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Abstract

HDVS:

A Multi-Input Heterogenous Data

Visualization System

J ames Robert Blakely, M.S.

Oregon Graduate Institute of Science & Technology, 1996

Supervising Professor: David G. Novick

Data visualization is the use of visual techniques to represent different types of data.

While specific tools are available for visualizing and animating data, there are limita-

tions associated with many of them, the most notable of which is the close integration of

the data-generation and visualization aspects into one system. This thesis describes the

Heterogeneous Data Visualization System (HDVS), a next-generation data visualization

system that separates these two fundamental components and supports heterogeneous

data types, multiple data inputs and interactive viewing windows, resource distribution,

and hardware independence. With HDVS, users overcome the limitations of integrated

visualization systems because the data generation has been decoupled from the data vi-

sualization system. This separation enables greater flexibility in visualizing data, as well

as a system that is easier to extend and modify.

ix



Chapter 1

Motivation

Data visualization is the use of visual techniques to represent different types of data [23].

The data can take any form but are most often numeric based. The method of visualization

can range from a simple bar chart to a complex multi-dimensional animation. Data

visualization enables one to absorb information from large data sets easier and faster than

one would be able to by analyzing raw data. Data visualization has existed for hundreds

of years as a way of coping with. the complexity of the world around us.

The widespread availability of high-performance computers has greatly stimulated in-

terest in data visualization. The average user now has access to computers that are capable

of displaying and animating large data sets, and computers themselves are capable of gen-

erating huge data sets that can only be understood by data visualization. Not only can one

gain more information by viewing data graphically one can also see trends and tendencies

that would be obscured by the sheer bulk of data that can be generated.

While one can represent data visually in two dimensions, one can add more expressive

power by moving to a 3D representation. It has been found that the number of objects or

relationships that can be assimilated increases dramatically when moving from 2D to 3D

[18]. With the large data sets that can be generated today it is often necessary to make

use of 3D models. Furthermore, by utilizing animation one can convey the time evolution

of data and increase the information carrying capabilities still further.

While specific tools are available for visualizing and animating data, there are limi-

tations associated with many of them. Low-level graphics libraries are the most flexible

but require extensive knowledge of the actual libraries as well as 3D rendering techniques.

Many of the higher-level tools are very specific, providing support for only certain forms of

1
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data. Some systems limit the visualization to only the static display of data while others

require the power of expensive graphical workstations.

There appears to be a need for a simple method of displaying and animating hetero-

geneous data sets for the average user [6]. Such a system would be able to animate data

output by existing programs as well as data that have been stored in files. The perfor-

mance of the system should enable the real-time animation of many different types of data

using high-end PCs or low-end computer workstations. In addition, there is a need for

a system that could display and animate data from many sources simultaneously. The

system would provide a mechanism for viewing multiple data sources residing on different

machines, and enable multiple users on networked machines to view and interact with the

same data. The system should be simple to use and widely available. Finally, to be useful

to a large number of people, the system should also be easily portable.

Portability can be achieved by choosing an operating environment that is available

to many users. The X Window environment [17], is available on virtually every UNIX

workstation and many high-end PCs; as such, it is an obvious candidate for the operating

environment of a data visualization system. Many current data visualization systems are

built on top of the X Window System, illustrating its suitability to this task. There are,

however, some limitations that come with the X Window System. Though X supports

various drawing primitives and advanced rendering techniques (in the PEX extension

[11]), these are often too slow to be used for animation. This may require the user to

build a rendering engine from scratch. Another problem with the system is its complexity.

Programming at the Xlib level is the graphics analog of assembly-language programming.

While the higher-level toolkits such as OSF Motif [9], require the user to write fewer

lines of code to implement a given task, it still difficult to learn. Most importantly,

these toolkits are designed for the construction of GUIs, not data visualizers. The new

OpenGL [2] standard does address the issue of rendering support and is available on X

and non-X workstations but is not universally available, requires hardware support for

reasonable performance, and still requires a large time investment to learn and use. Other

off-the-shelf systems either display data only statically or require certain data formats and

specific visual representations. While the X Window System provides a good base for a
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visualization system, there is a need to fill the gap between the low-level graphics libraries

and the higher-level tools available.

In particular, a visualization system is needed that enables the user to configure easily

the display and animation of heterogeneous types of data [16]. Ideally this system would

be able to display many types of data with no restriction on the data format, enabling

the data or program to have their data visualized without modification. In addition, the

ability to integrate and display multiple data sets on multiple host computers would add

a new aspect to the role of data visualization. Providing a flexible system would grant

the power of data visualization without requiring extensive graphics experience, low-level

programming, or code modification. The motivation for building a new data visualization

system is to provide a simple method for displaying and animating many types of data,

filling a void in the current realm of data visualization.

Overview of This Thesis

This thesis is organized as follows:

. Chapter 2, Related Work discussesthe evolution of data visualization systems,

establishes criteria for successfulsystems, and measures existing data visualization

systems against these criteria.

. Chapter 3, System Goals proposes goals for a data visualization system which

addresses limitations in existing systems and introduces the Heterogeneous Data

Visualization System (HDVS), a new system which attempts to satisfy these goals.

Notable features of the HDVS include the ability to display heterogeneous data

types, support for multiple data inputs and outputs, resource distribution, hardware

independence, and a flexible user interface.

. Chapter 4, The HDVS System provides a detailed description of the HDVS

architecture and user interface, and identifies practical applications.

. Chapter 5, Discussion evaluates how successfulthe HDVSimplementation is in

meeting the design goals and discussespossibledirections of growth for HDVS.



Chapter 2

Related W"ork

The purpose of data visualization is to provide a method that will enable users to under-

stand the underlying nature of the data better. The power of data visualization is in the

transformation of data sets to a graphical representation. This graphical representation

often enables the identification of trends normally hidden by the sheer bulk of data [3].

In the past, data visualization was limited to those having access to state-of-the-art

graphical workstations and the support of a graphics expert. Today, the computational

power of a typical workstation and the graphical tools available make data visualization

possible for the average user.

The act of data visualization is the transformation of numbers to some geometrical

object representation. This geometry of objects forms the basis for computer animation

and visualization. Many models exist for translating data to a graphical representation.

The graphical and decomposition models are two geometrical models often used in com-

puter visualization [4]. The graphical model consists of objects that are built of points,

lines and polygons. Decomposition models have objects that are constructed from other

objects, where all "higher level" objects are ultimately created from a set of base objects.

Depending on the model chosen, different data structures are used. For example, graphical

models generally include information on vertices and polygons. The graphical model has

some implementation advantages because most rendering systems ultimately draw objects

as a series of lines and polygons. This enables the data structures being used to represent

an object to also be used to render the object.

Animation and object characteristic modification are two techniques that enhance the

usefulness of data visualization by attempting to increase or clarify the information being

4
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represented. Animation enhances data understanding by illuminating the time evolution

of a data set. Hidden trends and subtle nuances are often uncovered during animation.

Animation techniques are used extensively in scientific visualization because the objects

or environments being modeled often change with time [16]. Animation is also useful in

providing a mechanism for movement around and through graphical data sets. The ability

to navigate through data and focus on particular areas of interest can be quite useful in

isolating critical areas when viewing large data sets [19].

Object characteristics can also enhance the usefulness of data visualization. Character-

istics of the graphical objects such as color, texture and shininess can be altered enabling

different materials and parameters to be represented [8]. These new techniques in data

visualization provide more realism by enabling simulations to closer match the phenomena

they represent.

2.1 Evolution of Data Visualization Systems

The evolution of data visualization primarily occurred in two areas. First, there was a

continual move toward the separation of the section of the program generating the data

from the section of the program responsible for displaying the data. Secondly, the graphics

became more sophisticated and easier to employ as higher level graphical tools and systems

became available.

For greater clarity, it is useful to introduce new terminology regarding the actual

computer code that is used in visualization systems. The section of the computer program

that generates the data to be visualized will be referred to as the data generation code

(DGC). The section of the code that is responsible for the graphical visualization of the

data will be referred to as the visualization code (VC).

The system evolution can be roughly separated into four stages:

Phase One: DGC and VC contained in the same program. Graphical primitives were

the responsibility of the programmer.

Phase Two: DGC and VC still contained in the same program. Primitive libraries

available for graphics.
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Phase There: Some separation of DGC and VC. High-level tools used for advanced

rendering.

Phase Four: Complete separation of DGC and VC. Flexible methods for inputting

data.

Each phase will now be examined in greater detail.

2.1.1 Phase One

In phase One, the DGC and VC were contained in the same program. Building a system to

display data involved building and integrating the display routines into the DGC. Graphi-

callibraries were not available, requiring the programmer to have significant knowledge of

graphical principles or to enlist the aide of someone who did. Because of the limitation of

computer resources and the time involved in implementing the desired graphics, the end

displays were usually static and quite simple [24].

2.1.2 Phase Two

In Phase Two, the task of visualizing data was somewhat easier with the utilization of

graphical libraries. The graphical libraries contained fundamental procedures for rendering

scenes. The user decided how data were to be displayed, and modified the source code

by adding the necessary drawing routines. The program was then compiled and linked

to the graphical libraries. If the image was not satisfactory, it would be necessary to go

back to the source code and begin the process again [24]. Graphical libraries enabled more

complex views to be rendered but still required some knowledge of graphical principles to

implement and were often difficult to use. Also, different programs that visualized similar

data were often unable to share rendering engines, thus leading to additional development

effort and complexity.

2.1.3 Phase Three

In Phase Three, visualizing data became easier with the development of high-level graphics

tools and primitive visualization systems. Graphical tools enabled the user to provide

sophisticated rendering without requiring significant graphics experience. While the tools
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still required a significant time investment to learn, they gave the user power to display

data in complex ways. The partial separation of the graphical system from the rest of the

program enabled the user to modify the data-generating aspects of the program (DGC),

without affecting the VC significantly. Visualization systems also provided a means of

displaying data though there were some limitations. These systems were only useful if it

was possible to modify the DGC to transform the data into a form that the visualization

systems could interpret [6].

2.1.4 Phase Four

In Phase Four, the separation of the DGC and VC is more pronounced. There exists

a means of visualizing data without modifying the DGC. These systems use the output

of programs and display it as it is being generated [18]. The separation provides more

flexibility and ease of use because the method of displaying the data is no longer linked

with the method of generating the data. Data can be in multiple formats and can be

input from files or from executing programs. Because of the separation of the DGC it is

now possible to view multiple sources of data simultaneously.

2.1.5 Summary

Section 2.2 will examine several visualization systems that are currently available. It will

be shown that most of these systems reside in the Phase Three state of development, with

a select few bridging the gap to Phase Four.

