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Abstract

A Light-Weight Sharing Mechanism for Sparse Matrix Computations

Theodore Kubaska, Master's Degree

Supervising Professor: Steve Otto

Although massively parallel MIMD machines now make it practical to solve large numerical

problems, using these machines necessitates developing efficient methods for compute nodes to

communicate with each other. This thesis describes a weakly coherent shared memory program-

ming model for message-passing architectures. This method is applicable to iterative algorithms

such as those used in finite element calculations. In this method, data on the boundaries of a

domain decomposition are stored as aliases on the corresponding compute nodes. The calculation

proceeds independently on each compute node. The method is termed weakly coherent because at

certain points in the algorithm, data coherency is enforced with user-initiated calls. These aliased

data points take part in independent calculations; they are both read and written. In addition, the

construction of alias lists allows the pre-computing of the communication pattern and hence

improves communication efficiency by coalescing messages.
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Chapter 1 Introduction

Introduction
This thesis investigates how to solve large, sparse, linear systems of equations on

massively-parallel computers. Such a linear system can be written as the matrix equation

Ax=b where A is the sparse matrix, x is the unknown vector, and b is a known vector.A is

sparse when most of its elements are zero.

The two matrices looked at in detail are the Laplace matrix (see Appendix A"The

Finite Element Method" for a derivation of this matrix) and the NAS matrix (see

Appendix D"The NAS Benchmark"). The Laplace matrix has about 6% nonzero elements
for the size studied. The NAS matrix has about 1% nonzero elements.

A distributed-memory multicomputer is a parallel computer whose compute nodes

have their own physical memory. Each compute node has its own address space. When

compute nodes need to share information, they must exchange messages with each other.

For a general description of parallel computer architecture, refer to "Parallel Computers"

on page 10.

An effective way of achieving parallelism on a distributed-memory multicomputer

is to partition the data among the compute nodes. Then, each compute node operates on its

portion of the data set, communicating with other compute nodes as needed.

Partitioning the data among the compute nodes means that each compute node

contains some matrix elements and some vector components. Some of the vector

components exist on more than one compute node. Because the memory is distributed, a

vector component that exists on more than one compute node actually exists as a separate

copy on compute nodes that share the value.

The computation then proceeds in parallel on each compute node with each

compute node using its own data set. During the course of the computation some of the

shared values may attain different values. When the algorithm requires that the shared

vector elements have the same values, the compute nodes must exchange information.
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This type of operation (computation followed by communication when required by the

algorithm) is termed loosely synchronous.

Solving Partial Differential Equations

In particular, this thesis investigates the solution of large, sparse, linear systems of

equations that arise when using finite difference or finite element methods to solve

boundary value partial differential equations. These methods are described later in this

chapter.

The first step in solving a partial differential equation on a computer is to discretize

the equation. Partial differential equations are discretized by setting up a grid of points and

defining the solution to have a value at each point [30], [37]. Each point in the grid is given

a numeric label, and the solution is a vector whose ithcomponent is the value at the grid

point labeled i.

The matrix elements themselves designate the interaction between grid points. In

particular, the matrix element aij gives the weight of the coupling between the grid points
labeled i andj. The coupling described by a matrix element is the interaction among points

that is also described by the derivative. The matrices are sparse because, at the level of

approximation required for numerical work, the differential operator and consequently its

corresponding matrix operator describe local interactions.

The Finite Difference Method

The finite difference method [33] consists of expressing the derivative at each

point in the grid by a difference quotient. This approximation is obtained by writing a

Taylor expansion for the derivative and retaining terms up to the chosen order in the grid

spacing [25].

The finite difference approximation at each grid point is then substituted into the

partial differential equation. The result is a set of simultaneous linear equations, one

equation for each grid point. The equations are then solved for the solution vector; there is

a component of the solution vector at each grid point.

The Finite Element Method

The finite element method consists of approximating the solution as a sum of

carefully chosen functions called basis functions, substituting that sum into the partial
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differential equation, and manipulating the result to obtain a set of algebraic equations, the

solution of which provides the parameters of the approximate solution [35].

Specifically, for a two-dimensional problem, one writes the solution u(x,y) as
N

U(x, y) = Q (x, y) + L ajcl>j(x, y)
j= I

where the (I>i(x,y)are the basis functions. These basis functions are defined to be zero on

the boundary. Boundary conditions specifying u(x,y) are satisfied by Q(x,y). The solution

u(x,y) is said to be expanded in terms of the basis functions. The set of linearly

independent, simultaneous, algebraic equations are solved for the ai' the coefficients in

this expansion.

There are N finite element nodes in the grid, and a basis function is associated with

each finite element node. The set of algebraic equations contains as many equations as

there are basis functions. Because of the way the basis functions are chosen, it turns out

that the coefficient of a basis function in the expansion is also the value of the solution at
the finite element node associated with that basis function. When the calculation is

complete, one has values at all the finite element nodes, but one can also obtain values at

non-nodal positions by using these values in the expansion.

The finite elements are the areas over which the basis functions are nonzero. In two

dimensions these finite elements are usually polygons because polygons fill up space

easily and because it's easier to make the basis function go to zero on a linear side. The

finite elements are also often triangular because, in two dimensions, triangular elements

are best at approximating irregular boundary geometry [6]. In three dimensions, the finite

elements might be tetrahedra. The vertices of the polygons are the finite element nodes. If

a finite element node is a vertex in one polygon, it is also a vertex in all adjacent polygons.

Figure 1.1 on page 5 shows two grids that can also be interpreted as triangular finite
element meshes.

The basis functions are chosen to have the following properties:. There is one basis function associated with each finite element node.

A basis function is nonzero only over the finite elements to which its node

belongs.

The basis functions are chosen to have simple mathematical properties, such

as easy derivatives. They are often linear.

.

.
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· The value of the basis function at the node with which it is associated is 1.

This ensures that the coefficient of the basis function in the assignment is
the solution at that finite element node.

The finite element method [5], [6], [23], [38] began in the field of structural

engineering. With this method, a structure was first divided into individual components or

elements, whose behavior was readily understood. Then, the behavior of the complete

system was approximated by the assembled behavior of the components. In the 1940s,

analogies between portions of a continuous solid and discrete elements such as bars and

beams were made, and the technique became useful in aircraft structural design [38].

Refer to Appendix A "The Finite Element Method" for a detailed discussion of the
finite element method.

Some Background Mathematics and Definitions
This section provides more information about grids and distinguishes between

structured and unstructured grids. The section also introduces directed graphs and shows

how they are related to the grids. Finally, the section defines Laplace's equation and shows

how a matrix equation results from both finite difference and finite element solutions.

Structured and Unstructured Grids

With finite difference methods, the grid is structured; that is, the grid points are

arranged in a regular, predictable pattern. With finite element methods, the grid is often

unstructured; that is, different portions of the grid may have their points arranged

differently to take into account the specific needs of the problem. Figure 1.1 illustrates the

difference between structured and unstructured grids. The figure shows two grids

consisting of triangular elements.

In a structured grid, the grid points form a regular pattern. To construct a structured

grid, it is only necessary to know the pattern and then to repeat that pattern throughout the
domain.

In an unstructured grid, there is no pattern. The exigencies of the problem end up

determining the size, shape, and number of the triangles. For example, if the domain has a

boundary with twists and turns, a large number of triangles may be necessary for adequate

coverage. In addition, a particular region may be of more interest than another, and a

denser set of triangles in that region provides for a more detailed solution. The
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unstructured grid in the figure is adapted from a figure in the text by MacKeown and

Newman [25].

Pattern for the

structured grid

Structured grid Unstructured grid

Figure 1.1. Structured and Unstructured Grids

The ordering of the grid is how the grid points are numbered; that is, which point

on the grid is identified by 1, which point is identified by 2, etc. The ordering determines

the pattern of nonzero elements in the corresponding matrix; that is, if grid points 1 and 2

interact, then matrix elements al2 and a2lare nonzero. The performance of some solution

methods is dependent on where in a sparse matrix the nonzero elements occur. Hence, for

these methods, reordering the grid is an important step. For more information about

reordering, refer to "Ordering Schemes" on page 26.

Directed Graphs

This section defines the directed graph of a matrix [8]. A directed graph is a set of

nodes (points) and edges (directed lines connecting the points). A directed graph node is a

diagonal element of the matrix. There is one node for each diagonal element, even if the

diagonal element is zero. Specifically,node i designates the diagonal element aii. An edge

in the directed graph designates a nonzero, off-diagonal matrix element. Specifically, the

line connecting nodes i andj, directed towardj, designates the matrix element aij' and the

same line, directed toward i, designates the matrix element ajio

For example, Figure 1.2 shows a simple four-node directed graph and its

corresponding matrix. Because the arrows are bidirectional, both aij and aji are nonzero.

Laplace's Equation

Laplace's equation with Dirichlet boundary conditions is chosen as a specific
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1 2o
[

all a12 a(3 O

J

a21 a22 0 a24

a31 0 a33 a34

o a42 a43 a44

Because no edge connects nodes 2 and 3, a23 and
a32 are zero. Because no edge connects nodes 4
and I, a14 and a41 are zero.

3 4

Figure 1.2. Example of a Directed Graph and Its Corresponding Matrix

example of a linear, second order partial differential equation. This is the equation that

will be solved with the methods developed in this thesis. Laplace's equation in two

dimensions and (x,y) coordinates is

The differential operator consisting of the sum of the second order partial derivatives is

called the Laplacian and written as v2. Dirichlet boundary conditions mean that the value

of the function (in this case u(x,y» is constrained to be a prescribed constant on the

domain boundary.

Finite Difference Grid and the Corresponding Matrix Equation

Thissection shows how a matrix equationAx=b results when a square grid is used

in a second order, finite difference solution to Laplace's equation with Dirichlet boundary

conditions. The section explicitly shows the matrix elements and the construction of the
vector b.

To see how a matrix equation results from this partial differential equation, define

a domain as a two-dimensional grid and assign a value of u to each point in the grid. The

grid spacing is the same in the x and y directions and is equal to ~. This grid is shown in

Figure 1.3.

The second order finite difference approximations for the second derivative (which

can be obtained from a Taylor expansion) are

a2 1
2u = ("2) . (U(X+d,y) -2u(x,y) +U(x-d,y»ax d

a2 1
2u = ("2). (U(X,y+d) -2u(x,y) +U(X,y-d»
ay d
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x-

x-il

Figure 1.3. Two-Dimensional Grid for Laplace's Equation

Substitute these finite difference approximations for the second derivative into Laplace's

equation and multiply through by /).2.The result is

-u(x,y+.:1) -u(x-.:1,y) +4u(x,y) -u(x+.:1,y) -u(x,y-.:1) = 0

One such equation exists for every grid point (x,y). With this approximation, each point in

the grid turns out to interact only with its nearest neighbors.

If the resulting set of linear equations is written as a matrix equation, the

coefficients of each linear equation make up a row of the matrix. An interior node has five

nonzero matrix elements in its row. These are the self-term (the diagonal element which is

equal to 4) and the four nearest neighbors in the up, down, left and right directions (the

off-diagonal terms which are equal to -1). The solution is a vector with an element defined

at each grid point.

Figure 1.4 shows a 6x6 grid. The lines in the grid are shown as directed because

for the finite difference Laplace example, the grid and the directed graph are the same.

Hence, for this example the terms directed graph node and grid point are interchangeable.

The boundary points are shown as darkly shaded circles, and the unknown points are

shown as lightly shaded circles..

If the solution vector x is thought of as a 36-element vector (one element for each

grid point), the matrix is 36x36 and the matrix equation to be solved isAx=O.There are 16

unknown elements in this vector, and they are labeled 1 through 16. The boundary

conditions specify 20 vector elements of this vector, and they are labeled 17 through 36.

Another approach (the one taken in the figure) is to consider x as a 16-element

,y+il x,y+il x+il,y+il

x-il,y x,y x+il,y

il,y-il x,y-il x+il,y-il
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23

25

27

29

[

T -]

J

The matrix A = -] T -] where
-] T -]

-] T

T =

[

~I ~1-I

J

and] =

[

1 1

J
-1 4 -1 1

-1 4 1

8

. Boundarypoint.Thecomponent
of the solution vector is set to a
constant here.

. Interior point. The component of
the solution vector is initially
unknown here.

When only the unknowns are
included in the vector, the matrix
A is 16x 16 (because there are 16
unknowns).

The matrix equation isAx=b, and
the boundary information is in the
vector b.

Matrix elements that are zero are
shown as spaces.

Figure 1.4. 6x6 Square Grid for Finite Differences

vector (one element for each point in the grid with an unknown value) and move the

known values of x to the right-hand side. To see how this is done, consider the first six

equations in the set of simultaneous linear equations shown as Ax=b.

18 10. 20 21 22

1 2 3 4 l

5 6 7 8 26

9 to 11 12 28

13 14 1S1 16 30

32 33 34 36
...,



9

Here. x6 is the first element that is not directly connected to the boundary. and its

corresponding equation (the sixth equation) is consequently the first equation with zero on

the right-hand side. The vector b is (Xz3+X18.X19.x21+x24.X23+X18.X25.O. ...).

The matrix A is then 16x16.and the matrix equation is Ax=b. with b containing the

known elements of x that were moved to the right. Figure 1.4 shows A as a 16x16 matrix.

but rather than print out a 256-element matrix where most of the elements are zero. the

matrix is shown in block form. Zero elements are shown as spaces because it makes the
matrix more readable.

There is one equation for each unknown element of x. If there were less equations

than elements of x. x would not have a unique solution. and the problem would be

underdetermined. If there were more equations than elements of x. the set of equations

would not be linearly independent (the extra equations could be written as linear

combinations of the others).

Finite Element Grid and the Corresponding Matrix Equation

The square grid shown in Figure 1.4 could also be considered as a set of

quadrilateral finite elements. For a definition of a finite element. refer to ''The Finite

Element Method" on page 2. Each quadrilateral finite element provides contributions to

16 matrix elements as shown in Figure 1.5.

Figure 1.5 shows two quadrilateral finite elements. one made up of nodes 2. 3. 6.

and 7. and the other made up of nodes 6. 7. 10. and 11.Each finite element provides one

4x4 elemental matrix and contributes to up to 16matrix elements. The assembled matrixA
is the sum of elemental matrices.

where i is an index over the N elemental matrices and N is the number of finite elements.

For an explicit calculation ofthe matrix elements used to solve Laplace's equation. refer to

Appendix A. "The Finite Element Method:'

In some formulations. the assembled matrix is never explicitly formed. but

operations are performed on the elemental matrices. Storing the matrix as a set of

elemental matrices is referred to as clique or finite-element storage [8].

Programming may be more straightforward when the matrix is unassembled and

clique storage is used than when the matrix is assembled. but more calculation is involved.

Refer to "Assembled vs. Unassembled Matrices" on page 74 for details about the
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[

a22 a23 a26 a2

J

a32 a33 a36 a37

a62 a63 a66 a67

an a73 a76 a77 [

a66 a67 a6 10 a6 II

]

a76 a77 a710 a7 II

alO 6 alO 7 alO 10 alO II

al16 all 7 all 10 all II

Elemental matrix resulting Elemental matrix resulting
from the quadrilateral finite from the quadrilateral finite
element made up of nodes element made up of nodes
2,3,6, and 7. 6,7, 10, and 11.

Both elemental matrices contribute to some of the same matrix elements.
Contributions shared by the two matrices are shown in bold. They share contributions
because their corresponding finite elements share an edge.

Figure 1.5. Quadrilateral Finite Element and Corresponding Matrix

differences in calculations when using assembled and unassembled matrices.

If, instead of quadrilateral elements, the finite element grid were constructed from

triangular elements, an elemental matrix would be 3x3 and contribute at most to nine
elements of the assembled matrix.

As with the finite difference method, the solution is again a vector with an element

associated with each point in the grid.

Parallel Computers
Because the matrices in question tend to be very large, the sparse matrix equations

in which they appear require enormous runtimes to solve. This thesis investigates how to

make use of the considerable power of parallel computers to obtain solutions in reasonable

time. The motivation behind parallel computing is to use more processors and have them
work as a team.

Although many older computers were called sequential, they often had some

degree of parallelism [I]. The Cray-I had twelve pipelined functional units that could

operate concurrently. The Cray-YMP features eight identical CPUs, each of which has

parallel functional units. Massively parallel computers have up to hundreds or even

thousands of processors called compute nodes. When these nodes cooperate to solve a

2 3

6n7.

100 11

Grid
3

7

1l
Directed graph
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large problem, they achieve supercomputing performance.

Types of Parallel Computers

Flynn [11] divided architectures into the following four types, based on the number
of their instruction and data streams.

· SISD has a single instruction stream and a single data stream.

· SIMD has a single instruction stream and multiple data streams.· MIMD has multiple instruction streams and multiple data streams

· MISD has multiple instruction streams and a single data stream.

The conventional von Neumann architecture is SISD. A VLIW computer (VLIW

stands for very long instruction word) extends SISD architecture by packing several

instructions into one word. Different portions of the word tell different functional units
what to do.

The processing elements of a SIMD machine stay synchronized with each other

and execute the same instruction at the same time. The classic example is the ILLIAC-IV

developed at the University oflllinois in the 1960's [19]. This machine had 64 processors,

each with its own memory. A common control unit would broadcast an instruction to all

64 processors, and each processor would then execute the instruction simultaneously, each

using data from its own memory.

A more recent example of a SIMD machine is the Connection Machine CM-200

developed by Thinking Machines. Here a front-end computer issues instructions to up to

64K I-bit processors. Each processor then operates on data in its own local memory.

A MIMD machine has multiple instruction streams as well as multiple data

streams. Such a machine has distinct programs operating on separate sets of data. This

category contains most multiprocessor systems. Examples include Sequent's Symmetry,

BBN's TC2000, Intel's Paragon supercomputer, and Thinking Machine's Connection
Machine CM-5.

Flynn does not distinguish between shared and distributed memory. According to

his taxonomy, Sequent's Symmetry and Intel's Paragon are both MIMD computers, yet

they have very different architectures. The Symmetry machine has shared memory while

the Paragon machine has distributed memory.

In a shared memory machine, different processors read and write the same

locations in memory. The processors all share a common address space. The techniques

for controlling access to shared memory are similar to those used by sequential
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multiprocessing machines to control access by different processes.

The memory making up this shared address space may be centralized or distributed. In

multiprocessor systems with uniform memory access (UMA), the shared memory is centralized.

The drawback with UMA systems is that as the number of processors becomes large, designing

hardware that can control access to the common memory pool while maintaining performance

becomes increasingly difficult. In multiprocessor systems with non-uniform memory access

(NUMA), the shared memory is physically distributed, but there is still one global address

space.The consequence is that the time to access a memory location varies, depending on whether

that memory location is local or remote to the processor.

In a multicomputer, the memory is physically distributed, and each processor has its own

address space. Compute nodes communicate with each other by exchanging messages.

The work in this thesis was performed on Paragon XP/S systems of various sizes. The

Paragon XP/S supercomputer has multiple instruction streams because each compute node runs

its own program. Each compute node also has its own local memory containing its own set of

data. Hence, there are also multiple data streams [28].

The MISD category rounds out the taxonomy. One view is that such a machine has not

been built; another view calls pipelined processors MISD machines [1]. Pipelined processors

break up an instruction into a number of steps and then run the same data through those steps.

Another MISD possibility is a systolic array. Such a machine moves data from processor to

processor, where each processor performs a different operation on the data.

Topology

The network topology defines how the compute nodes are connected. Three main

characteristics of a network topology for a parallel computer are diameter, bisection width, and

the number of connections per node [31].

The diameter is the largest distance between any two nodes and measures the longest

distance a message must travel. The bisection width is the minimum number of edges that must be

removed to divide the network in two, times the width of an edge. The width of an edge is the

number of serial lines an edge contains. Bisection width measures how good data movement can

be from one end of the network to another. Finally, the number of connections per node is the

actual physical number of connections per compute node.

Many different topologies have been successful. The two discussed in this thesis, the

hypercube and the two-dimensional mesh, have turned out historically to be the most important.

The mesh architecture of the Paragon supercomputer traces its ancestry to the hypercube topology
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of the iPSe supercomputers, also from Intel.

A high performance network achieves good data movement with a low diameter

and a high bisection width. A constant number of connections per node contributes to

scalability. Other desirable features are a low cost/performance ratio and a flat
interconnect.

· Scalability means that a program running on a small number of nodes also

runs on a large number of nodes. The same problem runs faster while larger

collections of nodes permit the solution of larger problems in reasonable

time. Several ways of measuring scalability exist, and they will be discussed

in "Speedup and Amdahl's Law" on page 15.

· A low cost/performance ratio means that each compute node is priced low

enough so that large numbers of them can be connected together to provide

significant computing power. Each compute node of the Paragon XP/S

supercomputer contains two i860 XP processors. One is dedicated to user

processing; the other is dedicated to message-passing. The i860 XP

microprocessor has a peak floating point performance of 75 MFLOPS

double precision and 100 MFLOPS single precision [28]. Paragon XP/S

systems of up to 1800 nodes are in operation.

· Aflat interconnect means that programers need not be concerned with the

actual physical layout of the compute nodes. That is, message-passing

latency and bandwidth are independent of where the communicating

compute nodes lie in the network. Although a flat interconnect never strictly

exists, inasmuch as it is true, programs perform predictably on different

subsets of nodes that are physically laid out differently.

A fully-connected network (one where every compute node is connected to every

other compute node by a bidirectional link) appears at first to be the most desirable, but it

has a high cost/performance ratio and is not scalable. A single bus provides a low

cost/performance ratio, but the bus becomes overloaded with only a few compute nodes.

The dimension of a hypercube is the number of nearest neighbors for an individual

node. For example, a three-dimensional hypercube has three nearest neighbors; a

four-dimensional hypercube has four nearest neighbors, etc. Figure 1.6 shows the

connectivity of a three-dimensional and a four-dimensional hypercube.The earlier iPse

supercomputers from Intel could have up to seven dimensions. This means that the largest

iPSe supercomputer had 128 nodes, each with seven nearest neighbors.

A d-dimensional hypercube has a bisection width of width * 2d-l. That is, a
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Three-dimensional

cube (8 nodes)

Four-dimensional
cube (16 nodes)

In the three dimensional cube each node has three nearest neighbors. In the
four-dimensional cube, each node has four nearest neighbors.

The three dimensional cube shows a plane dividing the cube so that four compute nodes
are on one side and four on the other. Four lines cross that plane. If the width of those
lines is one, then the bisection width is 23-1or 4.

Figure 1.6. Examples of three- and Four-Dimensional Hypercubes

three-dimensional hypercube, when cut so that half the compute nodes are on one side of

the cut and half on the other, has 22 or four lines crossing the midpoint. A

four-dimensional hypercube has 23or eight lines crossing the midpoint. Because the iPSe

system has bit-serial communication, width is equal to one, and these numbers are also the
bisection width.

Hypercubes are expanded by adding a dimension. Hypercubes go from two

compute nodes to four to 16 to 32, etc. Every dimension requires another communication

line for each compute node.

There are two difficulties with this scheme. The first is the additional hardware

design and production that adding another communication link entails. The other is that

the required expansion may be more than one really wants. For example, a

ten-dimensional hypercube (1024 compute nodes) may not have enough compute nodes,

but an eleven-dimensional hypercube (2048 compute nodes) may contain more than one's

budget can justify.

Often, a dsigner is faced with the need for a fixed bisection width, whcih is related

to the cost. A bisection width of 512 can be achieved by a ten-dimensional hypercube with

serial lines (210-1=29 =512) or a 32x32 two-dimensional mesh with 16-bit lines (32*16 =
512).

A two-dimensional mesh has a low bisection width, but high scalability and a low

cost/performance ratio. Intel moved to a mesh architecture to permit the building of larger,
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more powerful machines and to increase the flexibility of choosing a configuration. Even

for large machines, one can choose to add only a few extra compute nodes for added

power.

How the Mesh Appears in Real Life

Although the topology is a two-dimensional mesh, the Paragon compute nodes

actually reside in 16-slot card cages. The mesh can grow in both directions, but it cannot

get higher than 16 nodes. This is because each cabinet has at most four card cages, and

each card cage adds at most four compute nodes to the vertical direction.

The actual connection to the network is through Paragon mesh routing chips

(MRCs) on the backplane, one for each compute node. These MRCs route message

packets between any two nodes. Their peak performance is 175M bytes/second full

duplex. Figure 1.7 illustrates the Paragon mesh network.

The Paragon supercomputer has several different usage models. One model is for

the user to allocate a certain number of compute nodes in a user partition. The user can

specify the length and width of that partition. The node numbers used by the user program

are not the same as the physical node numbers shown in Figure 1.7. The numbering of

allocated compute nodes in a user partition begins in the upper left-hand corner and

proceeds left to right across the columns and then down the rows.

Speedup and Amdahl's Law

Speedup is a measure of the performance improvement attained when one uses

more and more compute nodes to solve a problem. There are several ways of measuring

speedup; this section distinguishes between the major ways and identifies the speedup

measure used in Chapter 7, "Performance."

The simplest measure of speedup is the time the best sequential algorithm takes on

one processor divided by the time the best parallel algorithm takes on n processors. Linear

speedup is equal to the number of processors. That is, the application runs twice as fast on

two processors, three times as fast on three processors, etc.

Speedup may in certain circumstances be supralinear [31]. For example, each

compute node may have its own distinct cache, and the cache hit rate for n processors may

be greater than that for one processor. Barring these special circumstances, speedup is

typically less than linear, and the closer to linear it is, the more parallelizable the algorithm
is considered.
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MRCs on the backplane of the Paragon XP/S
system. The backs of two cabinets are shown.

Each 4x4 grouping ofMRCs correspond to one
cardcage.

Numbering of MRCs for one
4x4 grouping (viewed from the
back)

The two cabinets contain a
16x8 mesh.

Physical layout of card slots in one card cage (viewed from the
front)

Figure 1.7. Paragon XP/S Mesh Network

Amdahl's Law

In any application, a certain percentage of operations must be performed

sequentially. Often I/O consists of sequential operations. Amdahl:SOLaw [2] expresses the

maximum speedup S as a function of the fraction of the operations that must be sequential

f, and the number of processors p. Whenfis zero, the speedup is the number of processors.

I
s<-

- f+ (I-f)lp

In the limit as p goes to infinity, the maximum speedup is 1/f.For example, this means that

if 10% of the operations must be sequential, the speedup can never be greater than 10, no

matter how many processors are used.

This is not as bad as it seems. For many applications, the percentage of required
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sequential operations decreases as the problem size increases. The sequential operations

are usually independent of the problem size, sometimes slowly growing with problem

size. This sequential overhead can be amortized over larger and larger problem sizes, thus

increasing the speedup.

fis called the amdahl fraction. If n is the problem size andfin) approaches 0 as n

approaches infinity, the the speedup S approaches p [27]. This is then linear speedup.

lim S ~ 1 = p = p = P
f~O f+ (i-f)lp fp+ I-f 1+ (p-l)f

Scaled Speedup

With a multicomputer, more processors means that more memory is available and

that a larger problem can be solved; but because a multicomputer has no shared memory,

the large data sets required by large problems may not fit into the memory on a single

processor. So one cannot actually run the best sequential algorithm on one processor.

Instead, one must extrapolate the time that the large problem would take on the single

processor. Scaled speedup is this extrapolated time divided by the measured time on n

processors.

Fixed-Grain Speedup

Another way of presenting results is to increase the problem size when the number

of compute nodes increases. For example, if size is the size of a problem on one processor,

then size*p is the size on p processors. This ensures that each processor is always doing

the same amount of work and is referred to as speedup with a fixed grain size,

distinguished from speedup with a fixed problem size.

