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Abstract 

Performance Analysis of Packet Classification Algorithms on Network Processors 

Deepa Srinivasan 

M.S., OGI School of Science & Engineering 

at Oregon Health & Science University 

May 2003 

Thesis Advisor: Dr. Wu-chang Feng 

Packet classification is a fundamental function performed by networking devices such as 

routers, switches, and firewalls. Approaches for designing packet classification 

algorithms are typically based on the hardware they are run on. Programmable network 

processors are an emerging platform that aims to offer the flexibility of software while 

achieving performance comparable to custom hardware. A key architectural feature of 

typical network processors is that the hardware is highly optimized to provide parallel 

execution of code. This thesis studies how different design approaches of mapping a 

parallel-search packet classification algorithm onto a network processor may affect its 

performancelpacket-processing speed. In particular, it analyzes two different mappings 

the Bit Vector algorithm on the Intel IXP1200 network processor. It presents 

performance results and analysis from implementing these two different designs; this 

analysis can be used as input while designing packet classification algorithms for network 

processors; or while designing similar algorithms for parallel hardware in general. 



1 Introduction 

Over the past two decades, computing environments have witnessed rapid 

transformations and progress in several areas resulting in what can be termed as a gigabit 

environment [12], in terms of CPU speed, memory sizes and disk sizes. Gigabit or high 

speed computer networking is an important component of this environment. As the 

processing speeds of components within a computer system are increasingly advancing to 

high speeds, it becomes essential that the networks connecting such systems also are 

capable of handling high speeds [ 131. 

A wide range of applications, from file servers to fancy multimedia applications, benefit 

from high speed networks. Some of the specific applications are in scientific modeling & 

engineering, publications, medical transfer, Internetlintranets, data warehousing, network 

backups and desktop video conferencing. With widespread use of such applications, the 

demands on various components in the network - adapters, hubs, bridges, switches and 

routers - will need to be able to process at high speeds. This implies that each of the 

functions performed by these network components and the algorithms that are 

implemented for these functions have high operating speed requirements. 

There are several choices available for use while designing such network devices. Some 

examples are General Purpose Processors (GPPs), embedded RISC processors, network 

processors, Field-Programmable Gate Arrays (FPGAs) and Application Specific 

Integrated Circuits (ASICs). For example, C. Partridge et al. [14] describe a router that 

can operate at a high speed of 50 Gbps (Gigabit per second), that was designed using 

custom hardware. In choosing from the available design options, we consider several 

tradeoffs including the speed of packet processing achievable and ease of 

programmability. This is illustrated in Figure 1.1. 



At one end of the spectrum are ASTCs that offer the fastest packet processing speed and 

are well-suited for the data plane. But they are not programmable, have a long time to 

market and are not reusable. At the other end, GPPs are programmable and have a mature 

software development environment. However, they are too slow to run the data plane 

effectively and are typically used to implement control plane functions. FPGAs are 

ASIC 

Speed 

FPGA 

Network Processor 

GPP 

Embedded RISC Processor 

Programming ease 

Figure 1.1 : Tradeoff between speed and programming ease of some design choices 

flexible re-programmable hardware which are less dense and slower than ASICs. 

However, they are good for providing fast custom functionality and well-suited for data 

plane functions. Embedded RISC processors offer the same level of programmability as 

GPPs; however they tend to be slower. They are typically designed specifically for 

network applications and are used for control plane functions. 

Programmable network processors (NPs) are an emerging class of processors that aim to 

offer the flexibility of implementing networking services/applications in software as with 

GPPsJembedded RTSC processors, while achieving high packet processing speed as with 

ASICsJFPGAs. They are flexible, reusable components with a lower cost than custom 

hardware. Several vendors offer families of network processors, each of which has a 

different hardware architecture that is suitable for use in different domains and have 

different operating speeds. Examples are the Intel IXP, IBM PowerNP and Motorola C-3 



families of processors. Some of these are described in Table 1.1 [15, 161. There are some 

architectural features that are common across different network processors. Multiple 

processing elements (PEs) are available with multiple hardware thread contexts per 

element. This enables thread context switches that have zero or minimal overhead. The 

instruction set of the processor is customized to suit network applications. The hardware 

architecture of network processors is described in detail in Chapter 2. 

Table 1.1 : Examples of network processors available in the market today 

Although NPs aim to offer programmability that is comparable to GPPs, there is one 

significant difference between developing software for NPs and GPPs - on the NP, the 

developer nlust have an in-depth understanding of the hardware architecture and of the 

various features available on a particular NP platform. Since there is no operating system 

available to perform dynamic resource management or load balancing on NPs, the binary 

image that is cxecuted on a particular PE is pre-determined at compile/load time. Since 

an NP has multiple PEs, a single algorithm can be mapped in several different ways to 

each of the processing element and different mappings could have different 

performancelpacket-processing speed. Hence, it is imperative that given an algorithm, the 

best possible mapping onto the NP platform is chosen for implementation. 

Network Processor 

Intel IXP1200 

Intel D(P2400 

Intel TXP422 

LBM PowerNP NP4GS3 

IBM PowerNP NP2G 

Description 

For applications operating at 155 Mbps to 622 Mbps 

For applications operating at 622 Mbps to 2.5 Gbps 

For applications such as residential gateways, firewall 

appliances 

For applications operating at 4Gbps 

For applications operating at 2Gbps 



An important class of algorithms used in networking is packet classification. Packet 

classification is a fundamental function performed by networking devices such as routers, 

bridges and switches and in networking applications such as firewalls and intrusion 

detection systems. Tt can be defined as the process of categorizing packets according to 

pre-defined rules. A clcrssifier or ruleset typically refers to a collection of rules. Once a 

packet is received by a networking device or application, in order to classify it, the values 

in its header fields are looked up against those in the rules, until a match is found. Once 

the matching rule is found, the action specified by that rule is applied to the packet. 

Classification is typically performed based on the appropriate headers in a packet. We 

call each of the header fields a dimension. The complexity and/or the performance of the 

classification algorithms vary depending on the number of dimensions and number of 

rules used in the classification. 

As the operating speeds of networks increase, the classification algorithms that are 

employed are required to process packets as close to wire-speed as possible, to prevent 

bottlenecks in networks. Network processors are ideally suited for use to implement 

classification at wire speed, since they aim to offer both programmability and wire-speed 

packet processing. 

1.1 Motivation for study 

In this thesis, we study the problem of mapping packet classification algorithms onto 

network processor hardware. The Intel IXA family of network processors is one of the 

predominant in the market today [17]. It is also provided to universities through the Intel 

IXA University program (http://www.ixaedu.com), along with the required development 

environment, for use in research projects. Hence, we choose the Intel IXP1200 (IXP) as 

our platform for study. 

As is typical with NPs, the hardware architecture of the IXP is highly parallel (see 

Chapter 2 for details). Hence, an algorithm that is capable of performing the various 

stages of classifying a packet in parallel would be well suited for implementation on the 



IXP. Let us consider the Bit Vector algorithm (see Chapter 4 for details). The original 

paper [ I ]  describing the algorithm presents the diagram shown in Figure 1.2. 

