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Abstract

Beyond Induction Variables:

Detecting and Classifying Sequences

Using a Demand-Driven SSA Form

Michael P. Gerlek, M.S.

Oregon Graduate Institute of Science & Technology, 1996

Supervising Professor: Michael Wolfe

Linear induction variable detection is usually associated with the strength reduction op-

timization. For restructuring compilers, effective data dependence analysis requires that

the compiler detect and accurately describe linear and nonlinear induction variables as

well as more general sequences. In this thesis we present a practical technique for de-

tecting a broader class of linear induction variables than is usually recognized, as well

as several other sequence forms, including periodic, polynomial, geometric, monotonic,

and wrap-around variables. Our method is based on Factored Use-Def (FUD) chains, a

demand-driven representation of the popular Static Single Assignment (SSA) form. In

this form, strongly connected components of the associated SSA graph correspond to se-

quences in the source program: we describe a simple yet efficient algorithm for detecting

and classifying these sequences. We have implemented this algorithm in Nascent, our

restructuring Fortran 90+ compiler, and we present some results showing the effectiveness

of our approach.

IX



Chapter 1

Introduction

The process of detecting and classifying induction variables is usually associated with

strength reduction; the most common candidates for this optimization, and therefore the

most important induction variable candidates, are array address expressions in inner loops.

Techniques for detecting and classifying linear induction variables have a long history and

are well known [1, 2, 3].

Many modern compilers nowinclude advanced loop transformations such as loop dis-

tribution and loop interchanging[17]that haveproven usefulon a wide variety of systems,

ranging from uniprocessor workstations to vector multiprocessors and massively parallel

processors. These transformations require analysis of array subscripts to determine data

dependence relations within loops. Current methods to test and characterize data depen-

dence relations for subscripted array references require the subscript expressions to be a

linear combination of induction variables in the enclosing loops.

Research into data dependence testing has found that variables used in subscript ex-

pressions are not necessarily linear induction variables, but can often take the form of

polynomial and geometric induction expressions, periodic sequences, monotonic sequences,

and wrap-around variables: Eigenmann et al note one scientific code where a speedup of

eight was obtained by recognizing a geometric sequence [9]. Current compilers recognize

specific forms of these expressions by ad hoc pattern recognition algorithms.

Consider the following Fortran loop:

npl = n + 1

j = n

1
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do i = 1, n

B(i) = (A(j) + A(i)) / 2.0

j = i

C(i) = B(i) + B(npl)

enddo

In the absence of any aggressive analysis, two problems arise. First, j, used as an array

subscript, is not an induction variable but a ...vrap-around variable - only after the first

iteration does it follow an induction sequence. This restricts the compiler's ability to, for

example, vectorize the assignment. Second, the value of npl may not be known in the

loop; a dependence must be assumed between the assignment to B and the second use of

B. However, after forward substituting and peeling off the first iteration of the loop, the

loop is transformed:

npl = n + 1

j = n

B(l) = (A(n) + A(l)) / 2.0

j = 1

C(l) = B(l) + B(n+l)

do i = 2, n

B(i) = (A(i-l) + A(i)) / 2.0

j = i

C(i) = B(i) + B(n+l)

enddo

I\ow, having removed j from the first assignment in the loop, the statement may vectorize.

Within the loop, the second use of Bwill not be affected by the first assignment, since the

subscript is in terms of n.

This thesis presents an important new technique for recognizing and classifying such

sequence variables as the wrap-around variable and the linear induction variables in the

program above, implicitly performing global symbolic forward substitution as well. The

technique is based on a demand-driven interpretation of the Static Single Assignment
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(SSA) form of the source program [8, 19]. We present an algorithm for detecting and

classifying strongly connected components within the SSA representation, corresponding

to various forms of these sequences. Symbolic expressions are used to represent the value

of each expression within the program, and these expressions are then propagated across

the program [23].

The method presented here is simple and intuitive. In its simplest form, it represents

a new approach to SSA-based constant propagation; taken further, it provides a method

for detecting linear induction variables as a precursor to traditional strength reduction.

In the extreme, it provides a fast and efficient method for the classification and symbolic

representation of complex subscript expressions needed for advanced dependence analysis

in high-performance compilers. This technique has also proven useful as a basis for other

optimizations, such as array bounds check analysis, which can make use of the ability to de-

termine linear induction expressions for subscripts. We have implemented this technique

in Nascent, our experimental, restructuring Fortran 90+ compiler, and present experi-

mental results showing the effectiveness of our approach and its usefulness in dependence

analysis.

In the next chapter, we describe and present exam pIes of the different types of se-

quences addressed by our technique. In Chapters 3 and 4, our SSA-based framework is

introduced, and the algorithm for detecting and classifying sequences is presented. Issues

dealing with loop structures are addressed in Chapter 5, and in Chapter 6 some experi-

mental results are shown. Chapters 7 and 8 conclude with a discussion of related work

and a summary of the key aspects and relevance of this new approach.



Chapter 2

A Bestiary of Sequence Forms

The focus of this thesis is a scheme to recognize certain sequences and the variables that

define them, which will potentially aid in the subsequent analysis and optimization of

programs. Such sequences include arithmetic series, periodic functions, and monotonically

increasing series, among others.

Definition 1 Given a statement s within the body of a loop l assigning some arbitrary

expression e to a scalar, integral variable v:

l: loop

s: v = e

endloop

If expression e contains an occurrence of v, then v is a basic sequence variable in l, and

e is the associated sequence expression.

Definition 2 Given a statement s within the body of a loop l assigning some arbitrary

expression e to a scalar, integral variable v:

l: loop

s: v = e

4
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endloop

If expression e does not contain an occurrence of v but does contain an occurrence of some

sequence variable w, then v is a derived sequence variable in l.

The first definition states, intuitively, that a basic sequence variable is a variable

"carried around the loop." A derived sequence variable is defined in terms of another

sequence variable (or variables), as opposed to being defined in terms of itself.

Note that there may be more than one assignment to a sequence variable within a

loop. Also note that trivial cases such as i = 3*i - 3*i + 1 will be simplified; although

i occurs on the right-hand side (rhs) of this assignment, the multiplications will be removed

when simplifying, yielding i = 1. In general, after simplification the sequence variable

must occur exactly once on the rhs.1

Definition 3 Associated with each loop l is a basic loop counter, hi, whose value is zero

on the first iteration of the loop and is incremented by one at the end of each subsequent

iteration, i.e.,

hi = 0

l: loop

hi = hi + 1

endloop

(We will omit the subscript l where the meaning is clear.)

The basic loop counter will be used to provide closed-form expressions for certain

sequences. We will reserve the term induction variable (IV) for the specific classes of

sequence variables with well-defined closed forms.

1Geometric induction variables are an exception, as we will show.
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.2.1 Linear Induction Variables

The most important candidates for strength reduction and a common form of array sub-

script expression derive from linear induction variables. Intuitively, a basic linear induction

variable is a variable that is assigned in a loop and incremented by a constant amount on

every iteration [1].

More generally, a linear IV can be defined in terms of itself and some linear combination

of constants and other linear induction variables. This loop shows a few different types of

linear IVs:2

The assignments within the loop to variables i, j, k, and 1 each define a linearly increasing

series, which may be expressed in terms of the basic loop counter, h:

The variable i is a basic linear IV: its initial value within the loop is 2, and on each

subsequent iteration it is incremented by 2. The variables j and k are mutual IVs [3],

since they are defined in terms of each other: j and k have initial values of n + 1 and

2In example loops, we will usually omit loop termination tests and exits.

i = 0

j = k = 1

loop

i = i + 2

j = k + n

k = j + 1

1 = t + 4*i

A(l+l) = ...B(1*2)

endloop

h = {O,1,2,...}

i = {2,4,6,...}, 2h + 2

j = {I + n, 2 + 2n, 3 + 3n, . . .}, (n+1)h+n+1

k = {2 +n, 3 + 2n,4 + 3n,.. .}, (n+1)h+n+2

1 = {8 + t, 16+ t, 24+ t,.. .}, 8h + t + 8.
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n + 2, respectively, and both are incremented by the loop-invariant value n + 1 on each

subsequent iteration. The variable 1 is not incremented on each iteration, but since it is

assigned a linear function of another induction variable, i, and a loop-invariant value, t,

it is a derived IV. This implies the subscript expressions of A and 8, 1+1 and 1*2, are

induction expressions as well.

The sequence expression of a basic linear IV may include a subtraction operation,

provided the right operand is not the induction variable itself, Le., m = n - m is not

linear.

2.2 Polynomial Induction Variables

Traditionally, induction variables recognized by compilers are linear functions of a loop

index, formed by the addition of loop-invariant values. When the term added to the

induction variable is a linear IV, however, a polynomial IV may result. In the program,

the linear IV i is used to define the polynomial IVs j and k:

A sequence variable whose expression contains an addition of a polynomial IV, e.g., k,

yields a polynomial of a correspondingly higher degree. The degree of the closed-form

expression is equal to d + 1, where d is the degree of the IV added (for linear IVs, d = 1).

Thus, j and k are polynomials of degree 2 and degree 3, respectively.

i = 0

j=k=l

loop

i = i + 1

j = j + i

k = k + j + 1

endloop

h = {O,1,2,3, . . .}

i = {1,2,3,4,...}, h+l

j = {2,4,7,11,.. .}, h2+h+2

k = {4,9,17,29,.. .}, kh3 + h2 + 3h + 4.
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For polynomial IVs, the sequence expression may include subtraction, again provided

the right operand is not the IV being defined.

