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Abstract

Some Approaches to

Automatic Compiler Generation

E. David Burke

Supervising Professor: John Launchbury

Although it is well-known that the program optimization technique called partial evalua-

tion can be used to do compilation, it is less well-known how the interpreters ought to be

structured so that the target programs execute efficiently. Most of the existing work in this

area fails to address the issue of compiling from a high-level language specification down

to machine code; the resulting target code is much too inefficient, making this technique

impractical for "Real World" compilation.

In this work, we address the feasibility issue by using partial evaluation to produce

efficient, low-level code for the Scheme programming language, starting from the official

language definition. We also detail another, complementary approach to compilation.

This "calculational" approach is based on structuring the interpreter in such a way that

it can be mathematically manipulated, and a compiler derived from the properties of the

source language, and run-time machine. After demonstrating how both methods work, and

discussing our experience in trying to efficiently compile Scheme programs, we compare

and contrast the differing techniques, as well as suggesting some ideas for future research.

IX



Chapter 1

Introduction

1.1 Opening Statment

In this chapter, we briefly discuss the concepts of compilation and, in particular, the

automatic generation of compilers. This chapter provides the context in which to set our

work in automatic compiler generation.

1.2 The Idea of Compilation

The very first compiler, for the programming language Fortran, was developed by John

Backus and his team at IBM in the late 1950's. It is interesting to note that the original

goal of this project was the elimination of programming! That is, given a mathematical

formulation of the problem, a correct program would be generated to solve that problem.

This goal has to be evaluated in context. At the time, only assembly language existed;

because this is so close to the operational details of a machine, it turns out to be a very

time-consuming and error-prone way to program. What Backus and his group hoped to

do was to enable the user to input mathematical formula (the source program) that would

be translated into machine code (hence the name "Fortran" from Formula translation).

It is also important to note that correctness was much more of a concern than efficiency

(which is very ironic, given Fortran's reputation today as a very fast language); the goal of

Backus and his team was to demonstrate that the very idea of compilation was feasible [1].

One way to measure the success of the project is to note that Fortran is now considered a

very "low-level" language. Programming language and compiler design became legitimate

1
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fields of study due to Fortran's exam pIe, and the state of the art has ad vanced considerably

since that time.

Once Fortran compilers had been successfully developed, it was natural to wonder

whether the process of developing a compiler itself could be automated in some way.

Consider this: a high-level language abstracts away details of a target machine, enabling

us to write software that uses data structures and algorithms that are "natural" to the

problem. The program, then, can be thought of as a somewhat higher-level specification

of the problem, for which the compiler generates a correct target program. By correct,

we mean that the target program produced by the compiler preserves the meaning of the

source program.

We can take this process one level higher in abstraction. Why not do essentially

the same thing for compilers as was done for programs? That is, specify the source

language in which programs are to be written, and the target language to translate to,

and automatically generate a compiler for the source-target pair. Such a tool, which

automatically generates a compiler, can be thought of as a "meta-compiler" Compilers

map the set of possible source programs (given a well-defined source language) to a set

of target programs. The "meta-compiler" maps the set of all possible source languages

(again, those that are "well-defined") to a set of compilers.

Compilers are complex objects; whereas the idea of automating the process of compiler

generation was a very attractive one to computer science researchers, progress came slowly,

and in pieces. As parts of the compilation process became well-understood, they could

be formalized, and once formalized, amenable to automation. The first fruits of this

labor were in what is usually referred to as the "front end" of compilation: the tasks of

lexical and syntactic analysis. A lexer converts a program (as a string) into a stream

of tokens. A parser takes a token stream, and converts it into a parse tree. Work in

this area produced programs like Lex and Yacc, which, given a specification of tokens and

productions, respectively, generate lexers and parsers. The conventional wisdom nowadays

is that the front end of compilation is pretty much under control.

The crux of the compilation process, though, has proven to be extremely difficult to

automate. This is the problem of translating the parse tree into a new, more operational
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representation (somewhat similar to machine language) while at the same time preserving

the "meaning" of the source program. Unlike lexing and parsing, which are syntactically-

driven, this translation (or "middle-end" compilation) is semantically-driven. This raises

the question of just what is the "meaning" of a program is, and has led to a variety of

methods for assigning semantics to programming languages. The most successful of all

of these approaches is denotational semantics. In this approach, we map program text

to mathematical structures, which we can then manipulate formally. With the rise of,

and dissemination of information about denotational semantics in the 1970's, there was a

concurrent increase in efforts in the new field of "semantics-directed compiler generation" .

Systems such as Mosses' Semantic Implementation System (SIS), and Wand's Semantic

Prototyping System (SPS), [31, 44] demonstrated that it was indeed possible to generate

compilers, given a language specification encoded with denotational semantics.

However, these, and other similar systems, have not been completely successful. Code

produced by these systems tends to execute very slowly - often a couple of orders of

magnitude slower than target programs translated by handwritten compilers. Not too

surprisingly, these denotationally-driven approaches tend to be more successful in the

context of a functional language, since both these languages, and denotational semantics

itself, are computational realizations of the lamba calculus.

More recent work in the field has moved away from a strict denotational approach

to automatic compiler generation. A good example of this is Mosses' Action Semantics

[33],where the primitives correspond much more closely to the kinds of primitives that

actually exist in target machines - fetches and updates, for example. The idea behind

action semantics is that the primitives (or actions) should correspond very closely to the

gradual, step-wise nature of computation. We discuss this, and other methods of semantic

definition, in more detail in the next chapter.

1.3 Overview of Thesis

In this work, we investigate the use of partial evaluation in the automatic generation of

compilers. It is well known that given an interpreter for a language, and a source program,
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a partial evaluator can compile the source program by specializing the interpreter with re-

spect to the source program. Existing work, however, has dealt mainly with toy languages,

and does not demonstrate that this technique scales up to "Real World" languages.

In our work, we write an interpreter that is an encoding of the denotational definition of

the Scheme programming language that appears in the Revised4 Report on the Algorithmic

Language Scheme (R4RS) [7]. We demonstrate that it is possible, through an analysis of

the basic forms of the language, to compile source programs that execute roughly as fast as

hand-compiled programs. In addition, we show how a technique of making multiple passes

with the partial evaluator enables us to control the structure of the compiled programs; we

can iteratively expose operational details, making the code more low-level with each pass.

This approach has the benefit of further modularizing the compilation process. Chapter

2 introduces partial evaluation, and Chapter 3 details our work.

Despite the semantic basis of our work, some of the binding-time improvements that

we make to control the structure of residual programs are based on intuition and itera-

tive experimentation. It would be better if these improvements were formally motivated.

Another possible drawback to using partial evaluation for automatic compilation is that

any correctness proof of the compiler is dependent on having a proof of correctness of the

partial evaluator itself. In order to address these challenges, we look at an alternative,

more formal approach to compiler generation, which we call the Calculational Approach,

in which a compiler is derived from the structure of the source language. Our belief is that

the two methods complement each other; the formal methods give us more confidence in

the correctness of the partial evaluation approach, as well as generating useful intuitions

about the structure of the source language and how it can best be compiled. In Chapter 4

we introduce the calculational approach, and in Chapter 5 we suggest how it can be used.

Chapter 6 draws some conclusions, and mentions some possibilities for future research.



Chapter 2

Introduction to Partial Evaluation

2.1 Partial Evaluation

Partial evaluation is a program optimization technique that has received much attention

from the research community over the last decade, because of its generality and power [13,

8, 19,22]. The concept of partial evaluation unifies the ideas of compilation, interpretation,

and program transformation.

A partial evaluator can be thought of as a "smarr' interpreter. Given a program,

an interpreter, and some of the program's inputs, a partial evaluator will produce a new

program that takes the remaining inputs, and produces the same answer that the original

program would have, given all the inputs. This new program is called a specialized version

of the original program. Hence, a partial evaluator performs a "mix" of computations [23].

It executes code corresponding to the known inputs, and generates code corresponding

to the unknown inputs. We call those inputs known at partial evaluation time static;

those that are unknown are referred to as dynamic. We can think of partial evaluation

as removing layers of interpretation corresponding to the static inputs. For this reason,

partial evaluators are often described as static semantic processors.

Partial evaluation has already proved itself to be a practical tool for such diverse

applications as scientific computation [2], neural nets [20], database queries [35], and

automatic compiler generation [14, 18,24,26, 12,23], the latter being of particular interest

to us.

5
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2.1.1 What a Partial Evaluator Does

The output generated by the partial evaluator, given a program and some of its inputs,

is called a residual program, and is referred to as a specialization of the original program.

The hope is that investment in the computation involved in the partial evaluation process

will be more than made up for by a residual program that is more efficient in time and/or

space than the original.

The following simple example illustrates what a partial evaluator does. Consider a

program that calculates exponentials:

(define (power x n)

(if (eq? n 0)

1

(* x (power x (- n 1)))))

Suppose that we know that n equals 5, and that x is unknown. Hence, n is static, and

x is dynamic. Feeding this program, and the input n = 5 to a partial evaluator, we would

find:

(power x 5) = (* x (* x (* x (* x (* x 1)))))

However, it is important to note that in the case where x is static, and n is dynamic,

we might not get any improvement to the original code (depending on the value of x; for

example, a partial evaluator that "knows" some algebra might know that 1 raised to any

power is 1, and specialize accordingly).

This example demonstrates one of the applications of partial evaluation to real-world

code generation. During software development, there is usually a tension between the goals

of efficiency on one hand, and generality and modularity on the other. Partial evaluation

can be used as a way of satisfying both goals. Programs can be written in a general,

modular fashion; efficient, specialized versions can be generated with a partial evaluator.
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2.1.2 The Futumura Projections

One of the most significant properties of a partial evaluator is that specializing an inter-

preter with respect to a source program compiles the program[17]. The partial evaluator

processes the static semantics of the interpreter, which is equivalent to performing all

the compile-time actions, leaving the "executable code", which corresponds to run-time

actions. Hence, to compile source programs for some language, we need only write an

interpreter for it (given the existence of a partial evaluator for the language in which the

interpreter is written). Interestingly, if the partial evaluator can take itself as an input,

then the partial evaluator is called self-applicable.

A self-applicable partial evaluator offers a second method of compiling programs. The

result of a self-applicable partial evaluator specializing itself with respect to an interpreter

is a compiler for the language defined by the interpreter. Both approaches give the same

result; a reason to take the second approach is that it is more efficient to generate a

compiler whenever some of the programs we wish to compile share an interpreter as a

language definition.

Let us consider the behavior of a partial evaluator in more detail, following the presen-

tation given by Jones [22]. Given a partial evaluator PE for a language L, and a source

program P written in L, with static inputs s, and dynamic inputs d, we feed P and s to

PE, and take the resulting program, and run it on dynamic inputs d. The result is the

same as if we had run P on sand d together. The following equation, which we can call

the "PE equation" represents this state of affairs, where [P] indicate running a program

P.

[[PE] P s] d = [P] s d

What makes partial evaluation relevant to automatic compiler generation are the three
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equalities known as the Futumura projections [17]. Consider the PE equation; let the

source program P be an interpreter, into Let the static input .'3to the interpreter be a

source program, sor, and the dynamic input d be the inputs to the source program, input.

Then the PE equation becomes:

[[PE] int sor] input [int] sor input

We want a target machine program with the dynamic input to give the same result as

we would get from running the interpreter on both the static and dynamic inputs:

[target] input [int] sor input

Then, by the PE equation above, we have the following equality, the first Futumura

projection:

target [PE] int sor

The second and third Futumura projections demonstrate the possibility of generating

both compilers and compiler generators through the use of partial evaluation. The second

Futumura projection shows us how to produce a compiler by using the partial evaluator

to specialize itself with respect to an interpreter. This concept is called self-application,

and requires the partial evaluator to be written in the same language that it processes.

To derive the second Futumura projection, we start with the PE equation again, this

time letting the source program P be the partial evaluator P E itself, with static and

dynamic inputs the interpreter int, and a source program sor, respectively. Then, by the

first Futumura projection, and this version of the PE equation, we have:
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target [P E] int sor

[[PE] PE int] sor

[compiler] sor

From this derivation, we have the following equality, which is the second Futumura

projection:

compiler = [PE] PE int

The third Futumura projection gives us, in a similar fashion, the existence of a compiler

generator, cogen, through partial evaluation:

cogen = [PE] PE PE

When given an interpreter, cogen produces a compiler generator; a program that auto-

matically translates interpreters into compilers. This result is much less intuitive than the

previous two. However, we can derive this result by starting with the second Futumura

projection, and applying the PE equation to the right hand side of the projection:

compiler [PE] PE int

[[PE] PE PE] int
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Since [[PE] PE PE] takes as input an interpreter, int, and produces a compiler, it

is acorn piler generator.