The methods described above are general techniques used in data visualization. Differ-

ent visualization systems use many of these ideas, though some implemented them better

than others. For a data visualization system to be generally useful it should have different

rendering schemes and algorithms and be portable and flexible. Having multiple rendering

methods enable the display of data representing different phenomena. Portability enables

more people to use the system. A flexible system is valuable because it enables the user

to visualize data that are in different formats [3].

It is not enough, however, for a visualization system to provide the desired functions

and features; it must also be usable. The complexity often found in many visualization
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systems may limit the ease of use due to the significant amount of knowledge that the user

must have of the environment and the data. While many of the tools available today are

helpful, they often cannot be used without expert assistance. Users of visualization systems

are most often assumed to have knowledge of data management, computer graphics and

visual perception. Additional research is needed to give scientists interactive tools they

can use to combine, explore, and visualize data [21].

Many factors influence how and when people use data visualization systems. Users

have widely disparate levels of ability and different needs. Some prefer a point-and-

click interface, while others desire a high level programming language [16]. Whatever

functionality the system provides, a number of elements are required for a system is to be

useful. To follow the "golden rules" of visualization, a system should:

1. have software that is easy to learn and use,

2. provide generic methods to get data into and out of the system,

3. provide a complete set of functions and features,

4. be open so it can be modified and extended,

5. work on available computers,

6. deliver high graphics speed,

7. be affordable and,

8. provide some method or means for user support [16].

2.2 Examples of Visualization Systems

The capabilities and limitations of visualization systems can be understood more compre-

hensively through assessment of visualization implementations with respect to the func-

tionality goals outlined above.
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2.2.1 Wavefront Data Visualizer

The Wavefront Technology's system [25] was designed as a general-purpose visualization

system. The functionality of the system is based on a set of high-level graphical tools.

The tools are used to manipulate the graphical representation of the data. Some examples

of the tools available in their system are the iso-surface, the cutting-plane, and the data

probe tools. The tools can be grouped together in different ways to achieve the desired

effect and provide an easy, intuitive method to visualize and interactively view the data.

An example of tool grouping would be to group three cutting-plane tools oriented at right

angles, which could then be moved together to generate a cut-away view of the data. The

system is limited to two standard data formats but new file readers can be written.

This system meets many of the requirements for good visualization software. It is ex-

tensible and provides a flexible means for generating different types of graphical constructs

but requires data to be in specific formats. The system is also limited to a single viewer

and data can not be input from multiple sources simultaneously.

2.2.2 Vista

The Vista system [22] was developed to enable one to do dynamic selection of data for

graphical display as the DGC is executed on a remote system. The system was developed

partly in response to the problems encountered using the standard method of incorporating

graphics libraries into existing code. The library method is quite limiting because the

data to be viewed must be known when the code is written. In contrast, the Vista system

can be used to steer calculations based on the intermediate results of the computation.

intermediate. This interactive approach to computing is called simulation-time execution

[13]. The integration of scientific computing and visualization is useful to reduce turn-

around time in performing calculations.

The Vista design emphasized the following requirements. The system should have

easy access to graphics. The modification of the program should be minimal and straight

forward. There should be a dynamic method to determine what and when the data are

to be displayed [22].
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To use the visualization system, the user inserted visualization break points into the

data generation code (DGC). The program was then compiled with a standard C compiler

using the -g option to obtain use of the symbol table the compiler generated. When the

application was executed it set up a connection with the visualization server. Variables of

interest could be displayed while the program executed.

Although the Vista system satisfied many of the requirements for a good data visual-

ization system it does have limitations. There was no easy interface method available and

its use required access to and modification of the source code. While it did separate the

DGC and VC somewhat the system could not utilize multiple and simultaneous sources of

input. The system wasn't capable of operation in a distributed environment. The Vista

system is a Phase Three system.

2.2.3 Application Visual System (AVS)

AVS [10] is a commercial data visualization product that runs on all major UNIX worksta-

tions. AVS supports 3D plots and graphs as well as advanced tools such as 3D interactive

rendering and volume visualization. The AVS uses a visual programming environment

where the user connects AVS modules together to build a visualization network. The

network becomes an application that can be easily reused and modified. AVS provides

different pre-built modules and a mechanism for the user to create new modules. The

modules can include C, C++ and Fortran routines, and can also be linked with external

programs. AVS provides a powerful visualization tool set, including a data viewer, a Ge-

ometry viewer and an Image viewer. AVS can be used as a visualization system or as an

application builder.

AVS provides commercial-level graphics support but at a high monetary cost. This

system cannot utilize simultaneous multiple sources of input and does not provide multi-

host multi-viewer functionality. The AVS is a Phase Three system.
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2.2.4 Polka Animation System

The Polka Animation System [20] is a general-purpose visualization system capable of

animating programs. Polka is designed to balance power and ease of use. Polka is imple-

mented in C++ and runs under the X Window system. Though Polka is freely distributed,

it requires the Motif toolkit, which is not free. Polka can be used in two different ways:

by using the C++ class library or the Samba front end to integrate graphics into existing

programs. The C++ library is useful but requires the user to integrate the DGC and VC.

Samba relaxes this constraint somewhat by providing an interpreter that reads ASCII

commands and then performs the specified graphical request. A typical Samba command

is of the form "command name - command parameters." For example, "move 3 5.2 8.2"

is a command that moves object 3 to position 5.2,8.2. While programs must be modified

to generate output that Samba can interpret, the simple format of the command language

makes this a fairly straightforward task.

The main limitations of Polka involve its interface. The C++ library requires a heavy

integration between the DGC and VC. Though Samba improves the data and viewing

system dependences, it still requires the DGC to be modified. Because of this Polka is

a Phase Three system. The system is also not capable of running in a distributed mode

allowing multiple DGCs to simultaneous have their data visualized.

2.2.5 Geomview

The Geomview [5] system is capable of interactively viewing and manipulating graphi-

cal/geometrical objects. It is freely distributed and runs on most workstations that use

the X Window system. Geomview can be used in two different ways: 1) as a stand-alone

object viewer or 2) as a display engine for programs generating data dynamically. The ob-

ject viewer can display and manipulate objects represented in many different file formats.

The object viewer provides a wide variety of predefined objects and the user can define

new ones as well.

Of greater interest, though, is the Geomview display engine which can display the data

from a program as it executes. Programs that interact with Geomview in this way are
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called external modules. External modules act as an interface between the data-generation

program and the visualization engine via a series of Geomview library calls. Programs

must be altered to output a series of commands that the display engine can understand.

The format of these commands is provide by a Geomview control language (GCL). The

communication between the module and Geomview is provided by UNIX pipes. This

allows commands from the DGC on standard out,?ut to be input to Geomview on standard

input. The module informs Geomview of changes in the object's attributes by outputting

the appropriate command.

Geomview is a powerful and useful system, but it does have some significant limitations.

Because Geomview communicates via pipes, the module can not receive any input from

other sources on standard input. Pipes also impose the limitation that Geomview and the

module must run on the same computer. Another drawback of the system is its inability

to support multiple data sources and multiple viewers. Geomview provides a useful tool

for visualizing data but does suffer somewhat because of loose integration of the DGC and

VC. Geomview bridges the gap between Phase Three and Phase Four systems.

2.2.6 Visualization Toolkit (Vtk)

The Visualization Toolkit (Vtk) [19] is a 3d visualization system with a focus toward

application building. Though Vtk is implemented in C++, applications can be written in

C++ or Tel [15], an interpreted scripting language. Vtk provides a higher-level graphical

command language than PEX or OpenGL and is available on most UNIX platforms. Vtk

can be used to visualize data or to build data visualization applications. It provides a

robust rendering engine with vector, scalar, and tensor visualization capability. It also

supports multiple data types such as polygonal data (points, lines, polygons) and images

(structured data sets).

A program visualizing data uses Vtk to control the rendering aspects and must either

import or create the data to be visualized. Creating a window and initializing the ren-

dering system is straightforward, but mapping the data to the rendering system is more

complicated. The data must be mapped to a form that Vtk can render using a set of

data filters that Vtk provides. The data filters are hooked together to perform whatever
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mapping is needed. Each data filter can perform a specific task such as sampling the

actual data, color mapping based on some aspect of the data, or mapping the data to

the graphics system. The user is responsible for the overall rendering pipeline. Writing a

program in Tcl is done much the same way.

While Vtk provides a robust and flexible system capable of advanced rendering, there

are several limitations it imposes on the user. Vtk is more of an application development

library than a stand-alone data visualization system. The user must ultimately write an

application which utilizes the Vtk library to visualize the data. In addition, Vtk does

not provide any methods for integrating multiple input sources. The system provides a

higher level of graphics than other libraries, but it is still a library, requiring significant

involvement from the user. Vtk provides some separation between DGC and VC but is

ultimately a Phase Three system.

2.3 Summary

Many of the visualization systems available today are quite useful, but fall short of sat-

isfying some visualization needs. Much of the emphasis in these systems has been on

representing specific types of data, rather than accepting heterogeneous data. In addi-

tion, these systems do not satisfy all of the "golden rules" presented in section 2.2. The

first two rules, ease of use and generic data input and output methods, seemed to be

violated frequently. The systems that came closest to meeting all of the requirements

were commercial systems and, as such, violated the rules on being open and affordable.

None of the systems reviewed were in the fourth phase of evolution, though the Geomview

and Vtk systems had some success in separating data generation from data visualization.

In light of these disparities, profound need exists for a heterogeneous, Phase Four data

visualization system.

A heterogeneous system would not only provide support for elementary scientific vi-

sualization, but also for other types of data. The system would be able to display and

animate data from existing compiled programs without requiring rewriting or recompila-

tion. Furthermore, these programs could be scientific in nature or simply typical UNIX
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commands. In addition, the system would be able to simultaneously visualize multiple

data input sources residing on different computers. While the system would not be as pow-

erful as a full-fledged scientific visualization system for viewing scientific data, it would

compensate with its versatility. The system would attempt to satisfy the eight golden

rules for visualization, while targeting a more general type of data. Finally, the system

would completely remove the tightly-coupled integration of the DGC and VC, placing it

in Phase Four.



Chapter 3

System Goals

Providing a simple method for the displaying and animation of heterogeneous types of

data is the main goal of the HDVS system. This will enable the user to visualize different

types of data, from UNIX commands to scientific data, without having to modify the

program generating the data. HDVS will provide a communication manager enabling the

system to be distributed for better performance on large data sets and CPU-intensive

data-generation programs. In addition, the communication manager will provide a means

for simultaneously animating data generated on different machines in the same viewing

window. HDVS will require no special purpose-graphics hardware, thus enabling wide

portability. The viewing system will be built on top of a 3D engine, and will support a

diverse set of graphical objects and reasonable animation speed, providing more freedom

in the types of data that can be visualized.