2.3 Geolnetric Induction Variables

In addition to linear and polynomial sequences, geometric sequences may also be described.

These arise when the sequence variable is multiplied by some loop-invariant value. In the

program,

1 = 1

loop

1 = 2*1 + 1

endloop

the variable 1 is a geometric IV defining the sequence

h = {O,1,2,3,...}

1 = {3,7,15,31,.. .}, 2h+2- 1.

For geometric sequences, the sequence expression must contain a multiplication of the

sequence variable by a loop-invariant value; this multiplicative factor defines the base of

the geometric term in the sequence expression. The rhs may also consist of additions or

subtractions of loop-invariant values, linear IVs, and polynomial IVs.

2.4 Wrap-Around Variables

Wrap-around variables occur when a variable is assigned a value from outside the loop on

the first iteration, and then takes on the pattern of another sequence variable (typically a

linear IV) for the remainder of the iterations [17]. Such forms are typically encountered

when the elements of an array are to be "wrapped around" a cylinder, as in this example:

iml = n

i = 1

loop



9

i=i+l

A(i) = A(im1) + ...

iml = i

endloop

Here iml is a wrap-around variable at the assignment to A(i); at the use, it has value n

on the first iteration and then follows a linear sequence:

h = {O,1,2,3, .. .}

i = {2,3,4,5,...}, h+2

iml = {n,2,3, 4,.. .}, (n, h + l)wrap'

The notation (il"'" id, J)wrap indicates the sequence has values il"'" id on the first d

iterations and follows the sequence defined by f thereafter.

Compilers typically recognize such forms with a separate pattern-matching phase run

after induction variable detection: wrap-around variables may be identified as derived

sequence variables that are used in the loop before being assigned. When wrap-around

variables are detected, the first iteration may be peeled off the loop, and the wrap-around

variable may be treated as an induction variable, as shown in the introduction.

Wrap-around variables may be cascaded: if the sequence being taken on after the first

iteration is another wrap-around variable, the order of the variable being defined is one

greater.

iml = n

im2 = n2

i = 1

loop

i = i + 1

A(i) = A(iml) + A(im2) + ...

im2 = iml

iml = i

endloop
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Here the use of irn2 as a subscript expression takes on the value n2 on the first iteration,

n on the second, and then follows the sequence {2, 3, 4, ...}, which is represented as

(n2, n, h)wrap.

2.5 Periodic Sequences

A method used in some relaxation codes is the generation of a "new" matrix of values

from the matrix of "old" values. A simple way to implement such a scheme is to represent

the matrix with an array having one extra dimension of size two; this array holds both

the "old" and "new" matrices. A flip-flopvariable is then used to swap between them:3

k = 1

kold = 2

loop

A(i ,j ,k) = ... A(i ,j ,kold) ...

kternp = k

k = kold

kold = kternp

endloop

At its use in the subscript expression, the variable k is a periodic variable with a period

of 2:

k {1,2,1,2,...},

{2, 1,2,1,.. .},

(1,2)per

(2, l)per'kold

(The notation (il"'" id)per indicates that the sequence cycles through the values

il"'" id.) An optimizing compiler may profit by determining that, on any given iter-

ation, k and kold have distinct values.

Periodic variables may follow more complex sequences as well, if arithmetic operations

occur in the pattern [13]:

3An alternate form of the swap operation involves integer subtraction, e.g., k = 3 - k. In this form, k
may be recognized as a geometric IV with base-1.
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k = 1

kold = 2

loop

A(i,j,k) = ...A(i,j,kold)

ktemp = k + m

k = kold + n

kold = ktemp

endloop

In this example k is a nonconstant periodic variable. At its use as a subscript, it follows

the sequence:

k = {I, 2 + n, 1 + m + n, 2 + m + 2n, 1 + 2m + 2n,. ..}, (1,2)per(n,m)

kold = {2, 1 + m, 2 + m + n, 1 + 2m + n, 2 + 2m + 2n,.. .}, (2,I)per(m,n)

The "main" value of k alternates between 1 and 2, but at each time step the value in-

crements by (alternately) nand m. The notation for nonconstant periodics is extended to

(Xl,...,xn)per(yl 'yn). For a period-2 variable like k in this example, the ith value of the

sequence is Xl when i = 1, and, when i > 1, the value is

f

i-1

1 f

i-2

1Xm + 2 YI+ 2 Y2

where m = 2 - (i mod 2).

2.6 Monotonic Variables

Variables that are conditionally incremented or decremented cannot normally be repre-

sented as a function of the basic loop variable, but recognition of these forms provides

useful information for data dependence solvers. A common example of a conditional in-

duction variable occurs in code to "pack" the values in a vector into another vector, based

on some test:

k=l

do i = 1, n
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if (A(i) > 0.0) then

B(k) = A(i)

k = k + 1

endif

enddo

Although the sequence of values for k cannot be represented in closed form (since the

conditional assignment precludes it from being a linear IV), a compiler can profitably

recognize that each store to array 8 refers to a distinct element.

Monotonic sequences arise when a variable is conditionally incremented by a known

constant value. Four classes can be distinguished, depending on the constant: monoton-

ically increasing, monotonically decreasing, monotonically strictly increasing, and mono-

tonically strictly decreasing. In the previous example, k is monotonically increasing; within

the body of the conditional, it is monotonically strictly increasing.

It may be possible for a compiler to represent the bounds of monotonic variables.

For an increasing sequence, the minimum value of the sequence is the value on the first

iteration, and the maximum value is the minimum value plus the maximum increment

times the trip count of the loop.

2.7 Strengthening Sequences

The range of sequence expressions can be expressed as a lattice, ordered by set contain-

ment, as in Figure 2.1. In this lattice, T represents "no expression," and 1. represents "all

expressions." The class containing wrap-around variables is represented below all other

classes except 1., since in the limit, a wrap-around variable can be cascaded through an

infinite set of values, and therefore represent any sequence of n values in a loop.

It is interesting to note that certain sequences will degenerate to simpler forms, allowing

the compiler to strengthen the classification of a sequence variable. As implied earlier, the

assignment i = 3*i - 2*i + 1 is really just i = i + 1 when simplified algebraically;

the former expression is not a recognizable form, since the sequence variable occurs twice

in the sequence expression, but the latter is easily determined to be a linear induction
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strictly increasing

I

T

I

invariant

lin~

:: lcar ~
strictly decreasing polynomial periodic

I I

increasing

wrap-around

I
.1

Figure 2.1: Sequence variable lattice

variable. Strengthening an expression will raise its classification in the lattice.

Two other examples of such strengthening are found in monotonic variables and wrap-

around variables. The sequence variable i defined by

endloop

might be classified as monotonic since it is conditionally incremented. Since both branches

of the if increment i by the same amount, a compiler may recognize that i is actually

a linear IV. If it were to be determined that c is equal to zero, i would degenerate to a

loop-invariant variable.

If the initial value of a wrap-around variable fits the pattern of the subsequent sequence,

the compiler can strengthen the classification to a variable of that sequence type. For

example, a wrap-around variable determined to have the pattern (2, 2h + 2)wrap can be

represented as a linear IV, 2h + 2.

loop

if (p) then

i = i + C

else

i = i + C

endif



Chapter 3

Detecting Cycles in SSA Graphs

There are two steps involved in determining symbolic expressions for sequence variables.

First, the sequence variables must be found; this is accomplished by partitioning a graph

representation of the program in SSA form (a data-flow graph, as opposed to a control flow

graph) into strongly connected components. Each strongly connected component (SCe)

corresponds to either a loop-invariant value (which may be viewed as a trivial sequence), a

proper sequence form (one of the types described in the previous chapter), or an unknown

sequence form. Second, the nodes in each component (sequence) are assigned symbolic

expressions describing the sequence form, such as the closed forms in terms of h seen in

the previous chapter.

The sequence type and expression for a given component are dependent on the se-

quence types and expressions of those variables they use. This leads to an approach that

combines these two steps: any given component will first "demand" the classification of

any components it requires for its own classification. This demand process is performed

by using Tarjan's well-known algorithm for detecting SCCs in directed graphs [21]. Tar-

jan's algorithm has the property that SCCs are visited only after visiting all "descendant"

components in the graph; intuitively, a DAG of components is formed and processed in

postorder during a depth-first traversal. Thus, we are able to classify and assign expres-

sions in a demand-driven fashion, processing each sequence in the program exactly once.

In this chapter, we describe our intermediate representation and our SSA form, the

key SSA graph concepts, and our implementation of Tarjan's algorithm for detecting

components in the proper order. The algorithms for classifying these components and

assigning expressions will be presented in the following chapter.

14
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3.1 Intermediate Representation

Control flow is represented in the usual way as a graph, G CFG = (V, E, Entry, Exit)

where V is a set of nodes representing the basic blocks in the program; E is a set of

edges representing sequential control flow; and Entry and Exit are distinguished nodes

representing the unique entry and exit points in the program. All nodes are assumed to

be reachable from Entry.