Parallel Programming

Good parallel programming is characterized by load balancing, overlapping

computation with communication, and making maximum use of data locality.

Load balancing means that all the compute nodes are kept busy. No cycles are

wasted by having some compute nodes wait for others to finish. Load balancing can be

static; that is, the problem is divided up evenly among the compute nodes. Sometimes

dynamic load balancing techniques are employed. As the calculation proceeds and the

amount of work remaining for each compute node changes, the work load is redistributed
to restore an even balance.
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Computation and communication overlap can be achieved programmatically and

architecturally. For example, asynchronous message passing calls allow the programmer

to post a receive and then continue with the computation until the actual received data are

required. The compute node of the Paragon supercomputer has two processors, one of

which is dedicated to message passing. The computational and communication processors

share an address space.

In data parallel programming (see"Data Parallelism" on page 38), the data set is

divided among the compute nodes. If a compute node needs data that exists on another

compute node, it must exchange messages. By partitioning the data such that each

compute node gets most of what it needs and designing the algorithm to use local data as

much as possible, the communication/computation ratio is kept low.

The Aliasing Method
This thesis describes an aliasing method applicable to both structured and

unstructured grids. In this method, the matrix elements and vectors are distributed among

the compute nodes of a multicomputer. This section defines the aliasing method.

Figure 1.9 shows a directed graph divided among compute nodes. The dotted lines

designate the compute node boundaries.

The directed graph is divided among the compute nodes along the lines of the

graph; that is, no compute node boundary crosses a line in the directed graph. When the

dividing line encounters a node of the directed graph, that node is duplicated so that a copy

exists on both compute nodes. When several compute node boundaries come together, a

copy of the directed graph node exists on each of those compute nodes sharing the

boundary. Figure 1.9 shows an instance when three compute nodes share a boundary.

The nodes of the directed graph designate diagonal elements, but they also have

vector elements associated with them. Defining a vector on the graph means that each

directed graph node has a vector component associated with it. This vector has as many

components as there are nodes in the directed graph. For example, node i of the directed

graph, as well as designating the diagonal matrix element au, has associated with it the ith

component of all vectors defined on the graph. When the directed graph node is duplicated

on compute nodes sharing a boundary, any associated vector components are also

duplicated.

An alias group is a set of copies of one directed graph node (including its

associated vector components), each copy residing on a different compute node. Figure
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Before

decomposition

Compute Node 1

Compute Node 0

The arrows that make the

graph directed are not shown.
Compute Node 2

This directed graph node is duplicated on three
compute nodes.

Figure 1.8. Dividing the Mesh Among Compute Nodes

1.9 shows the directed graph of Figure 1.9 with five alias groups identified. Alias groups

have the following characteristics:

. Each compute node can both read and modify the values associated with its

copy. This means that an alias group acts like shared memory.

The memory used by an alias group is really physically distributed among

the compute nodes having members in the alias group. But each compute

node reads and writes its copy without worrying about what effect that

action has on the other compute nodes.

· When one compute node modifies a value associated with a member of one

of its alias groups, that modification is not immediately communicated to the

other compute nodes that also have members in the same alias group. The

guarantee is that the modification will be communicated when it needs to be.

This means that the alias group sometimes acts like weakly coherent shared

memory.

· Note that the different copies making up one vector component may be

updated independently. This is different from what one normally considers

weakly coherent shared memory Hence, there must exists some method of

combining the different values into a single coherent value.

This thesis uses the aliasing method as part of the parallelization of the conjugate

gradient method. The conjugate gradient method is an iterative method used to solve a set

of simultaneous linear equations. The conjugate gradient method is introduced in

"Non-Stationary Methods" on page 34 and described in detail in Appendix C, "The
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This alias group contains two
members.

This alias group contains two
members.

This alias group contains
three members.

"
This alias group contains two
members.

This alias group contains two
members.

Notice that the line of the directed graph (the off-diagonal matrix element) appears on only one of
the compute nodes. This is equivalent to saying that the matrix elements are not aliased.

Figure 1.9. Alias Groups

Conjugate Gradient Method." Its parallel aspects are discussed in the section "Parallel

Conjugate Gradient Method" on page 55.What is important for this section is to recognize

that each step of a conjugate gradient iteration contains a matrix-vector multiplication.

This section summarizes how the aliasing method is used to perform these operations.

A matrix-vector multiplication can be thought of as an operation on the directed

graph. To see how, consider the matrix-vector multiplication y = Ax. The vector y has

components associated with each node of the directed graph as does the vector x. When

the matrix vector multiplication is performed the value of y changes. Each component ofy

gets contributions from every component of x to which it is connected by a matrix

element. That is, the ithcomponent of y is
n

Y = '" a..x.
i £... IJ J

j= 1

A pull-in is defined as the contribution one vector component obtains from another

vector component, weighted by the connecting matrix element (shown as a line). Figure

1.10 shows the component YI with three pull-ins, one from X2weighted by al2, one from

x3 weighted by a13,and one from x4 weighted by a14'

At each step of a conjugate gradient iteration, a matrix vector multiplication is

performed. When this operation is executed in parallel, each compute node performs its

pull-ins locally. The result is that each member of an alias group gets a value different
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4

The vector component YI contains contributions
from the vector components x2, x3' and X4'
These contributions are weighted by the matrix
elements designated by the connecting lines.

The term alixi is the self-term.
2

Figure 1.10. Pull-ins

from that of the other members; this is the same as saying that the alias group becomes

incoherent. After a matrix-vector multiplication, the correct value for the members of an

alias group is the sum of all the values in the alias group. Performing that sum and

ensuring that it is received by all the compute nodes with a member in the alias group is

called making the alias group coherent. Figure 1.10 illustrates what happens to the alias

group for Ylduring a matrix-vector multiplication.

Node 1 of the directed graph has
six pull-ins. All six pull-ins do not
occur on the same compute node.
The figure shows that compute
node 0 performs three pull-ins,
compute node 1performs two
pull-ins, and compute node 2
performs one pull-in.

At the completion of the
matrix-vector multiplication, each
member of the alias group for YI
contains a portion of the resulting
value for YI' The final value is the
sum of the values contributed by
each compute node.

Compute Node 1

3

Compute Node 0

Compute Node 2

Figure 1.11. Pull-ins Distributed among Alias Group Members

In summary, this thesis uses the aliasing method to achieve an efficient

parallelization of the conjugate gradient method. The thesis investigates how alias groups

are constructed, stored, managed, and made coherent.
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Organization of this Thesis
This thesis has eight chapters and four appendices. They are as follows:. Chapter 1, "Introduction" gives an overview of the investigation. Some

general terminology is defined. A relationship is made and a distinction is

drawn between the grids used to discretize the equations and the directed

graphs of the associated matrices. In addition, an overview of parallel

architecture is presented with emphasis on the Paragon XP/S

supercomputer.

Chapter 2, "Solution Methods"discusses serial direct and serial iterative

solution methods for sparse matrix equations. The direct methods are based

on Gaussian elimination, and the iterative methods are based on the

conjugate gradient algorithm.

Chapter 3, "Parallelization Techniques"discusses how the serial methods

described in the previous chapter can be adapted to parallel machines.

Chapter 4, "Implementation of Aliasing"discusses how the grid is

partitioned among the compute nodes of a parallel machine and how this

affects the matrix and vector elements. Work proceeds independently on

each compute node. When shared vector elements become incoherent,

communication is required. Aliases are defined and shown to be a way of

facilitating this communication.

Chapter 5, "Implementation of the Conjugate Gradient Method" describes

the implementation in enough detail to allow for further work. Individual
routines and data structures are described.

.

.

.

.

. Chapter 6, "A Random Matrix" presents a limiting case where the aliasing

method, although still working and producing correct answers, becomes

inefficient. The Numerical Aerodynamic Simulation (NAS) Conjugate

Gradient (CG) benchmark [3] is shown to provide a random matrix-a

sparse matrix whose nonzero elements are randomly distributed throughout
the matrix.

. Chapter 7, "Performance" presents data taken from solutions of the Laplace
matrix and the random matrix from the NAS CG benchmark.

Chapter 8, "Conclusions" summarizes the results and suggests possible
extensions.

.
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. Appendix A"The Finite Element Method" presents the mathematical

background of the finite element method. Specifically, the method is

applied to Laplace's equation, a two-dimensional, second order, linear

partial differential equation.

. Appendix B, "Exact Solution of Laplace's Equation" presents an exact,

analytic solution of Laplace's equation in continuous space. The purpose is

to compare this exact solution with the answer obtained using finite

elements and the conjugate gradient method.

. Appendix C, "The Conjugate Gradient Method" lists the steps of the

conjugate gradient method.

. Appendix D, "The NAS Benchmark" describes the details of the NAS CG
benchmark.



Chapter 2 Solution Methods

Introduction

This chapter gives an overview of direct and iterative solution methods for sparse

matrix equations.

. Direct methods obtain a solution after a predictable number of operations.

Intermediate steps do not approximate the solution. If it were not for

roundoff errors, this solution would be completely accurate.

· Iterative methods generate a sequence of approximations that converge to

the solution. The computation stops when the solution meets some specified

accuracy or after a specified number of iterations. The number of operations

is not predictable and depends on stopping criteria. Intermediate steps do

approximate the solution.

Serial Direct Methods
The direct methods described in this thesis are based on variations of Gaussian

elimination. For example, LV factorization takes the matrix equation Ax =b and turns it

intoLUx =Ly =b.1f A is an nxn matrix,x, andbare n-Iengthvectors.U is an upper
triangular matrix, and L is a lower triangular matrix.

Solving the set of equations Ly =b fory is called forward reduction orforward

elimination and is performed as follows:

i-I

hi - L IijYj
j =I

Iii
i=2,...,nYi =

where Yi and bi are the ithelements of the y and b vectors and lij is the ijthelement of the
matrix L. Once y is known, the matrix equation Ux=y can easily be solved. This step is

called back substitution and is performed as follows:

24
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Yn
Xn = ;-nn

n

Yi - L UijXj

j = i+ 1
u..II

i=l,...,n-lX. =I

wherexi andYi are the ith elementsof thex andY vectors and uij is the ifh element of the
matrix U.

This LV factorizationis performedwith row operations.A row operationconsists

of multiplying one row of the matrix by some constant and adding the result to another

row. The row operations are designed to zero out or eliminate the lower triangular part of

A and thus form U. The constants used as the row multipliers form the elements of L, and

usually, these are stored in the newly-zeroed locations ofA.

LV factorizationproceedsin stages.Eachstageeliminatesthematrix elements
below the diagonal in one column. The factor multiplying the row is chosen so that when

it multiplies the diagonal element in the row (called the pivot element), the value is such
that when it is added to an element in the column below, zero results. A different factor is

chosen for each nonzero element in the column below.

LV factorization proceeds left to right, zeroing out a column at a time until there

are no more. There is one less stage than there are columns in the matrix. The remaining

submatrix consists of the columns to the right of the column being eliminated and the rows

below the row containing the pivot [7]. Gaussian elimination occurs when the

corresponding operation is performed on the vector on the right-hand side of the equation.

Pivoting

TheGaussian elimination algorithm requires division by the pivot element; and if

the pivot element is zero or small, numerical instability and inaccuracy results [32].

Pivoting means rearranging the rows and columns of a matrix to bring an acceptable

matrix element into the pivot position.

Interchanging rows or columns of the matrix does not modify the matrix equation.

However, when columns in A are interchanged, the corresponding rows in x must also be

interchanged; and when rows inA are interchanged, the corresponding rows in b must also

be interchanged.

Interchanging rows is called partial rowpivoting. Gaussian elimination with

partial row pivoting is considered to be a stable algorithm, but that consideration is based

more on experience than rigorous analysis [8].
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Interchanging both rows and columns is calledfull pivoting. Gaussian elimination

with full pivoting is usually not used because it involves more matrix element

comparisons and is not needed.

Ordering Schemes

Direct methods rely heavily on ordering schemes. An ordering scheme is a method

by which the points on a grid are numbered. For example, in Figure 1.4 on page 4, the

ordering scheme is to number the grid points designating unknown values of the solution

vector, starting with 1 and proceeding left to right on each row. Then, the grid points

designating known values of the solution vector are numbered, also left to right and down
the rows.

Choosing a different ordering scheme does not alter the problem being solved. It

only changes the pattern of nonzero elements in the matrix. If the grid is reordered so that

i goes to k andj goes to I, the matrix element akl now has the value that aij used to have.

The corresponding reordering must occur for the vectors as well as the matrix elements.

What was called xi is now called xk and what was called Xj is now called xl.; what was

called bi is now called bk and what was called bj is now called bl.

Changing the pattern of nonzero elements in the matrix can be very beneficial. It

may reduce the operation count and storage requirements of the solution. It accomplishes

this by reducing fill-in.

Fill-in

A major concern of direct sparse matrix methods is fill-in. Fill-in occurs when in
the course of the calculation a matrix element that was zero becomes nonzero [15]. With

sparse matrices, only their nonzero elements need be stored, resulting in a significant

decrease in memory requirements. A good sparse storage scheme has to allow for fill-in,

and a good direct algorithm manages fill-in. Managing fill-in means minimizing it,

confining it to certain regions in the matrix, or some combination of the two.

Minimizing Fill-in

Minimizing fill-in means using some reordering strategy to minimize the number

of zero elements that become nonzero during the course of Gaussian elimination. An

effective way of minimizing fill-in is due to Markowitz [8], [26]. At each stage of



27

Gaussian elimination, the Markowitz criterion chooses as a pivot a particular nonzero

entry from the remaining submatrix such that the least number of matrix elements will be

modified in the subsequent elimination operation.

Minimizing fill-in is a local approach. That is, the reordering is performed at each

stage of the elimination; and this reordering may be optimal for minimizing fill-in at that

stage, but is not necessarily optimal for the entire elimination which consists of many

elimination stages.

The pivot element chosen by the Markowitz criterion must also be large enough to

ensure numerical stability. Usually, its magnitude is specified to be that of a specified drop

tolerance times the largest possible pivot. Typical drop tolerances are 0.1 and 0.01.

Confining Fill-in

Confining fill-in means permuting the matrix to some particular form and then

using the properties of that form to more easily obtain a solution. Because this method

deals with the matrix as a whole, it is considered a global approach.

For example, if the matrix is block tridiagonal (as shown in Figure 2.1), instead of

eliminating each entire column, one can choose an algorithm that factors only the diagonal

blocks. In this algorithm, the off-diagonal blocks appear only as part of matrix-vector

multiplications [8].

D
Diagonal
Block All AJ2

A21 A22 A23

A32 A33 A34

A43 A44 A4S

AS4 Ass

Off-diagonal
Block

Block Tridiagonal Matrix

Figure 2.1. Block Tridiagonal Matrix



28

Frontal Method

Because the matrices in question may be very large, the frontal method was

developed to take advantage of memory hierarchy. The frontal method factors the matrix

in such a way that the higher levels of the memory hierarchy (where the access is most

efficient) get used most frequently. This is possible because it is not necessary to have

access to the entire matrix to factor it. At each stage of the factorization only a portion of

the matrix is needed.

Assume the matrix is so large that it cannot fit into main memory. A portion of the

matrix must always remain on disk. When this occurs, the solver must bring into main

memory only the portion of the matrix needed for a particular stage of the algorithm, then

replace that portion with the portion needed for the next stage. Such a solver is called an
out-of-core solver.

One can think of the frontal method as a window that moves over the matrix. Only

the portion of the matrix in the window is needed for the current stage of factorization.

For example, to eliminate a particular column, it is only necessary to have access

to the nonzero elements in the row and column containing the pivot. It is convenient to

also have the nonzero elements in the rows that are affected by the elimination. Otherwise,

one must save up the modifications to these elements and then apply them when the
elements become available.

Figure 2.2 shows a nine-point directed graph and its corresponding matrix. A 3x3

matrix consisting of the elements common to the first three columns and the first three

rows is all that is needed to eliminate the first column. Only this submatrix is needed to

eliminate column 1 because node 1 does not have any interactions with any nodes other
than 2 and 3.

The second submatrix has all the elements common to rows 2 through 5 and

columns 2 through 5. This submatrix is all that is needed to eliminate column 2. Only this

submatrix is needed because node 2 does not have any interactions with nodes other than

3, 4, and 5.

Figure 2.2 shows all the submatrices that are needed to factor the matrix. The

submatrices are called frontal submatrices because they are thought of as a wavefront

moving through the matrix. As different matrix elements are read into memory and

different columns eliminated, the wavefront moves through the matrix.

The bold numbers at the upper right corner of each frontal submatrix indicate the

columns that can be eliminated when that submatrix is in memory. The two columns of



29

In this figure, assume that pivoting is not necessary. The two columns on the right of the matrix indicate
the interacting nodes and the size of the submatrix as it moves through the matrix.

Eliminating the First Column

To eliminate the first column, it is necessary to possess the nonzero elements of row I and column I:
a11,a12.a13in the first row and a21'a31. a31in the first column.

Because al2 and a13are the only nonzero elements besides all in the first row, only elements in the
second and third columns are affected by the elimination of the first column. Because a21 and a31are
the only nonzero elements besides all in the first column. it is only necessary to modify the first two
rows when eliminating the first column. Hence, the elements a2l>a23,a32,and a33are modified. The
3x3 matrix indicated by the number 1 in its upper right-hand corner is all that is needed to eliminate
the first column.

The interacting nodes are nodes 1, 2, and 3. The submatrix is 3x3. Once column 1 is eliminated the
interacting nodes are 2 and 3. and column 2 is next in line to be worked on.

Eliminating the Second Column

Node 2 interacts with nodes 3, 4, and 5. Hence, to eliminate column 2, one must read in the matrix
elements with some combination of 2, 3, 4, and 5 in their subscripts.The interacting nodes become 2,
3, 4 and 5; and the submatrix is 4x4. Once column 2 is eliminated, the interacting nodes are 3, 4, and
5, and node 3 is next in line to be worked on.

Eliminating the Remaining Columns

Node 3 interacts with nodes 5 and 6. Hence to eliminate column 3, one must extend the submatrix to
include elements with some combination of 3. 4, 5, and 6 in their subscripts. Once column 3 is
eliminated, the interacting nodes are 4, 5, and 6. The samereasoning applies to the other columns. The
submatrix is 4x4 when column 5 is eliminated, also 4x4 when column 6 is eliminated, and fmally 3x3
when columns 7 and 8 are eliminated.

Figure 2.2. Demonstration of the Frontal Method
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numbers in the right-hand side of the figure show the interacting nodes and the size of

their corresponding submatrix. The text in the figure describes the steps in detail.

The wavefront determines the access pattern to the matrix elements; consequently,

an ordering scheme that results in a small wavefront would allow the frontal method to

make the most efficient use of memory hierarchy. Ideally, the submatrix currently being

worked on resides in the smallest, fastest cache.

The multifrontal method is an extension of the frontal method that is applicable to

parallel processors [10]. In the multifrontal method, several wavefronts can be moving

through the matrix independently. See "Parallel Direct Methods" on page 39 for more
information about multifrontal methods.

Serial Iterative Methods

Iterative methods have several advantages over direct methods. First of all,

iterative methods usually require less storage. For large matrices, the fill-in and the

subsequent increase in operation count in direct methods is significant. Because iterative

methods do not have fill-in, the sparse storage scheme used by the matrix need not

accommodate additional values during the course of the algorithm.

In addition, iterative methods are often faster than direct methods. Usually, the

answer at each iteration is tested against some desired measure of accuracy. For example,

in a relaxation method one may check on how much the new answer differs from the old,

either in absolute magnitude or as a percentage and accept an answer that changes less

than a set value. One need not work to an accuracy greater than required by the problem

being worked on.

Iterative methods also often have simpler vectorization and parallelization

properties. On sequential machines the primary goal of reordering the matrix is to

decrease storage requirements (less fill-in) and decrease work (less operation count).

Techniques that achieve these goals do not generally also promote parallelism as will be

seen in"Parallel Direct Methods" on page 39.With iterative methods, however,

parallelization can be as straightforward as assigning different nodes of the grid to

different processors.

Stationary and Non-Stationary Methods

Iterative methods divide into stationary and non-stationary methods [4]. The
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stationary methods discussed in this thesis are the Jacobi method itself, the Gauss-Seidel

method, and the Successive Overrelaxation method. The non-stationary methods

discussed are the conjugate gradient method and the preconditioned conjugate gradient
method.

Stationary Methods

Stationary methods are called stationary because, although the solution vector

changes with each iteration, the information used to update this vector remains the same.

A stationary iterative method can be described by the matrix equation

X(k+l) = Bx(k) +c

where x is the solution vector and the superscript in parentheses is the iteration count. For

example, x(k+1)is the value of the solution vector x at the (k+l)th iteration. The equation

shows how the value at the (k+l)th iteration depends on the value at the kth iteration. B is

the iteration matrix, which is calculated from the originalA. Neither B nor c (a constant

vector) depend on the iteration count k.

The iteration matrix is written for the stationary methods described below in terms

of L, U, and D where A=L+U+D.L is lower triangular with zeros on the diagonal, U is

upper diagonal with zeros on the diagonal, and D is diagonal [33].

The iteration matrix itself is important because its properties determine the

convergence of the method. If the spectral radius of B is less than one, then the method

converges; the smaller the spectral radius, the faster the convergence [33]. The spectral

radius of a symmetric matrix is defined as the absolute value of its largest eigenvalue.

Serial Jacobi Method

In the Jacobi method, each element of x is updated from the old estimate of x. To

derive an equation for the Jacobi iteration, first recall the matrix form of the set of

simultaneous linear equations,

o = b-Ax

which in component form is
n i-I n

0= b.- ~ a.x. = b.- ~ a..x.-a..x.- ~ a..x.
1 £.J IJ J 1 £.J IJ J /I 1 £.J IJ J

j= I j= I j=i+1
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Notice that the above equation is written is such a way as to break out the term airti. If that

term is brought to the left-hand side of the equation and then both sides divided by aii, the
result is

i-I n

X. = ~ (b.- ~ a..x.- ~ a..x.)I a.. I £.. IJ J £.. IJ J
/I j= I j=i+1

Now put an initial guess for x into the left-hand side of the above equation. Then,

calculate a new x using the same equation. The value of x at each iteration is called the

iterate of x. The iteration number is shown as superscript in parentheses. The following

equation shows the value for the (k+1)thiterate of x, given the kthiterate [4], [33].
i-I n

x~k+l) = ~ (b.- ~ a..x~k)_ ~ a..x~k»)I a. . I £.. IJ J £.. IJ J
/I j=1 j=i+1

The equation shows the value for the (k+l)th iterate.

In matrix notation, the Jacobi iterates are defined as x(k+l) = -D-I (L+U)x(k)+D-Ib.

This form identifies -D-1(L+U)as the iteration matrix [33].

Figure 2.3 shows a 4x4 grid where the grid points are numbered left to right. The

nodes are updated in numerical order, and there is a vector defined on the grid. This vector

has 16 elements, with one element associated with every grid point. In one iteration, each

of the 16nodes is updated.

In the Jacobi method there are actually two vectors, an old one and a new one

constructed from the old one. After one iteration, the new vector becomes the old and
another new vector is formed.

Serial Gauss-Seidel Method

The Gauss-Seidel method differs from the Jacobi method by making use of the

updated values of x as soon as they are available. Hence, when implementing the

Gauss-Seidel method, the vector iterate can be updated in place. Consequently, the

Gauss-Seidel method has less storage requirements than the Jacobi method and converges
more rapidly.

If there are n unknowns, the equation for each unknown is
i-I n

x(k+ I) = ~ (b. _ ~ a..x(k+I) _ ~ a..x(k»)I a .. I £.. IJ J £.. IJ J
/I j=1 j=i+1
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Figure 2.3. 4x4 Square Grid Used to Illustrate the Jacobi and Gauss-Seidel Methods

where the superscripts in parentheses again identify the iteration number. The vector

elements whose index is less than the vector element being updated use the value of the
current iteration [4], [33].

In matrix notation, the Gauss-Seidel iterates are defined as

x(k+l) = - (L+D)-IUx(k) + (L+D)-Ib. This form identifies -(L+Df1U as the iteration matrix

[33].

Serial Successive Overrelaxation Method

In cases where the Jacobi and Gauss-Seidel methods converge, but converge too

slowly, the successive overrelaxation method (SOR) may be employed. This method

consists of first computing the Gauss-Seidel iterate x, but then considering that to be an

intermediate value. Then, the actual iterate obeys the following equation.

where rois a parameter added to accelerate the convergence. When rois 1, SOR is the

same as the Gauss-Seidel method. Determining the optimal rois usually either impossible

or prohibitively expensive, but a good rois typically in the range 1 < ro < 2.

In matrix notation, the SOR iterates are defined as

Assume that the nodes are updated in numerical order. Assume that they
are updated as folIows: The value at a grid point is replaced by the sum

updated
of the values at the four nearest neighbors divided by four. For example,

I 2 3 4 x6 = (x2+xS+x7+xlO)/4.

In the Jacobi method, there are two vectors defined on the grid, the old
5 li 7 8 one and the new one. Then,

9 10 11 12 x(new) _ (x(old)+ x(old)+ x(old)+ x(old» /46 -2 S 710

13 14 15 16
In the Gauss-Seidel method, there is only one vector defined on the grid.
When node 6 is updated, it uses the new values at nodes 2 and 5

(because they have already been computed) and the old values at nodes
5, 7, and 10. Then,

(new) _ ( (new)+ (new)+ x(old)+ x(old» /4x6 - x2 Xs 7 10
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where (I+roD-1Lrl((1- ro)I-roD-1U)is the iteration matrix and I is the identity matrix (all

elements are zero, except those along the diagonal which are 1) [33].

Non-Stationary Methods

Non-stationary methods are called non-stationary because the information used to

update the solution vector changes with each iteration. The non-stationary methods

described in this thesis are variations of the conjugate gradient method. Each iteration of

the conjugate gradient method generates an approximation to the solution, a residual, and

a searchdirectionused to obtainthe nextapproximation[4].

Serial Conjugate Gradient Method

The conjugate gradient method is due to Hestenes and Stiefel [18]. It is actually a

direct method that yields an exact solution in n steps; but in practice, it is considered an
iterative method, because of roundoff errors.

The conjugate gradient method solves the matrix equation Ax=b when A is real,

nxn, symmetric and positive definite.The matrix A is positive definite if xTAx > 0 for all x

> O.If A is positive definite, convergence is guaranteed; the solution improves with each

iteration and is exact after n iterations [32]. When A is not symmetric, variations of the

conjugate gradient method such as the biconjugate gradient method and the conjugate
gradient squared method can be used [4].

The conjugate gradient method begins by realizing that minimizing the function

1
q(x) = -(xoAx)-(xob)+c2

is equivalentto solvingAx=b. Thiscanbe seenby settingthe derivativeof q(x) with
respect to x to zero and solving for x.

The method entails minimizing q(x) along a set of search directions. A complete

solution minimizes along n search directions in n steps, but usually an acceptable answer

is obtained in less than n steps. Each step updates the solution vector x as follows:

X(k+l) = x(k) +)..(k+l)g(k)
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where k is the iteration number, x(k) is the solution vector at the kthiteration, Aisa
constant, and g is the search direction. As can be seen from the equation, the current step

(iteration k+1) uses the solution vector and the search direction from the previous step
(iteration k), to calculate a new Aand then a new solution vector.

This calculation is performed by substituting the expression for x(k+1)into the

equation defining q(x) and then minimizing with respect to A(k+1).The Athat minimizes

q(x) for the (k+1)thiteration is

).,(k+l) = r(k) .g(k)

g(k) .Ag(k)

where r(k) is the residual at the kth iteration. If the solution x(k) were exact, the residual

would be zero. The residual is defined as

At the beginning of each step, one must choose a good search direction. One must

first ensure that the search direction is one along which q(x) is decreasing. In addition, one

wants a search direction that, when q(x) is minimized along this direction, the

minimizations along the other directions are not destroyed[28] [16].