These system goals - heterogeneous data input, a distribution of functionality across

networked hosts, multiple data input sources, and graphics hardware independence - im-

pose several constraints on the HDVS system:

. HeterogeneousData Input

The broad spectrum of allowable data makes some form of data parsing necessary.

There must be methods available to map data into actions, such as modifying graph-

ical objects or configuring the visualization system. The system will support data

translation by providing a convenient means to specify rules for parsing and map-

ping. The system configuration will not require re-compilation of the DGC. HDVS

will provide many levels of configure ability, the choice of which will be dependent

15
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on the needs and expertise of the user.

. Distribution of Computation

HDVS is limited due to its distributed nature, because there is some overhead in

communication between the parts of the system: it will run slightly slower when

the entire system is executed on one machine. Running the system on multiple

machines will provide performance enhancements only if the network bandwidth

is acceptable. Multiple input sources may also cause difficulties due to network

contention and timing.

. Hardware Independence

Finally, the lack of a minimum hardware requirement for graphical support places

a limit on the number of graphical objects that can be displayed and on the overall

animation speed of the system.

3.1 Heterogeneous Data Types

The visualization system will be able to read data from files or from the standard-input

interface. This will enable the system to display data from existing programs without

requiring users to modify their code. The incoming data will not have to be of any

specific format and in fact can be numeric, text, or a combination of both. Heterogeneous

data-type support is made possible by the filtering engine; the filtering step will perform

any necessary translation and mapping of data. Configuration of the filter will involve

modifying a template or writing a script. The filtering will occur at run time and will not

require re-compilation of the DGC or the visualization-engine system code.

3.2 Multiple Data Inputs and Outputs

HDVS will provide support for data being generated by multiple sources on different com-

puters to be integrated, animated, and viewed simultaneously as one visualization scene.

HDVS will allow data sources to be interactively connected, visualized, and disconnected

at any time during the execution of the visualization system. In addition, HDVS will
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enable different users on different machines to connect and to view the same visualization

scenario at the same time.

3.3 Distribution of Computation

HDVS will consist of at least three separate modules: one or more filters, one or more

visualization engines, and one communication manager. Each can execute on a different

machine. This will allow the programs generating the data and their corresponding data

preprocessing filters to be on different machines, and the actual visualization system to

run on still another. This will yield enhanced performance in a networked environment

(assuming a reasonable network load). The ability to have many data-filter pairs will

provide a flexible and novel method for viewing multiple data sources simultaneously.

Performance improvements versus a non-distributed system will be greater if the method

of data generation is CPU-intensive.

3.4 Communication Protocol

HDVS will provide a communication protocol and manager to support communication

between the filtering programs and the visualization engines. This protocol will support

bidirectional message passing between the filters and visualization engines. Messages

will be able to create and manipulate graphical objects, and configure parameters of the

visualization engines. The protocol will also be extensible to allow for the creation of

new message types. This will allow the system to incorporate new functionality without

having to develop a new method of communication. The communication manager will

determine where messages are to be sent and perform whatever mapping must be done

on the messages before they are forwarded to their final destination.

3.5 3D Rendering Engine

HDVS will have a 3D rendering engine that is capable of animating polygon objects,

lines, and text. The engine will support multiple light sources, Gouraud-shaded objects,



18

and a dynamic viewing position. Gouraud shading [1] is a simple lighting model which

interpolates colors across the face of a polygon, reducing intensity discontinuities at the

interfaces between polygons. Gouraud-shaded polygons that compose an object blend

together, heightening the object's realism. The visualization engine will be built on top

of the X Window System. This will enable HDVS to be ported easily to other platforms.

The system will require no graphical hardware support and be reasonably fast for modest.. '. ~

data sizes. The system will initially support the following objects:

. 3D surface plots with contour colors;

. 3D histogrid plot;

. a variety of 3D base shapes including cubes, spheres, pyramids

The visualization engine will be extensible, enabling the addition of other graphical

objects such as volume rendering, texture mapping and/or other extensions. HDVS will

also enable multiple viewing windows on different machines. The different visualization

engines will each contain the same scene but the individual users can orient their view

direction autonomously.

3.6 Flexible User Interface

HDVS will provide various methods for the user to input and filter data. Input methods

will include reading data from files and piping data from executing programs directly into

the system. This makes possible real-time animation of data generating programs. Data-

translation methods (filtering) for the system will include a set of utility programs and

a scripting language for ease of configuration and programming. The utility programs

will be used for common types of data. Some examples of these might be routines for

displaying typical UNIX commands such as top (1) and 15 (1), as well as routines for

data sets that require no special parsing. The front end to the system will enable the use

of scripts that can then be executed to filter the desired data. The scripting language

will have normal control-flow statements such as if and while, as well as special-purpose

commands to display the data. Finally, HDVS will provide a C Application Programming
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Interface (API), making possible the addition of new display methods to the set of utility

functions.

3.7 Other Systems

Below is a short summary on how the systems presented in section 2.2 achieve the above

goals.

. HeterogeneousData Types

Geomview and Vtk were the only visualization systems that provided any mecha-

nism for heterogeneous data types. Geomview achieved this capability with external

modules which could perform any translation needed to put the data in a form

Geomview could understand. Vtk made the use of heterogeneous types of data

somewhat possible with a Tel-based front-end scripting language.

. Multiple Data Inputs and Outputs

None of the systems reviewed were capable of integrating and animating data that

was generated by multiple sources on different computers. Similarly, none of the

systems were capable of displaying the data being visualized on multiple computers

simultaneously.

. ResourceDistribution

Wavefront Technology's system was the only system capable of running in a dis-

tributed mode.

. 3D Rendering Engine

All of the systems that were reviewed provided a 3D rendering engine. The Wave-

front, AVS and Geomview systems provided the most robust display engines.

. Flexible User Interface

The Vtk and Geomview systems were the only systems to provide a flexible user

interface. Geomview achieved this by providing external modules that acted as an



20

interface between the DGC and the VC. Vtk provided a flexible user interface via

its Tel front end but was more of a application development library than a data

visualization system.

While many of the reviewed systems meet some of the above criteria none of them met

all of the specified system goals.



Chapter 4

The HDVS System

The Heterogeneous Data Visualization System is a distributed data visualization system

that is capable of displaying and animating many different types of data. HDVS can be

used with data sets that are purely numeric, numeric mixed with text, and text-only.

HDVS actually integrates three components: a filtering program, a visualization engine

and a communication manager.

. Filter

The filtering program enables the user to specify what actions should be taken on

incoming data. Possible actions include parsing complex data, removing unwanted

data, scaling data, and most importantly, determining what graphical object is to

be used in representing data. The filter is configured using a template file, which

contains much of the basic startup information, including which interface is being

used. The template also permits the user to select the method through which data is

to be input to the filter. Input can be from a file or piped directly into the program.

Allowing dynamic data input makes it possible for programs to have their output

data visualized as they execute.

. Visualization Engine

The visualization engine is a 3D renderer that is capable of displaying and animating

polygon-based objects. The engine requires no special hardware to operate and

provides reasonable performance for medium-size data sets, where a medium-sized

data set is define as one that can be graphically represented by 10,000 polygons or

21
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fewer. The engine supports Gouraud shading, multiple light sources and dynamic

movement of the view point through either mouse or command interface.

. Communication Manager

The communication manager acts as an intermediary between the filter and visu-

alization clients. The communication manager makes it possible to have multiple

filters and visualization engines connected together simultaneously. The commu-

nication manager is responsible for managing the connections for the clients and

providing any mappings necessary among filter and visualization clients.

Messages form the basis of communication among the different elements of the system.

Messages are passed between the filters and the visualization engines using the communi-

cation manager as a staging area. The format of the messages is governed by the Spinning

Polygon Protocol. The Spinning Polygon Protocol or SPP was developed for the HDVS

and provides the functionality for all communication between the filter and visualization

engine, and is explained in greater detail in section 4.3.2. SPP supports the creation,

destruction and alteration of graphical objects. One can also use SPP to change various

environment variables of the visualization engine. The separation of the filter, visualiza-

tion clients, and communication manager into separate programs enables the system to

be executed on different computers, thereby increasing performance. The only conditions

necessary for system speedup are 1) a reasonable network load and 2) the computers

incorporated should not be significantly slower than the fastest system available.

Inputing data to a filter client involves three issues: how data are input, how data are

parsed, and how data are subsequently mapped into commands for the visualization en-

gine. There are two primary methods for interfacing with HDVS. The first method makes

use of a Tcl front end to interact with the filter. The user writes Tcl scripts, using a special

set of Tcl commands for communicating with HDVS. The additional Tcl command set

includes commands for creating and modifying graphical objects, and modifying visual-

ization engine parameters. The second option uses the utility engine, which contains a set

of predefined commands for visualizing specific formats of data, as discussed in greater

detail in section 4.3.4.
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The basic architecture of HDVS is shown in Figure 4.1.

Filter n

Viz. OneFilter One

Filter Two Viz. Two

Communication
Manager Viz.m

Figure 4.1: Simple View of HDVS Architecture

The boxes on the left side of the diagram represent filter clients. Likewise, the boxes

on the right side of the diagram represent visualization clients. Filter clients are not

restricted to executing on the same machine as the visualizers and other filters, nor must

visualization clients execute on the same machine. The different visualization clients will

all display the same data set though the orientation of the data and the user's viewpoint

can be different. The lines between the communication manager and the two client types

represent data communication pathways. The data pathways may be uni or bi-directional.

The filter will employ one of the two interface methods. Regardless of the chosen

interface, data are either read from a file or piped directly into a filter client. Both

interfaces communicate with the visualization clients using SPP. The filter program is

also responsible for keeping various information on the objects that are currently active

as well reading/parsing the template file. The visualization engine processes messages

from the filter and performs all the rendering of the objects. As Figure 4.1 indicates, the

SPP connection is two-way. This enables the visualization engine to make requests of the

filter and to alert the filter when graphical objects are selected. This adds a new level of

functionality to the system in the way of selection callbacks, as explained in greater detail

in section 4.3.3.
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4.1 Detailed description

4.1.1 Filter

A filter program acts as an intermediary between the DGC and the visualization engine.

The visualization engine is concerned only with polygon objects and the actions that can

be performed on these objects. Therefore the filter is responsible for reading data and

then mapping these data to the various methods of manipulations of graphical objects

available. The filter then sends any resulting commands to the visualization engine via

SPP.

This data-to-object/action mapping needs to be user-configurable, as ultimately only

the user knows what visual form the data are to take. The filter's function, therefore, is to

provide an easy, intuitive mechanism to allow the reading, parsing, and mapping of data

so it can then be viewed using the visualization engine.