Natural loops are detected using dominator information [1]; CFG nodes within loop

bodies are associated with their corresponding loops. The header node of a loop is defined

as that node which dominates all nodes in the loop body.1 It is convenient to insert nodes

into the CFG such that the header has exactly two predecessors, one from within the loop

and one from without. To provide this property, the compiler distinguishes two sets of

edges entering the header: the loop back edges and the loop entry edges. A preheader

node is inserted such that it provides a target for the loop entry edges. A postbody node

is inserted such that it provides a target for all loop back edges. Two edges are then

inserted from the preheader and post body to the header. For each edge exiting a loop, a

postexit node is inserted outside of the loop, between the source of the exit edge (within

the loop body) and the target (outside the loop). The postexit node is used for last-value

expressions for variables assigned within the body of a loop.

The tripcount of a loop 1 is defined as the number of times control flow passes through

the loop header node; it is equal to the value of hi + 1 after the loop has completed, where

h is the basic loop counter described previously.

Each basic block in the program is represented by a list of tuples of the form

(op, left, right), where op is an operation code, and left and right are pointers to the

tuples serving as operands for the operation. Operations include fetch, store, addition,

subtraction, etc. Depending on the type of the operator, left or right may be unused, e.g.,

unary minus. Only scalar, integer-valued operations are considered here. In particular,

floating-point operations and indexed or indirect fetches and stores are not considered.

1We will consider only reducible loops. Since natural loops are reducible, each loop will have a distinct
header.
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i = 1

loop
if (i > n) break

i = i + C

if (p)
k =

endif

endloop
j=i+k

then

i + 2

Figure 3.1: Sample program

= ljJ(io, i2)

= ljJ(ko, k3)

(it> no) break

i2 = it + Co

if (Po) then

k2 = i2 + 2
endif

k3 = ljJ(kt, k2)

endloop

jo = it + kt

io= 1

loop
it

kt
if

Figure 3.2: Sample program in SSA form

Subscript operators are considered only in the context of serving as indexing functions for

other memory operations.

3.2 Demand-DrivenSSA Form

Our approach is based on a form derived from the SSA form [7, 8]. SSA form is essen-

tially a sparse representation of "def-use" chains [1], produced by renaming variables such

that every use of a variable has exactly one corresponding reaching definition. Where

distinct definitions of a variable merge at confluence points in the CFG, operators called

ljJ-functions are introduced to merge each of the reaching definitions at that point. The

IjJ-function in turn serves as a definition point. Figures 3.1 and 3.2 show a loop before

and after conversion to SSA form. As is customary, we represent unique definitions of a

variable by subscripting.
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Rather than the traditional def-use chains, demand-driven SSA form uses' factored

use-def (FUD) chains [19]. In our implementation, fetch operators and <t>-functionshave

pointers to the corresponding definition for the variable in question; note that no "renam-

ing" of variables actually occurs, as is sometimes implied in the literature. By providing

each use with a link to the reaching definition, unique definitions are provided with little

additional overhead in representation. In the tuple representation of operators, fetch op-

erators have an additional field, the ssalink, and each <t>-functionhas an ssalink for each

reaching definition. (Note that <t>-functionsand fetch operators do not use their left and

right links.)

Merge operators that occur at loop headers are distinguished from those occurring as a

result of forward branching. Within loop headers, merges of multiple reaching definitions

of a variable are handled by It-functions, akin to the It-functions introduced by Ballance et

al in their Gated Single Assignment form, but without predicate information [5]; all other

merges are handled by <t>-functionsas normal. Thus, the semantics of the It are essentially

the same as the <jJ,but with two convenient differences. First, because preheader and

post body nodes are added to each loop, the arity of a It-function is always two. Second, of

the two reaching definitions at the It, one will always be from within the body of the loop

(the internal ssalink), and the other will always be from without (the external ssalink).

The SSA graph is an abstraction representing the operations within the SSA form of the

program.2 We define GSSA = (V, E), where V corresponds to the set of operation tuples,

and E corresponds to the set of left, right, and ssalink pointers. In Figure 3.3 the CFG

and SSA graphs are shown for the program in Figure 3.2. The ssalinks are distinguished

from the left and right links by dashed lines, and for clarity only the ssalinks for variable

i are shown. Note that the <t>-functionsin the loop header position are represented by

It-functions.

The use-def chain form, as opposed to the traditional def-use chain form, has the

advantage that the reaching definition at a given use is found by following the links from

the use's node backward, against the direction of data flow. For the propagation-based

2Unless stated otherwise, for the remainder of this thesis "SSA" will refer to our demand-driven form.
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19

problems we consider here, this is exactly the property desired: on a recursive traversal of

the SSA graph, each use "demands" the value of the earlier definition. At the operation

level, each operand is evaluated by first demanding the values of its operands, via the left

and right links. These demand-driven SSA graphs provide the framework for detecting

sequence variables.

The algorithms described here are demand-driven in their operations on the SSA graph.

They are not lazy in their determination of sequence forms, however: such a system might,

for example, classify a variable only when it is requiredfor dependence analysis. The system

described here attempts to classify all scalar, integer values, but could easily support true

lazy evaluation.

3.3 Cycles in SSA Graphs

Consider the SSA representation of i in Figures 3.2 and 3.3. Starting at the J.Ldefining i1,

the external ssalink defines the value of i1 on the first iteration of the loop. On subsequent

iterations the value of i1 is defined by the internal ssalink to the store defining i2 at the

statement i2 = i1 + co. The right-hand side of this update statement fetches the current

value of i, defined by the ssalink from the fetch of i to the J.L.These edges in the SSA

graph define a cycle, representing the "flow" of i around the loop: the variable i is a

sequence variable, since it is defined as a function of itself on a previous iteration. This

observation leads to the two key properties used in our technique.

Property1 The nodes and edges of an SSA graph corresponding to the definition of a

sequence variable form a nontrivial strongly connected component.

The definition of a sequence variable will clearly make use of other operations, e.g.,

the fetch of Co, but these are not included in the SCC. Only the operations in the SCC

have the behavior of the sequence under consideration.

Property 2 A nontrivial see in the SSA graph will contain at least one J.L-function.3

3This only holds for reducible control flow graphs. SCCs not containing a p-function should be handled
separately.
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These properties of SSA graphs are easily understood. Consider a statement in a loop

defining a sequence of i. Assume there is only one definition of i within the loop and that

i occurs only once on the right-hand side, as in the fragment:

i = ...

loop

s: i = ... i. .

endloop

As statement s creates a definition of i within the loop, there will be a p-function in the

loop header to merge the definitions from outside and inside the loop. The internal ssalink

of the p will reach the last definition of i in the body, at s. There is a path from the

store to the fetch on the right-hand side. The fetch, in turn, has an ssalink to the previous

reaching definition, the p-function. Thus, in our SSA form

io =

loop

i1 = p(io, i2)

endloop

there is a cycle in the corresponding SSA graph: the internal ssalink of the IL-function is

linked to the store of i2 which is linked to the expression on its right-hand side, which

in turn contains a link from the use of i1 to its corresponding reaching definition, the IL-

function defining i1. For more complex sequences, such as those with intermediate stores

and fetches

loop

j = ... i...

i = j

endloop
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these properties still hold, as a result of the insertion of ssalinks between the intermediate

stores and fetches.

By detecting SCCs, a compiler can examine the operations within the component to

determine the nature of the sequence. In many cases, as we will show, the variable(s)

used in the component can then be classified as functions of the tripcount of the loop. In

the example from Figure 3.2, i is a linear induction variable whose initial value is 1 and

whose value on each iteration increases by c, a loop-invariant constant. We can define the

sequence expression for i as a linear function of the basic loop counter, h: variable i2 is

equal to coh + 1. Not all SCCs correspond to known sequences; a criterion will be shown

below.

3.4 Tarjan's Algorithm

Associated with each node (operation tuple), t, in the SSA graph the following fields are

used:

. t. Type: the type of operation (fetch, add, etc.).

. t.Lowlink: used (with global variable Number) within the implementation of Tarjan's

algorithm.

. t.Status: one of {notyet, onstack, done}, denoting whether node t has been visited.

. t.Loop: (innermost) loop containing node t, or 0 if node t is outside any loop.

. t.HasLeft, t.HasRight, t.HasSSA: true iff t has left, right, ssalink fields.

. t.Left, t.Right, t.SSA: the node correspondingto the left, right, ssalink fields of t.

To maintain the stack of nodes currently being searched, a global variable and two func-

tions are needed:

. Stack Top: node on top of stack.

. Push_Stack(t): puts t on the stack.

. Pop_Stack(): pops the stack, returning the top node.
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Each loop, I, has one field, I.Ops,which contains the list of operations within each basic

block in the body of the loop. To determine the nesting of one loop with respect to

another, a function is used:

. eontains(l1,12): returns true iff (loop 12is contained within loop II) or (II = 01\12 =1=

0)

Algorithm 1 (SSA Graph Component Detection) Gicen I, a loop in the program,

this algorithm finds the sees in the SSA graph of the operations in I.

The algorithm uses procedure Find_Components, calledfor each loop in the program

in innerloop-first order, to visit each node in a loop. The procedureVisit_Node first visits

all of a node's SSA graph successors within the loop, and then processes that node. De-

pending on whether the node is a trivial component or the root of a nontrivial component,

one of two classification procedures is used. The procedures used - Find_Components,

VisiLNode, and VisiLDescendent - are shown in Figures 3.4, 3.6, and 3.5.