The first requirement is satisfied by ensuring that the search direction g(k+l) is not

orthogonal to the residual r(k).This can be seen by substituting the expression for the

updated value of the solution vector (x(k+1) into q(x) with the minimizing value of A(k+1)
(k) (k) 2 (k) (k)

(
(k+I»

( (k) ~ (k+l) (k»
(

(k» (g .r ) . (g .Ag )
q x = q X +11. g = q x -

and noting that if g.r is nonzero, q(x(k+l) is less that q(x(k). The second requirement is

satisfied if each new search direction is orthogonal with respect to the matrix A to all the
previous search directions. That is,

for

Search directions chosen in this way are said to be A-orthogonal or conjugate with respect
toA.

Appendix C, "The Conjugate Gradient Method" describes the steps of the

conjugate gradient method in detail and in a form suitable for a computer program. The

major work in each step consists of a matrix-vector product and two dot products. When

the vector g (the search direction) is defined as the negative gradient of q, the method is
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the method of steepest descent.

Preconditioned Conjugate Gradient

Preconditioning is a way of accelerating convergence of the conjugate gradient

method. The conjugate gradient method does always give (barring round-off error) an

exact answer in n steps; but the preconditioned conjugate gradient method reaches an

acceptable answer sooner, where acceptable is usually defined as a small enough residual.

Condition Number and Convergence

The rate of convergence of the conjugate gradient method depends on the

condition number of A. The smaller the condition number, the faster the convergence [22].

The condition number of a matrix is defined as IIAliliA-IIIwhere IIA IIis the

matrix L2 norm. For a symmetric matrix, the matrix L2 norm is its spectral radius (the

absolute value of its largest eigenvalue). The spectral radius is denoted as peA).Hence, the

condition number of a matrix is also defined as the absolute value of the largest eigenvalue

of the matrix times the absolute value of the largest eigenvalue of the corresponding

inverse matrix. This is p(A)p(A-1),which is equal to the absolute value ofthe matrix's

largest eigenvalue divided by the absolute value of its smallest eigenvalue,

AmaxCA)/Amin(A).Defined theis way, the condition number is;:::1.

Preconditioning

Preconditioning [22] means transforming the matrix equation Ax=b into another- - -
matrix equation Ax = b such that the condition number of A is less than the condition- -
numberofA, resultingin fasterconvergence.A is relatedtoA as A =STAS.

The actual transformation is usually not performed during the iteration because the

transformation can destroy the sparsity ofA. This means that it is not necessary to know S

or ST (the transpose of S) explicitly, nor to perform the matrix multiplication sTAS.

Instead, the transformation is performed implicitly within the preconditioned conjugate

gradient algorithm. This implicit transformation requires that one solve a set of

simultaneous linear equations of the form Qx =y, where Q is (SS~-l. The matrix Q-I=SST

is called the splitting matrix. Specifically, the step involves solving Qr(k+ 1) = r(k+ 1>for-(k + 1) h
. .

r were r ISthe resIdual vector.

Note that Q-IA and A are related by a similarity transformation SAS-1 = Q-1A as
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follows:

they have equal eigenvalues and, consequently, equal condition numbers. Note that if

Q=A, Q-1A is the identity matrix, and its condition number is 1. This is the smallest

condition number that a matrix can have, and so the best Q one can get is A itself.

However, this is not a practical choice because, if Q =A, the algorithm requires that one

solve the original problem in order to precondition it! Ideally, Q is a matrix that

approximates A but is easy to solve. Choosing an optimal Q remains an area of active
research.

An example of a simple preconditioning is diagonal scaling where S is a diagonal

matrix whose diagonal elements are the inverse square roots of the diagonal elements of
A.

-
Such an S makes the diagonal elements of A equal to 1. The off-diagonal elements

are

However, this preconditioning does not change the condition number if the main diagonal

elements of A are identical as in the Poisson or Laplace matrix [15].



Chapter 3 Parallelization Techniques

Introduction

This chapter continues the discussion of solution methods and describes how

direct and iterative methods are implemented on parallel machines. The parallel direct

method discussed in detail is the multifrontal method developed by Duff and Reid [8].

Parallel implementations of the Jacobi and Gauss-Seidel methods are also discussed.

Particular attention is paid to the conjugate gradient method.

Parallelization techniques divide into two categories: data parallelism and control
parallelism.

Data Parallelism

Data parallelism is defined as using multiple functional units to apply the same

operation simultaneously to a data set [31]. To implement data parallelism on a

multicomputer, one first partitions the data among the compute nodes and then runs the

same program on each compute node. Each compute node owns its own portion of the

data set and has its own copy of the same program. This program runs on each compute

node and performs the same operations on the portion of the data set owned by that

compute node. Such a program is called an SPMD program where SPMD stands for

Single Program, Multiple Data.

The individual copies of the SPMD program need not run in synchronization with

each other; but at certain points in the algorithm, synchronization often turns out to be

necessary. For this reason, the operating system has calls that provide barrier

synchronization. That is, when a compute node reaches such a call in the program, it

cannot proceed any further until all compute nodes have reached that point.

For example, in the parallel Jacobi method, the domain is divided among the

different compute nodes; each compute node executes the Jacobi algorithm on its portion

of the data. Message-passing deals with the portion of the domain on the boundary

38
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between compute nodes.

Other examples of data parallel algorithms are the Gauss-Seidel and conjugate

gradient methods.

Control Parallelism

Control parallelism means applying different operations to possibly different data.

Control parallelism divides the tasks to be performed while data parallelism divides the
data.

A tree search is a good example of control parallelism. Consider the search of a

solution tree. Here, the leaves of the tree contain possible solutions to the problem. The

solution tree may be quite involved and contain many branches. Control parallelism is

implemented by first dividing the solution tree into many more sections than there are

compute nodes. Then, one compute node (the manager node) assigns sections to other

compute nodes. When a particular compute node finishes its task (follows its portion of

the tree down to the leaves), it reports its answer and requests another task from the

manager. This method is also sometimes called a manager/worker decomposition.

Parallel Direct Methods

This section describes parallel programs that use direct methods. Techniques that

work well for serial programs do not necessarily work well for parallel programs.

Serial Reordering Methods Concentrate on Reducing Fill-In

The reordering methods previously described in "Serial Direct Methods" on page

24 focused on reducing fill-in. Fill reduction is desirable because it lowers operation count

and memory requirements. In a parallel setting, reordering is still performed, but the goal

is more than fill reduction. In fact, focusing solely on fill reduction may actually reduce

opportunities for parallelism. The tridiagonal matrix is an example of a matrix ordering

that exhibits no fill-in, yet prevents parallelization.

The Tridiagonal Matrix: No Fill-In, but Requires Serial Elimination

The tridiagonal matrix (shown in Figure 3.1) is an example of how an ordering

useful in a serial implementation is inappropriate for a parallel implementation [13].
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Recall that eliminating a column means performing matrix operations such that matrix

elements below the diagonal are set to zero. Figure 3.1 shows that when column 1 is

eliminated, only the diagonal element of column 2 is modified; when column 2 is

eliminated, only the diagonal element of column 3 is modified, etc. Hence, a tridiagonal

matrix exhibits no fill-in. If fill reduction were one's sole goal, reordering a matrix so that

it becomes tridiagonal would be success.

However, the elimination algorithm for a tridiagonal matrix turns out to be a serial

one. Because column 2 is modified when column 1 is eliminated, column 2 cannot be

eliminated until the elimination of column 1 is complete; because column 3 is modified

when column 2 is eliminated, column 3 cannot be eliminated until the elimination of

column 2 is complete, etc. The result is that for a tridiagonal matrix the columns must be
eliminated in order.

Directed graph

0Il 012

021 022 023

°32 °33 °34

043 044 04S

0S4 aSS 0S6

06S 066 067

076 077

To eliminate column I,
multiply row 1by a21/all and
then subtract row 1from row
2. Then,

2 4 6

~
1 3 5 7 becomes

Tridiagonal matrix (no fill-in)

Figure 3.1. Tridiagonal Matrix Exhibiting no Fill-in

The Elimination Tree

The elimination tree shows the order in which columns must be eliminated. The

elimination tree is defined in terms of tree construction algorithm [10], [13].

Simple Example of an Elimination Tree

The formal definition of an elimination tree has more meaning if one considers a

simple example first. The elimination tree for the tridiagonal matrix shown in Figure 3.1 is

a linear chain and is shown in Figure 3.2. For this example, each column in the matrix is a
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node of the elimination tree. Node 2 is the parent of node 1; node 3 is the parent of node 2,
etc.

For good parallelism, the goal is to reorder the matrix so that the elimination tree

has more than one node at a level. Nodes at the same level in an elimination tree indicate

columns that can be eliminated in parallel. Columns at a lower level must be eliminated

before columns at a higher level.

Figure 3.2 contrasts a long, thin elimination tree (the seven-node linear chain) with

a short, broad elimination tree (a three-level binary tree). The first level of the second

elimination tree consists of nodes 1,2,4, and 5; this means that columns 1,2,4, and 5 can

be eliminated in parallel. The second level consists of nodes 3 and 6; this means that

columns 3 and 6 can be eliminated in parallel. Because node 7 is a single column and is

the last column, it does not require elimination. Although there is no systematic measure

of what makes a good parallel ordering, in a qualitative sense, short, broad elimination

trees are superior to tall, narrow ones [13].

7

6
5
4
3
2
1

This elimination tree is a linear chain. Each node is on its own level. Node 2 is the parent
of node 1; node 3 is the parent of node 2, etc.

This elimination tree indicates that the columns must be eliminated serially. Column 1
must be eliminated before column 2; column 2 must be eliminated before column 3, etc.

This elimination tree has three levels. The first level consists of
nodes 1,2,4, and 5. The second level consists of nodes 3 and 6.
The third level consists of node 7.

Node 3 is the parent of nodes 1and 2. Node 6 is the parent of
nodes 4 and 5. Node 7 is the parent of nodes 3 and 6.

5
This elimination tree indicates that columns 1,2,4, and 5 can be
eliminated in parallel. These columns must be eliminated before
columns 3, 6, and 7 are eliminated. Columns 3 and 6 can be
eliminated in parallel.

Figure 3.2. Elimination Trees

Figure 3.3 shows how one would reorder the tridiagonal matrix shown in Figure

3.1 so that its elimination tree becomes the three-level binary tree shown in Figure 3.2.

Definition of an Elimination Tree

The elimination tree is defined as a construction algorithm. Before presenting this
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When the directed graph
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the elimination tree becomes

As can be seen from the matrix, columns 1, 2, 4 and 5 can be
eliminated in parallel. Eliminating one of these four columns does not
affect values in any of the other three.

· When column 1 is eliminated, only column 3 is affected. Also
when column 2 is eliminated, only columns 3 and 7 are affected.

· When column 4 is eliminated, only columns 6 and 7 are affected.
Also when column 5 is eliminated, only column 6 is affected.

After columns 1,2,4, and 5 are eliminated, columns 3 and 6 can be
eliminated in parallel.

Figure 3.3. How Reordering Affects the Elimination Tree

algorithm, make two assumptions about the matrixA. These assumptions are not required,

but they make the definition simpler. Assume that the matrixA is symmetric; also, assume

that the diagonal elements of A are all acceptable pivots.

Also, define the sparsity structure of a matrix. The sparsity structure of a matrix is
a record of whether an element is zero or nonzero. It does not record the actual value of the

matrix element. To define an elimination tree, one only needs the sparsity structure of L,

lower triangular part of A.

The elimination tree is constructed as follows:

For columns j =1 to n, where n is the number of columns in A,

1. Beginning with the diagonal element ajj in the sparsity structure of L, go
down the column j until the first nonzero matrix element is encountered.
Assume that this nonzero matrix element is in row i.

2. Make a connection between columnj andtherow i.
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3. Do not actually perform the elimination of columnj, but change the sparsity

structure of L to how it would look if columnj were eliminated. This is to

account for fill-in that may occur when columnj is eliminated.

Applying the Definition of an Elimination Tree

To see how the construction algorithm for an elimination tree works, apply it to the

tridiagonal matrix shown in Figure 3.3.

1. Go down column 1. Note that a31 is nonzero. Make a connection between
nodes 1 and 3.

2. Go down column 2. Note a32is nonzero. Make a connection between nodes
2 and 3.

~
1 2

3. Go down column 3, Note that a37 is nonzero. This nonzero element is the
result of fill-in that occurred when column 2 was eliminated. Make a

connection between nodes 3 and 7.

4. Go down column 4, Note that a64 is nonzero. Make a connection between
nodes 4 and 6.



44

5. Go down column 5, Note that a65 is nonzero. Make a connection between
nodes 5 and 6.

7

;<'05

6. Go down column 6, Note that a67 is nonzero. This nonzero element is the
result of fill-in that occurred when column 4 was eliminated. Make a

connection between nodes 6 and 7.

The MultifrontalMethod
The multifrontal method is a generalization of the frontal method introduced in

the"Frontal Method" on page 28.

To recap, the frontal method recognizes that one need not access the entire matrix

to factor a portion of it. The frontal method brings into memory only the portion of the

matrix that is needed to factor the column currently being worked on. This method is

useful when solving large matrices that do not fit into memory. It's called the frontal

method because, with some imagination, one can think of the portion of the matrix that

must be in memory as a wavefront that moves through the matrix.

The multifrontal method isjust like the frontal method except that there are several

fronts. The matrix is reordered so that different columns can be worked on independently.

When the multifrontal method is implemented on parallel MIMD processors, a separate

front is assigned to each processor.

As an example, once again consider a tridiagonal matrix reordered so that its

elimination tree is the three-level binary tree shown in Figure 3.3. As shown in Figure 3.3,

columns 12, 4, and 5 can be eliminated in parallel. At this stage there are four fronts in the

matrix. The second stage is to eliminate the two columns 3 and 6; this second stage has
two fronts.
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Nested Dissection

Nested dissection is a method of ordering a directed graph so that the multifrontal
method can be used.

For example, once again consider a linear directed graph. Figure 3.4 shows how

this directed graph is dissected and numbered. The first dissection divides the graph into

two regions, each containing three nodes. The dividing region contains one node. The

second dissection divides each of the divided regions into two regions. The new dividing

regions each contain one node.

I
T
I
I

" first dissection
I
I
I
I
I,

Numbering the more finely divided
regions up to the next dividing region
results in nodes 1,2, and 3 and then 4,5,
and 6 being numbered.

I
I
/
I
I
I

second dissection

3 7. I
I I
I I
I I

1 " 2
I

I II

I
I

second dissectio n " first diJection
I I

.' I/
I

6
I
I
I
I 5

~4t>G
I
I
I
/ second dissection

I

Figure 3.4. Nested Dissection of a Linear Chain

When the graph is numbered, the most finely divided regions up to the next

dividing region are numbered first. Then, the next level of dividing regions are numbered,
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followed by the next level, etc. In Figure 3.4, the most finely divided regions are nodes 1

and 2; the next dividing region is node 3. Then, again, at the same level, the most finely

divided regions are nodes 4 and 5; the next dividing region is node 6. The next level is the

remaining node, node 7.

Figure 3.5 shows a more realistic two-dimensional directed graph divided into

seven regions. When one divides one region by another, one must ensure that no

connection exists between the divided regions. For example, in Figure 3.5, regions 1 and 2

are divided by region 3, and there are no connections between nodes in region 1 with

nodes in region 2.

Now assume a directed graph in a square region. Also assume that the connections are local; that is,
they do not extend across a dividing region. For example, there is no connection between regions 1
and 4 because these regions are divided by region 7.

Dividing the graph into seven regions results in the matrix on the right. The most finely divided
regions (1, 2, 4, and 5) are along the diagonal. The interface regions are pushed down and to the right.
The higher up in the nesting hierarchy the region is, the further down and the further right its matrix

elements are. Region 1has cross-terms with
regions 3 and 7.

-,-,
I \I ,

1 : \
: ~ 4I ., ,. ,

"-
3 , : : , --z---.

~I ;:~.. u 1",-_ ___ . 7, ,. ', I, ,. '
: : 5. I
, I
, I. I
\ I, I

'.--t., I, I

" I
'./

2

Figure 3.5. Nested Dissection of a Two-Dimensional Directed Graph

Also note that in Figure 3.4, the most finely divided region was a single node in the

directed graph; this was the same as a single column in the matrix. In Figure 3.5, the

dissection is not necessarily so fine. Each dissected region may actually contain several

directed graph nodes. When that occurs the regions are referred to as supernodes [13].

The nodes within a supernode are numbered consecutively. That is, if the nodes in

Figure 3.5 are supernodes, then the directed graph nodes in region 1 are numbered first,

then the directed graph nodes in region 2, etc. When the multifrontal method is applied to

1
2

3 -
4

5
6

7
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the matrix in Figure 3.5, it begins with four fronts, then goes to two.

One can continue the dissection as shown in Figure 3.6. With very large matrices,

one can stop dissecting when the number of most finely divided regions is at least as large

as the number of compute nodes. When the multifrontal method is applied to the matrix in

Figure 3.6, it begins with eight fronts, then goes to four, then two.

When the directed graph is dissected further, the pattern is repeated. The matrix shows that region 15
has cross-terms with all the other 14 regions. Region 14 has cross-terms with regions 8 through 13
and 15; region 7 has cross-terms with regions 1 through 6 and 15.

I \
I \ i' I .
t ~ I', ,~I, ' I ":3 I ' ~ ' I

.: : t 10:
1 : ' 2 ' :8

'
" I , I ' 9

,-_\...}.. : : ...:
., Z

.. : : '-_.~~--...-..
.", , I ...,

--,:--~ :,15 ;..-1:!___~
I -.. : : {\
: ~ : : I ~
: : : : 13:

4 :6: : 11' :1" ' 5 : :'. I , ' t I, J " . I
'-/ 't' '\, ,. ,

/

Figure 3.6. Further Nested Dissection of a Two-Dimensional Directed Graph

Parallel Multifrontal Method

With finite element problems, one can dissect and renumber the finite element

mesh itself and not have to form the directed graph. This is because finite element

problems are local. That is, if there is an interaction between finite element nodes i and j

(shown as aij),then finite element nodes i andj are also physically close to each other in
the mesh.

Dissecting the finite element mesh is referred to as substructuring [21]. Nesting

dissections (as in Figures 5 and 6) is an extension to substructuring that prepares the

matrix for multifrontal techniques.

When the matrix is ordered as in Figures 5 and 6, the supemodes are also matrix

blocks. Because the blocks at the bottom of the elimination tree describe interior portions

of the directed graph while the upper blocks describe interfaces, the bulk of the

factorization work occurs at the bottom of the tree where the parallelism is greatest.
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For example, if a two-dimensional finite element mesh is divided into seven

regions as in Figure 3.5, the matrix appears in block form as follows:

All AJ3 AJ7

A22 A23 A27

A31 A32 A33 A37

A44 A46 A47

Ass AS6 AS7

A64 A6S A66 A67

A71 An A73 A74 A7S A76 A77

The elimination tree looks like the three-level binary tree discussed previously and shown

in Figure 3.3. The matrix shows that the columns in blocksAl1,A22,A44' and Ass can be

eliminated in parallel.

As the columns in A 11are being eliminated, the columns in A 13and A 17are being

modified. As the columns in A22are being eliminated, the columns in A23and A27are

being modified. This means that blocks A II andA22must be eliminated before the 3-7

blocks (those blocks with 3 or 7 as one of their indices). And the compute node

eliminating those 3-7 blocks must receive information from the compute nodes

eliminating the columns in A II and A22.Similarly, blocks A44and Ass must be eliminated
before blocks with 6 or 7 as one of their indices. The elimination is seen to follow the

structure of the elimination tree rising toward its root.

Parallel Iterative Methods
Iterative methods are characterized by the following procedure. One begins with

an initial guess for the solution x. At each iteration step one calculates another value for x

based on the old value. The more iteration steps one performs, the more accurate x
becomes.

Data parallelism (see "Data Parallelism" on page 38) can be introduced when the

new x is calculated. The vector x is divided up among the compute nodes, each compute

node becoming responsible for a certain number of elements of x. Each compute node

calculates a new x from the old x for the elements of x that it maintains. When doing this

the compute node may need some elements of x from other compute nodes, and this

comprises a communication cost.
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Parallel Jacobi Method

Recall the Jacobi method, introduced in the "Serial Jacobi Method" on page 31.

As shown in that section, the calculation that one wants to distribute among the compute
nodes is

i-I n

X~k+ I) = ~ (b. _ "" a..x~k) _ "" a..x~k» )I a. . I .£.. IJ J .£.. IJ J
1/ j= 1 j=i+1

Because the right-hand side of the equation is not modified during the iteration, the

elements of x can be updated in parallel.

The matrix element aij quantifies how much of Xj (from the kth iterate) is present
in Xi(for the (k+l)th iterate). If the matrix is completely dense (completely dense means

that the matrix has no zero elements), then to form the (k+l)th iterate of x, one must have
access to all the elements of x.

If A =D + L + U where L is lower triangular with zeros on the diagonal, U is

upper diagonal with zeros on the diagonal, and D is diagonal, then

X(k+I) = -D-1 (L+ U)X(k)+D-1b. Note that each step of the Jacobi iteration consists

essentially of a matrix-vector multiplication-when b is zero, it is exactly a matrix-vector

multiplication.

Consider a row decomposition of the iteration matrix, which is shown in Figure

3.7. In a row decomposition each compute node contains a set of contiguous rows of the

matrix and corresponding elements of b. Because the figure assumes the matrix is dense,

it also shows x duplicated on each compute node. With a row decomposition, a

matrix-vector multiplication modifies only a portion of the vector. The operation updates

only those vector elements whose index is the same as one of the rows of the matrix the

compute node contains; but because the matrix is dense, the compute node needs the

entire x vector to perform its update. The Jacobi method requires that this operation be

performed at each step in the iteration. In preparation for the next step, each compute

node must broadcast its updated portion of x to all the other compute nodes.

In summary, each compute node must contain enough elements of x to calculate

x(k+1).When the matrix has no nonzero elements, this means each compute node must

contain all the elements of x. When the matrix has nonzero elements, it means that if a

compute node is updating xi and aij is nonzero, then the compute node must also have

access to Xj.

Having access to an element of x means being able to read it, not necessarily to

write it. In the dense matrix example, a compute node has to be able to read all of x, but
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Each Jacobi iteration has a matrix-vector multiplication. When b is zero, the vector result of the
multiplication becomes the input vector for the next iteration. This figure shows a matrix-vector
multiplication when the matrix is distributed over four compute nodes by rows.

matrix * input =output Compute nodes broadcast their modified
portions of the vector. The result is that each
compute node gets the entire modified vector.

Compute
node 0

[
-

Compute node 0 has the
first four rows of the
matrix.

-

If these rows are dense,

then all of the input vector
is needed. However, only
the first quarter of the
output vector is modified.
This modification is

shown by the shaded
boxes.

Compute
node 1

!

When the next iteration

occurs, each compute
node must get the entire
modified vector. So after
each iteration, each
compute node must
broadcast its portion of
the modified vector.

Compute
node 2 -

Compute
node 3 -

Figure 3.7. Row Decomposition for Jacobi Iteration

the compute node need only write those elements of x whose indices are the same as the

indices of the rows the compute node was assigned.

The steps of the Jacobi iteration are as follows:

1. Guess an initial value of x.

2. Perform the operation, modifying certain elements of x.

3. Send the updated elements of x to those compute nodes that need them
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4. Receive the updated elements of x needed for the next iteration.

Parallel Gauss-Seidel Method

Recall the Gauss-Seidel method, introduced in the "Serial Gauss-Seidel Method"

on page 32. As shown in that section, the calculation that one wants to distribute among

the compute nodes is
i-I n

X~k+ I) = ~ (h.- ~ a..x~k+ I) _ ~ a.,X~k»)I a.. I ~ I}} ~ I}}

"j=1 j=i+1

Because the right-hand side of the equation is modified during the iteration, the method

has a significant serial component. To calculate Xi(k+I), it is necessary to calculate all the

values xt+l) wherej is less than i.

For example, consider the row decomposition discussed previously in the section

"Parallel Jacobi Method" on page 49. As in that section, each compute node modifies only

a portion of the vector x.

However, the operation on a particular compute node is serialized. For example, if

compute node 0 updates elements 1 through i, then XI must be updated before X2,which

must be updated before X3,etc. Finally, Xi_Imust be updated before Xi.

In addition, the operation across the compute nodes is also serialized. For example,

if compute node 1 updates elements i+l throughj, then Xi+1cannot be updated until all the

values XI though Xiare updated on compute node 0 and communicated to compute node 1.

Similarly, compute node 2 cannot start updating its values until compute node 1 has

completed; compute node 3 cannot start until compute node 2 has completed, etc.

For most problems of physical interest, however, parallelization of the

Gauss-Seidel method is possible. This is because physical problems often derive from a

partial differential equation. A vector governed by such an equation has local interactions,

and the resulting matrix is sparse.

The next section presents Laplace's equation as an example of a partial differential

equation to be solved by the Jacobi or Gauss-Seidel methods. When this differential

equation is written as a matrix equation Ax =b, the matrix A is sparse and has the form

shown in Figure 1.4 on page 8.

Example of a Parallel Laplace Solver

Recall the two-dimensional Laplace's equation introduced in "Laplace's Equation"
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on page 5

The finite difference approximation (as shown in "Finite Difference Grid and the

Corresponding Matrix Equation" on page 6) is

1
cp(x,y) = 4(CP(x,y+~) +cp(x-~,y) +cp(x+~,y) +cp(x,y-~»

This equation shows how the $ at each grid point is related to the $'s at the

neighboring grid points. There are four neighboring grid points. When the discretized

Laplace's equation is written as a matrix equationA$ =0, each row of A contains only five

nonzero elements, including the diagonal.

The above equation can be used to calculate the value of $ for each iteration cycle.

Evaluating the equation is the same as multiplying $ by the iteration matrix. Whether one

is using the Jacobi or the Gauss-Seidel method depends on which iteration cycle the $
values are chosen from.

When the Jacobi method is used to calculate the value of $ for the (k+1)thiteration,

the values of $(x,y) on the right-hand side are those for the kthiteration.

cp(k+l) (x,y) = ~ (cp(k)(x,y+~) +cp(k)(x-~,y) +cp(k)(x+~,y) +cp(k)(x,y-~»

Recall that the Gauss-Seidel method requires that the new values of $ are used as

soon as they are available. Which grid points these new values are associated with

depends on the order of update. When the grid points are numbered and updated

consecutively right to left, top to bottom, the equation for the Gauss-Seidel method
becomes

( k+l ) I ( k+l ) (k+l ) (k) (k)
cp (x,y) = 4 (cp (x,y+~) +cp (x-~,y) +cp (x+~,y) +cp (x,y-~»

The Parallel Jacobi Method and Laplace's Equation

The example discussed in this section is for a multicomputer with physically

distributed memory and no shared address space.

The first step is to divide the grid up among the compute nodes. Because the

iteration matrix for Laplace's equation connects only neighboring grid points,

communication among compute nodes need only occur along the boundary of the
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division. Figure 3.8 shows two possible grid decompositions. Note that the vertical

The grid on the left is
divided among four compute
nodes. Two different
decompositions are shown.

In the above decomposition, vertical strips are assigned to each
compute node. The example shows a decomposition over four compute
nodes. In this decomposition, each interior compute node must send a
column of grid values to at least two neighboring compute nodes. The
messages are of equal length. The compute nodes on the boundary need
only communicate with one other compute node.

