
Implementation of a Hypertext System in an
Object-Oriented Database

Sadhana Shenoy
B.S. University of Phoenix, Phoenix, 1985

A thesis submitted to the faculty of the

Oregon Graduate Institute
of

Science and Technology

in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science

October, 1989

The thesis "Implementation of a Hypertext System in a n Object-

Oriented Database" by Sadhana Shenoy has been examined and

approved by the following Examination Committee.

Dr. T. Lougpdia Anderson
Servio Logic Corporation
Thesis Research Advisor

h r ; ~ e ~ i s l e
Textronix Corporation

Dr. David Maier
Professor

7 /
Dr. Richard ~ a l h l e t
Professor, Portland State University.

Acknowledgements

I am very grateful to my thesis advisor Dr. T. Lougenia Anderson

for her guidance and encouragement during the course of this work. A

special thanks to Norm DeLisle for his help with Neptune. I also want to

thank Dr. Maier and Dr. Hamlet for being on my thesis committee.

Jianhua Zhu and Belinda Flynn worked very patiently with me on

the GemStone configuration, and I would like to express my gratitude.

Arne Berre's discussions and comments about the thesis were very valu-

able.

And last, but very certainly not the least, I would like to thank

Sunil, whose love and patience saw me through this Master's degree.

ii

Table of Contents

Introduction ..
Hypertext ...

The Object-Oriented Programming Technique

Object-Oriented Database Servers ..

Hypertext Research Survey ...

Introduction ..

An overview of some hypertext systems

Object-Oriented Databases ...

VBASE: an object-oriented development environment

Gemstone ..

Implementation ...

Tektronix's NEPTUNE ...

.. Design

Implementation ...

General notes on the implementation ..

The Interface ..

Implementation Results ..

ABSTRACT

Implemention of a Hypertext System in a n
Object-Oriented Database

Sadhana Shenoy
Oregon Graduate Center, 1989

Supervising Professor: Dr. T, Lougenia Anderson

Hypertext is non-sequential or non-linear text. I t is a n electronic

medium for information processing, where da ta is stored as a network of

nodes interconnected by links. The fundamental concept of hypertext,

namely, the imposition of structure on a collection of related da ta t o

facilitate its easy access, is not new. However, i t is the

I I electronification" of documents and especially their interconnections

tha t has lead t o a renewed interest in Hypertext.

Conventional record-oriented database systems pose limitations of a

fixed and finite set of da ta types, and the need t o normalize data.

Object-oriented databases overcome these limitations with their flexible

data-typing facility and ability t o model da ta tha t is not suited t o nor-

malized relations. Gemstone is a n object-oriented database server t ha t

t supports a model of objects similar t o tha t of Smalltalk-80. Gemstone

provides an object-oriented database language, called OPAL. Gemstone

merges object-oriented language technology with database technology to

solve data management and information modeling problems that are not

easily solved by relational or hierarchical systems.

The purpose of this thesis is t o implement the functionality of a

prototype hypertext system (Tektronix's HAM - Hypertext Abstract

Machine) upon an object-oriented database (Gemstone) and report on

the ease in using the object-oriented paradigm for a given application.

CHAPTER 1

INTRODUCTION

The purpose of this thesis is t o implement a software system using

an object-oriented language, and to report on the ease in using this

paradigm. The software system chosen for this project is a hypertext

system, (Tektronix's HAM - Hypertext Abstract Machine), and is imple-

mented upon Gemstone, which is an object-oriented database.

The first section in this chapter introduces the concepts of hyper-

text. The second section describes the object-oriented programming

technique, and the third discusses the need for object-oriented database

servers.

1.1. Hypertext

The term "hypertext" was coined by Ted Nelson, and means non-

sequential or non-linear reading and writing. Hypertext is an electronic

medium for communication and thought-processing. In a hypertext sys-

tem, documents are represented by graphs. Graphs consist of nodes that

contain data, and of links that connect the nodes.

The basic capabilities of hypertext are the linking together of

discrete blocks of material t o form networks of related information,

following paths through these networks, and attaching annotations.

Nodes represent objects in the database, machine-supported references

(links) between these objects allow non-sequential access t o these nodes.

Nodes and links provide the representation system in hypertext.

Nodes provide a da ta structure and links a representation scheme t o

hypertext applications. A node is a module of text t ha t has some data

in it. The node size is entirely up t o the user and his application. A

node can be considered a file, with semantic connotations ascribed by

the user. Thus, a single character, a single idea, or all information

about a specific subject can be put in a node. Hypertext nodes are not

restricted t o contain only text, they can contain any representational

medium, such as structured graphics, digitized sound, bit-maps, audio

recordings, etc. Nodes have names, and usually, properties ascribed by

the user.

Nodes are connected by links. Links are used for connecting

related portions of separate documents, for referencing, for comments,

footnotes, annotations, margin notes and documentation. Links also

have names and attributes. They are directed, ie., they have a source

and destination. Sources and destinations of links are described

differently by hypertext systems. They can be single points in the text,

portions of text or even entire nodes. A link can usually be traversed in

both directions. Links reference by name (of destination node) or by

value. Linking can be done explicitly through referential and organiza-

tional links. Implicit linking occurs through keywords.

All hypertext systems have an underlying database. The database

can be thought of as a web or interconnection of nodes. Each node can

be displayed by a window on the screen. Nodes can be created or

removed, data can be entered, read, manipulated and stored back into

the database through these windows. Links are indicated through icons,

these links can be followed, and windows a t the other end point of the

link opened and viewed.

Hypertext is a tool for readers as well as writers. To writers, it

provides an ideal environment in which varying material from numerous

sources can be brought together and processed harmoniously. New ideas

are not built all a t once, they are developed along various different

planes and orientations. These parallel lines of thought contribute much

to each other, and grow together into a communicable and coherent

idea. Traditional text processing mechanisms make i t difficult to

represent this process, mainly because there is no efficient way to

represent the connections (between independent modules of information)

that exist in the mind of the writer, no way t o integrate independent

ideas.

Hypertext provides readers with a medium where voluminous infor-

mation from a multitude of sources is made easily accessible. The impli-

cit structure in the material is made explicit. High speed windows allow

readers t o browse through referenced and documented material

effortlessly and links allow easy non-sequential access t o physically

disconnected data, enriching the understanding of the subject matter.

The most striking and unique feature of hypertext is t ha t i t enables

non-sequential reading and writing. Links impart this nonlinieaty t o

hypertext systems by providing a machine-supported mechanism t o

reference and integrate various chunks of information within and

between documents. This feature makes i t easy and unobtrusive t o

express branches in the flow of thought, and allows the viewing of

material from varying angles by providing alternative successors t o a

portion of text. Conventional flat and sequential text is thus extended

beyond the "single dimension of linear flow" [Conklin 861.

Thus, i t is this "machine-supported links" feature t ha t is the distin-

guishing feature of hypertext systems. Jeff Conklin's paper "A Survey

Of Hypertextw [Conklin 861 seeks t o establish the criterion of machine-

supported arbitrary cross-linking between da ta items or interdocument

links as being the fundamental feature of hypertext systems. Vannevar

*I Bush, who is credited with first describing hypertext in his memex",

considered this linking capability to be of primary importance,

I* ... associative indexing, the basic idea of which is a provision

where by any item may be caused a t will to select immediately and

automatically another. This is the essential feature of the memex. The

process of tying two items together is the important thing. " [Bush 451.

Most hypertext systems provide the ability to "filter" information.

Filtering allows users to choose and view pertinent information only.

*I Attributes" or other selection criteria define characteristics of and rela-

tionships between chunks of information by defining "values", and can

be used to select the desired information [Yankelovich et al. 851. The

hypertext database can be browsed by search using filters or keywords,

and also by following trails established by links.

Hypertext systems can aid in creating better audiovisualization, as

the nodes in hypertext systems are not limited to contain only text, but

*I can contain a combination of many media. The inclusion of animation,

computer-generated sound, and audio and video recordings adds a rich-

ness t o electronic document systems that is impossible to recreate with

paper media." [Yankelovich et al. 851.

