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ABSTRACT 

Computational scientists typically generate data using a variety of experiments (application 

program executions) that model scientific phenomena. Additionally, accessory programs are 

often developed to analyze the data output from such experiments. Computational scientists are 

thus faced with the twin problems of data and experiment management. These problems are 

exacerbated by the fact that computational programs are developed independently over a long 

period of time, by different groups, on different platforms, and use different formats and data 

structures to represent the experimental data. A central data model developed for a specific 

scientific domain would mitigate the data management problem. However, a central data model 

does not directly address the problem of experiment management or the issue of migrating 

"legacy applications" to the central data model. Ideally, computational scientists are looking for 

an integrated solution to the data and experiment management problem that would also address 

the issues of interoperability and legacy applications. 

Cushing and Maier have proposed a mechanism called a "computational proxy" to 

address the experiment management problem. A computational proxy is an encapsulated 

representation of the information required to run an experiment, such as data inputs, formats, 

platform dependencies" and environmental settings. A computational proxy, in conjunction with a 

central data model, has the information required to manage data and experiments, as well as the 

flow of data between experiments, thus addressing the issue of interoperability. Because of the 

information it encapsulates, a proxy can bind either legacy or new applications to the central data 

model. 

This thesis presents the results of a feasibility analysis of the proxy mechanism. A 

prototype proxy mechanism was implemented for an application program in the domain of 

computational chemistry, in a SUN/Unix networked environment, using the object-oriented 

database management system Objectstore. We demonstrated that the prototype proxy adequately 



performs the tasks of data input, mission control and data capture. The prototype implementation 

also provided feedback that helped in further refining the proxy architecture. 
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CHAPTER 1 

Introduction 

Computational scientists develop models that are computational in nature to represent the 

physical phenomena of interest to them. Computational models have been developed for a wide 

range of phenomena, such as stellar atmospheres, chemical reactions, weather systems and 

molecular structures. ~ o m ~ u t a t i o n a l  models are generally complex mathematical representations 

that are not amenable to analytic solutions and need to be solved numerically. These numerical 

solutions are coded as computer programs and are used to make predictions, which generally 

trigger experiments that, in turn, provide feedback to refine the models. The suite of programs 

available to a computational scientist represents his laboratory, each computational program in 

the suite is analogous to an instrument in a lab and each run of a computational program 

constitutes an experiment. The inputs to and outputs of such computational programs are usually 

data in the form of formatted, ASCII files. 

Frequently, a number of computational programs exist to model the same phenomenon 

within a given scientific domain. Each program may make slightly different assumptions, use 

different approximation techniques or be optimized for some subset of input parameter ranges. 

Additionally, accessory programs are often developed that essentially act as a front-end or back- 

end to the computational program(s), helping the scientist to either prepare the input parameters 

for the experiment or analyze the output from an experimental run. Since the computational 

programs and accessories are developed independently and at different times, by different 

research groups, they are often written in different languages and have different input and output 

formats. Consequently, an accessory program will invariably run with only a (small) subset of 



computational programs and vice versa. It is the syntactic disparity of the input and output that 

inhibits the interoperability of these programs. 

Computational scientists, in their research efforts, have to manage large quantities of 

complex data, while keeping track of which experiment generated the data, which data can be 

used in conjunction with which accessory programs and so forth, while simultaneously keeping 

track of the evolving input and output file formats of the suite of programs they use! A database 

implementing a central data model that encapsulates the relevant semantic information for the 

scientific domain would alleviate some of the computational scientists' interoperability and data- 

management problems, while providing the basic advantages of a database management system 

[13]: 

Data sharing and concurrency control: Output from semantically equivalent 

applications would be centrally available and concurrent updates controlled. 

Data abstraction: A scientist would need to be familiar only with the central data 

model, and would not have to be acquainted with the details of the physical 

representation of the data for each program. 

Data independence: A scientist would interact with the central data model, and be 

shielded from format changes in the database implementation. Programs developed 

with one version of the model would not have to change as the database evolves. 

Query and retrieval: The query facility generally provided with a database would 

allow a scientist to browse the database, without writing programs. 

Scientists have not been tempted to use existing database technology despite the benefits 

above mainly because prevalent record-based database management systems do not address the 

needs of the scientific community [17]. Specifically, record-oriented formats are not well suited 

to represent commonly used scientific data types such as matrices or time-series, or the complex 

relationships that usually exist within scientific data. Object-oriented systems may be better 

suited to represent scientific data, since they provide a richer data model and features such as 

extensibility, encapswlation and inheritance. Early research efforts at the Scientific Database 

Group Laboratory investigated using object-oriented database technology to address the data 

management problems of the scientific community. As part of this effort, we built a data 



repository using an object-oriented database management system to store the results of 

computational experiments. However, we soon realized that populating such a database was a 

non-trivial task. One solution to the problem of populating the database was to automate the 

process of data capture. Automatically capturing the data requires the database to be able to 

communicate with the computational programs generating the data. This raises the issue of 

legacy applications - how can the wealth of legacy application programs and analysis tools be 

interfaced with a such central database? 

Cushing proposed [6,8] an abstract data type, dubbed a "computational proxy" to 

interface a scientific database to a computational program. A "computational proxy" would be 

the locus of experiment control in the experiment management infrastructure. A computational 

proxy would stand-in, within the database, for an active process that is running a scientific 

application. The proxy would provide the database user with a consistent view of different 

applications that may be executing on distributed processors. The proxy could be used for 

specifying computational experiments, generating input to experiments from the database, 

launching and monitoring experiments, and loading output from experiments into the database. In 

effect, a proxy and its related objects would model scientific programs and processes within a 

database. 

The aim of this thesis is a feasibility analysis of the computational proxy. A prototype 

computational proxy has been implemented for an application program in the domain of 

computational chemistry, interfacing it to a computational chemistry database. We chose the 

domain of computational chemistry for the prototype implementation because it is representative 

of the scientific computational domains, exhibiting many of the features that characterize 

scientific databases. Figure I illustrates the characteristic features of scientific databases, and 

notes, on a scale of 1 to 3, (3 being most important) the importance of the feature to the domain 

of computational chemistry. 16, 171. 

The implementation and feasibility analysis of the prototype proxy provided important 

feedback on the applicability of the proxy mechanism and object-oriented database systems to 

the domain of computational chemistry, as well as other scientific domains. Cushing, as a result 



of this work, went on to identify components of the proxy mechanism that needed refinement and 

to determine the system, language and database services required to support the proxy concept. 

User Interfaces 
- 

More Flexible Representational Structures a Appropriate Analysis Operators 

Special Concurrency Support ,a Data Citation Standards a Data Interchange Standards a Metadata 

High Volume, Multi-level Store, Indefinite Retention 

Fast(er) Dataset Transmission a Comparability of Multiple Datasets 

( Interoperability of Multivendor DBMSs 
u 

Quality Assurance Datasets 

Figure 1 : Features of Scientific Databases 

The thesis is organized as follows: Chapter 2 presents a brief overview of object-oriented 

databases, the domain of computational chemistry and the computational chemistry database 

project. Chapter 3 presents the formal definition and functional requirements of the 

computational proxy. Chapter 4 discusses design decisions and implementation of the prototype 

computational proxy for a typical computational chemistry application program within the 

Computational Chemistry Database (CCDB). Chapters 5 and 6 present an analysis of the 

implementation process and our conclusions. 



CHAPTER 2 

Background 

The goal of this thesis is a proof of concept of the computational proxy mechanism. A 

computational proxy would interface a domain database to a stand-alone domain application. The 

prototype computational proxy was implemented for the domain of ab iaitio computational 

chemistry, interfacing the Computational Chemistry Database (CCDB) to the ab initio 

computational chemistry application GAMESS. The CCDB was implemented using the object- 

oriented database management system Objectstore, and the proxy implementation itself drew on 

the features of object-oriented databases. In Section 2.1 we present the main features of object- 

oriented databases. Section 2.2 offers an overview of the domain of computational chemistry, 

and in Section 2.3 we discuss the CCDB. 

2.1 Object-Oriented Databases 

Object-oriented databases constitute a new generation of databases, drawing on developments 

from the fields of artificial intelligence, programming languages and software engineering. They 

provide the traditional database features such as concurrency control, persistent storage 

management, transaction control and a query facility. It has been proposed that object-oriented 

database systems support the following features [2]: 

Complex objects:' Complex objects can be constructed from simpler objects by using the 

appropriate constructors. The minimum set of constructors provided includes the set, list and 



array constructors. The set of constructors is orthogonal to type and can be used on any user- 

defined types. 

Object Identity: Every object in the database has an identity independent of its value. Thus, 

it is possible for two objects in the database to have the same value but distinct identities. 

Encapsulation: Encapsulation is a mechanism for separating an interface for a data type from 

its implementation. Encapsulation promotes modularity and permits changing the 

implementation of a data type without affecting its behavior or any other object in the 

system. 

Types or Classes: Types or classes provide the data structuring mechanism in an object- 

oriented database. The database schema includes a set of types or classes. An object 

belonging to a particular class or type responds to all methods defined for that class or type. 

Class or Type hierarchies: Classes or types defining a database schema may be arranged in a 

hierarchy. A type or class inherits behavior from all types or classes above it in its type or 

class hierarchy. Inheritance provides both a useful modeling tool and a mechanism for 

filtering out shared specifications and implementations. 

Overriding, overloading and late-binding: It is sometimes convenient to use the same name 

for different operations. For example, we may call a set of operations "rotate", where the 

actual rotate operation used may vary based on the co-ordinate system used or the type of the 

object to be rotated. Distinguishing functions based on argument types is called overloading. 

Similarly, the operation "rotate" may be defined for a base class and subsequently modified 

by a derived class. Distinguishing functions based on the class they are invoked on is called 

overriding. Since the type of an object to be rotated may not be known until runtime, the 

correct "rotate" operation cannot be bound to the object until runtime. This runtime support 

for binding the appropriate function is called late-binding. 

Computational Completeness: Any computable function can be represented in the database 

manipulation language (DML). 

Extensibility: The user can add user-defined types to the system whose instances are 

subsequently treated as first class objects. 

Some of the features of an object-oriented database are relevant to scientific 

applications. The features of extensibility, encapsulation, types and inheritance together provide 

a powerful and flexible modeling tool. Using these features scientists can represent scientific 



data types such as matrices or time series, specialized for each scientific domain. These features 

also facilitate code reuse, thus encouraging the use of class libraries. Since implementation and 

behavior can be separated for a class, scientists are shielded (at least to some extent) from 

implementation changes, including changes in class libraries as they evolve. These features also 

provide the flexibility to store metadata information, that is information about the experiment, 

such as the kind of data - raw, calibrated or validated, and source of the data [17]. It is also 

possible to enforce a wider range of constraints and checks on the data in the database, by 

attaching the appropriate behavior to the database classes. The complex object constructors, such 

as the set constructor, permits a scientist to aggregate data in useful ways. For example, all 

experiments performed on methane could be aggregated into one set. The list constructor enables 

capture of order-related information, critical for representing scientific data such as time-series 

or DNA sequences. 

Currently, several object-oriented database systems are available. These include 

commercial products such as Gemstone from Servio Corp., Objectstore from Object Design. 

Inc., Versant form Versant Technology and ITASCA from MCI. Also available are many 

research databases.such as Observer/Encore [22], ~ r e l l i s / ~ w l '  [30] and Postgres 1341. These 

databases provide the features that characterize object-oriented database systems, but differ in 

their implementations, interface languages, platforms, querying facilities, level of user support 

and robustness. Many of them provide additional features such as multiple inheritance, 

configuration management and versioning, and database utilities such as schema evolution and 

database back-ups. 

C 

2.2 Computational Chemistry 

Chemists working in the domain of computational chemistry try to predict the values of 

molecular properties based on computational models of the molecules. There are three main 

methodologies in computational chemistry - molecular mechanics, semi-empirical molecular 

orbital theory and ab initio quantum chemistry [9]. The first two are empirical methods, requiring 

1 TrellisIOwl is no longer available 



some experimentally determined values as part of their input; the third methodology predicts 

values of molecular properties from first principles. These three methodologies overlap in their 

range of applicability. The Scientific Database Group has focused on the field of ab initio 

computational chemistry. 

There exists a rich legacy of ab initio application programs - called "codes" by the 

computational chemists - such as  GAMESS [ I  11, GAUSSIAN [ l a ]  and HONDO [12]. 

Computational chemists also use a range of tools such as graphical visualizers and molecular 

editors. Input to ab  initio calculations for a molecule includes the constituent atoms, the 

coordinates of the atomic nuclei and a first guess at the wave function representing the electronic 

distribution. The wave function is the most complex input, and is generally represented in terms 

of basis functions. The basis functions may be chosen from one of many basis sets. The basis set 

is one of the principal adjustable parameters to any ab initio calculation. Choosing the wrong 

basis set can lead to time-consuming but meaningless results. Furthermore, CPU time and 

memory required for parts of the ab initio calculations vary as the number of basis functions 

(which depends on tht! choice of basis set and size of molecule), ranging from n5 to n!, depending 

on the algorithm used. Many basis sets, e.g., STO-3G [21] and Dunning DZP [lo], have been 

(and are being) developed, each optimized for a set of atoms or for a different type of calculation. 

Thus, the choice of basis set is a highly technical endeavor. A computational chemist familiar 

with the field, but not an expert on basis sets, who wishes to run a computational chemistry 

experiment, would have to: 

Determine what codes and basis sets are available, most probably by talking to the 

system administrator and other computational chemists. 

Determine the combination of codes and basis sets that are optimum for the 

particular molecule and properties of interest. 

~etermind the input parameters required, by reading the available manuals. 

Determine the input and output parameter formats, maybe by looking at the examples 

in the manuals or by examining the input and output files of similar experiments 

performed by him or other computational chemists. 



Determine how to run the experiment, that is, find, and possibly modify, the 

appropriate Job Control Language script required to start the experiment on an IBM 

VMS system or the shell commands required on a UNIX machine. 

Write or  find translators that would enable the output to be used as input to 

accessory programs such as molecular editors and visualizers. 

A bench chemist who is looking for a theoretical basis to explain an experimental result 

currently has two options. He can do the molecular modeling himself, which means going 

through a steep learning curve to familiarize himself with the range of ab initio codes, basis sets 

and input and output formats. A lot of this information, especially the detail of input and output 

formats, is not useful to him in the long run. Alternatively, he can look for existing results on the 

molecular property of interest to him by undertaking a literature search for these properties or by 

approaching computational chemists likely to have performed the computational experiment(s) of 

interest. The lack of a central data repository for the results of computational chemistry 

experiments makes access to results of previous experiments extremely inefficient. 

2.3 The Computational Chemistry Database Project 

The Scientific Database Group at  the Oregon Graduate Institute, in collaboration with 

computational chemist Dr. David Feller at Batelle Pacific Northwest Laboratories (PNL), began 

by investigating the applicability of object-oriented databases in addressing the data access 

problems of the computational and bench chemists. We envisioned the following data access 

scenario for chemists interested in using computational codes: 

Browse a data repository to see what codes and basis sets are available. 

Use the data repository's query facility to retrieve and browse existing experiments 

performed on molecules similar to the molecule under investigation, or to determine 

the properties of interest. Alternatively, use an expert system tool that interfaces with 

the data repository (such as the Computational Chemistry Input Advisor [I51 



developed by Feller at PNL) to determine the optimum choice of code and basis set 

for the problem at hand. 

Start the experiment. 

If the experiment is successful, load the results into the database. 

Such a data access facility would aid both the novice computational chemist and the 

bench chemist. Chemists could have access to a repository of past experiments with means to 

query and browse the data. Expert systems could provide an intelligent interface to the data 

repository, allowing a novice computational chemist to perform such complex tasks as setting up 

the input parameters for an experiment based on inputs to similar experiments performed in the 

past. 

2.3.1 The Computational Chemistry Information Model 

As a first step towards achieving an efficient data access scenario for computational chemists, 

Cushing developed an information model for a computational chemistry database, formulated 

independently of any specific database system [ 5 ,  61. The main aim of the initial information 

model was to capture sufficient information about past runs of successful computational 

experiments to be able to support queries such as: 

List the computational experiments performed on methane. 

List all experiments performed by A. Chemist. 

List all basis sets supported by the database. 

Describe the STO-3G basis set. 

Figure 2 is a diagrammatic representation of the information model. The model consists of 

entities and relationships between entities. An entity in the information model is represented as a 

box with rounded corners. Aggregations of entities are depicted as multiple entity boxes, and 

labeled with the keyword "grouped into". Superclass-subclass relationships are denoted by thick 

lines. Relationships between entities are represented as labeled lines between the entity boxes; a 



dashed line represents a renaming of a superclass-class relationship by a subclass. A cardinality 

of greater than one is indicated by a black dot. Logical entry points are denoted by dotted line 

arrows, and are labeled with the name of the entity attribute that serves as the entry point. Below 

is a brief description of the entities in the information model and the relationships between them. 