In the decomposition to the right, the grid is divided into squares. The
example shows a decomposition over sixteen compute nodes. In this
decomposition, an internal (non-boundary) compute node must
communicate with eight other compute nodes. The messages are not of
equal length. Four messages contain strips (horizontal or vertical) sent
to one other compute node; the other four messages contain a single grid
value sent to three compute nodes.

Figure 3.8. Grid Decomposition

decomposition results in fewer messages of longer length than the square decomposition.

A small number of long messages is generally a desirable feature in a multicomputer

communication pattern. However, as the grid gets very large and the messages get

excessively long, a square decomposition is more appropriate.

The values needed from the neighboring compute nodes are kept in a guard buffer

(sometimes called a shadow buffer). Figure 3.10 shows a vertical decomposition with

guard buffers. The filled-in circles show the grid values that are updated by the compute

node. The hollow circles are the values from the neighboring compute nodes that are

needed to perform the update. Before the calculation is performed in each iteration cycle,

the compute node receives values from the boundaries of adjacent compute nodes into its

guard buffer and sends the values of its own boundaries to the guard buffers of its

neighboring compute nodes. The arrows in Figure 3.10 indicate the direction of these
messages.
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Figure 3.9. Grid Used for Parallel Gauss-Seidel Implementation.

The Parallel Gauss-Seidel Method and Laplace's Equation

The section "Parallel Gauss-Seidel Method" on page 51 discussed how the

requirement that each element of x is updated using updated elements of x as soon as they

are available introduces a serial component to the calculation that makes the algorithm

difficult to parallelize. In a serial implementation, the requirement can be simply satisfied

by updating the vector x in place.

In a parallel implementation, one approach is to update x in place for each iteration

using the values that are locally available. Then, as in the Jacobi method, at the end of

each iteration, each compute node must send its updated x elements to the compute nodes

that need these values for the next iteration. This approach, however, does not exactly

follow the rules. When one compute node is using a value from its guard buffer to update

one of its x values, that value may already have been updated on the compute node it came

from, but the new value has not yet made it into the guard buffer.

The Gauss-Seidel rules can be more strictly followed by modifying the update

order. For example, consider checkerboard ordering (also called red-black ordering) [37],

[12]. This update ordering is illustrated in Figure 3.10.

Here the grid is divided into two kinds of grid points, often called red and black.

The pattern is like that of a checkerboard. The red values are updated using only black

values, and the black values are updated using only red values. So when the compute

nodes are updating their red values, they do not have to concerned about a black value

. Grid point updated by a compute node Arrows indicate direction of message traffic.
0 Location in the guard buffer. This buffer

Before each calculation the hollow circles are

contains the values from adjacent compute nodes updated with values from the full circles

needed in the calculation. of adjacent compute nodes.
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The darkly shaded grid points (black ones)are updated using only values from the lightly shaded grid
points (red ones).

The Gauss-Seidel rules can be observed by checkerboard ordering. An iteration step is as follows:

I. Communicate the darkly shaded (black) values on the boundary.

o black guard

o red guard. black node

o red node

2. Update the lightly shaded (red) values. These grid points use only the darkly
shaded (black) values.

3. Communicate the lightly shaded (red) values on the boundary.

4. Update the darkly shaded (black) values. These grid points use only the lightly
shaded (red) values.

Figure 3.10. Checkerboard Orderiug

changing on another compute node

Parallel Conjugate Gradient Method

This section describes how the operations of the conjugate gradient method are

performed on a multicomputer. The conjugate gradient method was introduced in the

section "Non-Stationary Methods" on page 34. The detailed steps of the method are

described in Appendix C, "The Conjugate Gradient Method."

As with the Gauss-Seidel method, the domain is a two-dimensional grid. The
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points on the grid are partitioned among the compute nodes and indexed locally. A global

index would be one that is unique over the set of compute nodes participating in the

calculation. Local indexing allows one to modify the mesh without having to

communicate among the compute nodes. For example, one may wish to refine the finite

element mesh. Refining the mesh means dividing the domain up into smaller finite

elements. With a local indexing scheme, one can refine the mesh independently on each
compute node.

Unlike the Gauss-Seidel method, the domain is typically unstructured. The

difference between structured and unstructured grids was previously described in

"Structured and Unstructured Grids" on page 4.

Even though the grid is unstructured, the nonzero pattern of the resulting matrix is

not random. Recall that a matrix element designates an interaction between grid points.

This interaction is local; that is, only grid points physically close to each other interact and
contribute to nonzero matrix elements. If whether a matrix element is nonzero is a random

decision, the matrix is called unstructured.

Figure 3.11 shows a directed graph, a grid, or a finite element mesh. For the

purposes of this discussion, they are the same. The graph is assumed to be for a symmetric

matrix, meaning that all connecting lines should have arrows at both ends; but since this is

a global characteristic, it is omitted from the figure.

The dotted lines are
the compute node
boundaries.

Compute Node 1
Each group of shaded circles is
an alias group. This alias

/ group has two members. Each
member is contributed by a
different compute node.

Compute Node 0

Compute Node 2

Figure 3.11. Finite Element Mesh Partitioned Among Compute Nodes

Figure 3.11 also illustrates how the matrix elements and the vector components are
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distributed among the compute nodes. The matrix element is designated by a connecting

line. Note that along the compute node boundary, this line exists on only one side. This

means that the matrix element is stored on one compute node and not the other. Which

compute node has the matrix element is an arbitrary decision. This decision is discussed in

later chapters.

A vector component is associated with each grid point. If the grid has several

vectors, each grid point has several vector components, one from each vector. Unlike the

matrix elements, the vector components on the compute node boundaries are duplicated

on the compute nodes sharing the boundaries.

Recall the definition of an alias group from "The Aliasing Method" on page 18.

There, an alias group is defined as a set of copies of one directed graph node (including its

associated vector components), each copy residing on a different compute node. Figure

3.11 shows five alias groups.

As previously discussed in "The Aliasing Method" on page 18, an alias group acts

like weakly coherent, shared memory. A vector component that is aliased has several

copies, one on each compute node. As a compute node performs its calculations, it uses its

copy of the vector component, reading and modifying it as necessary. These copies

potentially attain different values; this is the same as saying that the alias group may

become incoherent. At certain points in the calculation, it becomes necessary for the

members of an alias group to once again have the same value; this is the same as saying
that the alias group must be made coherent.

As previously mentioned in "The Aliasing Method" on page 18,each iterative step

of the conjugate gradient method has one matrix-vector multiplication and two dot

products. A parallelization of the conjugate gradient method entails parallelizing these
operations.

Matrix-Vector Multiplication

Think of the matrix-vector multiplication as a set of pull-ins. Recall from "The

Aliasing Method" on page 18 that a pull-in is defined as the contribution one vector

component obtains from another vector component, weighted by the connecting matrix
element.

Figure 3.12 shows how the pull-ins are distributed among the compute nodes. The

indicated alias group has three members. Each member has its own set of pull-ins on its
own compute node.
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Compute Node 1
5

Grid points that belong to the same
alias group and identify the same
vector component on different

5 compute nodes do not necessarily
have the same index number.

3

Compute Node 0

3
Compute Node 2 For example, consider the alias group with three members.

The index on compute node 0 is 1, the index on compute node
I is 3, and the index on compute node 2 is I.

Figure 3.12. Pull-ins Distributed among Alias Group Members

Each compute node performs its pull-ins independently of the other compute

nodes. For example, consider the matrix-vector multiplicationy=Ax and the alias group

indicated in Figure 3.12. This alias group consists of three members, Ylon compute node

0, Y3on compute node 1, and Ylon compute node 2.

When the matrix-vector multiplication is performed, YI on compute node 0

becomesY\ = allx\ +a\2x2+a13x3'The term allxl is the self-term, which comes from the

diagonal element. The term al2x2designates the pull-in along the line connecting grid

points 1 and 2. The term al~3 designates the pull-in along the line connecting grid points 1

and 3. In addition, Y3on compute node 1 (which is really the same vector component as Yl

on computenode0) becomesY3 = a32x2+a3\x\; and YI on compute node 2 (which is also

the same vector component as Ylon compute node 0) becomes Yl = a13x3' After the

matrix-vector multiplication, the members of this alias group are incoherent. Each

member of the alias group has a different value, which is a portion of final value for that

vector element.

The task then remains to make the alias group coherent. This is performed by a

coherence operation. The coherence operation needed in this case is a routine that sums

up the values in an alias group and then replaces the value of each member of the alias

group with that sum. The coherence operation is specifically requested by the user

program.



59

Dot Product

The dot product of two n-dimensional vectors is defined as
n

X.y = L,XiYi
i= I

Note that the dot product is a scalar value. When the vector is distributed over compute

nodes, the dot product is global over the entire set of participating compute nodes.

Once again, consider Figure 3.12. This figure shows nine grid points, five of which

are aliased. Assume that each grid point contains two vector elements; that is, point i

contains Xi and Yi' Compute node 0 calculates X1Yl +X2Y2+X3Y3+X4Y4+xsYs; compute node

1 calculates X1YI +X2Y2+X3Y3+X4Y4+XsYs +X6Y6; and compute node 2 calculates

X1Yl +X2Y2 +X3Y3'

Because the dot product is a global value, the next step is logically to sum the

contributions from each compute node, but when that is done, the aliased terms in the sum

are duplicated. For example, XIYIon compute node 0 is really the same term as x3Y3on

compute node 1. This problem is avoided if when the compute node perform their sums,

only one term from an alias group contributes. This is achieved by designating, for each

alias group, one compute node as the secretary.

If, in Figure 3.12, the compute node with the lowest node number is designated the

secretary, then compute node 0 includes XIYIin its partial sum; but compute node 1 does

not include its x3Y3,and compute node 2 does not include its XIYI'

So a secretary is defined for each alias group. Each alias group is a set of directed

nodes, each from a different compute node. One of those compute nodes is designated the

secretary. How the designation is made is arbitrary. In the example presented in this

section, the secretary for each alias group is the compute node with the lowest compute

node number, chosen from the compute nodes contributing a directed graph node to the

alias group. For some problems, (as will be seen in Chapter 6, "A Random Matrix" )

choosing the secretary this way is unbalenced. Becasue the secretary performs additional

work, one should attempt to evenly distribute the secretary designation among the
compute nodes.

The Owner Computes Method

In the owner-computes method, each compute node contains the matrix elements it

needs to perform its portion of the matrix vector multiplication. The compute node does

not contain the value of the vector component on the other end of the pull-in and must
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obtain that value in a message from the owner of that vector component.

Here is the reason why the method is called owner computes. Consider the

matrix-vector multiplicationy=Ax. If the vector component Yiresides on a compute node

(that compute node is called the owner of Yi)' then that compute node calculates all the

terms in Yi.In contrast, in the aliasing method, portions of Yiare calculated by all the

compute nodes belonging to the alias group for Yi' followed by communication to make Yi
coherent.

Figure 3.13 shows the same mesh as that in Figure 3.12, as it would appear for an

Compute Node 1
2 6

Before
decomposition

Compute Node 2

Figure 3.13. Dividing the Mesh Among Compute Nodes (Owner Computes)

owner-computes computation. Note that the vector components are not aliased. For

example, when compute node 2 calculates YI' it needs three matrix elements. These are
shown as lines connected to the shaded circle labeled 1. One of those lines is connected to

the shaded circle labeled 2, also on compute node 2. This pull-in requires no

communication. The other two lines are connected to shaded circles on compute node 1.

Pull-ins along these lines require communication with compute node 1. Compute node 2

must receive the values YI and Y3from compute node 1.

Comparison of Direct and Iterative Methods
The differences between direct and iterative methods become most apparent for

large problems. With large problems, the fill-in resulting from direct methods increases

greatly (the matrix becomes essentially dense) [34]; and the number of operations

becomes prohibitively large. Iterative methods, however, do not change the matrix once it

has been constructed; the number of operations in each iterative step remains the same.

Round-off characteristics are different as well. With direct methods, roundoff
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errors accumulate. The more singular the matrix is, the more serious are the roundoff

errors. With iterative methods, preconditioning techniques can be used to reduce roundoff
error [30].

The parallelization properties of direct and iterative methods are different as well.

Parallel direct methods more closely resemble control parallelism than data parallelism.

Although data are partitioned among the compute nodes as in data parallelism, the

procedures of rising in an elimination tree and keeping track of what compute nodes are

participating at what level are control operations. Parallel iterative methods exhibit

straightforward data parallelism.

Another important difference is simply the commitment on the part of the user.

When a user chooses a direct method, the user commits to see the process to its

completion. Unless the program completes, there is no answer; it's all or nothing.

However, with an iterative method, each step advances the current value closer to the

solution. A user can choose to perform the amount of work required to achieve the desired
level of accuracy.



Chapter 4 Implementation of Aliasing

Introduction

This chapter describes how a grid is partitioned among the compute nodes, how

alias groups arise from that partitioning, and how alias groups are made coherent. The

chapter presents an explicit example of a finite element triangular grid. This example takes

the finite element grid, divides it among four compute nodes, and shows how alias groups

develop. Alias groups were first defined in "The Aliasing Method" on page 18; they were

further discussed in "Parallel Conjugate Gradient Method" on page 55.

Grid Partitioning
A grid is partitioned by assigning a portion of the grid points to each compute

node. If the grid is constructed beforehand, this assignment can be supplied as part of an

input file. If the grid is developed by the parallel program, each compute node can

appropriate a portion of the grid and assign itself grid points as they are created.

This section presents a simple example of a grid and shows how it appears when

partitioned over four compute nodes.

Figure 4.1 shows an llxll grid being cut equally into quarters. The cut goes

through a line of grid points. When the cut line encounters a grid point, the grid point

splits into two, creating alias groups. Each alias group contains two grid points. Where the

cut lines meet (in the center), the grid point is split into four; and that alias group contains

four grid points. Figure 4.2 shows the grid after the alias groups have been created.

Hereafter, the term field node is used to mean either a grid point or a finite element

node with all its associated vector components. When a vector is defined on the grid, a

component of the vector is associated with each field node, and there are as many

components as there are field nodes. The field nodes are uniquely identified by (x,y)

coordinates. The grid coordinates are in the range 0 through 1, making the corners of the
grid (0,0), (0,1), (1,0), and (1,1).
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· Boundary node set to 100
o Boundarynodeset to 0

(1,1) This example grid consists of 200 triangular finite
elements and 121 finite elements nodes. The grid is a
square with 10 finite elements (11 finite element nodes or
field nodes) on a side.

Grid before decomposition

Below, the grid is shown equally divided among four
compute nodes. The finite element nodes are indexed
locally. Alias groups are circled.

For example, finite element node 35 on
compute node 2 and finite element

/ node 5 on compute node 3 belong to the
same alias group.

(0,0)

Compute
node 2

Compute
node 3

Compute
node 0 Compute

node 1

g
vertices (0 7 1).

y

Figure 4.1. Distributed Grid Showing Alias Groups
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Each field node has four values associated with it. Each field node has an x

coordinate, a y coordinate, and a b value. The b value is the component of the vector b

(from the matrix equation Ax=b) that is assigned to that field node. Later, the solution
vector x will have a value associated with each field node.

Each distributed vector (b and later the solution x) has 121 (11 * 11)components.

Each compute node has 36 components (labeled 0 through 35). Of the 36 field nodes on

each compute node, 11belong to alias groups. In the figure, the circles indicate alias

groups. Because the field nodes are indexed locally, vector components from the same

vector belonging to the same alias group may have different indices.

An alias group is really one field node shared by the compute nodes belonging to

the alias group. In Figure 4.1, there are 121 unique field nodes. When the duplicates from

the alias groups are included, each compute node has 36 field nodes, for a total of 36*4 or

144 field nodes handled by the entire set of compute nodes. Each compute node also has

50 triangles. A triangle is described by the local indices of its vertices. For example, (0 7

1) and (0 6 7) describe triangles.

Information Needed to Construct Alias Groups
Each compute node must be given a set of field nodes. Some of these field nodes

are duplicated on different compute nodes; but at this stage, what field nodes are

duplicated and what compute nodes they are duplicated on is not known.

One needs to somehow uniquely identify a field node over the set of compute

nodes. This can be done with a global index or, as in the example presented in this chapter,
with (x,y) coordinates.

Figure 4.2 shows the information needed to construct alias groups for the finite

element triangular grid example. This figure also shows the information that defines the

grid partitioning (the grid topology) and the boundary conditions.

Figure 4.2 shows that the example has four compute nodes with 36 finite element

nodes (field nodes) and 50 finite elements (triangles) on each compute node. It then lists

the (x,y) coordinates of each field node followed by the field node numbers that define the

triangles themselves. Finally, it lists the boundary conditions as field node number and the

constrained value it contains. These are Dirichlet boundary conditions.
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4
36
50
000 0
o 0.1 0 1
o 0.2 0 2
o 0.3 0 3
o 0.4 0 4
o 0.5 0 5
0.1 0 0 11

number of compute nodes
number offinite element nodes on compute node 0

numberoffinite elements (triangles) on compute node 0
x coordinate, y coordinate, b value, global index-36 of these

lifter 36 lines showing x, y,j, global index, connectivity information appears. (07 1)
describes a triangle whose vertiices are field nodes 0,7, and 1.

071
067
182

Now the boundary conditions must be specified. Compute
node 0 has 11 field nodes on the boundary. The

specification is field node number followed by constrained
value.

11
6 0
12 0
18 0
24 0
30 0
o 100

Number of boundary field nodes on compute node O.
Field node number, constrained value

.
Now begin the data for compute node 1.

36
50
0.5 0 0 55
0.5 0.1 0 56
0.5 0.2 0 57

Figure 4.2. Information Needed for Alias Group Construction
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The Alias List
To construct the alias groups, one must determine what field nodes belong to what

alias groups by comparing the (x,y) coordinates of all the field nodes on all the nodes.

Although this operation is time consuming, it need only be performed once. The

comparison results in alias lists. These lists identify to each compute node which of its

field nodes are aliased, the compute nodes to which they are aliased, and the local indices

on those compute nodes.

The alias lists are constructed as follows. Each compute node gathers up the (x,y)

coordinates of all its field nodes into a data structure (call it a mailbag). Then, the set of

allocated compute nodes is thought of as a ring, and each compute node sends its mailbag

to the compute node on one side and receives a mailbag from a compute node on the other

side. This is one cycle. After np-l cycles (where np is the number of compute nodes),

every mailbag has visited every compute node.

After a compute node receives a mailbag from another compute node, it compares

the values in that mailbag with the values in its own database and constructs its alias list.

Figure 4.3 shows a portion of a grid and the corresponding alias list for compute node 1.

The alias list is an array called aliases[].This array exists on each compute node. It

is an array of structures. There is one entry for every field node on the compute node. The

entry points to a linked list containing alias information for that field node on that compute

node. The pointer is NULL if the field node is not aliased. An entry in the linked list

contains the node number of the compute node to which the field node is aliased and the

index on that compute node.

Making a Distributed Vector Coherent
A distributed vector is a vector, each component of which is associated with a field

node. Some of these field nodes may be aliased. Alias group coherence was first defined in

"The Aliasing Method" on page 18. When this coherence is needed, was previously

discussed in "Matrix-Vector Multiplication" on page 57.

A distributed vector is made coherent by applying a coherence operation to the

field nodes in an alias group and replacing the value of the vector component at each

aliased field node with the result. For example, if the coherence operation is a sum, each

vector component in an alias group is replaced by the sum of all the vector components

belonging to the alias group. The coherence operation was first introduced in

"Matrix-Vector Multiplication" on page 57.



For example, field node 2 on

compute node I is aliased with field
node I on compute node 2.
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Alias List for Compute Node 1

The entry fo<field node 2 in Lias list
for compute node I has one entry. This
entry identifies the alias compute node as
2, and the index of the field node on that
alias compute node as 1.

Figure 4.3. Example of an Alias List

The distributed vector is made coherent as follows. All compute nodes send their

aliased elements to the secretary of each alias group. The secretary is one of the compute

nodes in the alias group. The secretary is chosen arbitrarily. The need for a secretary was

previously discussed in "Dot Product" on page 59. The secretary performs the specified

coherence function. Then, the secretary sends the answer back to the other nodes.

The Send and Receive Lists

Each compute node must maintain a send list and a receive list. A send list consists

of a list of compute nodes and the vector element indices whose values need to be sent to

those nodes. For example, in Figure 4.3, if compute node 0 is the secretary for all alias

groups that it belongs to, then, when the distributed vector is made coherent, compute

node 1sendsits components0 and 3 to computenode0; computenode2 sendsits

component 0 to compute node 0; and compute node 3 sends its component 0 to compute

node O.A receive list consists of a list of compute nodes and the vector element indices
whose values will be received from those nodes. These send and receive lists can be

calculated locally from the alias list.

local index 0 1 2 3

alias compute node 0 2 0
alias local index 0 1 1

3
0

2
0
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There are two arrays gecslist[] (an array of send lists) and geCrlist[] (an array of

receive lists). The index in each array indicates the compute node to which the current

node will send or receive data. Each element in the array contains a pointer to the start of a

linked list. Each element in the linked list contains the local index (the index on this

compute node) and the remote index (the index on the other compute node). If no data are

to be sent to or received from that node, the pointer is NULL.

Figure 4.4 shows an example of the send and receive lists. This example is for the

same grid shown in Figure 4.3.

Compute
Node 1

Assume that the secretary is chosen to be the
compute node in the alias group that has the
lowest node number.

Compute node 1 has three alias groups. Two
have compute node 0 as the secretary. These are
the alias groups to which field nodes 0 and 3
belong. The third alias group has compute node
1 itself as the secretary.

Send List for Compute Node 1

Destination node I 0

local index
1

3
remote index 1

o
o

1

In the grid fragment shown here, the only
destination node for compute node l' s alias
groups is compute node O.The send list
consists of the two field nodes, 3 and O.

Receive List for Compute Node 1

Source node I 2

local index
1

2
remote index 1

Because compute node 1 is the secretary for only
compute node 2, the receive list consists of the
single field node 2.

Figure 4.4. Example of Send and Receive Lists

In summary, making a distributed vector coherent consists of the following steps:

1. A compute node sends data to its send list. This means that the compute

node sends data to the secretaries of its alias groups.
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2. A compute node receives data from its receive list. This means that the

compute node receives data from the members of the alias groups to which

it is the secretary.

3. The secretaries perform the specified coherence operation.

4. A compute node sends the answer to its receive list. This means that the

secretaries send the answer to the other members of its alias groups.

5. A compute node receives the answer from its send list. This means that the
non-secretaries obtain the answer.

Example of Making a Vector Coherent

Figure 4.5 illustrates in detail what happens when a distributed vector is made

coherent. The figure shows a vector distributed over four compute nodes. This vector has

nine components, indexed globally from 0 to 8. No single compute node has all the

components. Compute node 0 has the first five; and it indexes them locally from 0 to 4.

Compute node 1 has the 1st,2nd,5th,and 6thcomponents (counting starts form 0); and it

indexes them from 0 through 3.

This alias group consists of local index ] on compute node 0, local
index 0 on compute node 1, and local index 0 on compute node 2

012345678

Figure 4.5. Global Description of Coherence

In Figure 4.5, the numbers inside the boxes are the values of the vector

components. Note that these values are different on different compute nodes. If the

coherence function is a sum, the result, after making the vector coherent, is that the value

4 5 6 7 8

global vector ] 13

compute node 0 11/1 2\1 3 14 15 I I I I Examp]e shows a
sum as the coherence

compute node 1 1 liJl2J 1 I function

.
computeuode2 I 11i112t3l

compute node 3 14 15 161 117

11 18 24 ]9 21 8 20 29 131

11 18 24 19 2

18 24 8 20

-
13120 29

-
24 ]9 21 29-
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on each component in the alias group is summed and the new value appears on each

compute node. This operation has no effect on the values of vector components that are
not aliased.

Figures 6 and 7 describe in more detail how the vector shown in Figure 4.5 is made

coherent. An explicit library call must be made to make a distributed vector coherent.

Usually, this call is within a loop. It is more efficient to allocate the memory needed for the

call before the loop begins and to free this memory after the loop ends. For example,

init_vcomb(t_double, &out_sendlist, &out_recvlist,

&send_corres, &nbr_send_corres,

&recv_corres, &nbr_recv_correS)i

Loop begins...

vcomb((char *)y, dsum, t_double,
out_sendlist, out_recvlist,

send_corres, nbr_send_corres,

recv_corres, nbr_recv_correS)i

Loop ends ...

reset_vcomb(out_sendlist, out_recvlist,

send_corres, recv_corres,

nbr_send_corres, nbr_recv_correS)i

The parameters in the example code have the following meanings:

· In iniC vcombO, Cdouble is an enum variable that identifies the type as

double. oucsendlist[] and oucrecvlist[] are the send and receive buffers;

send_corres[] and recv_corres[] are integer arrays that contain the compute

node numbers that the calling node corresponds with. Each element of

oucsendlist[] and ouCrecvlist[] points to a buffer to be sent to or received

from another compute node. For example, oucsendlist[ll points to data that

will be sent to compute node send_corres[i].

· In vcombO, y is the vector to be made coherent and dsum is a pointer to the

combination function, which is a double sum. Pointers to the buffers

allocated in iniC vcombO are also provided.

· In reseC vcombO, the buffers allocated in iniC vcombO are released. .
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Compute Node 1

This figure shows the detailed send and receive lists that compute node 1 has for the decomposition
shown in Figure 4.4. The oucsendlist[] is what is sent to the secretary. The indices are not sent, just
the values. It is not necessary to send the indices because the receiving node can determine them from
its own alias lists.

1. Send out the send lists.

remote index ~
local index "\., Computenode1has twofieldnodesaliasedwithcomputenode

"""" 0, andcomputenode0 is thesecretaryforthosefieldnodes.The
~ local indices (the indices on compute node I) of these field nodes

oucsendlist[O] ---7 W-.2..J are 0 and I. The corresponding indices on compute node 0 are I
and 2. The values on compute node I are 6 and 7.

send30rres[0] =0 Each compute node maintains a send list for each of the other
compute nodes. In this example, compute node 1 has a send list
for compute node 0 because compute node 0 is the secretary for
compute node I' s aliased field nodes.

nbcsend_corres =I

Compute node I also has an aliased field node with compute
node 2. It is itself the secretary for that alias group. Consequently
compute node I has a receive list.

remote index

local index ~
[ill]

oucrecvlist[O] ---7LW

Compute node I has two field nodes aliased with compute node
2, and one field node aliased with compute node 3. It is the
secretary for one of the field nodes aliased with compute node 2
(index 3 on compute node I and index 1on compute node 2).

2. Receive the receive lists.

Compute node I's receive list for compute node 2 is compute
node 2's send list for compute node 1.

recv30rres[0] =2 Note that in this example oucrecvlist[O] shows only one value.
If compute node I were the secretary for more than one alias
with compute node 2, those aliased values would be in
oucrecvlist[O] also. Compute node I would know that each
value is a double and would skip 8 bytes to get subsequent
entries.

After the receive, this
field contains the value 11.

oucrecvlist[O]---7 ~ val_21
8 bytes 8 bytes

Figure 4.6. Local Description of Combination (Part A)
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This figure continues the description of the steps involved in a combination begun in Figure 4.6.

3. Perform the function. Then, send out the receive list.

ill]
oUCrecvlist[O] 7 ~

Compute node 1 takes its value of9 (at local index 3) and adds it to
II, the value that came from compute node 3. The result is that
oucrecvlist[O] now contains the value 20.

recv30rres[0] =2
Then, compute node 1 sends oucrecvlist[O] to compute node 2.