In conclusion, hypertext systems are particularly useful for idea-

processing, browsing and problem solving. They provide appropriate

tools for structuring ideas, and organizing material in various ways to

suit different viewpoints. Hypertext systems are also well suited for

exploring representational problems. They allow the user t o view not

only the contents of documents, but the structure as well. "The ability

t o work with unstructured information in conjunction with formalized,

systematically organized information is the chief advantage in using a

I # hypertext system rather than a database description language.

[Marshall 871.

1.2. The Object-Oriented Programming Technique

Object-oriented programming was introduced in the 1960's by a

language called SIMULA, where the notion of object was presented.

However, i t was Smalltalk, a n interactive, display-based implementa-

tion, t ha t gave the object-oriented paradigm wide recognition. This pro-

gramming methodology has found use in a variety of applications, par-

ticularly in software systems development, artificial intelligence pro-

gramming, and simulation.

The following paragraphs define the primary features of object-
i

oriented programming (as supported by SmallTalk-80).

Objects & Methods

Objects, not surprisingly, are the basic units in an object-oriented

programming language. They perform computations and save state, and

hence combine the functionality of procedures and da t a in a conven-

tional programming language. An object has a da ta structure as well as

a group of operations tha t define how to access and manipulate the da ta

contained in the da ta structure. An object has instance variables

(fields). These variables can contain any values, and can even be

pointers t o other structured objects.

Objects communicate with each other by sending messages. Each

message contains a selector, which can be described as a procedure

name, and possibly message arguments corresponding t o parameters.

A message expression is like a subroutine call. The set of messages that

an object understands are called its protocol.

When a message is sent t o an object (the receiver) i t responds t o

the message by executing a piece of code called a method, which is a n

operation t ha t implements the named message. A method consists of a

set of executable statements. Each method corresponds t o a method

selector.

Classes

A class is a description of a group of similar objects, a template

tha t is defined t o describe the properties, characteristics and behavior of

a set of common objects [Yankelovich et al, 881.

Every object is an instance of some class. When more than one

object is a n instance of the same class, each object has the same

number of variables as defined by the class, but the da ta in those vari-

ables can be different for each of the instances.

A class can have many types of variables. The two most commonly

used are instance variables and class variables. The value of a class

variable is shared by all the instances of a class, whereas the value of a n

instance variable is specific t o the instance of the class. All instances of

a class share the same methods.

Subclasses and Inheritance

Inheritance is a technique tha t enables specialization in object-

oriented languages. I t allows new classes t o be built upon, o r derived

from other, pre-existing classes. The new class is more specialized as it

contains more information or is more constrained than the pre-existing

class. The more specialized class is called the subclass, and the more

general one is the superclass. An object in a subclass inherits all the

instance variables and methods of the old class. New instance variables

and methods can be added by the subclass. The subclass can override a

method in the superclass by defining a method with the same selector as

the superclass.

Data Abstraction & Encapsulation

Abstract data objects are fully characterized through the opera-

tions defined on them. Thus, there is no need t o understand the inter-

nal representations and implementation of these objects. Objects in

object-oriented languages are abstract da ta objects with an external

interface, consisting of the set of operations defined on them. Object-

oriented languages support da ta abstraction since an object can be

manipulated only through its external interface. Changes can be made

t o the structure or behavior of an object, and so long as visible behavior

of the object remains undisturbed, this change is not seen by the user.

Encapsulation is a technique for minimizing interdependencies

among separately written modules by defining strict external interfaces.

Data abstraction and encapsulation thus describe the same concept.

These techniques make it possible t o change the implementation of a

module without affecting other interacting modules. This improves the

understandability of programs and makes i t easy t o modify them.

Polymorphism

Polymorphism is a concept where different classes of objects can be

used in the same context. Each class responds t o a set of messages

expected in the context. Different objects can respond t o the same mes-

sage in their unique way, i.e., the methods t ha t are executed in response

t o the message are directly associated with the receiver. This is a n

important feature of object-oriented languages since it allows the

definition of flexible software elements amenable t o extension and reuse.

Binding

In many object-oriented languages, variables are not typed and

may contain objects of any class. I t is not possible to determine stati-

cally exactly what method in what class will respond t o a message.

When a message is sent t o an object, the corresponding method is

looked up a t run time in the object's class. This is late or dynamic

binding, where the binding is based on the object whose operation is

invoked. Dynamic binding allows a programmer t o create very flexible

code. Any object can be used as an argument as long as i t can respond

t o the messages sent t o it.

This is in contrast t o statically-typed languages, where operation

calls could be statically bound t o the respective operations. Thus, the

i check for whether values of the appropriate type are being assigned t o

t the variables tha t are the arguments of functions or operations is done

at compile time rather than at run time.

1.3. Object-Oriented Database Servers

Why object-oriented servers?

Database systems technology has grown up in a n environment of

commercial da t a processing, where data-intensive business applications

have requirements for persistence and sharing of data. Traditional

database systems based on relational or hierarchical da ta models have

evolved t o meet the needs of these business applications. However,

these database systems are characterized by a predefined and limited

set of da t a types. In these systems, data is modeled by collections of

rigidly typed records. Many modern-day application domains consist of

complex da ta structures, and the traditional da ta models just do not

have the framework or power t o represent them. Current database sys-

tems "are primarily a n effort t o implement abstract da ta types over the

memory of a machine" [Copeland, Maier 871. They do not support easy

and natural modeling of da ta since designers are constrained t o a fixed

set of predefined data types. Data has t o be normalized, and contorted

t o fit into the available form, thus artificial structure is imposed upon it.

In contrast, object-oriented databases are built on the concept of

an object rather than a record. Objects are a uniform programming

unit for computation and saving state, and as such are ideal for

representing collections of things tha t interact. The basic concepts of

object-oriented languages (object identity, abstract data-typing, message

sending, da ta abstraction, inheritance and encapsulation) provide users

rich da ta modeling facilities. Object-oriented programming is a powerful

technique where a system can be structured as a collection of interacting

components, and provides a robust framework for creating, extending,

modifying and maintaining systems. Since a database is intended t o

stand as a model of the application environment, there is a need t o

incorporate the semantics into the data model so tha t the database can

closely reflect the application. Object-oriented databases enable the user

t o define da t a semantics through type extensibility.

The purpose of this thesis is t o implement a software system using

an object-oriented language, and t o report on the ease in using this

paradigm. The software system chosen for this project is a hypertext

system, (Tektronix's HAM - Hypertext Abstract Machine) , and it was

implemented upon Gemstone, which is an object-oriented database.

The remainder of this thesis is organized as follows: Chapter 2 pro-

vides a n overview of some existing hypertext systems, Chapter 3

describes two commercially available object-oriented systems, Chapter 4

I outlines the implementation of this thesis and Chapter 5 reports the

results of the implementation.

CHAPTER 2

Hypertext Research Survey

2.1. Introduction

Jeff Conklin has categorized existing hypertext systems according to

the nature of their applications: macro-literary systems, problem

exploration tools, browsing systems and general hypertext technology

[Conklin 861. Macro-literary systems were the pioneer hypertext sys-

tems. They were conceived to function as electronic libraries, providing

tremendous volumes of information on-line. Machine-supported interdo-

cument links, which constitute a fundamental feature of hypertext, were

introduced in these systems. The memex [Bush 451, NLS/~ugment

[Engelbart, English 681 and the Xanadu project [Nelson 801 are examples

of systems in this category. Problem exploration tools provide a plat-

form for developing ideas and solving problems. For example, Xerox

PARC's PIE [Goldstein, Bobrow 801 is a tool for software design,

development and documentation. Browsing systems include ZOG

[Robertson e t al. 811 and Hyperties, which allow easy access to, and

manipulation of, stored information. These find use in academic

environments. The more recently developed hypertext systems explore

specific issues in the area of hypertext in addition to providing all the

facilities of the older systems. For example, Neptune [DeLisle, Schwartz

87a], Notecards [Halasz et al. 871 and Intermedia [Meyrowitz 86a] have

found a variety of applications, and serve as tools for further research

and study of hypertext.