Experiment: An experiment entity represents a computational or laboratory experiment that may 

be performed collaboratively by several chemists. An experiment has a molecule as subject and 

produces zero or m ~ r ~ o b s e r v a b l e  properties. The experiment entity also holds information such 

as the date the experiment was started, date completed and the title of the experiment. It is related 

to the chemist, molecule and observable property entities in the model. An experiment is one of 

the two types: 

Computational Experiment: A computational experiment entity represents a type of 

experiment that is run on a computer, using one of the ab initio codes. It uses a basis set 

to represent the subject molecule and produces molecular orbitals in addition to 

observable properties as output. The computational experiment entity is linked to the 

basis set and program package (representing ab initio codes) entities. 

Laboratory Experiment: A laboratory experiment entity represents a traditional 

experiment performed in a laboratory. A laboratory experiment is performed using a 

specific apparatus. A laboratory experiment serves to confirm a computational 

experiment if the value of an observable property determined by a laboratory experiment 

is consistent with the value determined by a computational experiment. Conversely, a 

computational experiment is said to be confirmed by a laboratory experiment when the 

values of their observable properties are consistent. 

Chemist: The chemist entity represents the chemist, that is, the agent, performing experiments. 

Many scientists can collaborate on an experiment, and a scientist is likely to perform more than 

one experiment A chemist may also author basis sets, alone, or in collaboration with other 

chemists. The chemist entity includes identifying information about a chemist, such as name, 

address and email address. 



* is-confirmed-by 

Figure 2: The Computational Chemistry Information Model 



Molecule: A molecule entity is the subject of an experiment, either computational or laboratory. 

A molecule is made of atoms that have a location in three-dimensional space. The molecule 

entity holds the name and formula of the molecule. One molecule is the subject of an experiment, 

and each experiment has one molecule as subject. 

Molecular Orbital: The molecular orbital entity represents an output of a computational 

experiment. The molecular orbital is a mathematical representation of the electronic distribution 

of the subject molecule, as optimized by the computational experiment. 

Program Package: A program package entity represents an ab  initio code on a specific 

platform, and a specific compiler version. It holds information about the platform and the 

compiler. Many computational experiments may be run with the same program package. 

Basis Set: The basis set entity represents the basis functions used to construct the molecular 

orbital for molecules under investigation. Ab initio codes take as input a molecular orbital (wave 

function), which is generally represented in terms of the atomic orbitals of its constituent atoms. 

The atomic orbitals tlkmselves are constructed from basis functions. These basis functions are 

authored by computational scientists, and are optimized for different types of calculations and 

atomic shell configurations. A computational experiment utilizes a single basis set, while a basis 

set may be utilized by many computation experiments. 

Observable Property: An observable property is the output of either a computational or a 

laboratory experiment. It is a property name, value and unit triple. The value can be a simple 

value like an integer or a complex value such as a matrix. The representation of the value 

depends on the property name. An experiment can produce many observable properties, while an 

observable property is produced by one experiment. 

This data model was implemented in four different database systems, by four teams of 

three people each. The aim was to determine the feasibility of implementing a scientific data 

model in an object-oriented database, and subsequently choosing a database for further work on 
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the computational chemistry database (CCDB) project. The four database systems are described 

below: 

EncoreIObserver is  an object-oriented database under development at  Brown 

Universi ty.  The  implementation was done using the f irst  release of Encore .  

Documentation was inadequate, and some of the basic functionality had not yet been 

implemented. The consensus of the implementation team was that the system was not yet 

mature enough to use for the feasibility study [26]. 

Postgres is an extended relational system, under development at UC Berkeley. Adding 

new types in this system was not straightforward, since input and output functions and 

all operators for a type had to be provided when creating the new type. Only data 

members were inherited by subclasses, not methods. Object identifiers had to be used 

explicitly to establish relationships. It also suffered from lack of adequate documentation 

Gemstone is one of the earliest commercially available object-oriented database 

systems, from Servio, Corp. Being an established commercial product, it came with good 

documentation and user support. The implementation team encountered no problems in 

creating new types, methods or in implementing the sample queries. The only major 

hurdle was populating the database [20]. 

ObjectStore is a commercial object-oriented database system from Object Design Inc. It 

has good documentation and user support. The implementation team had no problems in 

creating user-defined types, methods, or in implementing the sample queries. The 

problem faced here, too, was populating the database [7, 321. 
a 

Based on the implementation experiences described above, the choice of a database for 

further implementation was narrowed to ObjectStore and Gemstone. We opted for ObjectStore 

because it was available to us on the SUN. At that time, we had access to Gemstone only on the 

Tektronix workstations. Most of the computational chemistry codes run in the SUNIUnix 
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environment, but not on the Tektronix workstations. Also, computational chemists at PNL 

generally work on SUNIUnix systems. 

2.3.2 Populating the Database 

A 
The experiences of the computational chemistry database implementation teams indicate that one 

of the most time-consuming tasks was populating the database with the results of past 

experiments.  There were two problems. The first problem was correctly establishing 

relationships between new objects being loaded into the database and objects already in the 

database. For example, when loading an experiment into the database, information about the 

chemists who performed that experiment also has to be loaded in the database. Some of the 

chemists performing that experiment may already exist in the database, and not others. The 

question then is: how does one specify chemists so that the experiment is correctly related to the 

chemists already in that database, and new chemist objects are created only for those chemists 

not already in the database? More generally, the issue is how to ensure that object(s) being 

loaded into the database get correctly related to objects already in the database and trigger the 

creation of new objects only when appropriate. This problem is common to loading all databases. 

There are two approaches to solving this problem: 

1. Assign an identifier to each object as it is loaded into the database. Subsequent objects being 

loaded into the database refer to database objects by identifiers. The onus of assigning 

identifiers and mapping from load objects to identifiers falls on the user, programmer or 

programming tool. 

2. Define methods that determine "equality" based on values in "key" fields for every class of 

object in the database [31]. In this approach, we effectively embody in a method what we 

mean for two objects to be semantically the same, in the context of the database. This 

approach entails writing an "equality" method for every type of object as part of the database 

schema. 

We chose the second approach in the CCDB implementation, as it is more general. We 

provide "equality" methods for every class in the database schema. Writing an "equality" method 



for a class allows us to more closely model the real world. For example, an equality method on 

class "Person" could identify a person object with name "Tom Thumb" with another person 

object with the name "Thomas Thumb" by looking in an alias list. 

The second problem was the amount of time and tedious effort required to (i) abstract the 

relevant information from the output files, and (ii) format it for a load program. It is not realistic 

to expect a scientist to go through the tedious steps of abstracting the relevant data from the 

output file, reformatting it for the database, and then loading the data into the database. Even if 

parsing and formatting programs are available, the chemist still has to go through an extra step to 

load the database. Moreover, a scientist will probably have to load the input data into the 

database as well, since it is necessary for him to know the exact input that generated the output. 

Additionally, a chemist may also have to explicitly enter metadata information that appears in 

neither the input nor output files, such as name of chemist performing the experiment or type of 

machine the experiment ran on. Given the amount of information that has to be loaded into the 

database along with output file, it is likely, that the data would not be loaded into the database, or 

would be loaded eithet incompletely or incorrectly. Ideally, the metadata, the input data and the 

output data would be captured automatically into the database. In practice, automatic data 

capture implies the database has the ability to communicate with the computational experiment 

generating the data, to capture the inputs, outputs and metadata associated with the experiment, 

and to convert the data into database objects. 

Cushing proposed that the database system be extended to solve the second problem by 

providing computation services to the chemists. Computation services include the ability to 

generate input from database objects, launch an experiment, and capture the results into the 

database at experiment termination. Extending the database to provide computation services 

alleviates the problem of loading a database with inputs, outputs and metadata as a separate step 

from actually runningYhe experiment. In Chapter 3, we outline Cushing's proposal for extending 

the database to provide computation services and describe the mechanism we have dubbed 

"computational proxies" that implements computation services. 



CHAPTER 3 

Computational Proxies 

In Chapter 2 we discussed our efforts to build a database of past computational 

experiments and our realization that loading such a database was a non-trivial task. Cushing 

proposed extending the database to provide computational services. She proposed a database 

construct called a "computational proxy" to interface a computational experiment to the 

computational database, automating data capture, and thus addressing the problem of populating 

the database. In this chapter, we present the definition and functional specification of the 

computational proxy and discuss its functions. 

3.1 Computational Proxies 

A database extended to provide computation services enables a computational scientist to 

generate input from the database, to launch an experiment using the database input, and to 
4 

capture the results of the experiment at its termination. Computation services can be provided in 

several ways. Cushing [5, 61 explored and rejected two traditional approaches to interfacing 

applications to a database: modifying the computational application to read and write directly to 

the database is impractical, while encapsulating the computational application as a database 

object does not provide adequate flexibility in controlling the running application. Cushing 

proposed that we model computational experiments as database objects, called computational 

proxies. The purpose of the computational proxy is to serve as  the focal point of all 

communication and information about the ongoing experiment it represents. The tasks performed 

by the computational proxy include: 



1 . managing the data input for the launched experiment, accessing the database for the input 

parameters, and creating an appropriately formatted input file, 

2 . controlling and querying an ongoing experiment about intermediate states, and 

3 . capturing output data on termination of the experiment. 
9 

The computational proxy can be defined as an object that "stands-in" within the database 

for each computational experiment about to be scheduled, scheduled or recently completed. It 

encapsulates data and functionality needed by a user to start up, control and capture the results 

into the database from a computational experiment. This approach is "data-centered" rather than 

procedural, because the computational proxy is a database object, with encapsulated behavior, 

that relies on other database objects for information about the application and for input and 

output parameters. 

Functionally, a computational proxy generates the application input file(s) for a 

computational experiment using information stored in the database. The proxy launches or starts 

a computational process, and controls that process as long as it is active. When the process has 

terminated, the proxy parses the output files and places the results into the database. The proxy 

marks the experiment as being completed, but the proxy is not yet deleted. The proxy is deleted 

at the logical completion of an experiment, which occurs when the chemist looks at the results 

and determines whether they should be discarded or made persistent. Figure 3.1 gives a 

simplified functional view of the proxy. The sequence of proxy events as depicted in Fig 3.1 are 

as follows: 

1 . The proxy automatically converts input parameters to particular program formats and 

creates an input file. The proxy may need to transfer the input file to the target 

machine of the computation. 

2 .  The proxy launches (starts up) the computational process on the target machine. 

3 .  The proxy periodically monitors the computational process during the course of its 

execution, and maintains a record that the chemist can access, independent of 

network or operating system details. 

4 .  When the experiment has finished, the proxy automatically parses the output file and 

updates the database with the results. 
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5. Once the Scientist has analyzed the results, the proxy object is deleted. The results 

can be either discarded or made "public" by the scientist. We call this step 

validation. 

The scientist can now launch an entirely new experiment, or replicate an existing 

experiment object, modify its input as needed, and launch the modified experiment. In either 

case, a new proxy is generated. 

request validation A 
Computational 
Proxy 

generate 
launches moors 

Network Service 

Figure 3.1 Computational Proxy functions for managing ongoing experiments 



3.2 Functional Components of the Computational Proxy 

The goal of the computational proxy is to provide the database user with a "transparent" 

interface to experiments performed using different codes or computational applications. By 

"transparent" we mean that the proxy shields the user from the syntactic details of input and 

output files, as well as from operating system and network details. It is important to note that a 

database user never directly sees or invokes a proxy. To provide this transparent interface 

between the database and a computational experiment, the proxy provides the services of data 

input to computational experiments, data capture from their output and control of the experiment 

processes themselves. However, prior to launching any experiment based on a particular 

computational code or application, the database must have access to information about the 

application, such as calculation types supported, input and outputs formats, and the mapping of 

input and output parameters to database objects. We call the process of making information 

about the application available to the database application registration. An application must be 

registered before a computational proxy object can be created for an experiment. Thus, 

registration is  not a computational proxy function, but an ancillary function required by the 

computational proxy. We collectively call the computational proxy and application registration 

the "computational proxy mechanism". We discuss the functional components of the proxy 

mechanism below. 

Application Registration: Before any experiment based on a computational application can be 

launched through the computational proxy mechanism, some information about the application 

has to be available to the database. Registration is the process of providing the database with 

sufficient information about the application and its computing environment to enable the proxy 

to run an experiment and capture its output. The application-specific information that has to be 

registered with the dat35base falls into two categories: 

(i) Information about the application itself. This includes the name of the application, 

the calculation types performed, the version of the application and the target processor 

types. 

(ii) Information required by the proxy to run the application. This includes input and 

output parameters for the different calculations performed, the mapping between input 



and output parameters and the database objects as well as the input and output formats of 

the application. 

Once an application has been registered, the database has the information needed to 

determine the types of calculations performed by the application, the required and optional 

parameters for the different types of calculations and input and output formats (see Figure 3.2). 

Every experiment that is an invocation of this application will access this information to produce 
<.! 

the experiment specific data files and controls. 
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Figure 3.2 Application Registration functions 
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Figure 3.3 Application Input Functions needed by the Computational Proxy 

Data Input: Prior to launching an experiment, the computational proxy goes through the 

following steps to ensure that the appropriate input parameters are available to a computational 

experiment (see Figure 3.3): 

1. Retrieves experimental parameters: Before an input file is generated, all required 

input parameters are retrieved from the database. The computational scientist may 

have to be queried for any missing parameters. The input parameters required by the 

experiment may be specific to the scientific domain being modeled, specific to the 

application or the site. 

2. Generates the input file(s): When a user requests the launching of an experiment, the 

proxy generates the input file(s) for the application. The input file is generated using 



information registered with the database about input formats and mappings from 

database objects to data elements in the input file. 

3. Moves input file to target machine: Finally, the proxy must transfer the input file(s) 

to the processor on which the application is to be run. 

event: user schedules experiment 

input fo  experiment - usually an ASCII f i le  + 
Launch 

Exper iment  
appl icat ion process started 

/ r e v e n t :  user cancels experiment 

user query on resource ut i l izat ion +/ *, 
Cont ro l  Exper iment 's  

Status I 
I (Resource Use)  appropriate response 

\ \  user query on experiment 
r e . g .  convergence status 

Exper iment 's  

(Computa t i od )  appropriate response 

event: appl icat ion process terminates 

Exper iment  db: trigger results capture 

I L db: not i fy user 

Figure,, 3.4 Mission Control functions needed by Computational Proxy 



Mission Control: Once an experiment has been launched, a computational scientist may wish to 

query the ongoing process. Typical queries that a computational scientist may have of an ongoing 

process include: 

L 

Has the experiment terminated? 

How much CPU time and disk space has the experiment consumed? 

How much clock-time has elapsed since the experiment was launched? 

Is the computation converging? 

Since the experiment is unlikely to be running on the same host as the database, mission control 

must interface with the network. Mission control is responsible for launching and canceling 

experiments. Mission control also notifies the proxy when the experiment has completed and 

triggers it to capture the experiment output. Once the output has been captured, the experiment is 

considered moored. 

Data Capture: When an experiment process has terminated, the results of the experiment are 

automatically captured into the database. Two general cases arise when an experiment 

terminates. 

1 .  The application process terminates successfully. In this case, once the proxy is 

notified of successful termination, it parses the experimental results and places them 

in the database, where they can be viewed by the user. Data capture, or mooring, 

must be dstinguished from experiment validation. Data capture is an automatic 

proxy function, which precedes data validation, an explicit user action. Once the user 

validates the experiment, that database is appropriately updated and the proxy 

deleted. 

2. The process terminates, but the computation is incomplete. Data capture after an 

abnormal termination is not straightforward. A computation may have terminated 

abnormally due to insufficient resources. In this case, the user may wish to restart the 

experiment after increasing the resource availability. Or the computation may have 

failed to converge, and in this case the user may wish to change the input parameters 

to the experiment and restart it. 



In either case, the termination status of the experiment has to be noted, the output files (if any) 

have to located, parsed and the output data elements mapped into the appropriate database 

objects. 

Figure 3.5 Experiment output capture functions needed by the computational proxy 
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3.3 Computational Proxies: The CCDB scenario 

B 
In the preceding sections, we presented a conceptual model of the computational proxy 

mechanism as a general method for providing computational services from within a database for 

computational applications that have complex input, output and metadata information associated 

with them. In the context of the CCDB and ab initio computational chemistry applications, the 

computational proxy mechanism solves the problem of loading the CCDB with the results of past 

experiments by providing a mechanism for interfacing legacy computational chemistry 

applications to the CCDB. We emphasize legacy applications, since more options are available 

when interfacing new applications, including writing the application as a CCDB method or 

coding the application to conform to data exchange standards. 

The original goal of the CCDB was to provide a central repository of experimental 

results for the domain of ab initio computational chemistry. Extending the CCDB to provide 

computational services for the domain of ab initio computational chemistry would allow a user 

to: 

1 . Browse the CCDB to examine existing experiments. 

2 .  Execute a database command to load inputs for a computational experiment into the 

CCDB. tb 

3 . Execute a database command to run the experiment. The CCDB may query the user 

for the name of the host or target processor on which to run the experiment. 

4 .  Examine the termination status and outputs of the experiment, and validate the 

results. 