The Futumura projections show that partial evaluation is theoretically a very powerful

and general program transformation technique. The goal of most research in the field is

to make it a practical technique.

2.1.3 How a Partial Evaluator Works

We can make a distinction between online and offline partial evaluators. An online partial

evaluator can be thought of as an interpreter that takes the source program, and the static

inputs, and returns a target program that expects the dynamic arguments (as opposed

to a standard interpreter, which expects all of its arguments at once). In contrast, in

an offline partial evaluator, the partial evaluation occurs in two phases. The first phase

typically takes the source program, and a description of the binding-time of its inputs,

and propagates this information throughout the source program, in order to calculate

whether an expression can be evaluated at partial evaluation time, or run-time. This is

called a binding-time analysis. The second processing phase performs whatever evaluations

have been identified during the binding-time analysis, producing the specialized program.

Although online partial evaluators have the advantage of being more accurate than offline

partial evaluators (because the partial evalutor is processing the actual values of the static

inputs, not just the fact that an input is static), the latter are more common because they

have the advantage that the binding-time analysis can be performed just once, and then

reused for each set of actual inputs.

The basic operations used in the processing stage are constant propagation and con-

stant unfolding. The treatment of function calls is particularly difficult. There are two

pitfalls: infinite unfolding and infinite specialization.

A specialized function is created by interpreting the static inputs of that function at
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partial evaluation time. With specialization, the danger is that we can enter an infinite

loop in the partial evaluator as it attempts to produce an infinite number of specialized

functions. This occurs when the propagation of static arguments is controlled by dynamic

arguments. For example, consider the following code:

(define (looper flag n)

(if (eq? flag 0)

'done

(looper flag (+ n 1)))

Suppose that n is static, but flag is dynamic. Depending on its specialization strategy,

the partial evaluator might begin producing an infinite number of specialized functions,

each with a different value for n.

In the case of unfolding, too conservative a strategy leads to trivial optimizations, and

residual programs that are poorly specialized with respect to the original. On the other

hand, too liberal a strategy can lead to loops in which the same function is unfolded in-

finitely. One possible approach towards unfolding is to unfold only when all the arguments

are static. However, in practice, this turns out to be too conservative a strategy, which

means that it is necessary to unfold some functions when all values aren't known. There

are several ways of choosing which function calls to unfold. We can statically annotate the

functions to be unfolded in the preprocessing stage, or have the user decide interactively,

or have some dynamic strategy. The approach taken by some partial evaluators is to only

unfold when there is no risk of infinite expansion. This requires a termination analysis, in

which we check that any recursive function has a static variable that is decreasing with

respect to some partial ordering as function calls are made. For more information on the

treatment of function calls, see references [23, 37, 4] and [10].

In the course of executing a program, we may evaluate a particular function many

times, with different binding times for arguments. When we perform a binding time
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analysis, we have the option of associating either one binding time description with each

function (a monovariant binding time analysis), or else multiple descriptions (a polyvariant

binding time analysis) [11]. The advantage of a polyvariant binding-time analysis is that

it is more accurate, but it does have the disadvantage that with recursive data structures

or recursive functions, it may be difficult to ensure the finiteness of the binding-time de-

scription - the analysis may not terminate. This problem has been studied, and solutions

are discussed in references [9, 11, 34] and [3]. Similarly, a monovariant partial evaluator

produces one specialization per function, while a polyvariant partial evaluator can produce

many specializations for each function.

2.2 Automatic Compiler Generation

Much of the activity in partial evaluation has centered on the application of partial eval-

uation to automatic compiler generation, and many languages have been studied, such

as a subset of Algol [12], Prolog [14], lazy functional languages [24], and object-oriented

languages [26]. This is because the technique of partial evaluation enables us to compile

programs in a language when given only an interpreter for that language. This is clearly

a promising approach; whereas compilers have advantages over interpreters in terms of

speed of execution, they are much harder to write. There are several reasons for this:

1. When writing a compiler, we must keep in mind two binding times: compile-time

and run-time. When writing an interpreter (a "normal" interpreter; not one for a

partial evaluator!), we have only one binding time to deal with.

2. When writing a compiler, we have an implementation language L that translates

the source program written in S to a target program written in T. When writing an

interpreter, we have one less language to consider; we execute the source program

written in S with an interpreter written in implementation language L.
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This application of partial evaluation also ties in with current research in deriving

programs from specifications. There is much interest in the research community in being

able to automatically generate programs from executable specifications written in a deno-

tational semantics. Using a partial evaluator, we may be able to go from specification to

compiler without explicitly writing a compiler; the "ideal" automatic compiler generator

would take a "naive" interpreter (that is, an interpreter that implements the specification,

and was not written expressly for a partial evaluator), and use the partial evaluator to

generate a compiler for a concrete target machine.

2.3 Related Work

Work in semantics-based automatic compiler generation is only about fifteen years old.

The publication of Stoy's book on denotational semantics [38] in 1977 seems to have been

instrumental in inspiring researchers to look at denotational semantics (or a variant of it)

as not only a tool for the formal description of a language, but also an approach to its

implementation. The idea is that the semantic equations of a language can be used to

produce a compiler.

We will summarize three general approaches to semantics-based automatic compiler

generation - denotational semantics, combinators, and action semantics - and discuss

briefly how each of them can be used to generate compilers. In the denotational semantics

approach. the semantic equations are written in lambda-calculus, and then the idea is to

represent these equations as a functional program. The problem with most existing work

using this approach is that the systems perform a translation from syntax to semantics

[36, 12]. A compiler should execute all the compile-time actions, leaving only run-time

actions for the executable. But without a way to differentiate between the static and dy-

namic semantics in a language, a denotational-semantics-directed implementation cannot
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do this. Since a partial evaluator processes static semantics, it can be used to automati-

cally generate a compiler in which all the static actions are performed at partial evaluation

time. An early paper by Jones and Schmidt [21]acknowledged this, concluding that their

compiled code contained many constructs that could be evaluated at compile-time. It is

possible to see the germination of partial evaluation in the solutions they propose for this

problem: they discuss performing what amounts to a binding-time analysis on the source

program.

In response to this obstacle, Wand developed a combinator-based approach to auto-

matic compiler generation in a series of papers [41, 42, 43]. His method was to start with

the semantic definition of the language in lambda-calculus, and define a set of combi-

nators for the source language, replacing the lambda-calculus terms by the appropriate

combinators. A source program, then, is translated to a tree of combinators. Using some

associative and distributive laws, the tree is "rotated" to a linear form. The result is a

series of combinators derived for the machine that represent the machine's instructions.

The advantage claimed for this approach is that since the machine and the compiler are

derived together, this makes correctness proofs for the compiler easier than the situation

in which the machine and the language are independent. Unfortunately, the corresponding

disadvantage of this approach is that it is more typical to be given a language to compile

and a machine independently. This approach has also been criticized on the grounds that

it requires "excessive cleverness" to define the combinator set [45]. That being said, we

have been strongly influenced by Wand's work in deriving compilers from denotational

semantics [42, 41, 43]. In particular, his recent development of a "higher-order abstract

assembly language" as a machine language that is derived from CPS terms generated by

the denotational semantics [46] is closely related to our approach. His technique also al-

lows him to provide correctness proofs for the compilers. Similar ideas were used to derive
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compilers from interpreters [16]; the structure of the residual programs that we generate

owe much to his approach. Our work differs from his in that we aren't as interested in

deriving target architectures as we are in compiling to a given architecture, or abstract

machine.

A third approach is another variant of denotational semantics called action semantics,

developed by Mosses [32]. Action semantics is supposed to represent an operational version

of denotational semantics, in which phrases from the source language are mapped to

semantic entities called actions, which perform computations by "processing information" .

The goal of action semantics is to provide constructs that are superior to the higher-

order functions of denotational semantics from a pragmatic standpoint, while retaining

the rigor of the denotational approach. Bondorf and Palsberg have generated a compiler

by partially evaluating an action interpreter [5]. Several changes had to be made to the

naive interpreter by hand in order to get reasonably good code; specifically, 'TJredexes

were added to the interpreter in order to improve detection of early binding times. The

resulting code was found to run an order of magnitude faster than target code produced

by classical automatic compiler generators.

There are other approaches to compilation that are related to our work that don't

fall neatly in one of the above categories. Using concepts from denotational semantics,

Kelsey and Hudak [25] describe a method of realistic compilation in which the notion of

compilation as a source-to-source transformation process is stressed. They are able to

produce low-level code that can be mapped onto a concrete target machine, with good

execution speeds. However, they don't address the issue of automating this process, given

a language specification.

Clinger [6] developed a Scheme compiler and proved it correct with respect to the

semantics of Scheme. The compiler algorithm generates code for an abstract "Scheme



16

machine" , whose architecture is influenced by the semantics of Scheme. Our separation of

compilation into multiple passes was influenced by his observation that during compilation,

it is desirable to have varying levels of representation at different abstraction levels, and

the need to maximize the flexibility of representation at each level.

Although there have been many successes in compiling programs using partial evalua-

tion, the compiled code typically executes much slower than a hand-compiled version. This

is because the residual code generally is still a functional program (in the implementation

language). To execute this compiled code requires the use of either an interpreter, or

an existing compiler for the implementation language. In contrast, although our residual

programs also are functional after the first pass, we will show that it is possible to use

additional partial evaluation passes to generate native machine code.



Chapter 3

Using Partial Evaluation to Compile

Scheme Programs

3.1 Introduction

Although it is well-known that the program optimization technique called partial evalua-

tion can be used to do compilation, it is less well understood how the interpreters should be

structured to derive compilers effectively. Partial evaluators are often described as static

semantics processors [36],but there is no guarantee that the partial evaluator will be able

to find and execute all the constructs in the source program that correspond to the static

semantics (i.e, the compile-time operations). This is especially true if the interpreter is an

encoding of a language specification, which will be written for descriptive purposes, not

as an implementation guide. For example, a crucial feature of Scheme is that it has no

explicit looping constructs. Hence, any implementation has to be properly tail-recursive,

yet this feature is not explicit in the specification of Scheme [7].

In this chapter, we describe a promising technique in the direction of realistic com-

pilation of languages by partial evaluation. The idea is to make multiple passes with

the partial evaluator over source and residual programs. Our guiding principle here is a

tried-and-true one in system design: separate policy from mechanism. We use the first

pass through the partial evaluator as our "policy" pass; it is here that we decide what

17
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language operations are to be executed at compile-time, and which operations are to be

done at run-time. The second, and any subsequent passes through the partial evaluator,

are the "mechanism" passes, in which we determine the appropriate representations for

the high-level operations in the residual program in terms of the low-level machine model.

Each subsequent pass can further uncover operational details in terms of concrete target

machines, thereby allowing implementations on varied architectures.

A very brief example will give the flavor of our approach. Given the following fragment

of source code, and assuming a continuation k,

(set! x (+ y 4»

we specialize the R4RS interpreter with respect to this source code, which produces

the following residual code. As expected, the location of variables has been computed

(loc 1 is the location of y and loc2 the location of x). Furthermore, the implementation-

independent details of the computations represented by the source code are made explicit.

Lower level operations such as store operations are left unspecified. They are dealt with

by later partial evaluation passes.

(lookup-store loc1

(lambda (exprvaI1)

(add

(Concat exprval1 (Concat (number 4) (Empty»)

(lambda (exprval2 store)

(update-store loc2 exprval2

(lambda (store3)

(k (Unspecified) store3»»

store2»

store1)

In this code, each lambda is a continuation. That is, the result of doing lookup-store

on loc1 in store1 becomes exprval1 in the continuation that follows. Similarly, the
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function add takes exprval1 and the number 4, adds them, and passes the result as

exprval2 in the following continuation (along with store2). The innermost continuation

gets passed the result of the update-store function.

In the second partial evaluation pass, the residual code is fed to the partial evaluator,

along with the encoding of an abstract stack machine, and the result is below. exprval,

which was bound to loc1 during the lookup-store operation during the first pass, is here

treated as the memory location of the original variable y.