Note that SSA graph edges that cross loop boundaries are carefully respected by this

algorithm. If the SSA successor node is in a loop that is outside of the loop currently being

processed, the successor node is not recursively visited in VisiLDescendent. This allows

the compiler to treat a value from outside the current loop as invariant, and is critical to

the characterization of loop-based sequences. In the case where the SSA successor node is

in a loop that is inside the current loop, there will be an 1}-functiongating the exit value

from the inner loop, preventing the algorithm from revisiting those nodes in the inner

loop. (The treatment of 1}-functionsand exit values is explained in Chapter 5.) Strictly

speaking, we can say that, because loop boundaries are not crossed, the loops may be

visited independently in any order. As a practical matter, however, inner loops are visited

first.

Given that the goal is to provide expressions for nodes that may be candidates for

reduction in strength or that may provide information needed for data dependence, some

optimization to the above algorithm is possible. If the goal is to characterize subscript

expressions, the Find_Componentsprocedure could be specialized in the loop at line 6

to visit only subscript operators; the search procedure would demand sequence expressions
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procedure Find_Components( l)
1: Number = 0

2: Stack Top = 0
3: for tEL. Ops do
4: t.Status = notyet
5: endfor

6: for tEL. Ops do
7: if t.Status = notyet then
8: VisiLN ode( t, l)
9 : endif
10: endfor
endprocedure

Figure 3.4: Procedure Find_Components

procedure VisiLDescendent(t, l)

1: if Contains(t.Loop, 0 return Number
2: if t.Status = notyet then
3: VisiLN ode( t, l)
4: return t.Lowlink
5: elseif t.Status = onstack then
6: return t.Lowlink

7: endif

8: /* t.Status = done */
9: return Number

end procedure

Figure 3.5: Procedure Visit_Descendent
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procedure Visit-.Node( t, I)
1: t.Status = onstack

2: Iou' = this = Number = Number + 1
3: t.Lou'link = low

4: Push_Stack(t)
5: if t.HasLeft then
6: Iou' = min(low, VisiLDescendent(t.Left,l)
7: endif

8: if t.HasRight then
9: Iou' = min(low,VisiLDescendent(t.Right,l)
10: endif
11: if t.HasSSA then

12: Iou' = min(low, VisiLDescendent(t.SSA,I»
13: endif
14: t.Lowlink = low

15: if this 0:/; low return
16: if Stack Top = t 1\ t. Type 0:/; J.L then

17: Classify _Trivial( t, 1)
18: Pop_StackO
19: t.Status = done
20: else

21: Component = 0
22: repeat
23: StackTop = Pop-5tackO
24: StackTop.Status = done
25: Component = Component U StackTop
26: until Stack Top = t
27: Classify _Sequence( Component, I)
28: endif
endprocedure

Figure 3.6: Procedure Visit-.Node
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for precisely those operations in the SSA graph needed to classify the subscript, and time

would be saved by not attempting to visit unneeded nodes, e.g., floating-point operations.



Chapter 4

Classifying Sequence Variables

In the previous chapter an algorithm for partitioning the SSA graph into components

was presented. The next step is to determine the type of sequence of each given com-

ponent (if any). This will be performed by the procedures Classify _Trivial and Clas-

sify _Sequence.

We will first consider the case of trivial components. A trivial component in the graph

is assigned an expression according to the type of operation it represents and its operands,

e.g., a subtraction operator whose operands have expressions m+6and n-4 will be assigned

the expression m-n+10. We introduce a simple lattice framework and a demand-driven

propagation mechanism to perform this.

We will next consider the case of nontrivial components and trivial components con-

sisting of only a j.l-function. First, the class of sequence must be determined - linear,

monotonic, etc. This is based on the types of the operations (and their operands) in the

component. Second, expressions for the nodes in the components are created based on the

type of sequence and the expressions of the descendent nodes.

4.1 Demand-Driven Propagation

The framework used here is based loosely on the idea used in demand-driven constant

propagation [20]. In the constant propagation algorithms, constant integers may be as-

signed to variables at their definition points, and these values are propagated to their

uses, using simple constant folding to combine variables known to be constant wherever

possible. The propagation is performed "against" the data flow path, i.e., along the left,

- 26
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right, and ssalink edges: the value of a variable being fetched is determined by "demand-

ing" the value at its definition point; the value at an addition operation is determined by

demanding the values of the addition's operands, and so forth.

The lattice used in the constant propagation framework contains only the class of

constants, representing the set of integers. To perform strength reduction, a compiler

should be able to represent unknown variables as symbolic quantities and linear functions

of the loop index variable as symbolic expressions in h, the basic loop counter. For the

classification of the full range of sequences under consideration here, the set of symbolic

expressions must be still larger. The lattice of classes for these expressions was shown

in Figure 2.1. The top element in the lattice (T) represents "no expression"; this is the

value assigned initially to all variables. The bottom element (.1) represents "unknown"

and is assigned when no sequence expression can be determined for a variable. The class

invariants contains the set of integers ({. . ., -1, 0, 1,. . .}), a set of invariant symbols, and

combinations of these, e.g., expressions such k+l0 or n*i/2, where k, n, and i are invariant

with respect to some loop. All the classes of sequences described in Chapter 2 are also

represented: linear, polynomial, and geometric IVs, as well as wrap-around, periodic, and

monotonic sequence variables.

In determining sequence forms, variables are assigned sequence classes at their def-

inition points. Each variable being defined inherits the sequence class of the rhs of the

definition; each operation on the rhs is assigned a class based on its operands, e.g., variable

fetch operations inherit the class of the variable being fetched.

To represent the type of sequence being described, i.e., a member of the sequence class,

symbolic expressions are associated with each variable definition in a similar manner. The

compiler must be able to represent these members and perform algebraic operations upon

them. For the purposes of sequence expressions, such a system need only be extended

to accommodate operations on the complex sequence forms. For the sequences that have

closed forms in terms of h (linear, polynomial, and geometric IVs), this is accomplished by

explicitly representing the closed-form equations, similar to the forms shown in Chapter

2. For the wrap-around and periodic sequence classes, some means of representing the

constituent parts of the expressions describing them is needed. For monotonic forms,
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objects representing the type of monotonicity are required.

Some freedom is allowed in the complexity of the range of a symbolic evaluation system.

While the ability to perform certain operations on certain types will be required, e.g.,

addition of integral invariants, a system need not support the more complex cases, e.g.,

division of a periodic sequence by a geometric sequence. In these latter cases, a compiler

may choose to evaluate the expression as 0, with lattice value ..L.

A set of transfer functions Top is used to assign each operation in the program a

sequence expression. Associated with each operation n are two values: Glass(n), the

lattice value, and Expr(n), the appropriate expression of that class. Based on the type

of operation, a lattice transfer function is used to determine Class while the compiler's

algebra of types is used to determine Expr. The definition of each transfer function depends

in the natural way on the arity and type of operation. In general, for some operation n of

operator type op with two operands nz and nr,

Glass(n)

Expr(n)

Top(Glass( nz), Glass( nr))

fop(Expr(nz), Expr(nr)).

Algorithm 2 (Propagation for Trivial Strongly Connected Components)

Given t, an operation, and I, its loop, this algorithm determines the lattice value and

expression for t, t.Glass and t.Expr. The procedure is shown in Figure 4.1.

The procedure shows the cases for addition, fetches, and <jY-functions.Other cases are

handled similarly; j.t-functions will not beprocessed here, since they are treated as sequence

forms within nontrivial SGGs.

The operator T+ represents the transfer function for addition on the lattice, as shown in

Table 4.1. The operator 1+ represents the compiler's algebra for addition on the symbolic

forms. Note that the table includes T as a possible operand, but such an operation will

never occur. By the demand-driven nature of the algorithm, expressions will have been

classified (to something other than T) before they will be used in an operation.

The algebra T+ presented for addition is implementation dependent in two ways. First,

addition corresponds properly to the greatest lower bound in the lattice in Figure 2.1,

but in practice operations may simply go to .1 rather than become complex wrap-around
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procedure Classify _Trivial (t, I)
1: case t. Type
3: +: t.Class = T+(t.Left. Class, t.Right.Class)
4: t.Expr = !+(t.Left.Expr, t.Right.Expr)
5: fetch: t.Class = t.SSA.Class

6: t.Expr = t.SSA.Expr
7: 4>: if t.SSA1.Expr = t.SSA2.Expr = ... = t.SSAn.Exprthen
8: t.Class = t.SSA1.Class
9: t.Expr = t.SSA1.Expr
10: else
11 : t. Class = ..1

12: t.Expr = 0
13: endif
14:
15: endcase

endproced ure

Figure 4.1: Procedure Classify_Trivial

variables. Second, the lattice value selected by T+ may be optimistic and later adjusted by

!+. This happens, for example, in the addition of linear IVs and monotonically increasing

sequences: the result is monotonically increasing only if the linear sequence is known to

have a positive increment.

4.2 Classifying Sequences

The class of a component depends on the mix of operations within it: the number and type

of Il-functions, q)-functions, and arithmetic operations. This determination is performed

by the Classify _Sequence procedure. Using the counts of the types of operations that

make up the component, the class of the component is determined. All nodes in the

component are assigned this lattice value (sequence class).