In Section 2.2, we presented the scenario for a computational chemist who wished to run 

a computational chemistry experiment. Without a central database, he has no easy access to the 

results of past experiments. He has to undertake a literature survey and talk to computational 

chemists active in the field to find information about past experiments of interest to him. If he 

wishes to run an experiment, he has to familiarize himself with the syntactic details of input and 

output format for each of the computational applications and basis sets of interest to him. In 



Section 2.3, we presented a user scenario for running computational experiments given a central 

database containing computational results. The results of past experiments are available in one 

central location. When browsing past experiments, the user does not have to familiarize himself 

with the output syntax of different computational experiments, only the database format. 

Information about basis set libraries and their usage can also be gleaned by browsing past 

experiments. However, if he wishes to run a computational chemistry application himself, he still 

has to learn the input and output syntax of the application. In addition, he will have to go through 

a number of steps to load the results of his experiment into the database to make it available to 

future database browsers. Contrast this with the user scenario for a CCDB extended to provide 

computation services. We see that the computational proxy mechanism promises an environment 

for a computational scientist that allows him to concentrate on the science. To  determine the 

feasibility of implementing the computational proxy design, we undertook to implement a 

prototype proxy for the ab initio computational chemistry application GAMESS in the CCDB. In 

the next chapter, we discuss the design and implementation of a computational proxy for 

GAMESS in detail. 



CHAPTER 4 

Computational Proxy Prototype for GAMESS 

In Chapter 3 we presented the definition and functional specifications for the computational 

proxy. The goal of this thesis is to offer a proof of concept of the proxy mechanism. Towards this 

end, a prototype proxy mechanism was implemented in the CCDB, interfacing the CCDB to the 

stand-alone ab initio computational chemistry application GAMESS. In Section 4.1 we present 

an overview of the input and output parameters and formats for GAMESS. Section 4.2 discusses 

the design constraints and architecture of the proxy prototype. In Section 4.3 we describe the 

implementation of the prototype computational proxy. In Section 4.4 we present the validation 

for the prototype proxy implementation. 

4.1 GAMESS 

General Atomic and Molecular Electronic Structure System (GAMESS) is one of the ab initio 

computation applications used by chemists to predict molecular properties [ l  I] .  It determines the 

wave functions for the molecule under study, based on one of a range of quantum mechanical 

methodologies such as the self-consistent field (SCF) or configuration interaction (CI). 

Molecular properties such as minimum energy, vibrational frequencies or optimized geometry 

are then determined, based on the molecular wave functions. GAMESS is written in FORTRAN, 

and available on many platforms, including SUN, DEC and IBM. Input and output is via ASCII 

files. Names of input files, temporary file location and output file locations are communicated to 

GAMESS through environment variables in a Unix environment. 



BASIS group (optional): The BASIS specification allows the user to choose one of the 

internally defined basis sets in GAMESS. The use of this parameter is discouraged at PNL. PNL 

maintains a basis set library, and chemists are encouraged to input basis set values from the 

library. Basis sets can be $xplicitly specified in the DATA group. 

DATA group (required): Global data about the molecule under investigation, such as point 

group symmetry and nuclear coordinates of the symmetry unique atoms are specified in the 

DATA group. The basis functions for the molecule can also be explicitly specified in this group, 

if the chemist prefers not using the internally defined basis set library in GAMESS. The data is 

input as a series of card images (lines) in a fixed order. Each card image is free-format. 

Other groups : A number of other groups can be specified. For example, there is the SCF group 

that provides additional control over the SCFTYP parameters. Similarly, for each RUNTYP 

possible, an additional control group can be specified to either refine or further constrain input 

for that run type. 1 

The description of all possible input parameters and their dependencies is quite complex. 

We learned through discussions with the computational chemists at PNL that most of the 

GAMESS runs at PNL use only a small subset of all possible allowable input parameters. We 

have focused on supporting only a subset of the commonly used input parameters in the 

prototype. Supporting all the parameters would enhance the usability of the database, but would 

take a lot of time and effort on our part to understand the domain, without adding relevant 

feedback on the feasibility of the proxy. The input parameters that we decided to support in the 

prototype are as follows: 

CONTRL group: The TIMLIM and MEMORY parameters are automatically specified by the 

database. SCFTYP can only take the value RHF or the defaults, which are RHF for even number 

of electrons and UHF for odd number of electrons. RUNTYP can be either ENERGY or 

OPTIMIZE. MPLEVL can take all allowed values, provided it is consistent with the RUNTYP 

and SCFTYP values. 



BASIS group: The use of the BASIS group is not supported by the CCDB. Basis set functions 

are input via the DATA group from the PNL basis set library. 

DATA group: In this group, the run title, the molecular symmetry, the nuclear coordinates of the 

symmetry unique atoms constituting the molecule are provided. Also, the basis set functions are 

input from the PNL basis set library. 

Other groups: We do not use any other group to provide additional control information. 

A sample input file for a GAMESS experiment on the water molecule to determine the 

minimum energy using the STO-3G basis set is shown below. The input files for the subset of 

parameters we support follow a simple pattern. The input begins with the CONTRL group 

parameters of TIMLIM, MEMORY, SCFTYP, UNITS RUNTYP and MPLEVL. The CONTRL 

group is followed by the DATA group. First in the DATA group is the title of the experiment, 

followed by the symmetry group of the molecule under investigation. The symmetry group 

specification is followed by each of the symmetry-unique atoms constituting the molecule, with 

its atomic number, position in the atom and its basis functions. 

SCONTRL TIMLIM=999.0 MEWORY=2000000 $END 
SCONTRL SCFTYP=UHF UNITS=BOHR SEND 
SCONTRL RUNTYP=ENERGY SEND 
SCONTRL MPLEVL=O SEND 
$DATA 

Energy - H20/STO-2G/MPO 
CNV 2 

Hydrogen 1.000000 0.000000 -1.430429 0.983250 
S 2 

1 1.309756 0.430128 
2 0.233136 0.678914 

I 

2 
P 

1 
2 

SEND 

Output from a GAMESS run cannot be described by a single, simple pattern or format. 

The output format depends on the input parameters, especially RUNTYP. The properties of 

interest that should be captured into the database and the output file format, vary based on the 



RUNTYP. For example, if the RUNTYP=ENERGY, the property of interest is the minimum 

energy, and the output file format is: 

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR 
1 0 0 -77.004636477 -77.004636477 0.212191918 0.607223863 

* * INITIAXING DIIS PROCEDURE * * * 
2 1 0 -77.071803224 -0.067166747 0.033634539 0.040156078 
3 2 0 -77.072855730 -0.001052506 0.010542709 0.008447370 
4 3 0 -77.072916465 -0.000060735 0.001713877 0.001119763 
5 4 0 -77.072917783 -0.000001318 0.000028962 0.000023533 
6 5 0 -77.072917783 -0.000000001 0.000002953 0.000002268 
7 6 0 -77.072917783 0.000000000 0.000000076 0.000000108 

----------------- 
DENSITY CONVERGED 
----------------- 

FINAL ENERGY IS -77.0729177835 AFTER 7 ITERATIONS 

If the RUNTYP=OPTIMIZE, then the property of interest is the final optimized geometry, which 

includes the nuclear coordinates of the atoms in the molecule and the molecular orbitals. The 

output file format in this case is: 

Geometry Optimization of H20/STO-3G 

COORDINATES OF SYMMETRY UNIQUE ATOMS (ANGS) 
ATOM CHARGE X Y Z 

............................................................ 
HYDROGEN 1.0 0.0000000000 -0.7581188881 0.5369444439 
OXYGEN 8.0 0.0000000000 0.0000000000 -0.0988230797 
COORDINATES OF ALL ATOMS ARE (ANGS) 
ATOM CHARGE X Y Z 

............................................................ 
HYDROGEN 1.0 0.0000000000 0.7581188881 0.5369444439 
HYDROGEN 1.0 0.0000000000 -0.7581188881 0.5369444439 
OXYGEN 8.0 0.0000000000 0.0000000000 -0.0988230797 

HYDROGEN HYDROGEN OXYGEN 

1 HYDROGEN 0.0000000 1.5162378 * 0.9894163 * 
2 HYDROGEN 1.5162378 * 0.0000000 0.9894163 * 
3 OXYGEN 0.9894163 * 0.9894163 * 0.0000000 

* . . .  LESS THAN 3.000 

NUCLEAR ENERGY = 8.9064118624 
ELECTRONIC ENERGY = -83.8723124619 
TOTAL ENERGY - - -74.9659005995 

MOLECULAR ORBITALS 

4 
-1.2575 

A1 
0.155595 
0.155595 
-0.233767 
0.844453 
so. 000000 
0.000000 
0.122830 



4.2 Design of the GAMESS Proxy 

In Section 2.3.3, we discussed why populating the CCDB with the results of successful 

experiments is a hard problem. Cushing proposed the data-centered computational proxy 

mechanism as a way of extending the CCDB to provide computational services and automatically 

populating the CCDB wit4 the experimental results as a by-product of running experiments. We 

have designed and implemented a prototype computational proxy mechanism in the CCDB for 

the stand-alone computational package GAMESS. The goal of the prototype computational proxy 

implementation was to gain a better understanding of: 

the effort involved in implementing the proxy mechanism within the framework of 

an object-oriented database, 

the efficacy of the prototype computational proxy mechanism in interfacing 

GAMESS experiments to the CCDB, and 

the extensibility of the prototype proxy mechanism to other computational chemistry 

packages. 

Design and implementation choices for the prototype computational proxy mechanism 

were guided by the following considerations: 

(i) We wanted the prototype design to be as independent of the particular computational package 

GAMESS as feasible. Although we expected to implement the prototype for the single package 

GAMESS, the computational proxy mechanism was proposed to address the need to interface an 

entire class of applications to a central database, and we wanted the design to reflect this. 

(ii) The computational chemist typically works in a networked environment, containing 

heterogeneous computing hosts. Although our implementation was targeted to be on a network 

consisting only of SUN workstations, we wanted the prototype design to work on heterogeneous 

platforms. 

(iii) The computational proxy mechanism aims at interfacing an entire class of applications to a 

central database. Hence: as a usability issue, it is important that new applications can be 

interfaced to the central database without extensive programming. 



GAMESS is a stand-alone FORTRAN program, typically available on a variety of 

platforms and host machines in the chemist's computing environment. Extending the CCDB to 

provide computational services for GAMESS via the computational proxy mechanism implies 

that a chemist can l a u n c h ~ o n i t o r  and capture results for his GAMESS experiment from within 

the CCDB. Since the chemist may wish to run his GAMESS experiment on any suitable host in 

his computing environment, the GAMESS proxy has to perform the functions of data input, 

mission control and data capture across the network. Thus the GAMESS proxy has to 

encapsulate some level of network communications. One of our first design decisions was to 

encapsulate all network services required by the proxy into an entity we called the Compute 

Monitor. The function of the Compute Monitor is to act as the locus of communication and 

control for experiment processes running across the network. We expect the computational proxy 

for the GAMESS experiment to communicate all control requests to the Compute Monitor, 

which is then responsible for communicating with the appropriate compute host across the 

network. Analogous to the Compute Monitor, we designed an entity called the Database Monitor, 

whose main function is ta  act as the locus of control for all database access by the ongoing 

experiments. For example, when an experiment terminates, the Database Monitor is notified so 

that parsing can be triggered and the results captured into the database. Conceptually, the 

computational proxy mechanism provides two kinds of services: database services through the 

Database Monitor, and network services through the Compute Monitor. 

Figure 4.1 is a diagrammatic representation of the computational proxy mechanism 

architecture outlined above. The computational proxy mechanism comprises the following 

entities: 

Computational Proxy Object: The computational proxy and related objects reside in the 

database. The computational proxy object is essentially a database handle for an ongoing 

experiment. It stores information about the ongoing experiment such as the compute host of the 

experiment and the process identifier. The relationships of an ongoing experiment with other 

database objects is maintained through the computational proxy object. 

Compute Monitor: The compute monitor is the process that encapsulates the interface between 

the computational proxy object and the network and acts as the locus of control for experiments 



running across the network. All experiment control requests made of the CCDB are forwarded by 

the computational proxy object to the Compute Monitor. 

Database Monitor: The database monitor is the process that acts as the locus of control for 

access to the database. It acts as a buffer between the CCDB and the compute monitor, and is 

responsible for transferring data to and from the CCDB and the computational chemistry 

experiments. 

E x p e r i m e n t  

Program S p e c i f i c  
I n p u t s  

0 utp111s 

Figure 4.1 Computational Proxy Architecture 



4.3 Implementation of the GAMESS Proxy 

The first step in the implementation of the prototype computational proxy mechanism was to 

introduce the computational proxy and related objects into the computational chemistry 

information model (Section 2.3.1). As described earlier, the computational proxy and related 

objects store two categories of persistent information, application-specific and experiment- 

specific information. The Computational Application entity in the information model (see Figure 

2.1) already stores some application-specific information, such as name of the package, target 

platform or  compute host, version of the application and compiler version. The entity 

Computational Chemistry Experiment stores some experiment-specific information, such as the 

title of the experiment, its subject molecule, the basis set used and the results (as a set of 

Observable Property). However, information required by the computational proxy mechanism, 

such as input and output formats, compute host or process id, is not stored by either the 

Computational ~ ~ ~ l i c a t ~ o n  or Computational Chemistry Experiment objects. Hence, we 

introduced an entity called a Computational Proxy in the model to store the required information. 

Each Computational Chemistry Experiment entity has either zero or one Computational Proxy 

entity associated with it. The Computational Chemistry Experiment holds the process- 

independent data for an experiment, while its associated Computational Proxy maintains process 

information. A Computational Chemistry Experiment that has not yet been scheduled or that has 

already been validated has no associated Computational Proxy. The Computational Proxy 

essential ly ac ts  as  a place holder in the CCDB for  an ongoing experiment, while the 

Computational Chemistry Experiment represents the experiment in all other respects within the 

CCDB. The Computational Chemistry Experiment itself is linked to the input data, such as the 

Basis Set and Molecule entities, Computational Application entity, output data information such 

as (a set of) Observable property and metadata data information such as performing Chemists(s), 

date started, date completed and CPU time used. 



4.3.1 The Class compProxy 

After modifying the information model, our next step was to implement the Computational Proxy 

entity in the CCDB. We added a class called comp~roxy2 in the CCDB schema to represent the 

Computational Proxy entity. (See Appendix A for a listing of the CCDB schema). An instance of 

the compProxy class is automatically created for every Computational Chemistry Experiment (an 

instance of the class compfiperiment) that is scheduled.  The compproxy instance holds 

information about the experiment process such as process identifier and compute host name. 

Initially, we stored the data format information with the compproxy, since input and outputs have 

to be formatted for every 'experiment. However, data formats are application-specific, and the 

format information is uniform across all experiments based on that particular application. 

Logically, format information should be part of the Computational Application entity 

(represented by the class codepackage in the CCDB). Associating the data formats with the 

compproxy means recording them redundantly for all experiment processes using the same 

codePackage. Therefore we simplified the compproxy class to hold only process information, 

which is  uniform across all applications. Thus a single class compproxy suffices for  all 

experiments, irrespective of codepackage used. Simplifying the compProxy class required us to 

ex tend  the  c lass  codepackage to include format information.  In modifying the class 

codePackage, we considered two alternatives: 

Implementing the class codePackage as a superclass, and deriving a subclass for each 

computational chemistry application in the CCDB from it. The formatting information for 

each application would be stored as member functions in the derived class. We would thus 

use the power of virtual functions to transparently choose the correct formatting method for 

an experiment. For example, from the superclass codePackage we would derive the subclass 

GAMESSPackage to store GAMESS specific format information. This approach is 

conceptually clean: each package has its own subclass and package boundaries are 

maintained. Methods and implementations for one package can be changed without affecting 

- -- 

In the rest of the this thesis, class names will be italicized, command names will be in bold and host names 
will be in Courier. 



other packages. Because of virtual functions, all messages for formatting will appear to go to 

the class codepackage, and a uniform interface is maintained. 

Implementing the Computational Application entity as the class codepackage, with each 

instance of the class codepackage representing a particular application. For example, to 

interface a new application such as Gaussian to the CCDB, we would create a new instance 

of the class codepackage. 

Unfortunately, both these approaches have drawbacks that go against the goals of the 

proxy implementation. Deriving a new subclass from codepackage, as in the first approach, 

requires changing the CCDB schema. A schema change, at a minimum requires a recompilation 

of the CCDB code, and could potentially trigger a need for migrating existing databases to the 

new schema. The version of ObjectStore we used (version 1.2) does not support schema 

evolution. Currently, work is being done on schema evolution, and there are many questions to 

which we do not have answers: Will the schema evolution be on line or off line? How much time 

would it take? How much Qser intervention would be needed? 

We chose the second approach because of the unanswered questions in the approach 

above. Using this approach, we add a new instance in the CCDB for every new computational 

chemistry application. The problem however, is that in C++ and ObjectStore DML, only data 

members of a class can take instance-specific values, member functions apply to the whole class. 

So methods for formatting data apply to all instances of the class codePackage. Thus, in opting 

to instantiate an object for each computational application, we choose not to use the superclass- 

subclass relationship, and consequently, lose the power of virtual functions to determine the 

appropriate formatting methods for a given application. Given this, we considered associating the 

data formatting methods with the compProxy class. What we would have liked to do was to 

create a "master" compP).t?xy when an application was first registered, and clone it for every 

experiment using that codepackage. However, we did not progress along this route as 

ObjectStore does not support cloning of objects. 