Figure 1.2 (from the original paper [I]): Architecture block diagram of a parallel 

implementation of the Bit Vector algorithm 
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It is indeed interesting to note the striking similarity of the architecture of an 

implementation of this algorithm and that of hardware architecture of a network 

processor (recall that a network processor has multiple PEs that can execute in parallel). 

Hence, it is natural that the Bit Vector algorithm could be mapped onto a NP such as the 

IXP easily. It may also seem that such an implementation will perform better than one 

where the algorithm is implemented sequentially on the IXP. However, our study shows 

that this is not true. There are several low-level implementation details that affect the 

performance of the algorithm on the K P .  This underscores the main idea in this thesis - 

that it is critical to choose the right design mapping of an algorithm onto the NP; while at 
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a higher level, it may seem that a particular mapping may perform better than another, the 

low-level implementation details and resource restrictions may prove otherwise. 

1.2 Contributions 

In this thesis, we propose different design mappings for implementing the Bit Vector 

algorithm on the IXP and present a comparison between two of the approaches. We 

present several critical performance metrics from the two implementations and analyze 

them in detail. Also, in order to have a baseline performance comparison, we implement 

a simple linear search algorithm and compare it to that of the Bit Vector algorithm, on the 

IXP. A principal observation we make is that a significant amount of a processing 

element's time on the IXP is wasted due to aborting its instruction execution pipeline, 

which happens typically due to branch instructions. This leads to the conclusion that 

algorithms with complex branch decisions will perform worse than those with simpler 

execution paths. 

The results from this thesis can be used while designing packet classification or other 

class of algorithms specifically for programmable network processors with highly parallel 

hardware architectures. 

1.3 Related Work 

There are several packet classification algorithms that exist in current literature that 

propose various schcmes for performing multi-dimensional classification. Chapter 3 

presents a survey of these algorithms. However, they are not immediately applicable for 

implementation on network processors. There has been a recent study [5] that proposes 

designing efficient packet classification algorithms targeted for NP platforms, by 

exploiting various characteristics that are typically exhibited by classifiers. In this thesis, 

we argue that given any algorithm, it is important to choose the right mapping for 

implementation. This is critical since NPs aim to offer wire-speed packet processing. To 

our knowledge, there is no other previous work that studies this aspect of performance of 

packet classification algorithms on NPs at this level of detail. 



1.4 Other considerations 

1.4.1 Scope 

The study of packet classification algorithms in general and their suitability for network 

processors is an extensive problem area. The core of this thesis is to evaluate two 

different design approaches of a single algorithm and present and compare performance 

metrics via implementation. We do not attempt to propose a new packet classification 

algorithm nor attempt to achieve the best possible performance of such algorithms on 

network processors. 

1.4.2 Availability of real-world firewall rulesets 

One of the most common applications of packet classification is in access control, as 

employed by firewalls. While designing a classification algorithm or evaluating its 

performance for real-world use, we need to use test mlesets that reflect characteristics. 

However, access control rules are meant to provide security to an enterprise's network 

and are not disclosed. Hence, we do not have access to such rulesets in the public 

domain. A recent study [5]  of four such mlesets was done and the characteristics were 

published. However, in this thesis, we analyze the performance of an algorithm 

independent of the input ruleset - that is, given a fixed ruleset, we study the performance 

of different design mappings. One of the future steps in this work might be to generate a 

synthetic ruleset database that follows the characteristics typically exhibited by real- 

world I-ulesets [S] and study the performance. Tn this thesis, we study the performance 

only against a small sample ruleset. 

1.5 Completion criteria for research 

The completion criteria of this thesis is in achieving correct implementations of the two 

approaches of the Bit Vector algorithm and the linear search algorithms on the IXP, 

running simulations of packet streams through these implementations, recording 

performance statistics of these implementations and analyzing the same. 



2 Network Processor Overview 

This chapter presents the hardware architecture and software development environment 

of the Lntel 1XP1200 (chosen for study in this thesis). 

2.1 Hardware Archifecture Overview 

The IXP1200 is an integrated network processor, comprised of a single StrongARM 

processor, six microengines, standard memory interfaces and high-speed bus interfaces. 

Complete and detailed description of the hardware architecture is available from other 

sources [3,4]. Figure 2.1 shows the high-level architecture of the IXP1200 [18]. 

2.1 .I StrongARM core; microengines 

The StrongARM core is an Advanced Reduced Instruction Set Computer (RISC) 

Machines (ARM) general-purpose processor. The StrongARM core offers a tradeoff 

between computational capability and power consumption. The six microengines are 

RISC processors optimized for fast-path packet processing and have an instruction set 

tuned for processing network data. Each instruction on the microengines takes up one 

long word (32 bits) of control store space; each microengine has an independent 8 KB 

instruction store, enough for 2048 instructions. 



Engines 

FIFOs 

IXP120Q Chip 5 
m 

StrongARM x 

Figure 2.1: High level architecture of the Intel IXP1200 

On the microengincs, instructions are executed in a five-stage pipeline. Each microengine 

has four hardware-assisted threads of execution. All threads in a particular microengine 

execute code from the same instruction store on that microengine. An equal portion of the 

total registers available to a microengine is allocated to each hardware thread context; 

hence, registers of each microengine need not be flushed to memory on a thread context 

switch. The thread arbiter on the microengine is non-preemptive and swaps between 

threads in a round-robin order. Communication between threads in a microengine is done 

using registers; communication across microengines is done using the shared SRAM and 

SDRAM memory. 

A key feature of the IXP1200 is asynchronous memory access - for example, a 

microengine thread can issue a memory request and then continue processing; the 

completion of the request could then be asynchronously reported back to the microengine 

thread. 

There are different kinds of registers on the TXP1200. Table 2.1 lists the types of registers 

and their purposes. 



Table 2.1 : Registers available to each microengine 

The IXPl200 development platform consists of the network processor card which is a 

PC1 card that fits into the host system. This section describes the architecture of the 

network processor card. The main components of the card are a StrongARM processor 

known as the core processor, six microengines, SDRAM memory, SRAM memory unit 

and the IX bus interface unit. Figure x presents this architecture. 

Type of Register 

General Purpose 

SRAM transfer 

SDRAM transfer 

2.1.2 Memory interfaces 

The IXP contains three different memory interfaces: scratchpad, SRAM and SDRAM. 

Table 2.2 summarizes the details of each of these. In addition, each interface provides 

some additional features. The scratchpad unit provides atomic increment and bit test-and- 

setfclear primitives. The SRAM unit provides CAM locks, atomic bit test-and-setlclear 

and push-pop queues. The SDRAM unit provides a direct path to and from the Federated 

Bus Interface (FBI) which allows data to be moved between the two without first going 

through one of the processors. 

Number of 
registers per 
microengine 

128 

64 

64 

Description 

32-bit registers; allocated into two 

banks of 64 each. 

Used to transfer data to and from 

the SRAM unit, the IX Bus 

interface and PC1 interface. 

Used to transfer data to and from 

the SDRAM unit. 



