
Concurrency Control and Performance EvaluationofB - Trees

Tanmoy Dutta

B. Tech. Indian Institute of Technology, Kharagpur, India

1988

A thesis submitted to the faculty

of the Oregon Graduate Center

in partial fulfillmentof the

requirements for the degree

Master of Science

in

Computer Science

September, 1989 I

The thesis "Concurrency Control and Performance Evaluation of B-trees" by Tanmoy Dutt.a

has been examined and approved by the following Examination Commit.t.ee.

--

Dr. David Maier
Professor

Dr. tvfichael Wolfe
Associate Professor

'0""""""

Contents

Acknow ledgement ...

Abstract

1. Prologue ...
1.1. In troduction ..

1.2. Concurrency Control and B-trees ...
1.3. Statement of Thesis ...

2. Concurrency Control inDatabaseSystems ..
2.1. Preliminaries ..

2.2. Serializability and Nested Transactions ..

2.3. Locking Based Methods ...

2.3 .1. Two-Phase Locking Protocols ...

2.3.1.1. Basic Two-Phase Locking

2.3.1.2. Conserva tive Two-Phase Locking

2.3.1.3. Strict Two-Phase Locking

2.3.1.4. Multigran ularity Locking ...

2.3.1.5. Multiversion Two-Phase Locking ..
2.3.2. Non-Two-Phase Locking Protocols
2.3.3. The Effect of Granularity on Locking ..
2.4. Validation Based Methods

2.5. Timestamp-Ordering-Based Methods
2.6. Reserva tion Based Methods ...

2.7. Semantic Methods in Concurrency Control...
2.7.1. Dynamic Determination Of Compatibility..
2.7.2. Modular Concurrency Control Method ..
3. B- TreesinDatabaseSystems
3.1. Introduction..
3.2. Review of B-Trees and Their Variants ..
3.2.1. B+-Trees ...*
3.2.2. B -trees ...
3.2.3. Prefix B+-trees

3.2.4. Blink-Trees
3.2.5. Hysterical B-Trees
3.3. Operations on B-Trees

3.4. Deferred versus Aggressive Splitting
3.5. Fringe Analysis
3.6. Performance Metrics of B-Trees

Yl

VB

1

1

4

5

6

6

7

9

10

10

10

11

11

13

13

15

16

18

18

19

19

20

22

22

22

23

24

25

26

26

27

28

29
30

3.6.1. The Average Storage Utilization

3.6.2. The Expected Number of Splits per Insertion ...

3.6.2 .1. Deferred Splitting ...
3.6.2.2. Aggressive Splitting

3.6.3. The Average Cost of an Operation ~..................................
3.6.3.1. Search for a Key ...

3.6.3.2. Insertion of a Key : ..
3.6.3.3. Deletion of a Key ...

3.7. Other Optimizations in B+ -Trees ..

3.7.1. Partial Expansions of Nodes ...

3.7.1.1. Expected Number of Full Expansions Per Insertion

3.7.1.2. Average Storage Utilization

3.7.1.3. Probability of a Partial Expansion ...

3.7.2. Hashing at the Leaf Level...

3.8. Summary...
4. Performance of B+ - Trees ..

4.1. Introduction ..

4.2. Simulation Parameters and Workload Description ..
4.3. Test Data Generation

4.3.1. The Inverse Transform method ..

4.3.2. The Acceptance Rejection Method ...

4.4. Review of Probability Distributions
4.4.1. The Uniform Distribution ..

4.4.2. The Normal Distribution

4.4.3. The Exponential Distribution ..
4.4.4. The Gamma Distribution ..
4.4.5. The Beta Distribution ..

4.4.6. The Log-Normal Distribution ..

4.5. Operation Execution Times

4.6. The Average Storage Utilization

4.7. The Average and the Total Insertion Time ..

5. ConcurrencyControl of B-Trees ...
5.1. Overview ..

5.2.

5.3.

5.3.1.

5.3.1.1.

5.3.1.1.1.

5.3.1.1.2.

5.3.1.1.3.

5.3.1.1.4.

Log-Sequence Serializability versus Operational Serializability

Concurrency Control Algorithms ..

Concurrency Control of Bottom-Up B-Trees ..

Type 1 Algorithms

Samadi-Parr Algorithm

Bayer and Schkolnick's Algorithms ...

Ellis's Algorithm

Kwong and Wood's Algorithm ...

11

31

35

35

41

42

42

43

43

44

44

44

49

51

51

53

54

54

55

57

58

58

59

59

60

62

63

65

66

68

71

74

103

103

105

107

109

109

109

110

112

112

5.3.1.2. Type 2 Algorithms
5.3.1.2.1. Ellis's Algorithm
5.3.1.2.2. Miller and Snyder's Algorithm :..

5.3.1.2.3. Lehman and Yao's Algorithm ..
5.3.1.2.4. Kwong and Wood's Algorithm ...
5.3.1.2.5. Sagiv's Algorithm ..
5.3.2. Protocols for Top-Down Trees
5.3.2.1. Algorithm One ..
5.3.2.2. Algorithm Two ..
5.3.3. Operation Specific Locking Protocols
5.3.3.1. Biliri's Algorithm
5.3 .3.2. Algorithm Three ...
5.3.4. Optimistic Concurrency Control
5.4. Comparison of Algorithms
6. Concurrency Control Performance
6.1. Introd uction
6.2 . Workload Model

6.3. Implementa tion of Locks ..
6.4. The Performance Metric
6.5. Results

6.5.1. Total Elapsed Time
6.5.2. Effect of Read and Write Ratio ..

7. Epilogue
7.1. Summary and Conclusions
7.2. Future Study
Bi bliogr aphi
Biogr aphical Note ...

iii

113

114

116

11i

11i

118

119

119

I '>~-~

128

128

130

138

139

143

143

144

145

Hi

148

148

1.50

156

156

15i

159

165

List of Figures

2.1 Compatibility Matrix for Multigranularity Locking ..

2.2 Compatibility Matrix for Multiversion Locking protocol..

2.3 The Effect of Granularity on Locking ...

3.1 Example of a 2-3-tree ...*
3.2 Node splitting in B -Trees ..

3.3 Example of Prefix B+ -tree ...

3.4 Structure of Blink-trees ...
3.5 P arameter Notation ..

3.6 Effect of Minimum Fullness Factor on Storage Utilization

3.7 Effect of Slack Factor on Storage Utilization ...
4.1 The Uniform Distribution ...

4.2 The Normal Distribution

4.3 The Exponential Distribution
4.4 The Gamma Distribution ...
4.5 The Beta Distribution ...

4.6 The Log-normal Distribution ...
4.7 Insertion Time vs. Size of Tree for Uniform Distribution ..

4.8a Insertion Time vs. Size of Tree for Normal Distribution (Jl=1.0, 0'=0.7)

4.8b Insertion Time vs. Size of Tree for Normal Distribution (Jl=1.0, 0'=1.0)

4.9a Insertion Time vs. Size of Tree for Exponential Distribution (Jl=1.0)

4.9b Insertion Time vs. Size of Tree for Exponential Distribution (Jl=0.5)
4.10 Insertion Time vs. Size of Tree for Gamma Distribution ..

4.11 Insertion Time vs. Size of Tree for Beta Distribution ...

4.12 Insertion Time vs. Size of Tree for Log-normal Distribution
4.13 Deletion Time vs. Size of Tree for Uniform Distribution ..

4.14 Deletion Time vs. Size of Tree for Normal Distribution (Jl=1.0, 0'=1.0)

4.15 Deletion Time vs. Size of Tree for Exponential Distribution
4.16 Deletion Time vs. Size of Tree for Gamma DistHbution ..

4.17 Deletion Time vs. Size of Tree for Beta Distribution ..

4.18 Deletion Time vs. Size of Tree for Log-normal Distribution

4.19 Average Storage Utilization for Uniform Distribution ..

4.20 Average Storage Utilization for Normal Distribution ...

4.21 Average Storage Utilization for Exponential Distribution

4.22 Average Storage Utilization for Gamma Distribution ..

4.23 Average Storage Utilization for Beta Distribution ..

4.24 Average Storage Utilization for Log-normal Distribution

4.25 Insertion Times and Av. Insertion Time vs. Number of Keys for Uniform Dis-
tri bu tion ..

IV

12

13

15

23

26

31

31

35

59

60

62

64

65

67

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91
92

93
94

95

96

97

4.26 Insertion Times and Av. Insertion Time vs. Number of Keys for Normal Dis-
tribu tion 98

4.27 Insertion Times and Av. Insertion Time vs. Number of Keys for Exponential
Distribution 99

4.28 Insertion Times and Av. Insertion Time vs. Number of Keys for Gamma Dis-
tribution 100

4.29 Insertion Times and Av. Insertion Time vs. Number of Keys for Beta Distri-
bu tion 101

4.30 Insertion Times and Av. Insertion Time vs. Number of Keys for Log-normal
Distribution 102

5.1 The B+-tree before both processes start 103

5.2 Interleaving of steps of the two processes 103

5.3 The B+-tree after step 6 10.1

5.4 Compatibility Matrix for Bayer and Schkolnick's First Algorithm 110

5.5 Compatibility Matrix for Bayer and Schkolnick's Third Algorithm 111

5.6 Compatibility Matrix for Ellis's Type 2 Algorithm 114

5.7 Compatibility Matrix for Miller and Snyder's Algorithm 116

5.8 Compatibility Matrix for Kwong and Wood's Algorithm 117

5.9 Compatibility Matrix for Algorithm 1 119
5.10 Search procedure for Algorithm One 120

5.11 Insertion procedure for Algorithm One 121

5.12 Deletion procedure for Algorithm One 122

5.13 Compatibility Matrix for Biliris' Algorithm 129

5.14 Convertibility Matrix for Biliris' Algorithm 129

5.15 Compatibility Matrix for Algorithm Three 131

5.16 Convertibility Matrix for Algorithm Three 131

5.17 Search procedure for Algorithm Three 132

5.18 Insertion procedure for Algorithm Three 133

5.19 Deletion procedure for Algorithm Three 133

5.20 Comparison table for bottom-up type 1 algorithms 140

5.21 Comparison table for bottom-up type 2 algorithms 141

5.22 Comparison table for top-down and operation specific algorithms 142

6.1 Index of the protocols compared 148

6.2 Percentages of different operations. 150

6.3 Total Elapsed Time versus number of short transactions 152

6.4 Total Elapsed Time versus Dumber of medium transactions 153

6.5 Total Elapsed Time versus Dumber of large transactions 154

6.6 Effect of read-update ratio on Total Elapsed Time 155

v

Acknowledgement

I wish to express the thanks I owe to many people for providing emotional, intellectual

and financial support during my stay at the Oregon Graduate Center. It was my privilege

to have done this research under the guidance of Professor Harry Porter, Professor David

Maier and Professor Michael 'Volfe. Harry was a constant source of encouragement, inno-

vative ideas, friendship and practicality. Without his persistence and support this thesis

would never have been in this shape. Mike Wolfe suggested some necessary modifications

and clarified certain concepts. I am grateful to my parents who constantly encouraged me

from fifteen thousand miles away and to Rupa, whose letters were the only source of happi-

ness in my life. I am also grateful to Professor Shakti Pramanik of the Michigan State

University, Professor Goetz Graefe of the University of Colorado and my friends Pinaki,

Meenakshi, Tom and Murali for providing some brilliant ideas and patiently editing my

thesis. Most of all, I am ever obliged to the great Dave Maier. He not only taught me

Computer Science - the science in it, but also taught me what is meant by a great profes-

sor, a great advisor and most importantly a great man - undoubtedly one of the best I

have ever seen.

VI

.-.

Abstract

The B-tree and its variants have been widely used as a data structure for indexing

into large sets of records, especially when stored on secondary storage devices. The

guaranteed small time of operations for these data-structures make them quite appealing

for database applications. Previous research on B-trees has been concentrated on the case

when the restructuring of the tree during an update is propagated bottom-up. Our research

is on top-down restructuring of the tree.

\Ve have compared the two approaches mathematically and verified the analysis by

simulations. The behavior of the two approaches under different distributions of keys has

also been discussed. Next, we looked at the various techniques for concurrency control of

bottom-up B-trees and proposed two new concurrency control protocols for top-down B-

trees. We have also studied concurrency control protocols which combine both the

approaches and presented a new protocol. Further, we implemented the various protocols,

proposed a metric of comparison and evaluated their performance. Our results show that,

under certain circumstances, top-down B-trees perform better and are indeed a viable alter-

native of the bottom-up counterparts.

VII

!

CHAPTER 1

Prologue

1.1. Introduction

Concurrency control is the activity of coordinating concurrent accesses to resources in

an environment allowing more than one process. It is the synchronization of access to

shared data while preserving the illusion that the user is executing alone on a dedicated sys-

tern. With the growth of technology such environments are becoming common.

Various techniques of achieving concurrency control have been cited in the literature.

Many metrics have been suggested to judge their performance. The most common of these

metrics include the degree of concurrency supported, the complexity of the resulting logic,

the protocol maintenance overhead, the total space overhead, the delay incurred in the

response time, the amount of concurrent processing during restarts, the extent of system-

induced transaction rollbacks, the overheads of deadlock detection, prevention or avoidance,

the number of locks used, the degree of commutativity of the locks and many others.

In the context of centralized database systems, the problem of concurrency control is

well understood and current research is directed towards performance analysis and optimi-

zations, extensions to the mathematical theory [BeG8!] and modifications of the algorithms

for better performance in specialized applications. However, a major problem encountered

in comparing concurrency control protocols is the variation in the assumptions underlying

them. At times these assumptions are contradictory, making comparisons even more

difficult. Moreover, many of the techniques are incorrect, unreliable or perform unaccept-

ably in situations not accounted for in the assumptions. A survey of the various

2

concurrency control protocols is provided in Chapter 2.

Most of the concurrency control algorithms intended for database systems do not

assume any inherent structuring of data. In that sense they are purely syntactical and pro-

vide less parallelism in the access patterns than can be extracted. The reason behind this is

the requirement of serializability. A correct protocol should not allow a schedule that

violates serializabilty. Checking whether a schedule of transactions is serializable or not is

an NP-Complete problem and various heuristics are employed to attain serializabilty of a

set of transactions. Different heuristics give rise to the different protocols for concurrency

control. As a consequence of adopting heuristics, some possibly valid schedules have to be

sacrificed also.

With semantic information about the structure of data, the data access pattern is

better known and more concurrency can be achieved using this knowledge. In order to util-

ize the knowledge about the structure, the general purpose algorithms are often modified to

such an extent that they bear little resemblance to the original versions. However, most of

these special purpose algorithms are derived from a few general protocols and are modified

according to the different properties of the data structure they exploit to achieve the extra

parallelism.

The term synchronization is used to describe either of the two problems [Koh81]:

(a) Specification and control of joint activity of co-operating sequential processes.
(b) Synchronization of concurrent access to shared data by multiple processes.

The solutions to these two problems are related in the sense that access to shared

data can be synchronized by controlling the processes which access the data. Thus, solu-

tions of one often solve the other, too. Conventional operating systems solve the problem of

synchronization by providing 8emaphores, test and set instructions, locks (e.g., spin), event

queues, monitors, critical regions, etc. The basic requirements of all these solutions are fair

3

scheduling, termination and mutual excluaion. Though concurrency control algorithms pro-

vide concurrent access to the data both in operating systems and in database systems, solu-

tions of synchronization problems in operating systems need not necessarily work in the case

of database systems. The difference is that the operating system assumes that the resources

are unchanged by use (like the CPU or a network channel), while a database system

assumes that the resources can be modified through use. In fact, the problem in the case of

database systems is strictly more difficult {BeGS!].

Consider two processes PI and P2 requiring concurrent access to the resources RI and

R2. The following is a perfectly valid schedule in an operating system environment: PI uses

Rl> P2 uses Rl> P2 uses R2' PI uses R2. However, in a database system, this schedule is not

always valid. In a banking application for example, consider that P2 debits one account

(RI) and then credits another (R2). If P2 checks both balances, it may see RI after it has

been debited but before R2 has been credited [CBT74].

Loosely speaking, another reason for the extra strictness in the case of database sys-

terns is the added requirement of integrity conatraints. The state of a database system is

defined to be the contents of all the data objects present in the system and is often

represented as a tuple <xI' X2' ..., xi>' A state is consistent if it conforms to the integrity

constraints of the system. A transaction is a set of operations which take the database from

one consistent state to another. However the constituent operations individually may not

necessarily preserve state. In operating system problems, integrity constraints are not

imposed on the resources (analogous to data items) accessed by the processes (analogous to

transactions). Hence, the problem of synchronization in the case of operating systems is less

difficult.

4

1.2.Concurrency Control and B-trees

B-trees occur very frequently in databases as a data structure for organizing and

indexing large amounts of data. In a B-tree, data is organized into pages and the pages are

stored on some direct access medium such as disk. The pages are linked together as a mul-

tiway tree satisfying certain constraints on the contents of these pages. B-trees were origi-

nally proposed by Bayer and McCreight [BaM72] for maintaining large ordered indices of

dynamic random access files. Several variants of B-trees have been reported in the litera-

ture to cater to different needs. The variants can be broadly categorized into two classes -

structural and operational. The structural variants have the same operation semantics but

have a slightly modified data-structure. The operational variants on the other hand have

different operation semantics preserving the basic data-structure. Our research is primarily

on the operational variants of B-trees.

In view of the prominence of multi-processing and multi-user environments, accesses to

these large quantities of data must be parallelized too. With the development of object-

oriented systems, this need has been felt even more. Every object in an object-oriented sys-

tern has an unique identifier which often serves as an index in the so-called Object Table.

Fast access to the object table - which is maintained as a B-tree (or a trie) - is necessary

(e.g Gemstone, VBase). Moreover, the object table is the center of activity and all processes

need access to it in some form. This provides a major motivation in the control of con-

current access to B-trees. Existing systems like Gemstone [MaS87] provide extremely rudi-

mentary techniques or nothing at all (e.g., Volcano [Gra8g]) in controlling concurrent

accesses. This thesis explores the feasibility of the techniques reported in literature for con-

trolling concurrent accesses to B-trees.

5

1.3. Statement of Thesis

In this thesis, we compare two operational variants of B-trees, namely - top-downB-

trees and bottom-upB-trees.While bottom-up B-trees are established to be standard, top-

down B-trees have earnest proponents (e.g., [Gra89]) and vocal detractors (e.g., [LeY81]):

The proponents tout lower cost of operation while the detractors complain about loss of

concurrency resulting from more frequent restructurings of the tree. Our thesis states that

when the number of pages residing in main memory is bounded, top-down B-trees have com-

parable performance to their bottom-up counterparts. \Ve attempt to prove our thesis in

two steps. First, we perform probabilistic analysis of both the variants and show that the

excess number of splits in the top-down case is only marginally more. To support our

analysis and to justify our argument, we perform simulations under six different distribution

of keys. The results of the simulation show that in all the cases the number of restructur-

ings is only marginally more in the case of top-down trees. Next, we propose three con-

currency control protocols for top-down trees and compare them with six other protocols for

bottom-up trees. Our simulations show that the proposed protocols are comparable in per-

formance.

The rest of the thesis is organized in the following way. In Chapter 2 we provide a

short summary of the general techniques of concurrency control in database systems. In

Chapter 3 we study some properties of B-trees. In Chapter 4 we study the performance of

B-trees under different distribution of keys. In Chapter 5 we discuss protocols for con-

currency control of B-trees and its variants. In Chapter 6 we discuss the performance of

nine concurrency control algorithms and finally in Chapter 7 we summarize our conclusions.

6

CHAPTER 2

Concurrency Control inDatabaseSystems

2.1. Preliminaries

The primary objective of this chapter is to survey the standard concepts of database

concurrency control. Most of our definitions can be found in some form elsewhere, e.g.,

[BHG87].

A database is a set of data items { x, y, '00' z }. Every operation on a data item is

either a read or a write. A transaction is an ordered set of operations that preserves the

integrity constraints of the database. In the most general case, transactions may be nested,

i.e., composed of one or many sub-transactions. However, for the sake of simplicity, only

non-nested transactions will be considered in this thesis.

DEFINITION2.1 (e.g., [BHG8i]): A transaction Tj is a irreflexive partial order given
by Tj = (Ej , <j) where

(a) Ej = { rdx], wdx] : x E database} U {aj, Cj, s;},
(b) (aj E Tj) ==-. (Cj E T;),
(c) If ej is either aj or Cj then for all p E Ej, p <j ej,
(c) For all x E database, Sj <j odx], where OJis rj or Wj,
(d) If rdx], Wj[x] E Tj then either rdx] <j wdx] or vice versa.
o

The partial order «j) is the happens before relation of Lamport [Lam78].

DEFINITION 2.2 (e.g., [Lom77]): An action is a collection of operations which takes
the database from one state to another. An action is atomic if and only if the
following are satisfied:

(a) The execution of the action progresses as if it is the only action,
(b) The action does not communicate with other actions running concurrently,
(c) There is no visible change in state until the action is over,
(d) The action is indivisible.
o

.__ h

7

An action is said to be recoverable if the effects of the action can be removed from the

database if necessary. In database systems, transactions are the units of atomicity. Thus

transactions are synonymous to atomic action~ According to [HaR84], a transaction has

the following four properties: Failure Atomicitj, Consistency, /solation (or synchronization

atomicity), and Durability (guaranteed to survi~e a failure occurring after it has been com-

mitted).

DEFINITION 2.3: Two operations conftitt if they operate on the same data element
and either of them is a write.

o

DEFINITION 2.4 (e.g., [BHG87]): A history HT of a set of transactions T = {Tb .."
Tn} is a partial order on the operations HT = (r , <H) such that:

(a) r = Ui Ei,
(b) <H ;2 Uj <j,

(c) For two conflicting operations p, q in HT, either p <H q or vice versa.
o

DEFINITION2.5 (e.g., [BHG87]): A committed projection of a history, written as
C(HT), is a subset of HT, where the subset relation refers to the prefix property
on the partial orders. The prefix consists of the transactions in HT that are com-
mitted.

o

2.2. Serializability and NestedTransactions

In this section we briefly review the concepts involved in the synchronizing of transac-

tions.

DEFINITION 2.6 A serial execution is one in which the transactions execute serially
one after another.

o

We say that a set of transactions preserves state (precisely, preserves consistency of

the state) if the execution of the transactions gives rise to a state which preserves the

integrity constraints of the database. Thus, if the set of transactions { Tb T2, ..., Tn } exe-

cutes serially (in any order) then, since each individual transaction preserves state, the

8

resulting state is also preserved. The particular order is called a urial 8chedule.

DEFINITION 2.7: Two schedules are equivalent if their histories are equivalentt.
o

DEF INI';I'ION 2.8: A 8erializable schedule of a set of transactions is a temporal order-
ing among them that is equivalent to a serial schedule.

o

A serializable schedule preserves the state of the database. However the inverse is not

necessarily true: there are non-serializable schedules that also preserve the state of the

database.

DEFINITION 2.9: A serialization graph SG(H) for the history H is a directed graph
(V, E) where V = { Tj I Tj E Hand Tj is committed} and (Tj , Tj) E E [i ¥' j]
if one of Ti's operation precedes and conflicts with one of T/s operations in H.

o

THEOREM 2.1: A history is 8crializable if and only if SG{H) is acyclic.
Proof: Sce /BHG87J.
o

In order to prove a history serializable, it is sufficient to prove that the corresponding

serialization graph contains no cycles.

Transactions as defined above, are flat and the concept of atomicity is uni-leve/. The

transaction is the logical unit (i.e., the unit which transforms the state) of a database sys-

tern. Also, as mentioned previously, the transaction is the unit of atomicity and recovery.

This unified model of transactions makes implementation simple but at the cost of parallel-

ism. Intuitively, the unit of logical consistency should be as large as possible, while that of

atomicity small, to achieve maximal parallelism. The unit of recovery can be anywhere in

between. One would obviously not like to roll back (or undo on demand) a large logical unit

tHere, equivalence of two histories refers to equivalence of partial orders.

- - --.....

9

but would prefer to roll back a few of the atomic units. A transaction can thus be broken

up into a set of logically independent sub-steps, where independence refers to the mutual

exclusivity of the sets of data items on which each one of the sub-steps operate. Serializa-

tion can then be done over such sub-transactions, guaranteeing consistency of the database.

Evidently the number of schedules in such a serialization scheme may be more than in the

case of flat transactions and, in the process, more concurrency can be achieved.

Next, we discuss a few of the most common concurrency control methods.

2.3. Locking BasedMethods

Locking based methods are by far the most popular of the concurrency control

methods discussed in literature. They have been widely implemented, explored and

researched.

On an operation request from a transaction, the transaction manager (scheduler) has

three options [BSR83]:

(a) Immediately schedule it.
(b) Delay it.
(c) Reject it.

An aggressive scheduler tries to schedule an operation as soon as possible in the pro-

cess foregoing the opportunity to reorder the transactions in a later stage. An aggressive

scheduler may have to reject the operations of one or more transactions, causing rollbacks

or aborts. A conservative scheduler schedules an operation only when it is sure that the

operation will not conflict with those of any other transaction. In other words, the

scheduler tries to anticipate the future behavior of the transactions in order to prepare

itself for operations which have not yet arrived.

Associated with the locking protocols is the problem of deadlock. Deadlocks can be

avoided or resolved and a variety of methods have been proposed.

.,;, 10

2.3.1. Two-Phase Locking Protocols

In two-phase locking protocols, a transaction passes through two phases. In the first

phase it acquires all the locks and in the second phase it releases aH the locks previously

held. Once the transaction has unlocked any item, it can not acquire any more locks.