The rest of this chapter briefly describes some of the hypertext sys-

tems mentioned above. The hypertext .system used as a model in this

implementation is Tektronix's Neptune. Neptune is discussed in detail in

Chapter 4.

2.2. An Overview of some Hypertext Systems

2.2.1. Bush's Memex

Vannevar Bush introduced the concept of hypertext in "As We May

Think" [Bush 451. He describes "memex", a mechanized private library,

as

*I Consider a future device for individual use, which is a sort of

mechanized private file and library A memex is a device in which an

individual stores his books, records and communications, and which is

mechanized so that it may be consulted with exceeding speed and flexi- 1
I

bility. It is an enlarged intimate supplement to his memory." [Bush 451

His envisioned system consisted of "slanting translucent screens" on

which da ta could be projected, and a keyboard. Material or da t a is

stored on "improved microfilm". Books, pictures, periodicals, newspa-

pers, pictures and business correspondences would all be stored in the

library. An indexing scheme would be provided for reading the material,

and facilities for non-sequential access would also be provided.

The memex sought t o mechanically reproduce the mental process of

retrieving and characterizing information in tha t "selection by associa-

tion rather than by indexing may yet be mechanized." He described the

essential feature of memex t o be the ability t o join two items and create

(I trails". Subsequently, recalling any one item meant tha t the other(s) in

the trail could also be instantly recalled.

The memex was certainly a visionary idea but the required

hardware was far beyond the (then) current technology. However the

two primary features of the Memex, mechanized information storage and

the fast and easy retrieval of this information define hypertext as i t is

known today.

2.2.2. Engelbart's NLS/ Augment

NLS (ON Line System) was developed in 1968 by Douglas Engelbart

a t the Augmented Human Intellect (AHI) Research Center at Stanford

Research Institute. The research objective of the "interactive, multi-

console computer-display system" [Engelbart, English 681 was t o develop

a tool tha t would amplify the intellectual abilities of the user. The

research group's aim was t o do all of its work on-line, designing, plan-

ning, debugging and documenting, as well as intercommunications and

scratch work.

The research group had access t o very sophisticated CRT work-

stations. These work stations had, in addition t o a television display

and typewriter keyboard, two of Engelbart's inventions, the mouse and

a 5 key handset. All of the "working information" was organized into

files. Files were organized as hierarchical structures, while specifying

structure was left t o the user. Text was broken into arbitrary length

segments called statements, which were numbered according t o their

serial location and positional hierarchy within the text. The first word

of a statement was its name. Reference links could be established

between statements within or across files.

Special mechanisms were provided for viewing and studying files,

allowing users t o view specified portions of the file. View-specification

I conditions allowed the user t o specify the level or depth of the hierarchy
I

a t which he wished t o view the file (level clipping), displaying only a cer-

tain number of lines from each statement depending on the truncation

parameter (line truncation), and viewing only statements containing

II some desired content. This specification was made in a high-level con-

tent analysis language."

The concept of structured, multi-person distributed editing was

introduced in this system. Standard editing operations were available

for file modification, and hard copies could be produced with a help of

different output devices. Compiling, debugging, calculating and con-

ferencing facilities were also provided.

The NLS was unique, as i t introduced many of the capabilities

mentioned above that are standard in all systems today. Known today

as N L S / ~ u ~ m e n t , i t is marketed as a commercial network system.

2.2.3. Xanadu

Xanadu was developed by Ted Nelson, and is a system for storing,

accessing and manipulating linked and windowing text. Ted Nelson

wanted t o replicate and extend the structure of the literary system on-

line, creating a unified literary environment - it was he who coined the

terms "hypertextw and "hypermediaM. The goal of the system was t o

1 form a basic "linkage structure" that was a computerized version of the

implicit linkage and referral processes existing in the literature system.

A second goal was t o build a universal, simple and fair system of elec-

I* The creators of Xanadu have endeavored t o create a system for

text editing and retrieval tha t will receive, handle and present docu-

ments with links between them" [Nelson 801. Documents and links are

the primary elements of the system. A document can contain both text

and links, thus everything in the system is a document.

A link is a connection between pieces of text. Many types of links

are allowed in the system (basically, the user can define any type of link

he desires), and links may have multiple end points. "Literary" links

include jump links (footnotes), quote links (quotations), correlinks (mar-

ginal notes) and equilinks (between the same item in two separate ver-

sions of the same document). Links may be filtered by type and origin.

Ted Nelson considers Xanadu t o be a full blown implementation of

Vannevar Bush's "memex", designed for "indefinite expansionw. Xanadu

is also intended for use as a publishing system since allocation of credit

and royalty is provided for. Royalty is paid automatically by a user on

a "byte-by-byteu basis.

The Zanadu system has been implemented and is marketed as a n

on-line service. There is a version tha t runs on Sun workstations.

2.2.4. PIE

A "Personal Information Environment" (PIE) was proposed in 1980

by Ira Goldstien and Daniel Bobrow [Goldstein, Bobrow 801. The PIE

environment is a network-based approach t o developing and document-

ing software. The PIE description language is based on the concepts in

KRL and FRL, and is written in Smalltalk. This description language

enables interactive program development.

PIE contains a network of nodes, each having several perspec-

tives. Each perspective presents a unique view of the entity

represented by the node and provides for specialized actions for the

specific view. Perspectives help a user document the various aspects of

his application. The authors offer the example of multiple views of a

Smalltalk class: one providing its definition and structure, another the

hierarchical organization of its methods, a third stating external

methods called from the class, and yet another contains documentation.

Nodes have contexts, which provide a way of storing different

values for the same node. During software development, alternate

designs can be stored and evolved in different contexts of the same node.

Contexts can be extended by creating layers. These layers store

modifications t o contexts, thus back-up to a previous s ta te can be easily

handled. Contracts exist between nodes and describe dependencies

between elements.

I 1 Traditional programming environments do not allow alternative

definitions of procedures and data structures t o exist simultaneously in

the programming environment" [Goldstein, Bobrow 801. The PIE system

overcomes this difficulty by providing support for comparing and storing

alternative designs, and highlighting their differences. It provides the

capabilities t o present the various aspects of a n application program as

a single integrated structure. PIE'S networked database facilitates

cooperative design efforts. PIE can also be used as a prototype office

information system.

2.2.5. CMU 's ZOG

ZOG is a networked, menu-based system developed in 1975 at

Carnegie-Melon University [Robertson et al. 811. ZOG was initially

implemented on PDP 10 and VAX 11/780 machines.

In the ZOG system, each data segment, called a frame, is

displayed on the screen along with a set of menu items called selec-

tions. Standard ZOG commands such as Edit, Help, Back, Next,

Return, etc. are represented by global pads on the bottom of the screen.

A sequence of frames can be viewed by making the desired selections.

Data is represented as a hierarchical network of frames divided into

subnets. Subnets operate essentially as subroutines. ZED, the ZOG
i:

editor, allows new frames t o be added and modified, and the network

can be augmented by a user to suit his specific needs.

ZOG has been designed t o serve a large user community, and as "a

particular interface for man-computer interaction." I t has found use as

a guidance system, a computer-aided instruction system, a database and

browsing system. ZOG has been installed as a computer-based informa-

tion management system on the USS CARL VINSON.

A major problem with the system is tha t it is very difficult t o grow

the really large nets tha t are an essential ingredient of ZOG.

2.2.6. B r o w n Universi ty 's I n t e r m e d i a

Intermedia is a large-scale, object-oriented hypertext/hypermedia

system. The Intermedia project was developed in 1984 at the Institute

for Research in Information and Scholarship (IRIS) at Brown University.

It was a part of Brown University's campuswide "Scholar's Workstation

Project" . The system provides the ability t o create sophisticated link-

j
ages between documents from a variety of applications. I t also provides

a development framework for creating additional applications with tha t

capability (Meyrowitz 86a].

