
Performance Analysis of

Packet Classification Algorithms on

Network Processors

Deepa Srinivasan

A thesis presented to the faculty of the

OGI School of Science & Engineering

at Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Master of Science

in

Computer Science & Engineering

May, 2003

The thesis "Performance Analysis of Packet Classification Algorithms on Network

Processors" has been examined and approved by the following Examination Committee:

Assistant Professor, OGI School of Science and Engineering

Dr. Lois M.L. Delcambre

Professor, OGI School of Science and Engineering

-

Dr. Wu-chi Feng

Associate Professor, OGI School of Science and Engineering

For my parents

Acknowledgements

Throughout my degree program, I have had the good fortune to receive guidance and

support from several people. I am especially grateful to:

Dr. Wu-chang Feng, Assistant Professor, my thesis advisor for his guidance, patience

and encouragement throughout this thesis and for partly funding my research work.

Thank you Wu.

Dr. Lois Delcambre, Professor and Dr. Wu-chi Feng, Associate Professor for

examining my thesis and providing invaluable feedback. Thank you Lois. Thank you

Wu-chi.

Erik J. Johnson, Senior Network Software Engineer, Intel Corporation, for providing

the microengine C code libraries I used in this thesis and for providing technical

advice as I progressed in my research. Thank you Erik.

George Inness, Andrew Kegel and Robert Smith, my managers at IBM Corporation

for their encouragement and support for my graduate education and for approving

most of the funding for my degree program. Thank you George. Thank you Andy.

Thank you Robert.

Finally, my most special thanks go to my parents and sister Hemu for their constant

encouragement through the years and to Balan for being there through the final phases of

this thesis. Thank you Appa, Amma, Hemu and Kanna.

Table of Contents

Acknowledgements .. iv

Abstract ... x

1 Introduction ... 1

... 1.1 Motivation for study 4
. .

1.2 Contributions ... 6

.. 1.3 Related Work 6

1.4 Other considerations ... 7

1.4.1 Scope ... 7

1.4.2 Availability of real-world firewall rulesets ... 7

... 1.5 Completion criteria for research 7

2 Network Processor Overview ... 8

... 2.1 Hardware Architecture Overview 8

2.1.1 StrongARM core; microengines ... 8

.. 2.1.2 Memory interfaces 10

... 2.1.3 The Federated Bus Interface 11

.. 2.2 Software frameworks 11

.. 3 Packet Classification Algorithms 13

.. 3.1 Basic Search 13

... 3.2 Grid of tries 13

3.3 Cross-producting ... 14

... 3.4 PACARS 14

... 3.5 FIS-tree 14

3.6 Heuristics ... 15

.. 3.6.1 Recursive Flow Classification 15

... 3.6.2 Hierarchical Intelligent Cuttings 15

... 3.6.3 Tuple Space Search 15

.. 3.7 Bit Vector 16

... 3.8 Summary 16

... 4 Bit Vector algorithm 18

4.1 Working of the algorithm .. 18

.. 4.2 Formal definition 20

.. 4.3 Software implementation 22

.. 4.3.1 Implementation verification in C 22

.. 4.4 Mapping the algorithm to the IXP 25

... 4.4.1 Microengine allocation 25

... 4.4.2 Design Approach 1 26

... 4.4.3 Design Approach 2 26

.. 4.4.4 Implementation/Design Details 27

... 4.4.4.1 Implementing BitVectorl 27

... 4.4.4.2 Implementing Bitvector2 29

... 4.4.4.3 Data Structure placement in memory 32

... 4.4.4.4 Verification of the implementations 32

... 4.5 Other considerations 34

... 4.5.1 Management application 34

... 4.5.2 Simulator 34

... 4.5.3 Scalability of the Bit Vector algorithm 35

5 Results and Analysis ... 36

5.1 Performance Results ... 37

5.1.1 Linear Search (LS) .. 38

5.1.2 Bit Vector Approach 1 (BV1) ... 39

... 5.1.3 Bit Vector Approach 2 (BV2) 40

.. 5.1.4 Performance Comparison 41

5.2 Analysis ... 46

. ... 5.2.1 Linear Search vs Bit Vector 46

.. 5.2.2 BitVectorl vs . BitVector2 48

.. 6 Conclusion 51

References .. 53

Biographical Sketch ... 55

vii

List of Figures

1.1 Tradeoff between speed and programming ease of some design choices 2

1.2 Architecture block diagram of a parallel implementation (from the

... original paper [I]) of the Bit Vector algorithm 5

.. 2.1 High level architecture of the Intel IXP1200 9

.. 4.1 Projections of dimension values on the 1-axis 19

.. 4.2 Projections of dimension values on the 2-axis 19

.. 4.3 Projections of dimension values on the 3.axis 19

4.4 Bitmaps for each j-axis representing the rules matching each range

... on the axis 22

..................................... 4.5 Pseudocode for classification phase implementation 24

... 4.6 Design Approach 1 of the Bit Vector algorithm -26

... 4.7 Design Approach 1 of the Bit Vector algorithm -27

4.9 Microengine responsibility and communication in

.. BitVectorl 29

........................ 4.10 Microengine responsibility and communication in Bitvector2 31

........................ 5.1 Comparison of the receive and transmit rates of the algorithms 41

..................................... 5.2 Comparison of memory access (%) of the algorithms 42

........................ 5.3 Comparison of memory access rates (Mbps) of the algorithms 42

............................... 5.4 Comparison of packets sentlreceive ratio of the algorithms 43

... 5.5 Comparison of microengines executing time 43

.. 5.6 Comparison of microengines aborted time 44

... 5.7 Comparison of microengines idle time 44

.. 5.8 Comparison of microengines execution in Mips 45

.............................. 5.9 Distribution of individual microengine time for BitVectorl 45

............................ 5.10 Distribution of individual microengine time for BitVector2 46

...
V l l l

List of Tables

1.1. Examples of network processors available in the market today 3

... 2.1 : Registers available to each microengine 9

.. 2.2. Types of Memory Interfaces on IXP 1200 11

3.1: Performance characteristics of packet classification algorithms

... (adapted from [2]) -17

4.1: Example

.. ruleset -19

... 4.2. Memory allocation for BV 1 and BV2 32

... 5.1. Performance Metrics Collected 37

... 5.2. Overall performance statistics (LS) 38

................................. 5.3. Performance statistics of individual microengines (LS) 39

... 5.4. Overall performance statistics (BV 1) 39

................................ 5.5. Performance statistics of individual microengines (BV1) 40

... 5.6. Overall performance statistics (BV2) 40

............................... 5.7. Performance statistics of individual microengines (BV2) 41

Abstract

Performance Analysis of Packet Classification Algorithms on Network Processors

Deepa Srinivasan

M.S., OGI School of Science & Engineering

at Oregon Health & Science University

May 2003

Thesis Advisor: Dr. Wu-chang Feng

Packet classification is a fundamental function performed by networking devices such as

routers, switches, and firewalls. Approaches for designing packet classification

algorithms are typically based on the hardware they are run on. Programmable network

processors are an emerging platform that aims to offer the flexibility of software while

achieving performance comparable to custom hardware. A key architectural feature of

typical network processors is that the hardware is highly optimized to provide parallel

execution of code. This thesis studies how different design approaches of mapping a

parallel-search packet classification algorithm onto a network processor may affect its

performancelpacket-processing speed. In particular, it analyzes two different mappings

the Bit Vector algorithm on the Intel IXP1200 network processor. It presents

performance results and analysis from implementing these two different designs; this

analysis can be used as input while designing packet classification algorithms for network

processors; or while designing similar algorithms for parallel hardware in general.

1 Introduction

Over the past two decades, computing environments have witnessed rapid

transformations and progress in several areas resulting in what can be termed as a gigabit

environment [12], in terms of CPU speed, memory sizes and disk sizes. Gigabit or high

speed computer networking is an important component of this environment. As the

processing speeds of components within a computer system are increasingly advancing to

high speeds, it becomes essential that the networks connecting such systems also are

capable of handling high speeds [131.

A wide range of applications, from file servers to fancy multimedia applications, benefit

from high speed networks. Some of the specific applications are in scientific modeling &

engineering, publications, medical transfer, Internetlintranets, data warehousing, network

backups and desktop video conferencing. With widespread use of such applications, the

demands on various components in the network - adapters, hubs, bridges, switches and

routers - will need to be able to process at high speeds. This implies that each of the

functions performed by these network components and the algorithms that are

implemented for these functions have high operating speed requirements.