Our  solution to the problem with the second approach was to  represent  each 

computat ional  chemistry application as  an instance of the class codepackage, while 

implementing our own means of associating formatting functions with each instance. The class 



codePackage includes the single input formatting function member "fmtBSI". The fmtBSI is 

essentially a function pointer to a case statement that maps from the codePackage name to the 

appropriate formatting function for the computational chemistry application represented by that 

codePackage. We opted to have fmtBSI as a wrapper function, putting the case statement and the 

actual formatting functions outside the database so that on adding a new application, only the 

case statement and formatting functions can be recompiled, rather than triggering a recompilation 

of the entire CCDB code (see code below). 

codePackage::fmtBSI(CompProxie* cp, FILE* ) 

( 
callit (cp, fp) ; 

1 

extern void fmtBSIGAM(CompProxie*, FILE*); 
extern void fmtBSIGauss(CompProxie*, FILE*); 

void callit(CompProxie* cp, FILE* fp) { 
if ( s  trcmp (cp->name, 'GAMESS" ) { 

fmtBSIGAM (cp , fp) 
1 

1 

To interface a new computational chemistry package to the CCDB, with this scheme, we 

f i rs t  c reate  a codePackage instance to represent the application. In the CCDB, a new 

codepackage instance can be created with the loadcp3 command. The codePackage instance 

stores information such as the name of the application, compiler version, date available and 

whether it is an archived or active version. Next, we write the functions required to handle data 

formatting for runs of that codePackage. Then we modify the case statement to include the case 

for the new application, ensuring that the appropriate formatting functions get called for this new 

instance of codePackage. For example, to interface the code package Gaussian to the CCDB, we 

first create a codePackage instance for Gaussian using the loadCP command. The codepackage 

instance contains the name of its data input formatting method, such as fmtGauss. We then write 

the fmtGauss function (outside the database), modify the case statement, recompile these two 

functions, and link the modified functions with the CCDB object modules. 

We have used the approach above for registering only the data input formatting 

functions. We could have followed the same methodology for implementing the data capture 

functions. It is logical for the data input formatting functions to execute on the CCDB server, 

For  a short summary of the CCDB commands, see Appendix C. 
LJ 



since the input functions access the database to retrieve the information to be formatted. 

However, the user may want to control whether the data capture functions are executed on the 

compute host or the CCDB server. The user may wish to examine the output files before the files 

are parsed and the data placed in the database, in which case it makes sense for the files to be 

transferred to the CCDB server, and eventually parsed there. On the other hand, the data files 

may be extremely large, and it may make more sense to parse the output data files and only 

transmit the subset of relevant data over the network. In Objectstore DML, the user cannot 

control where methods execute. Thus, we devised an alternative approach to register the data 

capture information, so that the user has some control over where the output data parsing occurs, 

as is discussed in Section 4.3.2. 

We have outlined above our first effort at implementation of the application registration 

functionality of the computational proxy mechanism. Lessons learned from this implementation 

helped us develop a more general approach, discussed in Chapter 5. 

4.3.2 The Data Control Functions 

In Section 4.3.1, we described how we modified the class codePackage and introduced the class 

compProxy to implement a first version of application registration and to provide a place-holder 

for information required for mission control in the database. The computational proxy 

mechanism for GAMESS must be able to handle data input, data capture and mission control for 

a GAMESS experiment. We refer to these functions as the data control functions. In this section 

we describe how we implemented the functions to manage the data input, data capture and 

mission control of GAMESS experiments. 

Da ta  input  f o r  a GAMESS run requires accessing CCDB objects related to the 

compExperiment instance for input information and creating an input file with the appropriately 

formatted input data. We have written a method, fmtGAMESS (Appendix B), that is called from 

the fmtBSI method of cl$ss codepackage to handle the data input for a GAMESS run. The 

prototype implementation limits the types of GAMESS calculations supported within the CCDB 
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to a few typical run types. The formatting information for the input of these types of runs was 

quite uniform and easily encoded within the fmtGAMESS function. The function fmtGAMESS 

retrieves data from the compExperiment object and its associated BasisSet and Molecule in the 

CCDB.  Each BasisSet is essentially a collection of basis functions for different atoms, derived 

under the same assumptions. As part of the data input, the basis functions for the atoms 

comprising the subject molecule are extracted from the BasisSet into a BasisSetlnstance. The 

information about basis functions is appropriately formatted and added to a *.inp file. The 

extension ".inp7' is required by GAMESS. We generate a unique name for the file, using parts of 

the chemist's name, molecule name and the basis set used. For a more general solution, we would 

probably append date and a random number (making for very long file names). The generated 

file name is communicated to the associated compProxy. From a chemist's perspective, all he 

does is to execute the command mnCE, and the CCDB launches the experiment on the compute 

host requested by him. 

Mission control of a GAMESS run can be at two levels. At the process level, information 

about a GAMESS run, such as CPU time used and disk space are monitored. At the computation 

level, intermediate stages of a GAMESS computation are monitored. The intermediate values of 

interest include the minimum energy calculated at each iteration and the intermediate geometry 

for a geometry optimization run. A GAMESS run, irrespective of type of calculation it performs, 

iteratively computes the minimum energy and molecular orbitals. The molecular orbitals that 

describe the electron distribution of the molecule are output as a matrix of coefficients of the 

basis functions. Typically, a computational chemist uses a visualization program to display the 

molecular orbitals. Ideally', a computational chemist would like to see the minimum energy (and 

possibly also the first derivative of the energy function at the minimum energy) displayed 

graphically, and a visual depiction of the molecular orbitals, updated at every iteration. We have 

not implemented any monitoring of intermediate computational values, because (i) monitoring 

intermediate computational values is similar to parsing the output values, as both the 

intermediate values and the final values are written to the same output file and in the same 

format, and (ii) to the best of our knowledge, computational packages currently do not provide an 

easy way to examine intermediate computational values either. Thus, we have opted, given the 

time constraints, not to duplicate functionality in this feasibility study. 



An interested chemist currently monitors his experiment at the process level by 

executing the appropriate process status command on the machine running his GAMESS 

experiment. We implemented the equivalent mission control functionality at the process level in 

the CCDB command queryCE. The queryCE command has been implemented as a CCDB 

command rather than a method associated with the codepackage o r  compProxy class because 

accessing process level information is  uniform across all experiment processes of all 

applications. Essentially, we are querying the operating system about a process, and the only 

information that is retrieved from the CCDB is the process id and compute host. In response to 

the queryCE command, the title of all experiments that have not been validated are displayed. 

The chemist can enter the number of the experiment he wishes to query. The queryCE command 

causes a "ps" to be forked on the host where the experiment is running, and displays information 

about the process such as CPU time used and process status. If the experiment process has 

terminated, the CPU time used, termination time and termination status are displayed. The Unix 

ps command itself is not portable, but most operating systems provide a similar interface to 

determine process status. 

At the normal termination of a GAMESS run, the output data has to be captured into the 

CCDB. For a GAMESS experiment, the output data is in an output file, which has to be parsed to 

extract the relevant properties and values into the appropriate CCDB objects. The format of the 

output files exhibits much' more variation than the input file formats, even in the limited types of 

GAMESS runs supported by the CCDB. The output format depends on the type of calculation 

performed, the molecule, and the basis set used. Hence, it is more difficult to encode the output 

formats than the input formats. Given the complex dependency of the output formats on both the 

input and the type of calculation performed, we chose to capture the minimum energy only. The 

minimum energy is output by all GAMESS experiments, and in the same format. We have 

written a PERL [36] script that parses the output file for the minimum energy value, and updates 

the minimum energy attribute of the compExperiment object. The output formatting functions 

differ from the input formatting functions in that the chemist may wish to control, on a per 

experiment basis, where the output is parsed. The input formatting functions are linked into the 

CCDB code, are called through the codePackage member function fmtBSI, and always execute 

on the client host. We could have written an independent C parsing program that was called on 

experiment termination, but then we would have to ensure that an appropriate executable was 



available for all compute hosts. Instead of dealing with cross-platform compiler issues, we chose 

PERL, which is portable and interpretive, and the script is small enough to be shipped over the 

network if not found on the compute host. 

An experiment is considered to have finished or terminated only after the chemist has 

examined the output and decided whether it should be made persistent or discarded. We call this 

step validation. A chemist validates the result of a CCDB experiment using the validateCE 

query. On validation, the compProxy is deleted. The minimum energy is either maintained (as a 

compExperiment attribute) or deleted, depending on the chemist's request. The prototype 

implementation does not incorporate any security measures and permits any user to validate any 

completed experiment. 

4.3.3 The Compute Monitor 

The Compute Monitot i s  the part of the computational proxy mechanism that coordinates 

communications between the proxy and experiments that may be running on a variety of compute 

hosts on the network that constitutes the chemist's working environment. All requests for 

launching an experiment from the CCDB are directed to the Compute Monitor. Ideally, the 

Compute Monitor would be able to either recommend a host for the experiment based on 

availability of the application, projected resource requirements of the experiment, resources 

available on the compute hosts and load information, or automatically schedule the experiment 

on the optimum choice of compute host. In the prototype implementation, however, the chemist 

specifies the compute host for the experiment. Once an experiment has been scheduled, the 

Compute Monitor coordinates all communications between the CCDB and the experiment, 

including transferring input and output files, output property values and mission control requests. 

In a network of heterogen&us compute hosts, we expect the Compute Monitor to handle the data 

conversions that may be required in moving data from one host to another. We have designed the 

Compute Monitor to be autonomous because the functions the Compute Monitor performs are 

not specific to the domain of computational chemistry. The Compute Monitor essentially 



encapsulates the communications from a database to diverse applications running in a 

heterogeneous network. 

The Compute Monitor consists of a "monitor" daemon process running on the CCDB 

host and "compute" daemons running on each compute host on the network that may be host to 

an experiment launched from the CCDB. Requests to launch, monitor or moor an experiment are 

directed by the CCDB to the appropriate compute daemon. At the termination of an experiment 

process, the compute daemon transfers the output files or property values to the monitor daemon, 

which then updates the CGDB. 

In the prototype implementation, the CCDB resides on the SUNIUnix platform smoked. 

Two SUNIUnix platforms, smoked and coho are networked together and have a shared file 

system, managed by NFS. GAMESS can be invoked on both smoked and coho. The prototype 

Compute Monitor manages communications over the network between the CCDB and GAMESS 

experiments running on smoked or coho. The CCDB Compute Monitor consists of a monitor 

daemon, running on smoked, and a compute daemon running on each of smoked and coho. 

A computational chemist who wants to run a GAMESS experiment executes the CCDB 

command runCE. The command requests the name of the host on which to run the GAMESS 

experiment. The request t6 schedule a GAMESS run and the input file are communicated by the 

CCDB to the compute daemon on the requested compute host via the Compute Monitor. The 

compute daemon sets up the environment for the GAMESS run on the requested host and then 

starts the GAMESS process. The process ID (pid) of the process is communicated back to the 

CCDB, and placed in the appropriate compProxy object, providing a mapping from the 

compExperiment instance to the running experiment. When the process terminates, notification is 

sent to the monitor daemon on the CCDB host. The CPU time used, the termination time and the 

termination status, and the location of the output files are also communicated to the monitor 

daemon, which then updates the compProxy object. 
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The monitor daemon manages all communications from the compute daemons to the 

CCDB. Figure 4.2 sketches the communications between the monitor daemon, the compute 

daemon, the proxy and the CCDB. A CCDB client, Client A, schedules an experiment, ExpA, 

using the CCDB command runCE. A proxy is created for ExpA, the input file is generated, and 

the input file name and the compute host name are communicated to the compute monitor. The 

compute monitor transfers the input file and the compute request to the appropriate compute 

daemon. The compute daemon starts the experiment and communicates the process id back to the 

compute monitor, which returns this information to the proxy. Subsequently Client B may 

request the status of ExpA. The proxy forwards the status request and the process host and id to 

the computes monitor, which executes a ps on the compute host. Communications between the 

CCDB and the daemons are effected by sockets. Sockets are more portable than remote 

procedure calls (rpc). 

4.4 Validation 

4.4.1 Summary of Implementation 

The prototype computational proxy was implemented on a SunfUnix network consisting of two 
r. 

hosts: smoked and coho. The hosts smoked and coho use a file system shared through Sun 

NFS. The computational package GAMESS could be run on either smoked o r  coho. The 

machine smoked was the CCDB host and ran the monitor daemon. A compute daemon was run 

on both smoked and coho. The computational proxy implementation used the ObjectStore 

DML, PERL and Unix system calls, specifically the socket interface. The tools used were the 

ObjectStore schema designer and the ObjectStore browser. We relied on the ObjectStore browser 

and printing to stderr for debugging, because at the time of the implementation, the Sun 

debugger, dbx,  had not been modified to work with the ObjectStore DML. The entire 

implementation for the computational proxy prototype was completed in eight months by a single 

programmer, working half-time. 



4.4.2 Validation 

The goal of this study was to implement a prototype of the computational proxy mechanism that 

would enable us to study the feasibility of implementing a full-fledged computational proxy 

mechanism based on current technology, and the generalizability of the mechanism to handle 

other run types and other computational chemistry codes. Towards that end, we outlined criteria 

to ensure that the prototype fulfilled the key functional requirements of the computational proxy 

mechanism. 

The computational proxy mechanism aims to provide a seamless interface between a 

domain database and a domain application. Through the process of application registration, the 

computation proxy "knows" the application-specific information it needs to handle the functions 

of data input, mission control and data capture for each experiment run of a registered 

application. Proxy functions must be provided in a networked environment, which is the typical 

working environment of computational scientists. 

For this thesis, we implemented a prototype computational proxy in the CCDB for the 

ab initio computational chemistry application GAMESS. Prior to the implementation, we 

identified certain tasks that the prototype should perform to demonstrate at least minimum 

functionality in the areas mentioned above. These tasks were: 

Adding new experiments to the CCDB and browsing the existing experiments. 

Adding and browsing experiments are really database capabilities rather than proxy 

requirements. However, we cannot run an experiment from the CCDB unless data for 

the experiment resides in the CCDB. 

Running at least one type of GAMESS experiment from the CCDB, which would 

demonstrate that data input for at least one type of GAMESS experiments could be 

handled by the prototype computational proxy implementation. 

Running GAMESS on at least one host other than the CCDB host to demonstrate the 

ability to address the need for providing a networked environment to the chemists. 

Automatically capturing at least one result of a GAMESS run into the CCDB to 

demonstrate the data capture functionality. 



Implementing at least one mission control query on a running GAMESS experiment 

to demonstrate the monitoring capabilities. 

We have implemented the CCDB commands loadCP (to create a new instance of 

codepackage), loadCE (to load the input data associated with a compExperiment), CE (to 

browse existing compExperiments), runCE (to schedule a compExperiment), queryCE (to check 

on the status of a scheduled compExperiment) and validateCE (to validate a compExperiment). 

When a user invokes runCE, he is presented with the list of experiments in the CCDB. He can 

opt to run zero, one or more experiments. For each experiment to be run, the name of the 

compute host, smoked or coho, is requested. The input files are automatically formatted and 

shipped to the requested compute host and a GAMESS experiment process is started on it. When 

the GAMESS process terminates, the minimum energy is captured and stored in the CCDB. The 

user, at any point, can invoke the command queryCE, and is presented with a list of unvalidated 

experiments. He can request the process status of any experiment in the list. If the process 

corresponding to the selected experiment is still running, the Unix process status request "ps" is 

forked on the compute host and the information relayed back to the user. If the process has 

terminated, the termination status and CPU time used, which are stored in the CCDB, are 

displayed for the user. The user can execute the command validateCE to validate an experiment. 

Validating an experiment means that the user examines the result (the minimum energy in the 

prototype implementation) and decides if the value is meaningful or  not. If he deems it 

meaningful, the value is stored persistently in the database, otherwise the value is rejected. With 

the commands runCE, validateCE and queryCE a CCDB user can perform the functions of 

launching an experiment, have the results automatically captured into the CCDB and monitor an 

ongoing experiment. The application-specific information required for GAMESS has been stored 

in the CCDB. The application registration mechanism used for GAMESS can also be used to 

register other computational chemistry applications with the CCDB. The prototype performs the 

functions of data input, mission control and data capture within a networked environment, and 

thus we can view the prototype as a valid computational proxy implementation. 



CHAPTER 5 

Analysis 

In Chapter 4, we described the design and implementation of the prototype computational proxy, 

for the computational application GAMESS. The aim of this thesis was to implement a prototype 

proxy to demonstrate the feasibility of the computational proxy mechanism, and to provide a 

basis for better understanding its usability and extensibility. Section 5.1 deals with the usability 

of the proxy and analyzes how effectively the prototype met the proposed functional 

requirements. In Section 5.2 we present an analysis of the feasibility of implementing a full- 

fledged computational proxy mechanism in an object-oriented database. Section 5.3 discusses the 

extensibility of the prototype to other computational chemistry applications. 