2.3.1.1. Basic Two-Phase Locking

In the Basic Two-Phase Locking protocol (2PL), before a transaction accesses a data

item, the scheduler looks at the associated lock. If the no transaction holds the associated

lock, then the scheduler obtains the lock on behalf of the transaction. If another transac-

tion holds the lock, then the former transaction is made to wait until that transaction

releases the lock. We write w1dx] (respectively, rldx]) to denote the operation of obtaining

a write (respectively, read) lock on the data item x and wu;[xJ (respectively, rUj[x]) to

denote the operation of releasing the lock.

Two locks plj[x] and qlj[xJ are said to conflict if i~j and either of p or q is a write.

With these definitions, the rules of two-phase locking are:

(a) When the scheduler receives a request for operation p;[xJ it checks to see if pl;[x]
conflicts with some qlj{xJ which is already set. If there is a conflict then the
scheduler delays Tj. Otherwise, the scheduler grants the lock.

(b) The lock cannot be released until the operation completes, Le., p;[xJ < pudxJ.
(c) Once the transaction releases a lock it cannot obtain any more locks, Le., for aH x,

y and 0, ol;[x] < ou;[y].

The correctness of the scheduler foHows from the fact that whatever a 2PL scheduler

allows is serializable.

2.3.1.2. ConservativeTwo-Phase Locking

Deadlocks appear in 2PL due to its aggressive attitude. In the Conservative Two-

Phase Locking protocol (2CPL) we avoid this problem by predeclaring the read and the

11

write sets of the transactions. A transaction then obtains all its locks at one time. The

scheduler periodically checks to see if there exists a transaction which can be granted all its

locks and if so, that transaction is selected for execution. The correctness proof of the pro-

tocol follows directly from the proof or. correctness of 2PL.

2.3.1.3. Strict Two-Phase Locking

The Strict Two-Phase Locking protocol (2SPL) is the most common variant of the 2PL

protocol. It is used to avoid cascading aborts and to ensure recoverability. In 2SPL locks

are released only after the transaction is committed. Thus, the protocol is a mixture of the

basic 2PL protocol and the two-phase commit protocol.

THEOREM2.4: A 2SPL scheduler produces a strict historyt.
Proof: Consider some history H in which pdx] < qj[x]. By basic 2PL we have pu;[x] <

qlj[x] < qj[x] and by 2SPL we have Cj< pu;[x], therefore Cj< qj[xl. That is, H
is strict.

o

2.3.1.4. Multigranularity Locking

The granularity of a data item refers to its relative size. Granularity of the data

items does not affect correctness but may affect performance drastically. Coarse grain lock-

ing has lower locking overhead than fine grain locking but permits less parallelism. To

achieve the best performance, we would like to allow transactions to obtain locks at the

appropriate grain. Long transactions do well with coarser locks but short transactions do

well with fine grain locks.

The scheduler, however, should not allow two transactions to obtain conflicting locks

on data that overlap. Consider an object-oriented'system in which each object may have

shared sub-objects. When such a sub-object is locked, the locking information needs to be
. I

t A history is strict if it avoids cascading aborts a~d i!l.re~overable IBHG871.

12

propagated to the parent object. Moreover, the locking information about the parent

object may need to be propagated to the sub-object too. For this, intention locks (of both

read and write types) are used.

The rules of Multigranularity Locking (MGL) protocol are:

(a) A transaction may not release an intention lock on an object x if it holds any lock
on a sub-object of x.

(b) To write an object x, Tj must obtain a write lock on some ancestor of x.
(c) To read an object x, Tj must obtain a read lock or a write lock on some ancestor

of x.

(d) To set a read or intention-read lock on any sub-object, the transaction must
obtain an intentron-read or intention-write lock on its parent.

(e) To set a write or intention-write lock on any sub-object, the scheduler must set an
intention-write lock on its parents.

To check if two operations conflict or not, the compatibility matrix t given in Figure 2.1 is
* .

used. The distributed database system R uses this mechanism for concurrency control

[BHG87]. The protocol is correct because if a transaction owns an explicit lock on a sub-

object of the main object, then no other transaction owns a conflicting explicit or implicit

lock on the sub-object.

Figure 2.1: Compatibility Matrix for Multigranularity Locking

fA compatibility matriz is defined as a. two dimensiona.l matrix where the i'h element in the ph row denotes

whether the lock requested (row) conflicts with the existing lock(column).

T W IT IW nw

T y n y n n

w n n n n n

IT y n y y y
IW n n y y n

TIW n n 11 n n

13

2.3.1.5. Multiversion Two-Phase Locking

In some systems more than one version of the same data item can be maintained to

enhance read-write concurrency. The idea is to provide that version which preserves serial-

izability. It is shown in [Pap79] that more the number of versions kept, greater the amount

of concurrency that can be achieved. To simplify the discussion, assume that only two ver-

sions of each data element are kept.

In Two-Version Two-Phase Locking (2V2PL) the scheduler has to maintain three types

of locks, namely read, write and certify. The compatibility matrix of the three types of locks

is given in Figure 2.2 [BHG87].

When a transaction Tj wants to get a write lock, the scheduler checks to see if a write

or certify lock on the same data element is set. If set, the scheduler delays the operation.

Otherwise the scheduler creates a new version and stamps it with the identification of Tj.

To get a read lock, the scheduler checks to see if there exists a transaction already holding

a certify lock. In that case the requesting transaction is delayed. If Tj already owns a

write lock on x. the read lock is granted, else it is delayed. 'When the transaction commits,

the locks held by the transaction are changed to certify locks by checking the compatibility

of the locks held on the same data items by other transactions. Since only two versions of

the data are kept, transactions which are older than the current one holding a certify lock

on the same data item is forced to release its certify locks without any checking.

2.3.2. Non-Two-PhaseLocking Protocols

Two phase locking protocols suffer from the two problems of deadlock and fewer allow-

able schedules. Various methods have been used to alleviate the locking protocols from

these two problems. Most of the research has converged to the assumption of a priori

knowledge about the item [SiK82][SiK83]. For example, the fact that the pages of a B-tree

14

Figure 2.2: Compatibility Matrix for Multiversion Locking protocol.

are structured hierarchically can be used to achieve more parallelism than that achieved by

the two-phase protocols.

Tree Locking (TL) is the simplest of all non-two-phase protocols and is the most

widely used. The data items are assumed to be structured in the form of a tree. For simpli-

city, we assume that the only operations on the data-items (which correspond to the nodes

of the tree) are writes. However, it is trivial to extend the protocol, which is presented next,

to the case where reads and writes can be dealt with differently. Chapter 5 discusses special

cases of such protocols at a greater depth.

Let pdx] denote an operation on node x by transaction Tj. The protocol rules are:

(a) To access x, it must be locked, i.e., pldx] < p;[x],
(b) The lock can be set only if not already set,
(c) If x is not the root, then p/;[x] can only be set if pld'!!] is already set where '!! is a

parent of x,
(d) No locks can be unlocked before the operation is done, i.e, pdx] < pu;[x], and
(e) Once the scheduler releases a lock on behalf of Tj, it can no longer get the same

lock.

Following these rules, we observe that the locks are obtained from the root in a root-

to./eaf manner and that the locks in the parent can be released after locking the child. The

protocol is analogous to the common optimization of pipelining (Tree Locking) compared to

sequential (2PL) access of nodes from the root to the leaves. The protocol is discussed in

Read Write Certi

Read '!! '!! n
Write '!! n n

Certifv n n n

15

further detail in chapter 5.

2.3.3. The Effect of Granularity on Locking

Recall that the granularity of a lock refers to the relat.ive size of the data-item that is

being locked by the lock. Extensive research on the effect of the granularity of locking on

system performance has been performed by [RiS77]. To discuss the effect of granularity on

locks, we need to define some performance metrics. In any database system, the amount of

work done in the system increases with the number of users in the system. However, this

increase should not be linearly proportional to the number of users in the system. When

there is resource contention, queues are formed for the data elements and system time is

spent. These queues may be of two kinds, resource-contention queues and data-contention

queues. The latter is due to lock conflicts while the former is due to resources such as CPU,

memory and I/O channels. Although data objects are also resources, the two types of

resources are distinguished, as the effect of locking is different in the two. Locking can also

increase thrashing - a phenomenon which results in the system throughput falling abruptly.

Thrashing is of two types. The first is called RC-thrashing - which is due to contention in

the resources and DC-thrashing - which is due to data contention in the resources [BSR83].

Three factors contribute to the effect of granularity on locking:

Lock overhead: The finer the granularity, the more the overhead.
Data Contention: Though finer granularity decreases data-contention, it increases the

overhead lock maintenance.
Resource Contentt"on: Finer granularity may release many more transactions from the

lock queues and they in turn may spend lot of time in the resource queues.

These three factors shape the granularity of the curves shown in the Figure 2.3. The

graphs are extracted from [BHG87].

To explain the variation we note that, due to lock overhead and data contention, the

curve falls initially. With the granularity of locks becoming finer, the number of locks a

16

transaction acquires becomes nearly equal to one per data item accessed and the perfor-

mance becomes insensitive to the granularity. The increase in throughput occurs due to

lesser amount of resource contention. The final drop is due to resource contention, which

results from the lock table becoming a hot spot.

2.4. Validation Based Methods

Though locking is by far the most common of the concurrency control protocols, such

pessimistic approaches do not perform well in real time systems. Locking has the following

major drawbacks [KuR81]:

(a) The overhead of maintenance of locks.
(b) The possibility of deadlocks.
(c) The data contention due to the lock table.

We need locking only when actions conflict, but in practice we incur the overhead even in

scheduling non-conflicting transactions.

Deadlock-free locking protocols appear unrealistic in database systems and their per-

formance is questioned. Optimistic concurrency control methods (e.g., validation) view the

problem from a different view point. Transactions are allowed to proceed freely. At a later

T T T
h Overall Effect h Lorge Transaction8 h I Small Tran8action8
r r r
0 0 0

/u u u
9 9 9
h h h

P P P
u u u
t t t

Granularity Granularity Granularity

Figure 2.3: The Effect of Granularity on Locking

, "

17

stage, if it is found that an operation of a transaction has conflicted with an operation of

some other transaction, then one of the transactions is made to roll back. In fact, in cases

.such as E- Tree management where conflicts are rare, optimistic schemes perform better than

the pessimistic ones. In all optimistic methods, e.g., serial validation, parallel validation and

eertifiers, a transaction has two or more phases. In the cases of serial valida tion and paral-

leI validation there are three phases. Namely,

(a) Read: For each transaction a transaction buffer is maintained in which the effects
of the transaction are reflected. Later this image is used to update the main
database.

(b) Validation: After receiving the end-oJ-transaction message the transaction manager
checks to see if the transaction had conflicted with some others, in which case
appropriate measures are taken.

(c) Write: This is the last phase in which the updates are posted to the main database.

In the validation phase, it must be ensured that the ope.rations of a transaction should

be directed to the same database state (as the read phase) to assure serializability. To

satisfy this condition, each transaction is provided with an unique transaction number

(TNC). The TNC can be assigned to a transaction at various points - at the end of the

read phase or at the beginning of the read phase - depending upon which, some variations

in the general method occur.

To ensure that two transactions are serializable, the following two conditions need to

be enforced.

(a) No read dependency: No transaction should read data written by a concurrently
progressing transaction.

(b) No over-writing: No transaction should over-write data written by a concurrently
progressing transaction.

To meet these criteria various conditions are ,imposed, of which a transaction has to

satisfy one or more. They can be broadly categorized into the following:

(a) No time overlap at all.
(b) No time overlap of the write phases.
(c) No object set overlap of write sets.

.....--

18

(d) No object set overlaps of the read and write sets.

Further details on the protocols can be found in [BHG87].

2.5. Timestamp-Ordering-Based Methods

Unlike the previous mechanisms in which the serialization order is determined during

transaction execution to provide maximal concurrency, in timestamp-ordering-based schemes

the serialization order is determined a priori and transaction executions are made to obey

that order. All transactions are assigned an unique timestamp when they start and conflicts

are resolved strictly in that order. For a transaction Tj, let ts(Tj) denote its timestamp.

The following rule (called the TO Rule) is used to resolve conflicts:

If pj[x] and qj[x] are conflicting operations, then the scheduler processes pdx] before
qj[x] if and only if ts(T;)<ts(Tj).

An interesting analogy with time synchronization in distributed systems can be cited

here. The difference between timestamp ordering and locking is analogous to the difference

between Lamport's clocks and Virtual Time. Lamport's clocks are used to synchronize exe-

cutions of concurrent events (analogous to TO) in contrast to Virtual Time where con-

current executions are unfolded using virtual time (analogous to locking).

2.6. Reservation Based Methods

Schedulers running this protocol are also known as Serialization graph testing (SGT)

schedulers. The idea is to maintain a serialization graph of the history. \Vhen an operation

request arrives, before scheduling the operation, the scheduler makes sure that the

corresponding edge will not introduce a cycle. The serialization graph referred to here,

though, is a bit different because it also contains nodes corresponding to the transactions

which are not yet committed unlike the previous case where only the committed projection

was considered. For convenience such a serialization graph is called a Stored Serialization

. ---.-.

19

Graph (SSG).

The protocols are discussed in detail in [BHG87].

2.7. Semantic Methods in Concurrency Control

Semantic methods oC concurrency control exploit the semantic inCormation present in

the transactions to exploit more parallelism than those provided by syntactic methods. The

use of semantic inCormation may drastically increase the perCormance oC such algorithms

due to the complex domain oCinterpretation of the various operations [Pap79]. A variety oC

techniques have been reported in the literature that use different types of semantic informa-

tion. Some of the methods utilize inCormation about the transaction by dividing them into

tran8action classes [MoI83]. Some others utilize the structure of the data. \Ve discuss two oC

the most common protocols which use some semantic information.

2.7.1. Dynamic Determination or Compatibility

In [BaR87] compatibility of the various operations are analyzed and transactions are

allowed to proceed accordingly. Each object in the system has a manager associated to it,

which synchronizes the operations on the data object by concurrent actions based on the

compatibility of those operations. Commutativity is used as the basis for determining

whether an operation can be allowed to execute concurrently with those in progress. Two

operations are said to commute if the order of their operation does not affect the result,

which is characterized by the state of the database after the operations. Such an approach

has a threefold advantage. First, the results of executing such an operation hold irrespec-

tive oC whether the other operations are aborted or committed. Second, the user can pro-

vide his own operations and a commutativity table which enhances the extendibility of the

system. Third, as a consequence oC the first property, along with serializability it is also

20

guaranteed that there will be no cascaded aborts.

One technique to determine commutativity dynamically is as follows. Each object is

logically represented in terms of a granularity graph. The nodes of these represent the

objects at a particular granularity and the edges represent the composed-of (or, the parts-

or) relationship. Each operation affects both the vertices and the edges. The set of those

vertices and edges which are affected is called the affected set. Two operations from

different transactions commute if the affected sets are disjoint. The scheduler allows an

operation if and only if it is compatible with the uncommitted operations already per-

formed. To see the role of semantics, it is sufficient to note that the same operation may

commute with some others while acting on one data set and may not be commutative while

on acting on another. The scheduler works according to a standard locking-based scheduler

except in that it dynamically determines the commutativity of the operations from the

structure of the operand. The method is not deadlock free and deadlocks are resolved as in

the case of standard lock-based concurrency control protocols.

2.7.2. Modular Concurrency Control Method

Based on the knowledge of the consistency constraints of the database, the database is

partitioned into atomic data sets. Such a partition preserves consistency of the database in

the sense that the consistency of the database can be preserved by a transaction without

reference to the states of the other atomic data sets. The atomic data sets however need

not be independent entities. Based on the local transaction semantic information, each

transaction is independently decomposed into a partially ordered set of independent tran-

sactions. Each one of these sub-transactions must preserve the consistency of the atomic

data sets. The postconditions of the parent transaction can also be similarly broken into a

set of postconditions (Note that it is possible as the atomic data sets individually preserve

~~-
~.
'..

21

consistency.) which are to be satisfied by the sub-transactions to satisfy the overall postcon-

dition.

Such a partitioning of both the transactions and the data space ensures that, as long

as the elementary transactions are executed serializably with respect to each ~f the accessed

atomic data sets, the database consistency constraints will be maintained and the post con-

dition of the overall transaction will be satisfied. Note the post-condition can be the same

as the integrity constraints on the data items in the database. Thus, once the database is

properly decomposed, there is no need to serialize the entire transaction with respect to the

entire database. The synchronization of the individual sub-transactions can be done by any

of the standard methods discussed previously.

The following comments can be made from the last section. If 2PL is used to syn-

chronize, then once the entire transaction acquires a lock, the scheduler cannot unlock any

of the locks until the transaction commits. Also, since the sub-transactions by definition are

smaller than the original one, the level of concurrency is greater in the case when the tran-

sactions are nested than in the case when transactions are not nested. The theoretical

developments on the topic are complicated and beyond the scope of the thesis.

--
22

CHAPTER 3

B-Trees in Database Systems

3.1.. Introduction

As mentioned previously, multiway search trees with certain constraints on the con-

tents of the nodes provide a useful tool in indexing large quantities of data. The worst-case

behavior of these search trees in their different forms has been studied extensively in

[Knu73]. However, not many analytical or performance results for the average case perfor-

mance are available. Yao [Yao79] introduced the concept of Fringe Analysis which is

currently used as a tool in analysis of various properties of B-trees. It is complicated and

does not appeal to intuition. This chapter deals in the experimental and analytical study of

some properties of B-trees used in performance analysis. Unlike most of the citations in the

literature, simple probabilistic reasoning will be used in the derivations we present. Some of

our analyses follow those in [Wri85].

3.2. Review of B- Trees and Their Variants

A B-tree is a data structure used to index a file of records, each of which is identified

by a key. The nodes of the tree that are farthest from the root are often called leaves.

DEFINITION 3.1: A B-tree of order d (d > 0) is a multiway tree in which:
(a) The root has between 2 and (2d+l) descendants.
(b) Every other node has between (d+l) and (2d+l) descendants, and between d and

2d records (i.e., key and other data).
(c) All leaves are at the same depth from the root and contain only records.
o

For a B-tree containing a maximum of 2k+l keys per node is said to be of order

rk+1/21. All leaves are considered to be at level 0 and the level increases by convention

23

from the leaves to the root. The height of a B-tree is the maximum path-length from the

root to any leaf. A B-tree of order 1 is called a 2-3 tree. Figure 3.1 shows a 2-3 tree.

There are many variations on the B-tree data-structure [MaS80][Com72][Kus73], each

having a specific purpose and having its own advantages and disadvantages over others.
*

Next, we review B+ -trees, B -trees, Prefix B+ -trees, Blink-trees and Hysterical B-trees.

+3.2.1. B -Trees

To reduce the size of the nodes, the nodes of a B-tree usually contain only the keys of

the records and pointers to the records rather than the records directly. More formally, a

node of a B-tree is a tuple <Po, AD, Pit A" ..., An' Pn+l> where each Ai is a tuple <Ki'

Pi>. Each Pi is a pointer to another node in the B-tree, the Ki's are the keys and Pi'S are

pointers to the physical location of the data (also called data record pointers). The presence

of the data record pointers decreases the number of Ai tuples that can be accommodated in

a node (whose size is usually bounded by the disk page size) and consequently, increases the

number of disk accesses needed to perform an indexed look-up. Moreover, when more infor-

mation is also kept along with these pointers (e.g., buffer information in Volcano [Gra8g])

the situation worsens.

This problem is circumvented in n+-trees, where these data record pointers are con-

tained in only the leaf nodes. The internal nodes. contain only keys and pointers to other

nodes in the tree, acting merely as guides for a ..search to the appropriate leaf. Thus, the

Ai'S in the nodes of a B+-tree are composed only of Ki's. In B-trees, the number of disk

accesses is dependent on the size of the data record ,pointers. In B+-trees, the pointer is not

there and so accesses are faster. However, B+-trees may waste space over B-trees due to

key replication in the interior nodes. In so~e im.plementations, the leaf nodes in the B+-

trees are linked to the right siblings to facilitate sequential scanning.

--
24

root

internal nodes

leaves

Figure 3.1: Example of a 2-3-tree

.
3.2.2. J3 -trees

During an insertion in a B-tree, if the targeted leaf overflows, the leaf is split into two.

Half of the keys and data records pointers are moved from the original leaf to the newly

formed leaf; the parent's pointers to the leaves changed appropriately and the change pro-

pagated bottom-up towards the root.

The underlying assumption is that the keys are uniformly distributed over the entire

domain of key values and it is equally likely that a key will be inserted in any leaf node.

But that is not always the case. In some data sets, the key values tend to cluster around a

mean value and, in the process, some paths are prone to more splits.

*
This phenomenon is taken care of in B -trees [Knu73]. When a key is inserted in an

already full node, instead of splitting the node, the right sibling is examined for space. If

space is available, the keys are distributed equally among the two nodes and the pointers

pointing to the children are shifted appropriately. If the right sibling cannot accommodate

any more keys, the two nodes (the full one in which insertion is attempted and the right

---<

sibling) are split into three nodes and the keys redistributed appropriately. Figure 3.2 illus-
*

trates key redistribution in B -trees.

*
B -trees have larger overheads of insertion and deletion but provide better storage

utilization than the B+.trees IKnu71a].

3.2.3. Prefix B+ -trees

In Prefix B+-trees, prefixes of the keys contained in the leaf nodes are stored in the

internal nodes [Bay77]. Storing prefixes (which are also called separators) instead of full

keys substantially saves space in the internal nodes and allows accommodation of more

prefixes in the internal nodes. Increasing the order of the nodes potentially decreases the

access times and enhances concurrency.

Another problem often faced in B+-trees is that of key duplication. .AJ3a key in a

B+-tree may be duplicated in one or more of the internal nodes, a deletion of the key from

a leaf does not guarantee the deletion of the key from the internal nodes. In the process of

deletion special care must be taken on a future deletion operation of that key. The problem

does not arise in B-trees as the keys are not duplicated there. In Prefix B+-trees the prob-

lem is reduced by not storing entire keys in the internal nodes. If prefixes of keys are taken

only from the leaves, then the tree is called a simple prefix B+ -tree. Figure 3.3 is an exam-

pIe of a Prefix B+-tree.

2d I--7G I+G I+ I 4d/3 + 1 I1 + 1
2d 1+1

*
Figure 3.2: Node splitting in B -Trees

26

e

k Internal Nodes

Leaves

Figure 3.3: Example of Prefix B+.tree

3.2.4. Blink-Trees

Blink-trees [Yao79] are obtained from B+.trees by adding an additional key-pointer

pair to each node. The extra key is called the high value of the node and equals the value of

the largest key in the subtree rooted at that node. The extra pointer points to the node's

right sibling. The rightmost node at any level has a high value of +00 and the correspond.

ing pointer is nil. The Blink-tree data structure facilitates the traversal of nodes at the

same level in key order, which is often required in sequential searches and partial match

retrieval queries. Figure 3.4 illustrates the structure of a Blink-tree.

3.2.5. Hysterical B-Trees

Maier and Salveter [MaS80] observed that concurrent operations are drastically

affected by restructuring the tree during insertions or by the merging of nodes during dele-

tions (discussed later in Section 3.6.2.1). Moreover, m sequences of an insert followed by a

delete of the same key into a nearly full B-tree of order d containing n nodes requires

O(mlogdn) operations. To reduce the log factor from the complexity, they introduced the

.,.--
27

Level 2

Levell

Level 0

Figure 3.4: Structure of Blink-trees

concept of a slack factor, p.

During deletion, a node needs to be merged only when its size falls below d-p, instead

of d. With appropriate choice of p, the log factor was shown to be eliminated. However,

this change reduces the average storage utilization of the nodes. The effect of this slack

factor on storage utilization and other performance metrics is analyzed in the later sections.

3.3. Operations on B-Trees

There are three main operations on a B-tree: insert, delete and search of a particular

key value in the tree. The first two cause permanent changes in the structure of the B+-tree

and are called updators. Concurrent operations of insert and delete are thus not permissible

on .the same node. Searching for a key value causes no modification to the tree and may

proceed at any node concurrently with other searches.

,
..

- - - -..-

28

To search for a key in a B-tree, starting from the root, the path to the appropriate

leaf is traversed by determining at each node which child to search next. For any node n,

the i+l'la child nj of n is traversed if the search key value v is less than that of Kj and

greater than that of Kj_1. If v is less than the key value Ko then the 1" child no is

t..raversed. If v is more than Kj then the child nj+l is traversed, where i+l is the number of

keys in the node. A matching key may be found on the path from the root before a leaf is

reached. In a B-tree, data record pointers are stored in the internal nodes, so the search is

complete. In a B+.tree, the search must continue to the leaf.

To insert an element in a B+-tree, a search to the appropriate leaf is performed first.

If the leaf can accommodate more keys (and the associated data record pointers), then the

key is inserted there. Otherwise, the leaf is split into two and the keys in the original node

distributed equally among them. This change in the leaf structure is reflected by the inser-

tion of another key in the parent. If the parent cannot accommodate this extra key, the

parent is also split. The structural change propagates bottom-up from leaf to root recur-

sively.

To delete a key, a search is first performed to the node containing the key and the

data record pointer (which must be a leaf in the case of a B+.tree) from which the key is

physically deleted, if found. If this results in the node having fewer than d keys, then the

leaf is merged with either sibling, the keys are redistributed and a similar structural change

is propagated recursively upwards.

3.4. Deferred versusAggressive Splitting

During insertion of keys in a B-tree, the structural change required to accommodate

the extra key is propagated bottom-up from the leaf to root. A node is split if and only if it

can accommodate no more keys. Guibas and Sedgewick [GuS78] proposed a scheme in

R'
F.' 1:,

tlX 29

which, while traveling from the root to the leaf during the search phase of an insertion, full

nodes (i.e., potential victims of future splits) are split preemptively when first encountered

along the search path. Thus, splitting of nodes take place in a top-down fashion. We call

this scheme aggressive splitting.