There are several choices available for use while designing such network devices. Some

examples are General Purpose Processors (GPPs), embedded RISC processors, network

processors, Field-Programmable Gate Arrays (FPGAs) and Application Specific

Integrated Circuits (ASICs). For example, C. Partridge et al. [14] describe a router that

can operate at a high speed of 50 Gbps (Gigabit per second), that was designed using

custom hardware. In choosing from the available design options, we consider several

tradeoffs including the speed of packet processing achievable and ease of

programmability. This is illustrated in Figure 1.1.

At one end of the spectrum are ASTCs that offer the fastest packet processing speed and

are well-suited for the data plane. But they are not programmable, have a long time to

market and are not reusable. At the other end, GPPs are programmable and have a mature

software development environment. However, they are too slow to run the data plane

effectively and are typically used to implement control plane functions. FPGAs are

ASIC

Speed

FPGA

Network Processor

GPP

Embedded RISC Processor

Programming ease

Figure 1.1 : Tradeoff between speed and programming ease of some design choices

flexible re-programmable hardware which are less dense and slower than ASICs.

However, they are good for providing fast custom functionality and well-suited for data

plane functions. Embedded RISC processors offer the same level of programmability as

GPPs; however they tend to be slower. They are typically designed specifically for

network applications and are used for control plane functions.

Programmable network processors (NPs) are an emerging class of processors that aim to

offer the flexibility of implementing networking services/applications in software as with

GPPsJembedded RTSC processors, while achieving high packet processing speed as with

ASICsJFPGAs. They are flexible, reusable components with a lower cost than custom

hardware. Several vendors offer families of network processors, each of which has a

different hardware architecture that is suitable for use in different domains and have

different operating speeds. Examples are the Intel IXP, IBM PowerNP and Motorola C-3

families of processors. Some of these are described in Table 1.1 [15, 161. There are some

architectural features that are common across different network processors. Multiple

processing elements (PEs) are available with multiple hardware thread contexts per

element. This enables thread context switches that have zero or minimal overhead. The

instruction set of the processor is customized to suit network applications. The hardware

architecture of network processors is described in detail in Chapter 2.

Table 1.1 : Examples of network processors available in the market today

Although NPs aim to offer programmability that is comparable to GPPs, there is one

significant difference between developing software for NPs and GPPs - on the NP, the

developer nlust have an in-depth understanding of the hardware architecture and of the

various features available on a particular NP platform. Since there is no operating system

available to perform dynamic resource management or load balancing on NPs, the binary

image that is cxecuted on a particular PE is pre-determined at compile/load time. Since

an NP has multiple PEs, a single algorithm can be mapped in several different ways to

each of the processing element and different mappings could have different

performancelpacket-processing speed. Hence, it is imperative that given an algorithm, the

best possible mapping onto the NP platform is chosen for implementation.

Network Processor

Intel IXP1200

Intel D(P2400

Intel TXP422

LBM PowerNP NP4GS3

IBM PowerNP NP2G

Description

For applications operating at 155 Mbps to 622 Mbps

For applications operating at 622 Mbps to 2.5 Gbps

For applications such as residential gateways, firewall

appliances

For applications operating at 4Gbps

For applications operating at 2Gbps

An important class of algorithms used in networking is packet classification. Packet

classification is a fundamental function performed by networking devices such as routers,

bridges and switches and in networking applications such as firewalls and intrusion

detection systems. Tt can be defined as the process of categorizing packets according to

pre-defined rules. A clcrssifier or ruleset typically refers to a collection of rules. Once a

packet is received by a networking device or application, in order to classify it, the values

in its header fields are looked up against those in the rules, until a match is found. Once

the matching rule is found, the action specified by that rule is applied to the packet.

Classification is typically performed based on the appropriate headers in a packet. We

call each of the header fields a dimension. The complexity and/or the performance of the

classification algorithms vary depending on the number of dimensions and number of

rules used in the classification.

As the operating speeds of networks increase, the classification algorithms that are

employed are required to process packets as close to wire-speed as possible, to prevent

bottlenecks in networks. Network processors are ideally suited for use to implement

classification at wire speed, since they aim to offer both programmability and wire-speed

packet processing.

1.1 Motivation for study

In this thesis, we study the problem of mapping packet classification algorithms onto

network processor hardware. The Intel IXA family of network processors is one of the

predominant in the market today [17]. It is also provided to universities through the Intel

IXA University program (http://www.ixaedu.com), along with the required development

environment, for use in research projects. Hence, we choose the Intel IXP1200 (IXP) as

our platform for study.

As is typical with NPs, the hardware architecture of the IXP is highly parallel (see

Chapter 2 for details). Hence, an algorithm that is capable of performing the various

stages of classifying a packet in parallel would be well suited for implementation on the

IXP. Let us consider the Bit Vector algorithm (see Chapter 4 for details). The original

paper [I] describing the algorithm presents the diagram shown in Figure 1.2.

Figure 1.2 (from the original paper [I]): Architecture block diagram of a parallel

implementation of the Bit Vector algorithm

lkmck& ~)atpli
p

Packet input

It is indeed interesting to note the striking similarity of the architecture of an

implementation of this algorithm and that of hardware architecture of a network

processor (recall that a network processor has multiple PEs that can execute in parallel).

Hence, it is natural that the Bit Vector algorithm could be mapped onto a NP such as the

IXP easily. It may also seem that such an implementation will perform better than one

where the algorithm is implemented sequentially on the IXP. However, our study shows

that this is not true. There are several low-level implementation details that affect the

performance of the algorithm on the K P . This underscores the main idea in this thesis -

that it is critical to choose the right design mapping of an algorithm onto the NP; while at

Temp 51orsgc

1
AND

1-

<- /-----"
--.

Prwmin%
Eholfnl

N

Pr41cr.sning
I;lnnca#

f

Promwing
Ucmcni

2
&

v

" . b . a " x >

InfemaIs

Ritmapa

Intww~Lr

Rirnaapq

Intersah

R itmaps

a higher level, it may seem that a particular mapping may perform better than another, the

low-level implementation details and resource restrictions may prove otherwise.

1.2 Contributions

In this thesis, we propose different design mappings for implementing the Bit Vector

algorithm on the IXP and present a comparison between two of the approaches. We

present several critical performance metrics from the two implementations and analyze

them in detail. Also, in order to have a baseline performance comparison, we implement

a simple linear search algorithm and compare it to that of the Bit Vector algorithm, on the

IXP. A principal observation we make is that a significant amount of a processing

element's time on the IXP is wasted due to aborting its instruction execution pipeline,

which happens typically due to branch instructions. This leads to the conclusion that

algorithms with complex branch decisions will perform worse than those with simpler

execution paths.

The results from this thesis can be used while designing packet classification or other

class of algorithms specifically for programmable network processors with highly parallel

hardware architectures.

1.3 Related Work

There are several packet classification algorithms that exist in current literature that

propose various schcmes for performing multi-dimensional classification. Chapter 3

presents a survey of these algorithms. However, they are not immediately applicable for

implementation on network processors. There has been a recent study [5] that proposes

designing efficient packet classification algorithms targeted for NP platforms, by

exploiting various characteristics that are typically exhibited by classifiers. In this thesis,

we argue that given any algorithm, it is important to choose the right mapping for

implementation. This is critical since NPs aim to offer wire-speed packet processing. To

our knowledge, there is no other previous work that studies this aspect of performance of

packet classification algorithms on NPs at this level of detail.

1.4 Other considerations

1.4.1 Scope

The study of packet classification algorithms in general and their suitability for network

processors is an extensive problem area. The core of this thesis is to evaluate two

different design approaches of a single algorithm and present and compare performance

metrics via implementation. We do not attempt to propose a new packet classification

algorithm nor attempt to achieve the best possible performance of such algorithms on

network processors.

1.4.2 Availability of real-world firewall rulesets

One of the most common applications of packet classification is in access control, as

employed by firewalls. While designing a classification algorithm or evaluating its

performance for real-world use, we need to use test mlesets that reflect characteristics.

However, access control rules are meant to provide security to an enterprise's network

and are not disclosed. Hence, we do not have access to such rulesets in the public

domain. A recent study [5] of four such mlesets was done and the characteristics were

published. However, in this thesis, we analyze the performance of an algorithm

independent of the input ruleset - that is, given a fixed ruleset, we study the performance

of different design mappings. One of the future steps in this work might be to generate a

synthetic ruleset database that follows the characteristics typically exhibited by real-

world I-ulesets [S] and study the performance. Tn this thesis, we study the performance

only against a small sample ruleset.