5.1 The Prototype Computational Proxy 

A prototype proxy was implemented for the computational chemistry application GAMESS in 

the CCDB, for a network of homogenous compute hosts. The implementation helped us better 

understand: 

the efficacy of the prototype computational proxy mechanism in interfacing 

GAMESS experiments to the CCDB, 

the effort Xeeded to implement the proxy mechanism within the framework of an 

object-oriented database, and 

the extensibility of the proxy mechanism to other computational chemistry packages. 



The prototype proxy mechanism implemented minimal, representative functionality in the areas 

of data input, mission control and data capture. Additionally, the proxy prototype encapsulated a 

mechanism for registering applications and network communications. While designing and 

implementing the prototype proxy, we always kept in mind that: 

(i) Although we expected to implement the prototype for the single application 

GAMESS, the computational proxy mechanism was proposed to address the need to 

interface an entire class of applications to a central database. Thus we tried to keep 

prototype design and implementation as independent of the computational package 

GAMESS as feasible. 

(ii) The computational chemist typically works in a distributed computing environment, 

containing heterogeneous computing hosts. Our implementation was targeted for a 

network consisting of SUN workstations only. The prototype design is aimed at a 

network of heterogeneous compute hosts. 

(iii) The proxy mechanism aims to interface an entire class of applications to a central 

database. Thus, as a usability issue, a computational chemist should be able to interface a 

new computational application to the database without an extensive knowledge of 

programming or database systems. 

In the remainder of this section, we discuss the implementation choices made and the 

lessons learned while implementing the computational proxy's functionality of application 

registration and data control within a networked environment. 

5.1.1 Application Registration 

Application registration is the process by which application-specific information is registered in 

the CCDB. Information required by the CCDB to interface with an application includes 

information such as the name of the application, the version, the type of calculations performed, 

input and output file formats, as well as a mapping from CCDB objects to input and output file 

data. As a usability is'sue, this process should not require extensive programming or database 



knowledge, so that an expert user of a computational chemistry application can interface that 

application to the CCDB. 

In the prototype implementation, application registration has two parts. Application 

information such as name of the application and version is loaded into the CCDB through a 

interactive, user-level command loadCP. The input and output formatting information for 

GAMESS has been provided via functions outside the CCDB. The information was intentionally 

placed outside the CCDB, since we wished to avoid recompilation or schema evolution problems 

when adding a new application. There are several disadvantages to this approach. The functions 

are outside the CCDB, and therefore, cannot be browsed, dumped, backed-up or queried along 

with the rest of the CCDB data. Furthermore, writing such formatting functions requires 

programming knowledge, knowledge of the database schema and of course, the application. In 

addition, the functions must be re-programmed for each application, i.e., we cannot reuse any of 

the work done in interfacing previous applications. This approach makes it relatively hard to 

interface a new application using the prototype. Despite these disadvantages, we chose this 

approach because it was the optimum choice for the prototype implementation. Writing 

formatting functions is the simplest solution, especially in this case, where the programmer 

writing the application registration functions is the same as the database implementor. Because 

the prototype was aimed at interfacing only GAMESS to the CCDB, lack of code reuse was not a 

deterrent. Any approach to application registration that minimizes programming for the 

application registrar increases programming complexity for the database implementor. Prior to 

implementing the proxy prototype, we had no experience in implementing application 

registration. We reasoned that it would be difficult to design an application registration interface 

for the non-programmer without any application registration experience on our part, and that the 

experience gained in the procedural implementation would be useful in designing an interface for 

the non-programmer. 

As is obvious from the discussion above, the prototype application registration 

arammer to implementation did not meet our goal of an interface that would enable a non-pro, 

interface a computational chemistry application to the CCDB. However, the exercise of 

developing even this simplistic, procedural interface for registration of input and output 

functions provided us with important feedback for refining the functional requirements and 



redesigning the application registration function. The experience of the prototype implementation 

emphasized the following design criteria: 

1 . From the perspective of the database implementor, the registration mechanism should be 

general and not require custom programming for each new application. 

2 . The mechanism should be part of the database, not outside it. 

3 . Adding a new application should not trigger a schema evolution or even a recompilation of 

the database. 

4 .  From the perspective of the application registrar, the mechanism must assume minimum 

programming knqwledge on his part, provide an easy mechanism to map input and output 

data onto CCDB objects, require minimal knowledge of the database schema, and provide a 

mechanism for specifying multiple, complex input and output file formats and a way of 

associating the correct output format based on an experiment's input. 

From the database implementor's point of view, the application registration mechanism 

generates data that shtbuld be placed inside the CCDB. The best way to store data in an object- 

oriented database - especially if we want to avoid recompiling the database for every new 

application - is as database (persistent) objects. Persistent objects are easy to create, can be 

browsed, queried, dumped and backed-up with the rest of the database. The Objectstore DML 

does not support functions at the instance level, so new instances of objects require no new code 

and hence can create no recompiling problems. The experience of the prototype implementation 

suggested that an alternative to the procedural approach would be to store the input and file 

formats as objects in the database. We have tentatively named these objects "templates", since 

they specify the template to be used to generate the input and parse the output files for each 

application's experiments. The next question is: how can these templates be created? Logically, 

the registrar would either create or cause the templates to be created when interfacing an 

application to the C C ~ B .  Since the registrar need not have any programming experience or 

knowledge of the database schema, we have to provide him with a way of specifying the template 

objects. One way of doing this would be to develop a simple, declarative language to specify the 

input and output formats to the CCDB, and let the CCDB generate the appropriate template 

objects. Cushing has refined this approach, and with Abel, defined a declarative language, 

Computational Chemistry Output Language (CCOL) to specify output formats, and a 

Computational Chemistry Input Language (CCIL) to specify input formats to the CCDB [I ,  51. 



5.1.2 The Data Control Functions 

The data control functions provide the ability to a chemist to launch, monitor, parse and moor a 

GAMESS experiment from within the CCDB. The data control functionality in the prototype 

implementation is managed by the CCDB commands runCE (data input and data capture), 

queryCE (monitoring). It was fairly straightforward to implement the representative data control 

functionality once we encapsulated all functionality dealing with communicating over the 

network using the Compute Monitor. There are two issues that will need attention in any full- 

fledged computational proxy implementation. 

(1 ) In the prototype implementation, GAMESS experiments could be run on one of two SUN 

workstations, smoked, the CCDB server, or coho. Since smoked and coho share an N F S ~  

file system, we did not face the problem of shipping output files over the network from the 

compute host to the CCDB server. The output files tend to be large and transmitting them 

over the network using the socket protocol implemented by the prototype can be time 

consuming. A chemist may wish to have alternative mechanisms for transferring such files, 

especially as a shared file system across all compute hosts may not be the norm. One option 

is parsing the output file on the compute host, and having only the relevant data transmitted 

back to the CCDB server. Having the ability to parse the output on the compute host is even 

more useful if the compute host is faster and more powerful than the CCDB host or if the 

underlying database is a distributed database. A more general implementation of the proxy 

mechanism should support multiple file transfer protocols, provide a mechanism for parsing 

files on either the compute host or the CCDB server, and consider the impact of distributed 

databases on the Compute Monitor design. 

(2) We have not implemented any monitoring of the computation state itself. Currently, a 

chemist can monitor a computation by browsing intermediate files written by the experiment. 

The main point ofkuch monitoring is to terminate a computation that seems to be diverging 

before it uses a lot of system resources. To provide monitoring at the computation level, we 

would be looking at intermediate values such as the number of the iteration, the current 

minimum energy and the energy gradient. We would need a parser, similar to the output 

NFS is a registered trademark. 



parser, for the intermediate files. The most elegant way to monitor an application would be to 

have the intermediate results passed directly to an application-specific browser or visualizer 

that would display the results appropriately. More generally, it would be useful to interface 

accessory programs such as visualizers and analysis tools to the database in addition to the 

computational codes. The computational proxy mechanism is a viable way to do so, as long 

as the accessory programs have the same information model as implemented by the database. 

5.1.3 The Compute Monitor 

The Compute Monitor encapsulates all network communications between the CCDB and 

ongoing experiments. The Compute Monitor in the prototype consists of the monitor daemon 

running on smoked, and compute daemons running on both smoked and coho. All data 

control requests by the CCDB are routed to the Compute Monitor, which then takes the 

appropriate action. Both smoked and coho are SUN workstations, thus the prototype Compute 

Monitor did not deal with issues arising from porting data to a different architecture or handling 

system request across diverse operating systems. For example, one of the requests handled by the 

prototype Compute Monitor implementation is the monitoring function queryCE, which causes 

the Unix process staths request "ps" to be forked on the compute host. This implementation of 

the mission control command queryCE works in the prototype since the compute hosts on the 

network are Unix machines. In a network consisting of hosts running diverse operating systems, 

interfaces to access process information will vary with the operating system. Thus a more general 

implementation requires extending the Compute Monitor to include a portability layer. The 

function of the portability layer would be to map the CCDB commands to the appropriate 

operating system calls when requesting process information or exercising process control in an 

environment containing heterogeneous operating systems. 

We initially separated the data control functions from the network communications 

because the data control functions require familiarity with the domain of computational 

chemistry, while netwbrk communications require familiarity with the operating system. This is 

true even when the functionality of the Compute Monitor is extended to address portability 



issues. At the end of the prototype implementation phase, we realized that the Compute Monitor 

was totally independent of the domain of computational chemistry. By integrating the Compute 

Monitor into the computational proxy mechanism, we have reduced the complexity of the 

chemist's environment - without reducing its flexibility or power. The Compute Monitor 

incorporates functionality that is useful in any domain where multiple applications, running 

across a network of heterogeneous platforms, need to access data in a central database. Partial 

solutions to this problem are available. Most databases that have client-server model will handle 

data layout conversions across heterogeneous platforms. Standards such as OLE [4] and CORBA 

[33] permit applications to exchange data (one application could be a database application), but 

for this to be possible, both applications must conform to the protocol. Thus, simply having an 

OLE or CORBA compliant database application does not address the issue of legacy 

applications, since legacy applications are not OLE or CORBA compliant. 

5.2 The Computational Proxy and OODBMS 

We have implemented the CCDB and the prototype computational proxy for GAMESS on the 

object-oriented database management system (OODBMS) ObjectStore. OODBMSs provide a 

richer modeling capability than the traditional record-based database systems. During the course 

of the implementation, we used many of the object-oriented features of ObjectStore. The object- 

oriented features we used most extensively included the support for types and classes, which 

enabled us to implemkrnt the entities and their relationships in the information model (see Figure 

2) relatively easily. For example, a chemist5 can perform zero or more Experiments. 

Conversely, an Experiment can be performed by one or more Chemists. Objectstore's support 

of one-to-one, one-to-many, many-to-rhany, one-way and bi-directional relationships made the 

implementation straightforward. ~xtenbibi l i t~  allowed us to define domain-specific data types, 

such as molecular orbitals and basis set instance. Support for complex objects enabled us to 

construct more complex objects ba$ed on the user-defined classes. For example, each 

compExperiment in C C D B has a ~adisSetlnstance associated with it . The BasisSetlnstance 

specifies the  particular basis funt t ions ,  generated from the BasisSet u s e d  by t h e  

'1n this section, we use bold to represent en I ities in the information model, and italics for CCDB classes. 

I 



compExperiment, f o r  each a tom in the subject  molecule .  W e  have implemented the 

BasisSetInstance a s  a l i s t  of AtomBs, each of which is a list of contractions, where each 

contraction is a list of primitives. A primitive contains a contraction and a coefficient, both of 

which are floating point numbers. (See Figure 5.1 .) Encapsulation allowed us to associate 

meaningful behavior with the domain specific types. For example we used encapsulation to 

associate "equality" methods with class Chemist in the CCDB.  We used support for inheritance 

to factor out common behavior of labExperiment and  compExperiment into the superclass 

Experiment. We would have liked to use virtual functions to associate the appropriate formatting 

functions for a scheduled experiment. As described in Section 4.2, we opted not to do so. 

Basis Set Instance m 
AtornBSList I f AnAtomBS 

AtomicNumber: 1 

description: [3S]->[IS] 

energyType: RHF 

PrirnitiveList 

coefficient: 0.44 

Figure 5.1 Basis Set Instance Implementation 

Other object-oriented features did not affect the CCDB implementation much. For 

example, the Objectstore DML is computationally complete, but this feature did not play a role 

when building the prototype. However, computational completeness will be an important 

consideration when going beyond the legacy applications and considering the development of the 



next generation of computational chemistry applications. The object-oriented concept of object 

identity says that two objects need not be identical even if they have the same values. For the 

CCDB implementation, this implied that we would have had to specify the database identifier to 

uniquely identify the Chemist when loading in a new Experiment performed by that Chemist 

into the database. In order to correctly associate objects being loaded into the database we 

provided "equality" methods for every class in the CCDB. The "equality" methods in the CCDB 

essentially say that ttiro objects can be considered equal if the key data values match - an 

approach taken from relational databases - and allow us to associate objects in a semantically 

meaningful way, even without knowing the database identifiers of the objects. 

Two ObjectStore tools that we used were the schema designer and the database browser. 

We entered the entities and their relationships graphically from the information model into the 

schema designer, and the schema designer created the class definitions in ObjectStore DML (a 

superset of C++). Method names and signatures could also be entered through the schema 

designer. The biggest drawback to the schema designer is that subsequent changes made directly 

to the ObjectStore DML schema file are not reflected in the graphical display. This tool was very 

useful to us in the initial phases of designing the classes to implement the information model, and 
t 

provided useful documentation of the CCDB schema. However, we rarely used it in the latter 

stages of the implementation, because it was hard to keep the schema designer data up-to-date, 

and because the database browser provided a way to browse the most up-to-date schema. The 

database browser was indispensable when we were populating the CCDB. Using the browser, we 

could examine both the schema and the persistent objects in the CCDB. It was easy to follow 

references to other objects. The biggest drawback of the database browser is that member 

functions cannot be executed from the browser. Queries written in the ObjectStore query 

language can be run against the database, but not member functions. The browser, as the name 

implies, is read-only. Changes cannot be made to the database through the browser. So, we could 

not use the browser to correct erroneously entered data values, or to populate the database with 

test cases. The browser also displayed only two digits after the decimal point, which is frustrating 

when examining floating point numbers associated with scientific experiments. 

ObjectStore offers features beyond those traditionally associated with database 

management systems and the object-oriented features discussed above. These features include 
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support for long transactions (check-in, check-out), workspaces, configuration management and 

versioning. These features collectively permit the user to build his own custom view of an 

evolving, shared database. While we did not use these features in the prototype proxy 

implementation, we expect that any generalized proxy implementation will rely on these features 

to provide the computational chemist with the ability to configure his environment optimally. For 

example, a computational chemist working on the ethane molecule may wish to check out all 

ethane experiments into his workspace, run his own experiment(s) on ethane, and eventually 

check in the validated results. 

The implementation of the prototype computational proxy was obviously influenced by 

the choice of ObjectStore as the underlying OODBMS. Would we have been successful in 

implementing a valid prototype proxy if we had chosen another OODBMS? Although there 

exists no general data model for object-oriented databases [27], a database system must display a 

minimum set of object-oriented features to be classified as an OODBMS . (See Section 2.1 .) 

These features may be implemented differently in different OODBMS, and the same features 

may have different flavors in different systems. For example, while Gemstone [28] supports 

inheritance, ObjectStdre supports multiple inheritance. Both ObjectStore and Gemstone provide 

encapsulation. However, in ObjectStore behavior is encapsulated with the class, and no 

mechanism exists for associating methods or code with an instance. In Gemstone, code "blocks" 

can be associated with an instance. 

The object-oriented features of ObjectStore that we relied on in developing the CCDB 

and computational proxy were support for complex objects and classes, extensibility, 

encapsulation, and, to a lesser extent, inheritance. Other features that we used during the 

implementation were the query language, the database browser and the schema designer. Of 

course, the object-oriented features are common to all object-oriented databases. A query 

language is important, and most OODBMS offer some support for a query language. There is 

some effort in the field to develop a standard for a query language, similar to SQL, called OQL, 

for OODBMS. Database browsers are another important tool supplied by most commercial 

OODBMS vendors. Thus we believe that OODBMS in general provide sufficient infrastructure 

to support the computational proxy mechanism. However, due to the high degree of variability in 

the implementation of the object-oriented features and the tools provided by various OODBMS, 



we do not expect the implementation design of the prototype proxy to be directly portable from 

ObjectStore to any other OODBMS. For example, Gemstone supports instance-level methods, 

which could possibly have simplified the implementation of the application registration function. 

Gemstone also has a visual programming interface (GeODE) that would have make it easier to 

develop a graphical user interface, something we did not even attempt in ObjectStore. 

Alternatively, schema evolution is offered by many OODBMS vendors, and the schema 

evolution support is becoming more sophisticated. So in an OODBMS like ITASCA [3], which 

has good support for schema evolution, we may have done the application registration 

differently. 

Object-oriented database systems represent a relatively new technology, especially in the 

commercial world. They do not yet provide tools of the range and maturity of those available 

from relational database vendors. There are several features we would have liked to see in 

ObjectStore, in particular, and OODBMS in general. These include a uniform query language, 

more sophisticated support for schema evolution and data migration6, support for loading bulk 

data from files, enhanced support for communications between database and operating systems, 

and a well-defined, formal interface through which external processes can access the database. 