Several researchers claim that aggressive splitting does not perform well in situations

where concurrent operations are allowed [LeY81]. The argument is that more nodes will be

split than necessary and hence larger sub-trees need to be locked. If the transactions are of

finite length, then a node that may not need to be split in the bottom-up case may need to

be split in the aggressive case. No analytical or simulated performance results comparing

aggressive and deferred splitting have been reported previously.

3.5. Fringe Analysis

To study the performance of B+-trees under probabilistic models of operation

occurrence, certain analytical models have been reported in the literature; namely Fringe

Analysis [Yao79J1Bae86] and the Generalized Overflow Technique [Kus73].

A tree-type of height h is a B-tree of height h in which key values are ignored. Two

trees that are structurally isomorphic, but have different keys in the nodes, are of identical

tree-types. A tree collection is the finite collection C of all tree-types { TlI ..., Tn } of some

fixed height h. Thus, considering only B-trees of a. given order d, the set C is unique for

each h. A collection C is closed if the type of a' new tree formed by insertion of a key in

a.ny of the element trees of C, is also a member of C. In case an insertion results in the

split of the root of a tree, only the fringe of the resulting tree is considered. Note that, clo-

sure is possible because the key values are ignored.

I

The fringe of a tree T is a disjoint set ?f <?neor more of its subtrees that are 150-

morphic to elements in some tree collection C. Thus, a tree may have more than one fringe

30

depending upon the collection C.

.t In Fringe Analysis, the composition of the fringe of a B+ -tree is expressed in terms of

such tree collections. The expected number of the different tree-types in the fringe of the

tree being analyzed are estimated from the number of keys present in the tree. These

expected numbers form a Markov Chain because an insertion into the B-tree changes the

average number of trees in the fringe of at most two tree-types. Moreover, the change is

closed - that is, the the fringe of a new tree formed by an update operation, does not con-

tain any tree-type outside the collection C.

The order of the analysis is given by the height h of the trees in the collection. The

greater the height, the more accurate the analysis, but the size of the collection grows

exponentially with increase in height. Such analysis is intuitive in the case of 2-3 trees

where there are only two tree-types of height 1 and the collection size for h = 1 is thus 2.

In the case of B-trees of larger orders, the collection size can become unmanageable and

hence appeals less to intuition.

An extensive mathematical treatment of fringe analysis can be found in [EZG82].

Some of their results regarding matrices are used below to calculate the performance

metrics analytically.

3.6. Performance Metrics of B- Trees

Concurrency control in B-trees is different from concurrency control in general,

because, in general concurrency control methods, the existence of a central scheduler syn-

chronizes the processes. In the case of B-trees, the processes are independent and there is no

scheduler process. Although in some commercial database systems B-tree nodes are treated

as regular database objects for concurrency control and recovery, the practice is not stan-

dard. Thus, concurrency control in B-trees is asynchronous. Moreover, the structure of the

~
31

data may make increased concurrency possible. However, certain properties of B-trees are

critical to database system performance and cannot be sacrificed to accommodate more con-

currency. Thus, every concurrency control algorithm should try to preserve these properties.

This section is dedicated to the study of several such properties that have a close relation-

ship with the general performance of B-trees and the performance of concurrency control

protocols for B-trees.

We begin with a probabilistic analysis of B-tree performance looking at storage utili-

zation and run-time costs of operations. To simulate the validity of some of the derived

expressions, several simulations were performed by inserting randomly chosen keys, into ini-

tially empty B-trees of order 25. Up to 50,000 keys were inserted into the trees. The indivi-

dual simulations are discussed in more detail later when their results are presented.

Figure 3.5 lists the parameters used in our analysis and, unless otherwise stated, all

trees are B-trees.

3.6.1. The AverageStorage Utilization

DEFINITION 3.2: The average 8torage utilization u of a B-tree is the fraction of the
total storage space of the tree that stores relevant data. More precisely,

r
u = 2nd (3.1)

o

For a fixed number of keys in the tree the expected average storage utilization is given

by:

E[u]

-

Parameter Mean£ng

d Order of the B-tree.

The number of keys in the tree.
The number of nodes in the tree.
The average storage utilization.
The average storage utilization with partial expansions.
The minimum fullness factor.
The slack factor of a node.

The number of records per page.
The probability of split of a node.
The probability of split of a node with partial expansion.
The probability of split of a node in aggressive case.
The probability of a merge at a node.
The expected number of nodes with size

d-p+£ in a tree with r keys.
The average number of splits on an insert.
The average number of splits with partial expansions.
The average number of splits with partial expansions at leaves.

The average number of merges on a delete.
Cost of Unit I/O

r
n
u

Up
f
p
p
q
qp,
q
qd

Ai,r

Figure 3.5: Parameter Notation

In several concurrency control methods (e.g., optimistic methods), an increase in con-

currency can be achieved at the cost of reduced average storage utilization. But a good

dynamic data structure should have a high average storage utilization. To avoid comparing

apples with oranges, it is important to determine the storage utilization resulting from the

adoption of a particular concurrency control technique.

DEFINITION 3.3: The min£mum fullness factor f is defined as the fraction of the
total capacity of the nodes that, by definition, will always contain keys.

o

If, for example, every node must contain between 10 and 50 keys, the minimum full-

ness factor is 20%. The minimum fullness factor determines the worst-case storage

.-. -

33

utilization of the tree excluding the root node.

The number of nodes in a B-tree of order d containing r keys (where d and rare con-

stants), lies in the closed interval [2rd' 2~f]' For large r, the effect of the root node, which

may cQntain fewer than 2df keys, is negligible. Let P(x) be any probability density function

defined over that interval giving the probabilities of different n. Then, assuming a discrete

distribution, we have:

(3.2)

To calculate the probability, several assumptions are necessary. The simplest assump-

tion is that the keys are uniformly and continuously distributed in the interval [Leu84].

This assumption replaces the summation with an integral and the expectation can be

obtained as a function of f only. However this assumption is not always reasonable since

keys are often distributed close to a mean value and the probability is discontinuous. The

problem then reduces to the restricted cell occupancy problem where one has to place r-2dfn

keys (since each node must already contain 2df keys) in n cells (nodes) with the restriction

that not more than 2d-2df = 2d(I-J) keys can be put in one cell.

A solution to this problem can be found in [Yao79](pp. 160) and the probability given

IS:

'" (_1)
" (

i)(r-2dfi-rk+2dfk+n-k-l)LJ k r-2dfi-rk-2dfk-kO<"<i

E t E (_1)" (
l)(r-2dfk-r.k+2dfk+~-k-l)r r 0<"<1 k r-2dfk-rk-2dfk-k-<1<- --

24- -2dj

The expected value of Iln can be obtained from equation (3.2) and (3.3). However, the

P(x=i) = (3.3)

problem with this approach is that the right hand side of expression (3.3) cannot be

expressed in closed form. Fringe Analysis techniques are employed for that reason.

r--
I

t
i
t

I

i
l

34

Figure 3.6 illustrates the variation of the storage utilization with the minimum fullness

factor f and a comparison between the simulated and the expected results. Each run con-

sisted of inserting 50,000 keys (uniformly distributed) into an initially empty tree of order 50

and then measuring the average storage utilization. The number 50,000 was chosen because

the storage utilization is fairly constant by that point. Keys were then deleted from the

tree, in the order inserted and the tree was rebuilt using a different value of f. The simula-

tion was repeated for different values of the minimum fullness factor between 0.1 to 0.9 in

steps of 0.02. For each value of f, the simulation was repeated three times and the median

value was plotted.

.-.....

Simulated

Expected

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.6: Effect of Minimum Fullness Factor on Storage Utilization

Minimum Fullness Factor f

A 1

v 0.9
e

0.8
S
t 0.7
0
r 0.6

a 0.5
g
e 0.4

U 0.3
t

0.2

0.1

35

DEFINITION 3.4: The slack factor p of a node is defined as the number of keys less
than the order of the node that are allowed before the node is merged with a
sibling.

o

The slack factor and the minimum fullness factor are related as:

f = (d-p)/2d.

Increasing the slack factor increases the degree of concurrency but decreases storage

utilization. Figure 3.7 illustrates the variation of the simulated average storage utilization

with the slack factor. Here each run consisted of inserting 50,000 keys into an initially

empty tree of order 10. Then, 30,000 keys were deleted from the tree, measuring the aver-

age storage utilization after each deletion and, in the end, averaging to get the final value.

All keys were subsequently deleted from the tree and the experiment repeated for different

values of the slack factor.

From both the graphs we conclude that increase in slack factor appreciably decreases

the average storage utilization.

3.6.2. The Expected Number of Splits per Insertion

The greater the number of splits during an insertion and the greater the number of

merges during a deletion, the lesser the amount of concurrency that can be achieved. Thus,

a technique to achieve more concurrency should try to reduce the number of splits during

insertions and the number of merges during deletion. In the following subsections we exam-

ine the number of splits that occur both when splitting is deferred and when splitting is

done aggressively.

3.6.2.1. Deferred Splitting

We first consider the case when splitting 'is deferred. To calculate the expected

number of splits due to the insertion of a key, it is necessary to calculate the probability of

36

Figure 3.7: Effect of Slack Factor on Storage Utilization

a split of a particular node due to the insertion. Consider a situation when only insertions

are done to a tree which contain nodes of size d-p to 2d. Let Ai,r denote the expected

number of leaves with size (d-p+i) in a tree containing r keys. As a result of the insertion,

the number of keys in the tree will increase from r to r+l. Moreover, assuming an uniform

distribution, the key can be inserted in any of the existing r+l intervals between between

the existing keys. Thus, the probability that the insertion will be in a node already contain-

ing d-p+i keys can be given as the product of the number of intervals in a node with

d-p+i keys and the expected number of such nodes, divided by the total number of possible

intervals. That is

(d-p+i+l)Ai,r
r+l

A 1

v 0.9
e

0.8
S
t 0.7
0
r 0.6

a 0.5
g
e 0.4

U 0.3
t

0.2

0.1

0 2 4 6 8

Slack Factor p

37

For i = 0, ..., d+p-I the insertion will not cause a split in the node. But for i = d+p

the insertion will cause a decrease in the number of leaf nodes with size 2d by one and an

increase in the number of leaf nodes of size d because the full node is split to form two

half-filled nodes. Thus, the Ai,r's form a Markov Chain.

In the case when there is a split on the insertion, the increase in the expected number

of nodes of size d is given by:

This increase is equal to:

2(probability that the insertion is done into a node of size 2d)

- I(probability that the insertion is done into a node of size d)

+ I(probability that the insertion is done into a node of size d-I)

In the case when there is no split on the insertion, the increase in the expected number of

nodes of size d-p+i is given by:

Ai,r+l - Ai.r

This increase is equal to:

I(probability that the insertion is done into a node of size d-p+i-I)

- I(probability that the insertion is done into a node of size d-p+i)

Thus, we get the following two recurrences:

1
A".r+l = A",r+ r+I (2Ad+",r(2d+I)-A",r(d+I)+A"_1.r(d))

Ai,r+l = Ai,r+ r~I (Ai_l.r(d-p+i)-Ai,r(d-p+i+I)), i = 1,2 ...,p-I, p+I, ..., d+p

Thus, if the column vector A is expressed as:

A(r) = [Ao.r, Al.r' ..., Ad+",r]

We hav~ the recurrences reducing to:

t

D
A(r+l) = (I+-)A(r)r+l

38

(3.4)

where I is the identity matrix and D is a (d+p+l) by (d+p+l) matrix obtained from the

coefficients of the recurrence relations.

-(d-p+l)
(d-p+l)
o

D=

o

o
-(d-p+2)
(d-p+2)

o
o

d -(d+ 1) . 2(2d+l) I (3.5)

o
o
2d+l

Solutions to similar recurrences can be found in ~(nu73] (pp. 680). Let

I
' Ai r
Im~

r-oo r+l '
i = 1, ...,d+p

As in [Knu73], if a is the column vector:

then, it can be shown that (e.g., [Knu73], pp. 680) the roots of the characteristic polynomial

of the matrix D-I have negative real parts and that there exists a column vector a such

that:

(D - I)a = 0

From which we get the following three recurrences:

Simplifying we get:

a. = 0 for, 0 ~ i < p
-(d+2)ap + 2(2d+l)ad+1' = 0
-(d-p+i+2)ai + (d-p+i)ai_l = 0 for, p+l < i ~ d+p

a =I'
2(2d+1)

(d +2) ad+1'

(d-p+i+2)

(
a.

d-p+i) I
for, p+l < i ~ d+p

39

Substituting p + j for i we have:

for, 1 < j ~ d

Expressing the aj's in terms of ad+p' we have:

(2d+I)(2d+2)

(2d-j+I)(2d-j+2) ad+p
for, 0 ~ j < d (3.6)

Summing the probabilities of an insertion in all possible node configurations to I, we have:

L:; (d-p+i+I)Aj,r = r+I
O~j$d+p

Dividing both sides by r+I, we have:

" A.L.J (d-p+i+I) !.L = 1
09$d+p r+I

Taking limits (r-oo) we get:

L:; (d-p+i+l)aj = 1
19$d+p

Replacing i by d+p-j and replacing the expression for ad+p-i from equation (3.6), we get:

L:; (2d+I)(2d+2)
Oid (2d-j+2) ad+p = 1

Finally by transposing:

1
- 1

(
2d+l)(2d+2) L:; ?d-J+..O$i~d-

Denoting the Harmonic Numbers by H(n) we have:

L:; 1 -
O$i92d-j+2 - H{2d+2)-H(d+I)

Thus we have:

1

(2d+ 1)(2d+2)(H(2 d+2)- H(d+ 1))

r
)

40

Replacing the expression for ad+p_j we have:

1

(2d - j+l)(2d - j+2)(H(2d +2)-H(d+1))
(3.7)

The probability of a split of a node is the same as the probability of an insertion into

a node that is already full, i.e., the probability that the node contains 2d keys already.

Hence, the probability of split of leaf on an insertion q is given by,

q

= in the limit r-oo

1

(2d +2)(H(2d +2)-H(d+l))
(3.8)

Assuming that the splitting of a node is independent of the splitting of its child, the proba-

bility of exactly j splits along a path is given by :

since, along the path there will be exactly j consecutive splits and the following node will

not be split. So the expected number of splits per insertion is given by:

E[S] E jqj(l-q)
°SjSoo

= -!L
l-q

Note that the slack factor vanishes from the final expression of the probability of split of a

node. This is true intuitively also. The slack Cactor becomes effective only when there are

deletions. Since we are considering insertions only, therefore as more and more keys are

inserted into the tree, the nodes which contain d-p to d keys becomes Culler and fuller and

in the asymptotic case when the number of nodes keys is infinite, there are no nodes which

contains between d-p and d keys. Moreover, the inverse relationship between the number

of keys per node and the expected number of splits justifies the intuition that a increase in

41

node size will reduce the number of splits.

3.6.2.2. AggressiveSplitting

In the case of aggressive splitting, the probability of splitting any node is independent

of which leaf the key is inserted into, because at the time of insertion in the leaf it is.

guaranteed that the insertion will not cause any split to propagate bottom up.

This unconditional probability of splitting q' of any node is given by:

, -L
q = d+p

because a node can contain from d-p to 2d keys. However, the statement is true in the

transient case, that is, when the tree is not very large. Following the explanation in the

case of deferred splitting, that there are no deletions involved, in the asymptotic case, there

will be no node containing between d-p and d keys. The unconditional probability of split

of a node in the asymptotic case is then given by:

, 1..
q = d

The expected number of splits in this case can be similarly calculated to be,

=
,

-9- ,
1-q

Note that for constant p and d, the expected number of splits in the case of aggressive

splitting is a strict upper bound for that of deferred case. Theorem 3.1 establishes the rela-

tionship between the number of splits in the case of aggressive and deferred splitting.

The probability of merging during deletions can be calculated accordingly. However,

the exact analysis in the case of deletions, d~pen<\ on the routing policy, that is, the condi-

tion under which re-distribution is done. The analysis is complicated and is omitted due to

42

.:;;:.

~t that reason.

LEMMA3.1: For all integral :r, H(2x) - H(x) > In2.
Proof: By induction on x.
o

THEOREM 3.1: The expected number of splits on an insert is strictly more for aggressive
splitting than for deferred splitting in the asymptotic case (r - 00).

Proof" By simple algebra we have:

L < .!. < In2 = In 2(d+l)
2(d+l) 2 d+l

That is,

d < 2(d+l)(ln(2d+2)-ln(d+l))

By Lemma 3.1, we get:

d < 2(d+l)(H(2d+2)-H(d+l))

that is,
1 1

d > (2d+2)(H(2d+2)-H(d+l))
and finally,

r/ > q
from which by componendo and dividendo, we get:

-L > .-!L.
l-r/ l-q

that is,

o

3.6.3. The AverageCost of an Operation

In this section we discuss briefly the cost of the various operations on B+-trees. By

the cost of an operation, we mean the time overhead involved to execute the operation.

3.6.3.1. Search for a Key

The average cost of a search, G.ureA, is equal to the height of the tree times the cost

of unit I/O. When the number of nodes in the tree is large and the average storage utiliza-

tion has stabilized, each node in the tree except the root, contains on the average 2dE[u]

43

keys. Thus if the root contains d keys on the average, (which is justified by the fact that it

can contain between 1 and 2d keys and the key distribution is uniform) then the average

height of the tree is given by:

where the average is taken over the lifetime of the tree after the average storage utilization

stabilizes. Thus, assuming that a node is the unit of I/O and that the cost of unit I/O is

OJ/0' the average cost of a search operation is:

The average cost of a search for any key in a particular tree is the same since all

leaves are at the same level.

3.6.3.2. Insertion of a Key

The average cost of insertion includes the cost of a full search for the key, which we

assume is not in the tree. If the insertion does not cause a split in the leaf, then the cost is

that of an extra I/O to write back the updated page. If there is a split, the cost also

includes three extra writes. Thus, the total cost equals:

0inmt = O,mcll + ((1-q)+q(1+2E[S]))O//0

3.6.3.3. Deletion of a Key

The average cost of deleting a key can similarly be calculated to be the sum of the

cost of a search added to that of the cost of a conditional merge.

44

3.7. Other Optimizations in B+ -Trees

This section discusses the possibilities of various other optimizations in the B+ -tree

data structure to improve performance.

3.7.1. Partial Expansions of Nodes

Recall that, while inserting a key in the B+-tree, if the node into which the insertion

is being done is full, the node is split into two and the split propagated bottom-up. This

scheme is particularly useful if the nodes are of the same size as the unit of disk I/O, which

is not always the case. If more than one page constitutes a node, then the following scheme

is useful. During insertion, when there is a overflow from the node into which the insertion

is being done, instead of splitting the node, an extra page is added to the node. This is

called a partial expansion of the node. After passing through a sequence of one or many of

such partial expansions, the node can actually be split (called a full expansion). This scheme

provides better storage utilization but may need more page accesses during index look-ups.

Next, we derive some analytical results regarding B+-trees, when partial expansions

are done.

3.7.1.1. ExpectedNumber of Full Expansions Per Insertion

Consider a B+-tree of order d containing r keys, where r is a large number. Also,

consider that each node of the tree spans multiple pages. If the page size is p records, then

each node requires 2djp pages. Assume that a node containing 2d is partially expanded,

when full. In each of the partial expansions, assume that the page size increases by 1.

Thus, nodes grow following the sequence:

<2d+ip> O~i~kfor

where k (the maximum value of k is bound) such partial expansions occur before the node is

45

split into two. When the node is split into two, the two nodes formed contain at most 2d

keys each. To satisfy this criterion we have:

2d+kp + 1 S 4d

Simplifying which, we get:

k
2d-l

p

The value of k has to be integral. Thus, assuming that the records do not span pages and

that d»I, we have the upper bound on the number of partial expansions given by:

Thus, at most 1!._1 partial expansions can be given, after which the node has to be given
p

a full expansion. When the split occurs, the keys in this full node containing 2d+p(2d/p-I)

(= 2m-I, say) keys along with the key to be inserted, are distributed equally into each of

the {,wo new nodes. Thus, we have the relationship:

2m = 4d-p+l

For simplicity, assume that m is odd. Then the number of keys in each of the newly formed

nodes is given by: (2m-l+1)/2 = m. Note that, the partial expansions can be given in

ttrms of anything. That is, it is not mandatory that the partial increments should be in

ttrms of pages. We choose a page to be the unit of expansion as it is realistic and consider-

ably simplifies calculations.

The number of keys in a node can thus vary from m to 2m-I. Let Ai,r denote (as

before in section 3.7.2.1) the expected number of nodes of size m +i. Then, assuming a uni-

fDrm distribution of keys, the probability that an insertion will occur in a node containing

k = l 2d-lJ
p

......, 2d - 1
p

46

m+i keys is given by:

(m+i+I)Ai"
r+1

We then get the two Markov Chain Recurrences as before:

I
Ao ' +1 = Ao ,+- (2Am_l ,2m - Ao , (m+I)), 'r+1 . ,

Ai,,+1 = Ai,,+ r~1 (Ai_l,,(m+i) - Ai,,(m+i+I))
i = 1,2 ..., m-I

The coefficient matrix of the system of recurrences, D, is given by:

As in section 3.6.2.1, it can be shown that the characteristic polynomial of D-I have nega-

tive real roots and therefore, there exists a column vector a such that (D-I)a = O. Let a

be the column vector:

a =

Then,

(D - I)a = 0

Solving the equation, we have:

2(2m)
(m+2) am-l

and,

m+j+2 a.
m+j J

for I~j~m-I

Simplifying them we have:

= 2m+1
2m aZm-l

-(m + I) 0 2(2m)
(m+l) -(m+2) 0
0 (m+2)

(3.9)D = I

0 0 2m

47

and,

= (2m+I)(2m)
(2m-j+l)(2m-j+2) am-I

Replacing m-j by i we have:

a..
(2m)(2m+l)

(m+i+l)(m+i+2) am-I
(3.10)

Summing the probabilities of an insertion in all possible node configurations to 1, we

have:

~ (m+i+l)Ai.r
O::;i::;m-I

r+l

Dividing both sides by r+l:

" A.
LJ (m+i+l)--!L

09::;m-1 r+l
1

Taking limits (r-oo), we get:

~ (m+i+l)ai
°9::;m-1

= 1

Substituting the expression for ai from equation (3.10), we get:

~ (2m+l)(2m)
O::;i::;m-I (m+i+2) am-i

1

Simplifying, we have:

1
(2m+l)(2m)am_1 .I; . m+i+..O::;.::;m-I

= 1

Thus, by transposing:

= 1
- 1

(2m)(2m+l) ~ m+i+O<i<m-II --

Expressing the Harmonic numbers by H(n), we have:

48

m-l

~ !
iZ{) m+t+

H(2m+l)-H(m+l)

Hence, we have:

1

(2m+l)(2m)(H(2m+l)-H(m +1))

Replacing am-l in the expression of aj in equation (3.10), we have:

a.
I

1

(m +i+l)(m +i +2)(H(2m +1)-H(m +1))
=

Finally replacing the expression for m, we get:

a. =I

1

(2d -0.5p+i +1.5)(2d -0.5p+i +2.5)(H(4d -p+2)-H(2 d -O.5p+l.5))
(3.11)

In this case also, the probability of a full expansion of a leaf is the same as the proba-

bility of an insertion into a leaf that is already maximally full, i.e., the probability that the

leaf contains 2m-l keys already. Hence, the probability of split of leaf qp on an insertion

is given by,

qp
(2m)Am-l.r

r+l
=

(2m)am-l in the limit r-oo

1

- (2m+l)(H(2m+l)-H(m+l))

The probability of splitting of any node in the tree is approximately the same as that

of the leaf, so the expected number of splits per insertion is given by:

E[Sp] =

qp

= l-qp

Note that, since m » d, the probability of a full expansion is much smaller compared

to the case when partial expansions are not given.

49

In the case when partial expansions are given only at the leaf level, the expected

number of splits per insertion is given by:

= qp

l-q

Note that, since qp « q, the expected number of full splits is much less than in the case

when no partial expansions are given. However, there are more page accesses because a

node spans multiple pages.

3.7.1.2. Average Storage Utilization

The method to calculate the average storage utilization as presented in section 3.6.1,

following the idea of [Leu84], is too simple to handle the case of partial expansions. More-

over, the trick employed in the analysis provided by [Leu84], was to replace a discrete sum-

mation by continuous summations. The technique worked because the intervals were small,

but in this case, the intervals are large and the approximation cannot be done.

Consider the same B+-tree configuration of the previous section. The average storage

utilization of the tree (up) is given by the ratio of the total number of keys in the tree and

the number of nodes.