Template File

Tel Script

Figure 4.2: Filter in Detail

As can be seen in Figure 4.2, the filter program can be decomposed into different

logical sections, each providing different functionality. The interface section handles the

data input, parsing, and user-defined transformations/actions. The control section of

the filter keeps a list of all of the objects, which contains information about each object

File . J Control .
Input

Stdin --.J Utili_:: :mmmmm-mi To ,:::onI

L___spp Ie From CommuncationI : Manager
: I

I I _______File '_______------------
Input Tel

I ControlStdin Interface
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necessary for filter operation. The template file contains basic object definitions, interface

status information, and various parameters for the visualization engine. Both the Tcl and

the utility-interface methods ultimately communicate with the visualization engine using

SPP. The overall effect of the filter is to allow a stream of data to be mapped into a series

of commands for the visualizer. These commands will either manipulate objects or change

parameters of the visualization engine.

4.1.2 Graphical Objects

Graphical objects are really in the domain of the visualization engine, but as they are ref-

erenced often in the filter description it is helpful to describe the various objects available.

The visualization engine supports two main classes of graphical objects: solid objects and

sheet objects. Solid objects are generally closed geometrical objects such as spheres, cubes,

and pyramids. Figure B.l illustrates some of the different types of solid objects available.

Sheet objects include the contour plot and histogrid which is a rectangular grid of cells.

Each cell of a histogrid can be thought of as a 3D box or bar whose height can vary. The

histogrid is vary much like a 3D bar chart. Solid objects may be moved via translations

in the x,y, and z directions and rotated around their x, y, and z axes. Solid objects can

also be linked together to form graphs and trees. Visually, this linkage is shown as a line

connecting the two objects. Subtrees or subgraphs can be isolated to reduce the number

of objects on the screen and to increase user comprehension. New types of solid objects

may be added by modifying the fundamental object data file. Adding a new solid object

subtype requires nothing more than adding the required data for the object to the fun-

damental object data file. The description for the object contains basic information on

the color, vertices, and polygons of the object. The cube object, for example, contains

information on the coordinates for the eight vertices, and what vertices make up the six

polygons that compose the object.

Sheet objects contain the contour plot and 3D histogrid as subtypes. Sheet objects can

be initially positioned, but cannot be rotated due to performance considerations. However

this is not a major limitation as the view position can be rotated so the plot can be viewed

from different angles. Contour plots, a subtype of the sheet object, are represented as a
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grid of points in the xz plane, with each point able to be moved in the y direction. Thus,

one can generate a variable surface plot. The contour plot also allows color contouring

based on the y value of each point. Contour color values and scaling are specified in

the template. Figure B.2 shows an example of a contour plot. As mentioned above, the

histogrid subtype is represented by a grid of 3D bars. Each bar can be colored, labeled

and varied in height depending on the cell value. Figure B.3 illustrates a histogrid object.

All objects are dynamic in that they can be moved, altered and animated.

4.1.3 Template and Template Parser

As discussed in Section 4, the template contains basic object descriptions, initial visualiza-

tion engine parameters, and the input and interface method to be used. The filter contains

a parser that reads the template file and then initializes the filter accordingly. The tem-

plate can be separated into three sections, object definitions, visualization parameters,

and interface specification.

Object Definitions

The filter uses object definitions to create different graphical objects. The visualization

engine supports two main types of graphical objects: solid polygon objects (including

cubes, pyramids and spheres) and sheet objects (contour plots, histogrids). For the filter

to create any of these objects, the corresponding base objects must be defined. The user

defines a base object by specifying the desired base object type and a set of initial values

for the object. Any number of graphical objects may be created from a base object. The

created objects inherit all of the attributes from the base object with the exception of

subtype, color, name, and initial position, which can be modified by the filter. Each type

of base object has required initial values. These are explained in detail in section 4.4.1,

which discusses the HDVS template.

An object definition for a sphere:
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This definition is for a solid object of the sphere type. Any type of solid object can

be created from this base type. The user can create any number of objects from a base

definition as long as they are of the same base type. For example, if one had a base

definition of a cube solid object, from this one could create any type of solid object by

giving it a different color, name, and initial position if desired. If a needed initial value

is not supplied in the object definition, a default value is used. This occurs if a sphere is

created from an object definition that does not specify a radius or angle size. To alleviate

this problem, it is a good idea to define initial values necessary for all of the subtypes

that will be created from a given object definition. If an initial value is not needed for a

subtype, it is ignored.

Visualization Parameters

The template also contains basic initial settings for the visualizer. The user can define the

lights, set the initial view position, and specify the colors and values for contour shading.

DefineObject

ObjectType SOLID_OBJECT

ObjectSubtype SPHERE

MoveCode ACTUAL

Shading GOURAUD-8HADING

Color YELLOW

Name Sun

Radius 80.9

AngleSize 30

Scale 1.0

Inity 0.0

Initx 0.0

CreateGrid 1

GridColor 3

EndDefine
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These settings are parsed and sent to the visualization engine upon startup of the filter.

Explanations and illustrations of the various settings are presented in Section 4.4.1.

Interface Specification

The template file also defines the interface method. The user can specify if data are to

be read from a file or piped directly to the filter. The user can also select one of many

predefined data transformations or indicate that a Tcl script is to be used. Predefined

data transformations and using Tcl are discussed in Sections 4.3.4 and 4.3.4 respectively.

4.1.4 Control

The control section of the filter is responsible for maintaining information on objects,

performing data scaling, handling startup and initialization tasks, and providing a means

for communication between the interfaces and the SPP. Current state information is kept

for all objects that have been created. This information includes the object type, its

movement status, and scaling status. The current position of each object is also maintained

in the control section of the filter. For solid objects, the data are the x,y and z coordinates,

as well as rotation values around the x,y, and z axes. Positions of sheet objects are kept

as a list of all the grid points and their y values. Position information is kept for two

reasons. First, by recording an object's current position, one can find the new location

of an object simply by adding the incremental change to the current position. Secondly,

since scaling is performed prior to sending a movement update message, the visualization

engine will not posses the data values for the "real" position of an object. Because the

data is recorded by the filter the data is not lost and can be retrieved from the filter by

the visualization engine if needed.

The filter initialization responsibilities include memory management, SPP initializa-

tion, and interface initialization. The filter will pass control to either the Tcl interpreter

or predefined utility function when initialization is complete, depending on what was

specified in the template.

Most importantly, the filter provides an environment through which the chosen fil-

ter interface and the communication manager can communicate. This communication
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is achieved through a set of routines for creating and modifying objects, modifying the

visualization engine, and handling incoming messages from the visualization engine.

4.2 Visualization Engine

4.2.1 General Description

The visualization engine is a 3D graphics engine that receives commands via an SPP in-

terface. The engine is capable of rendering polygon-based objects as well as text and lines.

The engine supports multiple light sources, variable and dynamic ~iew positioning, and

Gouraud shading. The engine requires no hardware support and is portable to most sys-

tems supporting the X Window System. The system utilizes the shared memory extension

to X [11]. This allows a significant performance increase if the visualization engine is run

on the same machine as the X server. In the future, OpenGL compatibility will be inte-

grated into the 3D engine to take advantage of increasingly available graphics hardware.

This will result in a dramatic increase in rendering performance for those machines with

hardware support.

4.2.2 Interfacing to the Visualization Engine

The visualization engine provides an interface method via the SPP. All commands to

create and modify objects are received by communication with the filter that originally

created the object. The visualization engine also provides a control panel that enables the

user to toggle among different viewing parameters. Other parameters of the visualization

engine are set in the filter template or by the various interface routines.

4.2.3 Control Panel

The control panel for the visualization engine enables the user to specify different viewing

options. The user can toggle between Gouraud shading and simple shading. The view

type can be set to display polygon images, wire frame images, or a combination of both.

Text can be toggled on and off. Animation speed can be adjusted. Contour shading can

be enabled and disabled. Resolution of contour plots can be reduced or increased.
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4.2.4 Features

The 3D engine supports many features, including multiple light sources, shading, and

dynamic view positioning. There can be up to six light sources. A light source can be

a point source or a directed "spot light" source. Objects can be shaded with Gouraud

shading or flat shading. Gouraud shading produces a smooth look to polygon objects,

while simple shading leaves the individual polygons distinguishable. Figure 8.2 illustrates

Gouraud shading where as B.4 is an example of simple shading. Light sources and shading

are important aspects of visualization. They provide a more realistic 3D image that enables

the user see depth and orientation of the view more easily. This permits the user to better

assimilate the graphical data of the scene. The view position can be altered dynamically

by using the mouse or the keyboard as well as by commands from the filter. This enables

the user to navigate through the data, which is helpful in understanding large and complex

data sets. Figures B.5 and B.6 illustrate variable view positions of the contour plot in B.2.

Text may also be attached to any object and to any vertex of an object. Polygon-based

objects may also be drawn as wire frame objects to improve animation speed. Figure B.7

provides an example of color scaling of a contour plot.

4.2.5 Control loop

The control loop for the visualization engine starts execution after a connection with the

communication manager has been made and the draw command has been activated. This

loop controls the rendering and message processing for the visualization engine.
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Pseudo Code for the visualization engine control loop.

if redraw = True

Display Buffer

Process Messages

Process X Events

if event = quit exit program

if have receive message or X Event

Clear Buffer

Perform Rendering

redraw = True

else

redraw = False

. Display Buffer

This control element outputs the buffer to the screen. The buffer contains the current

rendered view.

. Process Messages

This control element checks if any incoming messages have been received and, if so,

will keep processing messages until it comes to a message with the more_to_come

flag set to false.

. Process X Events

This control element handles all of the X events that are currently in the event

queue. Typical X events include resizing the window and activating any buttons on

the control panel. If shared memory is being used, the control loop will block until

the shared memory completion event is received from the display of the buffer. This

prevents shared memory conflicts.

. Clear Buffer

This control element clears the drawing buffer so a new scene may be rendered.
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. Perform Rendering

The rendering loop is executed if the visualization engine has received a message or

X Event. If so, the rendering pipeline needs to be executed to redraw the buffer.

The rendering pipeline acts on a list of basic graphical components, consisting of

polygons, lines, and text bitmaps. Each time an active object is created, its base

components are added to the generic object list. This list is then used in most of

the rendering pipeline, which can be represented by the following pseudo-code loop:

Perform Lighting Calculations

Transform to user view

Build active list

Sort

Process Active list

Clip element of list

Draw if still visible

The first two steps are performed on all of the objects. The first step determines the light

intensity at each vertex or each polygon, depending on the shading type being employed.