Intermedia was developed as a tool t o facilitate computer-aided,
1
1 computer-supported teaching and research in a scholastic environment.

The educational goals of the project are audio-visualization, encouraging

exploration of an information-rich environment, making software tools

available t o professors t o "create webs of information," and t o students

t o "follow trails of linked information, annotate text... and communicate

with other students and professors " [Meyrowitz 86a].

Intermedia runs on a network of Unix-based workstations. The

system is composed of the MacApp layer, the Intermedia layer, and the

Graphics and Text Building Blocks. Additionally, the six major applica-

tion units are Intertext, InterDraw, Interval, Interpix, and Interspect.

These are the text processor, graphics editor, timeline editor, scanned-

image viewer and a three-dimensional object viewer.

The system was developed as a framework of software tools with

integrated hypertext capabilities so that it could be used in routine

application tasks such as the creation and update of documents.

Intermedia integrates all the functionality of a hypertext system

into each application, so that users can take advantage of the system's

capabilities within the framework of their routine work rather than use

Intermedia as a distinct application. The system creates a document

f
tha t can contain texts, graphics, spreadsheets etc. A document can be

B viewed through a window. Links are created between blocks in a

E
document. Keywords and explainers at tach attributes t o blocks and

links. These facilities allow the creation of webs. Webs are contexts or

databases containing sets of documents and interconnecting links t o

these documents. Maps are visual representations of webs and facilitate

23

the understanding of webs by providing easy and efficient access t o the

webs.

T o evaluate the success and utility of Intermedia, i t is being used in

a variety of educational and work settings. Intermedia material already

used in courses has proved very useful, demonstrating tha t hypermedia

systems have tremendous potential.

2.2.7. Xerox PARC's NoteCards

The NoteCards system was developed a t Xerox PARC by Frank

Halasz, Thomas Moran and Randall Trigg [Halasz et a1 871. NoteCards

is a n extensible computer environment developed t o aid the collection,

analysis and processing of information. I t is designed as a "general pur-

pose idea processing environment" [Halasz e t a1 87). The NoteCards sys-

tem is implemented on Xerox D series Lisp machines. The interface con-

sists of Lisp functions that give a programmer tremendous flexibility t o

create new applications using NoteCards. NoteCards, Links, Browser
t

and FileBoxes are the basic objects defined in the system. A notecard is

a computerized version of the 3 x 5 paper index card. Each notecard

contains editable data, such as text, graphics etc. A notecard can be

characterized by its type. A user can define new types t o suit his appli-

cation. Links are typed objects tha t connect notecards. A browser dep-

icts a network of notecards, and FileBoxes file or order collections of

related notecards. With these basic objects, NoteCards creates a

II semantic network of electronic notecards interconnected by typed links"

[Halasz e t al. 871.

NoteCards has about 70 users within Xerox, and externally the sys-

tem is in use at universities, government and industrial sites.

NoteCards has met its goal of creating an environment for information

management. However, it lacks support for multi-person or collaborative

work, and i t does not have sophisticated tools for displaying large

graphs and other structures.

CHAPTER 3

Object-Oriented Databases

There are two object-oriented database servers that are commercially

available today, Servio Logic's GemStone and and Ontologic's VBASE.

The Gemstone database server has been used in this implementation.

The next sections will summarize VBASE, and describe Gemstone a t

some depth.

3.1. VBASE: an object-oriented development environment

Ontologic's VBASE Integrated Object System is an object-oriented

development environment that combines a procedural object language

and persistent objects into one integrated system [Andrews, Harris 871.

VBASE was inspired by the need t o bring together language and data-

base functionality t o form a single, object-oriented system, t o develop

software systems and production applications.
I

The VBASE architecture comprises of four layers: the language,
I$

P abstraction, representation and storage layers. Each layer has a VBASE

I specification and implementation. VBASE is implemented on top of Sun

OS 3.2 Unix. The TDL (Type Definition Language) specifies the data

model. The COP (C Object Processor) is used t o write application pro-

grams, and implement operations.

Probably the most distinctive feature of VBASE is t ha t i t is an

object- system tha t also provides strong typing. In TDL, all object

definitions and properties are associated with data types. It is a block

structured language, and allows the definition of constants, variables,

enumerations, unions and variants. Parameterization (the ability t o

specify the types of objects contained within other objects), a capability

often not found even in procedural languages, is another significant

feature of VBASE. VBASE also has a special exception handling

mechanism. Exceptions are types, thus a hierarchy of exceptions can be

defined, and properties and operations can be defined for them. 'Except'

and 'raise' statements transfer control t o a exception handler rather

than return control t o the caller.

In addition t o providing most of the expected database functionali-

ties, VBASE also supports persistence of objects, and clustering objects

on disks. Support for inverse relationships automatically implies t ha t

one-to-one, one-to-many, and many-to-one relationships between objects

can be maintained.

F" VBASE had set two goals for itself, integrating a procedural

language with support for persistent objects, and providing strong typ- 1
ing. VBASE has emerged as a relatively complete development system,

it is object-oriented, strongly typed, and supports persistent objects

[Andrews, Harris 871.

3.2. GemStone

GemStone is an object-oriented database server developed at Servio

Logic Development Corporation tha t merges object-oriented language

concepts with database systems. GemStone provides a n object-oriented

programming language called OPAL, which serves as the da ta definition

and da ta manipulation language for the GemStone system. OPAL pr*

vides standard database storage and retrieval functions as well as pro-

gramming facilities for general computation that are comparable t o C or

Pascal. The GemStone system was built on the premise tha t a "combi-

nation of object-oriented language capabilities with the storage manage-

ment functions of a traditional data management system will result in a

system tha t offers further reductions in application development efforts."

[Maier et al. 861

The goals and requirements of the GemStone system, as specified

by Maier e t al. fall under three categories, tha t i t provide an extensible

da ta model, general database amenities, and a programming environ-

ment. These are briefly outlined in the following paragraphs.

An extensible da ta model means tha t a user should be able t o

define new da ta types and operations on them so tha t the structure as

well as the behavior of objects can be modeled. Its da ta model must

support arbitrary levels of data structuring, and separate type definition

from type instantiation. No artificial limitations should be imposed on

data items. Additionally, variations in structured objects should be

allowed, and arbitrary data items as values should be allowed.

General database functions such as a multiuser environment, con-

current access and serializability of transactions, private ownership of

data objects, stable storage for da ta objects, atomic commit and abort

of transactions and authorization and system management functions

need t o be provided.

The programming environment must include a n interactive inter-

face for the OPAL language (for defining new database objects, execut-

ing queries, etc.) and a procedural interface t o conventional languages.
k

ri
(a) The Gemstone Architecture

k The Gemstone configuration used in this research consists of the

OPAL language and the storage management software running in the

DEC VAX/VMS environment. IBM-PC's or Smalltalk machines

29

the OPE (Opal Programming Environment) t o enable the user t o build,

execute and debug OPAL programs. The OPE consists of a n OPAL

browser, source code workspace, and a bulk loader and dumper. Figure

3.1 illustrates the architecture.

Conceptually, the Stone process provides secondary storage

management, concurrency control, authorization, transactions, recovery,

and support for associative access. I t manages workspaces for active

sessions [Maier et al. 861. In Figure 3.1, the Stone process is represented

by the rectangle named "DATA MANAGEMENT KERNEL". A

separate Gem process is maintained for each session. The Gem process

is above the Stone process; i t compiles and executes OPAL code, pro-

vides session control. In Figure 3.1, the rectangles named "OPAL

COMPLIER/INTERPRETER" represent two Gem processes.