Table 4.2 shows the conditions used by Classify _Sequence. These conditions rep-

resent an approximation: types may be simplified, as mentioned previously, and there

are some stipulations about the nature of operands, e.g., that a component for linear IVs

may include subtraction provided the right operand is not the sequence variable. Further,

notice that the criteria for the induction variables (linear, polynomial, and geometric) are

identical. This is because the distinction comes not from the operations in the component
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Table 4.1: Example Algebra for Addition
note: inv=invariant, wr=wrap-around, lin=linear, poly=polynomial, geom=geometric,

per=periodic, (s)ine/ dee=(strictly) increasing/decreasing

I sequence class ~

Table 4.2: Classification of SCCs Based on Frequency of Operations

T+ T mv wrap lin poly geom per zne sme dee sdee 1..

T T T T T T T T T T T T 1..
mv T mv wrap lin poly geom per me sme dee sdee 1..

wrap T wrap 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1..
lin T lin 1.. lin poly geom 1.. 1.. 1.. 1.. 1.. 1..

poly T poly 1.. poly poly geom 1.. 1.. 1.. 1.. 1.. 1..

geom T geom 1.. geom geom geom 1.. 1.. 1.. 1.. 1.. 1..

per T per 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1..
me T me 1.. 1.. 1.. 1.. 1.. me me 1.. 1.. 1..
sme T sme 1.. 1.. 1.. 1.. 1.. me sme 1.. 1.. 1..
dee T dee 1.. 1.. 1.. 1.. 1.. 1.. 1.. dee dee 1..

sdee T sdee 1.. 1.. 1.. 1.. 1.. 1.. 1.. dee sdee 1..

1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1.. 1..

linear 1 0 >0
polynomial 1 0 >0

geometric 1 0 >0
wrap-around 1 0 0
constant periodic > 1 0 0

nonconstant periodic > 1 0 >0
monotonic 1 >0 >0
1.. otherwise
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but by examination of their operands. The process of determining the component's class

must actually examine operands as well as operations.

In the remainder of this chapter, we describe the sequence classes with respect to their

criteria and the "solvers" used for assigning expressions. Other implementations may

choose to use different solvers, or a combination of solvers. One alternative possibility is

to use interpolation to combine the IV solvers into one general algorithm. The advantage

to the technique presented here is that the common cases (linear IVs) are detected and

classified quickly with only one pass through the component.

4.2.1 Linear Induction Variables

For linear IVs, the operations within the component may consist of fetches, stores, and

additions or subtractions of loop-invariant values or other linear variables. There must

be exactly one IL-function and no 4>-functionsin the component. Note that the SCC of

the SSA graph defining the sequence will actually be a simple cycle, since the induction

variable may only appear once on the right-hand side of the expression.

Solver. Our technique is to step through each of the operations in the cycle, in lexical

order (opposite data flow) starting at the IL, and assign each operation an expression

corresponding to its value at that point. Initially, the IL assumes the expression from

its external ssalink. When all the operations in the cycle have been considered, their

expressions represent the initial values at those points. The total increment or decrement

per iteration to the induction variable will be represented by the value assigned the internal

ssalink of the IL.

Example. Consider the variable i in the following loop, shown in SSA form with

sequence values:

io = 1

loop

i1 = IL(io, i3)

i2 = i1 + 2

{I, 6, 11, ...}

{3, 8, 13, . . . }

{6, 11, 16, ...}
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{t+24, t+44, t+64, ...}

endloop

The search procedure finds the component for this variable and classifies it as a linear

IV based on the operations within the cycle. The J..lhas an initial value of 1 inherited

from outside the loop. The first assignment assumes the value 3 (from 1 + 2), and the

second assignment assumes the value 6 (3 + 3). The total increment in the cycle is 5. The

sequence expression for the J..l-functionis therefore 5h + 1. The first and second stores of

i have expressions of 5h + 3 (5h + 1 from the J..l,plus 2) and 5h + 6 (5h + 3 plus 3).

Variable 1 is not in a nontrivial SCC; its expression is formed from the propagation of

i3, the multiplication by four, and the addition of t: 20h + t + 24.

4.2.2 Polynomial Induction Variables

For polynomial IVs, the operations within the component may consist of fetches, stores,

and additions or subtractions of loop invariants, linear IVs, or other polynomial IVs. There

must be exactly one J..l-functionand no q'>-functions.

Solver. Our technique for discovering the sequence expression of a polynomial IV

is to solve a matrix equation to determine the coefficients of an expression fitting the

sequence, as follows. For a degree-d polynomial (recall Section 2.2), let x be the first

d + 1 values of the induction variable, which the compiler can determine by symbolically

executing the statements making up the SCC for d + 1 iterations. Let A be a matrix

such that Aij = ij, 0 ::;i, j ::; d. Let s be the d + 1 unknowncoefficientsof the induction

expression. Letting As = x the compiler can discover the desired coefficients by computing

s, which is A-IX. The expression for the induction variable can then be represented by

2:-%=0skhk.

Example. Consider k in the loop:

i = 0

j=k=l

loop
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i = i + 1

j = j + i

k = k + j + 1

endloop

Variable k is the sum of a degree-2 polynomial IV, a linear IV, and a constant; therefore

Thus, the sequence expression for k is (1/6)h~ + h~ + (23/6)h3 + 4.

Since d will be known at compile-time, the number of unknowns is fixed. If the values

of Xk are integers, the resulting values of Sk will be rational. In general, however, Xk may

be a symbolic expression (possibly with rational coefficients), so a compiler may need to

perform symbolic matrix operations.

Since matrix A is constant, A-I may be precomputed by the compiler up to any desired

degree or created on demand.

4.2.3 Geometric Induction Variables

For geometric IVs, the operations within the component must contain a multiplication by

a loop-invariant value; this multiplicative factor defines the base of the geometric term in

the sequence expression. The other operations in the component may consist of fetches,

stores, and additions or subtractions of loop-invariant values, linear IVs, or polynomial
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IVs. There must be exactly one J.L-functionand no </;-functions. The sequence variable

may occur more than once (after simplification) on the rhs in a geometric IV.

Solver. The method we use to solve geometric components is the same as that for

polynomials, but with the addition of a geometric term. The matrix A is now d + 2 by

d + 2, such that

A .. _

{

ij, 0::; i ::; d + 1, 0 ::; j ::; d
tJ - .

bt, 0::; i ::;d + 1,j = d + 1

where b is the base of the geometric term. This formulation accounts for induction ex-

pressions that have both geometric and polynomial terms. The base corresponds to the

constant by which the induction variable is multiplied. If the variable occurs only once

on the right-hand side this is trivially found by examining the operations and operands

within the sec.

If the sequence variable occurs more than once on the rhs, e.g., g = 5*g - (2 + g),

the compiler may determine this multiplicative constant by symbolically evaluating the

expression, collecting factors of the induction variable in the expression tree of the right-

hand side of the assignment. Starting at the J.L-function,in reverse order each node in the

see is visited and assigned a factor value. For a fetch in the see (which must be a fetch

of the induction variable), a factor value of 1 is assigned. For addition operators, the factor

value assigned is the sum of the factor values of the parents, using a value of zero if the

parent is not in the sec. For multiplication operations, we similarly assign a factor value

equal to the product of the parents' values: one parent will be in the component, and the

other must be a constant, which is assumed to have a factor value equal to the constant.

The factor value assigned the J.L-functionis the factor value of the internal ssalink of the

J.Lin the sec. This factor is then used as the base in the geometric term.

The list of nodes in the see is not necessarily a simpie cycle, as in the previous forms,

since the sequence variable may occur more than once on the rhs. To set the factor value

of the J.Lin only one pass through the component, each node in the component can be

assigned a factor value only after each of its immediate successors in the component has

been assigned a factor value. The J.L-functionis visited last.

This solver assumes implicitly there will be only one geometric term in the resulting
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Figure 4.2: SSA graph with factor values

sequence expression. To handle the general case, the technique may be extended In a

straightforward way.

Example. In Figure 4.2 we show the SSA graph for the loop

go = 1

loop

gl = j.L(go J g2)

g2 = 5 * gl - (2 + gl) {2, 6, 22, 86, ...}

endloop

The factor values assigned each node are shown circled next to the operations. The final

value produced is 4, which is correct since 5*g-(2+g) ==4*g-2. The determination of the

actual sequence expression for g follows similarly to the example provided for polynomial

IVs, producing the expression (4/3)4h + 2/3.

4.2.4 Wrap-AroundVariables

In the SSA graph, a vHap-around variable will occur as a j.L-functionin an see by itself.

Wrap-around variables are the only sequence forms whose component is a single node.
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Solver. If the internal ssalink of the j.t has a value of some expression p, then the

variable defined by the j.t is a first-order wrap-around variable of type p. If p is itself

a wrap-around variable of order n, then the variable defined by the j.t is a wrap-around

variable of order n + 1 and type p.

Example. Here j is used as a wrap-around variable:

In SSA form, the only nontrivial see contains the operations in statements S1 and S2,

defining the linear IV i:

Variable j 1 is a wrap-around variable, (n, h + l)wrap: the external ssalink of the j.t has

expression n, and the internal ssalinkis linear (j2 is linear, inherited from the fetch of i1).