Next, all of the objects are transformed into the current view. The active list is built by

going through each item in the generic object list and all items that are visible are added

to the list. Visibility tests include backface removal and clipping in the z direction. This

list is then sorted by z value. Finally each item in the active list is projected into screen

space, clipped against the view window, and drawn if still visible.

4.3 Communication

The communication system consists of the communication manager program and the SPP

message protocol. The communication manager controls the routing, resending and pro-

cessing of messages, while the SPP is the underlying messaging protocol that all of the

clients use to communicate.
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4.3.1 Communication Manager

The communication manager can be considered the the hub of all inter-client communica-

tion. The communication manager handles all client connections as well as client message

exchanges. In fact, any message that is sent from a filter client to a visualization client

passes through the communication manager.

Connections

The HDVS employs a client-server connection model. The communication manager is the

server and the various filter and visualization engines are the clients. Upon startup, the

communication manager performs initialization and then periodically listens for connec-

tions on a specified TCP lIP port. Both filter and visualization clients can then connect to

the communication manager at any time. When a client connects to the communication

manager, it sends its type (filter or visualization engine) and is assigned an ID number. A

client object is created, initialized, and added to the active client list in the communication

manager. The client will include its ID number with all messages it sends. Upon client

completion, the communication manager closes the connection. In addition to the normal

updating that occurs upon client termination, filter clients require the communication

manager to delete the filter's objects from all of the connected visualization engine clients.

Message Handling

The processing of messages is the primary responsibility of the communication manager.

The communication manager determines which clients should receive messages and also

performs any x-to-y mapping on the messages that needs to be done. Generally a message

from a filter client will be sent to all of the visualization clients. This is because all

visualization clients have the same global object list and ultimately display the same

world view. Conversely, a message from a visualization client will only go to a filter client.

For example, if an object is selected in the visualization engine, the message goes to the

filter that created the object.

The communication manager also performs a translation on all messages. The visu-

alization engine clients will have a list of all the currently active objects. Each object,
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however, belongs to only one filter. Therefore, the filter ID number for a graphical ob-

ject is not the same as the ID number of the object in the visualization engine. The

communication manager maps filter object numbers to visualization object numbers for

messages originating from filter clients, and maps visualization engine object numbers to

filter numbers for messages from visualization clients. The information needed for the

object mapping is contained within each client in the form of a list. This list is modified

each time an object is created or destroyed by a filter client.

The actions of the communication manager are for the most part, transparent as far

as the clients are concerned. The filter and visualization engines send the same messages

regardless of how many clients are connected. The communication manager supports a

mechanism to enhance the functionality of the system by providing a means to add features

to the message system such as synchronization.

4.3.2 Spinning Polygon Protocol (SPP)

The Spinning Polygon Protocol (SPP) is used in conjunction with the communication

manager as the messaging system between the filter and the visualization engine. All

communication between the two components must make use of the SPP routines available.

The SPP contains message types that (a) manipulate graphical objects and (b) affect the

visualization engine directly.

As can be seen from figure 4.3 the SPP can be separated into two logical levels. The

bottom or transport level of the SPP uses TCP lIP and Berkeley sockets to send and

receive messages. These low-level calls are encapsulated in a set of convenience functions.

The top level, or interface layer, is used by the filter and visualization programs to send

and receive different messages. The filter and visualization programs use an interface

command set to interact with the interface layer. The command set include commands

for creating objects and moving objects and is discussed in greater detail in Section 4.3.3.

The communication manager communicates directly with the transport layer because it

essentially resends messages with very little manipulation of the message itself. The double

arrows indicate that all communication is bi-directional.
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Figure 4.3: SPP Structure

The transport layer of the SPP contains the commands for initializing the commu-

nication manager server and the filter and visualization engine clients. There are also

commands for establishing a connection between the client and server and sending and

receiving messages. These commands were designed to be used by the interface level and

are not meant to be accessed directly.

Transport Layer

The transport layer is used by both the communication manager and its clients. As will

be seen in section 4.3.3, only the clients use the interface layer.

Message structure The transport level encapsulates messages as a message header

followed by the message data. The message header contains the message type, the number

of data objects it contains, the data length, and a flag that indicates if there are more

messages to come.

Filter Visualization

Clients Clients

Interface Command Set

---------------------

Interface Layer

Communication
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The message header has the following structure:

spp header_struct{

long message_type;

long number_of_objects;

long data_length;

long client_id;

long info;

long more_to_come;

data area;

}

The transport layer uses the message type during the reconstruction of an incoming

message. Message reconstruction involves casting and setting the appropriate pointers to

the data portion of the message. The receiving end uses the message_type and the num-

beLoLobjects fields to determine how the messages are to be processed. The dataJength

is necessary for both the sending and receiving of messages. The clientjd is a unique num-

ber that specifi€s a specific client. The info field is used by the communication manager

to give a connecting client its id number. Finally, the more-to-come flag indicates if more

messages are expected.

The more-to-come flag is used only by the visualizer clients. The flag enables the

receiving end to process multiple messages before proceeding to the rendering phase of

the visualization engine's control loop. If the more_to_come flag of a message is set to

true, the message will be processed and the message handler will block and wait for

the next message. Otherwise, control immediately passes to the rendering phase and

the scene is updated. If a group of incoming messages is processed before the screen

is updated, a significant increase in performance can be achieved. This is due to the

elimination of unnecessary scene rendering. Accordingly, many SPP commands involving

object manipulation set the more_to£ome flag to true to take advantage of this. A group

of messages sent with the more-to-come flag equal to true must eventually be followed by

another message to cause the screen to be updated.
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Message Buffer When any module (filter, visualization or communication manager) is

created and the SPP is initialized, a dynamic message buffer is created. All incoming and

outgoing messages will be stored in the message buffer. The buffer contains the message

header followed by the message data. The transport level routines that cause the building

and sending of messages assume that the data have already been loaded into the data

portion of the message buffer by the particular interface routine that was called. Having

only one buffer does not pose any memory conflicts because the building and sending of a

message, like the receiving and handling of a message, is an atomic event. Once a message

is constructed, it must be sent before any other messages can be reconstructed. Likewise,

once a message is reconstructed, it must be processed before any more messages can be

sent or received.

Sending and Receiving Messages The SPP routines for sending and receiving mes-

sages are quite straightforward. Because the interface layer is responsible for copying the

data into the message buffer, the transport-level send function needs only to determine

the data length, to construct the message header, and to send the message. The receiv-

ing function reads the message, copies the message header and data into the message

buffer, and sets the appropriate pointers so the data can be accessed by the appropriate

message-processing routines.

4.3.3 Interface Layer

The interface layer is only used by the HDVS clients, since the communication manager

is only concerned with processing and routing messages.

Creating and Sending Messages

The SPP contains a set of commands at the interface level that create and send different

types of messages. Each interface function requires information on where the data are

located and how many data items are to be sent. Each of these commands will copy the

data to be sent to the message buffer and then call the transport-level routines discussed

in section 4.3.2 to actually send the message.
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The types of messages that can be created and sent can be separated into two logical

types: messages that deal with object control and those that are used to control the

visualization engine.

Object Control Messages

Messages used for object control can be further separated into (1) messages sent from the

filter to the visualization engine and (2) messages sent from the visualization engine to

the filter.

Messages from the Filter

. Create Objects

This function will create one or more objects. It will update the appropriate object

state information in the filter and send a list of objects to the visualization engine.

The visualization engine then creates a graphical object for each object specified in

the list.

. Delete Objects

This function will delete one or more objects. It will update the object state in-

formation and send a list of the objects, referenced by number, to the visualization

engine. The visualization engine then deletes each object in the list.

. Link Objects

This function will draw a link between an object and a group of objects. It sends the

link information to the visualization engine. The visualization engine then updates

its object information with the new links. The links will be visually represented by

colored lines between the linked objects.

. Change object Color

This function will change the color of one or more objects. It will send the color

information to the visualization engine. The visualization engine then changes the

objects specified in the list to the given color.
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. Alter Polygon

This function will change the colors of a list of polygons. The polygons must belong

to the same graphical object. The filter will save the original color of the polygon

in its object state information to enable objects to be reset to their original color.

The function will send a list of polygon-color pairs, enabling the new color for each

polygon to be different. The visualization engine then updates the polygons specified

in the list.

. Answer Resolution Request

This function will change the resolution of the specified contour plot. The function

updates the filter object state information and sends the new resolution information

to the visualization engine. The visualization engine then changes the contour plot

to the new resolution.

Messages from the Visualization Engine

. Request Resolution Change

This function will request a resolution change for a contour plot. It will send the

object number and the requested resolution to the filter. If possible, the filter will

process the request, sending an Answer Resolution Request message to the visual-

ization engine.

. Request Contour Change

This function will request the contour attribute for a contour plot be enabled or

disabled. It sends the object number and desired contour status to the filter. The

filter then updates the object's state information to indicate the change in contour

status.

Messages for Controlling the Visualization Engine These messages can also be

further separated into (1) messages sent from the filter to the visualization engine and (2)

messages sent from the visualization engine to the filter.
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Messages from the Filter

. Create Lights

This function will initialize a list of lights in the visualization engine. It sends a list

of lights and their parameters to the visualization engine. The visualization engine

will then update and turn on the specified lights.

. CreateText

This function will attach a text string to a vertex of an object. It sends the text

string, vertex, and object number to the visualization engine. The visualization

engine then creates a text bit map and attaches it to the specified object vertex.

. Change view

This function will change the view position of the visualization engine. It sends the

new coordinates and rotations of the view. The visualization engine will then update

the view point.

. Reset

This function is used to reset the filter and visualization engine. The reset can

be hard or soft. A hard reset causes the connection between the filter and the

visualization engine to be terminated. The visualization engine is reinitialized and

will await a new connection from a new filter program. A soft reset causes the filter

and the visualization engine to return to their initial state, deleting all objects, while

retaining the connection. The function sends the type of reset and the visualization

engine processes it accordingly.

. Update Message

This function will cause the visualization engine to update the scene. It will send

a Update message to the visualization engine. The update message is a dummy

message with its more_to...comeflag set to false. Upon receiving this message the

visualization engine will exit the message processing loop and enter the rendering

phase of the program.
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Messages from the Visualization Engine to the Filter

. Select message

This function indicates an object has been selected by the mouse in the visualization

engine. It sends the object number and mouse button pressed to the filter. The filter

then processes the callbacks that were registered for the indicated selection. Selection

callbacks are only available in the C API library and are discussed in Section 4.4.5.

Processing Messages

Both the filter and the visualization engine have control loops that are executed to process

incoming messages. All of the messages are designed to be used in one direction, either

from the filter to the visualization engine or from the visualization engine to the filter.

Therefore, any message used in the wrong direction will be ignored. An incoming message

is reconstructed" by the transport layer and then handled by message processing loops. If

the message is an allowed type for the program that received it, the message is processed.