Table 2.2: Types of Memory Interfaces on IXP1200 

2.1.3 The Federated Bus Interface 

Memory 
Interface 

Scratchpad 

SRAM 

SDRAM 

The main purpose of the FBI is to provide an interface for receiving and transmitting 

packets. The FBI holds the on-chip scratchpad memory, contains a set of control and 

status registers, a hash generation unit and the interface to the IX bus. 

2.2 Software frame works 

Intel provides the IXP Software Development Kit (SDK) for use by software developers 

to implement network services on the TXP. There are two basic programming choices in 

the SDK - programming in microcode/assembly language or programming in microC. 

Microengine C or microC [19] is a C-like language that includes features for 

programming on the IXP. For example, the microC compiler implements intrinsic 

functions that s~lpport features of the IXP1200 that are not accessible using standard C; 

intrinsics are built into the compiler (they are not library functions). An example of an 

intrinsic is the sdrnm-rf i f 'o-r~.ad~i~~d that reads (packet) data from a receive FIFO and 

places it in SDRAM memory 

Minimum 
Addressable 
Units (Bytes) 

4 

4 

8 

Intel also defines the MicroACE framework that should be used by developers while 

writing code targeted to run on the TXP hardware. Using the MicroACE framework, code 

is organized into ACES or Active Computing Elements. Each ACE is composed of a 

microblock that runs on microengines and a core block that runs on the StrongARM core. 

Communication between these blocks is defined by the ACE framework. 

Addressable 
Size 

1 KB 

2 MB 

32 MB 

Actual 
Size 

4 KB 

8 MB 

256 MB 

Approx. unloaded 
latency (clocks) 

12-14 

16-20 

3 3 -40 



The code that we use in this thesis implements microblocks using microC. This SDK is 

provided by Intel on a limited basis to limited customers and does not have 

documentation or support. However, the code and framework is very similar to 

microcode microACE and hence can be worked with, after the initial learning curve. 



3 Packet Classification Algorithms 

This chapter presents a survey of several packet classification algorithms that exist in 

current literature. These algorithms can be classified as basic-search, geometric, trie- 

based, hash-based, parallel-search and heuristic 121, 131. Each of the algorithms has 

different time and space complexities. The Bit Vector algorithm, chosen for study in this 

thesis, is described in detail in Chapter 4. The following sections describe each of the 

other algorithms briefly. We use the following terminology in this thesis: 

N - represents the number of rules in a classifier. 

W - represents the width of each field in a packet header. 

d - represents the number of dimensions in each packet that is used for classification. 

3.1 Basic Search 

A linear search is an example of a basic search algorithm. Rules can be represented by a 

linked list that can be ordered by decreasing priority. To find a matching rule for a 

packet, we simply do a linear search of the linked list. This algorithm has O(Nd) space 

complexity and O(Ncf) time complexity. 

3.2 Grid of tries 

Packet classification at network Layer-4 (i.e. the algorithms can be used for classifying 

based on headers available at Layer4 of the OSI architecture) can be done using two 

different approaches [6]. One type of data structure that can be used for packet 

classification is set-pruning trees. For example, for two-dimensional classification (say, 

source and destination IP addresses), a set pruning tree is constructed as follows: Build a 

trie containing destination prefixes; each valid prefix in a destination trie points to a trie 

containing some source prefixes. While searching, we first match the destination of the 

packet header in the destination trie; we then traverse the associated source trie to find the 

longest source match. However, this scheme has a memory blowup problem - the 

memory requirement for this scheme (for d dimensions) is o ( N ~ ~ w ) ,  since each rule may 

have to be stored dW times. 



In the grid of tries algorithm, the worst-case lookup time can be improved by storing pre- 

computed switch pointers in the trie - the switch pointer can be used to speed up search 

in a later source trie based on a search in an earlier source trie. This has a time 

complexity of O(W) and memory complexity of O(NW). However, switch pointers make 

incremental updates to the grid of tries difficult. 

A second approach for Layer-4 classification is cross-producting [6]. The main idea 

behind cross-producting is to: slice the filter database into columns, with the ith column 

representing all the distinct filters in field i; when a packet P is to be classified, the best 

matching prefix for each of the its fields is determined separately and the individual 

lookup results are combined. The basic cross-producting algorithm is to build a table of 

all possible cross-products and precompute the least cost filter matching each cross- 

product. This gives a time complexity of O(dW) and space complexity of O(Nd). 

3.4 PACARS 

Another class of algorithms is Packet Classification Algorithms using Recursive Space- 

decompositions (PACARS) [7]. A specific instance of this is the Area-based Quad Tree 

(AQT). For 2-dimensional classification, this algorithm has a space complexity of O(N) 

and search time complexity of O(aW), where a is a tunable parameter. The worst-case 

update time is O(a  ad^). 

Packet classification can be done using a data structure called the Fat Inverted Segment 

tree or FTS-tree [8]. Given a set S of possibly overlapping line segments, a segment tree is 

a balanced binary search tree containing the end points of the line segments in S.  It can be 

used for operations such as determining the highest priority line segment containing a 

given point [2]. An FTS-tree is a modified segment tree: (a) the segment tree is 

compressed to decrease its depths and occupies a given number of levels 1; (b) up- 



pointers from child to parent are used. The storage complexity using FIS-trees is O(1 x 

N""); the search time complexity is O((l+ 1)W) [2]. The tradeoff between storage space 

requirement and search time can be achieved by changing the value of 1. 

3.6 Heuristics 

3.6.1 Recursive Flow Classification 

Heuristic algorithms exploit the structure and redundancy that is observed in packet 

classification rules. The classification problem can be stated as mapping S bits in the 

packet header to a T bit action identifier, where T = log N and T << S 121. Recursive Flow 

Classification [9] attempts to perform the mapping over several phases - in each phase, 

one set of values are mapped to a smaller set. 

3.6.2 Hierarchical Intelligent Cuttings 

Another heuristic algorithm that exploits the structure of the classifier is Hierarchical 

Intelligent Cuttings or HiCuts [lo]. Each node in the HiCuts tree stores a small number of 

rules that can be searched sequentially to find the best match. The characteristics of this 

tree are chosen while preprocessing the classifier, based on its structure. 

Both of the above algorithms have a storage complexity of o(N~)  and search time 

complexity of O(d). 

3.6.3 Tuple Space Search 

The Tuple Space Search algorithm [ I  I ]  is motivated by the observation that while filter 

databases contain many different prefixes or ranges, the number of distinct prefix lengths 

tends to be small. This implies that the number of distinct combinations of prefix lengths 

also tends to bc small. A tlryle splice is defined as the set of tuples defined for each 

combination of field length. The set of rules mapped to the same tuple can be stored in a 

hash table. Given a packet, all the tuples in the tuple set can be linearly probed to 

determine the least cost filter matching that packet. The search cost is proportional to rn, 



the number of distinct tuples; storage complexity is O(N). Optimizations such as tuple 

pruning and precomputation can also be applied to the basic Tuple Space Search 

algorithm. 