E[up] =
2~ b Aj,r(m+j+l)+ ~ 2d 1. ~ A2d+{i_l)p+i_m,r(2d+j+(i-l)p+l)O<i~2d-m O<i~k-l +IP o<j<p

~ Ai,r(i+m+l)
Og~m-l

= (say)

Where,

=

so

= r+l H(2d+2)-H(2d-0.Sp+1.S)
2d H(4d-p+2)-H(2d-O.Sp+1.S)

and,

=

=
(r+l) ~ 2d 1. ~ a2d+{i-l)p+i-m(2d+(i-l)p+ ;"+1)199 +IP I::,i::'p

=

1 1

(r+l) ~ 2d . ~ (2d . (' 1) '>
199 +IP 19::,p +)+ 1- p+w

H(4d-p+2)-H(2d -O.Sp+l.S)

r+l ~ H(2d+ip+2)-H(2d+(i-l)p+1)
H(4d-p+2)-H(2d-0.Sp+1.S) l::,i9 2d+pi

=

and,

~ Ai.r(i+m+l)
O::,i::,m-I

= (r+l) ~ ai(i+m+l)
O::,i::,m-I

(r+l)H(4d-p+2)-H(2d -O.Sp+l.5)
H(4d-p+2)-H(2d -O.Sp+1.S)

= (r+l)

Hence, we have the average storage utilization given by:

-L
d (H(2d+2)-H(2d-O.Sp+1.S))+ ~ d1 . (H(2d+ip+2)-H(2d+(i-l)p+l))2 1<i<.k2 +IP

E[up] = H(4d-p+2)-H(2d-0.Sp+1.S)

If d is large, then the summation in the previous expression can be replaced by

integration and after some algebraic manipulations we have:

E[up] =

1
I 2d+2 1 I 4d+2 21

[

In(4d+2)-2

]
- n +- n + n
2d 2d-0.Sp+1.S p 2d+p+2 In(4d+2)-2

In 4d-p+2
2d-0.Sp+1.S

(3.12)

51

3.7.1.3. Probability of a Partial Expansion

Partial expansions are given to a node when the contents of the node are:

2d+ip O~i~k-l

Thus, the probability of a partial expansion can be given by ~he summation:

= ~ (2d+ip+l)
09~k-1 r+l A 2d+ip-m,r

~ (2d+ip+l)a2d+ip-m 1
O~i~k-I 1 ~

099-1

Note that, the p factor in front of the summation index, makes the sum not expressible in

form of Harmonic Numbers. We conjecture that it is difficult to express the summation in a

closed form. Also note that, large errors will be induced if the summation is expressed in

form of integration, as p may be large.

3.7.2. Hashing at the Leaf Level

As discussed in the next chapter, the B-tree data structure is sensitive to the distribu-

tion of key values. In applications where this variation is not acceptable, hashing can be

combined with the B-tree indexing structure [RaM89]. In this scheme, a leaf logically con-

sists of a collection of buckets. During retrieval, instead of performing a binary or sequen-

tial search within the leaf, the address of the bucket holding the key can be computed by a

hash function. With a proper choice of the hash function, a stable average storage utiliza-

tion can be achieved, which does not vary with the distribution of key values.

Concurrency control performance can also be improved in this scheme. Instead of

locking the entire leaf (which one has to do in the conventional B-tree configuration, to

ensure safe shifting of keys within the leaf), each of the buckets can be individually locked.

The granularity of locks, is reduced, and hence more concurrency can be achieved at the

leaf level.

However, the standard dangers of hashing are still present in this case. An improper

choice of the hash function can drastically reduce storage utilization. One technique to

solve this problem is to use a perfect hash function. But the best known method to get a

perfect hash function takes at least linear time in the size of the keys. A recent paper

discusses techniques to get perfect hash functions for such applications in greater detail

IRaL89].

Another possible optimization is to use a dynamic hashing scheme in the leaf level.

The concept of partial expansion works especially well in this context. The partial expan-

sions of the leaves correspond to increase in local depth of the pages of the dynamic hashing

scheme, and a split (Le., a full expansion) of a leaf to an increase in global depth. Since the

data within a logical leaf (which consists of one or many such hash buckets) is structured in

the form of a hash table, more concurrency can be achieved than when the data is stored as

a flat sequence of bytes.

However, when more than one process accesses this tree simultaneously, care has to be

taken to ensure proper splitting of the leaves. Consider a logical leaf L consisting of the

buckets <Bl. B2. ..., Bp>. Assume that two processes P and Q are acting on this leaf

simultaneously. P inserts the key into bucket B1 and Q inserts the key into bucket B2.

Both the processes find that the respective buckets are full and hence the leaf needs an

expansion. Such a situation may lead to anomalies. In order to avoid such anomalies, an

extra bucket, called the overflow bucktt is associated with every logical leaf. \\Then any pro-

cess finds that the bucket into which it is supposed to insert a key, is full, the process inserts

the key into the overflow bucket. When the overflow bucket gets filled up, only then the

whole leaf is split.

0.

~'.

53

3.8. Summary

In this chapter, we have discussed the different variants of the B-tree data-structure

and have deduced expressions for the average storage utilization and the probability of split

(during insertions) of two variants of B-trees. We have also discussed a few possible

enhancements of the basic B-tree data-structure and deduced analytical results for one of

them. In the next chapter, we verify the correctness of some of the results derived in this

chapter by simulations.

54

CHAPTER 4

Performanceof B+ -Trees

4.1. Introduction

An interesting property of B+-trees is their sensitivity to the key values. Since B+-

trees form an integral part of nearly all database systems, the effect of key distributions in

different applications on the performance of B+-trees is an important aspect of the overall

database performance.

Although it is hard to mathematically model data appearing in real life, mathematical

modeling may be the only way to simulate a real life system. A scientific model is defined

as an abstraction of some real life system which can be used for prediction and control.

The model enables the analyst to determine how one or more changes in various aspects of

the modeled system may affect the system performance as a whole. Special care must be

taken to check that the model is indeed a true representative of the real life system. An

important aspect of statistical modeling is that it is more concise than, for instance, a ver-

bal description of the system. The model should encompass the entire domain of the param-

eter being modeled, including the boundary conditions, and at the same time general enough

to be short and succinct. To embody completel!~ss, verbosity should never be resorted to.

Models may be of various types - iconic, analog or symbolic. Statistical models usually fall

in the third category.

Computer simulations are replicable experiments. Simulations may be re-run with

changes in selected parameters or conditions made by the investigator. In addition, com-

puter simulations often allow one to induce correlation between random number sequences

55

to improve statistical analysis of the output of the simulation. In general, a negative corre-

lation is desirable when the outputs of two replications are to be summed, whereas a posi-

tive correlation is preferred when the results are to be differenced, as in comparison of

experiments.

In this chapter, we study the behavior of B+-trees under various distribution of keys.

The key distributions are modeled by several probability density functions. The methods

used to generate keys following such distributions are described and the variation of the

simulated parameters is discussed.

4.'2. Simulation Parameters and Workload Description

To examine the behavior of B+-trees, the parameters we measured include the average

&forage utilization and the average time of operation. The average storage utilization reflects

the efficiency of the dynamic data structure and the average time of operation reflects the

cost of performing operations on the data structure. These parameters were discussed in

Chapter 3.

The simulations were done on a Sequent Symmetry machine with eight processors at

times when the system load was minimal. All simulation runs were performed on trees

stored entirely in main memory. The cost of an operation is determined by simulating the

costs of I/O and measuring the elapsed CPU times. We assumed that the page size is lK

bytes. This assumption was motivated by the fact that lK bytes is the typical page size in

most of the existing commercial database systems (e.g., Oracle, Ingres). Moreover, the page

size of the underlying Dynix operating System is also lK bytes. Thus, a page size of II<

enhances aspects of the simulation considerably. We assumed that at any time, at most two

pages can reside in main memory. The last assumption is motivated by the fact that about

80 percent of the operations on a B-tree are searches. A search does not necessitate a

"

56

writing back the page read in. So having two pages in the memory or otherwise does not

affect the search performance. During an insertion or a deletion operation, only three pages

need to be manipulated together at one time. Some careful reorganization of the algorithms

enables all inserts and deletes to be done with only two pages in memory. No underlying

buffer manager is assumed. The performance figures presented below might vary substan-

tially in the presence of an intelligent buffer manager.

The time for an I/O operation from or to the secondary storage device is modeled in

terms of two parts - the seek time and the transfer time. Seek time refers to the time taken

to position the disk head on the appropriate track of the disk. Based on the actual seek

times of the underlying hardware, the the simulated seek time is taken to be 15 milliseconds.

The time to read or write a page is assumed to be 8 milliseconds. It is also assumed that a

page is the unit of I/O and the size of every node in the B+-tree is bounded by the page

size. When reading or writing a page that was read in the last disk access, seeks are

avoided. We ignore any rotational latency in positioning the disk-head over the correct

track. However, for non-sequential I/O (e.g., searching from the root to the leaves) seeking

is necessary. Following the assumption that there is no buffer manager, an updated page is

always written back before the search or update operation terminates. The CPU time is

measured directly by stop watches throughout the program. The stop watches are imple-

mented by the getrusage(} system call which is provided by the operating system. There are

certain problems with this system call. It is supposed to resolve at the order of

microseconds, but in practice, for small computation steps, it resolves in the order of mil-

liseconds. The resolution improves with the increase in time being measured.

. - - -.-. .- -

57

4.3. Test Data Generation

Generation of good test data, as in any simulation, is crucial to the validity of the

results. Because sampling from a particular distribution being modeled involves the use of

random numbers, an efficient method to generate random numbers is necessary. The Dynix

operating system provides a system call random(} to generate such pseudo-random numbers,

uniformly distributed in the range [0,232-1]. We assume that the sequence of numbers gen-

erated by random() satisfies the randomness criteria as given in [Knu71b]. As the number of

different numbers representable in a digital computer is fixed, to improve efficiency a deter-

minis tic method of generating random numbers is often used. Such numbers do not have all

the properties of random numbers but are adequate for our use. Many applications (e.g.,

biological simulations), necessitate a non-uniform distribution of data.

A sequence of numbers following a particular distribution is called a random variate.

Various techniques have been cited in literature to generate test data following different dis-

tributions. In the following sub-sections we discuss very briefly two general methods that

have been employed to generate the test data following various non-uniform distributions.

Most of the techniques employed generate random variates in specific intervals. \Ve

have extended these methods to generate random variates which are integers lying within

the range [0, 212_1]. Scaling a random sequence, does not affect the randomness of the

sequence. That is, if <X.> is a random sequence, then for constants f3 and c, <LcX.J+f3>

is also a near-random sequence with the same normalized moments as the original one. The

resulting sequence is called near-random because some errors are introduced in the process

of taking the floor, detailed discussion of which can be found in [Knu71b].

58

4.3.1. The Inverse Transform method

Let X be a random variable with a cumulative probability distribution function

(c.dJ.) Fx(x). By definition then, Fx(x) is non-decreasing and is bounded below by 0 and

above by 1. Let the inverse FX -l(y) of F be defined as follows:

Then, if V is uniformly distributed over the interval [0,1], X = FX-1(V) has the cumulative

distribution function Fx(x).

Thus, given any probability density function (p.dJ.) and an uniform random variable

(i.e., a random number generator), we can get a random variate having a c.dJ. as Fx(x).

The problem with this method lies in the fact that the c.dJ. must be expressed in a closed

form and, moreover, the inverse of the c.dJ. should be expressible in a closed formt. 'When

these conditions are not satisfied, this method is of little practical interest.

4.3.2. The Acceptance Rejection Method

In the acceptance rejectt'on method, the c.d.f. is not required. The random variate can

be generated directly from the p.dJ. Let X be the random variate to be generated follow-

ing the probability density function f x(x). In this method, f x(x) is represented as

fx(x) = Oh(x)g(x)

where 02::1, h(x) is also a p.d.f., and O<g(x)~1. Next, a uniform random variate (a ran-

dom number) V, and a random variate V satisfying the p.dJ. h(x) are generated. If the

inequality V~g(Y) holds, then Y is accepted as the random deviate satisfying fx(x). Oth-

erwise the process is repeated with new U and V.

t Note that by the definition or inverse, F X need not be one-to-one. But solving the equation FX(x)= V
by standard numerical methods such as root aeorching is expensive.

r
~.,,,
"

"

59

4.4. Review of Probability Distributions

Numerous probability distributions exist in statistical theory. Since it is impossible to

evaluate the performance of B+-trees under all possible distribution of keys, we consider in

this sub-section brief descriptions of those distributions which we will use. See [FeI68] for

more information on probability distributions.

4.4.1. The Uniform Distribution

The uniform distribution is often adopted as the working hypothesis in most of the

scientific applications. It has been adopted as the "most realistic" distribution of keys in

most of the benchmarks for database systems [BDT83]. Also, as mentioned above, computer

generation of nearly all random variates by standard methods needs one or more uniformly

distributed random variates. The uniform distribution occur in real life in scientific meas-

urements. For example, the distribution of round-off errors, tabulated to a fixed number of

decimal places, is usually uniform. Most of the analyses of B+-trees cited in literature,

assume an uniform distribution of keys.

The p.dJ. of the continuous uniform distribution is given by:

where Uj(x) is the unit function of order i [Knu71b]. The graph of the p.dJ. of the uniform

distribution is given in Figure 4.1. The random variates following this distribution are

obtained directly from the system calls srandomO, randomO, setstateO and initstateO.

They are reduced to the interval [0, 1] by dividing by the largest possible number of 32

binary digits.

60

1.5

1.4

1.3

1.2

1.1

f x(x) 1
0.9

0.8

0.7

0.6

0.5

o 0.2 0.4 0.6 0.8 1 1.2 1.4

x

Figure 4.1: The Uniform Distribution

4.4.2. The Normal Distribution

The normal distribution originated in the early 17th century when it was used to study

the variation of errors in measurements of planetary motions. Biological data is often nor-

mally distributed. For example, the stature of individuals (e.g., the arm length), the weight

of the brain and the length of the forehead are all normally distributed.

The normal distribution has the p.d.f. given by:

The parameters p and u are the mean and the standard deviation respectively. A normal

distribution with mean p and standard deviation u is denoted by N(p, u). The mean is the

unnormalized first moment while the standard deviation is the second moment normalized

by the square of the first moment. A plot of two nbrmal distributions is given in Figure 4.2.

r.

..~

.

.

.~

61

0.9-

0.75-

0.6-

fx(x)

o
-2 o 2-1 1

x

Figure 4.2: The Normal Distribution

Random variates following a normal distribution are generated by using following

algorithm:

ALGORITHM 4.1
Input: Two independent uniform random variates.

Output: A random normal variate with mean Jland standard
deviation u.

Method:

Step 1: Generate two random numbers U1 and U2 in the interval

[0,1].
1-

Step 2: Compute Z = (-2InUl)2cos21!'U2

Step 3: Compute Z' = J.l+ (jZ.
Step 4:Return Z'

o

62

4.4.3. The Exponential Distribution

Exponentially distributed data occur most frequently in applications measuring inter-

arrival time. The mean time between failures of certain kinds of components, the time

between successive electrical impulses received by measuring devices implanted in the spinal

cord of mammals and the time between successive emissions of alpha particles from radioac-

tive materials, all follow exponential distributions.

The p.d.f. of an exponential distribution is given by:

{

J1.e -pz

f x(x) = 0

The parameter J1.is called the mean of the distribution.

if

if
x~O
x<O

A plot of the exponential distribu-

tion is given in Figure 4.3.

Figure 4.3: The Exponential Distribution

1.2

1

0.8

f x(x) 0.6

0.4

0.2

0
I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9

x

'.

63

To generate random variates following an exponential distribution, the following alga-

rithm is used:

ALGORITHM 4.2
Input: An independent uniform random variate.
Output: An expom;ntial random variate with mean Jl.
Method:

Step 1: Generate a random number U between [0,1].
Step 2: Compute Z = -Jlln U.
Step 3: Return Z

o

4.4.4. The Gamma Distribution

Data that is gamma distributed occur most frequently in systems where the operation

of a particular subpart is essential in the proper functioning of the entire system as a whole.

Ai>an example consider the following: In order to improve the reliability of the system, the

system may be designed to carry (r-1) spare components to be used in case the given com-

ponent fails. When the original component fails, one of the remaining (r-1) spare com-

ponents is activated to take its place. The process continues until all the r components

have failed. At this point the entire system fails. Ai>suming that the entire system can fail

only if the single essential component fails, the lifetime of the entire system is the sum of

the times until failure, Xl> X2, "'J Xr of the r components. Assuming that each of the)(,.'s

are exponentially distributed, the time until the entire system fails, Y, given by Y = Xl +

X2 + ... + Xr, is gamma distributed. A more realistic example of the gamma distribution

occurs in the measurement of average mean value of radioactivity within a sample of shale.

An important property of the gamma distribution is that it can be used to approximate

nearly all distributions in real life.

.,
I

64

The p.d.f. of the Gamma distribution is given by:

{
.A Gamma distribution with parameters G' and [3 is often denoted by G(G',[3).

Ix(x)
[3<Yf(G')

o
0::;x::; 00 ,G'>0,[3>0

othcrwisc
=

In effect

G{G',fI) is the sum of G' exponential random variates, each with mean [3. Figure 4.4 shows

the gamma distribution for different values of G'and fl.

A random variate following a gamma distribution for integral G' is generated by the

following algorithm:

Figure 4.4: The Gamma Distribution

0.6

0.5

I x(x) 0.4

0.3

0.2

0.1

0
I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9

x

65

ALGORITHM 4.3

Input: a independent exponential random variates.
Output: A gamma random variate with parameters a and /3.
Method:

Step 1: Generate a independent random exponential variates Ej with mean /3.
Step 2: Compute Z = :E Ej.

1950
Step 3: Return Z

o

4.4.5. The Beta Distribution

The distributions discussed above (excepting the uniform distribution), are not applica-

ble for describing the variation of a random variable whose range of possible values is

bounded above and below. Examples of such distribution in real life occur in (i) the dis-

tance from one end of a steel bar of known length to the point where failure occurs when

the bar is subjected to stress, (ii) the proportion of total farm product spoiled by a pest. In

computers, the number of different representable numbers (integer or real) is finite. This is

why the beta distribution is adopted in applications which necessitate non uniform data and

where the standard approximations to a random variate are not applicable.

The p.dJ. of the beta distribution is given by:

f () = r(a+/3) 0-1 (1_)fJ-1
X :r r(a)r(I3) :r :r

and is often denoted by B(Q:,/3). A plot of the beta distribution for different vales of a and

/3 is given in Figure 4.5:

The following algorithm is used to generate random variates following the Beta distri-

bution:

--,
t 66

1

o
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Figure 4.5: The Beta Distribution

ALGORITHM 4.4

Input: Two independent gamma variates.
Output: A beta random variate with parameters a and ,8.
Method:

Step 1: Generate Y1 from G(a,I).
Step 2: Generate Y2 from G(,8,I).
Step 3: Compute X = Y1 / (Y1+ Y2)
Step 4: Return X

o

4.4.6. The Log-Normal Distribution

The log-normal distribution occurs most frequently in econometric theory, where the

data values are non-negative. In fact, in the case where the data is non-negative, the log-

normal distribution is the placeholder of the normal distribution. Data distributed log-
I

normally occur in particle sizes in naturally occurring aggregates, length of words and sen-

4

3

Ix(x) 2-1 a=2,,8=5

t
i
I

r
I
I

I

i

I
t

t

i.

67

tences, concentration of trace and non-trace elements in plants, lifetimes of mechanical and

electrical systems and many others. The log-normal distribution has its own place in the

theory of random variables. As proved in a recent paper [Rao89], the log-normal distribu-

tion violates the Central-Limit theorem.

The p.dJ. of the log-normal distribution is given by:

f x(x)
O~x~oo
otherwise

=

Figure 4.6 shows plots of the log-normal distribution for different values of mean and stan-

dard deviation.

8 10 124 62
x

Figure 4.6: The Log-normal Distribution

0.5

0.4

0.3

f x(x)
0.2

0.1

0 ,
0

68

A random variate following the log-normal distribution is generated by the following

algorithm:

ALGORITHM 4.5
Input : A random normal variate.

. Output: A log-normal random variate with mean II and standard
deviation u.

Method:
Step 1: Generate a random variate Z from N(p,u).
Step 2: Compute X = II + uZ
Step 3: Compute Y = eX
Step 4: Return Y

o

4.5. Operation Execution Times

The variation of the time to insert or delete one key from a tree is discussed in this

section. The graphs presented in this section are from simulations which are discussed in

detail in the next paragraph. Figure 4.7 through Figure 4.12 plot the variation of the time

to insert a key against the size of the tree. Figure 4.13 through Figure 4.18 plot the varia-

tion of the time to delete a key against the tree size. A node size of 50 keys is used for the

simulation of insertion times and a node size of 20 for the simulation of deletion times.

Each figure shows the results of a different key distribution.

The insertion process consisted of inserting up to 50,000 keys into an initially empty

tree. The algorithms for operations on the B-trees are similar to those in [Gra89] and

[KwW82]. A stopwatch is started before every insertion and the time to insert the key is

determined after the insertion is complete. To avoid excessive details, the graph is divided

into three segments. The first segment shows the insertion times when the tree is small.

The topmost graph of every figure shows the variation in insertion time for trees with a to

1,000 keys. The second segment shows the insertion times when the tree contains 9,000 to

69

10,000 keys and is shown in the middle graph of every figure. The lowermost graph of every

figure shows the variation in time when the tree contains 47,000 to 48,000 keys. Each graph

shows results for two simulation runs with identical sets of keys. The dotted lines refer to

deferred splitting, while the solid lines refer to aggressive splitting.

The graphs are more or less flat with occasional spikes. The spikes are caused by

splits of pages. Larger spikes are caused by a greater number of splits while some small

spikes (occurring in the case of deferred splitting) are caused by system induced errors in

measurement. We identified this error by debugging the code. The graphs show equal time

to insert a key regardless of whether it is at the beginning or the end of a page into which it

is inserted. Inserting near the top necessitates shifting of more keys than when inserting

near the bottom but the variation in time is transparent because of the available resolution

of both the graph plotting program and the stop-watch that measured the time.

The graphs closely follow the analytical results derived in the previous chapter. In the

case of deferred splitting, for example, the number of splits in inserting 3,000 keys, as shown

on the three graphs in Figure 4.7 is 83. From the analytical results of the previous chapter

we predict 86 (rounded to the nearest integer) splits. For this simulation, our analytical

results are correct to an error of -3.4%. For the case of aggressive splitting, Figure 4.7 indi-

cate 120 splits as compared to 125 calculated from the analytical results of the previous

chapter - an error of -4%. The error is acceptable considering the fact that the analysis

assumed an infinitely large tree.

From the graphs it can be inferred that the number of splits is smaller in the case

when the key values are spread out as illustrated in the graphs in Figure 4.9 and Figure

4.8a and 4.8b. The number of splits in the case of a normal distribution with a larger stan-

dard deviation (Figure 4.8a) (and signifying a lower density around the mean value) is

. *---- - - *

70

smaller than that with a smaller standard deviation (Figure 4.8b, by 4). The two graphs

corresponding to the exponential distribution (Figure 4.9a and 4.9b) with different means

also illustrate the same result. Comparing Figure 4.7 with Figures 4.8a and 4.8b, we note

that the number of splits in the case of Normal distribution is smaller than the number of

splits in the case of Uniform distribution. The reason is that the average' expected survival

interval of a node is more in the case of the normal distribution. The exact mathematical

proof of the fact is beyond the scope of this thesis.

Figures 4.13 through Figure 4.18 illustrate the variation in the deletion time with the

size of the tree. To obtain the graphs, a tree of size 50,000 is built by inserting keys into an

initially empty tree. The keys are stored in a file and are subsequently deleted from the

tree in the order the keys are inserted. Again, each graph is divided into three phases as is

in the case of insertions, with slight variation in the ranges. Note that the density of spikes

is more in the case of deletions. One reason is that the order of the tree is smaller in the

case of deletions and consequently merges or redistributions are more frequent. Another

reason is the key replication in B+-trees and mathematical details of this is discussed in

[KwW80a]. The number of larger spikes also is greater in the case of deletion because of the

deletion algorithm which we use. When a node becomes less than half full, its neighbors are

checked for space. The probability that a sibling that contains just above d keys is small

and often keys are redistributed. Key redistribution is an expensive operation resulting in a

larger spike. Some of the larger spikes are due to key redistribution while others are due to

multiple merges. In our simulations, the cost of redistribution of one level is same as the

cost of merging in two levels. Thus, it is not possible to distinguish merges from redistribu-

tions in the graphs. Moreover, the number of merges or key redistributions is appreciably

less when the tree is large. The reason is that the the probability that a node is merged is

low in a tree with a large number of nodes. The number of merges or redistributions of

. - '-'. .. -"-

71

more than one level is also low (i.e., there are fewer large spikes) because the nodes are more

or less stable (i.e., do not contain near d or near 2d nodes). The graphs follow a more or

less similar pattern with expected variations. For example, the number of large spikes,

when the tree is large, is smaller in the case of the Normal distribution because the nodes on

the paths which are traversed more are more stable and hence the merges do not propagate

much.

Comparing the graphs of insertion times (Figure 4.7 through Figure 4.12) we note that

the splits of nodes are distributed within the three segments more or less equally, whereas in

the case of deletions there is a relatively high concentration of splits and merges when the

tree is small (lowermost segment in the graphs in Figures 4.13 through Figure 4.18). This

non-uniformity is due to a hysteresis effect in B+-trees resulting from key replications. As

the tree size becomes smaller and smaller with more and more deletions, some keys stay in

the internal nodes. To get rid of this situation, after a deletion is performed, such redun-

dant keys are checked for in the next higher level. In case there exists some such keys, then

redistribution in that level is forced, to get rid of them. Such redistributions occur only

after an appreciable number of keys have been deleted from the tree and results in the

I dense spikes in the third segment of the graphs corresponding to the deletion times.

\~,.

Ii 4.6. The AverageStorage Utilization
~
J

$<' Figures 4.19 through 4.24 illustrate the variation of the average storage utilization

with the size of the tree. The graphs were obtained by inserting 40,000 keys, which followed

the particular distributions, into an initially empty tree. A node size of 20 is assumed. The

graphs show that in general the average storage utilization fluctuates wildly when the tree

is small and stabilizes as the tree grows larger. With different distribution of keys the point

of stabilization varies.

--- ..

72

The storage utilization of a particular node is a saw tooth curve bounded below by 0.5

and above by 1.0. The initial fluctuation occurs because the number of nodes is small and

the average storage utilization of the tree is a composition of a few such saw tooth curves.