4. Receive the send lists.

[Q[[JJl]
oucsendlist[O] 7 ~

Compute node 1 now receives its send lists. The send lists
were sent to the secretary node, where the values were
modified in accordance with the coherence function. These
are now the coherent values.

send30rres[0] =0

Figure 4.7. Local Description of Combination (Part B)



Chapter 5
Implementation of the
Conjugate Gradient Method

Introduction

This chapter describes how the conjugate gradient algorithm is programmed with

the aliasing method. The chapter describes how the matrix is constructed from input data

and then partitioned among the compute nodes. The major operations of the conjugate

gradient algorithm are a matrix-vector multiplication and a dot product. This chapter

describes how these operations are performed using aliases.

The Coefficient Matrix
The coefficient matrix for finite element problems has three important

characteristics. It is large, sparse, and symmetric. Because it is large, it makes sense to

store it as a distributed matrix. Because it is sparse, it does not make sense to store the

global matrix as a large 2x2 array. Because it is symmetric, one can use the conjugate

gradient algorithm.

One can take advantage of the symmetry to use less storage space but this would

be at the expense of additional calculation. The work presented here does not take

advantage of matrix symmetry to reduce storage requirements.

Assembling the Matrix

After the lists (the alias list, the send list, and the receive list) are formed, it is

necessary to form the matrix. The matrix is stored in assembled form. The difference
between assembled and unassembled matrices was discussed in "Finite Element Grid and

the Corresponding Matrix Equation" on page 9.

The matrix is first assembled as much as possible on individual compute nodes.

The complete assembly of the matrix requires communication among the compute nodes.

If the unassembled parts of an assembled matrix element lie on different compute nodes,

73
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one of those compute nodes is chosen to contain the matrix element. Figure 5.1 describes

how much assembly can be performed on a distributed finite element mesh without
communication.

To assemble the matrix it is necessary to know both the connectivity of the finite

element mesh and the (x,y) coordinates of each point. This information is part of the initial
data. Finite elements that are next to each other contribute their elemental matrix elements

to form assembled matrix elements. This makes the connectivity information important

for assembly.

The routine maClocal_assembleO constructs the assembled matrix as much as it

can locally. The arguments of this routine specifiy ne, the number of finite elements on the

compute node and ni[],nj[], and nk[], integer arrays that define the connectivity of the

finite element mesh. Figure 5.1 shows how the assembled matrix is constructed.

After maClocal_assembleO, mlistO makes the send and receive lists for the

matrix elements. These lists are then used by mcombO to assemble the matrix. After

assembly, the matrix elements are distributed as shown in Figure 5.4. That is, if field node

i is aliased, the self-term au is only present on the compute node that is the secretary for

field node i. Cross-terms only appear on one of the dividing compute nodes. Figure 5.4

indicates the presence of a cross-term by a solid line. The dotted line shows where it

would also occur if it were aliased. Finally, the global load vectorf must be combined.
These routines are called as follows:

mat_local_assemble(ne, ni,nj,nk, A, &Amax,Arow,Acol, f)i
mlist(is_alias, Amax, Arow, Acol)i

mcomb(A, Amax, Arow, Acol, dsum)i

init_vcomb(t_double, &out_sendlist, &out_recvlist,

&send_corres, &nbr_send_corres,
&recv_corres, &nbr_recv_corres);

vcomb((char *)f, dsum, t_double,

out_sendlist, out_recvlist,
send_corres, nbr_send_corres,

recv_corres, nbr_recv_corres)i

reset_vcomb(out_sendlist, out_recvlist,
send_corres, recv_corres,

nbr_send_corres, nbr_recv_corres)i

Assembled vs. Unassembled Matrices

The question now arises whether one should assemble the matrix to solve it. At a
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The figure shows a portion of a triangular finite element mesh.
The figure shows six triangles. Three of the triangles are
identified as 1,2, and 3.

Each triangle is defined by three field nodes (the three field
nodes at the vertices). The vertices are called i,j, and k.

3
The connectivity information is in the three arrays ni[], nj[],
and nk[]. The field node numbers of the vertices for triangle 1
are ni[1]=I, nj[1]=7, and nk[I]=6.

2

The lines connecting nodes designate off-diagonal assembled matrix elements. For example, the
line connecting field nodes 2 and 7 designates k27.There is a direction associated with the line, but
because k27equals k72.the arrows are not shown.

Note that the line connecting field nodes 2 and 7 exists in two finite elements, 2 and 3. Hence, the
assembled matrix element k27 is the sum of2k27 (the elemental matrix element from finite element
2) and 3k27(the elemental matrix element from finite element 3). The superscripts indicate the
element number.

compute node 1
4

Now assume that the triangles are divided between two
compute nodes. Indexing is now local to each compute node.

2

compute node 2

Also note that the assembled matrix element designated by the
line between field nodes 1 and 2 on compute node 1 (also by
the line between field nodes 1 and 5 on compute node 2), has

3 two elemental matrix contributions, just as before, but now the
contributions come from different compute nodes. So compute
node 2 cannot construct the complete assembled matrix
element without communication with compute node 1.

Figure 5.1. Construction of Assembled Matrix Elements

high enough level in the algorithm, it doesn't matter whether the matrix is stored as one

assembled matrix or as a collection of 3x3 elemental matrices (called the unassembled

matrix). During the iterative steps of the conjugate gradient algorithm, the only access to

the matrix is through a routine that performs the matrix-vector multiplication. As far as the

program, is concerned the storage mechanism is internal to this routine.

There is an important difference, however, between using the assembled matrix

and using the unassembled matrix when one considers how the calculation is performed.
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When the matrix is stored as 3x3 elemental matrices, one performs a number of

multiplications followed by additions. When the matrix is stored as an assembled matrix,

one performs additions followed by multiplications. There is less floating point work

when the matrix is assembled. Figure 5.2 illustrates the difference between unassembled

and assembled computations.

6 7

~.
1~

The figure shows a portion of a triangular finite element mesh. The figure
shows two triangles labeled 1 and 2.

Consider the matrix equationy=Ax. y and x are vectors whose elements are
associated with the corresponding field nodes.

Consider forming Yl.

(I) (2)
where kl6 = kl6 kl2 = kl2

identify the triangle.
kl7 = kg) + kg) and the superscripts in parentheses

When the matrix is unassembled, Yl is

The assembled version has three multiplications and three additions. One of the additions is used in the
assembly. If the matrix-vector multiplication were in a loop, this assembly addition would be outside the
loop. The unassembled version has four multiplications and three additions.

Figure 5.2. Unassembled vs. Assembled Matrix-Vector Multiplication

Conjugate Gradient Operations
As previously mentioned in "The Aliasing Method" on page 18,each iterative step

of the conjugate gradient method has one matrix-vector multiplication and two dot

products. The parallelization of these operations was discussed in "Parallel Conjugate

Gradient Method" on page 55. This section shows how these operations are implemented,

using the techniques described in Chapter 4, "Implementation of Aliasing."

Dot Product

This section describes how the dot product is formed when both participating

vectors are distributed over the compute nodes. A dot product of two n-dimensional

vectors x and y is a scalar s defined as
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n

S = x.y = LXiYi
i= I

On a single processor, such a dot product can be implemented in C code as follows:

s=O;
for(i=O; i<n; i++)

s += x[i] *y[i];

To form the dot product of x andy, when they are vectors distributed over a set of

compute nodes, each compute node performs its portion of the dot product. Then, a global

routine sums the contributions from each compute node. The result appears on all the

compute nodes. However, one must be careful not to include a contribution from each

member of the alias group. Only one member of an alias group may contribute. In the

example shown in Figure 5.3, this contribution comes from the secretary.

Here is some example code that forms a dot product of two distributed vectors.

The code is written for clarity, not efficiency.The reason this code is not efficient is the

presence of the conditional in the for loop. Conditionals can invalidate a pipeline, and in

loops they do it again and again.

The dot product code is executed on every compute node. The values of doCvalue

on each compute node are different because each compute node has different components

of x andy. The routine gdsumO is a synchronous routine (supplied as part of the operating

system's message-passing library); that is, all compute nodes must execute the routine,

and no compute node can proceed past gdsumO until all compute nodes have completed
the routine.

double dot (double *x, double *y,

int *is_alias, int *is_secretary, int n)
{
int i;
double dot_value=O.O, dternp;

for(i=O; i<n; i++) {
if (is_alias [i]) {

if(is_secretary[i])

dot_value += x[i] * y[i];
else continue;

}
else

dot_value += x[i] * y[i];
}

gdsurn(&dot_value,1, &dternp);
return dot_value;
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· Compute node 0 shows two indices
C labeled 0 and 1.· Compute node 1 shows four indices

labeled 0, 1,2, and 3.
· Compute node 2 shows two indices

labeled 0 and 1.· Compute node 3 shows one index
labeled O.

Compute Node 1

Compute node 0 is the secretary for this alias group

Assume that two vectors x and y are distributed over the compute nodes. That is, each of the indexed
field nodes contains a component of each vector. For example, the field node on compute node 1 that
is indexed 1 (it is the only field node that is not aliased) has the vector components xl and y\. Note that
the vector indices are local. That is, compute node 2 also has an x\ and a y\.

The circles show the alias groups. They are labeled A, B, and C. Each alias group is one field node. One
of the compute nodes in the alias group is designated the secretary (its field node is shown as the
unfilled circle). In this example, the secretary is chosen as the compute node in the alias group whose
node number is the smallest.

When the field nodes are coherent, all the members of an alias group have the same value. That is, the
four field nodes in alias group B have the same X value and the same y value.

A dot product can be formed as follows:

1. Each compute node calculates its portion of the dot product. If a field node is in an alias group, it
must contribute to the dot product on only one compute node.

2. All the nodes perform a global sum, the result of which appears on every node

Figure 5.3. Formation of a Dot Product of Distributed Vectors

In the code, is_alias[] is a boolean array that indicates if the indexed field node is

aliased or not. That is, is_alias[i] is 1 if field node i belongs to an alias group and 0 if it

does not. Similarly is_secretary[i] is 1 if field node i is aliased and belongs to a secretary
node and 0 otherwise.

The code for the dot product checks every field node. If the field node is not

aliased, it accepts a contribution. If the field node is aliased, it accepts a contribution only

if the field node also belongs to a secretary.

Local Sum After gdsumO

Compute Node 0 xaYa + xlYl = dota dota + dot1
Compute Node 1 xlYl + x2Y2 = dot1 dota + dot1
Compute Node 2 0 dota + dot1
Compute Node 3 0 dota + dot1
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The routine gdsumO sums the value doCvalue on each compute node. It returns

the global sum in doCvalue, and uses a temporary variable provided as dtemp. The 1 as

the second argument indicates that dot_value is a scalar; a 2 would indicate that it was a
two-element vector.

A faster dot product can be coded by using a high-performance KAI routine

internally. This KAI routine is part of the Basic Math Library from Kuck and Associates,

Inc. that is provided with the Paragon supercomputer operating system. It uses the KAI

routine to calculate the dot product, then subtracts the contribution that resulted from

including elements that were aliased but whose compute nodes were not secretaries. In

this way, the conditional within the loop is avoided. For large vectors, this is faster than

the example shown here.

Matrix-Vector Multiplication

This section describes how the matrix-vector product is formed. when both

participating vectors are distributed over the compute nodes.

As shown in Figure 5.4, the vector components are aliased and the matrix elements

are not. Assume the matrix-vector multiplicationy =Ax where both vectors x andy are

distributed. Each field node has associated with it a component of x and a component of y.

Each compute node performs its pull-ins and calculates its self-terms

independently. (For a definition of pull-ins and self-terms, refer to "Matrix-Vector

Multiplication" on page 57.) After the pull-ins and self-terms are calculated, the complete

y element is still not present. The vector must be made coherent with a sum as the

coherence operation.

Because A is sparse, it is not stored as a two-dimensional array. Instead, the matrix

is stored as three one-dimensional arrays. These arrays are A[],Arow[], and Acol[]. A[]

contains the actual matrix value; and Arow[] and Acol[] contain the row and column

indices. For example, the matrix element stored in A[lO] has row position Arow[lO] and

column position Acol[lO]. This is not the most optimal storage, but it is the easiest to
understand.

Another characteristic of the storage scheme is that equal Arow[] indices are

grouped together. That is, A[] exhausts all the values in one row before moving on to the

next. However, the row indices do not necessarily increase as the Arow[] index increases.

That is, A[] may contain all of row 1, followed by row 4, followed by row 2. Once the

value of a Arow[] index changes, it does not return to a previous value. For example, a
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Compute
Node 2

This figure describes how y is constructed
fromy =Ax.A is a two-dimensional

C matrix.x andy are vectors. Each field node
contains an element of x and an element of
y.Compute

Node 0

Compute
Node 1

This figure is a portion of a triangular finite
element grid. The lines between field
nodes indicate possible matrix elements.
That is, the line between field nodes 0 and
1 on compute node 0 designates aOI(also
alO because the matrix is symmetric).

1

The field nodes are aliased, but the matrix elements are not. The dotted lines indicate where aliased
matrix elements would be if they were not aliased. For example, the dotted line between field nodes 0
and 3 on compute node 1designates a03'Because field node 0 on compute node 1 is also field node 0 on
compute node 0 and field node 3 on compute node 1 is also field node 1on compute node 0, a03on
compute node 1 is also aOIon compute node O.Only the matrix element on compute node 0 is stored.

Assume that each compute node performs its pull-ins independently. The compute node also calculates
the self-term (ajjxi) for those field nodes for which it is the secretary. These self-terms are shown in bold.
After the pull-ins and self-terms are calculated, the complete y element is not present. The values in an
alias group must be summed, and the sum sent to all members of the alias group.

3 0

2 0

Figure 5.4. Matrix-Vector Multiplication with Coherence

Compute Field Aliased? Secretary? Pull-ins and After Combination
Node Node Self-Terms compute node (value)
0 0 yes yes aooXo+aOlxl O(aooXo+ aOlxl) + l(aOlxI)

1 yes yes allxl + aloXO O(allxl + alOxO)
+ 1(a31xI+ a32x2)
+ 2(...) + 3(...)

0 yes no aOlxl O(aooXo+ aloXO)+ l(aOlxl)
1 no no allxl + aloXO+ a12x2 l(allxl + aloXO+ a12x2+a13x3)

+ a13x3
2 yes yes a2lxI + a22x2+ a23x3 1(a21xI+ a22x2+ a23x3)+2(...)
3 yes no a3lxI + a32x2 O(allxl + alOxO)

+ 1(a31xI+ a32x2)
+2(...) + 3(...)

yes no 2(...) O(allxl + alOxO)+
1(a31xI+ a32x2)+2(...) +3(...)

yes no 2(...) 1(a21xI+ a22x2+ a23x3)+2(...)

yes no 3(...) O(allxl + aloXO)
+ l(a3lxI + a32x2)
+2(...) + 3(...)
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portion of a small matrix might appear as follows:

A: 1.0
Arow:O
Acol:O

0.5 -1.5 0.5 1.5 -1.5 -0.5 -1.5 -1.5 3.0 0.0 0.0 -0.5
a a 1 1 1 133 3 3 2 2
1 3 a 1 3 2 013 2 3 1

The followingC code forms y =Ax up to the point of combination. It is the portion

where each compute node calculates its pull-ins and self-terms independently.Amax is the

number of nonzero elements in A and hence the length of the three arrays. The routine

dvecinitO zeroes out y.

void rnat_vect(double *A, long Arnax, long *Arow, long *Acol,

double *x, double *y)
{
int i;

dvecinit(y,Arnax);
for(i=O; i<Arnax;i++)

y[Arow[i]] += A[i] * x[Acol[i]];

Conjugate Gradient Algorithm
The implementation consists of some setup code and the conjugate gradient code.

The one-time code constructs the alias, send, and receive lists, then incorporates the

boundary conditions. The conjugate gradient code makes an initial guess and then enters a

loop that executes the conjugate gradient steps.

Setup Code

The alias, send, and receive lists are constructed by vsyncO. The is_alias[] and

is_seeretary[] arrays are constructed by geCis_aliasO and geCis_secretaryO. nn is the
number of field nodes. These routines are called as follows:

vsync ( ) ;

get_is_alias(is_alias,nn)j

get_is_secretary(is_secretary,nn)j

Next, one must incorporate the boundary condition. The routine add_constraintsO modi-

fies the matrix to take into account boundary conditions. The arrays e[], ne[], and nd[]

define the constraints. Again, nn is the number of field nodes.

add_constraints (A, &Arnax,Arow,Acol, epsilon,

f, c, nc, nd, is_alias, is_secretary, nn);
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Conjugate Gradient Code

The equation to be solved is Ax=/. Before the iteration begins, one must make an

initial guess for the solution (x). Then, one calculates the initial residual (residual). If the

initial guess is 0, the initial residual isf if - Ax =f - A *0 =j). One also calculates p, the

square of the initial residual. Then, one defines an initial search direction (g) as the

direction of the residual (g =j).

Steps 1 and 2 consist of making an initial guess for x and defining the initial

residual. If that residual is less than epsilon, stop.

for(i=Oi i<nni i++)

residual[i] = f[i]i

Steps 3 and 4 consist of forming the square of the initial residual and then setting

the initial search direction g to the residual.

rho = dot (residual, f, is_alias, is_secretary, nn)i

for(i=Oi i<nni i++)

g[i] = residual[i]i

Step 5 is the iteration. Each iteration has three major steps. The first is updating the

solution vector. The solution vector is modified by adding to it a constant times the search

direction. The second is to form a from the new solution vector. The third step is to choose
a new search direction.

In Appendix C, "The Conjugate Gradient Method" the iteration consists of

substeps identified by letters form A to I. The discussion that follows describes the (k+l)th

iteration, using values calulated in the kth iteration. The first iteration (k=1)uses the intial

values (k=Ovalues).

Each iteration has a matrix-vector multiplication and two dot products. The

matrix-vector multiplication is the matrix A times the vector g. It must be followed by a

vcombO to make the result coherent.

Step A is the matrix-vector multiplication.
init_vcomb(t_double, &out_sendlist, &out_recvlist,

&send_corres, &nbr_send_corres,

&recv_corres, &nbr_recv_correS)i

for (iter = Oi iter < total_nni iter++)

mat_vec(A,Amax,Arow,Acol, g,Ag)i

vcomb((char *)Ag, dsum, t_double,
out_sendlist, out_recvlist,

send_corres, nbr_send_corres,
recv_corres, nbr_recv_corres)i
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Step B forms Awhich is p divided by the first dot product.

gAg = dot(g,Ag,is_alias, is_secretary, nn)j

lambda = rho/gAgj

Now that Ais known, the solution vector is ready to be updated. The result of the

matrix-vector multiplication is also used to calulate a new residual.

(k+ I) (k) + ~ (k) (k)
X = X I\. g

residual(k+ I) = residual(k) _ A (k)Ag(k)

Steps C and D update the solution vector x and the residual. Step E saves the old p.

for(j=Oj j<nnj j++) {

x[j] += lambda * g[j]j

residual[j] -= lambda * Ag[j]j
}
rhoO = rhoj

Step F forms the new p, which is the residual squared. This is the second dot

product. Step G forms ~, which is the ratio of the new and old p 's. ~is used to update the
search direction.

(k+l) .d l (k+I) + R(k) (k)g = resl ua I-' g

Step H updates the search direction g. Step I is a fail-safe; a loop terminates if the

loop count exceeds a preset value.

rho = dot( residual, residual, is_alias, is_secretary, nn)j

beta = rho/rhoOj

for(j=Oj j<nnj j++)
g[j] = residual[j] + beta * g[j]j

} /* end of conjugate gradient iteration */

reset_vcomb(out_sendlist, out_recvlist,

send_corres, recv_corres,

nbr_send_corres, nbr_recv_corres)j

Testing for Convergence
The conjugate gradient iteration continues until the residual is less than a certain

prescribed epsilon (10-5).This test is performed in two places. The first is right after the
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initial residual is set, after the initial guess forx, on the off chance the initial guess is good

enough. Then, the test is performed again as part of the iteration when x is updated.

The residual is a vector distributed across the compute nodes. The routine gteO

first finds the largest element that is local to each compute node. If this element is less than

epsilon, gteO sets a value greater_than_epsilon to 0 (FALSE). Then, gteO performs a

global OR of greater_than_epsilon over all compute nodes and returns this value. The

result is that gteO returns 1 if any element of the residual on any compute node is greater

than epsilon.

gteO is used to provide a stopping condition to the conjugate gradient iteration.

gteO is executed after each iteration, and the iteration continues if gteO returns a 1.



Chapter 6 A Random Matrix

Introduction

This chapter describes a limiting case where the aliasing method, although still

working and producing correct answers, becomes inefficient. The inefficiency occurs

because each compute node has several alias groups and because the alias groups are

large.

The matrix investigated is the random matrix from the Numerical Aerodynamic

Simulation (NAS) Conjugate Gradient (CG) benchmark [3]. A matrix is called random

when whether a matrix element is nonzero is determined randomly.

That the nonzero matrix elements may be scattered throughout the matrix does not

necessarily mean that the matrix is random. A suitable reordering can make the

non-random nature of the matrix apparent. The aliasing method, however, does not require

reordering. With the aliasing method, the non-randomness of a matrix is taken advantage

of regardless of how the matrix is indexed. As can be seen from Chapter 4,

"Implementation of Aliasing," only those vector components that need to be duplicated

are duplicated, and they are duplicated on only those compute nodes that require them.

In summary, if the matrix has a random pattern of nonzeros, the aliasing method

still works, but performance and efficiency are degraded. Such a linear system ends up

with nearly every vector component belonging to an alias group. Solving such a system is

characterized by a large number of long messages in each iteration step. When this occurs,

it is more efficient to broadcast the vector than to construct alias lists and perform
combinations.

The goal of parallel decomposition is to partition the directed graph into P regions,

one region for each compute node. A matrix has structure if the decomposition can be

done in such a way that the regions exhibit good locality. Good locality means the

following:

85
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· Most edges of the corresponding directed graph are internal to a region. That

is, most field nodes in a region are not aliased.

· The number of other regions that anyone region connects to is small

compared to P. That is, the members of an alias group belong to only a few

compute nodes, often only two.

The aliasing method works best when the number of messages is kept as low as

possible. It is also better to have a few long messages than several shorter ones. Both of

the above characteristics of good locality are not present in the NAS matrix. As will be

seen, most field nodes are aliased, and most are aliased to all the other compute nodes.

The NAS CG Benchmark

This section describes the NAS CG benchmark [3]. This benchmark provides a

matrix whose nonzero elements are randomly distributed throughout the matrix. What is

described here is an older version of the benchmark than is currently offered. Refer to

Appendix D, "The NAS Benchmark," for a detailed description of the NAS CG
benchmark.

The Numerical Aerodynamic Simulation (NAS) Conjugate Gradient (CG)

benchmark uses the power method to find an estimate of the smallest eigenvalue of a

symmetric, positive definite, sparse matrix A. The major part of the benchmark is spent in

solving a matrix equation by the conjugate gradient method. The solution is performed 15
times, each time with different right-hand sides.

In addition to being symmetric, positive definite, and sparse, A is of order 14000
and has 1 853 104 nonzero elements. This comes out to about 132 nonzero elements in a

row. The benchmark provides a Fortran program that generates A. The benchmark also

provides a test program whoseA has order 1400. The matrix A has a random pattern of
nonzero values.

Partitioning the Matrix
A simple row decomposition is used. Similar results are obtained for a column

decomposition. In a row decomposition, the matrix is partitioned by rows among the

compute nodes. For example, consider the sample NAS CG matrix partitioned over six

compute nodes. This matrix has 1400rows. Compute nodes 0 and 1 each get 234 rows,

and compute nodes 2 through 5 each get 233 rows.
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The difficulty is that when the NAS CG matrix has a row decomposition, just

about every field node is aliased.

Determining the Location of Field Nodes

Now that the rows are distributed, it remains to determine on which compute nodes

the field nodes reside. Recall that the conjugate gradient method requires a matrix-vector

multiplication, y =Ax. Because of the row decomposition, every compute node starts off

with a particular set of vector components. For example, if a compute node has rows k

through 1,then it also has vector components Yk through Y/ and xk through Xl.

When a compute node updates one of its y components, it needs access to some of

the x components. Specifically, it needs access to those x components to which one of itsy

components is linked through a matrix element. This need can be seen from the following

equation
n

Y = '" a..x.
i £.J IJ J

j= 1

where k :::;i :::; 1and n is the order of the matrix. This equation indicates that if a matrix

element exists between Yi and Xj(aij) on a particular compute node (call it compute node

n}) and j is not one of the row numbers assigned to n}, then Xj is aliased on n}.

Although Xjdoes not lie within the range assigned to n}, it does lie within the range
assigned to some compute node (call it compute node n2). Because the matrix is

symmetric aji exists on n2.This means that compute node n2 must have access to xi. Recall
that the portion of the matrix-vector multiplication on n} did not require that xi be aliased

on n} because its index was within the range assigned to n}; but the portion of the

matrix-vector multiplication on n2 does require a copy of Xi.So the xi on n} belongs to an

alias group, another member of which is the xi on n2.

To set up these alias groups, one must first assign some unique identification to the

field nodes; they can be uniquely identified by global indices. These are the same global

indices that identify the matrix elements. That is, au is the self term for field node i; and aij
is the matrix element that links field node i with field nodej.

The algorithm for determining the location of the field nodes is as follows:

1. First note that, for the NAS matrix, the diagonal elements are nonzero. This

means that the compute node that is assigned a row definitely has the vector

component whose index is the same as the row; that is, the compute node
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that has au has the vector component i.

2. If the compute node has aij' then, field nodes i andj are also present on the
compute node. This is because, in the aliasing method, there are no edges

without attached field nodes in the portion of the directed graph on a

compute node.

If the compute node has aij' but not aji, thenj is not within the range of row
indices assigned to the compute node. The field nodes i and j must be

present on that compute node; hence,j is aliased. It turns out that i must also

be aliased, as is shown in the next paragraph.

If the compute node does not have aji, then ajiexists on some other compute

node because the matrix is symmetric and aijbeing nonzero means aji is also
nonzero. On that compute node, i is not within the row indices assigned to

it. Because this compute node needs vector component i, i is aliased.

The result is that i and j are aliased on both compute nodes. This method

determines, for a particular compute node, what vector components are aliased on that

compute node. No communication is involved. The method does not determine the

compute nodes to which the vector element is aliased. Communication is required for that

information. How to determine what compute nodes belong to what alias groups was

previously described in "The Alias List" on page 66.

To see graphically what vector components are aliased, refer to Figure 6.1. The

matrix in this figure is shown with a row decomposition over six compute nodes. The

portion of rows assigned to a compute node has both darkly shaded and lightly shaded

portions. The darkly shaded portion designates the area where the compute node has both

cross-terms, aij and aji' The lightly shaded portion designates the area where the compute

node has only one of the cross-terms, aij' If the value of this element (the aij in the lightly
shaded portion) is nonzero, then the compute node must have copies of both vector

elements i andj, and both belong to alias groups.

When is an alias not formed? Again consider the column portions in the lightly

shaded regions of the matrix in Figure 6.1. If the portion of column j assigned to compute

node 0 has all zero elements, then compute node 0 need not construct an alias for field

nodes i andj.

Note that throughout this discussion, the indices have been global over the entire

set of compute nodes. To form an alias list, it is necessary that each field node have some

unique identification. Otherwise there is no way to determine if it is duplicated on other



The off-diagonal terms in the darkly shaded areas
designate internal edges in the directed graph. The

small square box designates an off-diagonal term aij
whose transpose is on a different compute node.

In the figure, the small square box designates a
matrix element on compute node 0 whose transpose
is on compute node 2.
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ij

ji

Compute node 0

Compute node I
Compute node 2

Compute node 3
Compute node 4

Compute node 5

If aij is nonzero on compute node 0, then ajj is also nonzero on compute node 2. Vector component
j must be aliased on compute node 0, and vector component i must be aliased on compute node 2.
Hence, both vector components i and j belong to alias groups on both compute nodes.