4.2.5 Periodic Sequences

An see with more than one j.t may correspond to a periodic variable. . The number of

j.t-functions defines the period of the sequence. If the component contains only fetches

j = n

i = 0

loop

...= ...j

j = i

i = i + 1

endloop

jo = n

io = 0

loop

jl = j.t(jo. j2)

S1: i1 = j.t(io. i2)

... = ... jl

j2 = i1

s2: i2 = i1 + 1

endloop
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and stores, the sequence will be a constant periodic. If the component contains arithmetic

operators, the component may define a nonconstant periodic variable.

Solver. For constant periodic variables, the values making up the sequence may be

determined simply by examining the values of the external ssalinks of the j.L-functions.

For nonconstant periodic forms, the compiler must symbolically execute the statements

in the component for one period. The arithmetic operations in the component will define

the nature of the nonconstant sequence. If the arithmetic operations are linear in nature,

e.g., addition or subtraction of loop invariants, this is trivial: these invariants will define

the increments or decrements to the sequence.

Example. Consider the nonconstant periodic variable defined by

Within the loop, variable j follows the sequence {2, 11, 3, 12, 4, 13, . . .}, represented as

(2, l1)per(l,O).

4.2.6 Monotonic Variables

If the SCC contains a <p-functionthen the variable carried around the loop may be a mono-

tonic IV. All four classes can be distinguished: monotonically increasing, monotonically

decreasing, monotonically strictly increasing, and monotonically strictly decreasing.

Solver. When the compiler has determined that an SCC may be monotonic due to

the presence of one or more <p-functions,the component must be analyzed to determine the

nature of the monotonic behavior. Starting at the j.L-function,the nodes in the component

may be evaluated symbolically, in lexical order, and assigned symbolic values at each

point. Regardless of the values at any particular point, if the compiler can determine an

jo = 1

j = 10

loop

jt = jo + 1

jo = j

j = jt

endloop
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ordering between the value reaching the J.Lfrom within the loop and the value from outside

the loop, a monotonic classification may be assigned.

Example. Consider the pack example from Section 2.6, expressed in SSA form for

variable k:

ko = 1

do i = 1, n

k1 = J.L(ko,k3)

if (A(i) > 0.0) then

B(k1) = A(i)

endif

enddo

The compiler will first determine that k2 is strictly increasing relative to the initial value

of k1 by recognizing the addition of a positive constant. At the <pthe compiler effectively

computes the meet of both arguments: intuitively, the merge of a monotonically strictly

increasing value (k1 + 1) and a constant (k1) is a monotonically increasing value. Thus,

the value reaching the J.Lfrom the bottom of the loop is always greater than or equal to the

initial value. Clearly, if the compiler could not determine the sign of the invariant added

to k1, no ordering may be determined, and no sequence expression may be assigned.
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Extensions for Loop Structures

Several researchers studying parallelizing compilers have pointed out specific types of

nested induction variable forms that, while relatively infrequent, can lead to significant

parallelism if the subscript expressions can be classified [9, 13]. A typical example is a

triangular loop containing a polynomial induction variable, similar to the Fortran program

and its SSA form shown in Figures 5.1 and 5.2.1 Here k is a polynomial in the outer loop

because it is linearly incremented in the inner loop, although this polynomial behavior is

not apparent from the perspective of the outer loop. The effect of the inner loop on k

must be summarized and exposed to the outer loop. This will be accomplished by the

1]-functions.

\i\Thenconsidering a loop nest, we must consider any reference from outside of the loop

as invariant because we wish to define induction variables in the context of the current

loop only. The inner loop of the example program is:

1In our representation of Fortran DOloops, the loop index variable in the loop header position provides
the reaching definition of the variable and not the p-function. The index variable is defined by the doseq
operator. The careful reader will note the p-function for a loop index variable, although never used as a
reaching definition, is technically a wrap-around variable. .
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L2: do

j3 = jt(jl' j2)

k2 = jt(k1, k3)

j2 = doseq(l, i1)

A(j2+1) =

k3 = k2 + 1
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L1: do i = 1, n

L2: do j = 1, i

A(j+1) =
k = k + 1

enddo

. . . - A (k)

enddo

Figure 5.1: Triangular loop nest

enddo

Tarjan's algorithm may be applied to the nodes of the SSA graph of the loop L2 in any

order. Assuming the only nontrivial see in the graph is identified first,k is classified as

a linear IV. In particular, k2 = h2 + k1 and k3 = hz + k2 + 1, where k1 is a loop-invariant

symbolic expression. The loop index, j2, is not in an see, but a compiler may easily

recognize this special case: DO loop indices are by definition linear induction variables -

in this case j2 = hz + 1. The j.l-function at j3, a wrap-around variable, has value jl on

the first iteration and takes the value of j2 on each su bsequent iteration. The subscript

expression for A(j+1) is a linear expression, since it contains a use of j2.

5.1 Tripcounts

The tripcount of Fortran DO loops can be determined at compile-time, although the result

may be symbolic and need not be constant: by definition, the Fortran loop

do i = in it , last, step

enddo

will have a tripcount equal to the maximum of zero and (last - init + step) / step. Thus,

the tripcount of the example inner loop will be rnax(O,(i1 + 1 - 1)/1) which is simplified

to rnax(O, id in the internal representation in the compiler.

Our studies show roughly three-quarters of the loops in scientific Fortran programs are

(syntactically) DO loops. For more general loops our strategy to determine the tripcount is

to examine the conditioncontrollingwhether or not the loop'seFG exitedge istaken. If
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j3 = flU1, j2)

k2 = fl(k1, k3)

j2 = doseq(1, i1)

A(j2+1) =
k3 = k2 + 1

enddo

j3 = ry(j2)

k4 = ry(k2)
. ..= A(k4)

enddo

i3 = ry(i1)
js = ry(1)

ks = ry(k1)

Figure 5.2: Triangular loop nest in SSA form

an induction expression for that condition may be found, e.g., i<n may be treated as i-n,

the number of times the loop executes may be determined. For loops with multiple exits,

we do not currently attempt to determine a tripcount. Obviously, tripcounts for loops

with simple exit conditions like if (i<n) where i is not an induction expression cannot

be determined either. Our compiler does not currently consider complex exit expressions

such as if (i<n OR j<m).

5.2 Evaluation of Loop Invariants

The tripcount is an important factor for determining symbolic expressions for variables

in loop structures. The effect of a loop on a given sequence variable in that loop can be

summarized and propagated out of the loop, provided (1) a closed form for the sequence

variable can be found and (2) the tripcount of the loop is known. It is advantageous to

simplify such expressions as much as possible. In the preceding case, if the value of i1 is a

known constant, the max expression may be removed from the tripcount. Determining the

constant value, however, requires some modifications to the algorithms presented earlier.

L1: do

i2 = fl(io, i1)

j1 = flUo, j3)
k1 = fl(ko, k4)

i1 = doseq C1,no)
L2: do
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Normally, the search procedure will not cross loop boundaries, so fetches of loop-

invariant values are represented symbolically within the inner loop, even if the variable

is assigned a constant value immediately outside. One of the reasons for this restriction

is that the reaching definition may turn out to be a function of the component currently

being classified and thus result in an see which spans loop boundaries. Three approaches,

varying in complexity and power, may be taken to resolve external fetches:

1. When it would be advantageous to resolve a particular symbol, a special search

routine may be invoked to follow the ssalink of the fetch outside the current loop. If

a simple expression, e.g., a constant, can be determined at the reaching definition,

that value is returned. Otherwise, the expression assigned the fetch must remain a

symbolic invariant. Note this method does not actually classify or assign sequence

expressions to any operations outside the loop.

2. The search procedure may be modified such that when the graph successor of a node

is visited, if it is outside the current loop the node will be nonetheless visited and

classified provided it can be determined that the reaching definition will be "safe,"

Le., will not require any solution from the current component. After classifying the

external path, the value is propagated into the inner loop; the fetch is classified; and

the algorithm continues with the current loop as normal.

3. The search procedure may be modified to handle loop boundaries. Tarjan's algo-

rithm is applied to any node in any loop, and if the solution to a node requires infor-

mation from outside its loop, the path outside the loop is searched after recording

the current node number. If the resulting search attempts to visit a node currently

on the stack with a node number less than the number recorded, there exists an

interloop cycle, and the search procedure must backtrack.

The search procedure used within Nascent takes the second of these approaches, since

the first is not sufficiently general, and the third requires substantial engineering that

detracts from the simplicity of our approach. A simple heuristic is used to determine
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safety: the path is "safe" only if the path does not contain a J.Lor cP.2In practice, we have

found the number of nodes searched to be less than three on average and the "success"

rate between 60 and 70 percent.

In the current example of Figure 5.2, the value of i1 is known (by this second approach)

to be a linear induction variable of the outer DOloop. Quick inspection reveals this outer

DOloop has a lower limit of 1. In general, the compiler can assume that if the inner loop

has executed, the value of i1 must be at least 1. The max operator may then be optimized

away, setting the tripcount of the inner loop to be i1.

5.3 Exit Value Expressions and 1]-Functions

Once the tripcount and the nodes in the inner loop have been assigned expressions, the

compiler moves to the next loop level. At this level, however, the secs for variables j and

k span loop boundaries. The effects of the inner loop on these variables should be treated

as fixed, however, and for this reason we gate the exit ealue of each variable assigned within

the loop and restrict the walk of the SSA graph from passing through these gates. We are

essentially collapsing the effect of the loop body into this exit value gate expression.