3.7 Bit Vector 

We present it here for sake of completeness in the survey of packet classification 

algorithms. The basic idea behind the Bit Vector algorithm is to preprocess the ruleset to 

produce P-sets and hit vectors (see Chapter 5). The P-sets are used for lookup in the first 

step of classification. The results from this lookup are then used to perform an 

intersection of the corresponding hit vectors to determine the matching rule. The storage 

complexity for this algorithm is o(~N') and the time complexity is O(dW + N/mw), 

where mw is the memory width, or the number of bits that can be accessed in one 

memory read. Optimizations can be applied to the algorithm by using incremental reads 

to reduce the space requirements and by using a specialized scheme for 2-dimensional 

classification. The Aggregated Bit Vector scheme [ l l ]  makes the basic Bit Vector 

algorithm more scalable by introducing aggregation of data structures and rearrangement 

of rules. 

3.8 Summary 

This section summarizes the performance characteristics (presented in Table 3.1) of the 

various packet classification algorithms surveyed in this chapter. (Table 3.1 is adapted 

from [2]). 



Table 3.1 : Performance characteristics of packet classification algorithms 

(adapted from 121) 

Legend for Table 3.1 

N: number of rules in the classifier 

d: number of dimensions for classification 

W: maximum number of bits in each field for classification 
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4 Bit Vector algorithm 

Tn this chapter, we describe the Bit Vector algorithm in detail, propose different design 

mappings of this algorithm onto the IXP and describe the software implementation. 

4.1 Working of the algorithm 

In any packet classification algorithm, there are typically two distinct phases. In the 

preprocessing phase, the ~uleset is processed and data structures are built in memory, that 

are used in the second phase. The second phase is the actual classification phase, where 

these data structures are looked up to determine the matching rule. We now explain both 

phases of the Bit Vector algorithm using an example (the formal definition of the 

algorithm is given in Section 4.2). Consider the ruleset shown in Table 4.1. We assume it 

is ordered in decreasing priority. 

Table 4.1 : Example ruleset 

Preprocessing phase 

Assume that j represents a dimension, with 1 <= j c= d (in the example ruleset, d = 3). 

First, we take the jth dimension from all the rules and project them on the j-axis. For 

example, we take the values of dimensions in the first field of all rules and project them 

on the 1-axis, as shown in Figure 4.1. Note that rules may be overlapping in dimensions. 

We get distinct regions on this axis, and we note the rules for each region. Similarly, we 

do this for the other two dimensions (shown in Figures 4.2 and 4.3). 

Action 

Allow 

Allow 

Deny 

Allow 

Field 3 

(8, 11) 

(1,4) 

(12, 14) 

(5,9) 

Rule 

1 1  

r2 

r3 

I-4 

Field 1 

(10, 11) 

(4,6) 

(9, 11) 

( 6 8 )  

Field 2 

(274) 

(8, 11) 

(5, 7 )  

(1,3) 



Figure 4.1: Projections of dimension values on the 1-axis 

r4 rl, r4 ii rl r3 ll x-2 , 
. . . 1 2 3 4 5 6 7 8 9 10 I1 - - -  

2-axis 

Figure 4.2: Projections of dimension values on the 2-axis 

Figure 4.3: Projections of dimension values on the 3-axis 



Classification phase 

Consider that we have a packet whose fields are represented by the set { El,  E2 . . . Ed } .  

For example, let us take a packet represented by P = { 6, 10, 2 ) and classify it against the 

ruleset shown above. The classification phase for the Bit Vector algorithm consists of two 

stages. 

In the first stage, we take each dimension's value and determine the range which it 

matches on the corresponding axis. For example, we take the value 6 in the first 

dimension from packet P. We determine which range it matches on the 1-axis (Figure 

5.1). In this case. it matches the second range, which corresponds to rules 1-2 and r4. 

Similarly, we do this for the remaining ranges. For packet P, the second dimension 

value (10) matches the range on the 2-axis corresponding to r2; the third dimension 

value (2) matches the range on the 3-axis corresponding to r2. This range matching 

operation for each dimension can be performed in parallel; hence Bit Vector is a 

parallel search algorithm. 

In the second stage, we take the results of the range matching operations and 

determine the common rule for all the dimensions. In the example above, 1-2 is the 

common rule and hence it is the rule that matches the packet. The action specified by 

this rule is [hen applied to the packet. If more than one rule is common, then the rule 

with the highest priority is chosen. 

While implementing the algorithm, the rule numbers matching each range can be 

represented using an array of bits, hence the algorithm is called "Bit Vector". 

4.2 Formal definition 

We now give the formal definition of the algorithm. Let there be a set of N packet 

filtering rules in d dimensions (the condition 1 <= j <= d holds, wherever j is specified in 

this definition). Each rule r,, is represented as the set r, = {el,,, e2,m.. .ed,,), where each 

ei,,, is a range of values (a, b) where a <= b, for the jth dimension. We assume that the 

rules are sorted based on their priorities. 



Tn the preprocessing step of the algorithm, we perform the following operations to build 

the data structures that are used during classification. 

(The condition 1 <= j <= d holds, wherever j is specified in the steps below) 

1.  For each dimension j, project all intervals e,,i ( 1 <= i <= N) on the j-axis. by 

extracting the jth element of every filter rule. There are a maximum of 2N + 1 non- 

overlapping intervals that are created on each axis. Let Pi denote the d sets of such 

intervals. We use the general term P-sets to describe the collection of all such sets 

91. 

2. For each interval k in Pj, create sets of rules R k j  ( 1 <= k <= 2N + 1) such that a 

rule r,, belongs to the set Rk.j, if and only if, the corresponding interval k overlaps 

in the jth dimension with ei,,. 

The classification phase of the algorithm is as follows. Assume that a packet with fields 

El,  E2 . . . Ed needs to be classified. 

1. For each dimensionj, find the interval kj in set Pj to which Ej belongs. This can be 

done  sing a binary search or any other efficient search algorithm. 

2. Create the intersection of all sets Rk,,j, where kj belongs to { 1, 2, . . . 2N + 1 } . This 

is done by taking the conjunction of the corresponding bit vectors in the bit arrays 

associated with each dimension and then determining the highest priority entry in 

the resultant bit vector. 

3. The rule corresponding to the highest priority entry is the rule that matches the 

packet. 

As mentioned in Section 4.1, the execution of this algorithm can be accelerated by taking 

advantage of bit-level parallelism. Each set Rk,; can be represented by a bitmap N-bits 

long which acts as an indicator function for that set. Let Bj[k,m] be a (2N + 1) x N array 

of bits for each dimension j. The set Rk,i can be stored as a bit vector in row k of the bit 

array - bit Bj[k,m] is set if and only if the rule r,,, belongs to the set Rkj. The intersection 

operation (Step 2) of the classification phase is then reduced to a logical AND among the 



bitmaps that are retrieved after the search in Step 1. The bitmaps are organized in 

memory into words of width w, the unit of memory access being the word. The bitmaps 

for the example described in Section 4.1 is shown in Figure 4.4. 

Figure 4.4: Bitmaps for each j-axis representing the rules matching each range on the axis 

4.3 Software implementation 

The original implementation [ I ]  of the Bit Vector algorithm was done in hardware. 

However, in order to map it onto the TXP, we need to implement it in software. 