(move-top-of-stack exprval1

(lambda (state)

(push-contents exprval1

(lambda (state)

(push (number 4)

(lambda (state)

(prim-add

(lambda (state)

(move-top-of-stack loc2»»»»)

(move-top-of-stack exprval1)

(push-contents loc1)

(push (number 4»

(prim-add)

(move-top-of-stack loc2)

On the left is the actual residual program; on the right, we have removed the store,

since the code is single-threaded. This representation displays the imperative nature of

the second residual program. The second partial evaluation yields low-level compiled code

that exposes many operational details. In fact, this code is very close to what a byte-code

compiler would generate.

The residual code that we obtained after two partial evaluation passes can be properly

described as an intermediate representation. This brings up the question of how to get

from this representation to native code for a target machine, Le., back-end compilation.

We have identified two alternatives to explore. The first alternative is to make additional

parital evaluation passes, with the final pass being to specialize a residualn program (i.e.,

the residual program generated after the nth partial evaluation pass) with respect to a
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concrete target machine encoded as an interpreter. This alternative has the benefit of

being conceptually consistent with our multi-pass approach to compilation.

However, the second alternative is even more attractive: use off-the-shelf technology

to achieve back-end compilation. Just as tools like lex and yacc have largely solved the

problem of doing front-end compilation in practice, there exist a growing number of code

generators and code generator generators that can do the same thing for back-end com-

pilation.

3.2 Tools

In this section, we briefly discuss Schism, the partial evaluator used in this project, and

R4RS, the specification of the programming language Scheme, the language for which we

wish to write a com piler.

3.2.1 Schism

The partial evaluator we use in this work is Schism, an off-line, higher-order, polyvariant

partial evaluator for pure, applicative languages [10]. Schism's ability to handle higher-

order functions allows us to write interpreters in continuation passing style (CPS) [16],

which allows for better program specialization than interpreters in direct style. Schism

operates on source programs written in Scheme, enriched with a set of type operations,

and a construct called a filter. The type operations allow us to define types with

defineType, and with the operations letType and caseType, perform let and case on

typed data. A filter in Schism is simply an annotation made to each function definition

which tells the system whether to unfold or residualize a call to this function, and whether

any of the static arguments should be propagated.
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3.2.2 R4RS

Scheme is a statically-scoped, tail-recursive dialect of Lisp. Scheme is based on the untyped

lambda calculus; it provides few basic forms, but allows for many ways of combining

them. This flexibility allows Scheme to support varied programming paradigms, such

as functional or object-oriented. Figure 3.1 describes the abstract syntax of Scheme.

In this dissertation, as well as in R4RS, a name followed by the symbol * refers to a

sequence. Hence, the definition says that an abstraction takes a sequence 1*(of arguments),

a sequence of commands (which it evaluates), and then evaluates an expression (which

is the value of the abstraction). Commands and expressions are the same thing, but we

identify some expressions as commands if they are being evaluated only for their side

effects.

E ~ K I I I (Eo E'")
(lambda (1*) f'" Eo)
(if Eo E1 E2) I (if Eo Ed
(set! I E)

Figure 3.1: Abstract Syntax of the Scheme Language

The definition of the Scheme language is given in the Revised4 Report on Scheme

(R4RS). This description includes a denotational semantics for the language. Given

Scheme's close relationship to the lambda calculus, the semantics of Scheme can be defined

denotationally quite easily, and encoded as a Scheme program just as easily. R4RS not

only contains the definitions of the basic forms that comprise Scheme, but also definitions

of some of the common built-in procedures such as car, cons, eqv?, etc. One of the rea-

sons that Scheme is a very appropriate language for our experimentation is that R4RS is

only 50 pages long; the actual denotational semantic definition is only a handful of pages.

To keep the definition of Scheme from being metacircular, certain language primitives

are introduced in the semantics. Lists, for example, are represented explicitly as sequences

K E Con constants
I E Ide identifiers
E E Exp expreSSIOns
f E Com = Exp commands
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III R4RS. In our implementation, we use the Schism datatype constructors to define an

explicit list type, which we call Sequence. In this definition, Empty and Concat are

constructors, and obj ect and more-sequence are just placeholders.

(defineType Sequence

(Empty)

(Concat object more-sequence))

Other primitive operations that appear in the R4RS semantics are given in Figure 3.2,

along with the name of the operation in our Scheme interpreter that corresponds to each

primitive.

sequence formation
length of sequence s

k th member of the sequence s (I-based)
concatenation of sequences sand t

drop the first k members of sequence s
McCarthy conditional
injection of x into domain D
projection of x to domain D

(E)
#s
s~k
s@t

stk
t --7a, b
x in D

xlD

form'" E

length'" s
project'" s k
concat* s t

drop'" s k
if t then a else b

various type constructors
caseType

Figure 3.2: Translation of Language Primitives to Interpreter Primitives

3.3 First Pass

Using R4RS as a specifications, we write a Scheme interpreter. Specializing this interpreter

with respect to a Scheme source program gives us a compiled program. As we will see,

writing a "naive" interpreter results in a poor-quality residual program (in terms of the

sorts of operations we expect a compiler to carry out on a source program). In this section,

we examine each of the Scheme basic forms, and discuss the transformations applied to

the R4RS interpreter to obtain good quality residual code. We also discuss the language

of residual programs, tail recursion, and present an example of compiled code generated

by specializing the interpreter with respect to a Scheme source program.
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3.3.1 Analysis and Transformation of the R4RS encoding

To compile a program, we want to remove all of the constructs that correspond to static

data, and emit code for the constructs that rely on dynamic data. For example, in most

imperative languages (and in the case of Scheme), the environment is a mapping from vari-

able names to locations, and a store is a mapping from locations to values. When these

languages are compiled, variable names can be replaced by memory locations: the envi-

ronment can be considered static. The actual values held in these memory locations will

not generally be known until run-time, and hence store operations (updates and lookups)

can be considered dynamic. By using Schism's filter construct, we can residualize these

operations; that is, mark them as dynamic. Conversely, references to the environment

should not appear in the compiled code, and we expect to "unfold" these operations, i.e.,

to execute them at partial evaluation time. The process of assigning a static or dynamic

tag to variables and functions is called a binding-time analysis.

In this chapter, we analyze and transform the R4RS interpreter based on its binding-

time properties discovered by the binding-time analysis of Schism. These properties allow

us both to identity any changes that must be made to the R4RS interpreter in order to

get good-quality compiled code, and to characterize the structure of the emitted code for

later partial evaluation passes.

Since R4RS was not written with the division between static and dynamic semantics in

mind, it is not surprising that some binding-time improvements need to be made. However,

we accomplish virtually all of them in a systematic manner, by using the fil ter construct

to residualize function calls that operate on run-time values.

In the following transformation example, functions to be unfolded will be underlined,

and functions that we residualize with a filter (because they are operations that we wish

to appear in the compiled code) will be marked in bold-face type. In our analysis, the
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~pe symbol denotes equivalence by unfolding by the partial evaluator, whereas the symbol

~u denotes an equivalence that we have established. Figure 3.3 mentions the important

domains and semantic functions that will appear in the analysis. Note that expression con-

tinuations take sequences of values, not single values, even though expressions in Scheme

only return single values. This was done, the authors explain "to simplify the formal

treatment of procedure calls and to make it easy to add multiple return values". We will

see that although defining the semantics this way make make it easier to draft R4RS, it

will make things more difficult to use R4RS as an implementation guide.

E E E expressible values
(j E S stores

p E U environments
K, E K expression continuations
B E C command continuations
A answers

IC : Constant ---+E

[ : Exp ---+U ---+K ---+ C
[x : Exp* ---+ U ---+ K---+ C
C : Command* ---+ U ---+ C ---+ C

K = E*---+ C
C=S---+A

Figure 3.3: Domain Names and Semantic Functions

Evaluation of Constants

Even though Scheme is a small language, some details of its description have been left

out of R4RS. For example, the definition of constants, IC, is omitted because it would

"complicate the semantics without being very interesting". Our approach is to assume

that all constants are tagged as being so during syntactic analysis, and so evaluation of a

constant consists of the following simplification: IC[K] ~pe E, followed by the application

of an expression continuation. Figure 3.4 describes this. In this, and following figures, the

first appearance of a semantic equation for a basic form, plus any "support" functions,

comes directly from R4RS. The second appearance of the semantic equation describes the
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IC[K] = API),. send (IC[K]) I),

send : E -t K -t C

send = AEI),. I),(E)

IC[K] = ApI),. send (IC[K]) I),

=;'pe ApI), . I),(K)

Figure 3.4: Transformation of Constants

transformations applied to that equation. Note that the process of applying an expression

continuation is made explicit by the send operation, which takes an expressible-value as

an argument, but applies the continuation to an expressible-value sequence.

Identifier Evaluation

The analysis of evaluation of identifiers is shown in Figure 3.5, and illustrates one of the

drawbacks of trying to use R4RS as an implementation guide. We mentioned earlier that

expression continuations take a sequence of values, instead of single values, even though

Scheme returns only single values. Therefore, after any expression continuation is applied,

it is passed to the function single, which makes an unnecessary check whether a single

value is returned. Looking at the semantics of identifier evaluation, we see that lookuppI

returns the location corresponding to 1. The function hold does a store lookup on this

location, and passes the value to single. If we do have a single value, single applies a new

continuation, which performs a check to see whether the returned value is undefined.

As written, static and dynamic semantics are quite intertwined. The environment

lookup is static, but the value of E will not be known at compile-time. Hence, the condi-

tional in single will appear in the residual program. This is undesirable, for two reasons.

Firstly, the undefined test will involve caseType, which means that the residual program
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£[1] = ApK. hold (lookup P I)

(single(Af. f = undefined-+
wrong "undefined variable",
send f K))

wrong: X -+ C implementation-independent
single: (E -+ c) -+ K

single = A'ljJf". #f* = 1 -+ 'IjJ(f*~ 1), wrong "wrong number of return values"

hold: L -+ K -+ C

hold = ACXKO'.send(O'cx ~ l)KO'

hold :::}u ACXKO'.lookup-store cx (Af . send fKO')

£[1] = ApK. hold (lookup pI) (single(Af. send f K))

:::}pe APK. lookup-store (lookup p I) (Af. send f (single (Af . send f K)))
:::}pe APK.lookup-store locp (Af. send f (single (Af. send f K)))
:::}pe APK .lookup-store locp (Af. send f (Af*. #f* = 1 -+ (send EKHf'"~ 1) ,

wrong"wrong number of return values"

:::}pe APK . lookup-store locp (Af . K(f))

Figure 3.5: Transformation of Identifier Evaluation
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will consist of code peculiar to our implementation of the Scheme interpreter (Le., R4RS

says nothing about caseType). Secondly, and more importantly, this test is something

that should be abstracted away into the implementation of a store lookup.

The function hold is not written in CPS. The purpose of hold is to map a variable name

to a expressible value, and this requires a store lookup (which is dynamic). By rewriting

hold in CPS, and making the store lookup come after the environment lookup, we will be

able to evaluate the environment lookup at partial evaluation time. The function single

then, is unnecessary, since we can look at the definition of an environment lookup, and

see that it returns a single value. What is left is just the lookup-storeprimitive. The

result of these transformations is that, if we have an identifier evaluation in our source

program, the following code fragment would be emitted during partial evaluation (modulo

the variable names).

(lookup-store loc

(lambda (exprval)

(k exprval store))))

Evaluation of Applications

R4RS explicitly makes some aspects of Scheme implementation independent. For example,

Scheme does not specify the order of evaluation of arguments in a function call. To simulate

this in the specification, two functions called permute and unpermute, which are inverses

of each other, are used to scramble and unscramble the arguments prior to and after the

evaluation of the arguments.

permute: Exp* -7 Exp*

unpermute : E'" -7 E*
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Even this, the authors admit, is not the intended semantics, since it denotes an un-

specified, yet constant, order of evaluation. Residualizing these two functions doesn't pass

any useful information to later partial evaluation passes, since there is no real function

to implement. Hence, we can think of these functions as identity functions. In practice,

we "transform" them by simply removing them from the interpreter; they serve no pur-

pose. Note, however, that we are not insisting on a left-to-right order of evaluation, but

assuming that it will be taken care of during compiler optimizations.