(b) OPAL: Gemstone's unified database language

The object-oriented programming language called OPAL serves as

the da ta definition and da ta manipulation language for the Gemstone

system. OPAL is a powerful, general purpose programming language

based on ideas from knowledge representation, abstract da t a types,

semantic da t a languages, set-theoretic data models and non-procedural

query languages. I t provides rich da ta modeling facilities with a n inter-

face t o a high level programming language (C) [Copeland, Maier 871.

runnlng
IBM PC

Microaott Wlndowa
Workstrt lon

runnlng Smalltalk -
L

OPAL Programming Environment OPAL Programming Environment
or or

your C appliiion code your Smalltalk rpplikation aode
I

GomStono C Herfrte GomStono Smalltalk Intedaca
1 1

I Communierti Sottwam I CommunWin Software

I r I

m

I
Communication Software -

I L I

OPAL OPAL
Compikr 1 Compiler I
herpntw hterprrtw

Fig 3.1 The Gemstone Architecture

(ServictLogic Corp.'~
GemStone manual)

OPAL is derived from Smalltalk-80, and its syntax and semantics are

almost identical t o it.

OPAL'S object model is identical t o tha t of Smalltalk-80. The

three primary concepts are object, message and class, which are

equivalent t o record, procedure call and record type respectively, in a

conventional system [Purdy et al. 871. An object is a well designed data

structure with a set of operations that provide access t o and enable the

manipulation of the da ta contained the data structure. Communication

between objects is achieved through messages. Message sending is the

only way through which the da ta contained in a n object can be

accessed. A class is a description of one or more similar objects. The

structure, methods and messages of a class's instances are factored and

stored once in a single object describing the class, i.e. the class defining

object. Classes are organized into a class hierarchy through which the

structures and methods are inherited.

The basic syntactic unit of an OPAL program is the statement. A

statement contains one or more expressions. An OPAL expression can
i

be a literal, variable name, message expression, assignment, e t c.
$

32

The form of all message expressions is <receiver> <message>.

The receiver is a variable or expression representing the object for whom

the message is intended, and which will receive and interpret the mes-

sage. The second part of a message expression, the message, is made up

of a selector, and possibly some arguments. On execution of the mes-

sage expression, a result is returned t o the sender.

There are three kinds of messages, unary, binary and keyword.

Unary messages have no arguments, and the selector is a single

identifier. For example,

zoo closing Time

is an unary message expression. 'closingTime' is the selector, and this

expression has no arguments.
b I

I
t
1

E
(zoo1 numberOjAnimals) <= (zoo2 numberOjAnimals) and

are examples of binary messages, where '<=' and '*' are selectors, and

I
'(zoo2 numberOjAnimals) ' and '9' are arguments of the message.

Keyword messages have multipart selectors, the selector in the mes-

zooAnimab at: 1 put: "Sheba the lioness".

Methods describe all the action and execution in Gemstone. Each

class defines the methods its instances will understand. A method

definition names the method's selector, and possibly some formal argu-

ments. A method can also contain temporary variables. The body of a

method consists of OPAL statements, and possibly a return statement.

Methods are defined within the scope of the object (a class instance)

tha t is the receiver of the message, and can thus access the named

instance variables of the receiver. An example of a method is,

name: aName

This method sets the instance variable 'name '.

A name := aName.

Gemstone is a computationally complete and extensible programming

language. OPAL extends Smalltalk in the area of associative access

support for queries. This extension is supplied by providing a n indexed

associative access mechanism, which is a system for maintaining indexes

t o large collections and for using these indexes t o retrieve collections ele-

i ments quickly.

OPAL was implemented by writing the object storage manager, the

OPAL compiler, and interpreter. This system provides a multi-user,

I

disk-based system as opposed t o the single-user, memory resident

Smalltalk system [Maier e t al. 851.

(d) Gemstone's database f e a t u r e s

Gemstone combines the powerful da ta type definition and code

inheritance properties of Smalltalk-80 with permanent da t a storage,

multiple concurrent users, transactions and secondary indexes [Maier et

al. 85). The main database features of .Gemstone are the provision for

sharing of objects (through a private list of dictionaries called the Sym-

bolList for each user), resilience t o common failure modes, security

(through user authentication), a centralized server and primary and

secondary storage management facilities [Purdy e t al. 871. Gemstone

provides a Smalllalk-like execution model for execution of its methods,

and support for multiple concurrent users.

Gemstone supports multiple concurrent users. Gemstone's transac-

tion control uses an optimistic concurrency control policy. Gemstone

F provides for fast associative access t o members of collections by allowing

users t o dynamically add or remove associative access structures t o aid

such searches.

F In summary, Gemstone is a pioneer object-oriented database sys-

tem developed t o merge object-oriented programming language technol-

ogy with database technology. I t solves da ta management and informa-

tion modeling problems tha t are not easily solved by relational or

hierarchical systems.

CHAPTER 4

Implementation

The purpose of this thesis is to implement a large software system

in an object-oriented language, and report on the ease of using the

object-oriented paradigm for an application. An existing software sys-

tem, Tektronix's Neptune, (or specifically, its engine, the HAM) was

selected as the candidate application and a re-implementation was done

using the object-oriented database management system Gemstone. This

implementation, which we have called GemDesign, will be discussed in

this chapter. The first section describes the Neptune hypertext system.

The second section provides an overview of the design of the system; the

third details the implementation. The fourth section provides some gen-

eral notes on the implementation, while the fifth describes the interface

between GemDesign and Neptune's Smalltalk interface. The final sec-

tion discusses the results of implementing GemDesign.

Figure 4.1 (a) gives an overview of Neptune's architecture. The

Hypertext Abstract Machine (HAM) is implemented in C, its user inter-

face is implemented in Smalltalk-80. GemDesign uses the Gemstone

database. I t is written in OPAL, which is Gemstone's data definition

and da ta manipulation language. (Fig 4.1 (b)). No separate interface

NEPTUNE

*

HAM

USER INTF.

J

SMALLTALK

Figure 4.1 (a) NEPTUNE

I NEPTUNE ' S I'
USER INTF.

SMALtTALK

I GEMDESIGN I OPAL

I THE GEMSTONE DATABASE

Figure 4.1 (b) GEMDESIGN

was written for GemDesign (for reasons detailed later in the chapter).

Instead, Neptune's SmallTalk-80 interface was ported and used in Gem-

Design.

4.1. Tektronix's NEPTUNE

Tektronix's Neptune was designed to support software develop-

ment. Neptune has a layered architecture consisting of two major layers:

the Hypertext Abstract Machine (HAM) and the user interface. The

HAM is a bottom-level transaction-based server. It is implemented in C,

and runs on Unix servers such as Magnolia's (a workstation developed

for internal use a t Tektronix) , Tektronix's 4400 series workstations,

VAX machines, etc. The user interface is the topmost graphical layer

and provides browsing and editing facilities. Application layers consist-

ing of programs that use hypertext data can be built on top of the

HAM.

The HAM is a generic hypertext model based on five entities: node,

link, attribute, graph and context. Nodes contain arbitrary, editable

data. A node is an archive or a Ale. Complete version histories are

maintained for archives, while a file contains only the current version.

Efficient storage and access facilities are provided to all versions of a

node.

Nodes can be connected by links. Links can be traversed bi-

directionally. The endpoints of a link have offsets within the node; a link

is anchored at an iconic point in the da ta of a node. Links relate two

nodes either within the same context, or in two different contexts. (Con-

texts allow users t o keep related information together, and will be

defined more fully below.) The latter type of link is known as a cross-

context link, and facilitates da ta sharing between contexts by making a

single node accessible in both the contexts. Links can have attribute/

value pairs attached t o them, and version histories can be maintained

for a link, depending on the types of the nodes t o which the link is

attached.

Attributes are defined for nodes, links and contexts. The HAM pr*

vides a set of predefined attributes for which values can be assigned.

Attributes characterize the objects for which they are defined and are

used primarily for querying and filtering the graph. Changes t o attri-

butes can be archived. Nodes and links can have any number of

i
attribute-value pairs attached t o them. These serve as a n efficient

accessing mechanism, allowing desired objects t o be 'filtered' from large

graphs.

A graph is a top-level HAM object. It is made up of nodes and

links, attributes and contexts. The version history (past states) of a

40

graph is maintained through the versions of all its components. A graph

usually contains all the information available for a particular project.