Ballance et al introduced 1]-functions in their Gated Single Assignment (GSA) form

with loop predicate information to determine under what conditions the value being gated

would be used [5]. Here we adopt the 1]-function but use it simply as a convenient place-

holder for the exit value.

Where a use of a variable has as its reaching definition a definition inside an inner loop,

an 1]-function is inserted in the postexit nodes of the loop. The 1]-function takes the place

of the reaching definition inside the loop and has an ssalink to the reaching definition.

Thus, the insertion of an 1]for some variable x is essentially an insertion of the assignment

x = x at the loop's postexit node.

The goal is to use 1]-functions as placeholders for an expression representing the exit

value of a variable assigned within a loop. The exit value will be either a constant or

a symbolic expression, depending on the classification of the variable, its value prior to

20r '7. as introduced next.
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the loop, and the ability of the compiler to determine the tripcount of the loop. If the

variable of the 1]is an induction expression, its exit value is a function of the tripcount of

the loop, and the compiler performs symbolic algebra to "solve" the induction expression

for the tripcount. If the tripcount is unknown, the exit value is left undefined (1.). It is

important to note that the exit value of a variable will be an expression in terms of the

current loop (or the outermost level), not from within the loop the 1]is gating.

As stated earlier, when performing the search of the SSA graph, if an 1]-function is

encountered, the ssalink is not followed into the inner loop. Instead, at that point the

exit value of the gated variable is derived and translated into its symbolic representation

as operators in our intermediate form. The resulting tree is placed as the target of the

1]-function's right link. The search (via Tarjan's algorithm) then resumes, walking up the

1]'Sright link to this tree. By translating the expression from the symbolic representation

to operators in the intermediate form, the search procedure (Tarjan's algorithm) can treat

the 1] expression like any other operator in the program. The implementation would

be considerably more complex if this translation were not performed, since the search

procedure would have to incorporate symbolic expressions in the SCCs.

In the example, when the 1]for j2 is reached, the compiler must determine the exit

value of j2 after the iterations of L2. The exit value for j2 is calculated as shown. We

use the notation a@b to mean "the value of expression a after b iterations": in particular,

since h starts at zero, h@n = n - 1. We define tcz to be the number of times a loop I is

executed, the maximum value of hi. Note that by the definition of DOloops, the header is

always executed at least once, so the assignment to j 2 is actually performed tC2+ 1 times.

j3 = j2@(tc2 + 1)

(1 + h2)@(i1 + 1)

(1@(i1 + 1)) + (h2@(i1 + 1))

1 + (h2@(i1 + 1))

= i1 + 1

The exit value expression for j2 is then i1 + 1. This is translated into a fetch of i1 added

to the integer constant 1 and connected to the 1]-function at j3. By a similar process, k4
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L1: do

i2 = J.l(io, i1)
jl = J.lCjo, j3)
k1 = J.l(ko, k4)
i1 = doseq C1,no)

j3 = 1}C1 + i1)
k4 = 1}(k1 + i1)

A(k4)
enddo

Figure 5.3: Outer loop, with exit value expressions

is set as the exit value expression k2@(tc2+ 1), which reduces to i1 + k1.

The overall cost of 1}-functionsis comparatively small in both time and space, and no

new phases have been added to the compiler for 1}node insertion in the SSA graph. There

is some cost in creating exit value expression trees, but this is dominated by the cost of

the induction variable procedure as a whole. Note the 1}expressions are only required for

variables that are live after the loop.

5.4 The Outer Loop

After the insertion of exit values, the outer loop has been transformed into Figure 5.3.

The compiler searches the SSA graph for the body of this loop, classifying i1 as a linear

IV, i2 as a wrap-around variable, and j3 as a derived linear IV.

The see containing variable k, however, contains an addition of a linear induction

expression (i1). The compiler determines k to be a polynomial IV, and the compiler

simulates the first 4 iterations of the loop to determine the values of the J.ldefining k1.

Initially, k1 is k1@O= ko@O= ko. On the next iteration, k1 is k1@O+i1@1,which simplifies

to ko + 1. The next two iterations produce ko + 3 and ko + 6. These expressions are then

used to solve a system of polynomial equations, producing the expression hi!2 + hI/2 + ko

for k1. The induction expression for the subscript of Ais defined by k4, so the subscri pt is

represented by the polynomial equation hi!2 + hI/2 + i1 + ko. Since i1 is equal to hI + 1,

the polynomial is simplified to hi!2 + 3hI/2 + ko + 1.
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The example concludes by determining the TJvalues for i, j, and k. Variable i exits

with the value rnax(1,no + 1) and k with an expression polynomial in hl. The exit value of j

is unknown since the induction expression for js is a wrap-around variable. The tripcount

tCl is not known to be greater than 1, so no simpler expressions can be produced. The

compiler may attempt to use the same lower-limit information we described earlier to

determine if the tripcount indicates whether the initial value or the subsequent induction

expression in the wrap-around variable is being used, and also in the rnax expression, but

in this case no information about no is known.



Chapter 6

Experimental Results

In this chapter we present a look at the types of sequences found in scientific Fortran

programs. Unsurprisingly, the majority of (scalar, integral) variables are classified as

invariant, linear, or indeterminate Cl). This data also presents some insight into the

nature of the data dependence problem. Data dependence tests vary greatly in efficiency

and accuracy. The GCD test considers only the coefficients of the loop indexes: if their

GCD divides the constant term, there is an integer solution to the dependence equation,

and a dependence may exist (depending on the loop bounds). If the dependence equation

contains unknown variables, this test may not be used. Other tests have other constraints.

It is important to examine the types of expressions that occur in the subscript expressions

that produce the dependence equations [24].

Our algorithm for classifying induction variables was run on the Perfect Club bench-

mark suite [6], the RiCEPS suite, the ?lIendez benchmarks from the NBS collection, and

a few other common scientific packages such as EISPACK and the Livermore Fortran

Kernels. Together these programs consist of approximately 140,000 lines of Fortran.

The (lexical) occurrences of each expression in the programs were recorded by sequence

class and by sequence expression: invariant, linear, indeterminate, etc. Note that a lin-

ear expression with all coefficients equal to zero is considered invariant. Indeterminate

expressions are those values for which the compiler cannot determine a sequence expres-

sion. Table 6.1 presents the frequency of sequence classes for scalar, integral fetches for a

sampling of the benchmarks. The data is presented as a percentage of the total number of

fetches; empty entries signify no occurrences of that class were found, and Eentries signify

a percentage less than 0.1 but greater than zero. While the ratios vary greatly across some

47
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Table 6.1: Subscript Classifications in Innermost Loops

programs, in all cases the majority of fetches were indeterminate, invariant, or linear.

More interesting are frequencies of the classes of expressions used as subscripts. Be-

cause the class assigned an expression is based on the nest level of the expression, however,

the data in Table 6.1 provide too coarse a view. Loop transformations require information

about the invariant terms that may actually be dependent on the basic loop variables of

the enclosing loops. In the following fragment, for example,

L3: do i = 1, n

k = k + i

L4: do j = 1, i

A(k) =

enddo

enddo

the subscript expression is classified as invariant in its immediate enclosing loop, L4. The

sequence expression, however, is polynomial if considered in terms of its two enclosing

loops, L3 and L4: 1/2hi + 3/2hl + 2.

In the first chart of Figure 6.1, the frequencies of classes of expressions for subscript ex-

pressions are presented for the Perfect benchmarks; subscript expressions are presented in

terms of the innermost enclosing loop, the two innermost enclosing loops, and so on. (Since

the frequencies of the more complex sequences (polynomials, geometrics, etc.) are small,

they are grouped together as "other.") As the level of nesting considered is increased, the

qcd spec77 spIce ocean trfd perfect nceps eispack Ifk

invariant 38.3 30.3 28.0 51.6 59.3 38.9 46.8 41.7 42.1
linear 20.1 61.4 5.2 18.9 26.6 27.1 33.8 45.6 31.6
indeterm 40.5 8.1 65.4 28.6 7.8 32.9 18.2 11.4 24.6

poly 2.4 € € €

geom 0.5 € 0.7 0.1 0.2 0.3

wrap 0.2 0.4 0.7 0.2 3.9 0.5 0.6 1.0 0.4

periodic 0.3
monotonic 0.3 0.3 0.7 0.3 0.1 0.7 0.9

total refs 1480 3400 15888 1859 794 47704 31013 8694 1991
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number of invariant expressions decreases, and the number of linear expressions increases.

Beyond three loop levels, little difference is shown since only 4% of the total number of

subscript expressions occur nested inside four or more loops.

Figure 6.1 also provides some information on the most common forms of subscript

expressions encountered (in the Perfect benchmarks). In the second chart, c represents

an integer constant: v represents any unknown variable; and k represents an integer not

equal to 0 or 1. "Complex" expressions represent expressions containing nonlinear forms,

including max operations. Nearly 15% of subscript expressions are constants; 45% are

simple linear forms of one basic loop variable; and 22% cannot be determined. Of the

linear coefficients not equal to ::!:1,the majority are small integers, making tests for in-

teger solutions easier in some dependence tests [18]. Relatively few classifiable subscript

expressions contain unknown variables.