1.5 Completion criteria for research

The completion criteria of this thesis is in achieving correct implementations of the two

approaches of the Bit Vector algorithm and the linear search algorithms on the IXP,

running simulations of packet streams through these implementations, recording

performance statistics of these implementations and analyzing the same.

2 Network Processor Overview

This chapter presents the hardware architecture and software development environment

of the Lntel 1XP1200 (chosen for study in this thesis).

2.1 Hardware Archifecture Overview

The IXP1200 is an integrated network processor, comprised of a single StrongARM

processor, six microengines, standard memory interfaces and high-speed bus interfaces.

Complete and detailed description of the hardware architecture is available from other

sources [3,4]. Figure 2.1 shows the high-level architecture of the IXP1200 [18].

2.1 .I StrongARM core; microengines

The StrongARM core is an Advanced Reduced Instruction Set Computer (RISC)

Machines (ARM) general-purpose processor. The StrongARM core offers a tradeoff

between computational capability and power consumption. The six microengines are

RISC processors optimized for fast-path packet processing and have an instruction set

tuned for processing network data. Each instruction on the microengines takes up one

long word (32 bits) of control store space; each microengine has an independent 8 KB

instruction store, enough for 2048 instructions.

Engines

FIFOs

IXP120Q Chip 5
m

StrongARM x

Figure 2.1: High level architecture of the Intel IXP1200

On the microengincs, instructions are executed in a five-stage pipeline. Each microengine

has four hardware-assisted threads of execution. All threads in a particular microengine

execute code from the same instruction store on that microengine. An equal portion of the

total registers available to a microengine is allocated to each hardware thread context;

hence, registers of each microengine need not be flushed to memory on a thread context

switch. The thread arbiter on the microengine is non-preemptive and swaps between

threads in a round-robin order. Communication between threads in a microengine is done

using registers; communication across microengines is done using the shared SRAM and

SDRAM memory.

A key feature of the IXP1200 is asynchronous memory access - for example, a

microengine thread can issue a memory request and then continue processing; the

completion of the request could then be asynchronously reported back to the microengine

thread.

There are different kinds of registers on the TXP1200. Table 2.1 lists the types of registers

and their purposes.

Table 2.1 : Registers available to each microengine

The IXPl200 development platform consists of the network processor card which is a

PC1 card that fits into the host system. This section describes the architecture of the

network processor card. The main components of the card are a StrongARM processor

known as the core processor, six microengines, SDRAM memory, SRAM memory unit

and the IX bus interface unit. Figure x presents this architecture.

Type of Register

General Purpose

SRAM transfer

SDRAM transfer

2.1.2 Memory interfaces

The IXP contains three different memory interfaces: scratchpad, SRAM and SDRAM.

Table 2.2 summarizes the details of each of these. In addition, each interface provides

some additional features. The scratchpad unit provides atomic increment and bit test-and-

setfclear primitives. The SRAM unit provides CAM locks, atomic bit test-and-setlclear

and push-pop queues. The SDRAM unit provides a direct path to and from the Federated

Bus Interface (FBI) which allows data to be moved between the two without first going

through one of the processors.

Number of
registers per
microengine

128

64

64

Description

32-bit registers; allocated into two

banks of 64 each.

Used to transfer data to and from

the SRAM unit, the IX Bus

interface and PC1 interface.

Used to transfer data to and from

the SDRAM unit.

Table 2.2: Types of Memory Interfaces on IXP1200

2.1.3 The Federated Bus Interface

Memory
Interface

Scratchpad

SRAM

SDRAM

The main purpose of the FBI is to provide an interface for receiving and transmitting

packets. The FBI holds the on-chip scratchpad memory, contains a set of control and

status registers, a hash generation unit and the interface to the IX bus.

2.2 Software frame works

Intel provides the IXP Software Development Kit (SDK) for use by software developers

to implement network services on the TXP. There are two basic programming choices in

the SDK - programming in microcode/assembly language or programming in microC.

Microengine C or microC [19] is a C-like language that includes features for

programming on the IXP. For example, the microC compiler implements intrinsic

functions that s~lpport features of the IXP1200 that are not accessible using standard C;

intrinsics are built into the compiler (they are not library functions). An example of an

intrinsic is the sdrnm-rf i f 'o-r~.ad~i~~d that reads (packet) data from a receive FIFO and

places it in SDRAM memory

Minimum
Addressable
Units (Bytes)

4

4

8

Intel also defines the MicroACE framework that should be used by developers while

writing code targeted to run on the TXP hardware. Using the MicroACE framework, code

is organized into ACES or Active Computing Elements. Each ACE is composed of a

microblock that runs on microengines and a core block that runs on the StrongARM core.

Communication between these blocks is defined by the ACE framework.

Addressable
Size

1 KB

2 MB

32 MB

Actual
Size

4 KB

8 MB

256 MB

Approx. unloaded
latency (clocks)

12-14

16-20

3 3 -40

The code that we use in this thesis implements microblocks using microC. This SDK is

provided by Intel on a limited basis to limited customers and does not have

documentation or support. However, the code and framework is very similar to

microcode microACE and hence can be worked with, after the initial learning curve.

3 Packet Classification Algorithms

This chapter presents a survey of several packet classification algorithms that exist in

current literature. These algorithms can be classified as basic-search, geometric, trie-

based, hash-based, parallel-search and heuristic 121, 131. Each of the algorithms has

different time and space complexities. The Bit Vector algorithm, chosen for study in this

thesis, is described in detail in Chapter 4. The following sections describe each of the

other algorithms briefly. We use the following terminology in this thesis:

N - represents the number of rules in a classifier.

W - represents the width of each field in a packet header.

d - represents the number of dimensions in each packet that is used for classification.

3.1 Basic Search

A linear search is an example of a basic search algorithm. Rules can be represented by a

linked list that can be ordered by decreasing priority. To find a matching rule for a

packet, we simply do a linear search of the linked list. This algorithm has O(Nd) space

complexity and O(Ncf) time complexity.

3.2 Grid of tries

Packet classification at network Layer-4 (i.e. the algorithms can be used for classifying

based on headers available at Layer4 of the OSI architecture) can be done using two

different approaches [6]. One type of data structure that can be used for packet

classification is set-pruning trees. For example, for two-dimensional classification (say,

source and destination IP addresses), a set pruning tree is constructed as follows: Build a

trie containing destination prefixes; each valid prefix in a destination trie points to a trie

containing some source prefixes. While searching, we first match the destination of the

packet header in the destination trie; we then traverse the associated source trie to find the

longest source match. However, this scheme has a memory blowup problem - the

memory requirement for this scheme (for d dimensions) is o (N ~ ~ w) , since each rule may

have to be stored dW times.

In the grid of tries algorithm, the worst-case lookup time can be improved by storing pre-

computed switch pointers in the trie - the switch pointer can be used to speed up search

in a later source trie based on a search in an earlier source trie. This has a time

complexity of O(W) and memory complexity of O(NW). However, switch pointers make

incremental updates to the grid of tries difficult.

A second approach for Layer-4 classification is cross-producting [6]. The main idea

behind cross-producting is to: slice the filter database into columns, with the ith column

representing all the distinct filters in field i; when a packet P is to be classified, the best

matching prefix for each of the its fields is determined separately and the individual

lookup results are combined. The basic cross-producting algorithm is to build a table of

all possible cross-products and precompute the least cost filter matching each cross-

product. This gives a time complexity of O(dW) and space complexity of O(Nd).

3.4 PACARS

Another class of algorithms is Packet Classification Algorithms using Recursive Space-

decompositions (PACARS) [7]. A specific instance of this is the Area-based Quad Tree

(AQT). For 2-dimensional classification, this algorithm has a space complexity of O(N)

and search time complexity of O(aW), where a is a tunable parameter. The worst-case

update time is O(a ad^).

Packet classification can be done using a data structure called the Fat Inverted Segment

tree or FTS-tree [8]. Given a set S of possibly overlapping line segments, a segment tree is

a balanced binary search tree containing the end points of the line segments in S. It can be

used for operations such as determining the highest priority line segment containing a

given point [2]. An FTS-tree is a modified segment tree: (a) the segment tree is

compressed to decrease its depths and occupies a given number of levels 1; (b) up-

pointers from child to parent are used. The storage complexity using FIS-trees is O(1 x

N""); the search time complexity is O((l+ 1)W) [2]. The tradeoff between storage space

requirement and search time can be achieved by changing the value of 1.