The set of routines available at the interface level of the SPP are meant to provide all

the necessary functionality for communication between the visualization engine and the

filter. However, it is not difficult for new message types to be added if new functionality

is needed. Moreover, the Multi Message type can be easily used for new message types

that are not overly complex.

4.3.4 Interfacing to the Filter

The choice of an interface is quite important because it determines how the data are read,

parsed, translated, and ultimately mapped into visualizer commands. The two interface

methods available to users of the HDVS are a Tel-scripting front end and a utility library.

The two interface methods each have their own strengths and limitati~ns with respect to

ease of use, configurability, and performance.

Tel Front End

The first method uses a Tel front end and requires the user to write scripts in the Tel

language. This interface option's main strength is its configurability. The user hasaccess
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to the commands contained in the Tel scripting language plus a set of special-purpose

commands to communicate with the filter and the visualization engine. Tel scripts have

most of the capabilities of a high-level computer language and can perform most required

data parsing and mapping tasks. Using Tel as the interface front end gives the user

flexibility, yet eliminates the need to recompile parts of the HDVS. The interpretive nature

of Tel scripts makes using and modifying them quite easy. In fact, the Tel front end can

modify and create graphical objects on a command-by-command basis, providing a simple

graphical editor.

Data parsing presents one of the major difficulties in visualizing heterogeneous types

of data. The user must first determine what parts of the data are important and what

translations should occur when mapping the data to the control of a graphical object or

system parameter. The Tel interface makes parsing and mapping data fairly simple with

its built-in pattern matching capabilities.

Using the Tel interface requires the completion of three tasks: altering the template,

writing the script, and specifying the script to be executed. The script determines how

the reading, parsing, and mapping of the data are. to take place. The final step is the

execution of the script. The major limitation of this interface method is the requirement

that the user be knowledgeable enough about Tel to write a script. Tel is also is somewhat

unwieldy for a scripting language.

Tel commands for interfacing with the filter are elosely related to the SPP interface-

layer commands. In fact, most Tel commands simply translate their data parameters

into an acceptable format and then call the equivalent SPP interface command. The

translation usually involves the conversion of a number represented by a string to the

corresponding floating point representation. The Tel command set provides an interface

to the SPP as well as several convenience routines. Because the Tel commands are so

similar to the SPP the specific command syntax and description of these commands will

be deferred until section 4.4.3, using the Tel interface.
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Utility Engine

The second interface option of the utilizes a utility engine. There are two options available

with the utility interface: predefined utilities or utility creation using the utility library.

The predefined utilities provide the simplest interface method available but are not config-

urable. In contrast, the utility-creation library is very configurable but requires the user

to write the new utility. If a predefined utility is to be used it must be specified in the

filter template.

The following predefined utilities are presently included.

Display Directory The UNIX command Is -R (recursive list) is used as input to the

filter. The visual result of this utility is a 3D directory tree. The mouse can be used to

isolate parts of the directory tree to improve comprehension of large trees. The mouse

can also be used to execute programs by selecting the object representing the executable

programs. Figure B.8 illustrates a full directory view of a sample directory tree. Different

colors and shapes can be used to differentiate between directories, and types of files. Figure

B.9 shows an isolated portion of the directory tree.

Display Top The UNIX command top(1) is used as input to the filter. The visual

result of this utility is a dynamic 3D histogrid. Different values such as percent of CPU

usage can be displayed. The value to be displayed is selected in the template. Figure B.I0

is a visual representation of the top(1) command.

Normal Data Movement values for the created objects are used as input to the filter.

The format and number of data elements depend on the type of the object. The utility

assumes that the input will be a series of movement values of the correct type for each

object created. Solid objects can be translated and rotated and require six data values:

the x,y, and z position values and the x,y, and z rotation values. Sheet objects cannot

be translated or rotated after creation so require only a list of y values. Contour plots

require a y value for each grid point in the plot, while histogrids require a y value for each

cell in the grid. The utility assumes that the input will be a series of movement values



44

of the correct type for each object created. The movement values must correspond to the

objects in the order they were created for each frame or movement iteration. For example,

if three objects were created in the order [solid object, contour plot, solid object], then

each iteration of movement data would consist of six values for the solid object: a set of

y values for the contour plot, followed by six values for the third object. Because this

option requires the filter to receive the correct movement type for each object in the order

the objects are created, it is quite restrictive. Figure B.11 illustrates a fractal landscape

generated with the Normal Data utility.

Normal Data Plus This utility is similar to the Normal Data utility but the objects to

be moved are specified by an object number followed by the object data. A special flag is

reserved to indicate that all movement data should be updated. This provides a slightly

more flexible interface than the Normal Data method.

If the predefined utilities do not suffice and the Tel front end proves to be unacceptable,

new utilities can be written. A new set of functions must be created and registered to the

filter. The functions must be written .and C and will use the SPP interface to carry out

HDVS commands. Creating new utility functions is explained in detail in Section 4.4.5.

4.4 U sing the HDVS

4.4.1 Configuring the Template

The filter uses the template to construct a set of base objects, to set the interface type

and to input method, and set various visualization engine parameters.

Keywords are written with the first letter of each word capitalized and no space between

words. Data values can be numeric or predefined values, which are written in capital letters

with each word separated by an underscore.

For example

Keyword ObjectType

Data value GOURAUD_SHADINGor 1.2
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Defining Base Objects

The following parameters can be set in an object definition.

DefineObject

ObjectType

MoveCode

ObjectSubtype

Shading

Color

Name

Initx 0.0

Inity 0.0

Initz 0.0

CreateGrid

GridColor

{SOLID_OBJECT SHEET_OBJECT}

{ACTUAL DELTA}

{ CUBE STAR PYRAMID SPHERE CONTOUR_PLOT HISTOGRID}

{SIMPLE_SHADING GOURAUD_SHADING}

{ RED ORANGE_RED ORANGE YELLOW_ORANGE YELLOW }

{ GREEN_YELLOW GREEN BLUE_GREEN BLUE }

any string

# initial x position

# initial y position

# initial z position

{TRUE FALSE} #Create a wire frame for object

#color for wire frameany color from above

ParametersSpecifically for Solid Objects

Radius 80.9

AngleSize 30

Scale 1.0

Rotx 0.0

Roty 0.0

Rotz 0.0

#radius of sphere

#determines how many polygons make up sphere

#scaling value

#initial rotation around x axis

#initial rotation around y axis

#initial rotation around z axis
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Parametersspecifically for Sheet Objects

GridSize 20

Xdim 20

Zdim 20

#size of grids for sheet objects

#number of squares in x dir

#number of squares in y dir

EndDefine

Base objects are needed to create actual graphical objects. For each base object

defined, one can create any number of objects that inherit all of the attributes of the base

object except color, name, subtype, and initial position. To define a base object, the base

type and specific initialization parameters must be specified. If a solid-type base object

is defined, the Scale, Shading, and MoveCode are usually specified. If the subtype sphere

is going to be used, the AngleSize and Radius values should also be set. If a sheet-type

base object is defined, the Xdim, Zdim, Gridsize, and Shading fields should be set. Both

base types can use the CreateGrid to specify a wire frame that can be toggled on or off.

If a necessary value is left out of the object definition a default value will be used.

Defining the Interface

This section defines the interface method for the filter.

DataMethod

#if method PRE_DEFINED pick on of the follow methods

MethodId {NORMAL_DATA DISPLAY_TOP DISPLAY_DIR}

InputMethod {FRM_FILE filename} or { InputMethod FRM_STDIN }

The DataMethod field indicates whether the filter should use the PRE-DEFINED or

USER-DEFINED data parser. Specifying PRE-DEFINED indicates that a built in utility
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should be used. The available choices for predefined utilities are NORMAL-DATA, DIS-

PLAY _TOP or DISPLAY -DIR. The specific functionality of these utilities is explained in

detail in section REF -FORWARD. Specifying the DataMethod as USER-DEFINED indi-

cates that a Tcl script will be used for data parsing. The InputMethod indicates whether

the input data will be from standard input (FRM..sTDIN) or from a file (FRM-FILE). If

the input is from a file the filename follows the FRM-FILE directive.

Defining the Visualization Engine Parameters

Many parameters of the visualization engine may also be set in the template, including

the number, type, and position of lights, the ranges and colors to be used for coloring of

contour plots, and the initial view position.

Example Definition:

ViewDef Initx 200.0 Inity 120.0 Initz 500.0

ContourScale RED -50.0 ORANGE_RED -35.0 ORANGE -20.0 YELLOW_ORANGE 0.0

YELLOW 20.0 GREEN_YELLOW 35.0 GREEN 50.0

BLUE_GREEN 80.0 BLUE 100.0

InitLights LightNo 0 LightType NORMAL_LIGHT

LightPosition -1.0 1.0 1.0

LightNo 1 LightType SPOT_LIGHT

LightPosition 200.0 50.0 -150.0

LightDirection 0.0 -1.0 0.0

The ViewDefspecifiesthe initial view point of the visualization engine. The direction

of the initial view is always in the negative z direction.

The ContourScale determines the coloring of contour plots. The colors and corre-

sponding ranges are specified in this section.

The InitLights specifies the initial lighting of the visualization engine. The type of

light, direction and position are specified in this section.
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In the following example, the template file displays a contour plot using the predefined

utility for Normal Data.

# Object definition

TotalObjects 1

DefineObject

ObjectType SHEET_OBJECT

ObjectSubtype CONTOUR_PLOT

MoveCode 2

Shading GOURAUD_SHADING

Color RED

Narne DataSet

Scale 1.0

GridSize 20

Xdim 40

Zdim 40

Inity 0.0

Initx -100.0

CreateGrid 1

GridColor 3

EndDefine

# Interface Method

DataMethod PRE_DEFINED MethodId NORMAL_DATA

InputMethod FRM_STDIN
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# Initial Visualization Engine Parameters

ViewDef Initx 200.0 Inity 120.0 Initz 500.0

ContourScale RED -50.0 ORANGE_RED -35.0 ORANGE -20.0 YELLOW_ORANGE

0.0 YELLOW 20.0 GREEN_YELLOW 35.0 GREEN 50.0

BLUE_GREEN 80.0 BLUE 100.0

InitLights LightNo 0 LightType NORMAL_LIGHT

LightPosition -1.0 1.0 1.0

LightNo 1 LightType SPOT_LIGHT

LightPosition 200.0 50.0 -150.0

LightDirection 0.0 -1.0 0.0

This template file defines a Gouraud shaded contour plot named DataSet. The prede-

fined utility for NORMAL-DATA will be used for the interface method and the data is to

be piped into the filter from standard input. The initial view position will be at the point

(200.0,120.0,500). The contour scale will correspond to the values given and two lights

will be enabled. The first light is a non-directional light source and the second light is a

directional spot light.