Up to one-quarter of the subscripts have expressions which cannot be classified. In

general, nodes in the SSA graph are classified as indeterminate due to fetches of noninteger

values and nontrivial SCCs not matching one of the sequence variable forms. There are

three principal causes for this. First, variables used as procedure arguments are necessarily

considered to be indeterminate; interprocedural analysis may be able to determine if these

variables are not modified within the procedure, resulting in some gain. Second, many

codes contain indexed array references, such as A(I (k)). In SPICE, for example, which has

the most indeterminate expressions, 60% of the indeterminate expressions are caused by

indexed references. vVithout user assertions, a compiler cannot hope to resolve these cases.

Third, if a variable is conditionally incremented in a loop by a constant with unknown

sign, then the compiler cannot determine if the sequence is increasing or decreasing.

Other researchers have recently examined various aspects of subscript expressions with

similar results [12, 18]. These results represent a first approximation to help determine

what types of data dependence tests should be applied. Further study is needed, partic-

ularly in analyzing pairwise comparisons of references to the same array at all levels in

each loop nest.
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Chapter 7

Related Work

7.1 Linear Induction Variables and Strength Reduction

An early paper on program dependence graphs by Ferrante and Ottenstein suggests that

basic linear IVs may be found by identifying strongly connected components of subgraphs

corresponding to loops in the program [10]. Unsurprisingly, their representation of pro-

gram graphs has many features in common with SSA form, e.g., merge nodes, data depen-

dence edges. Still earlier, Loveman and Faneuf noted that in their p-graph representation

variables introduced by strength reduction "have two generations and one merge, and all

uses are generated by the merge:' which is closely related to our property of IL-functions

[16]. Although developed independently, our work may be viewed as a (much expanded)

current treatment of these early ideas.

Classical linear induction variable detection for strength reduction, particularly of

array expressions, is well covered in the literature. The usual approach is to use reaching-

definition information within a loop body and search for assignments of the form i =
i 1: c, where c is loop-invariant. This defines i as a basic induction variable. Other

assignments of the form j = c*i + k, where c and k are loop-invariant (possibly zero),

associate with j the tuple (i, c, k), putting j in the family of i [1].

Mutually defined linear IVs cannot be found by this algorithm, however, since the

"other" variable on the right-hand side is not known to be in any family of induction vari-

ables. In the PTRAN compiler, such cases are solved by an optimistic data-flow technique

which initially assumes all variables are linear induction variables until a contradiction ex-

ists [2]. Allen et al present a comprehensive treatment of strength reduction by recognizing

51
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more general linear cases [3].

Tu and Padua have used our SSA technique for linear induction (and monotonic)

variable detection in order to perform symbolic analysis of array bounds and subscript

expressions within conditionals and loops for array privatization [22]. They have found

that in order to accommodate conditional expressions fully by symbolic analysis, however,

more detailed predicate information is needed. Other current work by Havlak and others

may address the use of ,-functions for this purpose [14, 20].

7.2 SequenceDetection

Recently, other researchers have considered various ways of extending the class of se-

quences usually detected. Gupta and Spezialetti have extended the traditional data-flow

approach to classify "monotonic" statements for such diverse applications as run-time ar-

ray bounds checking, dependence analysis, and run-time detection of access anomalies [11].

Their technique uses an iterative algorithm to detect "basic" and "dependent" monotonic

statements in loops which are not nested, including both regular (arithmetic, geometric)

and irregular monotonic sequences. Our demand-driven treatment is at least as powerful,

and although it is still iterative for certain classes of sequences, we feel it may be, in

general, more efficient and certainly simpler. Further, our method lends itself readily to

an implementation of the expressions for each sequence, a problem not addressed in their

paper.

Much research has been performed on the symbolic interpretation of programs. At-

tempting to compute the values for variables along all paths of a program, however, entails

computing and maintaining path conditions, and it is difficult to compute solutions to the

resulting recurrences that correspond to sequences. Ammarguellat and Harrison have

presented a formalism in which abstract interpretation is used to associate a symbolic

expression with each variable assigned within a loop; these symbolic expressions are then

compared against known patterns (templates) representing sequences [4]. However, the

inefficiency of general symbolic systems has precluded it from use in optimizing compilers

[15].
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7.3 Parafrase-2

Haghighat and Polychronopoulos have described an advanced symbolic analysis system for

the Parafrase-2 compiler that recognizes many of the same sequences as our method [13].

To our knowledge, this is the only other scheme proposed that recognizes in an efficient

manner the wide range of sequence forms required by high-performance compilers. The

Parafrase approach differs from ours in five key respects:

1. The Parafrase compiler attempts to determine an abstract model for each loop in

the program, in effect collapsing the loop into a set of statements that summarize

the effect of the loop on the variables assigned within it. This collapses the CFG

into a DAG. Global forward substitution is used to propagate symbolic expressions.

The symbolic interpreter used does not maintain path conditions, but instead uses

a join function to determine equivalence along incoming edges (similar in spirit to

our transfer function for 4>-functions): the join function finds variables that have

the same symbolic values on different incoming edges. While this does cut down

on the amount of information the Parafrase compiler must maintain, the system is

not fundamentally based on a sparse representation, e.g., SSA, and cannot forward

expressions to only those points in the program that require them.

2. Sequence forms are recognized in Parafrase by solving the recurrences in the abstract

model's statements. For increasing values of d, the compiler evaluates symbolically

the first d + 2 iterations, assuming symbolic values for the initial iteration, and

attempts to interpolate a d-degree polynomial that fits the recurrence. In Nascent,

the degree is known right away, since it is determined from the operations within

the SCC. Within Nascent, therefore, linear IVs (by far the most common case) are

recognized directly and require only one pass around the operations making up the

induction sequence; in Parafrase, the entire loop body is evaluated at least twice.

3. Parafrase recognizes wrap-around variables by repeating the interpolation process

at subsequent starting points. That is, having failed to find a fit for the values

produced by iterations Ln, the compiler attempts to find a fit for the values pro-

duced by iterations 2..n, and so on. Our method recognizes wrap-around variables
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immediately based on the nature of the component in the SSA graph - it must be

a solitary J.L-function.

4. The Parafrase compiler does not recognize monotonic forms. The detection of mono-

tonic forms requires the ability to distinguish incoming symbolic values at join points.

Since the Parafrase compiler's join function detects only equivalent values, the op-

portunity to make this distinction is lost. The mechanism we use to detect monotonic

variables includes the join in the component, and the comparison of incoming values

is easily accomplished.

5. Nascent uses a strengthening process to simplify sequences. For example, a linear IV

with an increment of zero should be represented as an invariant. Parafrase captures

these cases immediately, based on the nature of the sequence.

Haghighat and Polychronopoulos have presented a chart listing 10 forms of induction

expressions and symbolic substitutions felt to be essential to parallelizing programs [13].

Four state-of-the-art parallelizing compilers were compared using a test-suite containing

these forms: Parafrase-2 recognizes all 10; the Titan compiler from Stardent recognizes

2; and both the KAP compiler from Kuck and Associates and the VAST-2 compiler

from Pacific Sierra Research recognize none.l The methods presented here allow for the

recognition of all 10.

In the limit, the power of the Parafrase and Nascent approaches are close, the differ-

ences in technique are important. Most importantly, our approach uses a sparse represen-

tation that minimizes the data needed and then solves sequences directly within the same

framework.

lThe versions of the compilers tested are not stated.



Chapter 8

Conclusions

This thesis has discussed an SSA-based algorithm for detecting sequence variables within

programs, including classical linear induction variables. Similar to demand-driven sym-

bolic interpretation, our technique is based on a generalization of (sparse, unconditional)

demand-driven constant propagation. We have presented a simple and intuitive algorithm

for classifying several types of sequences based on strongly connected components of the

associated SSA graph. This form of analysis has several advantages over previous meth-

ods. It is clearly a more general solution than traditional pattern matching, and we have

shown in our implementation that it can recognize the same types of expressions as other

proposed schemes.

The most obvious application of the algorithms presented here is strength reduction.

All linear induction expressions can be detected very quickly with only one pass over the

SSA graph. With as much support added for symbolic forms as desired, compilers that

require dependence information for subscripts will be able to detect linear dependences

as well as more complex forms. Our technique can be readily incorporated into existing

compilers that use internal representations similar to S5A.

Information about variables, such as lower limits and induction variable forms, may be

profitably used in optimizing compile-time and run-time checks. With the additional use

of assertions derived from the symbolic expressions of variables, in a demand-driven SSA

context, for example, a compiler may be better able to eliminate array bounds checks in

loops.

The primary motivation for this work, however, is an advanced classification of ex-

pressions in support of data dependence testing. Our experimental results indicate that

55



56

the vast majority of sequence expressions used in subscripts are invariant, linear, or inde-

terminate; the remaining more exotic sequence classes amount to at most a few percent.

However, parallelizing compilers, such as Nascent, can benefit greatly from this: in dis-

cussing their experiences in hand-parallelizing four of the Perfect benchmarks, Eigenmann

et al note the importance of having compilers detect generalized induction variables [9].1

A factor of 8 speedup was obtained in one case by replacing a geometric induction variable

with its closed form in terms of the loop index.

1Generalized induction variables are referred to in this work as polynomial and geometric IV 5.
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