[[(Eo E")] = Ap"'. ["(permute ((Eo) @ E*))
p
(AE". ((AE*. applicate (E* .!-1) (E* t 1) "')

(unpermute E")))

applicate: E -+ E*-+ K-+ C
applicate = AtE*"" EE F -+ (E I F.!-2)E*"', wrong "bad procedure"
permute: Exp* -+ Exp" (identity)
unpermute : E" -+ E* (identity)

[[(Eo E*)] AP'" . [* (permute ((Eo) @ E"))

p(AE*. ((AE*. applicate (E*.!- 1) (E" t 1) "')
(unpermute E*)))

Ap"'. [*((Eo) @ E*) p(AE*. ((AE*. applicate (E*.!- 1) (E*t 1) "') E*))
Ap"'. ['"((Eo) @ E*) p(AE*. applicate (E" .!-1) (E*t 1) "')

Figure 3.6: Transformation of Function Application

Figure 3.6 contains the details of the transformation performed on a function appli-

cation by Schism. We choose to residualize the procedure applicate, since its function

is to perform a tag check on an expressible-value. This cannot be done until run-time,

and if applicate is unfolded, we will have code peculiar to our implementation of the

interpreter (Le., a caseType operation during the tag check). Runtime tag checking is

left abstract until we are ready to deal with specific implementations (via a later pass by

a partial evaluator, or a code generator). Similar situations will occur with functions in
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other basic forms, and we justify residualizing them in the same way - the first partial

evaluation compilation pass ought to produce code at a sufficiently high abstraction level

so as to defer appropriate details to later phases.

Evaluation of Abstractions

Figure 3.7 contains the semantic definition of a Scheme lambda abstraction. In our exper-

iments compiling Scheme programs, we found that abstractions were the most difficult of

the basic forms to compile well without transformations being applied to the semantics.

In this definition, notice that when the number of formals and actuals agree, a function

called tievals is called. The job of tievals is to extend the environment, and update the

store, with the formal-actual pairs. However, as R4RS is written, tievals cannot do its job

at compile-time. Although we don't know the values of the actuals at partial evaluation

time, we do know how many of them there should be. Hence, by counting the number of

formals, we unroll tievals that many times, as shown in Figure 3.8. This accomplishes the

following two things:

1. we have extended the environment by generating the proper number of new locations

2. we have emitted run-time code that checks that for each new location, we are not

out of memory (the function new), and also generates an update-store instruction to

update these new locations with the expressible-values expected at run-time.

The unrolled code should only be executed at run-time if the number of actuals is

equal to the number of formals. Hence, we define a new function called arity-check. This

function checks, at run time, whether to execute the code, or whether to return an error

message.

Figure 3.8 describes the unrolling of tievals. We added one more argument to tievals;

the arity of the formals, and rewrote tievals to make this the induction variable. This



30

preserves the meaning of the semantics, since the branch containing tievals is only taken

when the old and new induction variables agree (as shown in the definition of the tievals

function. Since the new induction variable is static, Schism can unfold tievals, producing a

series of new, update-store pairs, one for each location, followed by the function 'ljJapplied

to the location sequence. The f* extractors, ((f* t If ~1),are also residualized, so that the

definition bodies won't appear in the compiled code. In the interpreter, these residualized

drop* and pro j ect* functions are called res-drop* and res-pro j ect*, respectively.
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[[(lambda (1*)r* Eo)] =
>"P/,\,. >..0'. new 0' E L --+

send (new 0' I L,
>..€*",' . #€* = #1'" --+

tievals( >..a*. (>..p'. C[r"'] pi (E[Eo] pi ",I))
(extends p 1*a"'))

€'" ,
wrong "wrong number of arguments")

in E)

(update (new 0' I L unspecified 0'),
wrong "out of memory" 0'

arity-check : E* --+ N --+ Exp --+ C
arity-check = >..€"'nE. #€* = n --+E , wrong "wrong number of arguments"

E[(lambda (1*) f* Eo)] = >"P'". >..0'. new 0' E L --+
send (new 0' I L,

>..€*",' . #€'" = #1* --+
tievals(>..a"'. (>..p'.C[f*] pi (E[Eo] p' ",'))

(extends p 1* a*)) €"',
wrong "wrong number of args") in E)

'"
(update-store (new 0' I L unspecified 0'),

wrong "out of memory" 0'
=>u >"P'" . >..0'. new 0'

(>..a. update-store a unspecified
(send (a, >..€*",' . arity-check €* (#1*)

(tievals(>..a'" . (>..p'.C[r*] P'(E[Eo] p' ",I))
(extends p I'" a*)) €*(#I"')) in E))) '"

=>pe >"P'". >..0'. new 0'
(>..a. update-store a unspecified

("'( (a, >"€"'",'. arity-check €* n
new 0' (>..al' update-store al ((" t 1)

new 0' (>..a2 . update-store a2 ((€'" t 1)I t 1)

(new 0' (>..an . update-store an ((€* tIt t 1)
(C[r"']p'(E[Eo] p' ",'))...) ) in E)))

wherep' = (extends p I'" a*) and n = (#1*)

Figure 3.7: Transformation of Abstractions
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new : S -+ (L+ {error}) implementation-independent

tievals : (L" -+ C) -+ E* -+ C
tievals = >''ljJE''CT.#£" = 0 -+ 1/J()CT,

new CTE L -+ tievals (>.a" . 1/J((new CTI L) @ a"))

(E* t 1)
(update (new CTI L) (£" t 1) CT),

wrong"out of memory"CT

tievals : (L" -+ C) -+ E" -+ N -+ C
tievals ~u >'1/J£"nCT.n = 0 -+ 1/J()CT,

new CT(>.a.tievals (>.a" ."p((a) @ a"))
(£" t1)
(update-store a (£"t1) CT)
(n - 1))

~pe >'1j;£"nCT.new CT(>.a1 . update-store a1 (£" t 1)
new CT(>.a2' update-store a2 ((£" t 1)1 t 1)

(new CT(>.an . update-store an (( £" t 1r-1 t 1)
(1/J(a1,a2, .. .an))))...)

Figure 3.8: Transformation of the Tievals Function
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One other issue is the new function. which is given as implementation-independent

(that is, R4RS leaves it undefined). We rewrite new as a function that takes a store, and a

continuation, and returns a location, and a new store (the old store plus a newly-allocated

memory allocation). Since new is meant to be a run time operation, we residualize each

appearance of it with the appropriate filter, and expect that an implementation pass will

use new as a signal to generate code that performs a trap if we run out of memory.

Conditional Evaluation

The top of Figure 3.9 describes the semantics of a Scheme conditional. A test expression

is evaluated, and the expressible value is passed to single. Similar to the situation for

identifier evaluation, we have the appearance of the function single (which was removed

after we applied our transformation, and showed that the rewritten interpreter would

never pass anything but a single value to single). As noted earlier, this guarantee is easy

to make, since only single expressible values are passed. Hence, our transformation is

simply to remove single.

£[(if Eo El E2)] =
Ap"'. £[Eo] p (single (Ai. truish i -+ £[Edp'" , £[E2]p"'))

truish : E -+ T

truish = Ai. i = false -+ false, true

£[(if Eo El E2)] = Ap"'. [[Eo] p (single (Ai. truish i -+ £[Edp"', £[E2]p~))
~pe Ap"'. £[Eo] P (Ai. truish i -+ £[Edp", , [[E2]p"')

Figure 3.9: Transformation of Conditionals

The function truish is residualized, to represent the notion of branching as the result

of the evaluation of a test expression.
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Evaluation of Set!

In our implementation of the Scheme interpreter, we have written all of our primitive

store operations (which will be residualized) to take a continuation argument. In Figure

3.10, we have the original semantics of the set! function. Notice that the primitive

store operation update-store doesn't take a continuation. Since the only purpose of assign

is to apply a continuation to the result of update-store, we eliminate assign by making

the continuation an argument to update-store. We then unfold send. The residual code

fragment that corresponds to the code that comes after E[E] looks like this:

(lambda (exprval store)

(update-store loc exprval

(lambda (store)

(k (Unspecified) store)))))

Notice that Unspecified is the value returned by the set! operation. Evaluating any

Scheme basic form is supposed to result in some return value, but set!, being Scheme's

assignment statement, is evaluated just for the it's side effect (of updating the store).

Hence, set! just returns the "don't care" value Unspecified.

E[(set! I E)] = Apt>..E[E] p (single (AE.assign (lookup pI)
E

(send unspecified 1;;)))

assign: L --+ E --+ C --+ C

assign = AaE80". 8(update-store a E 0")

assign ::::}u AaE80" . (update-store a E8 0")

E[(set! I E)] = Ap1;;.E[E] P (AE.update-store (lookup pI) E (send unspecified ~))
::::}pe Ap1;;.E[E] P (AE. update-store locp E (send unspecified 1;;))

::::}pe Ap1;;.E[E] P (AE. update-store locp E (1;;unspecified))

Figure 3.10: Transformation of Set!
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Built-In Primitives

R4RS has semantic definitions for a few of the procedures that are built-in to any imple-

mentation of Scheme For example, consider the definition of the primitive add1 given in

Figure 3.11. We don't want the partial evaluator to "go inside" the definition of add, so

we use a filter to just residualize add. This means that all of the primitive function names

will appear in the residual code. We are effectively deferring any kind of implementation

decision for these primitives, which is the right thing to do; clearly, the R4RS definition

of add bears no relation to its machine language implementation.

add : E" -+ K -+ C

add = twoarg()..£1£2"" (£1 E R 1\ £2 E R) -+
send ((£1 I R+ £2 I R) in E)""
wrong "non-numeric argument to +")

twoarg : (E -+ E -+ K -+ C) -+ (E" -+ K -+ C)
twoarg = )..(£*",. #£" = 2 -+ ((£" .J- 1)(£" .J- 2)""

wrong "wrong number of arguments"

Figure 3.11: Example of a Built-In Procedure

3.3.2 Language of Residual Programs

A Scheme source program is a series of top-level definitions, followed by a Scheme expres-

sion. The value of the program is the value returned by that expression. To complete our

picture of the structure of residual programs, we need to know the semanctics of top-level

definitions. In Scheme, top-level definitions are equivalent to set! expressions; if the vari-

able is not already bound, the variable is bound to a new location before the assignment

is performed. We can statically analyze a source program to locate all the top-level defi-

nitions; the variable names corresponding to these definitions are collected in a sequence

1 It is true that implementations of Scheme do not restrict procedures like add to two arguments, but
R4RS specifies add as a binary function.
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at the top of the source program. During compilation, locations are allocated for all of

those variables, and then the top-level definitions are all executed as set! expreSSIOns.

P

Exp

PrimOp

"'args
Cont

E ..-

..-
Exp

if (truish E) EXPI EXP2 I applicate E E*"'€U(j

I new S "'OiUI apply-k '" E(j

I update-store G' E "'U (j Ilookup-store a "'€ (j

IPrimOp E* "'€U (j

add Imult Icar Icons...

A args .Cont

Exp Ifinal-continuation

unspecified Iundefined Itrue Ifalse

lInt I null I procedure a "'€K,UI ((E*t l)t .i 1) I ...

arity-check E* n Exp

..-

Figure 3.12: Syntax of the residual language

By transforming the Scheme basic expressions as we have described, we create residual

programs. These residual programs are not just transformations of Scheme programs -

they can be regarded as being written in a new language. Figure 3.12 contains the BNF

of the residual programs. This BNF is based on the analysis given previously of the bind-

ing time properties of the various Scheme constructs. Our experiments with compiling

P E Residual Programs
Exp E Expressions

E E Expressible Values
n E Integers

"'€U , "'OiU, "'u , "'€ , "'aK,U, '" E Continuations
(j E Stores

Cont E Continuation Bodies

PrimOp c: Primitive Operators'-
G' E Locations
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(define (fact n)
(if (less? n 1)

1

(* n (fact (- n 1)))))

(fact 4)

Figure 3.13: Source Code for the Factorial Function

Scheme programs confirm that residual programs do conform to the BNF given. A pro-

gram consists of one expression, which is made up of various instructions that have been

residualized during compilation of the basic forms, followed by an appropriate continua-

tion. The subscripts in the continuations describe the formals of the lambda expression

in that continuation. The body of a continuation is another expression, or else a final

continuation (there is only one of the latter; a final continuation returns the value of the

program evaluation).

3.3.3 An Example

As a sim pIe exam pIe (to keep the size of the residual code readable), consider the

source program in Figure 3.13. This program contains one top-level definition; that of the

canonical recursive factorial function, followed by an expression that applies the factorial

function to 4. Of course, factorial is an old and worn-out example, but it has the virtue

of being both small and well-understood.