The resulting composition also grows more or less following a saw tooth pattern. Moreover,

the storage utilization of the root is also a saw tooth curve bounded below at a lower value

(the reciprocal of the maximum number of keys per node). The effect of the root also

creates a Buctuation in the overall average storage utilization. As the tree grows, the effect

of the root reduces and the composition becomes flatter, in the limiting case with infinitely

many keys becoming absolutely Bat.

Some interesting features of the B+-tree data-structure affecting the average storage

utilization can be cited at this point. Like the different variations of the data-structure

itself, there are many variants of the operations on the data-structure [Sag86][KwW80a].

For example, the branching condition that we used during the search (i.e., which child of a

node to traverse next) has several alternatives. We decided to traverse the illl child nj of a

node n if the search key value was greater than or equal to illl key of the node n and less

than the (i+1)11I key. The insertion and the deletion algorithms were designed accordingly.

Note that, using this condition, the tree degenerates (Le., most nodes contain exactly the

minimum number of keys) with keys appearing in a sorted order or when equal keys are

inserted into the tree. Another alternative is to make the greater than or equal condition be

simply greater than. However, in this case, the" tree degenerates for reverse sorted keys.

Moreover, the key maintenance overhead during insertion and deletion operations to avoid

one key getting replicated more than once increases, The nature of the number of keys per

node, Le., even or odd, also affects the average storage utilization. Consider a tree with 11

keys per node. The minimum Dumber of keys tha.t should be in the node can be either 5

(l1l/2J) or 6 ([11/21). II the number of deletions is smaller than the number of insertions

73

then the average storage utilization stabilizes faster in the case when there are 6 keys per

node.

Following the argument above, we note that the average storage utilization falls close

to 0.5 when equal keys are inserted into the tree. It can be argued though that equal keys

should not be inserted into the tree. However, the choice of whether or not equal keys

should be inserted depends upon the requirements of the database system. \Ve allow equal

keys to be inserted into the tree to illustrate the difficulties encountered in doing so.

Another problem may arise as a result of inserting equal keys. Consider a leaf of a B-tree

of order 3 after some insertions whose keys are: <1,3,3,3,3,3>. Now, let there be a insertion

of key 2 in the tree. Consequently, this leaf has to be split. One possible resulting

configuration after the split may be that the two nodes which are created contain keys as:

<1,2,3> and <3,3,3>, with another 3 passed up to the next higher level. If adequate care

is not taken, then a search process in the future will not be able to find the 3 in the first

node. To ensure that such a misdirection does not happen, the first node (e.g., <1,2,3»

should not contain the 3 in it. In that case, if the order of the tree is large, appreciable

amount of overhead has to be paid to perform such checks. Moreover, doing so may spoil

the storage utilization of the first node.

Figures 4.19 through 4.24 illustrate the variation in the average storage utilization

with the tree size. We observe from the figures that the average storage utilization stabil-

izes the fastest in the case of the normal distribution. The fluctuation after the initial stage

is also of smaller amplitude. This result is counter-intuitive at a first glance. However,

careful scrutiny reveals that though some paths are prone to more splits, the nodes in these

paths have a more or less high storage utilization. The nodes in the other paths are

traversed less. The storage utilizations of these nodes less frequently fall to the lower

bound. The phenomena can be visualized as a composition of saw tooth curves, some of

74

which rise slowly and the others are faster-rising saw tooth curves (and so with smaller

periods). It is the slow-rising curves that stabilize the average storage utilization.

The case of uniform distribution closely follows the analysis of the previous chapter.

The average storage utilization in the case of the log-normal and the gamma distributions

follow that of the normal distribution due to the similarity their p.d.f.'s as can be seen from

the graphs.

The case when tbe keys are beta distributed requires special attention. It can be seen

that the average storage utilization falls after a particular size of the tree (both for the

case when the nodes are split aggressively and the case when the splitting is deferred) and

stabilizes near a value of 0.53. A.1;mentioned previously, the beta distribution is bounded on

the X-axis by an upper and a lower limit. Moreover, the span on the X-axis is also small

(smaller than the uniform distribution). A.1;a result of this, when the random variates fol-

lowing the beta distribution are scaled to integer values, on many occasions equal keys are

generated (see [RubSl]), resulting in the degeneracy of the tree and hence reduction in the

average storage utilization.

From the graphs we can conclude that, in general, the average storage utilization of

the tree is more affected by the key distribution than by the nature of splitting.

4.7. The Averageand the Total Insertion Time

The average insertion time and the total insertion time are plotted in Figure 4.26

through Figure 4.31. Each graph shows the average time to insert one key (plotted along

Y-axis) and the total cost to insert all the keys (also plotted along Y-axis) against the tree

size (plotted along X-axis) both for the cases of deferred splitting and aggressive splitting.

Up to 40,000 keys are inserted into an initially empty tree of order 10. The average time of

inserting one key does not remain constant with the size of the tree. However, since the

75

majority of the insertions do not induce splits and since the difference in the number of

splits for the different key distributions vary slightly, the graphs are more or less identical.

Another reason behind this similarity is that the cost of insertion is largely dominated by a

search to the appropriate leaf.

The time to insert is higher in the case of deferred splitting than that in the case of

aggressive splitting because in order to insert a key in the case of a split, both up and down

movement along the path from the root to the leaf is required. If there is no split, the cost

of the two cases are the same. The above reasoning follows from our assumption that there

can be at most two pages in main memory. However, if more pages can reside in main

memory then, as shown in the previous chapter, the cost (and so the time overhead) will be

more in the case of aggressive splitting (there will be more splits).

The total time for insertion grows more or less linearly with two kinks in the curve.

The kinks occur at points where the height of the tree increases. The slope of the curve

after the kinks is larger then the slope of the curve just before it. The slope of this curve

(loosely speaking) indicates the average time to insert a key, which is also plotted in the

same graph both for the case of aggressive and deferred splitting. The curves for the

deferred and the aggressive cases are nearly the same in shape. The curves representing the

average time of insertion of a key can be divided into three distinct phases. Each of these

phases are characterized by a sharp rising time, which saturates to a constant. The first

phase starts at the tree size of 0 and ends at a tree size of approximately 300. The second

phase spans from a tree size of 300 to 4500 and the third phase spans the rest of the curve.

When the height of the tree suddenly increases, the cost of insertion rises sharply as the

number of keys in the tree is much smaller than what can be accommodated in a tree of

that height. As more and more keys get inserted into a tree of a fixed height, the slope of

the curve decreases. The kinks appear approximately at the points expected. For example

76

the second kink appears at a point corresponding to the tree size of 4,000 (:::::(21XO.65)3)

since, the average number of keys per node is :::::(21XO.65) and the height of the tree is 3.

An increase in the height of the tree is expected when the number of keys equal the product

of the number of nodes and the average storage utilization.

Note that, even though when the keys are beta distributed, the average storage utili-

zation falls below 0.55, it does not affect the the curve representing the average time of

insertion (i.e., it is more or less identical to those for other distributions) because at the

point of the last kink, the average storage utilization in the case of the beta distribution

was also close to 0.62. Though not shown in the graphs to preserve symmetry, the next kink

in the case when the keys are beta distributed occurs much earlier than in the other cases.

deferred splitting

aggressive splitting

100 200 300 400 500 600 700 800 900

9100 9200 9300 9400 9500 9600 9700 9800 9900

...

47100 47200 47300 47400 47500 47600 47700 47800 47900

Size at Time of Insert

Figure 4.7: Insertion Time vs. Size of Tree for Uniform Distribution

77

0.3

0.225

T

1 0.15
m
e

0.075

0

0.3

0.225

T 0.15
0

0.075

0

0.3

I 0.225
n

s 0.15e
r

t 0.075

0

...,.. . ..

..
. .

- ...
..

. .
...

. . ..

- '.
.. -

-' ."
. .. '. . .

.. -

... "
. -

... ..'
. . .. --

78

0.3

I

deferred splitting

0.2251
- aggressive splitting

T
1

0.15
m
e

0.075

0
100 200 300 400 500 600 700 800 900

0.3

0.225

T 0.15
I . .

.
0-'

. . . . '.- . . .'...
0.075

I- ". ..0..........

0
9100 9200 9300 9400 9500 9600 9700 9800 9900

0.3

I 0.225
n

s 0.15

I

..e au .. _ _- -
r -

t 0.075

-- ..

0
47100 47200 47300 47400 47500 47600 47700 47800 47900

Size at Time of Insert

Figure 4.8a: Insertion Time vs. Size of Tree for Normal Distribution (p=l.O, 0'=0.7). I

79

deferred splitting
aggressive splitting

100 200 300 500 600 700 800 900400

9100 9200 9300 9400 9500 9600 9700 9800 9900

..

47100 47200 47300 47400 47500 47600 47700 47800 47900

Size at Time of Insert

Figure 4.8b: Insertion Time vs. Size of Tree for Normal Distribution (Jl=1.O, 0"=1.0)

0.3

0.225

T
;

0.15
m
e

0.075

0

0.3

0.225

T 0.15
0

0.075

0

0.3

I 0.225
n

s 0.15
e
r

t 0.075

0

-.

80

0.3

I

deferred splitting

0.225--1
- aggressive splitting

T
1 0.15

m
I , ..

e --.-.-.-

0.0751

' . -, . -,. , ..- .- . . .- . .. --, . -, . .,. - -- - .. --, . . - "". . -,- - -- , --

I
0

100 200 300 400 500 600 700 800 900
0.3

0.225

T 0.15
I:

.. ..
0 -- I: .

..
I'0.075
-. - . .'.. J ". .

0
9100 9200 9300 9400 9500 9600 9700 9800 9900

0.3

I 0.225
n

s 0.15 - ..e
r - -. ..

t 0.075
. . . - - -. - - -. - . - . - .

0
47100 47200 47300 47400 47500 47600 47700 47800 47900

Size at Time of Insert

Figure 4.9a: Insertion Time vs. Size of Tree for Exponential Distribution (Jl=1.0)

81

0.3

I

deferred splitting

0.225l
- aggressivesplitting

T
;

0.15
m

I
e "

0.075
. .

0
100 200 300 400 500 600 700 800 900

0.3

0.225

T 0.15
I:

..
0 -....---

,.- -
0.075 -

0
9100 9200 9300 9400 9500 9600 9700 9800 9900

0.3

I 0.225
n

s 0.15e

I.

...
r ,
t 0.075

, .. . -'. .' '. . . ,', . . - .

0
47100 47200 4730.0 47400 47500 47600 47700 47800 47900

Size at Time of Insert

Figure 4.9b: Insertion Time vs. Size of Tree for Exponential Distribution (Jl=0.5)

82

0.3

I

deferred splitting

0.225--1
- aggressivesplitting

T
;

0.15
m

I 0 ..
e - - - -.-- - - -- - ..- . .- . .

000751

- - - - - ..- - - . -.- . - - -- - - . . -

0
100 200 300 400 500 600 700 800 900

0.3

0.225

T 0.15
I :

. -0 ------

. ..0_ JO. . J' .
0.075

. 8_... -..'.. .

0
9100 9200 9300 9400 9500 9600 9700 9800 9900

0.3

I 0.225
n

s 0.15 .. -O' .. U .. -e .. - -.. - '0" -.. - '0" -
r .. - - .. -.. -O' .. -.. - -- - - .. -
t 0.075

..0 _L- .. .' -- .. - ..

0
47100 47200 47300 47400 47500 47600 47700 47800 47900

Size at Time of Insert

Figure 4.10: Insertion Time vs. Size of Tree for Gamma Distribution (0'=2.0, .8=1.0)

83

0.3

I

deferred splitting

0.225l
- aggressivesplitting

T
i 0.15

m
I

e - . .-- -- -- - - 0-
0.075

- - . .

0
100 200 300 400 500 600 700 800 900

0.3

0.225

T 0.15

I

. ...
0

I
.. -... -.

0.075

0
9100 9200 9300 9400 9500 9600 9700 9800 9900

0.3

I 0.225
n

5 0.15
e
r

I

.. -,
I'" .. .

. -
t 0.075

.. . -.. "'.. . . -

0
47100 47200 47300 47400 47500 4;600 47700 47800 47900

Size at Time of Insert

Figure 4.11: Insertion Time VS.Size of Tree for Beta Distribution (£1'=2.0, .8=5.0)

deferred splitting
aggressive splitting

100 200 300 400 500 600 700 800 900

o
9100 9200 9300 9400 9500 9600 9700 9800 9900

0.3

I 0.225
n

s 0.15
e
r

t 0.075

."
.
'.

.
'.

o
47100 47200 47300 47400 47500 47600 47700 47800 47900

Size at Time of Insert

Figure 4.12: Insertion Time vs. Size of Tree for Loglnormal Distribution (JL=1.0, 0'=5.0)

84

0.3

0.225

T
;

0.15
m
e

0.075

0

0.3

0.225

T
0.15

0

I
..

-.
0.075 '. . ,. - - - -

r

T 0.3
i

m <)00_e

003
T
o

0.2

0.4
D

e 003
1
e
t 0.2
e

85

0.5

0.4

0.1

o
49100 49200 49300 49400 49500 49600 49700 49800 49900

0.5

0.4

0.1

o
40100 40200 40300 40400 40500 40600 40700 40800 40900

0.5

0.1

o
2100 2200 2300 2400 2500 2600 2700 2800 2900

Size at Time of Delete

Figure 4.13: Deletion Time vs. Size of Tree for Uniform Distribution

T 0.3
1

m
0.2e

0.3
T
o

0.2

86

0.5

0.4

0.1

o
49100 49200 49300 49400 49500 49600 49700 49800 49900

0.5

0.4

0.1

o
40100 40200 40300 40400 40500 40600 40700 40800 40900

2100 2200 2300 2400 2500 2600 2700 2800 2900

Size at Time of Delete

Figure 4.14: Deletion Time vs. Size of Tree for Normal Distribution (Jl=1.0, 0'=1.0)

D

e 0.3
I
e
t 0.2
e

0.1

0

T 0.3
i

m
0.2e

0.3
T
o

0.2

0.4
D

e 0.3
I
e
t 0.2
e

0.5

0.4

0.1

0.5

0.4

0.1

0.5

0.1

87

o
49100 49200 49300 49400 49500 49600 49700 49800 49900

o
40100 40200 40300 40400 40500 40600 40700 40800 40900

o
2100 2200 2300 2400 2500 2600 2700 2800 2900

Size at Time of Delete

Figure 4.15: Deletion Time vs. Size of Tree for Exponential Distribution(Jl=1.0)

T 0.3
i

m 0.2e

0.3
T
o

0.4
D

e 0.3

e
t 0.2
e

88

0.1

o
49100 49200 49300 49400 49500 49600 49700 49800 49900

0.5

0.4

0.2

0.1

o
40100 40200 40300 40400 40500 40600 40700 40800 40900

0.5

0.1

o
2100 2200 2300 2400 2500 2600 2700 2800 2900

Size at Time of Delete

Figure 4.16: Deletion Time ys. Size of Tree for Gamma Distribution (0'=2.0, .8=1.0)

T 0.3
1

m 0.2e

0.3
T
o

0.2

0.4
D

e 0.3

e
t 0.2
e

0.5

0.4

0.1

0.5

0.4

0.1

0.5

0.1

89

o
49100 49200 49300 49400 49500 49600 49700 49800 49900

o
40100 40200 40300 40400 40500 40600 40700 40800 40900

o
2100 2200 2300 2400 2500 2600 2700 2800 2900

Size at Time of Delete

Figure 4.17: Deletion Time vs. Size of Tree for Beta Distribution (0'=2.0, .8=5.0)

.,.

T 0.3
1

m
0.2e

0.3
T
o

0.2

90

0.5

0.4

0.1

o
49100 49200 49300 49400 49500 49600 49700 49800 49900

0.5

0.4

0.1

o
40100 40200 40300 40400 40500 40600 40700 40800 40900

2100 2200 2300 2400 2500 2600 2700 2800 2900

Size at Time of Delete

Figure 4.18: Deletion Time vs. Size of Tree for: Log-normal Distribution (Jl=1.0, 0'=1.0)

D

e 0.3
I
e
t 0.2
e

0.1

0

--

0.75

0.55
I

0.75 100 10100 20100

0.55
I

100 10100 20100

Figure 4.19: Average Storage Utilization for Uniform Distribution

Number of keys Inserted

91

30100

30100

S
t 0.7
0

r
a

g 0.65
e

U
t

0.6 -I' Aggressive Splitting

S
t 0.7
0
r
a

g 0.65
e

U
t

0.6 -I' Deferred Splitting

0.75

0.55
I

0.75 100
10100 20100

0.55
I

100 10100 20100

Number of keys Inserted

30100

30100

Figure 4.20: Average Storage Utilization for Normal Distribution (p=1.0, 0'=1.0)

92

S
t 0.7
0

r

a
cr
b 0.65
e

U
t
1 0.6 -i AggressiveSplitting
1

S
t 0.7
0
r
a

g 0.65
e

U
t
i 0.6 -i'l DeferredSplitting
1

93

0.75

0.55
I

0.75 100
10100 20100 30100

0.55
I

100 10100 20100 30100

Number of keys Inserted

Figure 4.21: Average Storage Utilization for Exponential Distribution (p=1.0)

S
t 0.7
0

r
a

g 0.65
e

U
t

0.6 --II Aggressive Splitting

S
t 0.7
0
r
a

g 0.65
e

U
t

0.6 --II Deferred Splitting

94

0.75

0.55
I

0.75 100
10100 20100 30100

0.55
I

100 10100 20100 30100

Number of keys Inserted

Figure 4.22: Average Storage Utilization for Gamma Distribution (0'=2.0, .8=1.0)

S
t 0.7
0

r
a

g 0.65
e

U
t

0.6 --1lr Aggressive Splitting

S
t 0.7
0
r
a

g 0.65
e

U
t

0.6 --111' Deferred Splitting

0.75

95

0.5
I

0.75 100
10100 20100 30100

0.5
I

100 10100 20100 30100

N umber of keys Inserted

Figure 4.23: Average Storage Utilization for Beta Distribution (0'=2.0, .8=5.0)

S 0.7
t
0

r
a 0.65

g
e

U
0.6 II

"
Aggressive Splitting

t
i

0.55

S 0.7
t
0
r
a 0.65
g
e

0.6 -!I . Deferred Splitting
U
t
i

0.55

0.75

0.55
I

0.75 100
10100 20100 30100

0.55
I

100 10100 20100 30100

Number of keys Inserted

Figure 4.24: Average Storage Utilization for Log-normal Distribution (Jl=1.0, (1=1.0)

96

S
t 0.7
0

r
a

g 0.65
e

U
t

0.6 -1 Aggressive Splitting

S
t 0.7
0
r
a

g 0.65
e

U
t

0.6 -111 Deferred Splitting

9i

T
Deferred Av Insert Time - /:i.
A&ress A v Insert Time - 0

Dererred Tol InsertTime - .

A&ress Tot Insert Time - C

0.05

m
e

(sees)

10000 20000

Number or Ite).s Insened

30000

0.03I
40000

Figure 4.25: Insertion Times and Av. Insertion Time vs. Number or Keys ror Uniform Dislri-

bution

4200

300
,

n
II

2800

r

t
2100

T
i

1400m
e

(sees) 700

0
I
0

0.11

A
v
e

009
I
n
s

O.Oi
e

98

Deferred Av Inserl TIme -A
Agress Av Inserl TIme - 0

Deferred Tol In~rl T,me -.
Agress Tol Insert TIme - c

10000 20000

Number of leeys lnJerted

Figure 4.26: Insertion Times and Av. Insertion Time vs. Number or Keys ror Normal Distri-

bution

4200

3500
1
n
J 2800
e
r
t

2100

T
i 1400
m
e

(secs) 700

0
I

0

011

A
"
e

009
J
n
5

O.Oi
e
r
t

T
0.05 i

m
e

(sers)

0.03
I

40000

99

10000 20000

Numberor key. InIerted

soooo

Deferred Av Insert Time - to
"cress Av Ineert Time - 0

Deferred Tot Insert TIme -.
"cress Tot IDeertTime - D

Figure 4.27: Insertion Times and Av. Insertion Time vs. Number or Keys ror Exponential

Distribution (p==l.O)

0.11

A
'1/

e
009

I
n
.

0.07
e
r
t

T
0.05 i

m
e

(eer)

0.03
I

40000

4200

3500
J
D
.

2800
e
r
t

2100

T
i

1400
m
e

(eees) 700

0
I
0

100

Deferred Av Insert Time - A

r

0.05 i

A&ress Av Insert TIme - 0 m
Deferred Tot Insert Time - . e

A&ress Tot Insert Time - D (Rrs)

0.03
I I I I

10000 20000 SOOOO 40000

Number or hys Inserted

Figure 4.28: Insertion Times and Av. Insertion Time vs. Number or Keys for Gamma Distri-

bution (0'-2.0, ft-l.O)

4200

I
SMICI

n
.

2800e
r
to

2100

T
i

1400m
e

(sees) 700

0
I

0

011

A
v
e

0.09
I
n
s

OOi
e
r
t

T

101

10000

T
D~rerredAv 1D5~rtTime - ~

A&ress Av Insert T,me - 0
De/erred Tot InsertTime - .
A&ress Tot Insert Time - C

0.05

m
~

(sera)

0.03
I

4000020000 SOOOO

Number of by. werted

t.ion (0-2.0, ~-5.0)

Figure 4.29: Insertion Times and Av. Insertion Time vs. Number or Keys ror Beta Distribu-

4200

3500
1
D
.

2800
e
r
t

2100

T
i

1400
m
e

(sees) 700

0
I
0

0.11

A
v

0.09
I
n
.

0.07
r

102

10000 20000

Number or keys Inserted

30000

Deferred Av Insert Time - Ii.

Acress Av Insert Time - 0
Deferred Tot Insert Time - .
Acress Tot Insert Time - C

Figure 4.30: Insertion Times and Av. Insertion Time vs. Number of Keys for Log-normal Dis-

tribution (#1=1.0, (1=1.0)

011

A
v
f

0.09
I
n
s

OOi
e
r
1

T
0.05 i

m
f

(sees)

0.03I
40000

4:!00

3500
I
n
.

2800e
r
1

2100

T.
HOO

m
f

(sees) 700

0 I
0

r 103

CHAPTER 5

Concurrency Control ofB-Trees

5.1. Overview

As mentioned previously, the structure of data in B-trees can be exploited to provide

enhanced concurrency. As an illustration of anomalies that can arise due to conflicts

between processes concurrently operating on the same B-tree (or a variant of it), assume

that two processes are acting concurrently on a B+ -tree shown in Figure 5.1. One of the

processes inserts key 35 and the other searches for key 36. If the steps of the two processes

are interleaved in the manner given in Figure 5.2, then the search process makes a wrong

conclusion about the existence of key 36 in the tree. Figure 5.3 shows the B+-tree after the

execution of step 6. ASter the search process determines which leaf to examine, the insertion

Figure 5.1: The B+-tree before both processes start

104

Figure 5.2: Interleaving of steps of the two processes

process - due to split of node N9 - moves key 36 elsewhere (to node N9a). Similar

anomalies may be caused by conflicts between insertion and deletion processes and between

deletion and search processes, necessitating the presence of concurrency control.

Figure 5.3: The B+-tree after step 6

Stev Insert 95 Search 96

1 Determine which child of Nl to move to
2 Determine which child of N4 to move to
9 Determine which child of Nl to move to
4 Determine which child of N4 to move to
5 N9 is leaf and full
6 Split N9, shift keys to N9a, insert 95
7 N9 is lea! and does not contain 96

105

The usual problems associated with any concurrency control protocol (deadlock,

livelock, etc.) are present also in the case of B-trees. Moreover, since B-trees occur at a

lower level of abstraction than the data itself, the concurrency control process is different.

In conventional database systems, concurrency control is synchronous. That is, access to

shared data is synchronized by a scheduler. In the case of B-trees, the process is asynchro-

nous, in the sense that there is no physical scheduler present to schedule concurrent accesses

to the same nodes. The enormity of the tree makes it impractical to have one scheduler to

maintain livelock free access to thousands of nodes or to have a mini.scheduler for every

node of the tree. Though the latter model has been proposed [KwW80b], it is yet to be

implemented. There are other problems. The operations on the nodes of the tree are of a

short duration and the pro':esses are data intensive. This results in the lock table being a

hot spot which drastically increases the response times. Consequently, the algorithms for

different operations on B-trees need to be robust enough to ensure integrity of data.

In this chapter we survey the state of the art in concurrency control of B-trees and

present three new concurrency control protocols both for traditional B+-trees and for vari-

ants of the B+-tree data structure.

5.2. Log-SequenceSerializability versus Operational Serializability

Recall from the discussions in Chapter 2 th~t a log is a sequence of operations per-

formed on the database. A log is serializable if and only if it is equivalent to a serial execu-

tion. The execution of a set of transactions is correct if it is serializable. This view of

correctness hides an important aspect of database systems [BGL83]: the semantic

incoherency between the user and the system operations. What the user may see as a single

operation may be a set of operations to the system. Such a semantic difference necessitates. I

a. more elaborate criterion of correctness [BGL83J.

106

Log-sequence serializability is based on a totally syntactic criterion of preservmg

conflicts. In situations where semantic inCormation about the abstract data structure is

important, such a criterion of serializability is insufficient. The following example illustrates

the difference. Consider the following C++ class structure:

class library {
char (-arrayptr1)[];

char (-arrayptr2)[];

int insert(arrayptr, key);

int search(arrayptr, key);

int delete(arrayptr, key);

int move (arrayptr 1, arrayptr2);

char- whereIs(key);

} ;

where the methods insert,delete and search insert, delete and search Cor the second

argument in the array pointed to by the first argument respectively. Method move moves

the contents of the array pointed to by arrayptr1 to the one pointed to by arrayptr2.