Contexts partition the objects or data within a graph, Le., a con-

text contains nodes, links and attributes. Contexts are organized in a

tree structure. Version histories are maintained for contexts. When a ~':;.j
g'"I';
tll:
J)JI

::)1graph is created, its root context is created as well. All contexts except

the root context have parent contexts.
\,,"
).,
"'II
i~1

The user interface provides browsers through which documents and
:;;:
,:"

;~I,.,

nodes can be viewed and edited. The three primary browsers are the

graph browser, which displays a pictorial view of the graph, the docu-

browser, node differences browser, and the versions browser. Figure 4.2

[DeLisle, Schwartz 87b] shows a graph as displayed by Neptune's graph

browser. Nodes are represented by rectangles and the arrows between

nodes are links. This graph shows a paper, titled TOOlS paper, with

sections Introduction, Hypertext systems, Contexts, etc. Each section is

represented by a node in the graph. Some sections have further subsec-

tions which are also represented by nodes. Sections are 'linked' to their

subsections.

ment browser, for browsing the hierarchical structures of nodes and

links, and the node browser, which displays an individual node in a

graph. Other browsers provided by Neptune include the attribute

41

Fig. 4.2. Neptunes Graph Browser

The HAM maintains the integrity of the da ta t ha t it manages by

providing a transaction recovery mechanism. All the operations pr*

vided by the HAM are atomic transactions; if a transaction does not

complete the completed portions of the transaction are undone. A

multi-person, exclusive-writer protocol is enforced for the da ta contained

in a graph.

The primary applications of Neptune have been for supporting

document preparation and managing software code. Ongoing applica-

tions include use as a CAEE database, a CAD database and a field ser-

vice support database.

4.2. Design

The last section summarized the functionality and the architecture

of the original Neptune system as implemented a t Tektronix. The

remainder of this chapter discusses the re-implementation of Neptune

using Gemstone.

Graph

A graph in GemDesign is created with a unique name. A graph

contains all the information pertaining t o a document. All objects in a

graph are uniquely identified by their names. A graph contains nodes

and links, and attributes defined for these objects. Figure 4.2 displays a

graph named TOOIS.revise with a number of nodes, and links between

them.

Node

Nodes are be created by specifying a name and some contents.

Example nodes in Figure 4.2 are Hypertext systems, Properties of Hyper-

teztsystems, Interactive User Interface, etc. Contents of a node can be

modified, i.e., edited. The hypertext system allows attributes t o be

defined for a node. Attributes have names and values. These allow the

user t o characterize and a t tach special meaning t o a node. Nodes can

be deleted from a graph.

Link

Links are also given unique names. Links have source and destina-

tion nodes, and are attached t o specific positions in the contents of a

node. For example, in Figure 4.2, source node Appendix and destination

node Context Operations are joined by a link. Links can also have attri-

butes. Links can be explicitly deleted, and if either the source or the

destination node is deleted, so is the link.

Attributes

Attributes are defined for nodes and links. An attribute has a

value, which is either a string or a n integer. Attributes contain the oid

(object identifier) of their owners. Attributes are used mainly t o

traverse or filter a graph, i.e., retrieve a subset of all the nodes and links

in a graph based on the values of their attributes.

Versions

Past s tates of nodes, links and a graph are maintained by a ver-

sioning scheme in GemDesign. Nodes and links are maintained as linked

lists of past versions. When a versioned node is modified, a new node is

created with the new information. All unchanged da ta is passed on t o

the new node.

A node is versioned if its contents or name change as a result of

changing the contents, or if a link is added t o or deleted from a node. A

link is versioned if its attachment in either the source or the destination

node changes, or if its name changes. Attributes are also versioned

when their values change.

Context

Contexts are a partitioning scheme for hypertext graphs. When a

hypertext system is used for a project tha t requires cooperative work by

its developers, contexts allow individuals t o work independently with

subsections of the graph, and then 'merge' this work with the group

effort. Contexts support multi-person, co-operative software develop-

ment efforts, providing a computer environment t o support software

design and development efforts. Figure 4.2 shows one context of the

graph named TOOIS.revise. Versions of the graph could exist in other

contexts of the graph.

The contexts scheme implemented in GemDesign is a linear, non-

branching versioning scheme. Nodes can be copied into subsidiary con-

texts, and then merged back into the primary context. Links can be

cross-context, ie, connect two nodes existing in different contexts.

4.3. Implementat ion

GemDesign has been implemented in Gemstone's database

language, OPAL. The following sections give the functional

specifications and descriptions of the implementation. The major classes

with their instance and class variables are presented, and their opera-

tions are discussed. For a description of the other classes that support

these major classes, refer t o the Appendix of the thesis, which contains

the code of the implementation.

4.3.1. HyperGraph

This class is the superclass of three primary classes, graph, node

and link. Figure 4.3 presents the definition of this class, along with t ha t

of its subclasses. This class has four instance variables, name, creation-

Time, rootContext and contextset. The instance variable name is not

used by instances of HyperGraph but by instances of its subclasses. It

Object subclass: 'HyperGraphl
instVarNames: # (name' 'rootcontext'

'creationTimel 'contextset')
classvars: # ('gra hDirectoryl)
poolDictionaries : i [1
1nDictionary: H perModel
constraints: # [y
isInvariant: false

HyperGraph subclass: 'Graph' Hy erGraph subclass: 'Node' Hy erGraph subclass: 'Link'

1nstVarNames: # ('nodeset' YnstVarNames : # (' ofGraphl YnstVarNames : # (' ofGraph '
'linkset' 'allNodeAttrsl 'attributeset' 'sourceLinks' 'attributeset' 'fromNodel
'allLinkAttrsf 'allNamesl 'destLinksl 'contents' 'toNodel 'fromPosl 'toPosl
'root') 'flink' 'blink') 'flink' 'blink')

classvars: "1 classvars: # ()
classvars: # ()

1Dictionar es: #[] poolDictionaries: #[] poolDictionaries: #[I
gictionary: H rModel 1nDictionary: H erModel 1nDictionax-y: H er~odel
constraints: I [{came, string]] constraints: # [$y#name, String] 1 constraints: # [#name, String11
isInvariant: false isInvariant: false

i 7

Fig 4.3 The Claaa IiyperGraph and SubClssses

represents the user-given name, and uniquely identifies objects in the

graph. The instance variable creationTime is computed from the local

computer's system clock and calendar, and is assigned t o each object

when created. Rootcontext contains the oid of the root context of a

graph. Contextset is a set containing all the contexts of a graph.

GraphDirectory is a class variable, containing a list of all the

graphs created. Each of its elements is an Association, with names of

the graphs as key and the oid of the graph as value.

4.3.2. Graph

Graph is a subclass of class hypergraph. I t contains all the infor-

mation about a particular graph. It inherits variables from its super-

class. In addition, nodeset, linkset, allNodeAttributes, allLinkAttributes,

and allNames are instance variables declared by this class. Instance

variable nodeset contains all the nodes that are created in the graph.

LinkSet contains the links that connect nodes in this graph. The

instance variables allNodeAttrs and allLinkAttrs are sets t ha t contain

all the attributes defined for all the nodes and links, respectively, in a

graph. The variable allNarnes is a set containing all the names assigned

to the nodes and links in the graph. Through this variable, the unique-

ness of names declared for nodes and links is ascertained.

The following methods define graph operations in GemDesign:

a createGraph: aName

a openGraph: aName

a deleteGraph: aName

a get Graph ViaAttributes: nAttrName value: nAttrValue 1inkAttr:

lAttrName with Value: nAttrValue versionTime: aTime

a 1ineariteGraph: rootNode versionTime: aTime nodeAttrName:

aName value: aValue linkA t trName: sLAttrName attr Value:

aLAt t rValue

The method createGraph: aName creates a new hypertext graph

with name aName uniquely identified by its name. The method open-

Graph: aName opens a graph named aName , i.e., returns a pointer t o

the graph. The method deleteGraph: aName deletes a graph named

aName by removing its entry from the graphllirectory .