When this program is compiled with Schism, a residual program is produced containing

the compiled source code, along with the definitions of any functions that were residualized

during compilation. Figure 3.14 shows the compiled source code, i.e., the semantics of

R4RS specialized to the factorial code in 3.13.
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(define (evprogram.1 store)

(new store

(lambda (loc.3 store_1.2)

(update-store loc.3 (unspecified)

(lambda (store_2.4)

(new store_2.4

(lambda (loc.8 store_1.7)

(update-store loc.8 (unspecified)

(lambda (store_2.9)

(update-store loc.3

(procedure

(lambda (exprval*.18 k1.17 store_3.16)

(arity-check exprval*.18 1

(new store_3.16

(lambda (loc.20 store_1.19)

(update-store loc.20 (res-project* exprval*.18 1)

(lambda (store_2.21)

(lookup-store loc.20

(lambda (exprval.23)

(less-than

(concat exprval.23 (concat (number 1) (empty»)

(lambda (exprval.27 store_1.26)

(if (truish exprval.27)

(k1.17 (number 1) store_1.26)

(lookup-store loc.20

(lambda (exprval.28)

(lookup-store loc.3

(lambda (exprval.31)

(lookup-store loc.20

(lambda (exprval.34)

(subtracts

(con cat exprval.34 (concat (number 1) (empty»)

(lambda (exprval.38 store_1.37)

(applicate

exprval.31

(concat exprval.38 (empty»

(lambda (exprval.40 store_1.39)

(mul t iplies

(concat exprval.28 (concat exprval.40 (empty»)
k1.17
store_1.39»

store_1.37»

store_1.26»

store_1.26»

store_1.26»

store_1.26»)

store_2. 21»

store_2.21»

store_1.19»» »

(lambda (store_2.10)

(lookup-store loc.3 (lambda (exprval.11)

(applicate

exprval.11

(concat (number 4) (empty»

(lambda (exprval_1.15 store_1.14) exprval_1.15)

store_2. 10) )

store_2.10»

store_2.9»

store_1.7»»

store_1.2»»

Figure 3.14: Result of First Pass
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3.3.4 Tail Recursion

A very important feature of Scheme is that all implementations of it must be properly

tail-recursive. This means that even if an iterative computation is written recursively, the

implementation must guarantee that it will execute in constant space. This requirement

cannot be made explicit in the denotational semantics, as it is an implementation, or

operational, issue. Fortunately, the residual code generated by the first pass makes it

explicit when we have a recursive call that can be handled iteratively: whenever the

continuation to a function call is trivial, we can handle it iteratively, otherwise, we treat

it as a general recursive function. A trivial continuation is a variable like k; a nontrivial

continuation is an explicit lambda abstraction in the residual code. Hence, the structure

of the residual code enables us to identify those recursive functions that can be compiled

as iterative functions.

3.3.5 Assessment of First Pass

Although traditional compile-time actions (such as replacing identifiers with locations)

have been accomplished, the residual code is still too high-level: we have operations on

a store, but no details on how these operations are implemented. The residual program

is still a functional program; we would like to compile down to a concrete, imperative

target architecture, for greater efficiency. Our strategy will be to use additional partial

evaluation phases to accomplish this.

3.4 Creating a Second Pass

In this section, we discuss the construction of an abstract machine designed to execute

residual programs, and show that specialization of this machine processor with respect to

a particular source program generates a lower-level, imperative representation of Scheme

source programs.

3.4.1 The Abstract Machine

When we encoded the R4RS specification as an interpreter, we were actually encoding

a very high-level abstract machine. The result of partially evaluating this machine with

respect to a source program was a residual program consisting of high-level operations. In

fact, we tried to make the compilation process as implementation-independent as possible,
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in keeping with our approach to separate policy and mechanism: the first pass is designed

to remove compile-time constructs; subsequent passes can implement the run-time con-

structs.

For the second pass, we encode an abstract, but lower-level machine as an interpreter.

With each additional pass after the first, we make more operational details explicit. We

imagine a "tree" of abstract machines, with the leaves being concrete architectures and

instruction-sets. Then, the process of compilation is a sequence of partial evaluation steps,

from a root (or roots) to a leaf.

Current imperative architectures tend to be register-based, but we choose our abstract

machine to be a hybrid stack/register machine. The various memory locations in the

residual code can be thought of as registers. However,we also have use for a stack - all

arguments passed to function calls are just thrown on the stack. This is done so that a

later partial evaluation pass can decide how many, and which registers are available for

function arguments; by throwing all the arguments on a stack now, we will be deferring
this kind of decision.

Our virtual machine is designed to take residual programs, which are in CPS, and emit

new residual programs, which we refer to as residuah programs. These residual2 programs

are also in CPS, but are made up of instructions acting upon a stack machine, as opposed

to a high-level store. Figure 3.15 describes the instructions that make up the abstract
machine.

Some of the instruction-set choices deserve some explanation. When a primitive like

prim-add or prim-less, or a user-defined function returns with a value, it is passed, along

with the updated store, to the next instruction, by a "'€ucontinuation, as in the following

code fragment:

(prim-subtract

(concat exprval.1 (concat (number 1) (empty)))

(lambda (exprval.2 store.3) .. .))

In this code, the function prim-subtract operates on the sequence consisting of exprval. 1

and (number 1) (Le., it subtracts the latter from the former). The result is passed to the

continuation, which means that it should bind it to exprval. 2. Since we handle func-

tion calls with a stack, we generate a move-top-of-stackinstruction, which moves it to

a temporary location designated exprval.2. This handles a problem that all compilers

must solve, that of deciding what to do with values returned by a function call. They
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new-memory location
push arg
push-contents location
allocate-frame
deallocate-frame

procedure-tag? location
eval-applicate location
top-of-stack
move-top-of-stack location
eval-procedure-code code
ari ty-check integer
branch-on-contents location

prim-less, prim-add, etc.
contents loc

halt

Figure 3.15: Abstract Stack :Machine Instructions

cannot stay where they are because they may be overwritten before they are used in the

computation. Therefore, after any procedure call, we generate a move-top-of-stack in-

struction. In a similar way, we generate a push-contents instruction when an argument

to a procedure is actually a location.

Other instructions map easily from the language of residual programs to the virtual

machine. For example, the final continuation in the residual program becomes a halt

instruction, and applying a trivial continuation becomes a deallocate-frameinstruction.

The virtual machine is designed so that each instruction operates on the current state,

and passes the new state to its continuation.

3.4.2 An Example

The simple design of the virtual machine results in the language of residual2 programs

that is illustrated in Figure 3.4.2.

As an example of this, the following is a portion of the residual2 program generated by

using the partial evaluator to specialize the abstract stack machine processor with respect

to the residual code generated for the program in Figure 3.14.

(define (evprogram.1 state)

(new-memory loc.3 state_1.2
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P

Exp

Proc-body
Instruction

K,proc

..-

Exp

Instruction K,17IProc-body

).(1 . Instruction K,proc

Listed in Figure 3.15

).(1. Exp I halt
).(1 . Instruction

unspecified Iundefined Itrue Ifalse

lInt I null I procedure a K,Uil7I ((E*t 1r -!-1) I ...

E ..-

Figure 3.16: Syntax of residual2 Programs

P E Residual2 Programs
Exp E Expressions

E E Expressible Values
n E Integers

K,17 E Continuations
(1 E States
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(lambda (state_l.2)

(push (unspecified) state_l.2

(lambda (state_l.3)

(move-top-of-stack loc.3 state_l.3

(lambda (state_2.4)

(new-memory loc.a state_2.4

(lambda (state_l.5)

(push (unspecified) state_l.5

(lambda (state_l.6)

(move-top-of-stack loc.a state_l.6

(lambda (state_2.7)

(eval-procedure-code

(lambda (state_l.a)

(arity-check 1 state_l.a

(lambda (state_l.g)

3.4.3 Assessment of the Second Pass

As expected, the code is extremely regular in structure, consisting of a state-transforming

operation, followed by a lambda expression. This program is again functional, but it is

easy to carry out a syntactic transformation to make it look like imperative-style abstract

machine code. We note that since the program is trivially single-threaded, the state can

be globalized, and therefore removed altogether. This allows us to remove all of the

lambda expressions, too, since they take only the state as an argument. We are left with

the imperative-style code in Figure 3.17. We don't claim that this code is in any way

optimized; the careful reader will note that as the result of allocating a new memory

location. which returns a value of unspecified, this hapless value gets thrown on the

stack. A subsequent partial evaluation pass should get rid of useless instructions like this.

This code can be thought of as an intermediate representation; we have the option of

compiling down to a target machine either by making more partial evaluation passes, or

by hooking up the current representation to an off-the-shelf code generator.
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3.5 Conclusions

3.5.1 Assessments

Our technique is based on the idea that compilation via partial evaluation may be ad-

dressed by compiling down a hierarchy of abstract machines, each revealing more oper-

ational details, as opposed to trying to make the leap between a high-level specification

and low-level code all at once.

At first, we were not able to get good specialization of source programs because of the

way certain semantic functions were defined. For example, R4RS lays out the semantics

of Scheme in CPS, but not at the granularity we desire; some of the functions (the store

primitives) do not take a continuation argument. We changed these so that they do.

Also, functions like send and single were originally defined in order to make the addition

of multiple return values easy to specify in the semantics; we were able to remove these

function completely. None of these changes had any effect on the semantics of Scheme.

When the above changes had been made, we found that the additional transformations

needed to turn the semantic definition into an interpreter that could be specialized well

fell into two categories:

1. Residualization of dynamic operations. By annotating these operations with the

filter construct, we were able to generate code with the proper level of abstraction.

2. Binding-time improvements. These are improvements such as the one that was made

to the tievalsfunction, in which we rewrote the interpreter so that we could expose

all the static operations at partial evaluation time. The trick is to do this in such a

way that we are still faithful to the intended meaning of the Scheme basic forms (if

not to the particular denotational definition given in R4RS). Of course, as we have

stated previously, since R4RS is a specification, not an implementation guide, we

shouldn't be surprised that situations like this occur. We just hope that they are

rare.

Fortunately. virtually all of the transformations made to the interpreter were of the

first type; if there had been too many of the latter type, then our approach would be open

to the criticism of being too ad-hoc to be useful.

The second pass converted the high-level residual program into a new residual program

that was both more structured (all of the continuations had the same form, for example),

and more low-level. Making the abstract machine a stack machine allowed us to defer
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much of the concrete implementation details, while still producing code that could be

executed imperatively. This was demonstrated by the simple syntactic transformation of

removing all of the continuations from the residual2 code, leaving just the instructions.

By making just two passes, we have been able to compile a high-level specification of the

Scheme language into code that runs on a fairly low-level abstract machine.

The Scheme construct call-with-current-continuation (cwcc) is an important feature of

the language that we have not yet discussed. R4RS does give a semantics for this function

along with other Scheme primitives. Since the definition of cwcc contains only calls to

run-time operations, unfolding it in our current framework would not gain us anything.

Therefore, we residualize any calls to cwcc with a filter, deferring the implementation to

a later partial evaluation pass. The problem of finding an appropriate level of abstraction

for cwcc requires further investigation.

Like previous work in compilation via partial evaluation, we were able to perform

some simple transformations and annotations to the R4RS interpreter in order to get

good residual code. The risk is that, without any unifying principle, transformations can

be criticized as being ad-hoc, and of no use the next time it comes to compile a language

this way.

Generating native code using multiple partial evaluation passes does raise some inter-

esting compilation issues. For each compilation phase, we must write an abstract machine

to specialize with respect to its source programs. This means that if we wish to perform

compiler optimizations, they must be encoded in an interpretive framework. Work has

been done on the problem of expressing variousd compiler optimizations in a functional

framework [15] , but is unclear whether this can be translated to an interpretive algorithm.

For example, elimination of the common subexpressions F from the expression E can be

characterized as follows, but this doesn't specify an appropriate algorithm.