4.3.1 Implementation verification in C 

We first implement the algorithm in C, both to understand and verify a software 

implementation of the Bit Vector algorithm. We assume the preprocessing phase of the 

algorithm to be performed manually and the data structures are initialized at program 

start. This is a valid assumption since this thesis focuses only on the microengine 

performance of the IXP which is responsible for the classification phase. The 



preprocessing phase would typically be performed by a management application running 

on the StrongARM core processor. The pseudocode for the implementation of the 

classification phase in C is listed in Figure 4.5. The data structure initializations are 

simply to insert values into P-sets which are implemented as binary tries and into the bit 

vectors which are implemented as two-dimensional byte arrays. 

This implementation was verified by passing different packet header values to the code 

and determining that the packet was matched against the correct rule. 
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//Get the index i for each P-set. (DIMS is the number of dimensions) 

forti = 0; i < DTMS; i++) 

I 
range[i] = trieFind(PSet[i], packet-header[i]); 

if(range[i] == NOT-FOUND) goto exit; 

1 
//Get the corresponding bit vector 

//Perform a logical AND on all bit vectors to determine the rule 

result = bitVector[O][range[O] - 11; 

for(i = I ; i < DTMS; i++) 

{ 

result &= bitVector[i] [range[i] - 11 ; 

1 
//Determine which bit is set 

result = (result << 4); 

mask = 0x80; 

for(i = 0; i < RULES; i++) 

{ 

if((resu1t & mask) == mask) 

I 
matchingRule = i; 

break; 

1 
result <<= 1; 

} 

matchingRule++; 

Figure 4.5: Pseudocode for classification phase implementation 



This implementation was then ported to microC which is the programming language used 

for the IXP. Two different design approaches were implemented on the IXP, however the 

basic algorithm for classification remains the same. This is described in the next section. 

4.4 Mapping the algorithm to the IXP 

While programming the IXP, the developer has to be familiar with the underlying 

hardware architecture of the TXP so as to be able to extract optimal performance from it. 

The same algorithm could be mapped in several different ways onto the IXP so as to take 

advantage of the various hardware units available and the parallel nature of the hardware, 

specifically the six microengines which can execute instructions in parallel. The main 

motivation for study in this thesis is to determine how different mappings of the Bit 

Vector algorithm onto the TXP affect its performance characteristics and to study in detail 

the behavior of each of the mappings. 

4.4.1 Microengine allocation 

The code that is executed by each microengine is pre-determined at compile and link 

time. Hence, we need to partition the responsibilities prior to implementing and running 

the code on the IXP. The two standard functions that will be required are receiving and 

transmitting packets. In all our implementations, we allocate microengine 0 and 

microengine 5 for receiving and transmitting packets respectively. That gives us four 

microengines to use in the classification phase; the implementation of this phase can be 

done in different ways. The following sections list two such mappings. First, we 

introduce the terminology used for the different microengines: microengines that perform 

the classification function are called cls microengines; those that perform the receive and 

transmit functions are called rcv and xmit microengines respectively. 



4.4.2 Design Approach 1 

In this approach, all the classification steps for a single packet are performed by a single 

hardware thread in one microengine. This is illustrated in Figure 4.6. We call this design 

approach BitVectorl or BV1. 

Each thread does the 

following: 

- Lookup dim I .. d in 
I'-.TP~s 

- Determine the bit 
vector for each 
dimension 

- AND all bit vcctors 
- Queue packct for 

transmission/drop 

Each thread does the 

following: 

- Lookup dim 1 .. d in 
P-.TP~.F 

- Determine the bit 
vector for each 
dimension 

- AND all bit vcctors 
- Queue packet for 

transmission/drop 

Receive 

packets 
Classify packets 

Transmit 

packets 

Figure 4.6: Design Approach I of the Bit Vector algorithm 

4.4.3 Design Approach 2 

In this approach, the first step (lookup in the P-set) of classification for a packet is done 

in parallel by multiple microengines. Each microengine performs the lookup for one 

particular dimension. We call such a microengine a cls (classification) microengine. For 

example, microengine 1 determines the range in the P-set for dimension 1, microengine 2 

determines the same for dimension 2 and so on. At any given time, a single cls engine 

can perform a 1-dimension P-set lookup for 4 packets. The results of these lookups are 

then sent to a different microengine (say microengine 4) which then retrieves the 



appropriate bit vectors and performs the logical AND operation. It then determines the 

matching rule and performs the appropriate action (transmitfdrop). This design approach 

is illustrated in Figure 4.7. We call this design approach BitVector2 or BV2. 

Receive 

packets 

SRAM, SDRAM s Each thread does the 

Classify packets 

Transmit 

packets 

following: 
- Receive results 

and packet from 
other uEngines 

- Find 
corresponding bit 
vectors and 
perform AND 

- Queue packet for 
transmission/ 
other action 

Each thread docs thc 

following: 

- Lookup dim x in 
P-seis 

- Dctermine the bit 
vector for each 
dimension 

- Transmit packet 
and result to srep-2 
 engine 

Figure 4.7: Design Approach 2 of the Bit Vector algorithm 

4.4.4 Implementation/Design Details 

This section describes the implementation details such as buffering schemes used, data 

structure placement in memory, intra and inter microengine communication, data 

structure initialization, number of ports available for receiveltransmit, for BitVectorl and 

BitVector2. 

Each thread does the 

following: 

- Lookup dim x in 
P-sels 

- Determine the bit 
vector for each 
dimension 

- Transmit packet 
and result to step-2 
 engine 

4.4.4.1 Implementing BitVectorl 

Microengines 0 and 5 perform the functions of receive and transmit packets respectively. 

The code for this follows standard implementation - we reuse the code from the microC 

microACE sample for this, with small modifications as follows. Each of the four 

hardware threads on microengine 0 receives packets from a single port and queues them 

"' 

- * *  

. . . 



for use by microengines 1 through 4. The queues used for this are circular and are placed 

in SRAM. Since there are four cls engines and all four perform the full classification for a 

packet, we create a queue for each of the cls hardware threads. Each of the four rcv 

threads rotates through the four queue numbers sequentially. 

There are 128 entries in each of the queues with each entry occupying 2 words or 8 bytes 

of SRAM memory. The threads in the cls microengines wait for a new entry in their 

respective queue. Once an entry is available, it reads the appropriate packet headers, 

performs the classification and queues it for transmission by one of the xmit threads. 

Similar to the rcv threads, there are 4 xinit threads that service the 16 cis threads. Hence, 

each xvnit thread rotates through transmitting packets from the 4 queues that are allocated 

to it. The detailed division of responsibility and inter-microengine communication is 

shown in Figure 4.9. 



Figure 4.9: Microengine responsibility and communication in BitVectorl 

4.4.4.2 Implementing BitVector2 

As in BitVectorl, microengines 0 and 5 perform the rcv and xnzit functions respectively 

and receive/transmit packets (respectively) from 4 ports. Microengine 0 receives packets 

from the IX bus and placcs them in a circular queue in SRAM for use by the cls engines. 

Since in BV2, the classification phase for a single packet is split across different 



microengines, the packet goes through a pipeline of microengines. Hence, the rcv 

microengine has to queue packets only for use by the cls microengine 1. This is 

illustrated in Figure 5.10. Microengine 1 performs step 1 of the BV algorithm for a single 

dimension of a packet (source IP address) and queues it for use by microengine 2. 