Method where:t:s returns a pointer to the array that contains the second argument. Also

let unequal elements be considered only. Let two processes Tl and T2 access an instance

a:t:nst of the class library. Tl sends message whereIs(x)to aInst and gets the array

name arrayptr where x resides. T2 then sends the message moveall(arrayptr1,

arrayptr2) to a:t:nst and subsequently makes arrayptr1 point to what arrayptr2

points to. Unknowing of the message sent by T2' Tl sends the message

delete(arrayptr1, x) to aInst. Fortunately, due to proper sequencing, the deletion is

successful. Though the sequence of operations is not log-sequence serializable, Tl achieves

what it intended. The anomaly is due to the semantics of the underlying data structure. If

the first argument of the deletemethod was not a pointer to an array, but an array itself,

then the execution would have been erroneous. Such sequences of operations which preserve

a user-operation specific definition of correctness are called operationally seria/izab/e.

107

In our context, the log-sequences for an operation refer to that of the access and the

writing of the nodes of the B-tree. As proved by an example in Section 5.3.3.2, log-sequence

serializability is not satisfied by many of the B-tree concurrency control algorithms. How-

ever, at a higher level of abstraction, if we consider the correctness criterion to be opera-

tional serializability, then the algorithms are correct. To avoid confusions, we re-define

correctness criterion for these protocols in Section 5.3.

5.3. Concurrency Control Algorithms

Next, we define some standard terminology in the theory of concurrency control of B-

trees. Recall that trees in which the structural changes propagate from the root to the

leaves, aggressively splitting or merging nodes, are called top-down trees. Trees in which the

structural changes propagate from the leaves to the root employing deferred splitting or

deferred merging of nodes, are called bottom-up trees. First, we consider concurrency con-

trol of bottom-up trees. Later, in Section 5.3.2, we consider concurrency control of top-

down trees.

Consider a B-tree of order d as defined in Chapter 3.

DEFINITION 5.1: A node is insertion safe if it contains less than 2d keys.
o

DEFINITION 5.2: A node is deletion safe if it contains more than d keys.
o

A node is called safe where the operation is implicit.

A process performs operations on B-trees. A process that performs a search operation

is called a read-only or read process and a process which performs an update operation is

called an updator process. We define a partial ordering ~ on the nodes of a tree such that,

for any two nodes x and y, x ~ y, if and only if x appears in the path from the root to y.

108

One process P is said to overtake another process Q, if for two nodes z and 11,which both

processes access in that order and Z i; 11or 11 i; z, Q accesses z earlier in time than P but

accesses 11later in time than P. Read-only processes do not violate the structure of the tree

even if processes overtake one another. However, the structure of the tree will not neces-

sarily be preserved or the processes may not successfully complete their intended operations

if updating processes overtake one another or other read-only processes.

DEFINITION 5.3: An updating process P for key k is correct when the following
hold:

a) If k is in the tree and there are no other deletion processes for k, then P must
delete the key.

b) If k is not in the tree and there are no other insertion processes for k, then P must
insert the key.

c) If k is in the tree and there are no other insertion processes for k, the, P must
delete the key.

d) If k is not in the tree and there are no other deletion processes for k, the, P must
insert the key.

e) At any time (even during an operation), if the tree is frozen, then an in-order
traversal of the tree generates the nodes of the tree in sorted order (see [Knu73]).

o

If only one process at a time is allowed in the tree then it is guaranteed to be correct. How-

ever, allowing only one process at one time provides no concurrency.

DEFINITION 5.4: The deepest safe node for an updating process is defined to be the
lowest (farthest from the root) safe node in the path from the root to the node
(or leaf, in the case of B+-trees) into which the key is to be inserted or deleted.

o

DEFINITION 5.5: The scope of an updating process is the subtree rooted at the
deepest safe node for the updating process.

o

Note that the effect of the update propagates from the node into which the insertion or the

deletion is made, up to the deepest safe node and not above that. Also note that the last

two definitions are applicable only to bottom-up B-trees.

109

5.3.1.Concurrency Control ofBottom-Up B-Trees

Concurrency control algorithms for bottom-up B-trees can be categorized into two

broad classes, namely type 1 and type 2 [KwW82].

5.3.1.1.Type 1 Algorithm.s

In type 1 algorithms, no updator is allowed in the scope of another updator. We dis-

cuss the most common type 1 algorithms that have been reported in literature.

5.3.1.1.1. Samadi-Parr Algorithm

The first algorithm for concurrent manipulation of B-trees was proposed by Samadi in

1976 [Sam76] and independently by Parr in 1977 [Par77]. In this algorithm, the authors use

only one type of lock. The lock is incompatible with itself. The algorithm is easily extend i-

ble to B+-trees.

Each node can be locked exclusively by only one process and only two lock operations

(lock and unlock) are available. The reader processes proceed down the tree in a lock-step

manner. A child node is always locked before its parent is unlocked. Locking nodes in such

a manner is also called lock-coupling. An updator process starts from the root and travels

down the tree locking nodes one at a time and stacking the locked nodes. On reaching a

safe node, the updator process unlocks all the locked nodes and pops them out of the stack.

Thus, an updating process locks its scope exclusively and even reader processes cannot exist

in that scope. Thus, the algorithm induces a total ordering on all readers sharing a com-

mon path and there is no possibility of overtaking.

To take care of the boundary condition, in which the root is split and the height of

the tree increases, the existence of a dummy node d is assumed. For all nodes x, in the tree,

d ~ x. When the root is split by any process, the dummy node must have been the deepest

110

safe node for the process and there cannot be any processes waiting to lock the root. Hence,

splitting the root does not divert any process along a wrong path. This implementation is

particularly useful in a system like UNIX, where maintaining a lock table may be expensh"e.

5.3.1.1.2. Bayer and Schkolnick's Algorithms

Bayer and Schkolnick provide three algorithms [BaS77]. The first algorithm is similar

to that of Samadi and Parr except that the authors used two types of locks (read and

exclusive) instead of one.

Reader processes proceed down the tree, read-locking the nodes in a lock-step fashion

according to the compatibility matrix given in Figure 5.4. Therefore, more than one reader

process can co-exist at a particular node. Updator processes obtain exclusive locks while

traveling down the tree, releasing all previously held locks when a safe node is reached.

Thus, when the updator process reaches the node where the update takes place, the scope of

the process is exclusively locked. Also, a total order is imposed on updator processes sharing

a common path and updators drive away reader processes by exclusively locking their

scopes. This algorithm is easily extendible to B+-trees.

In algorithm two, like the reader processes, the updator processes also read-lock the

nodes on their way down to the appropriate node. However, the node into which the

Figure 5.4: Compatibility Matrix for Bayer and Schkolnick's Algorithm 1

read excl

read y n
excl n n

111

physical update is to take place is locked exclusively. If the leaf is not safe, all locks are

released and the update process repeated with algorithm one. The algorithm depends on

the fact that node splitting is relatively rare. For trees of low order, this algorithm is

inefficient because the probability of split of a node is higher. Note that, if the updator pro-

cess tried to traverse bottom-up from the leaf, exclusively locking the nodes up the tree in a

,lock step manner instead of repeating the entire process, deadlock could occur.

In algorithm three, three types of locks are used: read, write and exclusive. The com-

patibility matrix of the three types of locks is given in Figure 5.5. A write-lock held by a

particular process can be converted into an exclusive lock held by the same process. Thus,

write-locks are a kind of intention lock. Reader processes proceed down the tree, read-

locking the nodes exactly as in algorithm one. Updator processes, instead of exclusively

locking the scope, write-lock the scope on the way down to the appropriate leaf. The leaf,

however is exclusively locked. Thus, no other updators, but many reader processes may co-

exist in the scope of an updator. If the node, into which the update is physically made is

unsafe, then the change is propagated bottom-up, converting the write-locks into exclusive

locks on the way up. Note that the convertibility of write-locks into exclusive locks avoids

the possibility of any deadlock, although there is no total ordering on all processes accessing

Figure 5.5: Compatibility Matrix for Bayer and Schkolnick's Third Algorithm

read write exc/
."

read y y n
write y n n
exc/ n n n

112

a particular node.

5.3.1.1.3. Ellis's Algorithm

The algorithm provided by Ellis was originally for B+-trees and is a variant of the

third' algorithm of Bayer and Schkolnick [E1l80]. The proposed concurrency control protocol

handles only the case of insertions and searches. Pure readers are allowed in the scope of

an updator both when it searches top-down to the appropriate leaf and when it restructures

the tree bottom-up. During restructuring, the write-lock of the parent node of the node

being updated is converted into an exclusive lock. This lock conversion into an exclusive

lock disallows a search process to be misdirected since that can take place only at the

parent of the node being currently updated. Moreover, since reader and updator processes

can co-exist at a node, the reading of a node and the update of the node are done in oppo-

site order - a method proposed originally in [Lam77]. Thus, the atomicity of updates is the

writing of a key-pointer pair.

In this algorithm, reading of a node is done from left to right and the shifting of keys

done from right to left (in our notation, the key Ki being shifted before the corresponding

pointer pi+d in such a way as to ensure that a search process will not be misdirected by

another process simultaneously updating the node.

5.3.1.1.4. Kwong and Wood's Algorithm

Kwong and Wood [KwW82] improved Bayer and Schkolnick's and Ellis's algorithms by

introducing side-branching - a technique analogous to the multi-version concurrency control

schemes in general database systems. Their algorithm uses the three types of locks as in the

third algorithm of Bayer and Schkolnick.

113

Consider the insertion of a key into a B-tree (or a B+-tree) that causes one or more

splits. During bottom-up restructuring, the restructuring process is carried out in two

passes. In the first pass, the process travels from the leaf along the appropriate path to the

deepest safe node, creating and filling up new nodes from their old counterparts. This

results in the formation of a separate sub-path which is called a branch. The branch forma-

tion goes on until the deepest safe node of the process is reached. The old nodes (i.e., the

ones to be split) are otherwise kept intact. On reaching the deepest safe node, the branch

which is thereby created is added atomically to the deepest safe node, which is exclusively

locked by lock coupling as in the case of the third algorithm of Bayer and Schkolnick. In

the second pass, the path from the deepest safe node to the appropriate leaf (which was

traversed during the searching phase) is scanned once more and the filled nodes appropri-

ately halved. Deletions are done analogously.

The protocol also employs the technique of reading and writing in opposite directions

(as suggested by Lamport in [Lam77j) to enhance concurrency. Note that extra concurrency

is provided over the third algorithm of Bayer and Schkolnick by not converting the write-

locks of unsafe nodes during the first phase of restructuring. However, each process takes a

longer time to complete.

5.3.1.2. Type 2 Algorithms

The basic idea of type two algorithms is to allow other updators within the scope of

an updator. This is achieved by locking only a bounded number of nodes within the scope

of the process. In type 2 algorithms, the deepest safe nodes lose their significance. Con-

currency control protocols for top-down B-trees also lock only a fixed number of nodes dur-

ing updates, but they are discussed later. Next, we discuss the most common type 2 alga-

rithms.

114

5.3.1.2.1. Ellis's Algorithm

Ellis [Ell80] provided an algorithm for concurrent searches and inserts into B-trees.

She modifies the B-tree data structure slightly by changing the subtrees of leaves into a

chain of leaves. The tree structure above the leaves is not changed.

Updators proceed down the tree like normal readers. Since readers within the scope of

the writers are not supposed to find the keys which are just being inserted, this does not

violate the correctness of the protocol. However, the updators must be able to find the keys

inserted by other updators within their scope. To achieve that goal, another type of lock

called a write' lock was introduced. Figure 5.6 shows the lock compatibility matrix. Note

that the write-locks alone were inadequate to guarantee correctness since they did not

prevent concurrent insertions at the same positions. Moreover, if the same type of lock (i.e.,

write-lock) is used both during the insertion phase and during the bottom-up restructuring

phase of an insertion, then there is a possibility of deadlock.

Pure readers and the reading phase of updators use lock-coupling with read-locks on

their way down the tree. On reaching the parent of the appropriate leaf (recall that the

leaves are now chained into a linked list, the head of which is the parent), it write'-locks the

Figure 5.6: Compatibility Matrix for Ellis's Type 2 Algorithm

read write write' exc/

read 11 11 11 n

write 11 11 n n

write' 11 11 n n
exc/ n n n n

115

node and makes the insertion. The process then releases all the locks it holds. Next, during

the restructuring process, the writer travels bottom-up coupling write-locks with exclusive-

locks and changing the contents of the exclusively locked node appropriately.

Concurrency is enhanced over the type 1 algorithms in three ways. First, other upda-

tors are allowed in the scope of an updator. Second, a concept analogous to pipelining,

applied to the leaves, allows more than one updator at the parent of a leaf. Third, the

total restructuring of the tree is delegated to a later stage. The last observation follows

from the following example. Consider a node x immediately above the leaf level. By the

definition of the tree structure, x will have a chain of children leaves. Consider two

processes P and Q arriving at the node x for insertion of two keys and that the number of

children of node x is 2d-1. If both process arrive simultaneously, then both will be allowed

to add a child without splitting x. After this, when another process R appears, it sees that

the number of children of x is 2d+1. It then splits x and makes the insertion in the

appropriate child of x.

However, the protocol has some inherent drawbacks that have hindered its popularity.

First, the leaves that are children of a particular internal node need to be traversed sequen-

tially, resulting in increased access times. Second, the tree structure is destroyed at the leaf

level, which is unacceptable in many database applications. Note that, the change in tree

structure closely resembles overflow chaining in the ISAM file organization. It has been

reported in the literature that there is an algorithm for deletions, provided that some

modifications are made in the insertion algorithm [Sag86]. But, only one deletion process

can be .allowed to run in parallel with multiple reader and insertion processes.

116

5.3.1.2.2. Miller and Snyder's Algorithm

Three types of locks, namely, a-locks (access), p-Iocks (pioneer) and f -locks (follower)

are used in an algorithm described by Miller and Snyder. The compatibility matrix of the

locks is given in Figure 5.7.

The algorithm uses manipulation of a queue associated with every node. Since in our

model of concurrency control we do not have queues associated with nodes, we shall avoid

discussing the queue manipulation aspects of the protocol.

Reader processes search top-down the tree locking nodes with a-locks but without cou-

pIing the locks. That is, the processes release held locks before accessing another lock.

Updator processes use lock-coupling with p-locks. AB a consequence of lock-coupling,

readers need not be driven away from the scope of the updator. To avoid updator processes

from colliding at the same node, asymmetric locks are used. When two updators (VI' Vz)

collide, one of them (VI) will p-Iock the common ancestor while the other (Vz) must wait.

However VI might need to lock some other nodes, already held by Vz. In that case f -locks

are used, to avoid deadlocks.

a

p

Figure 5.7: Compatibility Matrix for Miller and Snyder's Algorithm

a

y n 11
n n n

n

117

This algorithm has an unacceptable drawback. For B-trees of large orders, the

number of locks held by an updator process is often more than the number of locks that

would have been necessary if type 1 algorithms were used. However, the technique of decou-

piing of locks by reader processes and the use of asymmetric locks, as introduced in this

scheme, was later adopted by many authors [KwW82].

5.3.1.2.3. Lehman and Yao's Algorithm

This is one of the most efficient algorithms provided among all type 2 algorithms.

Only one type of lock is used in the protocol, but it, only handles searches and insertions

[LeY81]. The B-tree data structure was modified into the Blink-tree, providing two paths to

nearly all nodes in the tree. The trick employed was to search along another path while the

natural path was being modified as a consequence of an update common to the path. Only

updator processes locked nodes while reader processes proceeded freely down the tree. This

scheme provided the best results among all protocols as discussed in the next chapter.

Moreover, at one time, at most three nodes are locked, independent of the order of the tree.

The occasion when three nodes are locked is also relatively rare (see [LeY81 D. Since Algo-

rithm 2 of the author closely follows this, we discuss details of this algorithm later.

5.3.1.2.4. Kwong and Wood's Algorithm

Kwong and Wood provides an algorithm ~{wW79], that was a modification of the

algorithm by Miller and Snyder. Asymmetric locking was used with repeated reading of

nodes to avoid exclusive locking. The lock compatibility matrix is given in the Figure 5.8.

The protocol also employs lock conversions from' write to r. locks. The algorithm is

deadlock free but has potential problems of livelock. Moreover, the protocol only handles

insertions and searches.

118

Figure 5.8: Compatibility Matrix for Kwong and Wood's Algorithm

5.3.1.2.5. Sagiv's Algorithm

Sagiv provides an algorithm that is an improvement over the algorithm by Lehman

and Yao [Sag86]. He includes boundary conditions, which were non-trivial and ignored by

Lehman and Yao in their original paper. An inherent drawback of the Lehman and Yao

protocol was that deletion processes wasted space by deleting the key only from the leaf

level and not propagating any restructuring bottom-up. This resulted not only in wasting

space by the existence of half-filled nodes, but also in the existence of redundant keys in the

tree. To get rid of this problem, Sagiv used the concept of compression processes that

merged less-than-half-filled nodes of a particular level. Note that such merging is possible

only because the data structure was a Blink-tree. If the number of nodes in a particular

level is odd, then the compression process would leave behind one node uncompressed. Also,

the compression process only merges children of the same parent. Thus, in order to

compress a tree from which all the nodes have been deleted, it takes login) passes of the

compression process over the entire tree. Multiple compression processes can run at the

same time, although it reduces concurrency since the compression process locks more nodes

(usually three at a time) than the insertion (mostly two, rarely three), reader (none), or

deletion (one) processes.

rn rti w e

rp y y y n

r" y n n n

w y y n y
e n n y n

119

5.3.2. Protocols tor Top-Down Trees

Few protocols for top-down trees have been proposed in literature. Since the restruc-

turing of the nodes take place in a top-down manner, and since each node along the path

from root to the leaves is traveled exactly once, the cost of insertions and deletions, when

main memory size is fixed, is equal to or lower than bottom-up trees. However, as proven in

Chapter 3, the number of splits or mergings during an update is more in the case of top-

down trees. Thus, we have conflicting choices.' On one hand more splits occur but on the

other hand fewer nodes are locked during an update. The reduced amount of locking cou-

pled with the low cost of insertion have resulted in the growing popularity of top-down B-

trees over bottom-up B-trees in recent database systems (e.g., [Gra89], [CDK85]).

We explore the possibilities of improving concurrency using top-down tree locking pro-

tocols in this section. We give two new protocols, the first one of which does not provide

overtaking of updator processes, though the second one does.

5.3.2.1. Algorithm One

The first algorithm is analogous to the first solution of Bayer and Schkolnick. It uses

two types of locks whose compatibility matrix is given in Figure 5.9.

Eff3
e

,. y n
e n n

Figure 5.9: Compatibility Matrix for Algorithm 1

120

Pure readers are allowed to proceed down the tree, coupling with read-locks to the

appropriate node (or leaf, in the case of B+.trees). Figure 5.10 shows exactly how the pro-

tocol works. The procedure get_child(node, key) gets the next appropriate child of

node node, along the path from the root to the appropriate leaf where key is expected.

Updator processes proceed down the tree in a lock-step manner, exclusively locking the

nodes. Mter locking each node (except the root), the updator process checks to see if the

node is safe or not. If the node is safe, then it releases the exclusive lock on the parent of

the node and proceeds one step down the tree. If the node is unsafe, it splits the node,

modifies the parent node, and then releases the lock on the parent. Figure 5.11 illustrates

procedure Search (key)
begin

r_loc.k(dummy);
rJock(root);
r_unlock(dummy);
A :- foot;
repeat

if (A is a LEAF) then
beg in

if (key is in A) then
begin

f_unlock(A);
return FOUND;

end;
else
begin

f_unlock(A);
return NOTFOUND;

end;
end;
C := geLchild(A,key);
Llock(C);
f_unlock(A);
A:= C;

forever;
end; {Search}

Figure 5.10: Search procedure for Algorithm One

121

the insertion procedure and Figure 5.12 illustrates the deletion procedure in details.

Procedure distribute(node, sibling, middle_key) distributes the current

contents of node node between node and sibling, passing the middle key value out. The

procedure InBert (key)
begin

dock(dummy);
A :- root;
e.Jock(A);
if (A is full) then
begin

new(newJoot);
new(sibling);
distri buteeroot,n ewJoot,middle_k ey);
newJoot_ptr!OI:= root;
newJoot-ptr[II:= sibling;
newJoot-key[O!:= middle_key;
root := newJoot;

end

cunlock(dummy);
repeat

if (A is a LEAF) then
begin

ptr := pointer to the data record for 'key';
inserUnto.Jeaf(A,k ey,ptr);
e_unlock(A);
return;

end;
C := geLchild(A,key);
e.Jock(C);
if (C is not full) then
begin

e_unlock(A);
A:-C;

end
e18e
begin

nev(C');
distri bute(C,C' ,middle_key);
insertJ nto_nonleaf(A,mid dlle_k ey ,C');
e_unlock(A);
A:-C;

end;
forever;

end; {InBert}

Figure 5.11: Insertion procedure for Algorithm One

122

middle_key is used as the key for pointer sibling in the next level up. Procedure

x_unlock Clock), unlocks the lock lock of type x from a node. Procedures

insert_into_leafC parent, key, ptr) and insert_into_nonleafCparent, key,

ptr) insert a key, ptr pair in the appropriate position in parent when the parent is a

leaf or an internal node respectively.

The procedures merge and redistribute do exactly what. their names signify.

merge C node 1, nOde2,parent) merges the contents of nodes node 1 and node2 keeping

node1 as the final node and makes appropriate changes in the parent - parent. The rou-

tine takes care of the situation when parent is the root by manipulating the dummy node.

Calling redistribute C father, node 1, node2) performs local rotations by redistribut-

ing the keys. Procedure get_siblingCnode,father) gets the nearest sibling with

which redistribution or merging is possible. Procedure delete_from_leaf (leaf, key)

deletes the key key from leaf leaf, taking care of the boundary condition when leaf is

the root.

In our algorithm we have assumed the presence of a dummy node dummy such that

for all x in the tree dummy !; x. To see why we need the dummy node, consider x as the

current root with 2d keys and two il,sertion processes II and 12, Also, for simplicity let x be

a leaf node. Let, II appear before 12 to x. By the locking scheme which we presented, II

gets the e-Iock while 12 waits on an e-Iock for x. When II> after shifting keys and creating a

new root, releases the lock on x, 12 gets the lock on x and may be misdirected if exhaustive

information about the locks and the nodes which they correspond to are not kept. More-

over, keeping such forward links (locks with nodes) and backward links (nodes with locks)

may be expensive and is not done in most implementations. The presence of dummy can

come to the rescue in the case of such a boundary condition (root is split). Locking the

dummy node ensures that the split of the root is done in a critical region and therefore the

123

procedure Delete (key)
begin

dock(dummy);
e-Ioc k(root);
if (root contains one or fewer keys and root is not LEAF) then
begin

child 1 := get_child(root,key);
child2 := geLchiJd(childl,key);
dock(childl);
dock(child2);
if (merging is possible) then
begin

merge(child 1,child2,root);
root := childl;
current :- root;
e_unlock(child2);

end
else
begin

redistribute(child l,child2,root);
if childl ., get_child(root,key) then

begin
e_unlock(child2)
current := child!;

end
else

begin
e_unlock(child!);
current := child2;

end
e_unJock(root);

end;
end
e_unlock(dummy);
while (current is not a LEAF) do
begin

child := get_cbild(current,key);
e-Iock(child);
if (child contains less than or equal to d keys) then
begin

sibling:- getJibling(child,key);
dock(sibling);
if (merging is possible) then
begin

merge(child ,sibling,current);
e_unlock(si bling);
e_unlock(current);
current := child;

end
e18e
begin

redistribute(child,sibling,current);
childl := geLchild(current,key);

if child! -child then
begin

e_unlock(si bling);
current:- child;

end

124

else
begin

e_unlock(child);
current := sibling;

end

e_unlock(current);
end;

else

begin

cunlock(current);
current := child;

end;
end;
deleteJrom-'eaf(current,key);

end; {Delete} .

Figure 5.12: Deletion procedure for Algorithm One

split does not cause anomalies. The case of merging the root or redistribution of keys in the

level just below the root is similarly done in a critical region guarded by dummy.

Next, we prove a few properties of the algorithm.

THEOREM 5.1: Updator processes do not overtake each other.
Proof: Since exclusive locks are incompatible and all processes access the root before

accessing any other node, therefore V x,y if x !; y, and if a process P access x
before Q, then P also accesses y before Q.

o

THEOREM 5.2: A reader process may overtake another reader process.
Proof: Follows from the fact that read-locks are compatible.
o

THEOREM 5.3: A reader process cannot overtake another updator process or vice versa.
Proof: Follows from the fact that read-locks and exclusive locks are incompatible.
o

THEOREM 5.4: Algorithm 1 is deadlock free.
Proof: To prove that the algorithm is deadlock free it is sufficient to prove separately

that there cannot be deadlocks due to interactions between updator processes
and reader processes (see [Bil87]).

Case 1: Updator vs. Vpdator. At anyone time an insertion process may hold at most
two locks - the lock on the parent of an unsafe node and the lock on the unsafe
node itself. Let Vl and V2 be two update processes. Let x and y be two succes-
sive nodes in the path common to both the processes such that x !; y. Also, let
Ul a.ccesstl before U2. Then, by theorem 5.1 Ul a.lso accesses11 before U2.

125

Since, by algorithm 1, VI unlocks x only after it locks (and modifies if necessary)
y, there can be no dependency of VI on Vz in the waits-for graph. Hence, the
processes cannot be deadlocked. In fact, the theorem follows directly from the
fact that insertion processes sharing a common path are strongly ordered.