E -+ (Ax. E[x/F)) F

Further work is necessary to determine what kinds of optimizations can be encoded in

an interpreter. An interesting long-range goal would be to create a taxonomy of abstract

machines that can be arranged in a hierarchy. These would be designed so as to promote

sharing of abstract machines by languages families; for example, it is not unreasonable

for Scheme and ML to share a representation through an abstract machine at some level.
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Producing native code would then consist of selecting a compilation path from a root to

a leaf (where the latter represents a concrete machine: or a hook to a code generator),

allowing for fine control over the compilation process.
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(new-memory loc.3)

(push (unspecified))

(move-top-of-stack loc.3)

(new-memory loc.8)

(push (unspecified))

(move-top-of-stack loc.8)

(eval-procedure-code

(arity-check 1)

(new-memory loc.19)

(move-top-of-stack loc.20)

(push (number 1))

(push-contents loc.20)

(push (args 2))

(prim-less)

(move-top-of-stack exprval.27-loc)

(branch-on-contents exprval.27-loc)

(push (number 1))

(push-contents loc.20)

(push (args 2))

(prim-sub)

(move-top-of-stack exprval.38-loc)

(push-contents exprval.38-loc)

(push (args 1))

(allocate-frame)

(procedure-tag? loc.3)

(eval-applicate loc.3)

(move-top-of-stack exprval.40-loc)

(push-contents exprval.40-loc)

(push-contents loc.20)

(push (args 2))

(prim-mult)

(deallocate-frame)

(push (number 1))

(deallocate-frame)

(move-top-of-stack loc.3)

(push (number 4))

(push (args 1))

(allocate-frame)

(procedure-tag? loc.3)

(eval-applicate loc.3)

(halt)

trap, or allocate new location

push on stack

loc.3 unspecified

trap, or allocate new location

push unspecified on stack

loc.8 contains unspecified
code for factorial starts here

trap if number of args on stack isn't 1

trap, or allocate new location
move value of n to loc.20

put 1 on stack

put n on stack

info for "wrong number of args" trap

compare values on stack

move result to exprval.27-loc (a temp)

branch on boolean at exprval.27-loc
false branch starts here

put 1 on stack

put value of n on stack

trap info for arity check
subtract 1 from n

move result to temp

put contents of temp on stack

trap info for arity check
save stack frame

trap if loc.3 isn't a procedure
make recursive call

move result to temp

put result on stack

put n on stack

trap info

multiply n and fact(n - 1)
restore stack frame

true branch starts here

put 1 on stack
restore stack frame

end of code for factorial procedure
move factorial code to loc.3

4 goes on stack

trap info for arity check
save stack frame

trap if loc.3 isn't a procedure

call procedure at loc.3 with stack args

end of computation

Figure 3.17: Result of Second Pass - Abstract Stack Machine Code



Chapter 4

A Calculational Approach to Compiler
Generation

4.1 Introduction

As we have seen, partial evaluation is a useful technique for generating compilers from

the semantics of a language. However, we have also seen that to do it well is not a trivial

task. So far, it has been an iterative process, in which the interpreter is carefully crafted,

and then tweaked repeatedly. We also are forced to make an explicit, manual, division

between the static and dynamic inputs, which may require some insight into the structure

of the source language that the implementor does not possess.

In this chapter, we introduce a calculational approach to compiler generation, which in

some ways lies at the opposite spectrum of compilation techniques from partial evaluation.

In this new, more mathematical technique, the interpreter is automatically factored into a

run-time and compile-time component, based on the algebraic structure of the interpreter.

This material is based on some influential papers by Erik Meijer [28, 29].

We also introduce in this chapter an abstraction method known as monads, which

has recently become a subject of great research interest. It turns out that monads can

be embedded in a calculational approach to compiler generation in a very natural and

powerful way. We will show an example of this in the next chapter, using the R4RS

example that we discussed previously in the context of partial evaluation.

We again start with an interpreter for a source language for which we wish to create

a compiler. If we have access to both a denotational semantics for the source language,

and an implementation of a functional language, then it becomes a straightforward task

to write the interpreter by encoding the semantics in the functional language. If we work

carefully and systematically, we will believe that the interpreter is a faithful representation

48
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of the semantics of the source language.

Since the interpreter is written in a functional style, it may execute less efficiently than

an interpreter written in an imperative fashion. However, having a precise semantics for

the source language gives a mathematical "handle" that we can use to map our inefficient

interpreter to a more operational version.

Our goal, however, is to produce a compiler, not just a good interpreter. Therefore, our

last step is to show how an interpreter can be "factored" into compile time and run-time

components. Since each step has been a well-defined mathematical process, we can have

confidence in the correctness of the compiler.

In this, and the next chapter, our meta-language changes from Scheme to Gofer, a

popular dialect of the functional language Haskell. One of the major reasons that Gofer

was developed was to investigate certain type classes, called constructor classes. These

classes turn out to be a very useful abstraction technique when defining an interpreter

that we wish to manipulate algebraically. The code given in typewriter font is exactly

as it would appear written in Gofer.

To make this material easier to understand, we introduce the concepts by constructing

a compiler for a toy language. Our example is adapted from Meijer[28].

4.2 Translating abstract syntax into categorical notions

In the world of category theory, we can define a functor, f, which is simply a type con-

structor, along with a map that takes a function (a -+ b) to (J a -+ fb). This map has the

nice properties of preserving identities, and distribution over function composition:

map id = id

map (f 0 g) = map f 0 map g

We start by defining an functor that represents an abstract syntax tree for our source

language. For our example, we define the following datatype:

data Expr a = Num Int I Add a a

We would like our source language to be represented as a tree, with integers at the

leaves, and addition operations at the nodes. The datatype we have declared gives us one

level of structure; to describe the recursive shape of an abstract syntax tree, we "tie the

recursive knot" by defining:
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data Rec f = Init (f (Rec f))

Note that the constructor Init takes objects of type (f (Rec f)) to objects of type

(Rec f).

Now we declare a type synonym - our source language is the language of expressions,

where the expressions are defined by recursion over the datatype Expr. This is done simply

for ease of reference.

type Expression = Rec Expr

We can see how these pieces go together to create an abstract syntax tree for our

source language of expression trees. Each branch of the Add constructor contains a copy

of the type Expression

Expression = Rec Expr

= Init (Expr (Rec Expr))

= Init (Num Int) I Init (Add (Init (Expr (Rec Expr)))

(Init (Expr (Rec Expr))))

= Init (Num Int) I Init (Add Expression

Expression)

Now imagine we were trying to define a simple function "eval" that would serve as

an interpreter for source programs in the expression language we've described. It would

probably look something like this:

eval (Init x) = case x of

Num Int -> Int

Add e1 e2 -> (eval e1) + (eval e2)

Looking at the structure of this interpreter, we see that eval moves one level down the

tree, while + collects terms that have been evaluated at a lower level. We will duplicate

this functionality by explicitly defining two functions - one that moves down the tree, and

one that moves up.

As mentioned above, functors are supposed to have a map. This is just what is needed

to move down the tree one level:

map :: (a -> b) -> (Expr a -> Expr b)
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map f e = ease e of

Num Int -) Num Int

Add el e2 -) Add (f el) (f e2).

map applies a function f one level down the tree. To define a function to move one

level up the tree, we use the categorical notion of an algebra.

Given a functor f, a type a, and a function, phi :: f a -) a, we have an f-algebra.

The type a is called the carrier of the f-algebra, and the functor f is its signature.

The language of expressions that we are using for an example has integer values at the

leaves, so we define phi as follows:

One other algebra that will playa part in the sequel is called the initial algebra. Given

any algebra f, we can define the following algebra (this explains the use of the constructr

Ini t in the definition of the datatype Ree f):

init :: f (Ree f) -) Ree f.

Now we are ready to put all the pieces together to create an interpreter. Calling the

interpretation function eval, we define:

eval :: Expression -) Int

eval (Init x) = phi (map eval x).

We see that map applies the interpretation function, eval, one level down the tree,

while phi moves up the tree, collecting the values as it goes. Fortunately, the technique

that we've just demonstrated is a general one. Given any other f-algebra with operation

phi :: f a -) a, we can instantiate the followingpolymorphic type:

eata :: (f a -) a) -) (Ree f -) a)

to get a unique homomorphism:

phi :: Expr Int -) Int

phi a = ease a of

Hum Int -) Int

Add n m -) n + m.
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cata phi :: Rec f -> a

This homomorphism we have just defined is called a catamorphism, and is simply a gener-

alization of the fold operation over lists to a general datatype. This mapping is suggestive

of an interpreter, which takes an abstract syntax tree (represented by Rec f), and re-

turns an answer (of type a). That is, cata phi = eval, the normal top-level interpreter

function.

The relationships can be depicted in the following diagram:

f(Rec f)

I

Init .. Rec f

map (cata phi) cata phi

f(a)
phi .. a

Notice that this diagram is just the following equation (given a source program x):

cata phi (Init x) = phi (map (cata phi) x)

Substituting eval for cata phi, we get

eval (Init x) = phi (map eval x)

which is exactly the form of the interpreter we wrote for our language of expressions.

4.3 Calculating a Compiler

At this point, we have constructed a simple interpreter for a simple language of expressions,

based on some concepts from category theory. However, the goal in this chapter is to

calculate a compiler, and we have to show how to get there from here.

To build a compiler for a source language, we need to have a target language. To

continue our example, we define a target language, and an interpreter for this language

(Le., a description of the run-time machine), using the same techniques we used for the

source language.

Suppose that the target machine is a stack machine. We define a stack datatype, with

three instructions. We can push integers on the stack, and perform an addition of the
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contents of the stack. Unlike the language of expressions, in which the evaluation order

of subexpressions is undefined, we use Seq to control the order of evaluation.

data Stack a = Push Int I Add I Seq a a

We also define a map and an algebra psi for this datatype. In the definition of psi,

let push, add, and before be primitive operations on a real stack machine (just as + was

a primitive operation in the definition of phi.

map f x = case x of

Push Int -> Push Int

Add -> Add

Seq s1 s2 -> Seq (f s1) (f s2)

psi x = case x of

Push n -> push n

Add -> add

Seq s1 s2 -> s1 before s2

We will call the evaluation function for the stack language run, since it represents a

run-time machine.

run :: Rec Stack -> Int

run (Init x) = psi (map run x)

We now have defined an interpreter for our source language, as well as our run-time

machine. To produce a compiler for our source language, we need to define a function that

allows us to map objects of type Rec Expr(Le., expressions) to Rec Stack. The reason

for developing the mathematical machinery of functors, algebras, catamorphisms, etc., is

that once we have defined our source language and target machine this way, there exist

theorems that enable us to derive a compiler.

Recall that the interpretation function for our source language can be written as a

catamorphism:

eval = cata phi.

Intuitively, we'd like to divide the interpretation function into two parts: the compiler,

and the run-time machine. That is, we'd like to find some function t such that:
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phi = t psi

The idea is that just as phi evaluates one level of the source language, and psi evaluates

one level of the target language, t converts one level of the target language into its source

language representation. This is the "eureka" step for the whole process. Once t has been

defined, there is a theorem that guarantees the existence of a mapping between Rec Expr

and Rec Stack:

cata (t init) :: Rec Expr -> Rec Stack

This mapping, cata (t Init) is the compiler that we are looking for, and as the

following diagram shows, we have factored the source language interpreter (cata phi =
cata (t psi)) into a compiler, and a run-time machine.

Rec Stack

Rec Expr cata psi

Int

We can proceed to derive (t init) and (t Psi). We know that t is a mapping

between the stack and expression algebras; as our "eureka" step, we write the definition

of t applied to an algebra h:

t :: (Stack a -> a) -> (Expr a -> a)

t h x = case x of

Numn -> h (Push n)

Add a b -> h (Seq a (h (Seq b (h Add))))
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Now instantiate h with the algebra psi. We know that (t psi) = phi; what we get

is an interpreter that evaluates expressions using the stack machine's instructions (this is

easily confirmed by plugging in the definition of psi into the equation above.

psi :: Stack Int -> Int

t psi :: Expr Int -> Int

t psi x = case x of

Num n -> push n

Add el e2 -> el before (e2 before add)

Lastly, we derive the compiler itself, (t init):

init :: Stack (Rec Stack) -> Rec Stack

t init :: Expr (Rec Stack) -> Rec Stack

t in it x = case x of

Num n -> Init (Push)

Add el e2 -> Init (Seq a (Init (Seq b (Init Add»».

\Ve have shown how to develop a compiler starting from a functorial representation

of a recursive datatype. However, there is a problem in trying to scale up this technique

to a real programming language. Specifically, recall that in our formulation, an inter-

preter takes only one argument - the expression to be evaluated. "Real" interpreters take

other arguments, such as environments, or stores, or continuations. In order to scale our

techniques up, we will have to introduce a new abstraction method, called monads.