Step I. The compute node that is
assigned a row definitely has
the vector component whose
index is the same as the row;

that is, the compute node that
has au has the vector
component i.

Step 2. If the compute node has aij' but
not ajj, then j is aliased.

ode 0 a..Compute n . . 11tal'nsrow,x ~ · ](con. ..-
but not roW]) aij ~ a.. de2

ajj I "jl Computeno .. / (contains roW])
I I

/

\
Compute node boundary

Compute node 0
(contains row i,
but not rowj) a /."-

jjj/
au

Alias group

Alias group

a.."jl

Compute node 2
(contains row j)

Step 2. If the compute node has ajj, but
not aij' then i is aliased.

The result is that i and j are aliased on both compute nodes.

Figure 6.1. Formation of Alias Groups when Matrix is Partitioned by Rows

compute nodes. For the NAS CG benchmark, this unique identification is the global index.

For the actual calculation, local indices are used; the global index is used only to construct

the alias list. Other types of problems may have other ways of achieving unique

identification of field nodes. Physical problems may use the (x,y) coordinates of a field
node.
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Example Partitionedover Six Compute Nodes

When the sample NAS CG problem is partitioned over six compute nodes,

compute node 0 has all zero elements in only one column, namely column 410.

Consequently, of the possible 1400field nodes, compute node 0 must have copies of 1399

of them! Every compute node has some columns with all zero elements. For the sample

NAS problem partitioned over six compute nodes, these columns are as follows:

Recall the definition of the secretary and its role when making a distributed vector

coherent. This role was previously described in "Making a Distributed Vector Coherent"

on page 66. As stated in that section, how the secretary is chosen is arbitrary.

Assume that one chooses as the secretary for an alias group, the compute node

with the lowest node number that has a vector component in the alias group. This means

that, for the sample NAS problem partitioned over six compute nodes, compute node 0

turns out to be the secretary node for most of the field nodes. Specifically, compute node 0

is the secretary for 1399 field nodes. It is not the secretary for field node 41O-compute

node 1 turns out to be the secretary for this field node.

Aliasing Method is Inefficient for the NAS Matrix

The aliasing method applied to the NAS matrix with a row decomposition is

inefficient. It sends longer messages than are needed and performs unneeded additions.

To see why, once again consider the sample NAS matrix distributed across six

compute nodes and look closely at what happens between compute node 0 and compute
node 1.

What Happens During Matrix-Vector Multiplication

Consider the row partitioning for compute node 1. If the global indices start at 0,

compute node 1 has rows 234 through 467; compute node 1 also has 1398 field nodes

(1400-2, because two of its column ortions contain only zeros). But when compute node 1

performs its matrix-vector multiplication, only field nodes 234 through 467 get nonzero

values. All the other field nodes get zero values. This is illustrated in Figure 6.2.

compute node 0 1 2 3 4 5
columns with no 410 499 190 1013 241 905
nonzero elements 1373 241 1295

402
431



91

Now to see why compute node 1 sends longer messages than needed and performs

unneeded additions, consider in more detail how compute node 1 makes its field nodes
coherent.

Longer Messages Than Needed

Consider the matrix-vector multiplicationAx=y and what happens on compute

node 1. To make y coherent, compute node 1 first sends all aliased components to the

corresponding secretaries (which for all components but component 410), is compute

node 0). Of the 1400 components in the vector, compute node 1 does not maintain copies

of two of them and is itself the secretary for one of them. Hence, compute node 1 sends

1397 components to compute node O.It turns out that most of the values (the 1397 vector

components) that compute node 1sends to compute node 0 do not actually need to be sent.

Only those from 234 through 467 (excluding 410, for a total of 233) need to be sent
because the others are zero.

Performs Unneeded Additions

After compute node 0 receives values from compute node 1 (and other compute

nodes for which it is the secretary), compute node 0 performs a sum, which turns out to be

also unneeded. A replacement would be sufficient.

Here's why only a replacement is needed. Compute node 0 has itself modifiedy

components 0 through 233. So it adds those to the vector components it received from

compute node 1. Positions 0 through 233 in that vector (the one it received from compute

node 1) are zero because compute node 1 did not modify them. So compute node 0 is

adding zero to its components 0 through 233; these are unneeded additions.

As part of the matrix-vector multiplication, compute node 1 has itself modified

only vector components 234 through 467. But those components were not modified by

compute node o. So compute node 0 is adding zero to the components 234 through 467

that it received from compute node 1; this is again an unneeded addition. After the sum,

compute node 0 sends the answers to the other compute nodes. It sends 1397 values to

compute node 1.

The result is that the aliasing method blindly applied to the NAS matrix sends

longer messages than are needed and performs unneeded additions. Figure 6.3 illustrates

the preceding discussion.
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o I>

234 I>
467 I>

<:]-- 0

<:]-- 234
<:]-- 467=

A x = y

Vector components on compute node 1. Compute node 1contains the matrix elements in the darkly
shaded row. It also contains all but two components of x, but this figure does not show that level of
detail. The vector x has 1400 elements, and compute node I has 1398 of them.

The elements ofthe darkly shaded portion ofthex vector are what were initially assigned to compute
node 1by the row decomposition. However, the components in the lightly shaded portion need to be
there also for the matrix-vector multiplication to take place.

Only a small portion of y is modified by the matrix-vector multiplication on compute node 1.
When the matrix-vector multiplication Ax occurs, only the darkly shaded portion ofy is modified.
This portion contains 234 elements, 233 of which have compute node 0 as their secretary. The
unshaded portion of y is zeroed out.

Much more ofy than is necessary is sent to compute node 0 by compute node 1 wheny is made
coherent. Of the 1398components of x on compute node 1,compute node 1 is the secretary for only
one. Compute node 0 is the secretary for the remaining 1397.This means that wheny is made
coherent, 1397 values must be sent to compute node 0; but only 233 of those values have actually
been modified by compute node 1.The other 1134 values sent to compute node 0 by compute node I
are zero!

Figure 6.2. NAS Matrix- Vector Multiplication

The NAS Matrix as a Limiting Case
Because the NAS matrix is random, it presents a limiting case for the aliasing

method. As seen in the previous discussion, the alias lists become overlong, and needless

additions are performed.

Modifications can be made to the aliasing method to improve the performance.

Figure 6.4 shows an example of a modification that turns out to be Method 1of Lewis and

van de Geijn [24].

Consider once again the matrix equation Ax=y. As before, distribute the rows of

the matrix to the different compute nodes. In the figure, both vectors x andy are replicated

on each of the compute nodes. After the matrix-vector multiplication a portion of y is

modified on each compute node. Then, each compute node broadcasts its modified portion
to the other compute nodes.
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The complete vector is almost duplicated on each compute node. The illustration does not show the detail
(what particular vector components are not duplicated). The illustration also assumes that compute node
o is the secretary for all field nodes. In reality, it is the secretary for most of the field nodes.

Initial configuration

o

2

3

4

5

The dark shading designates
the portion of the vector
modified by the compute
node. The light shading
designates the portion of the
vector needed but not
modified.

Addition by
compute node 0 t After returning answer to

other compute nodes

Compute node 0 then sends
the now coherent vector to

all the other compute nodes.

Figure 6.3. Updating Aliases when the Matrix is Distributed by Rows

Compute nodes 1 through 5
send their vectors to compute
node O. Compute node 0 then
adds these vectors together.

The dark shading designates
the portion of the vector mod-
ified by the compute node; no
shading designates the por-
tion of the vector zeroed.

All the additions consist of

adding a number to zero.

Modifications Made for the NAS CG BenchMark

Modifications to the aliasing method were made to improve its performance when

applied to the NAS matrix. These modifications make the aliasing method less general.



The figure is shown as three dimensional. The
vectors go into the page.

rows assigned to compute node 0

rows assigned to compute node I

rows assigned to compute node 2

rows assigned to compute node 3

A

The x and y vectors are duplicated
on all the compute nodes. After
the matrix-vector multiplication, a
subset of y (shown as the shaded
sections) is modified on each

compute node.

Then each compute node
broadcasts the portion of y that it
has modified.

x

Each compute node broadcasts its portion ofy.

Figure 6.4. Method 1: Row Decomposition
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The vector y after broadcast.

These improvements include changing the method of determining what compute

node becomes the secretary (called "balanced secretaries") and modifying the vector

combination routine so that unneeded values are not sent (called "no zeros").

Balanced Secretaries

As was previously shown in the section "Example Partitioned over Six Compute

Nodes" on page 90, if the secretary is chosen as the compute node in an alias group with

the lowest node number, then compute node 0 ends up being the secretary for most of the
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alias groups. Choosing the secretary this way is called low node number secretaries.

Using low node number secretaries creates a bottleneck when a distributed vector

is made coherent. All the compute nodes send their portions of the vector to compute node

0, who then performs the coherence operation for overlapping portions, and then returns

each now-coherent portion to the compute node it came from. This bottleneck can be

avoided by using another method (called the "balanced secretaries" method) for choosing

the secretary.

In the "balanced secretaries" method, if field node i is aliased, then the compute

node that contains au is defined to be the secretary. Because, with a row decomposition,

every compute node knows what compute nodes contain what diagonal elements, this is

easily done.

No Zeros

As was previously shown in the section "Performs Unneeded Additions" on page

91, with a row decomposition, only a portion of the vector is modified and only by the

secretary. This is also illustrated in Figure 6.2. The consequence is that there is no need to

do the initial send to a secretary, and there is no need for the secretary to perform the

coherence operation.

The vcombO routine described in "Example of Making a VectorCoherent" on

page 69 was modified to remove the send to the secretary and the execution of the

coherence operation. The modified vcombO routine only performs the following actions:
it sends its modified values to its receive list and then receives from its send list.

Figure 6.5 illustrates the vcombO changes. Consider a matrix-vector

multiplication. Compute node 1 contains matrix elements in the shaded portion of the

matrix. It modifies vector elements in the darkly shaded portion of the vector; it is also the

secretary for those elements. Compute node 1 needs the vector elements from the lightly

shaded portion of the vector to perform the matrix vector multiplication, but compute node

1 does not modify any vector elements in the lightly shaded portion.

So after modifying the darkly shaded vector elements as shown in Figure 6.5,

compute node 1 sends these elements to its receive list. (Because only compute node 1

modified these elements, it was not necessary to first receive contributions from

non-secretary compute nodes; nor was it necessary to perform a coherence operation.)

Then, in preparation for the next iteration, compute node 1 must receive from its send list.



96

compute node 0
compute node 1

compute node 2

compute node 3

compute node 4
compute node 5

.
. toreceivelist

. fromsend
list

The receive list on a compute node is a list of the compute
nodes for which that compute node is the secretary.

The send list on a compute node is a list of the compute nodes
that are secretaries for that compute node.

Figure 6.5. Modified vcombO Routine.

This is to get the values of the components from the lightly shaded portion of the vector.

The modified vcombO has two steps: 1, send to the compute node's receive list; 2, receive

from the compute node's send list.

When the compute node sends to its receive list, it does not necessarily perform a

broadcast. If the portion of a column assigned to any compute node contains all zeros, then

the vector component whose global index is the same as the global column index need not

be recorded and maintained by the compute node.

For example, if the very lightly shaded portion of the matrix assigned to compute

node 1 were all zeros as shown in Figure 6.5, then compute node 1 need not receive any

vector components from compute node O.Compute node 0 need not have compute node 1
on its receive list.
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compute node 0
compute node 1

compute node 2

compute node 3

compute node 4
compute node 5

Compute node 0 is the
secretary for these
vector components.

Compute node 1only
modifies the darkly shaded
portion of the vector.

If this block is all zeros on compute node 1, then compute node 1does not need any vector
components from the unshaded portion of the vector.

Nor does compute node 1contribute any vector components to alias groups for which compute node
o is the secretary. This is another way of saying that compute node 0 does not have compute node 1
on its list of compute nodes for which it is the secretary; that is, compute node O's receive list does
not include compute node 1.

The example assumes all the columns in this block are zero. If only some of the columns in this block
are zero, then those vector components whose indices are the same as the column index need not be
recorded by compute node 1. Compute node 1 is then on compute node O's receive list. Compute
node 0, however, does not send all of its modified vector components to compute node 1. Compute
node 0 sends only those components that compute node 1 records and maintains.

Figure 6.6. vcombO Does not Necessarily Involve Broadcasts



Chapter 7 Performance

Introduction

Two specific problems were investigated using the aliasing method. This method

was introduced in "The Aliasing Method" on page 18; its implementation was presented

in Chapter 4, "Implementation of Aliasing."

· One was solving Laplace's equation on a rectangular (x,y) grid. Laplace's

equation was previously defined and discussed in "Laplace's Equation" on

page 5. The problem was set up as a finite element problem with triangular

elements, and the conjugate gradient method was used to solve the resulting

matrix equation.

· The other was running the The Numerical Aerodynamic Simulation (NAS)

Conjugate Gradient (CG) benchmark. This benchmark provides the random

matrix that was previously described in Chapter 6, "A Random Matrix" ;

this random matrix has a random pattern of nonzero values and serves as a

worst case example for the aliasing method. The benchmark itself is

described in Appendix D, "The NAS Benchmark."

Code was written for and executed on a Paragon supercomputer from Intel Corporation,

running Intel's Release 1.2 operating system.

Laplace's Equation on a Rectangular Grid
Meshes were constructed such that each compute node had 2500 finite elements.

That is, the size of the problem was 2500P finite elements where P is the number of

compute nodes. These meshes were generated by the program itself.

A finite element method was used to solve Laplace's equation with Dirichlet

boundary conditions. The resulting matrix equation was solved by a conjugate gradient

iteration. The method is implemented as an SPMD program with data parallel operations.

98
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Laplace: How the Data Were Obtained

Data were obtained as follows:

1. Log into the Paragon supercomputer. A login shell then runs on the service

node. The service node is physically just like a compute node, but it is in the

service partition, has UNIX scheduling, and does not run parallel

applications. Several users may share a service node, and there may be
several service nodes.

2. Define a partition of compute nodes. These are the compute nodes that will

be used to run the code. Use the mkpart command to do this. For example,

the following command allocates a 10xi0 partition called ted. The

Paragon supercomputer used is configured such that a user has exclusive

access to the nodes of a user-defined partition.

% mkpart -sz 10xl0 ted

3. Load and run the program on the defined partition. The program requests the

number of compute nodes in the x and y directions. (This input must be the

same as the defined partition.) The program also requests the number of

finite elements for the entire unpartitioned grid. The user response,

500x500, means that there are 50x50 elements per compute node for a

lOxI0 partition. If the partition had been IOx7,the specification would have

been 500x350 finite elements on a side. The program is called mdb, and the

letters do not mean anything.

% mdb -pn ted

Number of compute nodes on a side (x y): 10 10

Number of finite elements on a side (x y): 500 500

4. The program then creates the grid. The (x,y) dimensions of the entire grid

are always 0 toI in both directions. This means that when more compute

nodes are used, the grid is finer. The more compute nodes that are used, the

larger is the order of the coefficient matrix.

5. The program assigns the boundary conditions: 0 along the x boundary and

100 along the y boundary. The comers are constrained to be 100. This

entails modifying the matrix elements as described in Appendix A, "The
Finite Element Method."

6. The program calculates the matrix elements, then constructs the alias lists,



100

the send lists, and the receive lists.

7. The program performs the conjugate gradient iteration until the residual

meets the prescribed epsilon, 10-5.Because the total problem grows with the

number of compute nodes, the number of iterations it takes to reach the same

accuracy also increases. Theoretically, the conjugate gradient method yields

the exact solution in n steps where n is the order of the matrix.

8. Finally the program prints out the statistics of the run for each compute

node. Post-processing averages the appropriate numbers.

Laplace: Results for the (x,y) Problem

Figure 7.1 graphs the total flops vs. the number of compute nodes in the allocated

partition. The speedup shown here is fixed-grain speedup, as defined in "Fixed-Grain

Speedup" on page 17. The straight line shows how the total flops would increase if there

were no dropoff due to increased communication.
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Figure 7.1. Total Flops vs. the Number of Compute Nodes in the Partition

Figure 7.2 graphs the total flops per compute node. Performance per compute node

starts off at 2.9 Mflops for a four-node partition and ends up at 2.3 Mflops for a 100-node

partition.This figure shows that the work done by each compute node remains essentially

constant over the range of compute nodes, which is to be expected for a problem of fixed
gram SIze.
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Figure 7.2. Total Flops/Compute Node vs. the Number of Compute Nodes in the Partition

Figure 7.3 graphs the time per iteration for three key operations vs. the number of

compute nodes in the allocated partition. The three operations are the matrix-vector

multiplication, the dot product (the time is for both dot products in each iteration), and the
vector coherence.
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Figure 7.3. Time/Iteration vs. the Number of Compute Nodes in the Partition

Figure 7.3 shows that the matrix-vector multiplication remains flat. There is no

communication involved in this operation and each compute node is doing the same

amount of work for each run. The figure also shows that the time for a dot product

increases with the number of compute nodes. The dot product is formed locally on each

node and then the local values are added together. The Paragon supercomputer operating

system provides a global call gdsumO that constructs a global sum. When gdsumO is
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executed, each compute node contributes a floating point value to the sum, and each

compute node ends up with the answer. The time for a dot product understandably

increases with the number of compute nodes because the global operation involves more

message passing.

Finally, Figure 7.3 shows that the coherence time increases slightly with the

number of compute nodes; that is, as the number of compute nodes increases, the time it

takes to make a vector coherent also increases. The reason for this node dependence is not

readily apparent. A possible explanation for the increase of coherence time with larger

partitions is just the increase in overall message traffic and ensuing contention that occurs
in such cases.

The section "Laplace: Message Passing in the (x,y) Problem" on page 102 shows

that, as more compute nodes are added, the amount of message passing per compute node

does not increase. Although the total number of messages increases, the size and number

of messages per compute node remains the same. The section "Laplace: Node

Dependence in Vector Coherence" on page 104 describes in detail the care that was taken

to have no node dependence in the coherence routine, vcombO.

The data for the (x,y) grid problem are shown in Table 1.These are the data that are

graphed in Figures 1,2, and 3.

Table 7.1. Data for the (x,y) Grid Problem

Laplace: Message Passing in the (x,y) Problem

Because of the fixed-grain size, each compute node sends and receives the same

number of messages; but with more compute nodes, there are more of those messages.

Compute Combination!
Matrix-Vector

Dot Product! Total FlopsIterations Multiplication!Nodes iteration
Iteration

Iteration (Megaflops)

4 166 0.000946 0.007498 0.002550 11.424

8 288 0.001073 0.007516 0.002974 22.1962

16 327 0.001378 0.007553 0.003498 41.5697

32 513 0.001510 0.007567 0.003877 79.876

36 483 0.001526 0.007582 0.003933 89.474

49 561 0.001604 0.007575 0.004185 119.77

64 636 0.001651 0.007584 0.004245 155.39

100 790 0.001842 0.007590 0.004775 232.50
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Consider the following stages of making a vector coherent:

1. Compute nodes send to their send lists and receive from their receive lists.

2. Secretaries perform the coherence operation.

3. Compute nodes send to their receive lists and receive from their send lists.

A compute node is assigned a square of 51 finite element nodes (50 finite elements) on a

side. This means that, during the first stage of making a vector coherent, an interior

compute node receives three messages and sends three messages, as illustrated in Figure

7.4. The compute node receives from the compute nodes for which it is the secretary (its

receive list) and sends to the compute nodes that are its secretaries (its send list). During

the second stage, its also sends three messages; it sends to its receive list and receives from
its send list.

During the first stage, compute node 21 receives messages
from compute nodes 27 (50 vector components), 28 (one
vector component), and 22 (50 vector components).
Compute node 21 shares one vector components with
compute node 26, but that vector components is also shared
by compute node 20, which is its secretary.

During the first stage, compute node 21 also sends messages
to compute nodes 20 (50 vector components), 13 (one vector
components), and 14 (50 vector components).

The messages in the third stage have the same pattern, but
the directions are reversed.

Figure 7.4. Messages in First Stage of Making a Vector Coherent

During the first stage, an interior compute node receives one vector component (a

double) from the compute node to its top right, 50 vector components from the compute

node to its top, and 50 vector components from the compute node to its right. One

received message is eight bytes; the other two are 450 bytes each. The compute node

sends three messages. It sends one vector component to the compute node to its bottom

left, 50 vector components to the compute node to its bottom, and 50 vector components

26 27 28
I 1..-

20 2r 22

13 14 15

0 I 2 3 4 5

26 27 28

2 21 22v,
Ii' -.
13 14 15
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to the compute node to its left. One sent message is eight bytes; the other two are 450

bytes each.

Laplace: Node Dependence in Vector Coherence

Early versions of vcombO did have a node dependence. They used arrays whose

dimensions were the number of compute nodes. vcombO had a number of for loops that

stepped through these arrays.

For example, the array oucsendlist[] was used by vcombO to access its send list.

oucsendlist[] is an array of pointers. If oucsendlist[i] is NULL,then the compute node did

not send to compute node i; compute node i was not on that compute node's send list. If

the compute node did send to i, then oucsendlist[i] contained a pointer to the data to be

sent. An early version of vcombO stepped through all the entries of oucsendlist[],

ignoring those that were NULL and sending a message to the compute node whose node

number was the index when the entry was a message pointer.

The latest version of vcombO uses an oucsendlist[] that is only as large as the

number of receiving compute nodes. Another array send_corres[] contains the node

numbers of those compute nodes. Using oucsendlist[] in conjunction with send_corres[]

allows the for loop to go only over the compute nodes to be sent to and not over all the

nodes in the partition. For example, send_corres[i]contains the number of the compute

node to which the current compute node will send the data pointed to by oucsendlist[i].

Making this change did slightly flatten the graph of coherence time/iteration vs. number of

compute nodes.

In addition, there was some concern about efficient cache use. Early versions of

vcombO allocated a buffer for each message. These allocations occurred outside the

iteration (the same buffers were used within the iteration); but there was no guarantee that

these buffers were near each other in memory. Since every one was used during each

iteration, it was desirable to make them contiguous. Increased locality for data structures

used frequently increases the probability of taking cache hits rather than misses.

So the latest version of vcombO allocates a large chunk of memory for its buffers.

The pointers in oucsendlist[] and other arrays are now offsets into that large chunk.

Making this change further flattened the graph of coherence time/iteration vs. number of

compute nodes, but there is still an increase for small numbers of compute nodes and a

gradual increase for large numbers of compute nodes.
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The NAS CG Benchmark

The Numerical Aerodynamic Simulation (NAS) Conjugate Gradient (CG)

benchmark comes in two versions: the small version (also called the debug or test version)

and the real version. Recall from Chapter 6, "A Random Matrix," that the NAS matrix

contains a random pattern of nonzeros. In the section "Aliasing Method is Inefficient for

the NAS Matrix" on page 90, it was shown how poor performance is expected for NAS

CG benchmark when implemented with the aliasing method.

NAS CG: How the Data Were Obtained

As with the (x,y) grid, a partition is allocated, and the program loaded on that

partition. The program requires no user input.

% mkpart -sz 10x10 ted

% nas -pn ted

NAS CG: What the Benchmark Measures

The NAS benchmark has an outer loop that is executed 15 times and an inner loop

that is executed 25 times. At the end of each outer loop iteration, a matrix-vector

multiplication is performed. In addition to the matrix-vector multiplication, a vcombO

must be performed to make the answer coherent. The time for the 15 matrix-vector

multiplications and the 15 vcombO's are averaged and graphed. Pseudocode for the NAS
CG benchmark is as follows:

Start main timer

do 15 times MAIN

do 25 times CG iteration to solve ~b

matrix-vector multiplication
make the vector coherent

two dot products
enddo CG

start matvec timer

matrix-vector multiplication
end matvec timer; accumulate matvec time

start vcomb timer
vector combination

end vcomb timer; accumulate vcomb time

enddo MAIN

End main timer
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NAS CG: The Small Version

Figure 7.5 shows the performance for the small (debug) version of the NAS CG

benchmark. The upper curve shows the performance for the program containing the

balanced secretaries/no zeros vcombO, and the lower curve is for the program containing

the standard vcombO. The section "Balanced Secretaries" on page 94 described the

balanced-secretaries modification to vcombO, and the section "No Zeros" on page 95

described the no-zeros modification to vcombO. Note that the version with the modified

vcombO shows higher performance, even increasing with the number of compute nodes,

until presumably the increased communication, fixed problem size, and resulting message

contention do cause the curve to turn over. The section "NAS CG: Message Passing" on

page 108 characterizes message passing for the NAS CG benchmark.

G Balanced secretaries

~ Lou node number
secr et an es

o
o 20 40 60 80 100 120 140

Compute Nodes

Figure 7.5. Balanced SecretariesINo Zeros and Low Node Number Secretaries

Figure 7.6 shows the matrix-vector multiplication time. Because this is a fixed-size

problem and this time does not involve any communication, the matrix-vector

multiplication time understandably decreases as the number of compute nodes increases

and is the same for both versions of vcombO.

Figure 7.7 shows the vcombO time for the two versions of vcombO. The balanced

secretaries/no zeros vcombO still increases with the number of compute nodes, but it is

clearly faster than the standard vcombO.
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Figure 7.7. vcombO Time vs. Compute Nodes (small version)

The Real Version

The real version of the benchmark has a matrix of order 14000 instead of 1400.

Figure 7.8 shows the performance in Mflops for the real version of the NAS benchmark.

This value increases with the number of compute nodes up to a partition size of about 50

compute nodes, at which point it decreases before increasing again at around 70 compute
nodes.

Figure 7.9 shows the performance per compute node. This value decreases until it

levels off at a partition size of about 70 compute nodes.

Figure 7.10 shows the matrix-vector multiplication time and the vcombO time.

The matrix-vector multiplication time decreases as the number of compute nodes

increases. This is to be expected because the problem is of a fixed size. The shape of this

curve is the same as that for the matrix-multiplication time for the debug version. The
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vcombO time increases slightly as the number of compute nodes increases. As before with

the small NAS CG version, the increase in vcombO time is attributed to increased

message traffic. The section "NAS CG: Message Passing" on page 108 characterizes the
NAS CG benchmark.

The data for the real version of the NAS CG benchmark are shown in Table 1.

These are the data that are graphed in Figures 8, 9, and 10..

NAS CG: Message Passing

To get a general idea of the magnitude and number of messages, consider the

following argument. Assume that most field nodes are aliased and also that they are

aliased to every compute node. Then, each compute node sends and receives n-l messages

(there are n compute nodes).The messages have length
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(ordecoCmatrix) . (size_oCdouble)
(bytes/Kbyte) . n

The small version has a matrix of order 1400; the large version has a matrix of order

14000. Then,

1400.8 _ .!..!.Kbytes1024.n n message length for small version

14000.8 = ~Kbytesn message length for real version

As the number of compute nodes increases, the size of each message decreases;

but the number of messages increases. If (n-1)1napproximates n, the total number of bytes

participating in message traffic stays about the same.