Case 2: Vpdator vs. Reader. Since an updator process cannot overtake another reader
process or vice versa, they are strongly ordered. Hence, there cannot be
deadlocks.

Case 9: Reader vs. Reader. Since read-locks are compatible, a set of reader processes
cannot be deadlocked among themselves.

o

THEOREM 5.5: Processes executing algorithm one are correct.
Proof: When there is no split or merge of the root, the theorem follows from the fact

that there cannot be deadlocks and that there exists a strong ordering on upda-
tor processes and between updator and reader processes. When the root is split,
the insertion process which splits the root holds an exclusive lock on the dummy
node and the previous root. Consequently, no other process can exist at the pre-
vious root and therefore there is no possibility of a process getting misdirected at
the previous root. When the root is merged, the deletion process which performs
the merge, holds an exclusive lock on the dummy node and the previous root.
Therefore no process can exist at the previous root and hence none can get mis-
directed.

o

5.3.2.2. Algorithm Two

In algorithm two, only one type of lock is used. The lock is irreflexive and hence

exclusive. The B-tree data structure is replaced by the Blink-tree data structure [LeY81].

Other than the root and the leftmost node at every level, every other node of the tree can

be reached by two paths - one from the parent of the node and the other from the node at

the immediate left.

Reader processes travel down the tree without locking any node. Instead of moving to

a child always, the processes may move to the right sibling at a particular level, if neces-

sary, to take care of concurrent updates.

The cases of insertion and deletions, however, have to be dealt with separately. Inser-

tion processes travel down the tree like normal reader processes. Moreover, it keeps track of

126

the node in the previous level along the path it traverses. We call this node in the previous

level the p8wdo-father. Whenever the insertion process finds a node x that is full (and a

potential victim of future splits), it creates a new node Xn and copies half the contents of x

(both keys and pointers) into Xn' After doing this, the insertion process locks the pseudo-

father of x. Then it checks whether the pseudo-father of x is the actual father of x. In

case it is, let p be this actual father. Otherwise it finds in the level above x, the appropri-

ate father p of x by moving right from the pseudo-father. Next, it locks exclusively both x

and its father p and appropriately includes Xn in p. The process continues until x is a leaf,

after which it inserts the key into the leaf. Note that, in this case we have reduced the

time which both p and x are locked to the execution of a few machine instructions. The

locking time includes the changing of the link pointer of x and shifting of the keys and

pointers in p. Using Lamport's technique of writing and reading keys in opposite directions,

we avoid reader processes getting misdirected at p. Exclusive locking prevents concurrent

insertion processes from interfering, i.e., trying to write in the same node.

Deletion processes also proceed top-down from the root to the appropriate leaf. The

child is locked before the parent when merging is to be done, as it was done in the case of

insertion. Also, writing and reading are done from opposite directions, to avoid reader

processes from getting misdirected. A flaw with this protocol, as with [LeY81], is that merg-

ing or redistribution cannot be done with a left sibling if the left sibling is locked by a

different process at the time of merging. Since deletions are usually rare and mergings dur-

ing deletions are even rarer in a large tree, we believe that avoiding a few merges will not

create appreciable decline in the average storage utilization. If such decline in the average

storage utilization is unacceptable, Sagiv's restructuring process can be used to merge the

left-out nodes. Moreover, since some merging is already done by the deletion process, the

restructuring process must be activated less frequently. Since the algorithm closely follows

127

that of algorithm one we avoid including the code.

Theorems 5.6 through 5.9 prove certain properties of the algorithm, its freedom from

deadlock and correctness.

THEOREM 5.6: In Algor£thm two, an updator process holds at most three locks at one
time.

Proof: In algorithm two, a node x is locked if and only if it is unsafe. When x is
locked all its ancestors are safe and by the algorithm, unlocked. According to
the algorithm, the only situation when three nodes need to be locked is under the
following circumstances: when the updator process needs to (merge) x I it finds
that the old father of the split (merged) node is no longer the correct place to
perform the insertion (deletion) of the pointer to the newly created node. In that
case, the updator process scans the level above the split (merged) node to find
the correct insertion (deletion) position for the pointer. Moreover, three nodes
are locked only for the duration of one operation - get the new father from the
disk.

o

THEOREM 5.7: Algorithm two is deadlock-free.

Proof: Define a partial ordering (~ l) of nodes in Bli k-trees in the following way. Let
x ~ l y if the link pointer of x points to y or t~e link pointer of x points to some
node z such that z ~ l y. Moreover the partial ordering !;l includes the partial
ordering ~. Since reader processes do not lock nodes, therefore they cannot be
involved in deadlocks. Updator processes lock nodes strictly following the order-
ing ~ l. Since they use incompatible locks, therefore they cannot be deadlocked.

o

THEOREM 5.8: Algorithm two produces correct execut£ons.
Proof: Update anomalies between updator and reader processes are avoided by copying

keys and searching for keys in opposite direction. The proof is exactly the same
as in [KwW82]. Since updator processes exclusively lock nodes from other upda-
tor processes, the updator processes cannot interfere to destroy correctness.

o

THEOREM 5.9: Algorithm two does not ensure log-sequence serial£zab£lity.
Proof: Assume that a reader process R 1 accesses the nodes n 1>n2, n3' n4 while search-

ing from the root to a leaf, and that these nodes are common to a concurrent

insertion process II> Also let nl ~ l n2 ~ l n3l ~ l n4' Then it is possible that II

accesses and changes nl and n2 before R1 but the other nodes after R1.
o

128

5.3.3. Operation Specific Locking Protocols

In the protocols used previously, the locks that the processes use do not bear the

semantics of the processes (e.g., delete, insert, search) that use those locks. That is, given

an arbitrary set of nodes and a set of lock-types (e.g., read, write, .etc.) on the nodes of that

set held by an arbitrary set of process, there may not be a way to categorize what opera-

tion is performed by which process. One protocol has been proposed in literature that locks

a node with a lock-type that depends upon the nature of process that is locking the node.

For example, insertion processes hold insert and exclusive locks, deletion processes hold

de/ete and exclusive locks and reader processes hold read locks only. Given a set of nodes nI,

n2, ..., nk>and a set of lock-types insert, exclusive, ..., read on these nodes currently held by

a set of processes P, Q, it can be inferred that one of the two processes is an insertion pro-

cess while the other is a read process. In this sub-section we discuss such a locking scheme

and propose a new locking scheme analogous to it.

5.3.3.1. Biliri's Algorithm

Biliris was the first to propose a locking scheme that includes the semantics of the pro-

cess on the locks it acquires [BiI87]. He used a Blink-tree data structure with additional

pointers pointing to the left sibling of a node. A low-value per node was kept, along with

the high-value as in the definition of Blink-tree in Chapter 3. In his algorithm, he uses 4

types of locks namely, r-locks (read), i-locks (insertion), d-locks (deletion) and e-locks

(exclusive). Instead of using binary locks, he used counting locks. That is, with certain

types of locks, a count is maintained. For example, the i-lock of a node may have a count

of 5 to signify that 5 processes have currently i-locked the node. Such locks are easily

implemented in systems where counting semaphores are provided, or with the help of binary

semaphores. The compatibility and convertibility matrices of the different types of locks

129

are gIven In Figure 5.13 and Figure 5.14 respectively. In the figures, #x stands for the

count of lock-type x for the node, where x is either of r, i, d or e and 8 stands for the

number of keys currently in the node.

Reader processes walk down the tree locking nodes by coupling read-locks in a lock-

step manner. Insertion processes i-lock their scopes on their way down as in the case of

other type one algorithms. On reaching the appropriate leaf, the process exclusively locks

the leaf and performs the insertion. In the case of an overflow, a restructuring of the tree is

propagated upwards. The restructuring process uses a side-branching technique essentially

the same as the one introduced in [KwW82]. Deletion processes walk down the tree per-

Figure 5.13: Compatibility Matrix for Biliris' Algorithm

Figure 5.14: Convertibility Matrix for Biliris' Algorithm

r i d e

r n n n n
i Y (#i < 2d -s) or (#i = 0) n n
d y n (#d< d-s)or(#d= 0) n
e n 1/ 1/ n

r i d e

r y y "Y n
i n n n Y
d n n n Y
e n n n n

130

forming aggressive mergings. On each level, the deletion process d-Iocks the node x and

examines whether x needs to be merged or not. If it needs to be merged, then it immedi-

ately d-unlocks the node and e-Iocks the parent, passing control to a restructure routine.

The restructuring routine then performs the merging or the redistribution of keys between

the appropriate children of the e-Iocked parent node. If the original node does not need to

be merged, then it d-unlocks n and proceeds another level down the tree. Further details of

the exact protocol can be found in [BiI87].

5.3.3.2. Algorithm Three

We present another protocol for concurrency control based on operation-specific lock-

mg. In the algorithm proposed by Biliris, merging of nodes is done aggressively while split-

ting of nodes is deferred. In practical database applications, the number of insertions far

exceeds the number of deletions. Also given a bounded amount of main memory, the cost of

insertion by aggressively splitting the nodes is less than the cost for deferred splitting of

nodes [Gra8g]. Moreover, performing deferred operations (i.e., splitting), require the locking

of larger scopes as in type one algorithms or tricky manipulations of the insertion algorithm

steps (type 2 algorithms). As an engineering tradeoff, we were interested in the performance

of algorithms where insertion is done aggressively while deletion is deferred. For trees with

smaller order, our algorithm is definitely a better choice over the algorithm by Biliris as the

cost difference between aggressive and deferred insertions increases with increase in the

height of the tree.

In our protocol, four types of locks are used, namely, r-locks, u -locks, p -locks and

a -locks t. Reader processes use r-Iocks only, insertion processes use u-Iocks and a-locks and

tAs the locks bear the semantics of the processes that use them, the locks taken together bear the semantics
of the author's life.

131

deletion processes use p-Iocks and a-locks. The compatibility matrix and the convertibility

matrix of the four types of locks are given in Figures 5.15 and 5.16 respectively. The lock-

ing mechanism in this algorithm is different from that of algorithm one (where more than

one type of lock is used). From the compatibility matrix, note that, if a process requests a

r-Iock on a node that is already r-Iocked, the request will not be granted. In our algorithm,

u-Iocking or p-Iocking a node also implicitly r-Iocks the node. Consequently, when locks are

released, care has to be taken to handle the implied locks also. Reader processes, on their

way down to the appropriate leaf, lock nodes in a lock-step manner with r-Iocks. The

reader processes follow the algorithm given in Figure 5.17. The procedure is essentially

Figure 5.15: Compatibility Matrix for Algorithm Three

Figure 5.16: Convertibility Matrix for Algorithm Three

r u v a

r n n n n

u y (#u < 2d - 8) or (#u = 0) n n

p y n (#p < d - 8) or (#p = 0) n

a n '!I '!I n

r u v a

r y y y n

tt n n n y

p n n n y
a n n n n

132

identical to that in algorithm one. The procedure get_child (node, key) gets the next

appropriate child of node node, along the path from the root to the appropriate leaf where

key is expected.

Insertion processes go down the tree to the appropriate leaf, u-Iocking the nodes one at

a time. After u-Iocking the node, it checks if the node already contains 2d keys. If it does,

then the process immediately releases the u-Iock on the current node and a-locks the parent.

A new node is thereafter created and the keys and pointers are shifted from the full node to

the newly formed node appropriately. The parent node's contents are then appropriately

changed and the a-lock on the parent is released. The insertion process then proceeds one

procedureSearch (key)

begin

dock(dummy);
rJock(root);
r_unlock(dummy);
A := root;
repeat

if (A is a LEAF) then
begin

if (key is in A) then
begin

r_unlock(A);
return FOUND

end
else
begin

r_unlock(A);
returnNOTFOUND

end;
end;
C := geLchild(A,key);
rJock(C);
r_unlock(A);
A:=C;

forever;

end; {Search}

Figure 5.17: Search procedure for Algorithm Three

133

level down. If the original node was less than full then the insertion process would simply go

down another level. Figure 5.18 presents the insertion algorithm in detail.

The procedure convert (node, type 1, type2) converts the lock type of type 1 on

node node to type2. Procedure distributeCnode, sibling, middle_key) distri-

butes the current contents of node node between node and sibling, passing the middle

key value out. The middle_key is used as the key for pointer sibling in the next level

up. Procedure unlock(node) unlocks all current locks on the node node. Procedures

insert_in to_leaf (parent, key, ptr) and insert_into_nonleaf C parent, key,

ptr) insert a key,ptr pair in the appropriate position in parent when the parent is a

leaf or an internal node respectively. A deletion process walks down the tree locking the

nodes with p-Iocks and stacking them. Whenever the deletion process finds a node that is

deletion safe, it unlocks all nodes that have been stacked till that point and empties the

stack. Thus by the time the deletion process reaches the appropriate leaf where the dele-

tion is done physically, it has the local scope p-locked. If the deletion induces a bottom-up

propagation, then a side-branching technique (as introduced in [KwW82]) is used to pro-

pagate the change upwards. The major operation of the delete process thus, consists of the

following:

1) p-Iock the scope.
2) restructure by node merging or key redistribution using a side branch.
3) discard the redundant branch.

Figure 5.19 shows the deletion algorithm in greater detail.

The procedures merge and redistribute do exactly what their names signify.

merge(node1, node2, parent) merges the contents of nodes node1 and node2, making

appropriate changes in their parent - father. Calling redistribute C father,node1,

node2) performs local rotations by redistributing the keys. Procedure

remove_branch Cnode) removes the side-branch from node current. Procedure

134

procedure InBert (key)

begin

ajock(dummy);

A :- root;
ujock(A);
if (A is full) then
begin

r_unlock(A);
convert(A,u,a);
new(newJoot);
new(si bling);
distri bu te_keys(root,newJoot,middle_key);
newJoot-+ptrIOI:= root;
newJoot-+ptrlll:= sibling;
newJoot-+keyIOj:= middle_key;
root := newJoot;
excl := true;

end;
a_unlock(dummy);
r_unlock(dummy);
if (A is a LEAF) then

if (not excl) then
begin

Lunlock(A);
convert(A,u,a);

end;
repeat

if (A is a LEAF) then
begin

ptr := pointer to the data record for 'key';
inserUntojeaf(A,key ,ptr);
a_unlock(A);
return;

end;
C := geLchild(A,key);
ujock(C);
if (child is not fuB) then
begin

if (C is a LEAF) then
begin

unlock(A);
convert(C,u,a);
A:=C;

end
end
else

begin
r_unlock(C);
convert(C,u,a);
if (not excl) then
begin

r_unlock(A);
convert(A,u,a);

end

end;
new(C');
distri bute(C,C',middle_key);

end;
forever;

end; {Insert}

135

inserLintoJlonleaf(A.midlle_k ey,C');
e_unlock(A);
excl:- true;

Figure 5.18: Insertion procedure for Algorithm Three

136

procedure Delete (key)

begin
pJock(dummy);

pJock(root);
current ;- root;

if (currentisdeletionsafe)then
begin

p_unlock(dummy);

r_unlock(dummy);
deepest-5afe;= root;

end
else

deepest-5afe ;= dummy;

son ;- get_child(current,key);

while (son is not a LEAF) do

begin

pJock(son);

current ;- son;

if (currentcontainsmore than d keys)then
begin

deepest-5afe ;= current;

p_unlock all ancestors of current;

end;

son ;= geLchild(current,key);

end;

if (key isin current)then
begin

rotate ;= false;

while (current does not contain more than d keys) do

begin
father ;= father of current;

if (fatherisdummy) then
begin

handleJootO;

goto special;

end;

sibling ;= get-5i bli ng(current,fath er);

pJock(sibling);

if (sibling contains less than d keys) then

begin
convert(si bling,p ,a);

merge(sibling,current,father);

a_unlock(si bling);

current :- father of current;

end;
else

begin
rotate :- true;

con vert(father ,p,a);

con vert(si bling,p,a);

convert(curren t,p ,a);

redistri bute(father ,current,si bling);

a_unlock(si bling),

if (depth(current) > depth(deepest-5afe» then

begin

a_unlock(father);

a_unlock all ancestors of father;

end;

end;

137

special:
end;

if (not rotate) then
convert(current,p,a);

remove_branch(curren t);
a_unlock(current);
while (current is not a LEAF) do
begin

current := get_child(current,key);
convert(current,p,a);
a_unlock(current);

end;
end
else

p_unlock current and all ancestors;
end; {Delete}

Figure 5.19: Deletion procedure for Algorithm Three

get_s ibl ing (node. father) gets the nearest sibling with which redistribution or merg-

ing is possible. Procedure handle_root () handles the situation when the root is merged.

Note that, in this case also we have also used the dummy node to take care of the boundary

conditions.

A problem of this protocol, along with all other top-down algorithms in which updator

processes do not use exclusive locks on their way down the tree, is that these protocols do

not preserve log-sequence serializabil£ty. As an example, consider 4 nodes related as r ~ u

~ p !;; a which appear along the path from the root to leaves in that order and are com-

mon to the path of two insertion processes Ii and 12, It is possible that Ii accesses rand u

before 12 but that Ii accesses p and a after 12, However the algorithms satisfy the criterion

of operation serializabi/ity.

Next, we prove that the algorithm does not create deadlocks.

THEOREM 5.10: Algorithm 9 is deadlock free.
Proof We prove the algorithm to be deadlock free by examining the synchronization

achieved between the three types of processes.
Case 1: Reader VS. Reader. Reader processes do not deadlock by themselves as they

proceed in one direction always.
Case 2: Reader VS. Insert. Reader processes always exclusively lock the parents before

the full child is unlocked and the new sibling of the full child is added to the

138

parent. Thus, the reader cannot be misdirected due to an insertion. Moreover,
since both reader and insertion processes lock nodes in a top-down manner and
never lock bottom-up, they cannot be deadlocked by themselves.

Case 3: Insert vs. Insert. We have to consider separately the cases when the root is
split and when any other node is split. Consider the case when the root needs to
be split. The root must contain 2d keys and only one process can get au-lock
over the root. Since locking is done top down only, a strong ordering is thus
imposed ~n all insertion processes. Hence, there cannot be a deadlock. In the
case when any other node is split, the both the parent of the full node and the
full node itself are a-locked. Since a-locks are incompatible with each other and
other u-Iocks, a strong ordering is imposed on the insertion processes at this
node. Hence there cannot be a deadlock.

Case 4: Insert vs. Delete: Operations performed by insertion and deletion processes
which modify the tree are done with their local scope locked by u-Iocks and p-
locks. For insertion processes, the local scope refers to the two full nodes being
split and their parent, and for a deletion process it refers to the sub tree rooted
at the deepest safe node. Since u-Iocks and p-Iocks are incompatible, therefore
there can be no interference among the processes.

Case 5: Delete VS. Reader: follows from the proof of deadlock-freedom in [KwW82].
Deletion processes do not perform any modifications during the searching phase
or when the restructuring is done from the appropriate leaf to the deepest safe
node. Recall that during that time the side-branches are not yet attached to the
tree and are invisible to the reader processes. Therefore the compatibility of p-
locks and r-Iocks create no problem. When the side-branches are attached to the
tree in a top-down manner, the p-Iocked are converted to a-locks which are
incompatible with r-Iocks and hence the processes do not conflict. These e-Iocks
provide a total ordering and hence reader and delete processes cannot be inter-
leaved once the deepest .safe node is a-locked. Since the reader processes and the
delete processes place the locks in the nodes visible to both in a top-down
manner, there cannot be dead-locks.

Case 6: Delete VS. Delete: See [KwW82].
o

5.3.4. Optimistic Concurrency Control

Optimistic concurrency control protocols have been used to maintain concurrent

access to B-trees in commercial database systems ~(uR81]. Processes are allowed to proceed

freely and make changes in the tree irrespective of the nature of the process (updator or

reader). Such changes are made in a local buffer specific to the particular process and the

changes propagated atomically to the common shared tree structure if the transactions

satisfy certain conditions (called validation criteria). These conditions were discussed in

Chapter 2.

139

Processes make separate copies of the nodes along the path of the tree, which they

modify. Moreover, the processes propagate the modifications atomically (or in a critical

region) upon validation. Each process is assigned an unique process number upon origin a-

tionand the process keeps track of the set of nodes that it reads and modifies. Upon termi-

nation of the process, the global counter that is used to assign process numbers is examined.

The read sets of all processes that have their process numbers lying between the current

content of the global counter and the process number of the process being validated are

compared with the write set of the process being validated. If the intersection set is non-

nun, the validating process is aborted (or restarted) without propagating the changes made

by it to the common shared tree structure.

An advantage of this scheme is that it can be made to support log-sequence serializa-

bility. However, for trees of low-order, where restructuring is frequent, optimistic con-

currency control is not a good scheme due to large number of conflicts resulting in transac-

tions getting aborted.

5.4. Comparison of Algorithms

In this sub-section we present an empirical comparison of the algorithms discussed in

this chapter in a tabular format similar to that in [KwW82]. Three separate tables sum-

marize the features of the algorithms discussed in the chapter.

140

Figure 5.20: Comparison table for bottom-up type 1 algorithms

Protocol - Samadi Bayer Kwong
Property - and Ellis and

.t. Parr Schkolnick Wood
123

Tvvrt:-sof locks used 1 2 2,3 3 3

Updators are strongly or- yes yes,yes,yes yes yes
dered

OveTtakino among readers no ves, yes, yes lIes 'lies

Readers in the scope of up- no no,no,yes yes yes
datoTs during searcMng
vhase

Readers in the scope of up- no no, no, no yes yes
datoTs durino restructuring

141

Figure 5.21: Comparison table for bottom-up type 2 algorithms

Author - Mill er Lehman Kwong
Property Ellis and and and Sagiv

i Snyder Yao Wood

Types of locks used 9 9 1 9 9

Updators are strong- no no no no no
111ordered

Overtaking among yes yes yes yes yes
pure readers

Data-structure used B-trees with B-trees with Blink -trees B-trees with Br k-treestn .
leaves as queues per queues per
chains node node

Concurrent de/e- only one many many many many
tions allowed

Maximum number depends on vanes with 9 depends on 9

of locks held at any tree size order of tree tre e size
time

142

Figure 5.22: Comparison table for top-down and operation specific algorithms

Protocol -+
!Property Algorithm 1 Algorithm 2 Biliris Algorithm 3

!

Nature of Protocol top-down top-down operation operation
specific s1Jecific

7'Y1Jesof locks used 2 1 i i

1L0cks are countina no no yes 'lies

Updators are strongly or- yes yes no no

dered

Overtaking among pure yes yes yes yes
readers

[Data-structure used top-down B+- top-down B+- Bl. k-trees with BI" k-trees ag-
trees trees In . d I

In. .
aggressve e e- gresslVe inser-
tions and de- tions and de-

lJerred Inser- (erred deletions
tions

Concurrent deletions allowed many man'll man'l/ man'l/

!Maximum number of locks depends on tree 3 depends on tree depends on tree
held at an 'IItime size sze sIZe

143

CHAPTER 6

ConcurrencyControl Performance

6.1. Introduction

In this chapter we compare the performance of nine concurrency control algorithms for

B-trees. As discussed in the previous chapter, many algorithms utilize some modifications to

the basic B-tree data-structure to achieve extra concurrency. In order to avoid comparisons

between apples and oranges, only those algorithms that employ only minor changes to the

basic data structure are included in our study.

In addition to the changes in the data-structure, the disparity in the approaches of the

algori thInS is also a problem. The simulation parameters have to be appropriately chosen

to care of this disparity. As an example, consider what should be an appropriate simulation

parameter to compare locking based protocols with optimistic protocols. Protocols based on

locking have the inherent cost of maintaining locks, which is not incurred by optimistic con-

currency control protocols. Thus we have to select a simulation parameter that overlooks

the locking overhead. However, when we compare locking-based protocols, the overhead due

to locking must be compared, too. Thus, it is difficult or impossible to compare the proto-

cols with respect to one particular metric.

In this chapter, we describe the performance metric, the factors that led to our choice,

our workload model and a comparative study of the protocols with respect to this metric.

144

6.2. Workload Model

Our simulations manipulated a B-tree stored entirely in main memory. We assume a

fully shared memory multiprocessing environment. Each process consists of several opera-

tions on B-trees and is analogous to a transaction of general database systems. The opera-

tions are analogous to sub-transactions in a nested transaction environment. Transactions

are categorized into three classes, namely, short, medium and large [CaM86]. Short transac-

tions contain 500 operations, medium transactions contain 1,000 operations and the large

transactions contain 2,000 operations. The simulations were performed on a Sequent Sym-

metry machine with eight processors, supporting a shared-memory architecture. Of the

operations in each process, the ratio of update to read operations was varied.

The Unix system call fork() was used to create the children of a master process.

Each child of this master process is a transaction. We observed that since the fork system

call takes a while to execute, when there are many short transactions, some would finish

before the others would get started. To avoid this, we forced all transactions to start at

the same time. We made all processes start at the same time with the use of the

s_wait_barrier() and the s_init_barrier () library routines provided with the

operating system. The s_init_barrier() system call initializes an internal data struc-

ture, which contains information about how many processes are to synchronize at the bar-

riel' point. The master process calls this routine before forking the children. The

s_wai t_barrier () routine is called by each of the child transactions. The execution of

this routine, in effect, makes a process wait until the previously specified number of

processes reach the barrier point.