4.4 Monads

There has been a great deal of interest recently in the use of monads to help structure

functional programs. Much of this interest is due to some influential papers written by

Wadler [40, 39] popularizing their use. One of the drawbacks of working in a functional

paradigm is that it is difficult to emulate "impure" constructs such as state and excep-

tions. Monads provide a way to do this, without sacrificing the benefits of functional

programming.
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Monads, beneath all of the hype, are simply a very useful form of data abstraction,

and as we will see, common data constructs have very natural representation in monads.

Our interest in monads is in using them as building blocks, in what are called monad

transformers. The idea is use various monads in a modular fashion, as kind of a semantic

(or monadic, if you like) Lego set. This allows us to build computational abstractions to

reduce the complexity of an interpreter for a real programming language (like Scheme), to

a very manageable size, enabling us to use the algebraic methods outlined earlier in the

chapter.

A monad consists of a datatype M,and two operations, called unit and bind. The unit

operation takes a value of type a into a computation over a, where a computation consists

of a value and a set of effects (the latter being tied to the datatype M).

uni t :: a -> M a

If the idea is to raise all values into the world of monads, or computations, then since

effects happen in some particular order. we must have a way of specifying this order. This
is where bind comes in.

bind::M a -> (a -> M b) -> M b

We now look at some examples of monads. The simplest of them is just the identity
monad:

type I a = a

unitI :: a -> I a

unit I a = a

bindI :: I a -> (a -> I b) -> I b

bindI m k = k m

This may not appear to do anything, but in the next chapter we will demonstrate its

usefulness when we describe monad transformers.

We can define a monad for states (assuming that a State datatype has been defined):

type S a = State -> (a, State)
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unitS :: a -> S a

unitS a = \s -> (a, s)

bind :: S a -> (a -> S b) -> S b

bindS m k = \s -> let (b, s1) be (m s) in (k b s1)

Note that \ stands for A.. unitS returns a pair consisting of a value, and an unaltered

state. bindS takes an initial state s and a value a, and returns a new value b, paired with

a new state, sl.

Also of interest in the sequel is a monad R for environments, and for error messages,

given the existence of datatypes for Env and E, respectively. In the environment monad,

the environment is passed unaltered by the bind function. The error monad enables an

error message to be propagated, say, to the top level of an interpreter.

type R a = Env -> a

unitR :: a -> R a

unitR a = \r -> a

bindR :: R a -> (a -> R b) -> R b

bindR m k = \r -> let b be (m r) in (\b -> k b r)

type E a = OK a I ErrMsg

unitE :: a -> E a

unitE a = OK (a)

bindE :: E a -> (a -> E b) -> E b

bindE m k = \a -> case a of

OK x -> k x

ErrMsg -> ErrMsg

In a similar fashion, monads can be defined for constructs like exceptions, continua-

tions, and non-deterministic choice. Wadler gives a good description of these, and shows

how they might be used in an interpreter [39].
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4.5 Monad Transformers

When building an interpreter, we may have very complex computations to carry out. We

could certainly try to build a complex monad custom-made for the problem at hand, but

a better solution seems to be to develop a way that monads can be usefully combined.

This idea is not a new one; Moggi [30] discussed structuring monads in such a way as to

be able to extend them with other monads; he called these monad transformers. A paper

by Liang, Hudak, & Jones [27] expands upon those ideas to show how interpreters can be

constructed using monad transformers as modular building blocks, by embedding monads

in each other to produce more complex monads. A monad transformer is simply a monad

with a "hole" in it, so that another monad (or monad transformer) can be embedded in

it. The result is a tower of monad transformers, in which each transformer is defined in

terms of the embedded object. This technique can be demonstrated by a simple example.

Consider again the state monad:

unitS a = \8 -> (a, 8)

bindS m k = \8 -> let (b, 81) be (m 8) in (k b 81)

We definea state monad transformer over the state monad by adding an extra param-

eter for the embedded monad, M.Let uni tM and bindM be the unit and bind operations for

the monad M.Then we defineunit and bind for the state monad transformer as follows,

using uni tSM and bindSM to denote the state monad with monad Membedded:

unitSM a = \8 -> unitM(a, 8)

bindSM m k = \8 -> bindSM (m 8) (\(b, 81) -> (k b 81)

Note that this transformer has the property that if we take Mto be the identity monad,

I, as defined earlier, the SMmonad becomes the state monad. The identity monad, then,

gives us a "base case" for the embedding procedure. We build a complex monad by

embedding a series of monad transformers over the identity monad. Obviously, we can

invent an infinite number of monads, and monad transformers; the hope among researchers

in this area is that the set of truly useful monads will be small enough that it doesn't require

too much cleverness to combine them in ways that correspond to the language constructs
that we wish to emulate.
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4.6 Combining Approaches

What we would like to do is to combine the benefits of Meijer's calculational approach with

the use of monad transformers. As we have seen, Meijer's technique is to define a recursive

functor that captures the structure of source programs. In practice, an interpreter for any

real language needs to carry information on environments and/or states, at the very least.

What we would like is a way to "package up" all of this information in one parameter, and

monad transformers offer us just that ability. In other words, the standard calculational

approach is to produce a function Eval which takes a source program built recursively

from functor E to the domain of, say, Answers:

Eval:: Ree E -> Answers

What we will do instead is to produce a function that maps instead to some monad

transormer, M,over Answers:

Eval:: Ree E -> M Answers

By defining M as the proper set of monad transformers over the identity monad, we

can incorporate information about the environment, state, etc., giving us the ability to

write an interpreter for a non-trivial language. The next chapter discusses our experience

writing a Scheme interpreter this way.



Chapter 5

Applying the Calculational Approach

5.1 Introduction

In this chapter, we write a Scheme interpreter using the structuring techniques set forth in

the previous chapter. We start off by creating an appropriate monad, make some necessary

type definitions, and then define a functor to represent Scheme source programs. We end

with a brief discussion of how this interpreter could then be transformed into a compiler.

5.2 Building a Monad for a Scheme Interpreter

We first build a monad appropriate to the interpreter that we want to construct. In the

R4RS specification, we see that the denotational semantics of Scheme requires inputs of

a source text, an environment, a store, and a continuation. The definition also requires

us to be able to do error reporting. We write a functor that captures the recursive shape

of source text, and package the rest of the arguments in a monad. The only exception to

this is the continuation argument; we handle sequencing explicitly by the bind function

for the monad we define. Therefore, we must create a monad that is a combination of

the monads for environment, store, and errors. To do this, we will use various monad

transformers. We start by defining the identity monad:

type Monad! e = e

unit! :: a -> Monad! a

unit! x = x

bind! :: Monad! a -> (a -> Monad! b) -> Monad! b

bind! m k = k m.
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We next embed the MonadI monad in an error monad transformer, creating a MonadEI

monad:

data MonadEI e = OK e I Err Message

unitEI :: a -> MonadEI a

unitEI x = OK (unitI x)

bindEI :: MonadEI a -) (a -) MonadEI b) -) MonadEI b

bindEI m k = bindI m (\a -> case a of

OK x -) k x

Err msg -> unit I (Err msg)).

The MonadEI monad itself is now embedded in a state monad transformer, creating a

MonadSEI monad:

type MonadSEI e = State -> MonadEI (e, State)

unitSEI :: a -> MonadSEI a

unitSEIx = \s -> unitEI (x, s)

bindSEI :: MonadSEI a -) (a -> MonadSEI b) -) MonadSEI b

bindSEI m k = \s -> bindEI (m s) (\(a, sl) -> k a sl).

Lastly, we take the MonadSEI monad, and embed it in an environment monad trans-

former, producing a MonadRSEI monad.

type MonadRSEI e = Env -> MonadSEI e

unitRSEI :: a -> MonadRSEI a

unitRSEI x = \r -> unitSEI x

bindRSEI :: MonadRSEI a -> (a -) MonadRSEI b) -) MonadRSEI b

bindRSEI m k = \r -> bindSEI (m r) ( \a -) k a r)

A little experimentation will show that monad transformers are not commutative, so

the order in which we embed them is important. The environment monad was added last
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for a reason. Recall that at compile time, the environment is static. By putting it on

the outside of the monad that we have created, it can be "stripped off" at compile-time,

leaving a run-time monad of type MonadSEI.

5.3 Type Definitions

Our interpreter will make reference to structures such as identifiers, locations, formals,

and environments. We provide type synonyms for these, as well as for states, and error

messages, to enhance the readability of the interpreter. Environments are simply lists

of identifier/location pairs, and States are lists of location/exprval pairs. Since the only

constants we handle in this interpreter are integers, we make this explicit with a datatype
definition.

data Constant = Number Int

type Boolean = Exprval -- intended to be restricted to False and True

We define an expression datatype, E, that corresponds to Scheme's six basic forms

(constant, variable, conditionaL assignment, abstraction, and application), as well as to a

couple of primitive functions that the interpreter recognizes (addition, and less-than).

data E e = Const Constant I Ident Id I Cond e e e

Add2 eel Less eel Set Id e

Lambda Formals (C e) e I Apply e (A e)

The definitionof the expressiondatatype has referencesto two other datatypes: argu-

ments (A), and commands (C). Each of these datatypes have essentially the same structure

as a list, with the additional property that the last entry is tagged. Although both of these

are expressions, we construct new functors for each of them that reflect the difference in

the way that they are evaluated. That is, when we evaluate a sequence of arguments, we

return a sequence with each evaluated argument, whereas when we evaluate a sequence

type Id = String

type Loc = Int

type Env = [(Id, Loc)]

type State = [(Loc, Exprval)]

type Message = String

type Formals = [Id]
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of commands, we are only doing so for their side effects; the returned values are ignored.

In R4RS, too. evaluation functions for both these datatypes are defined separately from

expression evaluation.

data C e = Corn e (C e)

data A e = Arg e (A e)

LastCom e I ErnptyCom

LastArg e I ErnptyArg

Next, we define an Exprval datatype that corresponds to the expressible values in the

Scheme semantics.

data Exprval = Num Int I Closure (MonadRSEI Exprval) Env Loc

MyFalse I MyTrue I Undefined I Unspecified I Null

Args [Exprval]

These are the same expressible values used in the Scheme interpreter that we partial-

evaluated; by using Gofer instead of Scheme as our metalanguage, we can make this

datatype explicit.

Lastly, we "tie the recursive knot" with the following definitions, where Init is a dummy

constructor.

data Rec f = Init (f (Rec f))

type Expr = Rec E

5.4 Defining Functors

Using Gofer's ability to define a constructor class, we create a class for functors, with the

two operations mapf and phi. Note that instead of Exprval being an "atomic" type, we

work with MonadRSEI Exprval as being our base type.

class Functor f where

mapf :: (Expr -> MonadRSEI Exprval) -> f Expr -> f (MonadRSEI Exprval)

phi :: f (MonadRSEI Exprval) -> (MonadRSEI Exprval)

Now we can create an instance of that functor that represents the structure of source

programs. This means defining, for each Scheme basic form, the functions mapf (which
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traverses down the abstract syntax tree of the source program), and phi (which traverses

back up the tree with the results of computations). Figure 5.1 contains the definition of

this functor, E, which is the heart of the interpreter.

We can briefly describe the behavior of this functor. The function mapf is an indentity

map for the two atomic Scheme basic forms: constants, and identifiers. For all of the

other basic forms, as well as the two primtive binary routines (Add2 and Less), we apply

the function f to each subexpression.

The purpose of the function phi is to collect and sequence computations, and in fact,

the code resembles eps in some cases. Any subexpression in a basic form is assumed to

be a computation. In the case of constants, we use unitRSEI to raise the constant to a

computation. If we have a variable, we evaluate it, and in the process, raise the resulting

value to a computation.

We can also define functors for argument lists, and lists of commands. They differ

from each other, and from the expression functor, in how bind operates on them. For

example, a list of commands is just evaluated for its side effects; a value of unspecified is

supposed to be returned. In the context of our monadic approach, we use unitRSEI to

raise unspecified from an Exprval to a computation over Exprval. Figure 5.2 shows the

definition of these functors.