1400. 8 .
( 1024. n) . (n - I) .. II Kbytes total message traffic for small verSIon

14000.8 .
( .M' ) . (n - I) .. llOKbytes totalmessagetrafficforreal versIon

In summary, there are n-1 messages of length 111nKbytes (sample) and 110/n

Kbytes (real) where n is the number of compute nodes. The total number of bytes

participating in message traffic remains the same at about 11Kbytes (sample) and 110

Kbytes (real). Although the size of messages decreases, the number of messages increases.
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Table 7.2. Data for the NAS CG Benchmark

Compute Combination
Matrix-Vector

Total Flops
Megaflops/

Multiplication ComputeNodes Time
Time (Megaflops) Node

25 0.050283 0.045734 27.061900 1.0824

30 0.052937 0.038023 28.148100 0.93827

36 0.052026 0.031847 30.062300 0.83506

40 0.054602 0.028800 30.016800 0.75042

45 0.057426 0.025749 30.154800 0.67010

48 0.059532 0.027286 31.153400 0.64902

49 0.055096 0.023765 31.420300 0.64123

50 0.056313 0.021501 25.927800 0.51855

63 0.058888 0.020371 20.489900 0.32523

64 0.055395 0.019865 23.941550 0.37408

66 0.056825 0.019348 20.003200 0.30307

68 0.055633 0.018801 19.512500 0.28694

72 0.0586633 0.017965 17.632800 0.24490

81 0.057009 0.016108 18.682300 0.23064

100 0.056756 0.013354 20.210100 0.20210

121 0.057184 0.011179 21.235000 0.17549

144 0.065955 0.009206 23.288700 0.16172

169 0.067275 0.008164 27.215300 0.16103

196 0.072839 0.007144 31.977300 0.16314

225 0.075236 0.006265 33.258000 0.14781



Chapter 8 Conclusions

Introduction

This thesis has presented an aliasing method that can be used to develop iterative

algorithms to solve large, sparse linear systems of equations on massively parallel

computers. This aliasing method was introduced in "The Aliasing Method" on page 18.

The details of its implementation were presented in Chapter 4, "Implementation of

Aliasing."

The method was applied to two problems. One was Laplace's equation on a

rectangular grid (see "Laplace's Equation" on page 5); the other was the NAS CO

benchmark (see "The NAS CO Benchmark" on page 86). The method gives correct

answers for both problems, but performs better for the Laplace problem.

Weakly-Coherent Shared Memory
The aliasing method provides a useful programming interface. With the aliasing

method, the programmer need not manage the details of guard buffers and message

passing. The aliasing method provides a simpler view, namely that of weakly-coherent,
shared memory.

Efficient for Structured Problems

This thesis has shown that for structured problems, the aliasing method is efficient.

Structured problems were shown to be those representing physical problems and

amenable to finite element methods. An example is Laplace's equation on a rectangular

grid. Their coefficient matrices exhibited good locality, as defined in Chapter 6, "A

Random Matrix." The aliasing method was shown not to be efficient for matrices with a

random nonzero pattern. An example is the NAS CO benchmark.
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Alias groups were defined and used in the algorithm that made a distributed vector

coherent. An important consequence of alias groups is that vector components not needed

to make a distributed vector coherent are not part of a message. Only the information that

needs to be sent is sent; and this information is only sent to the compute nodes that need it.

There is some overhead in limiting the size and number of messages this way; and that is
in essence why the method is inefficient for random matrices.

Local Indexing
Another important feature of the aliasing method is local indexing. The vector

components of a distributed vector are not numbered globally. This means that grid

refinement can proceed without any need for global renumbering. If one decides to make

the grid denser on one compute node, one can do that without affecting the numbering on
any other compute node.

No Distinguished Owner
Another characteristic of alias groups is that there is no distinguished owner. The

alias group is symmetric. Each compute node that is a member of an alias group reads and

writes the vector component it has contributed to the alias group without taking into

account who the other members of the alias group are. All compute nodes in the alias

group equally own the vector component. The alias group is not a guard buffer; it acts like

weakly coherent shared memory. This distinguishes the aliasing method from the owner

computes method (see "The Owner Computes Method" on page 59).

We did define a secretary for the alias group. Some operations on the alias group

required us to single out an alias group member. But the secretary is not the owner of the

vector component. The secretary is just a construct used to perform operations (called

coherence operations) on the alias group.

Future Work

This investigation focused on the actual iterative computation. A desirable

method, however, would have overall performance, including the initialization. Two areas

are designated for improvement.
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No optimization was attempted for the initialization. Constructing the alias lists,

send lists, and receive lists can be time consuming. In addition, applying the boundary

conditions was also surprisingly time consuming. The method used was that described in

"Another Way of Accounting for Type I Boundary Conditions" on page 130.

Finally, because the thesis was focused on the alias groups and their needed

communication routines, the actual matrix-vector multiplication would also benefit from

some attention. The sparse storage scheme used was an easy one to manipulate and

understand, but not the most optimal one.

We do believe that this thesis has shown the aliasing method to be a useful and

desirable programming model for certain kinds of problems typical of real-world

applications; and for that reason merits further study.



Appendix A The Finite Element Method

Introduction

This appendix presents the mathematical background of the finite element method.

The finite element method is described here as a numerical method for solving partial

differential equations. Specifically, the method is applied to two-dimensional, second

order, linear partial differential equations. The treatment here follows that in Bickford [5].

The description of the Galerkin approach follows Sewell[32].

What is a Finite Element?

The domain of the solution is divided into a number of finite elements, and the total

solution is the sum of the solutions in each of these finite elements.

For example, consider a two-dimensional surface, the (x,y) plane. The solution at

each point in the plane is graphed as a height above this plane, with the total solution

forming a solution surface. Consider the plane as divided into a number of finite elements,

and choose the simplest two-dimensional element, the triangle. The vertices of the

triangles are called finite element nodes.

The portion of the solution surface above a finite element is called a solution

segment and is approximated as a plane. The complete solution is approximated as a

number of planar segments, one above each finite element. Figure A.I shows the portion

of the planar solution surface over one of the triangles.

The solution over an element is expressed in terms of elemental basis junctions. It

is planar if these elemental basis functions are linear. Non-linear basis functions are not
discussed in this thesis.
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Consider the (x,y) plane filled with triangles (only
Z I six are shown). The solution at a point in the (x,y)

plane is z, the height above the plane. The segment
of the solution surface over the triangle is z =

uCel)(x,y) = <X+ I3x + "(Y.

The portion of the surface over one of the
triangular finite elements is approximated as a

y plane. It is indicated as a shaded surface. The
vertices of the triangle are designated as i,j, and k.

Figure A.l. The Solution Surface over One of the Triangular Elements

Elemental Basis Functions

The solution segment over a finite element is approximated as a plane. If the

superscript (el) identifies a particular element labeled el, the solution segment can be
written as

u(el) (x,y) = a+~x+'YY

where el, p, and yare constants. To determine el, p, and y, note that the equation must

equal the values of U<el)(x,y)at the vertices of the triangle. The triangle has vertices i,j,

and k. At vertex i, ueCx,y)is ui; at vertexj, u(el)(x,y)is Uj;and at vertex k, U<el)(x,y)is uk.

The values of u(el)(x,y)at each of the vertices result in three simultaneous linear

equations. Each equation specifies U<el)(x,y)at the triangle's vertices.

(el) R
U (x., y.) = a + ..,x.+'¥y.= u.J J J J J

Use these equations to solve for el, p, and y. Then, rearrange the equations so that U<el)(x,y)

(the solution segment above the triangle) is written in terms ofthe values at the vertices

(ui, Uj'and uk) and elemental basisfunctions (N;.Nj, and Nk). The result is as follows:
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The elemental basis functions are defined as follows:

and A(el)is the area of the elemental triangle calculated from the following determinant,

2A(el) =
1 xj Yj

1 xj Yj

1 xk Yk

Figure A.2 illustrates the elemental basis functions Nj, Nj, and Nk. These functions are

defined so that at vertex i (Xj,Yj), Nj = 1 and Nj =Nk =0, at vertexj (Xj,Yj)' Nj = 1 and Nj =

Nk = 0, and at vertex k (xk,Yk), Nk =1 and Nj =Nj =0

Define N as the vector whose components are the elemental basis functions.

where i,j, and k designate the vertices of the triangular finite element, and the superscript

T stands for transpose, makeing NT a row vector. b(el)and c(el)are vectors defined as
follows:

c(el)T = ~j cj cJ

where the superscript (el) indicates a vector defined on the finite element (the triangle). To

define a vector on a finite element means that an component of the vector is defined on

each finite element node of the finite element. When the finite elements are triangles, these

vectors have three components.

aj + b,-x+ cjY a .+ b -x + C.y ak+b0+ckY
N. = N. = J J J Nk =,

2A (el) J 2A (el) 2A (el)

where

aj = xjYk-xkYj aj = XkYj - XjYk ak = xjYj - xjYj

bj = Yj-Yk bj = Yk-Yj bk = Yj-Yj

cj=xk-xj cj = Xj-Xk Ck = Xj-Xj
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The function Nkfx,y). This is 1 at the kth
vertex, 0 at the ithand lh vertices, and
linear in between.

z
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The function N;<x,y). This is 1 at the jth
vertex, 0 at the ith and kth vertices, and
linear in between.

y

z

1

y

y

The function N;(x,y). This is 1at the ;th
vertex, 0 at the lh and kthvertices, and
linear in between.

The derivatives of N are

Figure A.2. The Elemental Basis Functions, N,{x,y), !V.J{x,y),and Nk(x,y)

aN b(el)

ax - 2A (el)

aN c(el)

ay = 2A (el)

Minimum Residual Method
The method of weighted residuals means that the residual must be orthogonal to N

linearly independent weight functions where N is the number of finite element nodes. This
is written as

fJ Wi(x, y) R (x, y) = 0
D
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where wi is the weight function, R(x,y) is the residual, and i goes from 1 to N.

The residual is defined as follows. Arrange the equation to be solved so that it

equals zero, substitute a function for the solution, and evaluate. How much the resulting

value (called the residual) differs from zero is a measure of how good the solution is.

The weight function takes on specific forms to generate approximate solutions in

specific ways.

The Weak Formulation
This section introduces the weak formulation. It shows how the method of

weighted residuals can be combined with an integration by parts to weaken the continuity

requirements on the solution. The result is an equation called the weak formulation that is

later used to get the matrix equation.

With the weakformulation, a differential equation is satisfied in an average sense

over some domain rather than everywhere. If the differential equation is written such that

its right-hand side is zero, then an exact solution will always set the left-hand side to zero.

Multiply the left-hand side by some test function and then integrate over a domain.

The resulting integral is zero for a series of test functions. In the equation,

ffw(x,y)R(x,y)dA = 0
D

R(x,y) is the actual differential equation and w(x,y) is the test function.

To see how the weak formulation is developed, consider an example. Specifically,

consider a two-dimensional Poisson's equation with Type 1 (Dirichlet) and Type 2

(Neumann) boundary conditions. Call the domain R and the boundary r which has two

parts: r 1and r 2' r 1has Dirichlet boundary conditions and r 2 has Neumann boundary
conditions.

Poisson's equation is

2
V' u (x, y) +f(x, y) = 0 inR.

u(x,y) = res) on r 1where s is measured along the

boundary. These Dirichlet conditions are

also called essential boundary conditions.
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:nU(X,y) = h(s) -a(s)u(x,y) on r2where s is measured along the

boundary. Differentiation with respect to
n means the derivative normal to the

boundary and pointing out; that is

where n is a vector perpendicular to the

boundary and pointing out of R. These are

also called natural boundary conditions.

They are sometimes called suppressible

boundary conditions [23].

The test function w(x,y) must have first partial derivatives defined in the domain D

which includes Rand r. It is also assumed that the test function is zero on the boundary
r 1.Then, the equation for the weak formulation is as follows:

Ifw (x, y) (v2 u (x, y) + f(x, y) )dA = 0
D

Remembering that D is the sum of Rand r and noting that w(x,y) is zero on r1, the
equation becomes

IfW(x, y) (v2u (x, y) +f(x, y) )dA+ f (-: u (x, y) + h (s) - a (s) u (x, y» W(x, y) ds = 0
R r2 n

Now perform an integration by parts for the term w(x,y)V2 u(x,y).

2
w(x,y)V u(x,y) = v. (w(x,y)V u(x,y» -v w (x, y) .v u(x,y)

Substitute the result into the integral over the surface R. Then, use the Gauss divergence

theorem to turn the first term of the integration by parts into an integral over the boundary

r. Again note that only r 2 contributes because w is 0 on r 1by definition. n is the outward

pointing normal from the boundary. For the sake of brevity the (x,y) has been left out of
the function symbols.

f (wV u) .n)ds-If(V w.v u-wf)dA+ f (-~:+h(S) -a(s)u)w(x,y)ds = 0
r2 R r2

Notice that the first integral cancels the first term in the third integral. The gradient

of u dotted into the outward pointing normal is in fact the normal derivative. So after

making that cancellation, the equation becomes
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If (V w. V U - wf) dA - J(h (s) - a (s) u) wds = 0
R rz

The above equation is referred to as the weak formulation. Note that the natural or

suppressible boundary conditions are part of the equation. They do not have to be

explicitly "added in." With no Type 2 boundary conditions, h(s)=a(s)=Oand the equation
becomes

If(V w. V u - wf) dA = 0
R

The Galerkin Method

In the Galerkin approach, the solution is a linear combination of a set of M linearly

independent functions plus another function that satisfies all the essential boundary

conditions, Q(x,y). The index M ranges over all the finite element nodes that are not

constrained. The set of linearly independent functions is {<I>dx,Y),...,<I>M<'x,y)}and is

abbreviated as {<I>}.These linearly independent functions vanish on r l' The Galerkin
approximation to the solution as follows:

M

u(x,y) = Q(x,y) + L UlPj(x, y)
j = I

The {<I>}are the nodal basis junctions. These are not the elemental basis functions

discussed earlier; but they are assembled from the elemental basis functions, as shown in

Figure A.3. A basis function peaks at the node and drops to 0 at the neighboring nodes.

The figure shows why these functions are sometimes called hat functions.

Note that there is one basis function for every finite element node but that a finite

element node actually belongs to several finite elements. The nodal basis function for a

particular finite element node is the sum of all the elemental basis functions associated

with that finite element node with the additional requirement that the value at the finite
element node remain 1.

Note that at a non-boundary node (for example, node i in Figure A.3), the

coordinates are (xbYi)and u(x,y) is u(xbYi)or ui' This means that the coefficients in the
linear expansion are the values of the function at the finite element nodes. At a node

satisfying an essential boundary condition, the <I>/sare zero and u(x,y) is equal to Q(x,y).
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z

The finite element node in the center belongs
to six finite elements. The nodal basis
function <j)associated with that node is the
sum of all the elemental basis functions
associated with that finite element node with

the requirement that the value at the finite
element node is 1.

Here's how the nodal basis function is
constructed from the elemental basis functions.

+ =

Figure A.3. The Nodal Basis Function for a Node

Now substitute the Galerkin approximation in for u(x,y) in the weak formulation.

Take terms involving products of terms containing w(x,y) to the left-hand side and those

involving Q(x,y) or products that contain w(x,y) in only one term to the right-hand side.
The result is as follows:

M

.L (JfV w.v </IlA+ f aW</lls)u; = Jf(-V w.v Q+fw)dA+ f (-aQw+hw)ds
J =I R r2 R r2

The Galerkin method requires that the arbitrary function w be chosen from the set of <I>/s.

There are then M versions of the above equation, one for each possible choice of w. Let the

index i identify the equation with w =<l>i'Then, the ith equation is
N

.L (ffv </I;. V </IiA + f a</l;</Iis )u; = Jf(- V </I;. V Q + f</l) dA + f (- aQ</I; + h</l) ds
J =I R r2 R r2

This equation can be rewritten as a matrix equation as follows:
M

~ K..u. = d.
£.. IJ J I

j =I

or Ku = d

where

K.. = ff (V </I.) ·(V </I.)dA + f a</l.</I.ds
IJ I J I J

R r2

d. =ff <J</I.- (V </I.).v Q)dA+ f (h</l.-aQ</I.)dsI " I I
R G
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The finite element choices for ~ <1>1,...,<I>Nare piecewise polynomial functions that are

zero outside some small region of R. This ensures that K is sparse because Kij =0 unless

the regions where <l>iand <l>jare nonzero overlap.

The above equations calculate an assembled matrix element. That's because <I>

functions in the equation for Kij are the nodal basis functions, not the elemental basis
functions. This assembled matrix element is a sum of elemental matrix elements, with a

contribution from each finite element. To write down integrals for the elemental matrix
elements, one must use the elemental basis functions and then sum these elemental matrix

elements to get the assembled matrix element.

Assume that the surface is partitioned into nel finite elements. Then, the assembled
matrix element can be written as the sum of the elemental matrix elements over all the

finite elements. Note that the second sum is over the portions of the r 2 line segments in

the finite elements that have r 2 line segments.
neJ nd ne1

K.. = ~ k~.el) = ~ JJ V' N~el) . V' N~el)dA + ~ J aN~eI) N(el) dsIJ £. IJ £. I J £. I J
el =I el =I el eI =Ir;

An individual finite element contributes as many elemental basis functions as it

has finite element nodes. In the above equation, these Ns are indexed globally. That is, the

subscript on each N is the global index of the finite element nodes in the finite element

mesh. At each of the nodes in the element, one of the finite element's N functions has

value 1 and the others are zero. Specifically, on the ith finite element node in the eZthfinite

element, the function Ni(el)is 1. The hat function <l>iis the sum of all the N?I) , one from
each finite element that contains the finite element node i.

The load vector (the inhomogeneous term), like the matrix element, can also be

written as a sum. Again, the first sum is over the finite elements. The second sum is over

the portions of the r 2 line segments in the finite elements that have such.

neJ nd neJ

di = L diet) = L JJ (fNi(el) - V'a. V'Ni(el»dA+ L J (hNi(el) - aaNi(el» ds
el =I el =I el el =1£1'

The requirement on Q(x,y) is that it evaluate to a prescribed constant on r 1.

Choose for Q(x,y) a hat function built up from elemental basis functions that have their

maxima on the prescribed finite element node. Figure AA shows such a function, called

QjCx,y)whosemaximum is at finite element node j. The total Q(x,y) is thesum

a (x,y) = Lai (x,y)i
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where i goes over the finite element nodes on r 1.

z

The finite element nodej belongs to two
finite elements. The nodal basis function Q
associated with that node is the sum of all the
elemental basis functions associated with
that finite element node with the
requirement that the value at the finite
element node is 1.

y Here's how the nodal basis function is
constructed from the elemental basis functions.

Figure A.4. The Nodal Basis Function for a Node

An Example of Solving Poisson's Equation
This section evaluates the integrals that make up the definitions of the matrix

elements for a specific example. The example is Poisson's equation v2 u (x, y) = f(x, y) . The
section shows how the assembled matrix element is constructed from the elemental matrix

elements.

Assume that there are no Type 2 boundary conditions. This means exand h in the

equations discussed in the "The Weak Formulation" on page 118are both O.Also, assume

two dimensions and expand out the Cartesian form of the gradient. Now develop an

expression for the assembled matrix elements, Kij. Start with the following equation:

n./

(
aN.<el)aN.<el) aN~el) aN~el)

)
n./

K.. = "'" II -' _J +-' _J dA = "'" II(V N~el). V N~el»dA
IJ £.J ax ax ay ay £.J I Jel=1 el el=1 el

Using the expressions for the derivatives of N developed earlier, this becomes

Because the integrand is constant, the equation becomes
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K _ ~ (b,(el)b~el)+ C
(el) (el )

ij _ £.. J i Cj )
el =1 4A (el)

Note above that the vectors b(el)and c(el)have as many components as nodes in the

element. With triangular elements, these vectors have three components. The indices of

these components, however, do not go from 1 to 3, but rather are global over the entire
finite element mesh.

Elemental Matrix

A finite element contributes an elemental matrix to the assembled matrix. A

triangular finite element would contribute a 3x3 elemental matrix

For example, Figure A.5 shows six finite element nodes. Here each finite element
contributes a 3x3 elemental matrix. The assembled matrix elements for finite element

nodes that exist in more than one finite element get local contributions from the elemental

matrices they exist in. For example, the diagonal assembled matrix element K77gets
contributions from each of the six finite elements that contain finite element node 7 as one

of its vertices.

As a more detailed example, consider the elemental matrices associated with finite

elements (2)and (3). Superscripts indicate the finite element from which the matrix

element comes. The elemental matrix associated with finite element (2) (with indices 1,2,

and 7) is

[

k (2) k (2) k (2

J

11 12 17

k(2) k(2) k(2)21 22 27

k(2) k(2) k(2)71 72 77

The elemental matrix associated with element ill (with indices 2,3, and 7) is

The assembled matrix is the sum of the contributions from each elemental matrix. For

example, the assembled matrix element K27 is k~~)+k~j).
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z

The lines connecting finite element nodes denote
off-diagonal global matrix elements. (This turns out
to be true only for a triangular mesh.) For example,
the line connecting finite element nodes 2 and 7
denotes K27.There is a direction associated with the
line, but K27equals Kn, so directions are not shown.

y

The line connecting nodes 2 and 7 exists in two finite

elements, (2) and (3). Hence, the assembled matrix

element K27is the sum of1c~~)from element (2) and

~~;)fromelement (3). Here the superscripts indicate
the element number.

3
The indices of the 3x3 elemental matrix are treated as

global. That is, the rows and columns for element (3)
have indices 2, 3, and 7

Elemental matrix indices for
element (3).

237

~I
Figure A.5. Finite Element Nodes 1 through 7 with Elements I through VI

This method of constructing the assembled matrix can be written as follows:

n~l n

K = L k(el) = i (b(e/)b(e/)T +c(el)c(e/)T)
el= 1 el= 1 4A (el)

Note that the right hand side is a sum of 3x3 matrices, but the answer is a matrix of larger

order because the indices on the 3x3 matrices are global. Also note that the vector

products in the above equation are outer products.

The above equation is the form used in the computations. The elemental matrices
are formed and then fed into the assembled matrix.

The Right-Hand Side

Now consider the right-hand side. Again, because there are no Type 2 boundary

conditions a.=h =O. Then,

n./

dj = L ff (fNj(el) - V Q. V Nj(el»)dA
el=I el
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For ease of computation, rewrite this equation as a vector equation. The vector N<el)

consists of the three elemental basis functions associated with the triangular finite element

el. If the finite element has indices i,j, and k,

Now consider the first term in the integral (the one without the Q).

net

L ffN(el)/dA
el =1 el

This is a difficult integral to perform becausef is a function of x and y. To make the

integral easier, approximatef in a finite element as

This approximation is called the linear interpolant off. The vectorfel) has three

components, the value off at each vertex of the triangular finite element. This vector is a

constant and can be taken out of the integral.

nel net

L ffN(el) N(el) TldA = L <ffN(el) N(el) TdA)/el)
el =1 el el =I el

The integral in parentheses is a constant. The result of evaluating the integral (which is not
easy) [5] is

(eI)

[

2 1

~
L <ff N(el) N(el) TdA)/el) = LA 12 1 2 1 /el)
el el el 1 1 2

The actual indices offel), however, are the global indices. So when the sum over the finite

elements is performed, one sums the components offel) that have the same index.

Now return to the expression for di and examine the second term in the integral.

net

- L ffv a.v Ni(el)dA
el = 1 el
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Herethe sumis overonlythosefiniteelementsthathavea r I boundary.The i mustbe one
of the indices of the finite element that has the boundary finite element node as one of its

indices. For each finite element, the Q is the sum of Nj where j runs over the indices of the
finite element nodes on the r I boundary that are in that finite element.

An Example of Constructing Matrix Elements

This section shows how the equations developed so far are used to calculate some

specific matrix elements for a specific grid. The grid is shown in Figure A.6. This section
calculates the matrix elements that link finite element node 4 with the other finite element

nodes.

106 ~,,,,,,

105 ...-
/

104 /" 3
The dotted lines indicate a r I boundary. The

numbers in parentheses denote the finite element.

Finite element node 4 is in six finite elements. Four
of those finite elements contain a finite element node
on the boundary.

102 ~\

\\
..

WI ).
"""

100."

2

Figure A.6. Grid Used to Calculate Example Matrix Elements

Finite element node 4 has the value U4and is connected to six finite element nodes.

The finite element nodes 1, 2,and 3 have unknown values; they are uI, U2,and U3.The

finite element nodes 102, 103, and 104 have constrained values; they are c102,C103,cI04.

The fourth row of the matrix-vector multiplication Ku is

K41 is an assembled matrix element that comes from the elemental matrix element k~;)and

k~:)from finite elements (2) and (3); K42 is assembled from kJi) and kJi), etc. For

example,
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Now construct the right-hand side. d4 has again contributions from six finite

elements. This means that in the first of the two terms making up the right-hand side, there

are six vectors/e£). Each ofthese vectors has three components, one for each of the finite

element nodes in each of the six finite elements. For example,

A (el)

l

2 1

~

(el) _A (1)

l

2 1

~ ~

/4

j

A (2)

l

2 I

~ [

/4

]

A (3)

l

2 1

~ ~~

A (4)

l

2 I

~ ~j
L12 1 2 I f - 12 I 2 1 1102 + 12 I 2 I 11 + 12 I 2 1 12 + 12 1 2 I h
el 1 1 2 1 1 2 1103 I I 2 1102 1 1 2 11 1 1 2 12

To pick out the contributions to d4, sum the appropriate components after the

matrix-vector multiplication; each finite element contributes its first component from the

previous sum to give

A(I) A(2) A(3) A(4)

12 (2/4 +/102 +/103) + 12 (2/4 +11+/102) + 12 (2/4 +12+/1) + 12 (2/4 +13 +/2)
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To carry the example a little further, assume thatfis defined as F at all finite element nodes

and that the areas of all finite elements are equal. Then,

A
12(4+4+4+4+4+4) F = 2AF

Now consider the second half of the right-hand side. Finite element node 4 is

connected to four finite elements that contain a finite element node on the boundary. These

are finite elements (2), (1), (6), and (5). For Q, take the sum of the elemental basis

functions at each of the constrained finite element nodes multiplied by the value at that
constrained finite element node.

net

~ II (el) I I (I) (I) I I (2) (2)
- £.. V n. V Nj dA= -(clO2 V N102 · V N4 dA +clO2 V N102 · V N4 dA)

el = 1 el (I) (2)

II (I) (I) II (6) (6)
-(cI03 V N103 · V N4 dA +c103 V NlO3 · V N4 dA)

(I) (6)

I I (6) (6) I I (5) (5)
-(clO4 V N104. V N4 dA +clO4 V N104. V N4 dA)

(~ (~

This equation can be rewritten in terms of matrix elements as follows:
n./

- L IIV n.v Nj(el)dA = -(K4.I02CI02+K4.103CI03+K4.I04CI04)
el= 1 el

pfThe complete equation is then

This is one of the many equations defining the solution of Poisson's equation on a finite

element mesh. The complete set of equations is denoted by the matrix equation Ku=d.
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Another Way of Accounting for Type 1 Boundary Conditions

It is interesting and informative to point out that there is another way of arriving at

the sameset of equations. This is the method used in [5]. Assume that instead of
M

U(x, y) = Q (x, y) + L uj$j (x, y)
j= I

one substitutes

N

U(x, y) = L uj$j (x, y)
j = I

into the partial differential equation. But now the sum is over the entire set N of finite

element nodes, even the constrained ones.

Onceagain,considerthe matrixequationKu = d. But nowfor d, only includethe

first term on the right-hand side, not the term containing Q. In the previous section, this

term was 2AF. The matrix equation now reads
N

~ K..u. = 2AF
£.. IJ J

j=O

Then, to incorporate a Type 1 boundary condition at finite element node i, set ui to cb the

constrained value. Set di to this constrained value. Then, set the matrix elements in row i

to zero except for Kii which is set to 1. The ithequation becomes

However, notice that now the symmetry of the matrix is destroyed. The symmetry

can be regained by ensuring that the off-diagonal elements in the column whose diagonal

element was set to 1 are also zero. Do that with row operations.

Toset a particularcolumnelementto zero,multiplythe row whosediagonalwas

setto 1by thenonzerocolumnelementtargetedto be zero andthensubtractthe result

from the row containing that column element. Do this for all column elements in the

column whose diagonal was set to 1.