Microengine 2 reads a packet from this queue and performs step 1 for a single dimension 

of the packet (destination IF' address) and queues it for use by microengine 3. Similarly, 

microengine 3 performs step 1 for the transport layer protocol field/port number and 

queues it for use by microengine 4. 

When each microengine adds the packet to the queue for use by its successor in the 

pipeline, it also writes the result of its lookup (in the P-set) as part of the queue entry. 

When microengine 4 dequeues a packet from its queue, it can access the results from the 

previous lookups. Tt uses these results and performs step 2 of the BV algorithm - it 

determines the appropriate bit vectors, performs the AND operation and determines the 

matching rule for the packet. It then performs the action specified by that rule - it queues 

the packet for transmission by microengine 5 or drops it. Figure 4.10 illustrates in detail 

the division of responsibility and communication between microengines for BV2. 
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Figure 4.10: Microengine responsibility and communication in BitVector2 



4.4.4.3 Data Structure placement in memory 

Unlike in GPPs, there is no memory manager on the IXP. Hence, we need to divide the 

available memory for our use (to store data structures) and determine the exact address in 

each type of memory that will be used for specific purposes. For example, consider the 

circular queue in SRAM that is used for inter-microengine communication. The base 

address of this queue needs to be determined at compile-time, in order to enable different 

microengines to access the queue. This also implies that care should be taken so as the 

placement of one data structure in memory does not overlap or interfere with a memory 

location that is meant for use by a different data structure or for a different purpose. Table 

4.1 lists the mcmory allocation used in BV1 and BV2. 

Table 4.1: Memory allocation for BV1 and BV2 

I Purpose / Type of memory I 
I Queue for inter-microengine I SRAM I 

communication I I 
I 

List of rules actions 
I 

The base addresses of each type of memory also needs to specified at compile time. This 

SRAM 

Tries representing P-sets 
I 

is used by the compiler to place variables in memory, as required. Hence, care should be 

SDRAM 

Bit Vectors 

taken so that we specify a base address that is higher than the range of addresses required 

by our static data structures. 

SDRAM 

4.4.4.4 Verification of the implementations 

After the coding lor the different algorithms and design approaches was completed, 

several tests were run to ensure that the implementation runs as per requirements and to 

eliminate any defects in the code. This section describes the tests and the results. 



Functional tests 

We started with a simple development approach - to implement the functionality 

required, ran it on a single hardware thread on a single microengine and stepped through 

the code (using the graphical debugger) for a single packet. This level of debugging 

helped to ensure that the correct code path was being followed for a packet. We first did 

this process using the rcv microengine and a single cls microengine. We next included 

the xmit microengine and ensured that a single packet was received, classified and 

transmitted accurately. We also tested the implementation with some of the rules 

configured to deny packets and input packets that matched these rules. We verified that 

such packets get dropped. 

The simulator also provides a logging facility, i.e., packets that are transmitted to and 

from the IXP ports can be logged to individual files. We used this logging feature to 

ensure that the headers and data in the packets were getting transmitted accurately by the 

POl-tS. 

Once we verified that the basic functionality of the code was working, we increased the 

number of threads on a single microengine in a systematic fashion and executed the same 

tests. This helped us detect and debug inter-thread communication issues which caused 

memory corruption or packets being lost. Once we verified that the code executed 

properly on one cls microengine, we started including the other cls microengines in a 

similar systematic fashion. This helped us detect and debug inter-microengine 

communication issues which would cause the system to hang, memory corruption, 

packets being lost etc. 

In each of these tests, we also used the logging facility available to ensure that the 

packets transmitted from the system have accurate headers and data. 



Stress tests 

After verifying that the implementations worked correctly on all microengines on the 

IXP. each of the implementations was subject to stress tests. Each implementation was 

run continuously in the simulator for around 8 hours and we verified that the simulator 

did not crash and that packets were received and transmitted at steady rates. This helped 

us debug through issues such as system freeze due to incorrect buffer management and 

insufficient buffer space. 

After these tests were run to verify that the implementations were correct, we executed 

them again in the simulator to collect performance statistics. These results are presented 

and analyzed in Chapter 5. 

4.5 Other considerations 

4.5.1 Management application 

This thesis studies only the performance of the algorithm on the microengines only. The 

microengines are the main components in the IXP that offer the capability to perform 

wire-speed packet processing. Hence, the performance of an algorithm on the 

microengines is the important aspect of the overall performance of the algorithm in the 

TXP system. However, when implementing for real-world use, there is the existence of a 

management application that typically runs on the main processor of the host system. The 

presence of such an application has implications for the overall performance of the IXP 

system since there will be contention to shared data structures in memory. This thesis 

does not consider the performance implications due to the introduction of a management 

application or any other source of updates to data structures in memory. 

4.5.2 Simulator 

The algorithm is implemented in tnicroC and tested and run in the IXP Developer 

Workbench which offers a cycle-accurate simulator of the IXP. This environment 



provides access to several performance metrics that reflect the actual IXP hardware. The 

code implemented for this thesis can be made to run on the actual IXP hardware. 

However, running microC microACE code on the hardware is not supported by Intel and 

hence the process may have some tedium. 

4.5.3 Scalability of the Bit Vector algorithm 

The size of rulesets used for packet classification varies dramatically depending on its 

purpose. For example, corporate intranets have approximately 1 50 rules, whereas large 

ISPs may have around 2400 rules [S]. The Bit Vector algorithm is well-suited for 

medium sized mlesets, with around 512 rules [I]. From preliminary study of the basic Bit 

Vector algorithm, it is evident that it does not scale well for large rulesets due to the large 

memory requirement for such rulesets. Several optimizations have been proposed [1,7] 

to the basic algorithm that enable more efficient use of the data structures in memory. 

This thesis deals only with the basic Bit Vector algorithm since it studies the behavior 

and performance of different approaches of a particular algorithm. Also, the same 

fundamental idea of parallelism is present in the extended versions of the algorithm. 

Since this does not affect the performance evaluation in this study, we do not attempt to 

modify the basic algorithm to achieve better scalability. 



5 Results and Analysis 

This chapter presents the performance data from executing the linear search and Bit 

Vector algorithms on the IXP1200. The data was collected using the IXP1200 Developer 

Workbench which includes a cycle-accurate simulator. We first present basic 

performance data using the mleset given in Table 4.1 with one modification - all the 

rules have the action set to "Allow", to measure worst-case performance. Using this 

ruleset, we have d = 3, N = 4 and W = 4. (For typical real world rulesets, d ranges from 1 

to 5;  N ranges from 100s to 1000s; W takes values 4 (for port numbers) and 128 (for P 

addresses)). 

Simulator configuration 

The IXP1200 Developer Workbench allows the user to specify different system 

configuration parameters that is used by the simulator. For the experiments in this thesis, 

we use the basic configuration available - we use the default configuration of an 

IXP1200 chip with l K  microstore that has a core speed frequency of 165.890 MHz. We 

can also specify configuration settings for the IX Bus Device simulator which controls 

how packets are sent and received from the simulator. For use in our experiments, we 

choose a device with 8 ports with a data rate of 100 Mbps and a receive and transmit 

buffer size of 256. However, since we have only one microengine performing the receive 

operation, we support only four ports. Hence, we configure the simulator to send packet 

streams to only ports 0 through 3 of the device. 