3.6 Heuristics

3.6.1 Recursive Flow Classification

Heuristic algorithms exploit the structure and redundancy that is observed in packet

classification rules. The classification problem can be stated as mapping S bits in the

packet header to a T bit action identifier, where T = log N and T << S 121. Recursive Flow

Classification [9] attempts to perform the mapping over several phases - in each phase,

one set of values are mapped to a smaller set.

3.6.2 Hierarchical Intelligent Cuttings

Another heuristic algorithm that exploits the structure of the classifier is Hierarchical

Intelligent Cuttings or HiCuts [lo]. Each node in the HiCuts tree stores a small number of

rules that can be searched sequentially to find the best match. The characteristics of this

tree are chosen while preprocessing the classifier, based on its structure.

Both of the above algorithms have a storage complexity of o(N~) and search time

complexity of O(d).

3.6.3 Tuple Space Search

The Tuple Space Search algorithm [I I] is motivated by the observation that while filter

databases contain many different prefixes or ranges, the number of distinct prefix lengths

tends to be small. This implies that the number of distinct combinations of prefix lengths

also tends to bc small. A tlryle splice is defined as the set of tuples defined for each

combination of field length. The set of rules mapped to the same tuple can be stored in a

hash table. Given a packet, all the tuples in the tuple set can be linearly probed to

determine the least cost filter matching that packet. The search cost is proportional to rn,

the number of distinct tuples; storage complexity is O(N). Optimizations such as tuple

pruning and precomputation can also be applied to the basic Tuple Space Search

algorithm.

3.7 Bit Vector

We present it here for sake of completeness in the survey of packet classification

algorithms. The basic idea behind the Bit Vector algorithm is to preprocess the ruleset to

produce P-sets and hit vectors (see Chapter 5). The P-sets are used for lookup in the first

step of classification. The results from this lookup are then used to perform an

intersection of the corresponding hit vectors to determine the matching rule. The storage

complexity for this algorithm is o(~N') and the time complexity is O(dW + N/mw),

where mw is the memory width, or the number of bits that can be accessed in one

memory read. Optimizations can be applied to the algorithm by using incremental reads

to reduce the space requirements and by using a specialized scheme for 2-dimensional

classification. The Aggregated Bit Vector scheme [l l] makes the basic Bit Vector

algorithm more scalable by introducing aggregation of data structures and rearrangement

of rules.

3.8 Summary

This section summarizes the performance characteristics (presented in Table 3.1) of the

various packet classification algorithms surveyed in this chapter. (Table 3.1 is adapted

from [2]).

Table 3.1 : Performance characteristics of packet classification algorithms

(adapted from 121)

Legend for Table 3.1

N: number of rules in the classifier

d: number of dimensions for classification

W: maximum number of bits in each field for classification

a: tunable parameter used in Area-based quad tree algorithm

I : number of levels occupied by a FTS-tree

Algorithm

Linear Search

Set-pruning Tries

Grid of tries

Cross producting

Area-based quad tree

Fat Inverted Segment tree

Recursive Flow Classification

Hierarchical Intelligent Cuttings

Tuple Space Search

Bit Vector

Worst-case time

complexity

Nd

dW
wd-'

dW

aW

(I+ 1)W

d

d

m

dW + Nlmemory-width

Worst-case storage

complexity

Nd

N ~ ~ W

NdW

N~

N
I x N1+l"

Nd

N~

N

dN2

4 Bit Vector algorithm

Tn this chapter, we describe the Bit Vector algorithm in detail, propose different design

mappings of this algorithm onto the IXP and describe the software implementation.

4.1 Working of the algorithm

In any packet classification algorithm, there are typically two distinct phases. In the

preprocessing phase, the ~uleset is processed and data structures are built in memory, that

are used in the second phase. The second phase is the actual classification phase, where

these data structures are looked up to determine the matching rule. We now explain both

phases of the Bit Vector algorithm using an example (the formal definition of the

algorithm is given in Section 4.2). Consider the ruleset shown in Table 4.1. We assume it

is ordered in decreasing priority.

Table 4.1 : Example ruleset

Preprocessing phase

Assume that j represents a dimension, with 1 <= j c= d (in the example ruleset, d = 3).

First, we take the jth dimension from all the rules and project them on the j-axis. For

example, we take the values of dimensions in the first field of all rules and project them

on the 1-axis, as shown in Figure 4.1. Note that rules may be overlapping in dimensions.

We get distinct regions on this axis, and we note the rules for each region. Similarly, we

do this for the other two dimensions (shown in Figures 4.2 and 4.3).

Action

Allow

Allow

Deny

Allow

Field 3

(8, 11)

(1,4)

(12, 14)

(5,9)

Rule

1 1

r2

r3

I-4

Field 1

(10, 11)

(4,6)

(9, 11)

(6 8)

Field 2

(274)

(8, 11)

(5, 7)

(1,3)

Figure 4.1: Projections of dimension values on the 1-axis

r4 rl, r4 ii rl r3 ll x-2 ,
. . . 1 2 3 4 5 6 7 8 9 10 I1 - - -

2-axis

Figure 4.2: Projections of dimension values on the 2-axis

Figure 4.3: Projections of dimension values on the 3-axis

Classification phase

Consider that we have a packet whose fields are represented by the set { El, E2 . . . Ed } .

For example, let us take a packet represented by P = { 6, 10, 2) and classify it against the

ruleset shown above. The classification phase for the Bit Vector algorithm consists of two

stages.

In the first stage, we take each dimension's value and determine the range which it

matches on the corresponding axis. For example, we take the value 6 in the first

dimension from packet P. We determine which range it matches on the 1-axis (Figure

5.1). In this case. it matches the second range, which corresponds to rules 1-2 and r4.

Similarly, we do this for the remaining ranges. For packet P, the second dimension

value (10) matches the range on the 2-axis corresponding to r2; the third dimension

value (2) matches the range on the 3-axis corresponding to r2. This range matching

operation for each dimension can be performed in parallel; hence Bit Vector is a

parallel search algorithm.

In the second stage, we take the results of the range matching operations and

determine the common rule for all the dimensions. In the example above, 1-2 is the

common rule and hence it is the rule that matches the packet. The action specified by

this rule is [hen applied to the packet. If more than one rule is common, then the rule

with the highest priority is chosen.

While implementing the algorithm, the rule numbers matching each range can be

represented using an array of bits, hence the algorithm is called "Bit Vector".

4.2 Formal definition

We now give the formal definition of the algorithm. Let there be a set of N packet

filtering rules in d dimensions (the condition 1 <= j <= d holds, wherever j is specified in

this definition). Each rule r,, is represented as the set r, = {el,,, e2,m.. .ed,,), where each

ei,,, is a range of values (a, b) where a <= b, for the jth dimension. We assume that the

rules are sorted based on their priorities.

Tn the preprocessing step of the algorithm, we perform the following operations to build

the data structures that are used during classification.

(The condition 1 <= j <= d holds, wherever j is specified in the steps below)

1. For each dimension j, project all intervals e,,i (1 <= i <= N) on the j-axis. by

extracting the jth element of every filter rule. There are a maximum of 2N + 1 non-

overlapping intervals that are created on each axis. Let Pi denote the d sets of such

intervals. We use the general term P-sets to describe the collection of all such sets

91.

2. For each interval k in Pj, create sets of rules R k j (1 <= k <= 2N + 1) such that a

rule r,, belongs to the set Rk.j, if and only if, the corresponding interval k overlaps

in the jth dimension with ei,,.

The classification phase of the algorithm is as follows. Assume that a packet with fields

El, E2 . . . Ed needs to be classified.

1. For each dimensionj, find the interval kj in set Pj to which Ej belongs. This can be

done sing a binary search or any other efficient search algorithm.

2. Create the intersection of all sets Rk,,j, where kj belongs to { 1, 2, . . . 2N + 1 } . This

is done by taking the conjunction of the corresponding bit vectors in the bit arrays

associated with each dimension and then determining the highest priority entry in

the resultant bit vector.

3. The rule corresponding to the highest priority entry is the rule that matches the

packet.