5.3 Extendinglhe Prototype Proxy to include other Computational 

Chemistry Applications 

The prototype computational proxy was designed to interface the computational chemistry 

application GAMESS to the CCDB. The computational proxy mechanism itself was proposed to 

address the issue of interfacing an entire class of applications to a central database. The 

prototype implementation provides us with valuable insight into the effort required to extend the 

proxy mechanism to another computational chemistry application. Below we outline the steps 

required to interface another computational chemistry application, taking Gaussian as an 

example, and give an assessment on how difficult or easy that step would be. 
*I 

1 . Install Gaussian on either smoked or coho, or both. 

'objectstore version 2.1 provides an API to support schema evolution and data migration. 



2 .  Create thk codePackage instance in the CCDB to represent the computational 

chemistry application Gaussian. In the current CCDB, the codePackage instance for 

Gaussian can be created by invoking the interactive command loadCP, which 

prompts the user for the relevant information. W e  have created codePackage 

instances for several computational chemistry applications in the CCDB, including 

Gaussian. , 

3 . Next, we have to write the input and output formatting functions for the Gaussian 

calculation types to be supported to the CCDB. 

Steps (2) and (3)  together represent application registration. Writing the input 

formatting function for a similar subset of input types as supported by GAMESS is 

relatively easy. GAMESS and Gaussian have similar input and output formats, for 

historical reasons, and the input formatting function for Gaussian can be closely 

modeled on the one for GAMESS. (See Appendix B.) Then, the case statement 

called from codePackage::fmtBSI has to  be modified to include the case  for  

Gaussian experiments (below): 

codePackage::fmtBSI(CompProxie* cp, FILE* ) 
{ 

callit(cp, fp); 
1 

extern void fmtBSIGAM(CompProxie', FILE'); 
extern void fmtBSIGauss(CompProxie*, FILE*); 

void callit(CompProxie* cp, FILE* fp) { 
if (strcmp(cp->name, "GAMESS") { 

fmtBSIGAM(cp, fp) 
1 
if (strcmp(cp->name, "Gaussian") { ccc 

fmtBSIGauss(cp, fp) ccc (case added) 
1 <<< 

1 

The Gaussian formatting function fmtBSIGauss and the case function would 

have to be recompiled, and these new object files linked with the CCDB code. Also, 

an output parser would have to be written. Again, if we wish to extract only the 

minimum energy value, as we do for GAMESS (see Appendix B), the same PERL 

script can be used. In retrospect, we could have placed the case statement in the 



codePackage::fmtBSI itself, and placed codePackage:.$mtBSI in a source file by 

itself, to achieve the same level of recompilation. 

4 .  Modify the command r u n C E  to pass the name of the computational chemistry 

application to the compute daemon. 

5 . Modify the compute daemon to fork either the GAMESS or Gaussian process, based 

on the  app l i ca t ion  name  passed t o  i t  f r o m  runCE, with the appropriate 

environmental setup. (Appendix D lists the environment encoding and the forking of 

the new GAMESS experiment.) 

In a more general implementation, we would modify runCE to always pass the name of 

the computational application to the compute daemon. Correspondingly, we would modify the 

compute daemon to read an external file and map the application name passed in by runCE to 

the path of the executable script or program that sets up the environment for that application. The 

changes required to generalize runCE and the compute daemon are programmatically minor. But 

they result in two major advantages: (i) the program for setting up the environment and forking 

the application process can be any executable file such as a compiled C program, a shell script or 

a PERL script, (ii) computational applications can be added and removed from a compute host 

simply by changing the external file mappings, without having to change the compute daemon or 

runCE code. 
- 

Assuming the more general implementation of runCE and the compute daemon, when 

adding a new application, we would have to (i) create the codepackage instance, (ii) write the 

input formatting function, (iii) write the output parser, (iv) write the script that sets up the 

compute environment and forks the process for the application, and (v) update the external 

mappings files on thezompute hosts supporting the new application. We do not need to change 

the CCDB schema (though we do have to relink the CCDB code), and we do not have to change 

the CCDB commands such as loadCP, runCE or queryCE. Nor do we need to change the code 

for the Compute Monitor or the compute daemons. The table below summarizes the changes 

required on adding a new application: 



The way we chose to implement the application registration mechanism is clearly very 

application-specific, and requires reprogramming for every new application, and possibly for 

every new version of a computational chemistry application. Moreover, writing the application- 

specific input and output formatting functions requires knowledge of both the CCDB schema and 

the computational application. The input formatting function for the limited subset of calculation 

types supported by the CCDB (Appendix B) is about 60 lines of code. We estimate that a 

GAMESS formatting function that supports most input options and more robust error checking 

would be about a 600-1000 lines of code. The output parsing is much more complex because of 

the variability of the output file formats. We have used PERL to parse the output for the 

minimum energy. At the time of developing the output parsing script, the idea was to provide a 

script for each observable property of interest. Thus, associated with each application would be a 

cluster of PERL scripts, probably one per output property of interest. At the termination of an 

experiment the appropriate set of PERL scripts would be called, based on the calculation type 

and the input parameters. It is possible that some of the parsing scripts are portable across 

applications. Howeikr,  we did not investigate in detail the development of application- 

independent, property-specific PERL scripts. ( See Section 5.1.1 for a discussion of templates as 

an avenue to explore for creating a less application-specific way to register applications.) 

CCDB 

CCDB schema 
CCDB commands 
CCDB database 

No code changes, re-linking required. 
No code changes. 
Create a new instance of codepackage. 

Computational Proxy 

Application registration 

Data input 

Data capture 
Mission Control 

Has to be done anew each time, since there is 
no code reuse in our implementation. 
No changes (the data input to the experiment 
is done by calling the input formatting 
functions written at application registration) 
No changes 
No changes 



CHAPTER 6 

Conclusions 

This thesis presents a proof of concept of the computational proxy mechanism proposed by 

Cushing to address the problem of interfacing legacy applications to a central domain database. 

We implemented a prototype computational proxy for the ab initio computational chemistry 

application GAMESS, interfacing it to the prototype computational chemistry database, CCDB. 

The CCDB and the prototype proxy were successfully implemented using C, PERL and the 

OODBMS Objectstore from Object Design, Inc., on SunOS (Unix-based) SparcStation. The 

prototype proxy demonstrated representative functionality in the areas of application registration, 

data control and network communications. A computational chemist using this mechanism can 

launch, control, parse and moor GAMESS experiments from the CCDB. 

Information relating to a new application to be interfaced to the CCDB is conveyed to 

the CCDB through the process of application registration. Application-specific information 

includes data such as the name of the application, its version number, the calculations supported, 

default calculation units and input and output file formats. The prototype proxy takes a 

programmatic approach to making formatting information available to the CCDB. This approach 

is viable for registering a small number of applications with moderately complex input and 

output formats to the CCDB, but requires the application registrar to know both programming 

and the database schema. Furthermore, this approach does not scale well to the computational 

chemistry domain, where new computational chemistry applications are being developed and 

newer versions of existing applications released. A more general solution must avoid the custom 

programming required for interfacing each new application and minimize the programming 

knowledge required by the application registrar. An alternative approach to ours would be to 

store the formatting information as database objects and provide a declarative language to the 



application registrar for creating these objects. Cushing [5] and Abel [ I ]  have further 

investigated this approach, implementing a declarative language CCOL for creating database 

objects, called templates, that store formatting information. 

The data control functions provide the computational chemist with the ability to launch, 

control, parse and moor computational chemistry experiments from the CCDB. Separating all 

network communications required to support data control across a network into the Compute 

Monitor made implementation of the data control functions themselves straightforward. There 

are two issues that require further consideration for a more general implementation of the 

computational proxy mechanism: 

(1) The output files generated by the computational chemistry applications tend to be large. 

Transferring them over the network using the socket protocol implemented in the prototype 

would be slow. We did not address this problem in the prototype, since the prototype was 

implemented on a network of SUN/UNIX workstations with a shared NFS file system. A 

more general implementation will probably have to support multiple file transfer protocols. 

Alternatively, a chemist may choose to have the output file parsed on the compute host, and 

have only the relevant data transferred back to the compute server. Providing the chemist 

with this ability requires that parsing functions be invoked on the compute host. Since the 

compute hosts may have different operating systems, the parsing functions must be portable 

across diverse operating systems. Note that the parsing functions cannot be member 

functions, since imObjectStore, member functions always execute on the Objectstore client, 

and the programmer cannot request that the functions execute on another host. 

(2) In the prototype implementation, we did not address the issue of monitoring intermediate 

stages in a computation. Currently, a user monitors the intermediate stages of a computation 

by browsing the intermediate files written by the application. To  provide equivalent 

functionality, we would have to provide parsing functions for the intermediate files. 

Conceptually, intermediate files requires parsing functions equivalent to those 

needed for parsing the output files. In the future, chemists may wish to use visualizers or 

plotters to display both the intermediate and final results. 

(3) Standards for data exchange between applications do not address the issue of data exchange 

for legacy applications. We think the computational proxy can provide a mechanism for 

L 



applications in a domain to exchange data. The data model of the CCDB acts as the 

"standard" format, and the formatting information registered with the CCDB at application 

registration provides a means of converting data from the CCDB format to the application 

format. 

The Compute Monitor encapsulates the communications between the CCDB and 

compute hosts over the network. The prototype Compute Monitor was implemented on a network 

of homogeneous operating systems, with a shared NFS file system. However, this is not 

representative of the typical working environment of the computational chemist, which includes 

a network of heterogeneous operating systems, only some of which may have a shared file 

system. We believe the issue of heterogeneous operating systems can be addressed by adding a 

portability layer to the Compute Monitor. The Compute Monitor is totally independent of the 

domain of computational chemistry. Its function is to insulate the user form the complexities of 

the network, and operating systems in the more general case, without reducing the user's 

computing power or flexibility. The functionality represented by the Compute Monitor is 

applicable in any area where several applications across a network need to access data from a 

central database because the Compute Monitor, along with the data control functions, provides a 

mechanism to control processes utilizing data from a central database. We believe that in the 

future this functionality will be available from database vendors or third party software 

developers. 

The prototype proxy was implemented using the commercially available OODBMS 

ObjectStore. We believe that object-oriented databases offer a rich enough modeling paradigm to 

model scientific data types. ObjectStore offered tools, such as the schema designer and the 

database browser, thitt are not intrinsically object-oriented themselves, but made the task of 

developing the CCDB a little easier. We expect that as OODBMS become more widely used, a 

wider range of tools and accessory applications will become available to the developer. Object- 

oriented databases also offer features such as versioning and configuration management, long 

transactions and workspaces that we did not use in the prototype proxy development. 

The focus of this implementation was a proof of concept of the proxy mechanism. We 

have demonstrated that we could implement a prototype computational proxy with representative 



functionality in the areas of application registration, data control and network communications. 

Using the prototype proxy, we could launch, control, parse and moor GAMESS experiments on a 

network of SUNIUnix workstations. The implementation of the proxy gave us important 

feedback, specially in the area of application registration, leading to a specification of a more 

general way of registering new applications using templates, the Computational Chemistry Input 

Language (CCIL) and the Computational Chemistry Output Language (CCOL). We have 

sketched how the prototype could be extended to another computational chemistry application, 

such as Gaussian. We believe that the proxy implementation demonstrates that computational 

proxies offer a viable solution to the problem of interfacing computational chemistry applications 

to the CCDB. 
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APPENDIX A 

The CCDB Schema 
$3 

We list below the schema for the CCDB (including the class compProxie). 

............................................................... 

I* 
* Object Oriented Database Systems 

Computational Chemistry Dictionary Schema 
by Meenakshi Rao 

Judy Cushing 

struct Date ( 
short yyyy, rnm, dd; 
Date0 : mm(O>, dd(O), yyyy(0) ( I 
friend &ream& operator>>(istream& s, Date &d); 

1 ;  

struct Time { 
short hh, mn; 
long ms; 
Time() : hh(O), mn(O), ms(0) ( }  
friend istream& operator>>(istream& s, Time &d); 

1; 

struct DateTime { 
Date date; 
Time time; 

1; 

/*istream& operator>>(istream& s, Date &d) 
I 

char c; 
return s >> d.mm >> c >> d.dd >> c >> d.yyyy; 

1 
*I 

enum boolean { FALSE=O,TRUE= 1 ,UNUSED=2,NOTaBOOL=3 ) ; 
enum EnergyType (RHF,UHF,NONE}; 
enum Lvalue {S=O,P=l ,D=2,F=3,G=4) ; 



#define LAB 1 
#define COMP 2 
#define EMPTY -2 I/ abnormal return values from getposint 
#define ALPHA - 1 /I abnormal return values from getposint 

#define MAXL 4 
I* maximum L-value supported by any basis set and code *I 
#define MAXROW 4 
#define MAXFILE 4 
I* maximum number of parts (files) for any basis set *I 
#define MAXATOM 40 
I* maximum number of atoms supported for any basis set *I 

I* 
* Object Oriented Database Systems 

Computational Chemistry Schema Design for Object Store 
by Meenakshi Rao 

Judy Cushing 
Don Abel 

* Schema header file for ossd file 'prj'. 
* Produced by ossd on Tue May 7 17:42:40 1991 
* 
* Classes and their forward declarations are written 
* in  base class to derived class order, as is necessary 
* for compilation. 
*I 

I* 
* Forward class declarations 
*I 

extern database *db; 

class Chemist; 
class Experiment; 
class LabExperiment; 
class LabApparatus; 
class CompExperiment; 
class CompProxie; 
class Property; 
class MolecularOrbital; - 
class OrbitalLabel; 
class Symmetry; 
class Basisset; 
class BasisSetInstance; 
class Leveloffheory; 



class Codepackage; 
class Molecule; 
class Atom; 
class PersonalCE; 

struct MOCoefficient; 
int getposint(char*); :, 

static char buffer[l024]; 

I* 
* Class declarations 
*I 

class Chemist ( 
/* A chemist performs experiments. *I 

public: 

persistent<db> 0s-SetcChemist*> extent; 
0s-Setdxperiment*> performs inverse-member isPerformedBy; 
0s-Set<BasisSet*> authors inverse-member isAuthoredBy; 

int id; 
char* firstname; 
char* lastname; 
char* address; 
char* email: 

Chemist (int Chemist-id) ( 
id = Chemist-id; 

extent.insert(this); 
1 

-Chemist () ( 
extent.remove(this); 

I 
void terseDisplay0; 
int author-of(char*); 
int perform-exp(char*); 
static Chemist* loadchemist(); 
Chemist* chem-equals(char* namstr); 

1; 

class Experiment ( ' 

I* An experiment is either computational or laboratory. *I 

public: 
11 persistent<db> 0s-Set<Experiment*> extent; 

0s-Set<Chemist*> isPerformedBy inverse-member performs; 
0s-Set<Property*> produces inverse-member isProducedBy; 
Molecule* hasAsSubject inverse-member issubjectof; 

I .  

int id; 



char* name indexable; 
char* citation; 
DateTime begun indexable; 
DateTime completed; 
char* site; 

virtual int WhatAmI() = 0; 

Experiment () ( 
1 

void terseDisplay(); 
static void loadExperiment(Experiment*); 

class LabExperiment : public Experiment { 
/* A LabExperiment confirms a computational experiment. */ 

public: 

persistent<db> 0s-Set<LabExperiment*> extent; 
LabApparatus* isConductedOn; 
0s-Set<CompExperiment*> confirms inverse-member isConfirmedBy; 

virtual int WhatAmIO ( 
return LAB; 
I 

LabExperiment () : Experiment() ( 
id = extent.cardiaality() +I; 
extent.insert(this); 
I 

-LabExperiment(){extent.remove(this); } 
static LabExperiment* loadLabExperiment(); 

1 

class LabApparatus { 

public: 

char* instrument; 
I* information about calibration for specific instruments */ 

1; 

class CompExperiment : public Experiment { 
I* A Computational Experiment uses a Code Package and 

Basis Set to some Level of Theory. * I  

public: 

persistent<db> 0s-Set<CompExperiment*> extent; 



Basisset* usesBS ; 
Leveloffheory* isTakenTo ; 
Codepackage* usesCP ; 
MolecularOrbital* calculates inverse-member isCalculatedBy; 
LabExperiment* isConfirmedBy inverse-member confirms; 
CompProxie* isRunning inverse-member isProxieFor; 

9 
char* runType; 
float cpuTime; 
float elapsedTime; 
float escf; 
float esdci; 

BasisSetInstance* generateBSI0; 
virtual int WhatAmIO { 

return COMP; 
1 

CompExperiment () : Experiment() { 
id = extent.cardinality() +l ;  
extent.insert(this); 
1 

-CompExperiment () ( 
extent.remove(this); 

1 
static CompExperiment* loadCompexp( ); 

-, 

1; 

class CompProxie { 
I* A Computational Proxie is a standin for an 

executing computational experiment */ 

public: 