Experiments setup 

To compare the performance of the different mappings, we run each of the 

implementations in the simulator, until 75000 packets have been received by the IXP 

from the bus. We then record the various performance metrics and use them for our 

analysis. 



5.1 Performance Results 

This section presents the performance results from executing the linear search and bit 

vector algorithms using the ruleset in Table 4.1. Sections 5.1.1 through 5.1.3 present the 

detailed performance statistics from each execution. Section 5.1.4 presents a comparison 

between the three. Section 5.1.5 presents a detailed analysis. Table 6.1 describes the 

various performance metrics collected for our analysis. 

Table 5.1 : Performance Metrics Collected 

Performance Metric 

Microengine cycles 

IX Bus cycles 

Packets received 

Packets sent 

Receive rate (Mbps) 

Transmit rate (Mbps) 

Microengine execution 

time (%) 

Microenginc aborted time 

(%) 

Description 

The total number of microengine cycles that was 

spent to process a specific number of packets. 

The total number of IX bus cycles that was spent to 

process a specific number of packets. 

The total number of packets that was received by the 

IXP from the IX bus, to all the ports that are 

configured to receive packets. 

The total number of packets that was sent by the IXP 

to the IX bus, from all the ports that are configured to 

transmit packets. 

The overall packet receive rate of the IXP, for all the 

ports that are configured to receive packets. 

The overall packet transmit rate of the IXP, for all the 

ports that are configured to send packets. 

The percentage of the total number of microengine 

cycles that a microengine spent in performing useful 

tasks. 

The percentage of the total time of a microengine that 

was wasted due to instructions in its pipeline being 

aborted, typically due to branch instructions. 



5.1.1 Linear Search (LS) 

Microengine idle time (%) 

Instruction execution speed 

(Mips) 

SDRAM access (%) 

SDRAM access rate 

(Mbps) 

SRAM access (%) 

SRAM access rate (Mbps) 

This section presents the performance statistics collected after running the linear search 

algorithm for the ~uleset presented in Table 4.1. Table 5.2 presents the overall 

performance statistics; Table 5.3 presents the performance statistics for individual 

microengines. 

The percentage of the total time of a microengine that 

was wasted due to none of the 4 hardware threads 

being available to run. typically due to memory 

access wait time. 

The execution speed of a microengine. 

The total percentage of SDRAM bandwidth utilized 

by all microengines. 

The total SDRAM bandwidth used by all 

microengines. 

The total percentage of SRAM bandwidth utilized by 

all microengines. 

The total SRAM bandwidth used by all microengines. 

Table 5.2: Overall performance statistics 

I / Microengine cycles 23,277,945 / 
I IX Bus cvcles 1 9.31 1.178 1 

Packets received 
Packets sent 

75000 
31 521 

Receive rate (Mbps) 
Transmit rate I M b ~ s l  

325.35 
136.74 

SDRAM access 
SDRAM access rate 

10.30% 
546.8 M b ~ s  

SRAM access 
SRAM access rate 

99.60% 
2645.7 Mbps 



Table 5.3: Performance statistics of individual microengines 

5.1.2 Bit Vector Approach 1 (BVI) 

5 (xmit) 
- 

This section presents the performance statistics collected after running the Bit Vector 

algorithm approach 1 (described in Section 4.4.2) for the ruleset presented in Table 4.1. 

Table 5.4 presents the overall performance statistics; Table 5.5 presents the performance 

statistics for individual rnicroengines. 

Table 5.4: Overall performance statistics 

64.8 13.3 8.2 107.6 



Table 5.5: Performance statistics of individual microengines 
- 

5.1.3 Bit Vector Approach 2 (BV2) 

This section presents the performance statistics collected after running the Bit Vector 

algorithm approach 1 (described in Section 4.4.3) for the ruleset presented in Table 4.1. 

Table 5.6 presents the overall performance statistics; Table 5.7 presents the performance 

statistics for individual microengines. 

5 (xmit) 

Table 5.6: Overall performance statistics 

82.4 

Microengine cycles 

IX Bus cycles 

Packets received 

Packets sent 

Receive rate (Mbps) 

Transmit rate (Mbps) 
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Table 5.7: Performance statistics of individual microengines 

5.1.4 Performance Comparison 

This section presents graphical comparisons of the performance metrics of the algorithms 

presented in Sections 5.1.1 through 5.1.3. 
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Figure 5.1 : Comparison of the receive and transmit rates of the algorithms 
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Figure 5.2: Comparison of memory access (9%) of the algorithms 
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Figure 5.3: Comparison of memory access rates (Mbps) of the algorithms 
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Figure 5.4: Comparison of packets sentlreceive ratio of the algorithms 
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Figure 5.5: Comparison of microengines executing time 
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Figure 5.6: Comparison of microengines aborted time 
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Figure 5.7: Comparison of microengines idle time 
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Figure 5.8: Comparison of microengines execution in Mips 
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Figure 5.9: Distribution of individual microengine time for BitVectorl 
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Figure 5.10: Distribution of individual microengine time for Bitvector2 

5.2 Analysis 

This section presents a detailed analysis of the various performance metrics presented in 

Section 5.1. 

5.2.1 Linear Search vs. Bit Vector 

This section compares the various performance metrics of the Linear Search algorithm 

(LS) with that of the Bit Vector algorithm (BVI and BV2). 

Transmit rate 

As expected, both the implementations of the Bit Vector algorithm perform significantly 

better tkdn the Linear Search, since the LS algorithm employs a sequential search through 

linked list of rules and each access to a rule is a memory (SRAM) access. From Figure 

5.1 we can see that the transmit rate of the LS algorithm is significantly lower than that of 

BV1 and BV2. Given this, we would expect the packet-processing efficiency of the LS 



algorithm to be lower than that of BV1 and BV2. This is evident from Figure 5.4 which 

shows the ratio of the number of packets transmitted by number of packets received. 

Memory access 

In each of the implementations, the rulesets are stored in SRAM memory and the packets 

are stored in SDRAM memory. From Figure 5.2, we can see that the LS algorithm's 

SRAM access rate is significantly higher than that of BV1 and BV2, indicating that it 

spends a significant portion of the execution time in searching the ruleset. Hence, the 

number of packets processed per unit time is lower than that of BV1 and BV2. Given 

this. we would expect the SDRAM access of LS to be significantly lower than that of 

BV 1 and BV2. Figure 5.2 also confirms this hypothesis. 

Microengine utilization 

Another important performance metric for the IXP is the microengine utilization. The 

microengines are responsible for fast path packet processing and hence it is imperative 

that their utilization is as close to 100% as possible. The utilizations of the receive 

microengines are comparable in LS, BVl and BV2; the utilization of the transmit 

microengine depends on the packet classification speed which is handled by the 

classification microengines. In general, the code executing on the receive and transmit 

microengines is independent of the main classification algorithm. Hence, we now 

compare the utilization of the classification microengines (1, 2,3, and 4) in the LS 

algorithm and BVl and BV2. From Figure 5.5, we can see that the execution time of the 

classification microengines (cls) for LS is typically 50% less than that of BV1 or BV2. 