The method getGraphGraph ViaAttributes: nAttrName value: nAt-

trValue linblttr: LAttrName with Value: lAt trValue returns a sub

graph of the existing hypertext graph, formed by accessing all the nodes

and links of the graph, and filtering these nodes and links based on cer-

tain attributes. First, all nodes tha t have a n attribute nAttrName

with value nAttrValue are returned. Then all links t ha t have the

attribute lAttrName with value lAttrValue and connect two filtered

nodes (above), are returned. Thus, a partially connected sub-graph of

the original graph is the result.

The method LinearizeCraph: rootNode versionTime: aTime

nodeAttrName: aName value: aValue 1inkAttrName: aLAttrName

attrValue: aLAttrValue returns a sub-graph of the hypertext graph at

aTime , formed by doing a depth first search via the links starting a t

node rootNode. An array of two elements is returned, the first element

is the node list comprising of the nodes encountered during this depth

first search, having the attribute named aName with value aValue.

The second element is a link list containing links, each of which connect

two nodes in the node list, and have a n attribute named aLAttrName

with value aLAttrValue.

In Neptune, users can filter and browse graphs by supplying a

nodepredicate and a linkpredicate. These predicates are expressions

consisting of attribute names, relational operators and values, and are

based on the predicate grammar described in [DeLisle, Schwartz 87a].

! In GemDesign, no extensive grammar has been defined, the filtering pro-

cess occurs as described above.

4.3.3. Nodes

Node is a subclass of class HyperGraph. The instance variables of

this class are ojGraph, sourcelinks, destlinks, attributeset, contents,

jLink and blink. Instance variable ojGraph is the name of the graph t o

which the node belongs. Sourcelinks and destlinks are sets of oid's of all

the links of which a node is the source or destination respectively. Attri-

buteSet is a set of all the attributes of a node. The variable contents

contains the text, or the data of a node. The instance variables jLink

and bLink are pointers t o the node which is ahead (behind) in the ver-

sion list of a node.

The following methods define node operations in GemDesign:

createNode: nodeName withcontents: somecontents

openNode: aNode versionTime: aTime

modijyContents: somecontents ojNode: aNode withltnks: aSet

changeName: aName ojNode: aNode

The method createNode: nodeName withcontents: somecontents

creates a new node in the hypertext graph, with name nodeName and

contents somecontents. The name of a node has t o be unique, so a

check is done t o verify that. The node is added t o the instance variable

nodeset of the graph. The method deleteNode: aName deletes node

aName from the current version of the graph. All the links attached t o

this node, and the attributes of this node are deleted. The method open-

Node: aNode versionTime: aTime returns a pointer t o the appropriate

version (specified by aTime) of node aNode. If the versionTime is 0,

then the current node is opened. Otherwise, the version list of the node

is traversed, and the appropriate version returned. The method

modijyContents: somecontents ojNode: aNode withlinks: aSet creates

a new version of the node aNode with contents somecontents is

created. Each link whose position in the contents of the node has been

changed (links in aSet) is also versioned. The method changeName:

aName ojNode: aNode changes the name of node aNode t o aName.

A new version is created for the node.

4.3.4. Link

Link is a subclass of class HyperGraph. The instance variables of

this class are toNode, jromNode, fromPos, toPos, attributeset, jLink and

t bLink. The instance variables toNode and fromNode are the source and

I destination nodes respectively, of a link. The instance variables jromPos

and toPos are the character positions of the link in the contents of a

! node. These represent an integer value that refers t o the position

numerically. Variable attributeset is a set of all the attributes of a link.

Finally, jLink and bLink are the oid's of the link which is ahead (behind)

in the version list of a link.

The following methods define link operations in GemDesign:

createLink: linkName from: sourceNode spos: sInteger to: dest-

Node dpos: dInteger

deletelink: d i n k

openlink: aLink versionTime: aTime

newversion: ofLink sourceNode: aNode newPos: anInteger

newVersion: ofLink destNode: aNode newPos: anInteger

new Version: ofLink newName: aName

The method createlink: linkName from: sourceNode spos: sIn-

teger to: destNode dpos: dInteger creates a new link linkName

between sourceNode and destNode, a t character positions sInteger

and dInteger. Links are identified by unique names, so a check is done

to verify that . The new link is added t o the instance variable linkset

of the graph, and also t o the instance variables sourceLinks and dest-

Links of the source and destination nodes respectively.

The method deletelink: d i n k deletes link aLink from the current

version of the graph. Both the source and destination nodes of the link

are versioned, and the link's attributes are deleted. The method open-

Link: aLink versionTime: aTime returns the oid of the appropriate ver-

sion (specified by aTime) of link aLink versionTime is 0, then the

current link is opened. Otherwise, the version list of the link is

traversed, and the appropriate version returned.

The next three methods describe link versioning. Links are ver-

sioned when the position at which the Iink is attached t o a node changes

as a result of the contents of the either the source or destination node

changing. Links are also versioned when their name changes. The

method new Version: ofLink sourceNode: aNode newPos: anInteger

versions link ofLink when the contents of its source node change. A

new version is created for the link, the value of its instance variable

fromPos is set t o anInteger (the new position of the Iink in the source

node). Similarly, the method newversion: ofLink destNode: aNode

newPos: anInteger versions link ofLink when the contents of its desti-

nation node change. A new version is created for the link, the value of

its instance variable toPos is set t o anInteger (the new position of the

link in the destination node). The method newversion: ofLink

newName: aName versions link ofLink when its name changes. The

new name is aName.

4.3.5. Attribute

Attributes are defined for nodes, links and contexts. Figure 4.4

shows the class definition. The instance variables declared in this class

are name, creationTime, value, owner, fLink and blink. The instance

variable name is the name of a n attribute. The variable creationTime is

computed from the the local computer's system clock and calendar.

Value contains the contents assigned to an attribute, and is a string or

an integer. The variable owner is the oid of the object for which the

attribute has been defined. Instance variables flank and bLink are the

oid's of the attribute which is ahead (behind) in the version list of a n

attribute.

The method newForOwner: ownerItself name: attrName with-

Value: somecontents creates a new attribute for the object ownerIt-

self. If somecontents is a string, then an object of class StringAttri-

bute (subclass of Attribute) is created, else an object of class IntegerAt-

tribute (subclass of Attribute) is created.

S The method defined in the above paragraph creates a new attri-

bute. The methods t ha t handle the definition, deletion and versioning of

attributes for nodes and links are defined as follows.

a addAttribute: attrName withvalue: somevalue toNode: aNode

Object subclass: 'Attribute'
instVarNames: #('name' 'creationTime' 'value'

'owner' 'flink' 'blink')

constraints: #[#[#name, String]]
bInvariant: false

Fig 4-4. Attribute C l u Definition

Object subclass: 'Context'
instVarNames: #('name' 'ownGraph' 'attributes'

'creationTime ')

poolDictionaries: # 0
ifiictionary: HyperModel

ishvariant: false

Fig 4 6 . Context C l u Dehition

deleteAttribute: anAttribute ojNode: aNode

a newA Version: ofAttribute with: aValue jot: anElement

The method addAttribute: attrName withvalue: somevalue

toNode: aNode creates a new attribute with the name attrName and

value somevalue. This attribute is added t o the variable attributeset

of the node, and to the instance variable allNodeAttrs of the graph. The

method deleteAttribute: anAttribute ojNode: aNode deletes the attri-

bute anAttribute from the current version of the node aNode. The

method newAVersion: ofAttribute with: aValue lor: anElement ver-

sions the attribute ofAttribute , and gives it the new value aValue

The methods pertaining t o links are very similar:

a addAttribute: attrName with Value: somevalue tolink: aLink

The first method creates a new attribute with the name attrName and

value somevalue for link &ink and t o the instance variable 'allLin-

i
kAttrs' of the graph. The second method deletes the attribute anAttri-

bute from the current version of the link &ink.