Each of the transactions is provided with a process-id and two random number gen-

erators unique to the process. The first random number is used to determine the nature of

145

the operation (i.e., insert, delete or search) and the second random number is used to gen-

erate the key. The keys that are inserted are stored in a file and in case the operation is a

delete, another random number (common to all the processes) is generated. If this random

number is even, a previously-inserted key is deleted, otherwise a random key is selected and

a deletion of that key was attempted. To avoid the random deletion from being mostly

unsuccessful, the range of the random numbers was reduced. Moreover, the time to gen-

erate random numbers is also included in our simulations. We found the above assumption

to be acceptable because the time to generate random numbers is small compared to the

total time and same for all algorithms. Moreover, the time for other alternatives is of the

same order.

6.3. Implementation of Locks

Locks are implemented with the help of spin-locks, which are provided by the DYNIX

operating system [87]. In the Sequent Symmetry, locks are shared bytes of memory of type

unsigned char. We used spin locks because the only other available choice is semaphores

which are extremely slow and does not guarantee freedom from livelocks, which compelled

us to reject that choice. Moreover, with the current configuration of the operating system,

a bounded number of semaphores (21) can be active at one time. For the simulation results

to be stable, the trees that are to be manipulated have to have hundreds of nodes. Hence,

we could not associate semaphores with every node of the tree. There are ways this prob-

lem can be circumvented [SiP87], but they incur unacceptable overheads, which we wanted

to avoid.

However, there are problems with using the locks provided by the system. Unlike

those of transaction-oriented systems (e.g., the BiiN Operating System), the locks in Dynix

are not typed. That is, they cannot be categorized as read or write locks. Moreover, the

146

locks are binary - that is, a separate counter has to be maintained for manipulation of

counting locks as necessitated in some of the protocols. The problem can be avoided by

maintaining a separate lock table. Updates to this lock table have to be done in a critical-

region to avoid inconsistencies. Since the operations are data-intensive, the lock table often

acts as an unacceptable hot spot. These problems motivated us to implement our own

locks.

In our simulations, in the most general case, a lock is an array consisting of four bytes

of type unsigned char. Thus, the type declaration for locks is:

typedef rlock_t unsigned char [4] ;

We chose that type because it is the smallest size that would meet our requirements. The

first element of the array (first byte) is used to store the type of the lock (e.g., read, write,

etc.). The second and the third bytes contain auxiliary information wherever necessary (for

example, to store lock types in Algorithm 3). The fourth byte is used to store the count

whenever necessary. The use of an extra lock to ensure atomic update of the count along

with the lock is avoided by atomically transferring the long word (the entire array) to

memory. Optimizations are made wherever appropriate (e.g., using only one byte in the

protocol by Samadi and Parr). Using this definition of locks, the lock and the unlock rou-

tines were implemented in assembly language.

The Sequent assembly language (which closely follows that of the 80386 mlcroproces-

sor) provides us with the xchg{b:w:l} opcode, which was extensively used in the manipula-

tion of the locks. The opcode atomically exchanges the contents of the memory operand

with a memory operand. While waiting for a lock, spinning is done in the cache to reduce

bus traffic. Since our locks were quite densely distributed in memory, we also had to take

care of the position of the locks in the structure of a node. We noticed that if the memory

147

operands are not aligned in the boundaries of memory words, the xchg{b:w:l} opcode takes

appreciably more time to execute. Moreover, due to the cache coherence policy of the

Sequent, additional overhead may be incurred. If, for example, there are three locks in one

cache line, and if three processes (scheduled in three processors) simultaneously access each

of them, then one of the processes gets the lock first and the other caches must be invali-

dated. Such frequent invalidation of caches is called the ping-pong effect and has been dis-

cussed in detail in [HwB81]. However, we did not employ any technique to overcome it.

6.4. The Performance Metric

The measure of performance we measure is the total elapsed time of a transaction.

The total elapsed time of a process is defined as the total time taken by the process to exe-

cute in user mode (see [Gra89]). Since the protocols we implemented are deadlock-free and

correct, all transactions complete. The time for a transaction was obtained by starting a

stopwatch before the transaction started and measuring the time after the execution of the

transaction. The system call getrusage () was used for this purpose. The time elapsed in

executing in user mode was taken, since we are interested in the total elapsed time. \Ve

resorted to the real time instead of simulating the time because we are simultaneously

interested in certain aspects like locking overhead which are difficult to simulate. Moreover,

it. is not our prime objective to get the exact time of transactions since we are interested in

relative performance evaluations and not analytical simulations.

For a set of transactions, the total elapsed time of each of the member transactions

was noted and the difference between the minimum and the maximum total elapsed times

computed. For a given set of transactions, with the same number of operations in each

transaction, the mean of the total elapsed times, we believe, best captures the overheads

(e.g., locking, lock manipulation etc.) of the protocol. The computed difference between the

148

fastest and the slowest transactions reflects the standard deviation of the total elapsed

times, which in turn signifies the degree of concurrency of the protocol. A good protocol

should have small values for both the mean and the standard deviation.

6.5. Results

We have implemented nine protocols among those discussed in the previous chapter

and compared their performance. For future reference, the protocols are indexed according

to the table in Figure 6.1.

6.5.1. Total Elapsed Time

Figure 6.3 through Figure 6.5 plots the variation of the total elapsed time versus the

number of processes, for the nine different protocols. Each figure (consisting of 9 graphs)

corresponds to one class of transaction. In each of the graphs, the vertical lines correspond-

ing to a particular number of processors, correspond to the computed difference between the

Index

Algorithm 1

Algorithm 2

Algorithm 9

Algorithm

Algorithm 5

Algorithm 6

Algorithm 7

Algorithm 8
Aloorithm 9

Author

Samadi and Parr

Bayer and Schkolnick

Bayer and Schkolnick

Bayer and Schkolnick
Lehman and Yao

Algorithm 1

Algorithm 2
Biliris

Aloorithm 9

Figure 6.1: Index of the protocols compared

149

mInimum and the maximum execution times of the constituent processes. The mInimum

and the maximum times are joined for convenience.

To get the data, each of the simulations was run 2 times to minimize the effect of the

operating system (i.e., scheduling of the processes) and the minimum and the maximum

times of the processes are noted. However, in most of the graphs there is a sudden increase

in the total elapsed time when the number of constituent transactions exceeds 8. The data

corresponding to more than 8 transactions is probably unreliable because the Sequent Sym-

metry has 8 processors. If the number of transactions (i.e., processes) is less than 9 then

each of the processes is scheduled in a separate processor. However, the exact behavior

could not be determined when the number of processes exceeded 8.

In each of the figures, we are particularly interested in the relative performances of

Algorithms 2 and 6, Algorithms 5 and 7 and Algorithms 8 and 9, since each pair of these

algorithms operate on the similar structural variant. From Figure 6.3, we note that the

algorithm by Samadi-Parr (Algorithm 1) is the most time consuming compared to the others

because it puts an ordering on all processes sharing a common path. The first algorithm of

Bayer (Algorithm 2) is better than protocol 1 but the response time rises with the increase

in the number of processes acting concurrently. The second solution of Bayer, on the other

hand, performs appreciably better. At a first glance, it might appear that the third alga-

rithm of Bayer is not especially efficient. But, considering that only 30 percent of the opera-

tions are updates, the behavior is predictable. Obviously, Algorithm 5 gives the best perfor-

mance, among other bottom-up algorithms, since it allows other updators to exist in the

scope of another. Also note that the variance of the time for a given number of processes is

also less, which is expected. Algorithm 6 behaves, more or less like that of Algorithm 2, but

the slope of the curve is higher. This effect stems from the fact that splitting and merging is

done top-down instead of bottom up and that, in the former case, the number of splits or

150

mergings is greater. Algorithm 7 performs like Algorithm 5, however with a larger slope due

the fact that there are more merges and splits. Moreover, since Algorithm 7 takes care of

some instances of deletion, the mean total execution time is slightly more. Algorithm 8 and

Algorithm 9 have behavior comparable to each other. However, the total elapsed time rises

faster in Algorithm 9 because Algorithm 9 performs insertions aggressively as compared to

Algorithm 8. Since the number of insertions is greater than the number of deletions, the

total elapsed time is also greater.

With medium and long transactions (Figures 6.4 and 6.5) the same pattern in the vari-

ation of the total elapsed time with the number of processes is observed.

6.5.2. Effect of Read and Write Ratio

We also studied the variation of the total elapsed time with variations in the ratio of

read and write operations per transaction. Figure 6.6 illustrates this variation for the

different protocols. Only the medium sized transactions are considered. In each of the

graphs, the mean of the total elapsed times is plotted against the number of processes. Fig-

ure 6.2 shows the percentage of the different operations corresponding to the line types of

the graphs.

. 7%
20%
33%

search

90%

70%

50%

Line t

o

6.

Figure 6.2: Percentages of different operations.

151

As expected, algorithm 1 is most sensitive to the read/write ratio because, with more

writes, more subtrees have to be locked and, since all processes are ordered, all the processes

have to wait until the subtree is released for traversal. Algorithm 6 is also more sensitive to

the read/write ratio than algorithm 7, because the latter does not block read processes from

entering the scope of updators. AlgorIthm 9 is more sensitive to the read/write ratio than

algorithm 8 because it performs aggressive insertions and as insertions outnumber deletions.

In general, we observe that our algorithms have comparable performance to the ones

reported in literature. Thus, not only the cost of an operation is less in top-down trees, con-

currency control of top-down trees is simpler and the overheads of concurrency control are

comparable to the concurrency control overheads of bottom-up trees.

152

Algorithm 2 Algorithm 3

Algorithm 6Algorithm 5

Algorithm 8 Algorithm 9

8 42 4 6

Number

10 0 2 6 8 10 0 104 2 6 8

of Transactions

Figure 6.3: Total Elapsed Time versus number of short transactions

0.6
Algorithm 1

I
0.5

T
0

t 0.3
a
I

0.2

0.0

0.6
Algorithm 4

I
E 0.5-
1
a

p 0.3-
s
e

d O.2l

.---
.-'T-

0.0

T 0.6
i

I Algorithm 7
m
e 0.5

0.3
n

s 0.2
e
c
s 0.0

0

153

0.7
n

s 0.4
e
c
s 0.2

o 2 4 6

Number

8 2 6 10 0 2 6 8 10410 0 4 8

of Transactions

Figure 6.4: Total Elapsed Time versus number of medium transactions

1.1

0.9 J Algo,ithm 1 A Algorithm 2 Algorithm 3
T
0
t 0.7
a
I

0.4

I
YI

II
'-J II

0.2 ..
1.1

E 0.9 -I Algorithm 4 II Algorithm 5 IIAlgorithm 6
I
a
p 0.7-
s
e
d 0.4 -

I

--..&
. I--.J--- II --.L-J

0.2

T 1.1
1

m
e 0.9 -I Algorithm 7 II Algorithm 8 IIAlgorithm 9

154

1.5
I

A1 II Algorithm 2 II Algorithm 3Algorithm 1
1.2

r
0
t 0.9
a
I

0.6
I II

II- I I 'I
0.3
1.5

I
II Algorithm 5 II Algorithm 6

E 1.2
I Algorithm 4

I
a

p 0.9
s
e
d 0.6

I II
I --..J

0.3

T 1.5
1

m I Algorithm 7 II Algorithm 8 II Algorithm 9

e 1.2

;
0.9

n

s 0.6
e

Ic --
s 0.3

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Number of Transactions

Figure 6.5: Total Elapsed Time versus number of large transactions

155

,
1.1

1.1

0.9 ~ Algorithm 1

0.7

0.4

0.2

1.1

0.9 ~ Algorithm 4

0.7 -

0.4 -

0.2

0.7

0.4

0.2

o 2 4 6

Number

8 10 0

Algorithm 2 Algorithm 3

Algorithm 5 Algorithm 6

Algorithm 8 Algorithm 9

2 8 2 106 810 06 44

of Transactions

fi'igure 6.6: Effect of read-update ratio on Total Elapsed Time

156

Fuck you! you filthy troff

155

156

CHAPTER 7

Epilogue

7.1. SUIIlmary and Conclusions

The purpose of the thesis was to study and compare the performance and concurrency

control protocols for top-down B-trees and bottom-up B-trees. Concurrency control of

bottom-up B-trees is well studied and many efficient protocols have been provided for the

same. However, concurrency control of top-down B-trees has not been studied in detail. It

was conjectured in a paper ([LeY81]) that top-down B-trees are not efficient in a concurrent

processing environment. In this thesis, we wished to verify the conjecture and explore the

engineering trade-oft's between the two data structures.

In Chapter 1 we discussed the problem of concurrency control from the perspective of

general database systems. In Chapter 2 we surveyed the state of the art in concurrency

control of general purpose centralized database systems. In Chapter 3 we discussed the

several variants of B-trees reported in the literature and their advantages and disadvan-

tages. We also presented a probabilistic analysis of the effect of slack factor on the average

storage utilization of B-trees and compared the analyzed results with actual values obtained

from simulations. Next, we discussed the different algorithms for operations on B-trees (i.e.,

top-down splitting and bottom-up splitting of nodes). Then we proved mathematically that

the average number of node splits in the case of top-down splitting is strictly more than the

number of node splits in the case of bottom-up trees. Finally, we presented some possible

optimizations on the B-tree data structure to enhance some performance metrics and proba-

bilistically analyzed one of them. In Chapter 4 we discussed the effect of different key

157

distributions on the performance of B-trees by probabilistic simulations of the different key

distributions and supported probabilistic analysis. In Chapter 5 we discussed all protocols

reported in the literature on the concurrency control of B-trees to date. Next, we presented

two protocols for top-down B-trees and proved their correctness and freedom from deadlock.

Then, we presented another protocol with operational semantics that employs deferred dele-

tions and aggressive mergings. Finally in Chapter 6, we studied the performance of the

various protocols as a function of the number of processes and of the read/write ratios.

We conclude from our study that top-down B-trees are a viable alternative to

bottom-up B-trees when primary memory size is limited. Though extra overheads have to

be taken care of in the case of top-down B-trees, the overheads are small enough to be

ignored in most database applications. As in the case of bottom-up B-trees, there exist con-

currency control protocols that have comparable performance with their bottom-up counter-

parts. However, in applications where there are more deletions, bottom-up B-trees are still

more advantageous. We also verified experimentally that variations in key distributions

affect top-down and bottom-up B-trees more or less similarly.

7.2. Future Study

We could not mathematically analyze the effect of different insertion and deletion pro-

babilities on the performance of B-trees. The reason is, while taking into account the

different probabilities of insertion and deletions, the solution of the transition probability

matrix reduces to the solution of a tri-diagonal system of recurrence relations instead of a

bi-diagonal system. It is well known that standard methods to solve tri-diagonal system of

equations fail on certain values of the coefficient matrix. We would like to know what are

the ranges of the insertion and the deletion probabilities for which parameters such as the

average storage utilization and the probability cif split stabilize in the asymptotic case.

158

Once that is done, it is simple to calculate the expected survival interval of a node.

Although a quantitative approximation of the average survival interval of a node has been

reported in the literature, the analysis is based on complex measure theory and the analysis

is done only at the leaf level. Moreover, our analysis is exact at the leaf level and approxi-

mate at other levels. No solution for the exact analysis of B-trees has been reported in

literature and is a topic of current research.

Another topic of interest is the performance of B-trees under arbitrary probability dis-

tribution of keys. When the keys are uniformly distributed, the distribution of the nodes

(i.e., how many keys each node contains) is also uniform. The previous assumption consider-

ably simplifies the calculations. When the keys are distributed following an arbitrary distri-

bution, the distribution of the nodes are no longer uniform. Moreover, the distribution of

the nodes mayor may not follow the distribution of keys. Consequently, the problem

becomes more complicated. No solution to this problem has been reported either.

A problem we encountered was caused by the process scheduling policy of the Sequent

computer on which the simulations were done. The scheduling policy is not reported in full

detail in the manuals and the total elapsed time becomes unpredictable when the number of

processes exceed the number of processors. Analytical study of the processes-to-processor

ratio on the time of operation is also a topic of future research.

159

Bibliography

[BaR87] B. Badrinath and K. Ramammritham, "Semantics Based Concurrency Control:

beyond commutativity", Proceedings of the Third International Oonference on

Data Engineering, Feb. 87.

[Ba-e86] R. A. Baeza-Yates, "Expected Behaviour of B+ -Trees", Technical Report,

University Of Chile, 1986.

[BaM72] R. Bayer and E. McCreight, "Organization and Mantainance of Large Ordered

Indices", Acta Informatica, vol. 1 (1972), pp. 173-189.

[BaS77] R. Bayer and M. Schkolnick, "Concurrency of Operations on B-Trees", Acta

Informatica, vol. 9 (1977), pp. 1-21.

[Bay77] R. Bayer, "Prefix B-Trees", AOM Trans. Database Systems, vol. 2 (1977).

[BeG81] P. Bernstein and N. Goodman, "Concurrency Control in Distributed Database

Systems", Computing Surveys, vol. 13,2 (Jun. 81).

[BSR83] P. Bernstein, D. Shipman and J. Rothnie, "Concurrency Control in a System For

Distributed Databases", ACM Trans. Database Systems, vol. 8, 1 (Jun. 83).

[BGL83] P. A. Bernstein, N. Goodman and M. Y. Lai, "Analysing Concurrency Control

Algorithms When User and System Operations Differ", IEEE Transactions on

Software Engineering, vol. SE-9, 3 (May 83).

[BHoG87] P. Bernstein, V. Hadzalicos and N. Goodman, in Concurrency Oontrol and

Recovery in Database Systems, Addison Wesley, 1987.

160

[Bil87] A. Biliris, "Operation Specific Locking in B-trees", Proceedings of the 6th AC/lJ

SIGMOD Symposium on Prindples of Database Systems, San Diego, CA, Mar. 87,

pp. 159-169.

[BDT83] D. Bitton, D. DeWitt and C. Turbyfill, "Benchmarking Database Systems: A

Systematic Approach", Proceedings of the Conference on VLDB, Florence, Italy,

Oct. 1983, pp. 8-19.

[CaM86] M. J. Carey and W. A. Muhanna, "The Performance of Multiversion

Concurrency Control Algorithms", ACM Transactions on Computer Systems, vol.

4,4 (Nov. 86), pp.338-390.

[CBT74] D. Chamberlain, R. Boyce and 1. Traiger, "A Deadlock Free Scheme for Resource

Allocation in a Database Environment", Information Proc, vol. 74 (1974), North

Holland.

[CDK85] H. T. Chou, D. J. DeWitt, R. H. Katz and A. C. Klug, "Design and

Implementation of the Wisconcin Storage System", Software - Practice and

Experience, vol. 15,10 (Oct. 85), pp.943-962.

[Com72] D. Comer, "The Ubiquitous B-Tree", Computing Surveys, vol. 11, 1 (1972), pp.

121-137.

[EZG82] B. Eisenbarth, N. Ziviani, G. Gonnet, K. Melhorn and D. Wood, "The Theory of

Fringe Analysis and Its Application to 2-3 Trees and B-Trees", Information and

Control, vol. 55 (1982).

[EIl80] C. S. Ellis, "Concurrent Search and Insertion in 2-3 trees", Acta Informatica, vol.

14, 1 (1980), pp. 63-86.

[FeI68] W. Feller, in An Introduction to ProbabiWy Theory and Applications (I (3 II), John

Wiley, 1968.

161

[Gra89] G. Graefe, "Volcano: An Extendible and Parallel Dataflow Query Processing

System", Technical Report, Oregon Graduate Center, Jun. 1989.

[GuS78] L. J. Guibas and R. Sedgewick, "A Dichromatic Framework For Balanced

Trees", Proceedings, 19th Annual Sympos£um on Foundat£ons Of Computer

Set'ence, 1978, pp. 8-21.

[HaR84] T. Haerder and A. Reuter, "Transaction Oriented Database Recovery", ACM

Computing Surveys, vol. 15, 4 (Dec. 84).

[HwB81] K. Hwang and F. A. Briggs, in Computer Arch£techture and Parallel Processing,

McGraw Hill, 1981.

[Knu71a] D. E. Knuth, The Art of Computer Programming Vol. 1, First Edition, 1971.

[Knu71b] D. E. Knuth, The Art of Computer Programming Vol. 2, First Edition, 1971.

[Knu73] D. E. Knuth, The Art of Computer Programming Vol. 9, First Edition, 1973.

[Koh81] W. H. Kohler, "A Survey of Techniques for Synchronization and Recovery In

Decentralized Computer Systems", Computing Surveys, vol. 13,2 (Jun. 81).

[KuR81] H. T. Kung and J. T. Robinson, "On Optimistic Methods for Concurrency

Control", ACM Trans. Database Systems, vol. 6, 2 (1981).

[Kus73] K. Kuspert, "Storage Utilization in B-Trees with a Generalized Overflow

Technique", Acta Informatica, vol. 19 (1973).

[KwW79] Y. S. Kwong and D. Wood, "Concurrency in B-trees, S-trees and T-trees",

Technical Report 79-CS-17, MacMaster University, May 79.

[KwW80a] Y. S. Kwong and D. Wood, "On B-trees: Routing Schemes and Concurrency",

Proceedings of the 1980 ACM/SIGMOD Internat£onal Conference on Management

of Data, 1980.

162

[KwW80b] Y. Kwong and D. Wood, "On B-Trees: Routing and Concurrency", Proceedings

1980 SIGMOD Management of Data, 1980.

[KwW82] Y. S. Kwong and D. Wood, "A New Method For Concurrency in B-Trees", IEEE

Transactions in Software Engineering, vol. SE8, 3 (May 1982).

[Lam77] L. Lamport, "Concurrent Reading and Writing", Comm. ACM, vol. 22, 11

(1977), pp.806-811.

[Lam78] L. Lamport, "Time, Clocks and Ordering of Events in a Distributed System",

Communications of the ACM, vol. 21, 7 (Jul. 1978).

[LeY81] P. L. Lehman and S. B. Yao, "Efficient Locking For Concurrent Operation on B-

trees", ACM Trans. Database Systems, vol. 6,4 (Dec. 81), pp. 650-670.

[Leu84] C. H. C. Leung, "Approximate Storage Utilization of B-Trees: A Simple

Derivation and Generalizations", Information Processing Letters, vol. 19, 4

(Nov. 84).

[Lom77] D. B. Lomet, "Process Structuring, Synchronization and Recovery using Atomic

actions", Proc. Conference on Lang. Design for Reliable Software, vol. 12, 3

(Mar. 1977).

[MaS80] D. Maier and S. C. Salveter, "Hysterical B-Trees", Information Proces.sing

Letters, vol. 12, 4 (1980).

[MaS87] D. Maier and J. Stein, "Development and Implementation of an Object Oriented

Database System", in Research Directions in ObJect Oriented Programming, B.

Shriver and P. Wegner (eds.), MIT Press, 1987.

[MoI83] H. G. Molina, "Using Semantic Knowledge for Transaction Processing in Distr.

Systems", ACM Trans. Database Systems, vol. 8, 2 (Jun. 83).

[Pap79]

[Par77]

163

C. Papadimitrou, "On Serializability Of Concurrent Database Updates", J.

ACM, Jun. 1979.

J. R. Parr, "An Access Method For Concurrently Sharing a B-Tree Based

Indexed Sequential File", Technical Report 96, Dept. Of Computer Science, Apr.

1977.

[RaM89] M. V. Ramakrishna and P. Mukhopadhyay, "Analysis of Bounded Disorder File

[RaL89]

[Rao89]

[RiS77]

[Rub8!]

[Sag86]

System", Proceedings of the ACM Principles of Database Systems, 1989.

R. Ramakrishna and P. A. Larson, "Perfect Hashing with Composite Perfect

Hashing", ACM Trans. Database Systems, vol. 10, 2 (May. 89).

G. Rao, Personal Communication, 1989.

D. Ries and M. Stonebraker, "Effect of Locking Granularity on Database

Management Systems", ACM Trans. Database Systems, vol. 2, 3 (Sep.77).

R. Rubinstein, in Simulation and the Monte Carlo Method, John Wiley, 1981.

Y. Sagiv, "Concurrent Operations in B*-Trees.With Overtaking", Journal Of

Computer and System Scie.nces, vol. 33, 2 (1986), pp. 275-296.

[Sam76] B. Samadi, "B-Trees in a System of Multiple Users", Information Processing

[SiP87]

[SiK82]

[SiK83]

Letters, vol. 5,4 (Oct. 76).

A. Siberschatz and P. Peterson, in Operating System Principles, Addison Wesley,

1987.

A. Silbershatz and Z. Kedem, "A Family of Locking Protocols for Database

Systems", IEEE Transactions on Software Engineering, vol. 8,6 (Nov. 82).

A. Silbershatz and Z. Kedem, "Locking Protocols: From Exclusive to Shared
. ,

Locks", J. ACM, vol. 30, 4 (Oct. 83).' .

[Wri85]

[Yao791

164

W. E. Wright, "Some Average Performance Measures for the B-Trees", Acta

Informatica, vol. 21, 6 (1985), pp.541-557.

A. Yao, "On Random 2-3 Trees", Acta Informatica, vol. 9, 4 (1979), pp. 171-

181.

[871 "Sequent Guide to Parallel Programming", Users Manual, 1987.

165

Biographical Note

The author born on the 6th of January, 1966. He attended the St. Xavier's Collegiate

School from 1971 to 1984 and matriculated with a science major. He then joined the Indian

Institute of Technology, Kharagpur in 1984 to pursue undergraduate studies in Computer

Science and Engineering. After completion of undergraduate work, he came to the United

States of America to pursue further research. During the first year of graduate study in the

Oregon Graduate Center, he held a Research Assistantship. He graduated with an M.S. in

less than one year, after which he leaves O.G.C for India.

Other than the topic of this dissertation, the author has broad interests on various

topics, including the Object Oriented paradigm, language design, compilation techniques

and centralized and distributed database systems.

	198909.dutta.tanmoy to p. 91.pdf
	198909.dutta.tanmoy to p. 165.pdf