Thus, the cls microengines are under-utilized in LS, as would be expected because of the 

high SRAM access rate. 

Microengine aborted time represents the percentage of time an instruction in a 

microengine pipeline was aborted, typically due to a branch instruction. While the 

performance of LS is expected to be worse than that of BVl or BV2, it is interesting to 



observe, from Figure 5.6 that the microengine aborted percentage time is significantly 

less than that of BVI or BV2. This is because the LS algorithm is simpler in nature and 

has fewer branch instructions. As we will see in Section 6.2.2, the microengine aborted 

time for BV 1 and BV2 is significant, thus taking away time from the microengine that 

could have been used for execution. This implies that, although the overall performance 

of LS is lower than that of BVl or BV2, in general, simpler algorithms will have lower 

microengine aborted time. Since this is a significant metric, one design goal that should 

be adhered to, while designing classification or other class of algorithms for network 

processors, is that the algorithm should consist of as few branch conditions as possible. 

This is even more important on the TXP, since each of the four hardware threads on a 

single microengine share the same code base. Any penalty from a thread being aborted 

due to branch decision will be multiplied by four. 

Although LS has a lower microengine aborted time, the microengine execution time is 

lower than that of BV 1 and BV2 because LS has higher microengine idle time, as would 

be expected because LS has higher SRAM memory access rate. 

5.2.2 BitVectorl vs. BitVector2 

This section presents a comparison of the two design approaches of the Bit Vector 

algorithm's implementation (described in Sections 4.4.2 and 4.4.3) on the IXP. This is 

one of the main contributions of this thesis since it demonstrates that the packet 

processing speed of an algorithm on a network processor is dependent on the way it is 

mapped onto the hardware. 

While comparing the performances of these two design approaches, it is important to 

keep in mind the allocation of the microengines for BV1 and BV2: 

In both BV1 and BV2, microengines 0 and 5 perform the receive and transmit 

functions respectively. 

In BV1, microengines 1, 2, 3 and 4 perform the full classification functions. 



In BV2, microengines 1 and 2 perform lookup for IP addresses; microengine 3 

performs lookup for the transport layer port number (or protocol); microengine 4 

performs the step 2 of the BV algorithm - it combines the results from the previous 

lookups to determine the matching rule. 

Whereas Section 5.2.1 presented separate analyses of individual performance metrics, the 

same cannot be done while comparing BV1 and BV2. This is because, as we will see 

below, in this case, the analysis is dependent on considering multiple performance 

metrics at one time. Hence, we present below an overall analysis of BV1 and BV2. As an 

exception, we note that it is interesting to compare the microengine aborted time 

separately, and that is presented first. 

Microengine Utilization 

From Figure 5.6, we see that the aborted time for the classification engines is lower in 

BV2 than that of BV 1. In particular, the aborted time for microengine 4 (which performs 

the full classification in BV 1 and only step 2 of the classification in BV2) in BV2 is 

approximately 60% that of BV1. This is because in step 2 of the Bit Vector algorithm, we 

perform simple operations such as reading the bit vector from memory and performing an 

AND operation. Since microengine aborted time is typically because of branch 

instructions, microengine 4 of BV2 exhibits a significantly lower aborted time than in 

BVI. This emphasizes the conclusion that choosing simpler algorithms or designing 

algorithms that use lesser branch instructions is important in improving microengine 

utilization. 

The overall microengine utilization time is lower in BV2 than in BVl. This is because the 

microengine idle time (i.e., excluding microengine aborted time) is higher in BV2 than 

BV 1 .  In BV2, the processing time required for a packet is higher than that of BV1. 

Hence, although a microengine may have completed its portion of the processing for a 

packet, due to the buffering that occurs between microengines, microengines 1, 2 and 3 



exhibit significantly higher idle time. That is, in BV2, a new packet cannot be handled by 

microengines earlier in a pipeline until there are available inter-microengine buffer 

entries; these entries are freed only when the entire processing for that packet is 

completed by all microengines and the packet has been queued for transmission, by 

microengine 4. 

Overall Analysis 

Tn BV2, we split the various steps in processing a packet, across microengines. The 

parallel nature of the BV algorithm is well-suited for this kind of division of 

responsibility on parallel hardware. However, we observe that the performance (in terms 

of packet transmit rate and packet sentlreceive ratio) of BV2 is lower than that of BV1. 

The execution time of the classification microengines in BV2 is comparable to those in 

BV I .  However, the packet processing rate of BV2 is lower than BVl . This is because: in 

BVl, the SDRAM access to read the packet header for classification occurs only once, by 

a single hardware thread of the microengine that is performing the entire classification for 

that packet; in BV2, splitting the lookups in step I of the BV algorithm across 

microengines for a single packet, causes three hardware threads on different 

microengines(1, 2 and 3) to access the packet header in SDRAM for that packet, thus 

increasing the memory access time required to process one packet by three times. Hence, 

the speed of packet processing is reduced by 25% in BV2 than in BVl (seen in Figure 

6.4) 



6 Conclusion 

There are several packet classification algorithms that exist in current literature. 

However, they are not immediately applicable to programmable network processors such 

as the Intel IXP1200. The highly parallel nature of the hardware architecture of the IXP 

seems to be suitable for a parallel search packet classification algorithm. Hence, we study 

the performance and behavior of the Bit Vector algorithm, which is an example of a 

parallel search algorithm that is suitable for implementation in parallel hardware. We 

have proposed different design mappings of this algorithm on the IXP and observed how 

different design mappings of the algorithm onto the IXP hardware affect its performance. 

This is important since, while actually implementing an algorithm on the IXP, we deal 

with details such as buffer management, queuing, memory accesses and potential 

bottlenecks in the implementation. Thus, given an algorithm, choosing the best possible 

mapping of the algorithm onto the IXP is critical for achieving optimal performance. 

This thesis has presented performance results and analysis from running a linear search 

algorithm and two different design approaches of the Bit Vector algorithm on the IXP 

hardware. While BV2 seems superior in design to BVl since it splits the packet 

classification for a single packet across microengines, on the IXP1200, we have seen that 

this results in lower utilization of the microengines. Hence, BVl has a higher 

transmission rate than BV2. We also compare the performance of the Bit Vector 

algorithm with that of a Linear Search and see that, as expected, the former has superior 

performance. From the performance metrics, we also see that an important performance 

metric to be considered is the microengine aborted time, which occurs typically due to 

branch instructions in the code. In both the Bitvector approaches, we note that thread 

aborted time for individual microengines ranges from 14% - 23%. This indicates that 

algorithms which have frequent complex branch decisions will perform worse than those 

that have simpler execution paths. 



This thesis is an attempt to study in detail the performance of an important class of 

algorithms on programmable network processors. It has presented insights into how the 

mapping of an algorithm on a network processor may affect its performance. These 

results can be used while designing packet classification algorithms or other class of 

algorithms for implementation on programmable network processors. 
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