on the larger program will allocate enough 

variables that the global coloring allocator on the rest of the variables will be quite fast. 

The final set of experiments would study the effects of cloning limits, and depth 

first vs. breadth first supertrace creation. The limits are important only when unlimited 

cloning creates a program that is too large or takes too long to compile. With different 

limits used and supertrace construction order, the same program may give very different 

performance results. This set of experiments will study the sensitivity of the register 

allocation strategy to the cloning strategy. 

In all the supertrace allocation experiments, the optimal forward allocator and 

nonoptimal faster backward allocator should be compared, to see whether there are 

significant performance benefits or costs for the backward allocator. 

We did not study spill heuristics at all. Depending on how many variables are 

found to be supertrace local, spill heuristics may be either trivial or quite important. 

Some extension of the basic block local "most distant next use" spill heuristic may be 

appropriate and sufficient. 



Future work may also study the idea of using the supertrace allocator to allocate 

global variables as well. This may require insertion of compensation or "fix-up" code 

when entering a new supertrace, if the source and target of a branch have allocated 

some globals to different registers. The advantages of using a fast, accurate allocator 

may outweigh the performance of a true global allocator that can only approximate 

control flow information. 

Conclusion 

We have extended the optimal basic block local register allocator to allocate 

registers to variables that are live across basic block boundaries, but are local to 

supertraces. We have shown two algorithms, one which is optimal in the sense that it 

uses the fewest registers possible, and another which may be more efficient. We have 

shown how to identify supertraces in control flow graphs. We have also shown 

algorithms to enlarge supertraces through basic block cloning. We hope that 

experimental evidence will support our claim this is a viable and useful alternative to 

using global graph coloring allocators. 
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