5.5 Auxiliary Functions

The functors that we have defined have referenced several auxiliary functions; since the

monad used in this interpreter is made by combining monad transformers for environments,

states, and error-reporting, it makes sense that we need routines to manipulate those three

data structures. For example, we need to be able to do environment lookups, as well as

extend the environment with new identifier/location pairs.

extendEnv :: Env -) [Id] -) Loe -) Env

extendEnv = \r formals freeloe -) ease formals of

[] -) r

(x:xs) -) (extendEnv ((x,freeloe):r) xs (next(freeloe)))

lookupEnv :: Id -) MonadRSEI Loe

lookupEnv idnt = \r -) \s -) ease r of

[] -) unitRSEI (-1) r s
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instance Functor E where

mapf f x = case x of
Const const -) Const const

Ident var -) Ident var

Add2 e1 e2 -) Add2 (f e1) (f

Less e1 e2 -) Less (f e1) (f

Cond e1 e2 e3 -) Cond (f e1)

Set idnt e -) Set idnt (f e)

Lambda form coms e -) Lambda form (mapf f coms) (f e)

Apply e args -) Apply (f e) (mapf f args)
case x of

Const (Number n) -) unitRSEI (Hum n)

Ident var -) evalldent var

Add2 e1 e2 -) bindRSEI e1

(\a -) case a of

Hum int1 -) bindRSEI e2

(\b -) case b of

Num int2 -) unitRSEI (Hum (int1 + int2»

_ -) makeErr "non-numeric arg to Add1")

_ -) makeErr "non-numeric arg to Add2")
Less e1 e2 -) bindRSEI e1

(\a -) case a of

Hum int1 -) bindRSEI e2

(\b -) case b of

Hum int2 -) unitRSEI

(if (int1 < int2)

then MyTrue

else MyFalse)

_ -) makeErr "non-numeric arg to Less1")

-) makeErr "non-numeric arg to Less2")
Cond el e2 e3 -) bindRSEI el

(\a -) case truish a of

MyTrue -) bindRSEI e2

(\b -) unitRSEI b)

MyFalse -) bindRSEI e3

(\b -) unitRSEI b»

Set idnt e -) bindRSEI e (\v -) assign idnt v)
Lambda formals coms e -) makeclosure

(bindRSEI (phi coms)
(\a -) bindRSEI e

(\b -) unitRSEI b»)

phi x

e2)
e2)
(f e2) (f e3)

formals

Apply e es -) bindRSEI (phi es)

(\a -) let (Args args) = a in
bindRSEI e

(\clos -) applicate clos args)

Figure 5.1: The Expression Functor
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instance Functor A where

mapf f a = case a of

Arg x y -> Arg (f x) (f y)

EmptyArg -> EmptyArg

phi a = case a of

EmptyArg -> LastArg (unitRSEI (Args []))

Arg x y -> bindRSEI x (\a -> bindRSEI y

(\b -> let LastArg (Args 1st) = b in

LastArg (unitRSEI (Args (a:lst)))))

instance Functor C where

mapf f c = case c of

EmptyCom -> EmptyCom

Com x y -> Com (f x) (f y)

phi c = case c of

EmptyCom -> LastCom (unitRSEI Unspecified)

Com x y -> bindRSEI x

(\a -> bindRSEI y

(\b -> LastCom (unitRSEI Unspecified)))

Figure 5.2: The Argument and Command Functors
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((a,b):xs) -> if idnt == a

then unitRSEI b r s

else lookupEnv idnt xs s

Given these primitive environment functions, we define the function evalldent. To

mirror the structure of R4RS as closely as possible (at the risk of obfuscation), we have

evalIdent call the function hold, a store lookup routine similar to the one defined ill

Chapter 3.

evalIdent :: Id -> MonadRSEI Exprval

evalIdent idnt = bindRSEI (lookupEnv idnt)

(\loc -> bindRSEI (hold loc)

(\a -> case a of

Undefined -> makeErr ("undefined " ++ idnt)

-> unitRSEI a))

lse holdhelper loc xs

Similarly, we have routines to do both store lookups and assignments:

updateState:: Loc -> Exprval -> MonadRSEI Exprval

updateState loc val = \r -> \s -> OK (Unspecified, (loc,val):s)

assign :: Id -> Exprval -> MonadRSEI Exprval

assignidntval = bindRSEI (lookupEnv idnt)

(\loc -> if loc == -1

then makeErr "undefined variable"

else updateState loc val)

hold :: Loc -> MonadRSEI Exprval

hold loc = \r -> \s -> OK(holdhelper loc s,s)

holdhelper :: Loc -> State -> Exprval

holdhelper loc s = case s of

[] -> Undefined

((a,b):xs) -> if loc == a then b else holdhelper xs
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We also have a routine that takes an error message into a monad:

makeErr :: Message -> MonadRSEI Exprval

makeErr msg = \r -> \s -> Err msg.

Our interpreter also contains routines that make closures (makeclosure), and apply

argument lists to closures (applicate).

Lastly, we define our top-level evaluation functions. The function evalE takes source

program x (as an abstract syntax tree), traverses down the tree with mapf, and then back

up with phi. To actually run the interpreter, though. we define a routine interpE, which

takes the result of evalE (a very large function), and applies it to a actual environment

and state. The result is a MonadEI containing the result of the computation, and the final
state.

evalE :: Expr -> MonadRSEI Exprval

evalE (In x) = phi (mapf evalE x)

type Answer = MonadEI (Exprval, State)

interpE :: Expr -> Env -> State -> Answer

interpE m r s = (evalE m) r s

5.6 Discussion

By packaging up most of the interpreter's arguments in a monad, using a series of em-

bedded monad transformers, we are able to write a compact Scheme interpreter that is

both faithful to R4RS, and amenable to the algebraic manipulation discussed in the pre-

vious chapter. The interpretation function that we defined, interpE, simply applies an

environment and a store to the expression evaluation function, evalE.

\Ve would like to apply the transformation methods outlined in chapter 4 to the evalu-

ation function, evalE, and calculate a Scheme compiler. However, there is still a obstacle

to be overcome. Recall that the crux of the calculational method is defining an algebra for

the source and target languages. and then creating a mapping between them, from which

we can derive a compiler. In this technique, the signatures of the algebras are not required

to be the same; in the simple example given in the previous chapter, the source, and run-

time signatures were Expression and Rec Stack, respectively. However, it is necessary
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for the source and target algebras to have the same carrier; in our simple example, the

type of the carrier was int.

Contrast this with the situation for the Scheme interpreter, in which the type of the

carrier is MonadRSEI Exprval. We defined a source language algebra phi :: Expr-)

MonadRSEI Exprval, and could define a run-time algebra psi :: Machine -) MonadRSEI

Exprval, where Machine is the run-time machine functor. However, as we saw in the par-

tial evaluation section of this paper, the environment is not an input to the run-time ma-

chine. The monad transformer that is appropriate for the run-time machine is MonadSEI,

since the state, and error handling, are run time objects. Hence, the algebras we need
don't share the same carrier.

Looking at the definition of MonadRSEIand MonadSEI, we can intuitively say that the

relationship between them is very simple, letting r be the appropriate environment.

MonadSEI = (MonadRSEI r)

However, there is no reason to believe that transforming from one carrier to another

will always be so simple. It may be the case that the structure of monad transformers

is such that such a carrier transformation can easily be found, or derived straight from

the definition of the monad transformers involved, but we have no proof of this. Our

conclusion, then, is that the theory behind the calculational approach needs to be expanded

to take this additional challenges into consideration. This will make the calculational

approach more applicable to real-world languages.
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Conclusion

Perhaps the most obvious conclusion to be drawn from our work is that it is very hard to

specify a language; denotational specifications are more successful as language descriptions

than as implementation guides. For example, any commercial Scheme compiler, when it

builds a closure, will only store that part of the environment that corresponds to the

free variables in the lambda expression of interest. But looking over R4RS, we find no

mention of that fact, simply because it is solely an implementation issue. Sadly, but not

surprisingly, the truth seems to be that any kind of semantics directed compiler generation

will not enable a person with an inadequate understanding of both compilers and language

specifications to produce a good compiler. These techniques will only allow a poor compiler

writer to efficiently generate a poor compiler.

It is worth briefly comparing the two approachs; which one does the job better? Our

experience with partial evaluation demonstrated to us that this technique can be consid-

ered a feasible method of automatically generating a compiler for a source language, given

an interpretive specification. However, the compiler didn't just simply "fall out" of the

specification. It was necessary to experiment with the interpreter, and its binding time

properties, before converging on a residual program in which all of the usual compile-time

actions had been executed.

The obvious criticism of this technique is that the various transformations were too

"ad-hoc", and that any "tuning" done to one interpreter would have no relevance to a

different one. It was originally our hope that further research might identify a small set of

transformations that, for any language, would guarantee good specialization behavior. Our

analogy was CPS, a program transformation technique that, when first used in a compiler,

may have looked like a "trick" of some kind, but now is recognized as an extrememly useful

tool for any compiler writer. However, we cannot say with any confidence that we have

identified any such set of transformations with "across-the-board" utility. Our summary

70
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of partial evaluation, then is that it has, compared to the calculational approach, both

a pluses and minuses. The big plus, in our eyes, is that the ability to tweak makes the

process feel more interactive, and therefore "easier". Also, the interpreters that we wrote

didn't have to satisfy any particular mathematical properties, giving us more freedom

while crafting them. There were some big minuses, however. The ability to tweak the

interpreter, looking for "good" properties tended to encourage aimless experimentation

("Hey, I think I'll try residualizing this function; nothing else seems to do the trick!").

The fact that the partial evaluator is, essentially, a black box, means that it can often be

difficult to understand and predict its behavior. Also, the very fact that the interpreter did

not have to have any mathematical structure meant that there was no clear definition of

what the compiled code should look like. How does one know when the partial evaluator

has done the best it can? We attempted to overcome this problem by carrying out a

detailed analysis of the binding time properties of the various functions that make up

R4RS (described in detail in Chapter 3). It might have been faster to write the code to

do the first compiler pass by hand.

The virtues and vices of the calculational approach are virtually the opposite of those

of the partial evaluation approach. The calculational approach required more discipline

when it came to writing the interpreter; using monad transformers for the first time was

conceptually more difficult than just trying to translate denotational to its ;'computational

cousin", Scheme. The comparison might even have come out worse for the calculational

approach if we hadn't done the partial evaluation work first: when it came time to write

an R4RS-based interpreter for our calculational experiments, we had already become old
friends with R4RS.

The fact that we weren't relying on any "black boxes", and the requirement that the

interpreter be mathematically structured, lent us more confidence in what we were doing,

and where we were going, at each phase of the process. It has been remarked upon by many

computer scientists that modularization, the ability to break a large, difficult problem (or

programming project) into multiple small, understandable problems is one of the most

useful tools in the problem solver's arsenal. It was our experience that conceptualizing an

interpreter in terms of functors, algebras, etc., was a powerful form of modularization.

There are some very interesting areas for future work in this field. One fascinationg

opportunity would be to investigate the merits of combining the two approaches. What

would be gained by writing an interpreter in the calculational style, along with the use

of transformers, and feeding that interpreter to a partial evaluator? If nothing else, the
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residual program might help suggest possible transformations between carriers and/or

signatures. Multiple passes with the partial evaluator might translate into multiple refine-

ments of the original interpreter. After all, going straight from source code to compiled

code in one step is probably going to result in some very complex functors, and "eureka"

steps between them. It seems like a better idea to do this in a stepwise fashion. letting

the partial evaluator suggest "stepping stones" from source language to target language.

As mentioned in the previous chapter, the addition of monad transformers to the

calculation approach originally outlined by Meijer calls for the development of new theory

to support simultaneous transformations from the source language carrier and signature
to the run-time version.

Another idea for further work would be expanding the techniques to include a very

important aspect of a modern programming language that we have ignored thus far - the

programming environment. Most modern programming languages have features such as

error handlers, debuggers, garbage collectors, etc. Many of these languages are fundamen-

tally interpreted, not compiled. Instead of starting with an interpreter, and generating a

compiler, a more practical approach would be to start with an interpreter for the source

language, and have the system generate a complete interpretive run-time system - an in-

terpreter plus programming environment. This approach more closely reflects the realities

of modern language design and development.

After having worked on the problem of automatic compiler generation for some time, we

started to wonder about the existence of a "conservation of difficulty" law that operates in

the universe of compiler construnction. Regardless of technique, it seemed that all of them

relied on some kind of eureka step. For the partial evaluation approach, this meant the

user had to specify the division between the static and dynamic inputs, as well as decisions

to unfold or specialize functions. In the case of the calculational approach, the run-time

machine/compiler factorization of an interpreter was dependent upon a manually-supplied

function. The moral of the story seems to be that if you provide the 1 percent inspiration,

the compiler generator will provide the 99 percent perspiration! Our hope is that by

structuring the problem properly, we can make that 1 percent contribution attainable to

any (inspired) compiler writer.
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