BasisSetInstance* BSI ; 
CompExperiment* isProxieFor inverse-member isRunning; 
static CompProxie* loadCP(CompExperiment* ); 

int pid; 
int status; 
char* host; //name of host on which experiment is running 
char* basisFileName; 

class MolecularOrbital { 
/* A molecular orbital is the output of a computational experiment. */ 
public: 

CompExperiment* isCalculatedBy inverse-member calculates; 
0s-List<OrbitalLabel*> anorbitallabel; 
0s-List<Symmetry *> asymmetry; 



class OrbitalLabel ( 
public: 

int atomicNumber; 
char* label; 

1; 

class Symmetry ( 

public: 
char* symmetrylabel; 
float orbitalEnergy; 11 eigenvalue for ... matrix 
float occupancy; 
0s-List<MOCoefficient*> anMOCoef; 

1; 

struct MOCoefficient ( 
float coef; 

1; 

class Property { 
I* A property is a propertylunitivalue triple. */ 

public: 

persistent<db> 0s-Set<Property*> extent; 
Experiment* isProducedBy inverse-member produces; 

char* name; 
char* unit; 
float value; 

static Property* loadProperty(); 
Property 0 ( 

extent.insert(this); 
1 

-Property 0 ( 
extent.remove(this); 
I 

I; 

class BasisSet { 
I* A basis set is used in a computational experiment. *I 

public: 

persistent<db> 0s-Set<BasisSet*> extent; 
0s-Set<Chemist*> isAuthoredBy inverse-member authors; 



char* name; 
short nParts; 

la how many parts to this basis set? 
-> number of files describing basis set *I 

char* fileName[MAXFILE]; 
short maxL[MAXRCW]; 

I* does this bs support S(O),P(l),D(2),F(3) 
for each row of the perodic table */ 

boolean spherical[MAXL]; 
I* for each type (SPDF), 

does this bs support pure spherical components 
of the cartesian gaussians, e.g., 5 component D's *I 

boolean atoms[MAXFILE] [MAXATOM]; 
I* for each bs part (file), which atoms supported by bs */ 

short maxC[MAXL][MAXROW]; 
I* max no. of gaussians in a contraction for each L type, 

for each row in the periodic table *I 

void terseDisplay(); 
void verboseDisplay(); 
static BasisSet* loadBS(); 

BasisSet (char* bsname) { 
name = new(db) char[ strlen( bsname) + 1 1; 
strcpy(name, bsname); 
extent.insert(this); 
1 

-Basisset () { 
delete name; 
extent.remove(this); 
1 

1; 

struct Primitive 
{ 
double coefficient; 
double exponent; 
1; 

struct Contraction 
{ 
Lvalue L; 
0s-List<Primitive*> primitives; 
I ;  

struct atomBS { 
short atomicNumber; 
char* description; 
EnergyType energyType; 
double energy; 
char* state; 
0s-List<Contraction*> contractions; 



class BasisSetInstance { 
I* Generated for a particular comp exp, 

using molecule and code 
reading basis set library (ascii files) 

*/ 
public: 

class PersonalCE { 
I* Users can define their own sets of Comp Exp */ 

public: 

persistent<db> 0s-Set<PersonalCE*> extent; 
char* name; 
0s-Set<CompExperiment*> my-set; 

PersonalCE (char* s)( 
name= new(db) char[strlen(s)+l]; 
strcpy(name,s); 
extent.insert(this); 

I 
-PersonalCE () (extenP.remove(this); } 

class LevelofTheory ( 
I* A computational chemistry experiment is taken to a level of theory. */ 

public: 

persistent<db> 0s-Set<LevelofI%eory*> extent; 
char* name; 

Leveloff heory ()( 
extent.insert(this); 
1 

-LevelofTheory () {extent.remove(this);} 

class Codepackage ( 
/* A code package is used by a computational experiment. *I 

public: 



persistent<db> 0s-Set<CodePackage*> extent; 
char* name; 
char* codeversion; 
char* computer; 
char* compilerversion; 
char* fmtBSIFcn; 
DateTime Available; 
DateTime Archived; 
short maxL; 

I* does this code support S(O),P(l),D(2),F(3) *I 
boolean spherical; 

I* does this code support pure spherical components 
of the cartesian gaussians, e.g., 5 component D's *I 

short maxS; 
short maxP; 
short maxD; 
short maxF; 
short maxG; 

I* max no. of gaussians in a contraction for each L type *I 

I* table hosts 
on which hosts does this ccc run? 
the table should include architectural platform, and 
name of the host *I 

void fmtBSI(CompProxie*, FILE*); 
static CodePackage* loadCP(); 

CodePackage () ( 
extent.insert(this); 
1 

-Codepackage() (extent.remove(this);) 
1; 

class Molecule { 
I* A molecule is the subject of an experiment. *I 

public: 
persistent<db> 0s-Set<Molecule*> extent; 

0s-Set<Experiment*> issubjectof inverse-member hasAsSubject; 
0s-Set<Atom*> hasAtoms ; 

int id; 
char* name; 
char* formula; 
char* symmetry; N symmetry group; default is no symmetry C1 

I* The class Symmetry is used as a member of class MolecularOrbital 
to store the symmetry-labelled columns of the molecular orbital matrix. 

"1 

Molecule (int i){ 



static Molecule* loadMolecule(); 
0s-List<int*> atom-list(); 

class Atom ( 
I* An atom is a component of a molecule. *I 

public: 

char* name; 
int 2; 
float mass; 
float charge; 
float x; 
float y; 
float z; 

Atom (char* str)( 
name= new(db) char[strlen(str)+l]; 
strcpy(name,str); 
I 

-Atom 0 I 1 v 

1; 

class PeriodicTable; 

struct PeriodicElement { 
int atomicNumber; 
char* atomicsymbol; 
char* atomicName; 

1; 

class PeriodicTable ( 

public: 
persistent<db> PeriodicTable PT; 

PeriodicElement* Ptable[100]; 

I* Yes, we know the periodic table has more elements than that! 
But, they are not stable, and there are no basis sets available for them. 

*/ 



int i; 

/* 
HANDLE (err-deref-transient-pointer) 

if (this != NULL) 
delete this; 

EXCEPTION 
cout << "caught exception: err-deref-transient-pointer\nW 

<< "no dictionary to delete\nm; 
END-HANDLE 

*I 
for ( i = 0; i <= 100; i++ ) 
{ 

PTable[i] = new(d6) PeriodicElement(); 
1 

I 
-PeriodicTable() 
{ 

int i; 
for ( i=O;  i<= 100; i++) 
( 

if (strlen(PTable[i]->atomicSyrnbol) > 0) 
delete PTable[i]->atomicSymbol; 

if (strlen(PTable[i]->atomicName) > 0) 
delete PTable[i]->atomicSymbol; 

delete PTable[i]; 
1 

1 
char* AtomicName(int AN) 
{ 

return PTable[AN]->atomicName; 
I .\ 
char* AtomicSymbol(int AN) 
{ 

return PTable[AN]->atomicSymbol; 
l 
int AN(char* Name) 
I 

int len = strlen(Name); 
for (int i= 1 ;i<= 100;i++) 

if (strncmp(Name,PTable[i]->atomicName,len) == 0) 
return PTable[i]->atomicNumber; 

cout << "Sorry, atomic Name not found in Periodic Table: " 
<< Name 
<< "\nu; 

I 

int SymboltoAN(char* Symbol) 
{ 

int len = strlen(Symbo1); 
for (int i= 1 ;i<= 100;i++) 

if (strncmp(Symbol,PTable[i]->atomicSymbol.len) == 0) 
return PTable[i]->atomicNumber; 



cout << "Sorry, atomic Symbol not found in Periodic Table: " 
<< Symbol 
<< "\nu; 

return 0; 
1 

1; 

/* Below are the "root" objects or entry points into the database. 
For easy access from the browser, for ease in debugging, and 
the convenience of using the Objectstore queries, we've made 
all interesting objects persitent. 

*I 
persistent<db> 0s-Set<Chemist*> Chemist::extent = 0s-Set<Chemist*>(); 
persistent<db> 0s-Set<CompExperiment*> CompExperiment::extent = 

0s-Set<CompExperiment*>(); 
persistent<db> 0s-Set<LabExperiment*> LabExperiment::extent = 

0s-Set<LabExperiment*>(); 
persistent<db> 0s-Set<BasisSet*> BasisSet::extent = 0s-Set<BasisSet*>(); 
persistent<db> 0s-Set<Leveloffheory*> Leve1offheory::extent = 

0s-Set<LevelofTheory *>(); 
persistent<db> 0s-Set<CodePackage*> CodePackage::extent = 0s-Set<CodePackage*>(); 
persistent<db> 0s-Set<Molecule*> Mo1ecule::extent = 0s-Set<Molecule*>(); 
persistent<db> 0s-Set<Property*> Pr0perty::extent = 0s-Set<Property*>(); 
persistent<db> 0s-Set<PersonalCE*> Persona1CE::extent = 0s-Set<PersonalCEX>(); 



APPENDIX B 

The Formatting Function for GAMESS 

Below is a listing of the input formatting function fmtBSIGAM, that we wrote for formatting the 
input for the subset of GAMESS runs supported by the GAMESS computational proxy: 

void fmtBSIGAM(CompProxie* comprox, FILE* fp) 
( 

Atom* atom; 
atomBS* abs; 
Contraction* cont; 
Primitive* prim; 
char symm[20]; 
char lva1[2]; 
int i, mplevel; 

fprintf(fp, 
" $CONTRL TIMLIM=999.0 MEMORY=2000000 $END \nu); 
fprintf( fp, 
" $CONTRL SC!?TYP=RHF UNITS=BOHR $END \n"); 
if ( comprox->isProxieFor->runType == NULL ) 

fprintf( fp, " $CONTRL RUNTYP=ENERGY $END \nW); 
else 

fprintf( fp, " $CONTRL RUNTYP=%s $END \nu, comprox->isProxieFor->runType ); 
if ( (comprox->isProxieFor->runType != NULL) && 

(strcmp(cornprox->isProxieFor->runType, "OPTIMIZE" ) == 0 )) 
mplevel = 0; 

else if ( strcmp(comprox->isProxieFor->isTakenTo->me "MPl" ) == 0 ) 
mplevel = 1; 

else if ( strcmp(comprox->isProxieFor->isTakenTo->me "MP2" )==0 ) 
mplevel = 2; 

else 
mplevel = 0; 

fprintf( fp, 
" $CONTRL MPLEVL=%i $END \n" , rnplevel ); 
fprintf(fp, " $DATA \no); 
fprintf(fp, "%s \nu, comprox->isProxieFor->name); 
strcpy( symm, comprox->isProxieFor->hasAsSubject->symmetry); 
if ( strcmp(symm, "Cl" ) == 0 ) 

fprintf(fp, "%s \n", symm); 
else if ( strcmp( symm, "C2V") == 0 ) 

fprintf( fp, "CNV 2 \n\n" ); 
else 

fprintftfp, "%s \n\nW, symm); 



foreach( atom, comprox->isProxieFor->hasAsSubject->hasAtoms ) 
I 
fprintf(fp, "%s %If %If %If %If\nM, 

atom->name, atom->charge, atom->x, 
atom->y, atom->z ); 

foreach( abs, comprox->BSI->AtomBSList ) 

if ( (strcmp(atom->name, 
PeriodicTable::PT.AtomicName(abs->atomicNumber)) == 0 ) II 

(strcmp(atom->name, 
PeriodicTable::PT.AtomicSymbol(abs->atomicNumber)) == 0 ) ) 

I 
N cout << "!" 
// << PeriodicTable::PT.AtornicName(abs->atomicNumber) 
// << PeriodicTable::PT.PTable[abs->atomicNumber]->atomicName 
I/ << " " << abs->description << "\nu; 

foreach( cont, abs->contractions ) 
I 

if ( cont->L = S ) 
strcpy(lva1, "S"); 

else if (cont->L == P) 
strcpy(lval,"P"); 

else if (cont->L == D ) 
strcpy(lva1, "D"); 

else if (cont->L == F ) 
strcpy(lval,"FW); 

else if (cont->L == G) 
strcpy(lval,"G"); 

N cout << lval << " " << cont->primitives.cardinality() 
N << "\n"; 

fprintf(fp, " %s %i \n", Ival, cont->primitives.cardinality() ); 
i =  I ;  

foreach ( prim, cont->primitives ) 
I 

N cout << " " << i 
N << " " << prim->exponent << " 
// << prim- coefficient << " \n"; 

fprintf( fp, " %i %If %If \n", i++, prim->exponent, 
prim->coefficient ); 

1 
1 

1 
1 
fprintf(fp, " \nu ); 

1 
fprintf(fp, " $END \nl'); 
fprintf(fp, " $GUESS GUESS=MINGUESS $END \nW); 
fclose( fp ); 

I 



The output parsing PERL script: 

$pattern = $ARGV[O]; 
open(FILE, "$ARGV[ 11"); 
@ a =  (); 
$i = 0; 
while (<FILE>) { 

if (/$pattern/) ( 
push(@a, $A; a 

1 
1 
foreach $i (0 .. $#a ) ( 

print "$a[$i]"; 
1 



APPENDIX C 

CCDB Queries 

NAME 

expbym 

SYNOPSIS 

expbym [ molecular name I molecular formula 1 (databasename) 

DESCRIPTION 

expbym displays all the experiments in the database, either lab or computational, that have been performed 
on the specified molecule. If a databasename is not specified, the query is performed on the database given 
by defaultDB (Iccdbldb in the case of the prototype ). The molecular name or formula must be specified. 

USAGE 

expbym H20 
expbym H20 Iccdbldb 
expbym water Iccdbldb 

OUTPUT 

Terse-display experiments which haveAsSubject: C2H4 

1 COMP Ethylene DZP Test Case wi DZP (Dunning) MP2 Feller, Dave 

8 COMP Optimize C2H4lSTO-3GlMPO STO-3G MPO Feller, Dave 

5 COMP Energy C2H4/DZP + Diffuse DZP + Diffuse ( MP2 Feller, Dave 

7 COMP Energy C2H4/STO-3G/MP2 STO-3G MP2 Feller, Dave 

6 COMP Energy C2H4/DZP + Diffuse DZP + Diffuse ( MPO Feller, Dave 

BUGS 

Error not trapped if an invalid databasename is specified. Several extensions are possible: 

searching based on date and molecule - i.e. all experiments 
on water performed after 20th June 1991 
searching based on templateslfamilies of molecules 
searching based on subgroupslatoms contained - i.e. all 

experiments on molecules containing Zn 



NAME 

listCE 

SYNOPSIS 

IistCE [chemist's last name I all ] {databasename] 

DESCRIPTION 

listCE gives a terse display of all the computaional experiments performed by the specified chemist. If all is 
specified, all computational experiments in the database are displayed. If no databasename is specified, the 
query is performed on the database given by defaultDB ( Iccdbldb for the prototype ). 

USAGE 

listCE "Felle" 
listCE "Feller" Iccdbldb 
IistCE all 
IistCE all Iccdbldb 

OUTPUT 

ID EXPERIMENT NAME MOL. CODE BASIS SET LEVEL DATETIME 

8 Optimize C2H4lSTO-3GlMPO C2H4 GAMESS STO-3G MPO 71 311 992 1 7:49 
7 Energy C2H4lSTO-3GlMP2 C2H4 GAMESS STO-3G MP2 71 311 992 17:46 
6 Energy C2H4lDZP + DiffuseIMPO C2H4 GAMESS DZP + Diff MPO 71 311 992 17:22 
5 Energy C2H41DZP + DiffuseIMP2 C2H4 GAMESS DZP + Diff MP2 71 311 992 14:25 
1 Ethylene DZP Test Case with no C2H4 MELDF DZP (Dunni MP2 12/12/90 14:30 

BUGS 

Error not trapped if an invalid databasename is specified. 



NAME 

SYNOPSIS 

CE [exp serial number] {databasename) 

DESCRIPTION 

CE gives a verbose display of the computational experiment specified by the serial number. If no database 
name is specified, the query is performed on the database given by defaultDB (Iccdbldb for the prototype). 

USAGE 

OUTPUT 

Name: Optimize C2H4lSTO-3GlMPO 
Molecule: C2H4 

Hydrogen 1.00797 1 .OO 2.32513356 1.7299931 0 0.00000000 
Hydrogen 1.00797 1 .OO -2.3251 3356 1.72999310 0.00000000 
Hydrogen 1.00797 1 .OO 2.3251 3356 -1.7299931 0 0.00000000 
Carbon 12.01 1 15 6.00 -1.25666809 0.00000000 0.00000000 
Carbon 12.01 11 5 6.00 1.25666809 0.00000000 0.00000000 
Hydrogen 1.00797 1 .OO -2.3251 3356 -1.72999310 0.00000000 

Codepackage: GAMESS 
Basisset: STO-3G 
Level of Theory: MPO 
Date Begun: 71311 992 
Date Completed: 71311 992 
CPU Time: 0.1 6 sec. 
Elapsed Time: 0 sec. 
Performed by: 

Feller Dave 
ESCF: -78.0505 
ESDCI: -78.3281 
Properties: 

BUGS 

Error not trapped if an invalid databasename is specified. No check to make sure serial number specified is 
not > number of experiments in database. 