As mentioned in Section 4.1, the execution of this algorithm can be accelerated by taking

advantage of bit-level parallelism. Each set Rk,; can be represented by a bitmap N-bits

long which acts as an indicator function for that set. Let Bj[k,m] be a (2N + 1) x N array

of bits for each dimension j. The set Rk,i can be stored as a bit vector in row k of the bit

array - bit Bj[k,m] is set if and only if the rule r,,, belongs to the set Rkj. The intersection

operation (Step 2) of the classification phase is then reduced to a logical AND among the

bitmaps that are retrieved after the search in Step 1. The bitmaps are organized in

memory into words of width w, the unit of memory access being the word. The bitmaps

for the example described in Section 4.1 is shown in Figure 4.4.

Figure 4.4: Bitmaps for each j-axis representing the rules matching each range on the axis

4.3 Software implementation

The original implementation [I] of the Bit Vector algorithm was done in hardware.

However, in order to map it onto the TXP, we need to implement it in software.

4.3.1 Implementation verification in C

We first implement the algorithm in C, both to understand and verify a software

implementation of the Bit Vector algorithm. We assume the preprocessing phase of the

algorithm to be performed manually and the data structures are initialized at program

start. This is a valid assumption since this thesis focuses only on the microengine

performance of the IXP which is responsible for the classification phase. The

preprocessing phase would typically be performed by a management application running

on the StrongARM core processor. The pseudocode for the implementation of the

classification phase in C is listed in Figure 4.5. The data structure initializations are

simply to insert values into P-sets which are implemented as binary tries and into the bit

vectors which are implemented as two-dimensional byte arrays.

This implementation was verified by passing different packet header values to the code

and determining that the packet was matched against the correct rule.

24

//Get the index i for each P-set. (DIMS is the number of dimensions)

forti = 0; i < DTMS; i++)

I
range[i] = trieFind(PSet[i], packet-header[i]);

if(range[i] == NOT-FOUND) goto exit;

1
//Get the corresponding bit vector

//Perform a logical AND on all bit vectors to determine the rule

result = bitVector[O][range[O] - 11;

for(i = I ; i < DTMS; i++)

{

result &= bitVector[i] [range[i] - 11 ;

1
//Determine which bit is set

result = (result << 4);

mask = 0x80;

for(i = 0; i < RULES; i++)

{

if((resu1t & mask) == mask)

I
matchingRule = i;

break;

1
result <<= 1;

}

matchingRule++;

Figure 4.5: Pseudocode for classification phase implementation

This implementation was then ported to microC which is the programming language used

for the IXP. Two different design approaches were implemented on the IXP, however the

basic algorithm for classification remains the same. This is described in the next section.

4.4 Mapping the algorithm to the IXP

While programming the IXP, the developer has to be familiar with the underlying

hardware architecture of the TXP so as to be able to extract optimal performance from it.

The same algorithm could be mapped in several different ways onto the IXP so as to take

advantage of the various hardware units available and the parallel nature of the hardware,

specifically the six microengines which can execute instructions in parallel. The main

motivation for study in this thesis is to determine how different mappings of the Bit

Vector algorithm onto the TXP affect its performance characteristics and to study in detail

the behavior of each of the mappings.

4.4.1 Microengine allocation

The code that is executed by each microengine is pre-determined at compile and link

time. Hence, we need to partition the responsibilities prior to implementing and running

the code on the IXP. The two standard functions that will be required are receiving and

transmitting packets. In all our implementations, we allocate microengine 0 and

microengine 5 for receiving and transmitting packets respectively. That gives us four

microengines to use in the classification phase; the implementation of this phase can be

done in different ways. The following sections list two such mappings. First, we

introduce the terminology used for the different microengines: microengines that perform

the classification function are called cls microengines; those that perform the receive and

transmit functions are called rcv and xmit microengines respectively.

4.4.2 Design Approach 1

In this approach, all the classification steps for a single packet are performed by a single

hardware thread in one microengine. This is illustrated in Figure 4.6. We call this design

approach BitVectorl or BV1.

Each thread does the

following:

- Lookup dim I .. d in
I'-.TP~s

- Determine the bit
vector for each
dimension

- AND all bit vcctors
- Queue packct for

transmission/drop

Each thread does the

following:

- Lookup dim 1 .. d in
P-.TP~.F

- Determine the bit
vector for each
dimension

- AND all bit vcctors
- Queue packet for

transmission/drop

Receive

packets
Classify packets

Transmit

packets

Figure 4.6: Design Approach I of the Bit Vector algorithm

4.4.3 Design Approach 2

In this approach, the first step (lookup in the P-set) of classification for a packet is done

in parallel by multiple microengines. Each microengine performs the lookup for one

particular dimension. We call such a microengine a cls (classification) microengine. For

example, microengine 1 determines the range in the P-set for dimension 1, microengine 2

determines the same for dimension 2 and so on. At any given time, a single cls engine

can perform a 1-dimension P-set lookup for 4 packets. The results of these lookups are

then sent to a different microengine (say microengine 4) which then retrieves the

appropriate bit vectors and performs the logical AND operation. It then determines the

matching rule and performs the appropriate action (transmitfdrop). This design approach

is illustrated in Figure 4.7. We call this design approach BitVector2 or BV2.

Receive

packets

SRAM, SDRAM s Each thread does the

Classify packets

Transmit

packets

following:
- Receive results

and packet from
other uEngines

- Find
corresponding bit
vectors and
perform AND

- Queue packet for
transmission/
other action

Each thread docs thc

following:

- Lookup dim x in
P-seis

- Dctermine the bit
vector for each
dimension

- Transmit packet
and result to srep-2
 engine

Figure 4.7: Design Approach 2 of the Bit Vector algorithm

4.4.4 Implementation/Design Details

This section describes the implementation details such as buffering schemes used, data

structure placement in memory, intra and inter microengine communication, data

structure initialization, number of ports available for receiveltransmit, for BitVectorl and

BitVector2.

Each thread does the

following:

- Lookup dim x in
P-sels

- Determine the bit
vector for each
dimension

- Transmit packet
and result to step-2
 engine

4.4.4.1 Implementing BitVectorl

Microengines 0 and 5 perform the functions of receive and transmit packets respectively.

The code for this follows standard implementation - we reuse the code from the microC

microACE sample for this, with small modifications as follows. Each of the four

hardware threads on microengine 0 receives packets from a single port and queues them

"'

- * *

. . .

for use by microengines 1 through 4. The queues used for this are circular and are placed

in SRAM. Since there are four cls engines and all four perform the full classification for a

packet, we create a queue for each of the cls hardware threads. Each of the four rcv

threads rotates through the four queue numbers sequentially.

There are 128 entries in each of the queues with each entry occupying 2 words or 8 bytes

of SRAM memory. The threads in the cls microengines wait for a new entry in their

respective queue. Once an entry is available, it reads the appropriate packet headers,

performs the classification and queues it for transmission by one of the xmit threads.

Similar to the rcv threads, there are 4 xinit threads that service the 16 cis threads. Hence,

each xvnit thread rotates through transmitting packets from the 4 queues that are allocated

to it. The detailed division of responsibility and inter-microengine communication is

shown in Figure 4.9.

Figure 4.9: Microengine responsibility and communication in BitVectorl

4.4.4.2 Implementing BitVector2

As in BitVectorl, microengines 0 and 5 perform the rcv and xnzit functions respectively

and receive/transmit packets (respectively) from 4 ports. Microengine 0 receives packets

from the IX bus and placcs them in a circular queue in SRAM for use by the cls engines.

Since in BV2, the classification phase for a single packet is split across different

microengines, the packet goes through a pipeline of microengines. Hence, the rcv

microengine has to queue packets only for use by the cls microengine 1. This is

illustrated in Figure 5.10. Microengine 1 performs step 1 of the BV algorithm for a single

dimension of a packet (source IP address) and queues it for use by microengine 2.

Microengine 2 reads a packet from this queue and performs step 1 for a single dimension

of the packet (destination IF' address) and queues it for use by microengine 3. Similarly,

microengine 3 performs step 1 for the transport layer protocol field/port number and

queues it for use by microengine 4.

When each microengine adds the packet to the queue for use by its successor in the

pipeline, it also writes the result of its lookup (in the P-set) as part of the queue entry.

When microengine 4 dequeues a packet from its queue, it can access the results from the

previous lookups. Tt uses these results and performs step 2 of the BV algorithm - it

determines the appropriate bit vectors, performs the AND operation and determines the

matching rule for the packet. It then performs the action specified by that rule - it queues

the packet for transmission by microengine 5 or drops it. Figure 4.10 illustrates in detail

the division of responsibility and communication between microengines for BV2.