One must, of course, be careful to subtract the appropriate terms from the load

vector, the right-hand side of the equation. Consider the following example, The equation

is a 4x4 matrix vector equation with u2 constrained to the value c2. Hence, K22 is set to 1
while the other elements in the row are set to O.
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To set KI2 in the matrix to zero, multiply row 2 by KI2 and then subtract that row

from row 1. The result is that K12becomes zero and the other elements in row 1 are

unchanged. We have to be careful, however, to subtract K12c2from the first element of the

right-hand side vector to retain the equality. The matrix vector equation below also shows
the terms that must also be subtracted from the third and fourth terms of the load vector.

To see how this develops for more than one boundary condition, assume now that

ul is constrained to be cl. The result is that KII becomes 1 and the other elements in row 1

and in column 1 become zero. Setting the other elements of column 1 to zero required

modification of the right-hand side as follows:

Notice that the matrix equation now contains on the right-hand side the terms that

would have developed if the second right-hand side term (the one containing Q had been

retained). The difference is that the matrix is larger, containing explicit equations that

define the Type 1 boundary conditions. In the previous method, the matrix would have

been 2x2 instead of 4x4. It would not have contained the rows and columns that just have

1 on the diagonal.
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The Solution

Solving the matrix equation developed in the previous sections results in the

solution vector, u. This vector has as many elements as there are finite element nodes.

Each element of the vector is the value of the solution at the finite element node. Uiis the
solution at the node i. These values are also the coefficients used in the Galerkin

approximation as follows:
M

u (x, y) = n (x, y) + L u/I>/x, y)
j = I



Appendix B
Exact Solution of
Laplace's Equation

Introduction

This appendix presents an exact, analytic solution of Laplace's equation in

continuous space. The purpose of this appendix is to compare this exact solution with the

answer obtained using finite elements and the conjugate gradient method.

Statement of the Problem

Laplace's equation is a special case of Poisson's equation, which is as follows:

v2 u (x, y) +f(x, y) = 0

Whenf(x,y) is zero, it is Laplace's equation. Assume that it is to be solved over a

two-dimensional square whose side is 1. Also no type 2 boundary conditions and assume

the following type I (Dirichlet) boundary conditions:

u(x,O) = u(x,l) = 0 0 < x < 1
u(O,y) = u(l,y) = 100 0 ~ y ~ 1

FigureB.3 showsthe domainoverwhichthe equationis to be solvedalongwith
the boundary conditions. This domain is divided into 200 finite elements.

Solving the Equation
Notice that Laplace's equation is an elliptic partial differential equation. Use the

separation of variables technique. Assume that the solution u(x,y) can be written as

where Uxdepends only on x and uy depends only on y. Substitute this value for u in

Laplace's equation, then divide by UxUyThe result is

133
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a2UX a2Uy- -
aX2 = _ai

Ux Uy

Because one side of the equation depends only on x and the other only on y, they

can only be equal if they are both equal to the same constant, which is called the separation

constant. The result is that the two-dimensional differential equation can be written as two

one-dimensional equations.

Now, for each equation, assume an exponential solution and solve the characteristic

equation. The result is that a solution of Uxis a linear combination of exponential functions

and a solution for uy is a linear combination of sinusoidal functions.

First modify the boundary conditions as shown in Figure Rl. That is, arrange that

one set of edges is constrained to be zero [17]. These are the y edges. The problem is

unchanged, but you must remember to add 100 to the solution.

o -100

100 100

o

o o + 100

The boundary conditions are as shown in the left square. The y edges are constrained to 100 and
the x edges (except for the corners) are constrained to O.It's a little easier to apply to boundary
conditions to the general solution if an edge is all zero. So -100 is subtracted from every point,
resulting in the square on the right. Then 100 must be added to the solution.

Figure B.I. Offsetting the Boundary Conditions for Easier Application
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Now consider Uxand write it as a linear combination of a sine and a cosine. The

modified boundary conditions state that u must be zero at x=0 and x=1. This means that we

can drop the cosine term from the solution and

Here n is any integer. The solution for uy can be written as follows:

To satisfy the remaining boundary conditions aty=Oand y=1,first write the solution

as the product UxUyBecause the boundary condition is a constant at constant y and any x,

show the solution as an infinite series. Absorb the constant A2 from Uxinto cn-

~ n1ty -n1ty.
u(x, y) = £.., Cn(A3e + A4e ) smn1tx

n =\

Because of the boundary conditions, the term in parentheses must be the same for

y=0 and y=1; these are the x edges, and both are -100. In the following equation, the

right-hand side is the value of the term at y=Oand the left-hand side is the value of the term

at y= 1.

Solving for A4, you get

A _ -A3(l - en1t
)

4 -
1 - e-n1t

After substituting this value for A4 in the expression for u(x,y) and then absorbing A4 into
cn' u(x,y) becomes

~ n1t

~ (n1tY (l-e ) -n1tY)u(x, y) = £.., Cn e + -n1t e sinn1tx
n=\ e-l

At y=0 or y=1, the equation must equal -100.
~ n1t

~ (n1tY (l - e ) -n1tY)u(x,O) = u(x, 1) = £.., cn e + -n1t e sinn1tx = -100
n=\ e-l
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Now need to get an expression for cn' the one remaining constant. To do that, make

use of the orthogonality of the sine functions. Multiply both sides by sinm1tX.Integrate over

the period of the sine in x, which is 2. When the function is undefined for x > 1, the only

nonzero part of the integral is from 0 to 1.
I

f sinn7txsinm7txdx = ~o
2 nm

o

where ()is the Kronecker delta. This property brings out cm' Then relabel m to n.

(
e-n1t_en1t»

)
I

Cn -n1t = -2f 100sinn7txdx
e -1 0

After evaluating the integral, solving for cn' and then substituting that value into the

infinite series form of u(x,y) (now remembering to add 100), u(x,y) can be written as

00 -200 en1tye-n1t_ en1tx+ e-n1ty_ e-n1tyen1t
u(x,y) = ~ - (1- (_l)n) sinn7tx+ 100£.. n7t -n1t n1t

n= I e -e

Graphing the Solution
To graph the solution, first set up a two-dimensional grid with 11nodes in each

dimension. The x coordinates range from 0.0 to 1.0 in increments of 0.1. The y coordinates

have the same range. The total number of points is then 121.

For each of the 121points, put the coordinate values in the expression for u(x,y) and

sum 225 terms. Figure B.2 is a graph of u(x,y) calculated this way. The value of u(x,y) is

shown as a surface over the xy plane.

The solution is shown as a

surface over the xy plane.

u( x, y)

Figure B.2. Solution of Laplace's Equation (Infinite Series)
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Finite Element Method

The finite element method is used to solve the same problem solved analytically in

"Solving the Equation" on page 133.Consider the same two-dimensional square and divide

it into 200 triangles as shown in Figure B.3. The boundary conditions are also the same as

shown previously.

9

8
7

6

u = 100 5
4

3
2

1

120 The square is divided into 200 triangles.
There are 20 triangles in each of the 10
columns. There are 11 nodes in each of
11 columns, making for 121 nodes.

The vertices of the first triangle in the
u =100 first column are 0, 11, and 12.

The corner nodes (0, 10, 110, and 120)
are constrained to be 100.

u=O

Figure B.3. The Surface Divided into Finite Elements

This problem was divided over four compute nodes as shown in Figure B.4. The

figure shows two of the resulting alias groups. The solution is shown in Figure B.5.



u = 100

4
compute
node2 3

2
I

compute
node 0

compute
node 3

u =100

compute
node I
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The square with 200
triangles divided among
four compute nodes.

Two of several alias

groups are shown.One
contains finite element
node 5 on compute node 0
and finite element node 0
on compute node 2. The
other contains a finite
element node from each
compute node.

Notice that the finite
element nodes are
numbered locally.

Figure B.4. The Surface Divided Among Four Compute Nodes.

100

90

80

70

60

50
40

30
20
10

o
-10
1.0

The solution is shown as a surface

over the xy plane.

Figure B.5. Solution of Laplace's Equation (Finite Element)



Appendix C
The Conjugate
Gradient Method

This appendix lists the stepsof the conjugate gradient method. The discussion

follows the organization in the text by GeneGolub and James Ortega [15], but with a

slightly different notation.

The conjugate gradient method is an iterative method for solving the matrix

equation Ax =b where A is the matrix of coefficients, x is the unknown vector, and b is a

constant load vector. The iteration is carried out until the residual is less than a prescribed

epsilon. The residual is defined as

residual = b - Ax

1. Make an initial guess for x and call it xo. 0 is an acceptable guess; set all

elements of x to xo.

2. Set the initial value of the residual to residual(l) =b -AxO.Thesuperscript
in parentheses indicates the iteration number, which is initially 1.The value

of residuaz{l) is b if the initial xo is O.Check if the maximum element of

residuaz{l) is less than epsilon and if it is, stop.

3. Form p(l), which is the square ofthe residual. p(l) =residual(l). residua(l).

4. Formg(l), the initial search direction. Setg(l) =residuaz{l).

5. Now start the iteration. In the steps below the superscript k indicates the

iteration number, which is initially 1.

A. Form A~k) = Ag<k).This is athe matrix-vector multip1cation.

B. Form 'A<k)= p<k)/(g<k) .A~k». This is the dot product.

C. Use 'A,(k)to update the solution vector, x(k+l) =x(k) + 'A,(k)g(k). This

step updates the solution vector; it is a daxpy.

139
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D. Calculate residuaZ(k+ 1) = residuaZ(k) _A(k) A (k) , the newg
residual. Check if the maximum element of residuafk+ 1)is less than

epsilon and if it is, stop. The following equation shows how the

expression for residuaZCk+1)develops from the residual's definition

and the updated solution vector. This step updates the residual; it is

another daxpy.

.
d l (k+l) b A (k+l) b A( (k) ~(k) (k»

res, ua = - x = - x + /I. g

b - Ax (k) _ A.(k) Ag (k) = residual(k) _A.(k) A (k)g

E. Save the old pCk)as pcik);that is, set pcik)=pCk).

F. Now form a new residuaZCk+1)squared, based on the new

residuafk+l) calculated in Step D. That is, set

pCk+l) =residuaZCk+1) . residuaZCk+1).This step is the other dot

product.

G. Form ~Ck),the ratio of the residuaZCk+1)squared with its previous

value, ~Ck)=pCk+1)/pcik) .

H. Update gCk+1); that is, set gCk+1) =residuazCk+ 1) + ~Ck)gCk).This step

updates the search direction; it is a daxpy.

I. If the iteration count is less than some pre-determined value, return

to Step A. Ideally, you leave the loop when the answer is less than

epsilon, but the count is there to prevent hangs.

The description in Golub and Ortega [15] uses a slightly different notation. The
differences are listed below.

residual ~ r

g~p
').,~-a

After the initial setup, each loop contains one matrix-vector multiplication, two dot
products, and three daxpys.



Appendix D The NAS Benchmark

Introduction

The Numerical Aerodynamic Simulation (NAS) Conjugate Gradient (CG)

benchmark [3] uses the power method to find an estimate of the smallest eigenvalue of a

symmetric, positive definite sparse matrixA. This matrix has a random pattern of nonzero
values.

Assumptions
First, assume that a sparse symmetric positive definite matrix B has a set of n

linearly independent eigenvectors xl, X2, ...,xn with eigenvalues AI>"-2,...,"-n.Then,

Bx = Ax

Also, assume that the eigenvectors are normalized so that the infinity norm is 1. The

infinity norm is defined as the absolute value of the largest component of a vector. For
example the infinity norm of the m-dimensional vector v is

IIvlloo= I where

Finally, the eigenvalues are ordered by size, and the largest eigenvalue is distinct. Note that

because the matrix is positive definite, the eigenvalues are positive [36], and it is not
necessary to specify that their absolute values are used.

Power Method

The power method is an iterative procedure for finding AI, the largest eigenvalue.

The remainder of this section (not the entire appendix) describes this procedure.
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1. First make an initial guess for x l' Call this initial guess v(O).With the NAS

CG benchmark, the initial guess is all ones.

(0) _ [ :l
V-I, 1,..., !.J

2. Becausetheeigenvectorsare linearlyindependent,v(O)can be writtenas a

linear combination of the eigenvectors such that the coefficients are not all
zero.

n

(0) _ ~ ax ,'v-£.. I
i= 1

3. If both sides of this sum are multiplied on the left by the matrix B, what

results is a sum whose elements are B times an eigenvector. Define this as

iI). Each element in the sum can then be written as the eigenvalue times its

eigenvector as follows:
n n

z(l) = Bv(O) = B ~ ax. = ~ a.Ax.£.. , I .L..J" I
i= 1 i= 1

4. What the benchmark provides as starting data, however, is B-1, not B. So set

A = B-1. Then, solve the following equation for z(1)using the conjugate

gradient method. This step describes the major portion of the calculation.

5. Now set the absolute value of the largest element of z(1) to III and form v(1)
as follows:

(I) z(l)v =-
III

so that

If k is the iteration number, Ilk ~ Al as k ~ 00. Al is the largest eigenvalue

of B and the smallest eigenvalue of A where A is the given matrix. So the

power method solves for the smallest eigenvalue of A.

Output
The NAS CG benchmark specifies performing the power method iteration 15

times. That is, k goes from 1 to 15. At each iteration k, one must calculate Il, the Aitken

extrapolation of the last three iterates.
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At eachof the 15iterations,oneprintsthe following:k (the iterationnumber),J.L

(the Aitken extrapolation), and IIr II(the Euclidean norm of the last conjugate gradient

residual vector). The Euclidean norm is defined as
n 1/2

IIrll = CL r~)1=1

The Matrix A

A is symmetric, positive definite, and sparse. It is of order 14000 and has 1 853 104

nonzero elements. The benchmark provides a Fortran program that generates A. A test
version has order 1400.

The sparse matrix storage scheme is called compressed row.The matrix A is stored

in three one-dimensional arrays. These arrays are a, rowidx, and colstr. Figure D.l

illustrates this sparse storage scheme.

rowidx

An array containing the actual elements of A. The elements

are grouped by column. That is, a contains all the A elements

in one column followed by all those in another column.

Lower number columns appear before higher number
columns. The elements with the same column number have

different row numbers, and these are not sorted.

An array containing the row indices of a. That is, rowidx[i]

contains the row index (in A) of a[i].

An array containing the index of a that begins the column
whose number is the index of colstr.

a

colstr

For example, consider column i.1f colstr[i+1] - colstr[i] is nonzero, then column i

has colstr[i+1] -colstr[i] nonzero values, and colstr[i] is the index of a that contains the
first nonzero value in column i.

That is, the first nonzero element in column i is a[colstr[i]],and its row index is

rowidx[colstr[i]].Its location in the matrix is A[rowidx[colstr[i]][i].The second nonzero

element in column i (if there is one) is a[colstr[i] + 1]. Its location in the matrix is

A[rowidx[colstr[ll + 1] [i].
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o 1 2 3 4 5 6 7 8 Index

o o o o 2 2 2 4
colstr

o 1 2 3 4 5 6 7 8 Index

· Because colstr[1]-colstr(O] is 0, column 0 has only zero terms.

· Because colstr[2]-colstr[l] is 0, column 1 has only zero terms.

· Because colstr(3]-colstr(2] is 0, column 2 has only zero terms.

· Because colstr[4] -colstr[3] is 1, column 3 has one nonzero term. Its value is a[colstr[3]] (which
is a[O]) and it has matrix location A [rowidx[colstr[3]]][3], which is A [96][3] =0.07.

· Because colstr[5] -colstr(4] is 1, column 4 has one nonzero term. Its value is a[colstr(4]] (which
is a[l]) and it has matrix location A [rowidx[colstr[4]]][4], which is A [92][4] =0.04.

· Because colstr[8] - colstr[7] is 2, column 7 has two nonzero elements. They are at a[colstr(7]]
(which is a[2]) and a[colstr(7]+1] (which is a[3]). Their locations are A[rowidx[colstr[7]][7]
(which is A [96][7] =0.05 and A [rowidx[colstr[7]+1][7] which is A [98][7]=0.32.

Figure 0.1. Sparse Storage Scheme for Matrix A

Here is an algorithm (shown as C code) that prints out the elements of A. In the

code, aorder is the order of A, the number of rows (which is also the number of columns)
inA.

0.071.04J. 0.051 0.321 0.321 0.031 0.041..0.291 0.44 I

... I a

AI9tl3J \

A[96][3] =0.07

A[92 [4] A[92][4] =0.04
A[96] [7] =0.05

A[96][7] A[98] [7] =0.32

A[9 ][7]

96196193190196 I 98 I ... I rowidx
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for(j=Oi j<aOrderi j++) {

myacol = ji

for(i=colstr[j]i i<colstr[j+l] i i++) {

myarow = rowidx[i]i

aval = a[i]i
printf("A(%4d,%4d)= %7.5f\n",myarow,myacol,aval)i

The consequence of this storage scheme is that a[]and rowidx[]must have a length that is

equal to the number of nonzero elements in A. colstr[] must have a length that is equal to

one more than the order of A. The final value of colstr[],which is colstr[aorder] (indexing

starts at 0) is such that colstr[aorder] -colstr[aorder - 1] is equal to the number of nonzero

elements in the last column of A, whose column index is aorder -1.

Row Decomposition of A
All the values of A do not appear on every node. A is distributed over the compute

nodes. Deciding how to partition A can affect the performance of the algorithm.

The example here distributes A by rows over the compute nodes. How many rows

each compute node gets is determined by the routine geCrangeO. This routine attempts to

divide the rows equally among the compute nodes. If the number of compute nodes does

not divide the number of rows evenly, each compute node beginning with compute node 0

gets an additional row until all the rows are used up.

For example, if 1400 nodes are divided among 13compute nodes, compute nodes

o through 8 each get 108 rows (9 * 108=972)and compute nodes 9 through 12get 107

rows (4 * 107=428).
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Index

A

Aitken extrapolation
NAS CG 142

alias group 64
characteristics 19
construction 62, 66
definition 18, 57
inefficient for NAS matrix 90
information needed for construction 64
NAS has long messages 91
NAS has unneeded additions 91
shared memory 19, 57
steps for making vector coherent 68
symmetric 112
used when making vector coherent 112
weakly coherent 19, 57

alias list
definition 66
points to linked list 66
used to calculated send and receive lists 67

aliasing
still works for random matrix 85
takes advantage of non-randomness of

matrix 85

Amdahl's Law
definition 16

assembled matrix 74
definition 9
maClocaLassemble() 74
mcomb() 74
mlist() 74
not formed explicitly 9

151

B
balanced secretaries

definition 94, 95
NAS CG small 106

barrier synchronization 38

basis function
as many as there are equations 3
associated with node 3
characteristics 3
coefficient is value at node 3
nodal 120
zero on boundary 3

BBN 11

bisection width
characteristic of network topology 12
definition 12
hypercube 13

boundary conditions
Dirichlet 6
natural 119
suppressible 119
Type 1118
Type 2 118

broadcast
more efficient for random matrix 85

c
cache use

memory allocations for efficient use 104

coherence
definition for alias group 21
example of making vector coherent 69
steps for making vector coherent 68



coherence operation 112
definition 58
example as sum 66
performed by secretary 67
steps for making vector coherent 69

coherence time
definition 102

communication
overlap with computation 18

compressed row
sparse storage 143

condition number
definition 36

conjugate gradient
choosing search direction 35
convergence 83
definition 34
iterative method 19
minimizing function 34
NAS CG 86, 142
non-random matrix 56
non-stationary 34
parallel 55
positive definite matrix 34
preconditioning 36
residual 35

search directions are A-orthogonal 35
search directions defined 34
serial 34
unstructured domain 56

Connection Machine CM-200 11

Connection Machine CM-5 11

constraints

add_constraints() 81

contention

message passing 102

control parallelism
definition 39
example of tree search 39
manager node 39
manager/worker decomposition 39

convergence
conjugate gradient 83
gte() 84

cost/performance ratio 13

Cray-1 10
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Cray-YMP 10

D

data parallelism 18
definition 38
parallel iterative 48

diameter

characteristic of network topology 12
definition 12

direct methods
parallel 39
serial vs. parallel 39

directed graph
definition 5

Dirichlet boundary conditions
definition 6
finite element triangular grid example 64

discretization
partial differential equations 2

dot product
definition 59
global sum 77
Kuck and Associates, Inc. 79
single processor implementation 77
time increases with number of compute

nodes 102

drop tolerances 27

E

eigenvector
linearly independent 142

elemental basis functions
definition 116
linear 114
solution over element in terms of 114

elemental matrix 124
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elimination tree
construction algorithm 42
definition 40
definition as algorithm 41
effects of reordering on 41
example for tridiagonal matrix 40
example of construction 43
parallelism at bottom 47
short broad vs. tall thin 41
tridiagonal matrix 43
two-dimensional graph 46

epsilon
conjugate gradient 100, 139

Euclidean norm 143

fully-connected network 13

G

F

Galerkin method
definition 120
weak formulation 121

Gauss divergence theorem 119

Gaussian elimination
full pivoting not used 26
pivot element 25
remaining submatrix 25
see LU factorization
serial direct method 24

stable with partial pivoting 25
stages 25

Gauss-Seidel method
checkerboard ordering 54
compared to Jacobi 52
component form 32
matrix form 33
parallel 51
red-black ordering 54
serial 32
sparse 51
update equation 52
update order forces serialization 51
when to update guard 54

gdsum()
used in dot product 101

good locality 111

grid
finite difference 2
partitioning 62
structured 4
unstructured 4

grid refinement
no need for global renumbering 112

guard buffer
definition 53

guard buffers 111

field node
definition 62

fill-in
confining 27
definition 26

finite difference
definition 2
derivative approximation 6

finite element
assembled matrix 9
basis functions 2
clique storage 9
definition 3, 114
dissection of mesh 47
elemental matrix 9
grid 9
mesh 3
solution segment 114
triangular 3
unassembled matrix 10
values at non-nodal positions 3

fixed grain speedup 17

flat interconnect
definition 13

Flynn taxonomy 11
not distiguish between shared and

distributed memory 11

frontal method
definition 28, 44

full pivoting 26

H

hat function 122
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hypercube
bisection width 13
dimension 13
expansion 14

L

i860
performance 13

incoherence

definition for alias group 21

infinity norm
definition 141
NAS CG 141

integration by parts
used in weak formulation 118

iPSC 13

L2 norm
used in condition number 36

Laplace matrix
diagonal scaling does not help 37
percentage nonzero 1

Laplace's equation 51, 111
definition 5, 51
finite difference approximation 52
Gauss-Seidel method 54
grid decomposition 53
parallel Jacobi 52
sparse matrix 51

Laplacian
definition 6

linear interpolant
definition 126

load balancing
definition 17
dynamic 17

load vector 122

local indexing 112
ability to refine mesh 56

locality
definition of good locality 85

loosely synchronous
definition 2

low node number secretaries
creates bottleneck for NAS CG 95
definition 95

LU factorization
back substitution 24
definition 24
forward elimination 24
forward reduction 24
row operation 25
see Gaussian elimination
stages 25

iteration matrix
definition 31
matrix decomposition 49
parallel 49

iterative method
faster than direct 30
less storage than direct 30
parallelization 30

iterative methods
parallel 48

J

Jacobi method
broadcast vector 49
compared to Gauss-Seidel 52
component form 32
dense matrix 49
matrix form 32
matrix-vector multiplication 49
parallel 38, 49
serial 31
steps of 50
update equation 52

M

K mailbag
sending around a ring 66
used to construct alias list 66

Markowitz criterion
definition 27

Kuck and Associates, Inc.
dot product 79



matrix
elements distributed 56
partial differential equation 2
sparse for partial differential equation 2
structure 85

matrix element
assembled 122
elemental 122

matrix-vector multiplication 82

mesh routing chip 15

messages
long messages desirable 53

MIMD
definition 11

MISD
definition 11
example 12

mkpart
creates partition 99

MRC15

multicomputer
definition 1

multifrontal method
compared with frontal 44
extension of frontal method 30
generalization of frontal 44
parallel 44
tridiagonal matrix 44
two-dimensional graph 47

N

NAS CG

algorithm for determining field node
location 87

benchmark 86
compute node 0 has only one nonzero

column 90
global vs. local index 88
modifications to aliasing 93
nonzero columns for sample problem over

six compute nodes 90
number of nonzero elements in matrix 86
order of matrix 86
pseudocode 105
random matrix 86

sample partitioned over six compute nodes
90
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NAS CG benchmark
has random matrix 85

NAS matrix
diagonal element nonzero 87
does not have good locality 86
limiting case 92
percentage nonzero 1

nested dissection
definition 45
one dimensional graph 45

no zeros
definition 94
NAS CG small 106

node
service 99

node dependence
existed in early versions of vcombO 104
reasno for not apparent 102

non-stationary methods
definition 34

norm 141

NUMA
definition 12

Numerical Aerodynamic Simulation, see NAS
CG

o
ordering

changing to reduce fill-in 26
definition 26
grid 5

ouLsendlist
pointers offsets into allocated chunk 104
used by vcombO104

owner-computes method 59

p

Paragon
MIMD 11
two processors 18
used for this work 12

Paragon supercomputer
logging in 99



Paragon XP/S 11

parallel computers 10

partial pivoting 25

partition
compute node 99

pivoting
definition 25
full 26
operations 25
partial 25

Poisson matrix

diagonal scaling does not help 37

positive definite matrix
conjugate gradient 34
positive eigenvalues 141

power method
steps of 141
used in NAS CG 86

preconditioning
definition 36
diagonal scaling example 37

pull-in
definition 20, 57
parallel 58

R
random matrix

definition 85

receive buffer
used by receive list 70

receive list
calculated from alias list 67
definition 67
example 68
need for 67
steps for making vector coherent 69

reordering
goal more than fill reduction 39
makes non-random nature apparent 85
serial vs. parallel 39

residual 82
definition 118, 139

row decomposition
NAS CG 86
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s
scalability

definition 13

scaled speedup 17

secretary 112
choosing 59
definition 59
perform coherence operation 67
steps for making vector coherent 68

send buffer
used by send list 70

send list
calculated from alias list 67
definition 67
example 68
need for 67
steps for making vector coherent 68

send_corres
used by vcombO to decrease node

dependence 104

Sequent 11

service node
definition 99

service partition
contains service nodes 99

shadow buffer
definition 53

shared memory
parallel computer 11

SIMD
definition 11

similarity transformation
definition 36

single bus network 13

Single Program Multiple Data, see SPMD 38

SISD
definition 11

solution segment
approximation to 115
definition 114

sparse matrix
storage 30

sparsity structure of matrix
definition 42



spectral radius
definition 36

greater than 1 means convergence 31

speedup 15
Amdahl's Law 16
fixed grain 17

splitting matrix
definition 36

SPMD program
definition 38

stationary methods 31
definition 31

structure
matrix 85

structured grid 4

substructuring
compared to nested dissection 47
definition 47

successive overrelaxation method
component form 33
matrix form 33
optimal co33
serial 33

supernodes
definition 46
matrix blocks 47

Symmetry, Sequent
MIMD 11

systolic array
MISD 12

T

TC2000 11

topology
characteristics 12
definition for network 12

tridiagonal matrix
column elimination is serial 40
elimination tree 40
no fill-in 39-40
no parallelization 39-40
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U

UMA
definition 12

unassembled matrix
definition 10

unstructured grid 4

unstructured matrix
definition 56

V

vcombO
modifications due to no zeros 95

vector component
aliased 57
distributed 56
incoherent 57

VLlW
definition 11

w
weak formulation

definition 118

weakly coherent 19

weakly-coherent, shared memory 111

weight function
definition 118

weighted residuals
method of 117
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