NAME 

listExp 

SYNOPSIS 

listExp {databasename) 

DESCRIPTION 

IistExp gives a terse display of all (computational and lab) experiments in the database. If no database name 
is specified, the query is performed on the database given by defaultDB (Iccdbldb for the prototype). 

USAGE 

listExp 
IistExp lccdbldb 

OUTPUT 

ethylene polarizability LAB 
Geometry Optimization of H20lSTO-3G COMP Jan Labanowski 

Energy - H20lDunning (DZP) COMP Jan Labanowski 

Energy C2H4lDZP + DiffuseIMPO COMP Dave Feller 

Ethylene DZP Test Case with no compressi COMP Dave Feller 

Optimize C2H4lSTO-3GlMPO COMP Dave Feller 

Energy C2H4ISTO-3GlMP2 COMP Dave Feller 

Energy - H20lSTO-2GlMPO COMP Jan Labanowski 

Energy C2H41DZP + DiffuseIMP2 COMP Dave Feller 

BUGS 

Error not trapped if an invalid databasename is specified. 



NAME 

SYNOPSIS 

IistBS [ all I BasisSet Name ] {databasename) 

DESCRIPTION 

IistBS gives a terse display of all the basis sets in the specified database, or the default database, if no 
database name is given, and the keyword "all" is the first argument. If the first argument is a valid basis set 
name, IistBS gives a verbose display of the specified basis set. 

USAGE 

listBS 
IistBS all 
listBS STO-3G 
IistBS STO-3G Iccdbldv 

OUTPUT 

IistBS all lccdbtdb 

BASIS SET NAME AUTHORED BY 

3-21 ++G John Pople 

DZP + Diffuse (Dunning) Jim Dunning 
Patrick Hay 

STO-2G John Pople 

6-31 G** John Pople 

DZ (Dunning) Jim Dunning 

6-31 G John Pople 

STO-3G John Pople 

6-31 G* John Pople 

DZP (Dunning) Jim Dunning 
Patrick Hay 

3-21 G John Pople 

3-21 G* John Pople 



Basis Set name : STO-3G 
Authors : John Pople 

File Name(s) : STO-3G.BAS 

Max L : 0 1 1 2  
Supports sphericals : 0  0  0  0  2  
max contractionsk : 3 3  3  3  

0 3 3 3  
0 0 0 3  
0  0  0  0  

BUGS 

Error not trapped if an invalid databasename is specified. No messageiwarning if invalid database name 
specified. 



NAME 

SYNOPSIS 

listCP {databasename] 

DESCRIPTION 

listCP gives a terse display of all the code packages in the specified database (or in the default database if 
no database name is specified). 

USAGE 

OUTPUT 

NAME: Gaussian 
FORMAT: 
COMPUTER: 
COMPILER: 

NAME: GAMESS 
FORMAT: fmtBSlGAM 
COMPUTER: Sun4 
COMPILER: 

BUGS 

Error not trapped if an invalid databasename is specified. 



NAME 

SYNOPSIS 

runCE [databasename] 

DESCRIPTION 

runCE displays the titles of all the computational chemistry experiments in the database. It then queries 
which on the user would like to run, and on which machine. It then builds the appropriate input datafiles and 
forks a process on the specified platform. It does not wait for the forked process to terminate. 
runCE requires the following file to execute : 
/ogi/students/mrao/scidb/schema/client.port 

USAGE 

BUGS 

runCE should really display only a (small) subset of the experiments in the database. 



APPENDIX D 

Setting up the Computational Environment for GAMESS 

main(int argc, char** argv) 
{ 

int pid; 
int forkprocess( int, int, char* ); 

I 
printf("usage : fparent pipefd portno filename \nW); 
exit(1); 

1 
N printf("%d : %d : %s \n", atoi(argv[l]), atoi(argv[2]), argv[3]); 
pid = forkprocess(atoi(argv[l]), atoi(argv[2]), argv[3]); 

int forkprocess(int pwfd, int portx, char* filename) 
I 

int pid; 
wait wstat; 
long x l ;  
char* envp[l6]; 



char oname[40], buffer[48]; 
struct rusage pinfo; 
void sendmonitor(int, int, char* ); 

switch (pid = fork()) 
{ 

case - 1 : 
cout << "unable to create process" << endl; 
break; 

case 0: 
envp[O] = malIoc(64); 

strcpy( eGp[O], "IRCDATA=/tmp/gamess/"); 
strcat( envp[O], filename ); 
strcat( envp[O], ".kc"); 

envp[ll = malloc(64); 
strcpy( envp[l], "INPUT=/tmp/gamess/"); 

strcat( envp[l], filename ); 
strcat( envp[l], ".F05"); 

envp[2] = malloc(64); 
strcpy( envp[2], "PUNCH=/tmp/gamess/"); 
strcat( envp[2], filename); 
strcat( envp[2], ".datV); 

envp[3] = malloc(64); 
strcpy( envp[3], "INTGRLS=/tmp/gamess/"); 
strcat( envp[3], filename ); 
strcat( envp[3], ".F08"); 

envp[41= malloc(64); 
strcpy( envp[4], "ORDINT=/tmp/gamess/"); 

strcat( envp[4], filename ); 
strcat( envp[4], ".F09"); 

envp[5] = malloc(64); 
strcpy( envp[5], "JKFTLE=/tmp/gamess/"); 
strcat( envp[5], filename ); 
strcat( envp[S], ".F09"); 

envp[6] = malloc(64); 
strcpy( envp[6], "DICTNRY=/tmp/gamess/"); 
strcat( envp[6], filename ); 
strcat( envp[6], ".Flow ); 

envp[7] = maIloc(64); 
strcpy( envp[7], "DRTFILE=/tmp/gamess/"); 

strcat( envp[7], filename ); 
strcat( envp[7], ".F1lM); 

envp[8] = malloc(64); 
strcpy( envp[8], "CIVECTR=/tmp/gamess/"); 
strcat( envp[8], filename ); 



envp[9] = malIoc(64); 
S ~ ~ C P Y (  envp191, "NTNFMLA=/tmp/gamess/"); 

strcat( envp[9], filename ); 
strcat( envp[9], ".F13"); 

envp[lO] = malloc(64); 
strcpy( envp[lOI, "WORK15=/tmp/gamess/"); 

strcat( envp[lO], filename ); 
strcat( envp[lO], ".F15"); 

envp[l I] = malloc(64); 
strcpy( envp[l 11, "WORK16=/tmp/gamess/"); 

strcat( envp[l I], filename ); 
strcat( envp[l I], ".F16"); 

envp[l2] = malloc(64); 
strcpy( envp[ 121, "CSFSAFE=/tmp/gamess/"); 

strcat( envp[l2], filename ); 
strcat( envp[l2], ".F17"); 

envp[ 131 = malloc(64); 
strcpy( envp[ 131, "FOCKDER=/tmp/gamess/"); 

strcat( envp[ 131, filename ); 
strcat( en1$[13], ".F18" ); 

envp[ I41 = malloc(64); 
strcpy( envp[ 141, "DASORT=/tmp/gamess/"); 

strcat( envp[l4], filename ); 
strcat( envp[l4], ".F20M ); 

envp[l5] = NULL; 

if ( close(0) == -1 ) 
I 

printf(" couldn't close fd 0 \n"); 
1 
fopen("/dev/null", "r" ); 
if ( close(1) == -1 ) 

printf("cou1dn't close fd l\nW); 
strcpy( oname, filename ); 
strcat(oname, ".logw ); 
if ( fown(oname,"w" ) == NULL ) 
{ 

printf("cannot open %s.log for write\nW, oname); 
break; 

1 
execle("/ogi/students/cushing/r/cp/gamess/gamess.exe", 
"gamess.exeW, 

"basis", NULL, envp ); 
printf("cou1d not execute gamess\nW); 

exit(1); 
default: 



sprintf(buffer, "%d", pid); 
I/ printf("piping: %s %i \no, buffer, sizeof(buffer) ); 
if ( write(pwfd, buffer, sizeof(buffer)) == - 1 ) 

perror("writing pipe"); 
if ( wait(&wstat) == -I ) 

perror("wait"); 

if ( getrusage(RUSAGE-CHILDREN, &pinfo) == 0 ) 
I 

xl = pinf0.h-utime.tv-sec*1000 + pinfo.ru~utime.tv~usec/l000 + 
pinf0.r~-stime.tv-sec* 1000 + pinfo.ru~stime.tv~usecl1000; 

printf("tota1 cpu time (msecs) : %Id \nu, X I  ); 
sprintf(buffer, "%d*%d*%dM, pid, XI, wstat.w-status ); 
sendmonitor(portx, pid, buffer); 

I 
else 

perror("getrusage"); 

void sendmonitor( int portno, int pid, char* buffer ) 
{ 

int sock; 
struct sockaddr-in server; 
struct hostent *hp; 

I* create socket *I 11 

sock = socket( AF-INET, SOCK-STREAM, 0); 
if ( s o c k < O )  
I 

perror("opening stream socket"); 
exit(1); 

1 

serversin-family = AF-INET; 
hp = gethostbyname("smoked"); 
i f ( h p = = O )  
( 

printf(" smoked : unknown host", ); 
exit(2); 

I 



bcopy( (char *)hp->h-addr, (char *)&server.sin-addr, hp->hlength ); 
serversin-port = htons(portn0); 

if ( connect( sock, (struct sockaddr *) &server, 
sizeof(server) ) c 0 ) 

perror("connecting stream socket"); 
exit(1); 

1 

if ( write(sock, buffer, strlen(buffer) ) < 0 ) 
perror(" 1. writing stream socket"); 



APPENDIX E 

A General Introduction to Basis Sets 

Ab initio quantum chemistry aims to determine the properties of molecules from first 
principles - namely the Schroedinger equation: 

H v  = E v  
where H represents the Hamiltonian operator, y ~  is the wavefunction of the system (atom or 
molecule) under consideration, and E  is the energy of the system. An analytic solution to the 
Schroedinger equation has been achieved only for the Hydrogen molecule. For all other 
molecules, numerical techniques are used to solve the equation, and these require an initial guess 
for y ~ .  

Historically, the quantum calculations for molecules were performed using LCAO MO: 
Linear Combination of Atomic Orbitals - Molecular Orbitals. Using LCAO-MO the molecular 
orbitals are represented as some linear combination of atomic orbitals: 

vi = C (u= 1, ~ = n ) c , ~  $, 

where vi represents the ith molecular orbital, @, is the uth atomic orbital, n is the number of 
atomic orbitals and the c,,i are the coefficients of linear combination. Technically, the Atomic 
Orbitals (AO) themselves are the solutions of the Hartree-Fock equations for the atom, i.e., each 
A 0  is a wave function representing a single electron in the atom. There was a lot of ambiguity in 
the usage of the term AO. To avoid this ambiguity, the term A 0  now has been reserved for the 
technical sense above, and the term basis function7 or contraction used for functions that are not 
derived from the atomic Hartree-Fock equations, but are used as the basis of linear combination 
to generate Molecular Orbitals (MOs). Initially, Slater Type Orbitals (STOs) were used as basis 
functions because of their similarity to the atomic hydrogen orbitals. However, the STOs are not 
suitable for fast numerical calculation, and Gaussian Type Orbitals (GTOs) were introduced. The 
GTO can be representsd as: 

g(a, l,m,n; x,y,z) = ~ e x ~ ( - a r ~  )x' ym zn 

where r2 = x2 + Y 2  + z2, N is a normalization constant, and l,m,n are integers non-negative 
integers, such that l+m+n = L, the angular momentum quantum number (for example, L=O for s- 
type, L=l for p-type orbitals). The GTOs are not truly orbitals, i.e. they do not represent an 
electronic wave function, and they are more correctly referred to as gaussian primitives. 

' A Basis Set refers to a collection of basis functions, derived using the same assumptions, and generally 
optimized for either a type of type of numerical calculatation or a group of atoms. Developing new basis 
sets is an active area of research in the field of ab initio Computational Chemistry. 



For molecular calculations, the gaussian primitives are often contracted A contraction 
means "a linear combination of gaussian primitives to be used as a basis function". For example, 
4 s-type8 gaussian primitives may be used to represent the Is atomic hydrogen orbital: 

V(ls) = 0.50907~~ex~[-0.123317r~] t 0.47449N2exp[-0.453757r2] + 
0.13424~3ex~[-2.01330r~] + 0.01906N4exp[- 13.3615r2] 

The N1-4 are called thb normalization constants. 
The same 4 primitives may be grouped into 2 contractions: 
$(l s, 1) = 0.50907~~exp[-0.1233 17r2] 

$(1 s,2) = N{ 0.47449N2exp[-0.453757r2] +O. 13424~~exp[-2.01330r~] + 
0.01906~~ex~[13.3615r~] } 

The contractions $(ls,l) and $(ls,2) can be used as the basis functions in subsequent molecular 
calculations. Using basis functions (combinations of primitives) instead of primitives reduces the 
computational effort in doing molecular calculations, but can introduce possible inaccuracies. 
The STO-3G basis set for water is: 
Hydrogen 

S 2 
a coefficient 

1 1.309756 0.430128 
2 0.233136 0.678914 

Oxygen , 
S 2 

a coefficient 
1 49.98097 1 0.430128 
2 8.896588 0.678914 

S 2 
1 1.945237 0.049472 
2 0.493363 0.963782 

P 2 
1 1.945237 0.51 1541 
2 0.493363 0.612820 

Reading this, we can see that the gaussian primitives: 

For an s-type orbital, the angular momentum quantum number is 0, ie. l+m+n = 0. 
Thus, for s-type orbitals l=m=n=O. 
For a p-type orbital, the angular momentun quantum number is 1, ie. l+m+n = 1. 
There are 3 ways the angular momentum qunatum number to be 1 : 

1 = 1 (angular momnetum along the x-axis); m=n=O; 
m= 1 (angular momentum along the y-axis); l=n=O; 
n=l (angular momentum along the z-axis); l=m=O; 



Oxygen: 
g(s, 1) = 0.430128exp[-49.98097 1 r2] 
g(s,2) = 0.678914exp[-8.896588 r2] 
g(s,3) = 0.049472exp[-1.945237 r2] 
g(s,4) = 0.963782exp[-0.493363 r2] 
g(p, 1) = 0.5 1 1541 *x*exp[-1.945237 r2] 
g(p,2) = 0.5 1 1541 *y*vp[- 1.945237 r2] 
g(p,3) = 0.5 1 1541 *z*exp[-1.945237 r2] 
g(p,4) = 0.612820 *xsexp[-0.493363 r2] 
g(p,5) = 0.61 2820 *y*exp[-0.493363 r2] 
g(p,6) = 0.612820 *z*exp[-0.493363 r2] 

The contractions or basis functions are: 

Oxygen: 

$(3) = N2{ g(s,l) + g(S,2) 1 
= N2 {0.430128*exp[-49.980971 r2] + 0.678914*exp[-8.896588 r2] } 

$(4) = N3{ g(s93) + g(s94) ) 
= N3 {0.049472*exp[-1.945237 r2] + 0.963782*exp[-0.493363 r2] } 

$(5,6,7) = N4{ g(p,l) + g(p-2) 1 
$(5) = N4 x * (0.5 1 1541*exp[-1.945237 r2] + 0.612820 *exp[-0.493363 r2] ) (1 =l ; m=n=O) 
$(6) = N4 y * I0.51154 1 *exp[- 1.945237 r2] + 0.6 12820 *exp[-0.493363 r2] ) (m= 1 ; I=n=O) 
$(7) = N4 z * {0.51154l*exp[-1.945237 r2] + 0.612820 *exp[-0.493363 r2] } (n=l; I=m=O) 

The NI-4 represent normalization constants. 
The wave function for the i" molecular orbital in the water molecule, can now be represented by: 

vl = cll @(I)+ c21@(2)+ c31@(3)+ c41@(4)+ c51@(5)+ c61@(6)+ c71@(7) 
v2 = c12 @(I)+ ~ 2 2  @(2)+ c32 @(3)+ c42 @(4)+ ~ 5 2  @(5)+ ~ 6 2  @(6)+ c72 @(7) 
v3 = c13 @(I)+ c23 @(2)+ c33 @(3)+ c43 @(4)+ c53 @(5)+ c63 @(6)+ c73 @(7) 
v4 = c14 @( 1 )+ c24 @(2)+ ~ 3 4  @(3)+ ~ 4 4  @(4)+ ~ 5 4  @(5)+ c64 @(6)+ ~ 7 4  @(7) 
U'S = c15 @(I)+ c25 @(2)+ c35 @(3)+ c45 @(4)+ c55 @(5)+ c65 @(6)+ c75 @(7) 
v6 = c16 @(I)+ c26 @(2)+ ~ 3 6  0(3)+ c46 @(4)+ ~576@(5)+ c66 @(6)+ C76 @(7) 
v7 = c 17 @( 1 )+ c27 @(2)+ c37 @(3)+ c47 @(4)+ c57 @(5)+ c67 @(6)+ c77 @(7) 

where the cijs are the co-efficients of linear combination that are determined by the ab initio 
computational chemistry application. The molecular wave function for the water molecule is: 