Receive rn I Perform step 1 of

Perform step 1 of classification fi

packets

from IX

bus

I for destination IP address. I I Queue packet for processing by I

Packet queues 4 - 7

b

Input packet

queues 0 - 3

Packet queues 8 - 1 1

classification for source IP

address. Queue packet for

processing by pEngine 2.

I Perform step 1 of classification I

pEngine 1

I for transport layer protocollport I I number. Queue packet for I
processing by pEngine 4.

pEngine 3
Packet queues 12 - 15

A (Transmit
Perform step 2 of

packets to
classification.

IX bus I Queue packet for I Output packet I
I transmissionldrop 1 queues 0 - 3 I

pEngine 5
pEngine 4

Figure 4.10: Microengine responsibility and communication in BitVector2

4.4.4.3 Data Structure placement in memory

Unlike in GPPs, there is no memory manager on the IXP. Hence, we need to divide the

available memory for our use (to store data structures) and determine the exact address in

each type of memory that will be used for specific purposes. For example, consider the

circular queue in SRAM that is used for inter-microengine communication. The base

address of this queue needs to be determined at compile-time, in order to enable different

microengines to access the queue. This also implies that care should be taken so as the

placement of one data structure in memory does not overlap or interfere with a memory

location that is meant for use by a different data structure or for a different purpose. Table

4.1 lists the mcmory allocation used in BV1 and BV2.

Table 4.1: Memory allocation for BV1 and BV2

I Purpose / Type of memory I
I Queue for inter-microengine I SRAM I

communication I I
I

List of rules actions
I

The base addresses of each type of memory also needs to specified at compile time. This

SRAM

Tries representing P-sets
I

is used by the compiler to place variables in memory, as required. Hence, care should be

SDRAM

Bit Vectors

taken so that we specify a base address that is higher than the range of addresses required

by our static data structures.

SDRAM

4.4.4.4 Verification of the implementations

After the coding lor the different algorithms and design approaches was completed,

several tests were run to ensure that the implementation runs as per requirements and to

eliminate any defects in the code. This section describes the tests and the results.

Functional tests

We started with a simple development approach - to implement the functionality

required, ran it on a single hardware thread on a single microengine and stepped through

the code (using the graphical debugger) for a single packet. This level of debugging

helped to ensure that the correct code path was being followed for a packet. We first did

this process using the rcv microengine and a single cls microengine. We next included

the xmit microengine and ensured that a single packet was received, classified and

transmitted accurately. We also tested the implementation with some of the rules

configured to deny packets and input packets that matched these rules. We verified that

such packets get dropped.

The simulator also provides a logging facility, i.e., packets that are transmitted to and

from the IXP ports can be logged to individual files. We used this logging feature to

ensure that the headers and data in the packets were getting transmitted accurately by the

POl-tS.

Once we verified that the basic functionality of the code was working, we increased the

number of threads on a single microengine in a systematic fashion and executed the same

tests. This helped us detect and debug inter-thread communication issues which caused

memory corruption or packets being lost. Once we verified that the code executed

properly on one cls microengine, we started including the other cls microengines in a

similar systematic fashion. This helped us detect and debug inter-microengine

communication issues which would cause the system to hang, memory corruption,

packets being lost etc.

In each of these tests, we also used the logging facility available to ensure that the

packets transmitted from the system have accurate headers and data.

Stress tests

After verifying that the implementations worked correctly on all microengines on the

IXP. each of the implementations was subject to stress tests. Each implementation was

run continuously in the simulator for around 8 hours and we verified that the simulator

did not crash and that packets were received and transmitted at steady rates. This helped

us debug through issues such as system freeze due to incorrect buffer management and

insufficient buffer space.

After these tests were run to verify that the implementations were correct, we executed

them again in the simulator to collect performance statistics. These results are presented

and analyzed in Chapter 5.

4.5 Other considerations

4.5.1 Management application

This thesis studies only the performance of the algorithm on the microengines only. The

microengines are the main components in the IXP that offer the capability to perform

wire-speed packet processing. Hence, the performance of an algorithm on the

microengines is the important aspect of the overall performance of the algorithm in the

TXP system. However, when implementing for real-world use, there is the existence of a

management application that typically runs on the main processor of the host system. The

presence of such an application has implications for the overall performance of the IXP

system since there will be contention to shared data structures in memory. This thesis

does not consider the performance implications due to the introduction of a management

application or any other source of updates to data structures in memory.

4.5.2 Simulator

The algorithm is implemented in tnicroC and tested and run in the IXP Developer

Workbench which offers a cycle-accurate simulator of the IXP. This environment

provides access to several performance metrics that reflect the actual IXP hardware. The

code implemented for this thesis can be made to run on the actual IXP hardware.

However, running microC microACE code on the hardware is not supported by Intel and

hence the process may have some tedium.

4.5.3 Scalability of the Bit Vector algorithm

The size of rulesets used for packet classification varies dramatically depending on its

purpose. For example, corporate intranets have approximately 1 50 rules, whereas large

ISPs may have around 2400 rules [S]. The Bit Vector algorithm is well-suited for

medium sized mlesets, with around 512 rules [I]. From preliminary study of the basic Bit

Vector algorithm, it is evident that it does not scale well for large rulesets due to the large

memory requirement for such rulesets. Several optimizations have been proposed [1,7]

to the basic algorithm that enable more efficient use of the data structures in memory.

This thesis deals only with the basic Bit Vector algorithm since it studies the behavior

and performance of different approaches of a particular algorithm. Also, the same

fundamental idea of parallelism is present in the extended versions of the algorithm.

Since this does not affect the performance evaluation in this study, we do not attempt to

modify the basic algorithm to achieve better scalability.

5 Results and Analysis

This chapter presents the performance data from executing the linear search and Bit

Vector algorithms on the IXP1200. The data was collected using the IXP1200 Developer

Workbench which includes a cycle-accurate simulator. We first present basic

performance data using the mleset given in Table 4.1 with one modification - all the

rules have the action set to "Allow", to measure worst-case performance. Using this

ruleset, we have d = 3, N = 4 and W = 4. (For typical real world rulesets, d ranges from 1

to 5; N ranges from 100s to 1000s; W takes values 4 (for port numbers) and 128 (for P

addresses)).

Simulator configuration

The IXP1200 Developer Workbench allows the user to specify different system

configuration parameters that is used by the simulator. For the experiments in this thesis,

we use the basic configuration available - we use the default configuration of an

IXP1200 chip with l K microstore that has a core speed frequency of 165.890 MHz. We

can also specify configuration settings for the IX Bus Device simulator which controls

how packets are sent and received from the simulator. For use in our experiments, we

choose a device with 8 ports with a data rate of 100 Mbps and a receive and transmit

buffer size of 256. However, since we have only one microengine performing the receive

operation, we support only four ports. Hence, we configure the simulator to send packet

streams to only ports 0 through 3 of the device.

Experiments setup

To compare the performance of the different mappings, we run each of the

implementations in the simulator, until 75000 packets have been received by the IXP

from the bus. We then record the various performance metrics and use them for our

analysis.

5.1 Performance Results

This section presents the performance results from executing the linear search and bit

vector algorithms using the ruleset in Table 4.1. Sections 5.1.1 through 5.1.3 present the

detailed performance statistics from each execution. Section 5.1.4 presents a comparison

between the three. Section 5.1.5 presents a detailed analysis. Table 6.1 describes the

various performance metrics collected for our analysis.

Table 5.1 : Performance Metrics Collected

Performance Metric

Microengine cycles

IX Bus cycles

Packets received

Packets sent

Receive rate (Mbps)

Transmit rate (Mbps)

Microengine execution

time (%)

Microenginc aborted time

(%)

Description

The total number of microengine cycles that was

spent to process a specific number of packets.

The total number of IX bus cycles that was spent to

process a specific number of packets.

The total number of packets that was received by the

IXP from the IX bus, to all the ports that are

configured to receive packets.

The total number of packets that was sent by the IXP

to the IX bus, from all the ports that are configured to

transmit packets.

The overall packet receive rate of the IXP, for all the

ports that are configured to receive packets.

The overall packet transmit rate of the IXP, for all the

ports that are configured to send packets.

The percentage of the total number of microengine

cycles that a microengine spent in performing useful

tasks.

The percentage of the total time of a microengine that

was wasted due to instructions in its pipeline being

aborted, typically due to branch instructions.

5.1.1 Linear Search (LS)

Microengine idle time (%)

Instruction execution speed

(Mips)

SDRAM access (%)

SDRAM access rate

(Mbps)

SRAM access (%)

SRAM access rate (Mbps)

This section presents the performance statistics collected after running the linear search

algorithm for the ~uleset presented in Table 4.1. Table 5.2 presents the overall

performance statistics; Table 5.3 presents the performance statistics for individual

microengines.