4.4.2 Fundamental Objects File

This file contains descriptions on how to create the various solid object types supported.

This information consists of information on the vertices, coordinates and how to construct

the polygons. HDVS initially provides a file containing the information for creating cubes,

pyramids and stars. Creating a new object type requires one to add the new object to the

file.

4.4.3 Using the Tel Interface

The Tel front end to the filter enables the user to interact with the filter and subsequently

the visualization engine, using the Tel scripting language. This allows the user to create

programs that can read and translate streams of data into a dynamic graphical representa-

tion. This method has a significant advantage over the other interface methods, primarily

in the large degree of configurability available to the user. The user has the Tel command
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set plus the added Tel-filter commands. The user need not recompile anything, as Tel is

an interpreted language.

The Tel-filter interface commands are primarily of two types, those that create and

control graphical objects and those that alter parameters of the visualization engine. The

list of commands available with an explanation of their functionality and the proper syntax

is presented below.

Commands controlling graphical objects

Commands controlling graphical objects generally come in two forms. In one type, the

user specifies the object or set of objects with their object numbers. The other method of

referencing objects uses the object's name. Object numbers are assigned by the filter in

the order objects are created. The name is specified upon creation of the object.

CreateObject {base_type subtype color initx inity initz name} This function

creates one object from the given base type modified by the subtype value. The base type

is an integer value that refers (in order) to the base object definitions in the template. The

subtype specifies which subtype should be used. For example, if the base type is a solid

object then the subtype could be for a cube, pyramid, star or sphere. The parameters

initx, inity and initz refer to the initial coordinates used for object placement. The name

is used to label the object and can also be used to refer to the object with other Tel

commands. All other characteristics that are needed for the creation of the object are

used inherited from the base type definition.

DeleteObjectsByNum { objnuml objnum2 ...}

DeleteOBjectsByName{ objnamelobjname2 ...} These commands will cause

the specified list of objects to be deleted from the filter and the visualization engine.

Currently, the object numbers are not reused and the object numbers will continue to

advance as new objects are created.

LinkObjectsByNum{ linkcolor objectnumfromobjnumtolobjnumto2...}
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LinkObjectsByName{ linkcolorobjectnamefromobjnametol objnameto2 ...}

These commands will create a visible link from the first object to each object in the

object_to list. The link will be of the color specified. The links can be followed or traced

in a limited manner in the visualization engine. For example, when viewing a directory

tree a sub tree can be isolated for easier viewing.

ChangeObjectsColorByNum {colorobjnuml objnum2 ...}

ChangeObjectsColorByNum {colorobjnamel objname2..} These commands

will cause the given list of objects to change to the specified color.

ApplyMovementByNum {objnum numdatapoints listofdata}

ApplyMovemetMemByNum {objnumnumdatapoints} These commands apply

the given data to the specified object. The amount and type of data varies depending on

the object. Solid objects use translations in the x, y, and z directions, as well as the

rotations rotx, roty, and rotz around the object's origin. Movement for sheet objects

requires a list of data values (y coordinates). Contour plots require a value for each grid

point - a plot with xdim 20 and zdim 20 would require 21x21 or 441 points. Histogrids

grids require one value for each cell of the plot.

The first movement command, ApplyMovementByNum, must have all the required

data values for the movement as function parameters. This is useful for solid objects but

rather unwieldy for sheet objects.

The second method assumes that all of the data values for the object have already

been copied to an array. There are a set of memory commands that are useful in copying

data to this array.

InitStaticMem {memsize} This command allocates an area in memory that can hold

memsize number of floating point numbers. Currently, only one area may be initialized

at a time. This area can be enlarged or decreased by calling this function again with the

new size specified.
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SetStaticMem {index value} This command sets the element in the array specified

by index to the given value.

SetStaticMemRange {startindex range valuel value2 ..} This command will set

the elements in the array starting with startindex and going until startindex+range. The

number of values must be equal to or greater than range.

Once all the necessary values have been set, the call to ApplyMovementMemByNum

may be performed.

Because the user may want to have many objects in the world move before updating

the screen, calls to ApplyMovement.. will not have an effect until UpdateMovement is

called.

UpdateMovement{} This command causes all of the objects that have been moved

since the last UpdateMovement command to be updated in the visualization engine. If

more than one ApplyMovement command has be called for one object, only the most

recent one will take effect.

Update {} Filter Tel commands usually result in a message being sent to the visual-

ization engine. These messages may be acted on immediately or the visualization engine

may wait for more related incoming messages. This is useful for letting the user create

many objects, each with a separate command, and then allowing all the objects to be

created before the screen is updated. This allows an increase in performance. Commands

that are buffered in this way are

CreateObject

LinkObjects

ChangeObjectsColor

AttachText

To cause the visualization engine to proceed the user must send a Update command.

This causes a message to be sent informing the visualization engine to stop waiting for
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messages. Thus the current scene will then be rendered.

As mentioned earlier, Movement commands have their own update command.

Visualization Engine Control

ChangeView {x y z rotx roty rotz} This command causes the view point and

direction to be changed by the specified values. The view point is first moved to the given

coordinates and then the rotations are performed.

Soft Reset This command causes a soft reset to occur. This causes all of the objects

to be deleted in the filter and the visualization engine. Numbering of new objects will

start at zero. The connection between the filter and the visualization engine will continue

to exist.

ProcessMessage-This command allows Tel scripts to check for and process messages

from the visualization engine. The function processes messages until the message queue

is empty or until five messageshave been processed.

Set Light Source { lightnum lighttype = NORMAL posx posy posz}

SetLightSource { lightnum lighttype = SPOT spotsize posx posy posz dirx

diry dirz} This command allows one of four lights to be positioned and turned on. If

the light type is set to be normal, a non-directional light is createdand only the position of

the light is needed. If the light type is a SPOT light then the spot size and spot direction

are also required. If a light number is specifiedfor a light that has already been set and

the light is currently on, the new values will be used and the light will be updated. This

is equivalent to moving the light.

TurnOffLight {lightnum} This command will cause the light specified by lightnum

to be turned off. The light must be respecified with the SetLightSource command even if

a light with the same parameters as the old light is desired.
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AttachText {objectnum vertexnum text} This command will cause the text speci-

fied to be attached to the given vertex of the object. This text can then be viewed by using

the text toggle button of the visualization engine. If the vertex is invalid the command

will be ignored.

AttachTextHisto {objectnum cellnum text} This command is similar to the At-

ta.chText command but is used to attach text to a specific cell of a histogrid plot.

4.4.4 U sing the Utilities

Predefine Utilities

Using the predefined utilities is the simplest and most straightforward interface method

available for the HDVS. To use a predefined utility requires modification of only the filter

template. This modification will generally include changing one or more base objects to

the appropriate type, specifying which predefined utility is to be used, and selecting the

input method for the data. As mentioned previously, the HDVS currently supports data

input from files or from standard input.

Display Directory This utility displays a recursive directory tree. The following lines

in the template must be modified as shown:

ObjectType SOLID_OBJECT

Shading SIMPLE_SHADING

DataMethod PRE_DEFINED MethodId DISPLAY_DIR

The input method must be changed to either

InputMethod FRM_FILE filename

or

InputMethod FRM_STDIN

All other lines that are not applicable to solid objects are ignored.
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To use the filter for input from standard input one would type 1s -R I filter. The

recursive directory will then be generated form the current directory and displayed graph-

ically. The user can use the visualization engine to isolate subtrees by using the mouse

interface. A program can also be executed by selecting the object with the mouse if the

current directory is also the root directory of the tree.

Display Top This utility dynamically displays the top(1) command. The graphical

representation consists of a 3D histogrid with the height of the bar representing the pa-

rameter specified in the template. The name of each process can be seen by selecting the

"show text" button of the visualization engine.

The template must be changed in the following way:

ObjectType SHEET

ObjectSubType HISTO

Shading SIMPLE_SHADING

Xdim number

Zdim number

Xdim and Zdim should be large enough so all of the processes generated by top can

be displayed.

DataMethod PRE_DEFINED MethodId DISPLAY_TOP

All other values can be set to whatever the user wants. All inapplicable values are

ignored.

The command for animating top is top I filter (if the input option is standard

input).

Normal Data This utility is used to animated any number and type of graphical objects.

The only requirement is that the data for representing the movement of each object must

appear in the order the objects were created. The data must also be of the correct type for

the respective object. Solid data types have data in the form of six floating point numbers

representing x, y, z translations and xrot, yrot, zrot rotations. Sheet data types will have
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a set of y values, the number of which is (xdim+l)x(zdim+l) for contour plots and xdim

x zdim for histogrids. Because each object that currently exists must have movement data

for each iteration of movement, this method is quite restrictive .
The template must include a object definition for each base type of object being used.

Normal Data Plus This is similar to Normal Data but the filter assumes each set

of object movement data is preceded by the object number. This allows a more flexible

method for moving objects as objects do not have to appear in any order or even at all. A

flag number indicates that the movement data should be updated and the screen updated.

4.4.5 Creating New Utilities

New utilities can be created and used with the HDVS. One limitation of this option is

the requirement that parts of the system be recompiled. Currently this option is not

automated, and hence is not recommended for those unfamiliar with the HDVS.

Adding a new utility requires several tasks to be completed. First, the function(s)

necessary for handling and translating the data must be written. This function should

parse the data and then determine what actions (specifically what SPP calls) should be

made. This routine would then have to be registered with the filter so it could be used as

a predefined utility.

A typical routine would have the following loop:

While more data

Get some data

Parse data and make necessary translations

Act on data using C interface to system (control graphical object or

alter visualization engine)

Process messages(includes incoming and outgoing messages)

End while
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C API

The HDVS C API (Vislib) forms the basic mechanism for creating new utilities. The

Vislib provides an interface that is very similar to that provided by the Tel command

set which was discussed in section 4.4.3. This similarity between the two interfaces exists

because of the nature of the Tel command set. All the Tel commands are ultimately

implemented by a corresponding Vislib C function. The HDVS Tel commands essentially

place the call data into the appropriate C data structures and then call the corresponding

Vislib function. Therefore the functionality of the Vislib functions is the same as that of

the HDVS Tel command set. The actual C data structures used by Vislib and the set of

function prototypes are listed in Appendix A.



Chapter 5

Discussion

5.1 Difficulties Along the Way

Many problems were encountered while building the HDVS. Some of the problems had

easy solutions while others required a significant time investment to solve. Some issues

were never adequately solved, as they were beyond the scope of this project. These issues

can be separated in to three main categories, the visualization engine, the filter interface

and the communication system.