The percentage of the total time of a microengine that

was wasted due to none of the 4 hardware threads

being available to run. typically due to memory

access wait time.

The execution speed of a microengine.

The total percentage of SDRAM bandwidth utilized

by all microengines.

The total SDRAM bandwidth used by all

microengines.

The total percentage of SRAM bandwidth utilized by

all microengines.

The total SRAM bandwidth used by all microengines.

Table 5.2: Overall performance statistics

I / Microengine cycles 23,277,945 /
I IX Bus cvcles 1 9.31 1.178 1

Packets received
Packets sent

75000
31 521

Receive rate (Mbps)
Transmit rate I M b ~ s l

325.35
136.74

SDRAM access
SDRAM access rate

10.30%
546.8 M b ~ s

SRAM access
SRAM access rate

99.60%
2645.7 Mbps

Table 5.3: Performance statistics of individual microengines

5.1.2 Bit Vector Approach 1 (BVI)

5 (xmit)
-

This section presents the performance statistics collected after running the Bit Vector

algorithm approach 1 (described in Section 4.4.2) for the ruleset presented in Table 4.1.

Table 5.4 presents the overall performance statistics; Table 5.5 presents the performance

statistics for individual rnicroengines.

Table 5.4: Overall performance statistics

64.8 13.3 8.2 107.6

Table 5.5: Performance statistics of individual microengines
-

5.1.3 Bit Vector Approach 2 (BV2)

This section presents the performance statistics collected after running the Bit Vector

algorithm approach 1 (described in Section 4.4.3) for the ruleset presented in Table 4.1.

Table 5.6 presents the overall performance statistics; Table 5.7 presents the performance

statistics for individual microengines.

5 (xmit)

Table 5.6: Overall performance statistics

82.4

Microengine cycles

IX Bus cycles

Packets received

Packets sent

Receive rate (Mbps)

Transmit rate (Mbps)

SDRAM access

SDRAM access rate

15.2

19,3 10,500

7,724,200

75000

46343

392.2

242.34

45.1

2398 Mbps
. -

SRAM access

SRAM access rate

4' 1

1247.4 Mbps

2.2 137

Table 5.7: Performance statistics of individual microengines

5.1.4 Performance Comparison

This section presents graphical comparisons of the performance metrics of the algorithms

presented in Sections 5.1.1 through 5.1.3.

Linear Search BitVectorl Bitvector2

Algorithm

Receive 1
Transmit rate !
rate 1

Figure 5.1 : Comparison of the receive and transmit rates of the algorithms

&I! SDRAM access (%)

I D SRAM access (%) I

Linear Search BitVectorl BitVectoR

Algorithm

Figure 5.2: Comparison of memory access (9%) of the algorithms

Linear Search BitVectorl BitVectoR

Algorithm

1 ll SDRAM access rate

1 B SRAM access rate
- -. -

Figure 5.3: Comparison of memory access rates (Mbps) of the algorithms

Linear Search BitVectorl Bitvector2

Algorithm

Figure 5.4: Comparison of packets sentlreceive ratio of the algorithms

0 (rcv) CIS) 2 (cls) 3 (cls) 4 (cls) 5 (xmit)

Microengine

Figure 5.5: Comparison of microengines executing time

O Linear Search 1 BitVectOrl

BitVector2

0 (rcv) CIS) 2 (cls) 3 (cls) 4 (cls) 5 (xmit)

Microengine

Figure 5.6: Comparison of microengines aborted time

i Linear Search

BitVector2

0 (rcv) 1 (CIS) 2 (CIS) 3 (CIS) 4 (CIS) 5
(xm it)

Microengine

Figure 5.7: Comparison of microengines idle time

140

120

100
V)

.- a 80
E

a BitVectorl

60

40

20

0

0 (rcv) CIS) 2 (CIS) 3 (CIS) 4 (CIS) 5 (xmit)

Microengine

Figure 5.8: Comparison of microengines execution in Mips

1 2 3 4 5 6

Microengine

Idle

Aborted

Figure 5.9: Distribution of individual microengine time for BitVectorl

Idle

Aborted

a Executing

1 2 3 4 5 6

Microengine

Figure 5.10: Distribution of individual microengine time for Bitvector2

5.2 Analysis

This section presents a detailed analysis of the various performance metrics presented in

Section 5.1.

5.2.1 Linear Search vs. Bit Vector

This section compares the various performance metrics of the Linear Search algorithm

(LS) with that of the Bit Vector algorithm (BVI and BV2).

Transmit rate

As expected, both the implementations of the Bit Vector algorithm perform significantly

better tkdn the Linear Search, since the LS algorithm employs a sequential search through

linked list of rules and each access to a rule is a memory (SRAM) access. From Figure

5.1 we can see that the transmit rate of the LS algorithm is significantly lower than that of

BV1 and BV2. Given this, we would expect the packet-processing efficiency of the LS

algorithm to be lower than that of BV1 and BV2. This is evident from Figure 5.4 which

shows the ratio of the number of packets transmitted by number of packets received.

Memory access

In each of the implementations, the rulesets are stored in SRAM memory and the packets

are stored in SDRAM memory. From Figure 5.2, we can see that the LS algorithm's

SRAM access rate is significantly higher than that of BV1 and BV2, indicating that it

spends a significant portion of the execution time in searching the ruleset. Hence, the

number of packets processed per unit time is lower than that of BV1 and BV2. Given

this. we would expect the SDRAM access of LS to be significantly lower than that of

BV 1 and BV2. Figure 5.2 also confirms this hypothesis.

Microengine utilization

Another important performance metric for the IXP is the microengine utilization. The

microengines are responsible for fast path packet processing and hence it is imperative

that their utilization is as close to 100% as possible. The utilizations of the receive

microengines are comparable in LS, BVl and BV2; the utilization of the transmit

microengine depends on the packet classification speed which is handled by the

classification microengines. In general, the code executing on the receive and transmit

microengines is independent of the main classification algorithm. Hence, we now

compare the utilization of the classification microengines (1, 2,3, and 4) in the LS

algorithm and BVl and BV2. From Figure 5.5, we can see that the execution time of the

classification microengines (cls) for LS is typically 50% less than that of BV1 or BV2.

Thus, the cls microengines are under-utilized in LS, as would be expected because of the

high SRAM access rate.

Microengine aborted time represents the percentage of time an instruction in a

microengine pipeline was aborted, typically due to a branch instruction. While the

performance of LS is expected to be worse than that of BVl or BV2, it is interesting to

observe, from Figure 5.6 that the microengine aborted percentage time is significantly

less than that of BVI or BV2. This is because the LS algorithm is simpler in nature and

has fewer branch instructions. As we will see in Section 6.2.2, the microengine aborted

time for BV 1 and BV2 is significant, thus taking away time from the microengine that

could have been used for execution. This implies that, although the overall performance

of LS is lower than that of BVl or BV2, in general, simpler algorithms will have lower

microengine aborted time. Since this is a significant metric, one design goal that should

be adhered to, while designing classification or other class of algorithms for network

processors, is that the algorithm should consist of as few branch conditions as possible.

This is even more important on the TXP, since each of the four hardware threads on a

single microengine share the same code base. Any penalty from a thread being aborted

due to branch decision will be multiplied by four.

Although LS has a lower microengine aborted time, the microengine execution time is

lower than that of BV 1 and BV2 because LS has higher microengine idle time, as would

be expected because LS has higher SRAM memory access rate.

5.2.2 BitVectorl vs. BitVector2

This section presents a comparison of the two design approaches of the Bit Vector

algorithm's implementation (described in Sections 4.4.2 and 4.4.3) on the IXP. This is

one of the main contributions of this thesis since it demonstrates that the packet

processing speed of an algorithm on a network processor is dependent on the way it is

mapped onto the hardware.

While comparing the performances of these two design approaches, it is important to

keep in mind the allocation of the microengines for BV1 and BV2:

In both BV1 and BV2, microengines 0 and 5 perform the receive and transmit

functions respectively.

In BV1, microengines 1, 2, 3 and 4 perform the full classification functions.

In BV2, microengines 1 and 2 perform lookup for IP addresses; microengine 3

performs lookup for the transport layer port number (or protocol); microengine 4

performs the step 2 of the BV algorithm - it combines the results from the previous

lookups to determine the matching rule.

Whereas Section 5.2.1 presented separate analyses of individual performance metrics, the

same cannot be done while comparing BV1 and BV2. This is because, as we will see

below, in this case, the analysis is dependent on considering multiple performance

metrics at one time. Hence, we present below an overall analysis of BV1 and BV2. As an

exception, we note that it is interesting to compare the microengine aborted time

separately, and that is presented first.

Microengine Utilization

From Figure 5.6, we see that the aborted time for the classification engines is lower in

BV2 than that of BV 1. In particular, the aborted time for microengine 4 (which performs

the full classification in BV 1 and only step 2 of the classification in BV2) in BV2 is

approximately 60% that of BV1. This is because in step 2 of the Bit Vector algorithm, we

perform simple operations such as reading the bit vector from memory and performing an

AND operation. Since microengine aborted time is typically because of branch

instructions, microengine 4 of BV2 exhibits a significantly lower aborted time than in

BVI. This emphasizes the conclusion that choosing simpler algorithms or designing

algorithms that use lesser branch instructions is important in improving microengine

utilization.

The overall microengine utilization time is lower in BV2 than in BVl. This is because the

microengine idle time (i.e., excluding microengine aborted time) is higher in BV2 than

BV 1 . In BV2, the processing time required for a packet is higher than that of BV1.

Hence, although a microengine may have completed its portion of the processing for a

packet, due to the buffering that occurs between microengines, microengines 1, 2 and 3

exhibit significantly higher idle time. That is, in BV2, a new packet cannot be handled by

microengines earlier in a pipeline until there are available inter-microengine buffer

entries; these entries are freed only when the entire processing for that packet is

completed by all microengines and the packet has been queued for transmission, by

microengine 4.

Overall Analysis

Tn BV2, we split the various steps in processing a packet, across microengines. The

parallel nature of the BV algorithm is well-suited for this kind of division of

responsibility on parallel hardware. However, we observe that the performance (in terms

of packet transmit rate and packet sentlreceive ratio) of BV2 is lower than that of BV1.

The execution time of the classification microengines in BV2 is comparable to those in

BV I . However, the packet processing rate of BV2 is lower than BVl . This is because: in

BVl, the SDRAM access to read the packet header for classification occurs only once, by

a single hardware thread of the microengine that is performing the entire classification for

that packet; in BV2, splitting the lookups in step I of the BV algorithm across

microengines for a single packet, causes three hardware threads on different

microengines(1, 2 and 3) to access the packet header in SDRAM for that packet, thus

increasing the memory access time required to process one packet by three times. Hence,

the speed of packet processing is reduced by 25% in BV2 than in BVl (seen in Figure

6.4)

6 Conclusion

There are several packet classification algorithms that exist in current literature.

However, they are not immediately applicable to programmable network processors such

as the Intel IXP1200. The highly parallel nature of the hardware architecture of the IXP

seems to be suitable for a parallel search packet classification algorithm. Hence, we study

the performance and behavior of the Bit Vector algorithm, which is an example of a

parallel search algorithm that is suitable for implementation in parallel hardware. We

have proposed different design mappings of this algorithm on the IXP and observed how

different design mappings of the algorithm onto the IXP hardware affect its performance.

This is important since, while actually implementing an algorithm on the IXP, we deal

with details such as buffer management, queuing, memory accesses and potential

bottlenecks in the implementation. Thus, given an algorithm, choosing the best possible

mapping of the algorithm onto the IXP is critical for achieving optimal performance.

This thesis has presented performance results and analysis from running a linear search

algorithm and two different design approaches of the Bit Vector algorithm on the IXP

hardware. While BV2 seems superior in design to BVl since it splits the packet

classification for a single packet across microengines, on the IXP1200, we have seen that

this results in lower utilization of the microengines. Hence, BVl has a higher

transmission rate than BV2. We also compare the performance of the Bit Vector

algorithm with that of a Linear Search and see that, as expected, the former has superior

performance. From the performance metrics, we also see that an important performance

metric to be considered is the microengine aborted time, which occurs typically due to

branch instructions in the code. In both the Bitvector approaches, we note that thread

aborted time for individual microengines ranges from 14% - 23%. This indicates that

algorithms which have frequent complex branch decisions will perform worse than those

that have simpler execution paths.

This thesis is an attempt to study in detail the performance of an important class of

algorithms on programmable network processors. It has presented insights into how the

mapping of an algorithm on a network processor may affect its performance. These

results can be used while designing packet classification algorithms or other class of

algorithms for implementation on programmable network processors.

References

[I] T.V. Lakshman, D. Stiliadis. "High-speed policy-based Packet Forwarding Using

Efficient Multi-dimensional Range Matching". Proceedings of ACM

Sigcomm, Volume 28 Issue 4, pages 191-202, October 1998.

[2] P. Gupta and N. McKeown. "Algorithms for Packet Classification". IEEE Network

Magazine, Volume 15 Issue 2, pages 24 - 32, March/April2001.

[3] Intel Corporation. "IXP1200 Hardware Reference Manual". Intel IXP1200 Software

Developers Kit 2.0.

[4] E. Johnson and A. Kunze. "IXP1200 Programming", published by Intel Press, ISBN

0-9702846-7-5,2002.

[5] M. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A. Campbell. "Directions in Packet

Classification for Network Processors", Second Workshop on Network Processors (NP2),

Anaheim, California, February 8-9 2003.

[6] V. Srinivasan, G.Varghese, S.Suri and M. Waldvogel. "Fast and Scalable Layer Four

Switching". ACM SIGCOMM Computer Communication Review, Volume 28 Issue 4,

pages 191-202, October 1998.

[7] M.M. Buddhikot, S. Suri, M. Waldvogel. "Space Decomposition Techniques for Fast

Layer4 Switching". Sixth International Workshop on Protocols for High Speed

Networks, Salem, Massachusetts, August 25-27 1999.

[8] A. Feldmann and S. Muthukrishnan. "Tradeoffs for Packet Classification".

Proceedings of Nineteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Volume 3, pages 1193-1202, March 2000.

[9] P. Gupta and N. McKeown. "Packet Classification on Multiple Fields". Proceedings

Sigcomm, Computer Communication Review, Volume 29, Issue 4, pages 147-160,

September 1999.

[lo] P. Gupta and N. McKeown. "Packet Classification using Hierarchical Intelligent

Cuttings". Proceedings of Hot Interconnects VII, August 99, Stanford University. This

paper is also available in IEEE Micro, Volume 20, Issue 1, pages 34-41,

January/February 2000.

[I 11 F. Baboescu and G. Varghese. "Scalable Packet Classification". ACM Sigcomm,

San Diego, California, August 27 - 3 1 2001.

[12] C. Partridge. "Gigabit Networking", published by Addison-Wesley. ISBN: 0-201-

56333-9, 1993

[13] Gigabit Ethernet Alliance. "Gigabit Ethernet White Paper". http://www.lOgea.org,

2003.

[14] C. Partridge et al. A 50- Gb/s IP Router. IEEEJACM Transactions on Networking,

Volume 6 Issue 3, pages 237-248, June 1998.

[151 Tntel Corporation. Tntel Network Processors product information.

http:Nwww.i11tel.com/desirn/networklproducts/npfami1y, 2003.

[16] IBM Corporation. IBM PowerNP product information. http://www-

3.i1~m.com/cl~ips/products/wired/products/network processors. html, 2003.

[17] P.N. Glaskowsky. "Intel beefs up networking line". Article reprint from

Microprocessor Report, March 2002, available at

I~ttp://www,intel,com/desi~nlnetworkjpapers/Intel Ntwkg Rprnt.htm, 2002.

[18] T. Spalink, S. Karlin, L. Peterson. "Evaluating network processors in IP

forwarding". Princeton University Technical report TR-626-00, November 2000.

[19] Intel Corporation. "Intel Microengine C Compiler Language Support Reference

Manual", Intel IXP1200 Software Developers Kit 2.0. March 2002.

Biographical Sketch

Deepa Srinivasan was born on 6th February 1977 in Chennai, India. She received her

Bachelor of Science in Mathematics from the Ethiraj College for Women at the

University of Madras in 1997. She also completed a Professional Diploma in Software

Technology and Systems Management from the National Institute of Information

Technology, Chennai, India in 1997. Her Master of Science program at the OGI School

of Science & Engineering was focused in the areas of computer architecture, operating

systems, networking and security. She has been working in various software engineering

positions in India and USA and presently works as a Staff Software Engineer at IBM

corp.