5.1.1 Visualization Engine

The main obstacles encountered while developing the visualization engine dealt with func-

tionality and performance. It became apparent early on that using the features available

through X Windows would be inadequate for 3D animation. The PEX extension to X,

which does support 3D rendering, did not meet performance requirements for animation.

The low-level X library drawing primitives did not support 3D animation, and building a

3D engine based on these primitives would have been prohibitively slow. Some thought

was given to using existing 3D engines but this idea was discarded for many reasons. The

HDVS would require a very extensive interface to whatever graphical engine was employed.

It was thought that the time investment in finding a suitable engine (if one even existed)

and then learning how to interface with it could be better spent adapting a simple 3D

engine the author had already built.

The author's simple engine was adapted to make use of the shared memory extension

to X. This allowed a significant increase in performance by avoiding unnecessary memory
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copying. The engine was also modified to provide multiple light sources and Gouraud

shading for polygon objects. By keeping the graphical objects somewhat simple, perfor-

mance was streamlined to yield smooth animation for scenes consisting of 10,000 or fewer

polygons.

5.1.2 Interface

Making a flexible and easy-to-use data input scheme was one of the problems faced when

designing an interface for HDVS. A tradeoff had to be made between flexibility and user

configuration. Because ultimately only the user knows what form the visualized data

should take interaction at some level will always be necessary. The template, developed

to address this issue, provides a simple method to configure the system. However, the

template was not capable of completely solving the interface issue and so the utility engine

and Tel front end were added. These additions added two levels of functionality to HDVS.

The utility engine enabled those with little or no computer experience to have access to

data visualization techniques, and the Tel front end provided a easily learned and flexible

method for more extensive data visualization. In addition a C API was made available to

enable more experienced users to write new utility programs.

5.1.3 Communication System

The communication system was created in response to several issues encountered while

developing the system. Initially, the system was to be composed of a filter and a visualiza-

tion engine. These two programs would communicate using TCP lIP sockets. To achieve

this, the SPP was developed to enable messages to be passed between the two systems.

The difficulty encountered in the implementation of SPP was creating a message system

that could be extended to incorporate new message types. This flexibility was necessary

because the functionality of the HDVS system often changed as it was developed, requiring

new and different types of information to be exchanged between the two systems. Even-

tually the system was expanded to incorporate multiple filter and visualization programs.

This added the complication of providing an environment where multiple filters could co-

exist in the same system. The communication manager was developed to address these



60

issues.

The problems encountered while developing the system actually influenced how the

final system was implemented. At each stage of development there were a new set of

problems and the answers to these problems would take the system to the next stage in

its maturation process. There are still issues to be addressed regarding the HDVS. These

are discussed in Section 5.3.

5.2 System Goals

The goals of the ideal heterogeneous data visualization system were outlined in section 3.

It is illustrative to see how successfully these goals were met.

5.2.1 Goals Fully Met

Multiple Data Inputs and Outputs The system is capable of integrating data gen-

erated from multiple computers. The system also enables visualization engines to be run

on different machines while viewing the same data sets.

Distribution of Computation The system can be run in a fully distributed mode

with the filters, visualization engines and communication manger able to be executed on

different machines.

Communication Protocol The system provides a communication manger and extensi-

ble protocol (SPP) that support bidirectional message passing among the different clients

of the system. The protocol is also extensible, to enable new message types to be created

easily.

3D-Rendering Engine The system has a 3D-rendering engine that supports 3D surface

plots, 3D histogrids and a variety of 3D base shapes. The system provides a means for

the animation and display of graphical objects.
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Flexible User Interface The system provides various methods to input and filter data.

The system provides a utility engine, a Tel front end and a C API to provide the user

with multiple interface methods.

Phase Four System HDVS is a phase four system. It successfully separates the DGC

and VC via the filter and visualization engine programs.

5.2.2 Goals Partially Met

HeterogeneousData Types This was the only goal that was not fully met. The

system does allow any type of data as input, but complex data forms require some form

of parsing. This is unavoidable, as only the user fully understands how the data should

be visualized. Ideally the system would provide a built-in scripting language specifically

designed for parsing data. This would enable the user to configure the HDVS easily for

any most any type of data.This is discussed more in section 5.3.

5.3 Future Work

Continued work on the HDVS will concentrate on two main areas: implementation and

scope of use.

5.3.1 Implementation

The implementation of the 3D engine will be moved from C to C++, making it easier

to add new types of graphical objects. New data-viewing constructs such as volume

visualization will be added. In addition, the 3D engine will be improved to give better

performance and will also utilize an OpenGL API in the rendering engine if it is available

on the host computer.

The filter will be modified to provide a better support for the importing of data. A

built-in interpreter that is specifically designed for easy configuration of data parsing will

added. Furthermore, a control panel will also be added, enabling the user to dynamically

modify data translation parameters such as scaling and translations. This feature will be
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particularly useful when integrating data from multiple sources. These changes will make

the HDVS a system capable of meeting a wider variety of user needs.

5.3.2 The Holy Grail

The main goal of HDVS lies in its name: viewing heterogeneous types of data. This goal

also implies the question, "How to maximize the viewable data types while minimizing

the configuration requirements?". In some respects, these two ultimate goals are at odds

with each other. One can see this by looking at the extreme cases. At one end of the

spectrum lies a system capable of visualizing any type of data. This system would have

unlimited flexibility, but would require the user to specify a translation for each type of

data. At the other end, we have a system limited to a few basic data types that requires

no intervention from the user whatsoever.

On the surface this seems to be a difficult problem. Looking at HDVS may give some

insight on where to begin. HDVS is a Phase Four system, and as such has a logical

separation between the DGC and VC. This separation makes it easier to see the weakness

in data visualization systems. To truly be able to visualize heterogeneous data types,

a system needs an intelligent, flexible filter to perform data parsing and mapping tasks.

The key is not to concentrate on the latest rendering techniques and models, but on

the filtering of the data. Because of the separation of DGC and VC, HDVS provides

an environment suitable for development of the filter. The interaction between the two

programs is minimal, enabling greater freedom in the future modification of the filtering

system.
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Appendix A

C API

Data types and function prototypes for the C API.

Data types:

/* data type used for creating objects */

typedef struct {

int object_number;

int object_type;

int sub_type;

int moveable;

int shading;

int color;

int scale;

int initx;

int inity;

int initz;

int rotx;

int roty;

int rotz;

float scalex;

float scaley;

float scalez;
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int xdim;

int zdim;

int grid_size;

int radius;

int angle_size;

int create_grid;

int grid_color;

char name[MAX_NAME_LENGTH];

int text_color;

}create_object_type;

1* data type for altering polygon color *1

typedef struct {

int object_num;

int polygon_num;

int new_color;

}alter_polygon_type;

1* data type for changing state information *1

typedef struct {

int state_num;

union {

res_request_type res_request;

contour_request_type con_request;

}state_union;

}state_change_type;
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1* data type for changing the resolution of a contour plot *1

typedef struct {

int object_num;

int res_dir;

int interp_method;

}res_request_type;

1* data type for requesting contour coloring *1

typedef struct {

int object_num;

int contour_status;

} contour_request_type;

1* data type for requesting a resolution change *1

typedef struct {

int object_num;

int nxdim;

int nzdim;

int res_dir;

int grid_si~e;

}res_change_type;

1* data type for deleting an object *1

typedef struct {

int object_num;

int status;

}delete_object_type;
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1* data type for selecting an object *1

typedef struct {

int object_nurn;

int button;

}select_object_type;

1* data type for modifying lights *1

typedef struct {

int light_no;

int light_type;

int on;

float px,py,pz;

float dx,dy,dz;

}light_mess_type;

1* data type for changing the view position *1

typedef struct {

float x,y,z;

float rotx,roty, rotz;

float type;

}view_mess_type;

1* data type for attaching text to a vertex *1

typedef struct {

int object_num;

int vertex_num;

int y_offset;

char text [50] ;
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1* data type for reseting the visualization engine *1

typedef struct {

int reason;

}reset_type;

1* data type for linking to objects together *1

typedef struct {

int object_to;

int object_from;

int line_color;

}link_object_type;

1* catch all structure for simple message requirements *1

typedef struct {

int sub_type;

int object_num;

int tempi;

int temp2;

int temp3;

}multLuse_type;

MESSAGE FUNCTION PROTOTYPES:

void create_and_send_change_object_colorCint num_objects, int color,

int *object_Iist,int more_to_come);
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void create_and_send_text_message(int num_objects,

text_mess_type *temp_text);

. ,.

void create_and_send_change_res(int object_num,res_change_type **res_ptr,

int *num_altered,int newx, int newz,int res_dir);

void create_and_send_create_object(int cur_object_count,

create_object_type *create_ptr,

void create_and_send_link_object(filter_object_type *filt_ptr,

int num_links,int object_from,

int *link_array ,

int color,

int more_to_come);

void create_and_send_delete_object(filter_object_type *filter_ptr,

int *object_list,int num_objects,

int more_to_come);

void create_and_send_alter_cell(int object_num,int num_cells,

int *celLlist,

void create_and_send_alter_polygon(filter_object_type *filter_ptr,

int object_num,

alter_polygon_type ** alt_ptr,

movement_data *move_ptr,

int num_colors,

float *scaling,int *colors);
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void create_and_send_light_messageCint num_lights.

light_source_type *light_defs);



Appendix B

Figures
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Figure B.l: Solid object primitives
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Figure B.2: Contour plot

Figure B.3: Histogrid object
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F'igure B.4: Simple shading of contour plot

Figure B.5: Contour plot of B.2 with viewpoint rotated 90 deg
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Figure B.6: Contour plot of B.2 with viewpoint closer to object

Figure B.7: Contour Plot with color scaling
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Pigure B.8: Directory Utility: Full directory view

Figure B.9: Directory Utility: Isolated directory view
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F'igure 8.10: Top Utility

Figure B.ll: Normal Data: Fractal landscape



Biographical Note

James Blakely was born in Bend, Oregon on May 10th, 1964. He graduated from Moun-

tain View High School in 1982. As an undergraduate student, he attended Willamette

University, Arizona State University, and finally graduated from Whitworth College with

a BS in Physics and a minor in Mathematics in 1988. He went on to pursue an advanced

degree in physics at the University of New Mexico. After several years of boredom, he

left UNM in 1993 with an MS degree in Physics and transferred to OGI to pursue his

true calling in computer science. In the summer of 1994 he designed the the 3D graphical

display system in an advanced code browser for Imagix Corp. James enjoys most aspects

of computer science, but has particular interest in computer graphics, data visualization,

and the UNIX operating system. His hobbies include running, cycling, basketball, and

contemplating the many combinations and varieties of puddin'.

79