I

4.3.6. Context

Contexts are defined for graphs. Figure 4.5 shows the class

definition. The instance variables of this class are name, creationTime,

attributes and ownGraph. The instance variable name is the name of

the context, creationTime is computed from the the local computer's

system clock and calendar. Instance variable attributes is a set of attri-

butes defined for a context, and ownGraph is the oid of the graph t ha t

the context represents.

The following methods define context operations in GemDesign:

createNew: aName olGraph: aGraph

copyNode: aNode into: aContext

mergeNode: aNode jromContext: aContext

The method createNew: aName ojGraph: aGraph creates a new con-

text, with a new empty graph. The method copyNode: aNode into:

aContext copies node aNode from the current context into acontext.

aNode could be a current node, or a version. The attributes of aNode

are also copied. The links are copied, and maintained as cross context

links in the graph of acontext. The method mergeNode: aNode jrom-

Context: aContext merges node aNode from context aContext into

the primary context. If this node already exists in the graph, then i t is

versioned, and a copy of aNode is the new current node. The links are

58

similarly dealt with, i.e., if the link already exits, then it is versioned,

else a new link is created. Attributes are copied in the same manner.

The methods for creating and versioning attributes for contexts are

createStrAttribute: aString with Value: aValue

cAtrUpdate: anAttr withVal: aVal

The first method creates a n attribute for the context, and adds it t o the

variable 'attributes' of the context. -The second method versions a n

existing attribute anAttr, and assigns i t the new value aVal.

4.4. General notes on the implementation

4.4.1. Access to database objects

The HAM maintains directories t o represent the structure of the

graph and its objects. These directories provide access t o the basic

components of the graph. GernDesign makes use of OPAL'S indexed

associative access mechanism, which is a way t o efficiently access ele-

ments of large collections. This mechanism is implemented (in Gem-

Stone) using index structures such as E t r ee s on the object's instance

I variables. Using indexes it is possible t o find values without having to

I do a full sequential search. In order t o perform comparisons without

message passing and t o be able t o build and maintain indexes on an

object's instance variables, OPAL needs some assurances about what

kinds of objects those variables represent. As OPAL builds indexes tha t

use as keys the values of instance variables within the elements of a col-

lection, there is a requirement tha t these instance variables be con-

strained t o contain only specified kinds of objects. OPAL can create

two kind of indexes, identity and equality indexes.

In this implementation, objects are identified by unique names, and

retrieved on the basis of their names, i.e., indexes are built (by OPAL)

on this variable. T o make this possible several constraints were needed.

When a graph is created, an Equality index is created on its variables

nodeset, linkset, allNodeAttrs, and allLink4ttrs. All these variables are

sets, constrained t o contain elements of only one class, class Header.

The name instance variable of this class is constrained t o be of class

String.

It is pertinent t o mention here that the instance variable name of

objects in GemDesign provide a unique entry point into a graph, in the

absence of a n user interface with a pointing device. Navigation between

links, nodes and attributes in the graph is done using objects identifiers.

4.4.2. Physical vs Logical Design

Attributes

An attribute defined for a node (link) can be accessed from the

node's (link's) instance variable attributeset, as well as from the instance

variable allNodeAttributes (allLinkAttributes) of the graph t o which the

node (link) belongs. This does not mean tha t there is more than one

copy of a particular attribute, rather, both the instance variables men-

tioned above contain the object identifier of the particular attribute.

This promotes the efficiency of the program by involving less search

while accessing attributes.

Versioning the contents of a node

In GemDesign, changing the contents of a node results in the ver-

sioning of tha t node with the new version containing the updated con-

tents. Contents are represented by objects of class Attribute, and are

kept as a linked list of its versions. Any change in the contents means

li
tha t a new version will be created t o contain the new, updated contents.

This approach is in contrast t o the system used in Neptune, where

Database Aspects

In Neptune, transactions and concurrency control mechanisms were

explicitly managed. GemDesign did not have t o implement this mechan-

ism, since GemStone provides these facilities automatically. GemStone

manages concurrent object access, and prevents concurrent operations

from fouling shared objects by requiring users t o encapsulate object

accesses in sets of OPAL instructions called transactions.

4.5. The Interface

The user interface was implemented by porting Neptune's graphical

interface layer, written in Smalltalk-80 t o GemDesign. The GemStone-

Smalltalk Interface (GSI) provides a set of SmallTalk classes tha t allow

a Smalltalk application t o communicate with the GemStone database.

Figure 4.6 shows the structure of the Gemstone-Smalltalk Interface.

Class GemStone represents the GemStone database, while instances of

class Gemstoneobject are "proxies", within the Smalltalk object space,

for corresponding objects in the GemStone database. GemStoneMessage

implements the protocol for communicating with the GemStone Object

Server. Vserver implements the communications layer t o the GemStone

Object Server.

............ Senion Control
and

Application Support

........... Foreign Object Access

... R e Procedure Calls

N e w Communications

b.1lt.U

CcmStonc Object Scwcr

Fi 4.6 The Gemstone SmallTalk Interface

(Servi+Logic Corp.'~
Gemstone manual)

The following section discusses the classes in GemDesign tha t serve

as a layer between the OPAL implementation of the hypertext model,

and the Smalltalk-80 interface layer of Neptune.

4.5.1. The Interface Classes

The two primary classes used in GemDesign for the interface are

InterjaceElement and GSSTInterjace. These are detailed below:

I

InterjaceElement

Every object created in the database is represented t o Neptune

through instances of this class. Fig 4.7 shows the class definition. The

instance variables are name, id and objectItselj. The instance variable

name is the name of the database object, id is the identification number

I
created for each object by GemDesign, and objectltselj is a pointer t o

I
the object in the database. In GemDesign all objects are uniquely

I
identified by their names. On the other hand, Neptune identifies a n

object with a unique identification number. The class InterjaceElement

establishes a correspondence between objects in Neptune and Gem-

Design. When a new object is created, a n instance of this class is also

created t o represent it. The instance variable name records the name of

the object, (for future retrieval from the database), a new identification

number is created for the object, recorded in instance variable id (for

Object subclass: 'InterfaceElement'
instVarNames: #('name' 'id' 'element')
classvars: #()
plDictionaries: # 0
inDictionary : HyperModel
constraints: #[#[#name, String],

#[#id, Integer11
islovariant: false

Fig 4 7 InterfrceEIernent Clrru Dewtion

Object subclass: 'GSSTloterface'
instVarNames: #('allobjects' 'currentlodtx' 'currentGraph'

'currentContext ')
classvars: #()
poolDictionaries: # 1
inDictionary: HyperModel
constraints: #
islnvariant: false

Fig 4-8 InterfaceElement Clasa DeM~tion

identification in Neptune) and this id is sent t o Neptune.

Thus, class InterjaceElement provides a mapping between objects in

Neptune and GemDesign. This level of indirection is essential t o the

port, since the alternative was recoding major portions of Neptune.

This class communicates all the information from the hypertext

graphs created in the database to Neptune's Smalltalk-80 interface.

The messages tha t were sent t o Neptune's HAM unit (HAM is Neptune's

transaction-based server) from its Smalltalk interface are now sent t o

this class. This class then directs them to the appropriate method in

GemDesign, and returns the results of executing these messages. Figure

4.8 shows the class definition. The instance variables are currentGraph,

currentContext, allObjects and currentlndex. The instance variable

currentGraph is a pointer to the graph tha t is currently active, and
I

currentContext is a pointer t o the context in which the graph is operat-
I

ing. The variable allObjects is a set, the elements of which are of class

InterjaceElement. Each time the interface sends a message t o this class,

the elements of this set are searched for the appropriate object in the

graph. This search is conducted by using OPAL'S indexed associative

access mechanism. The variable currentlndex is an integer tha t is used

t o assign numerical identification t o new objects created in the graph.

Object subclass: #HyperRPC
instanceVariableNames: 'toUnix fromunix hyperRPCErrorCode'

'hyperRPCErrorMessage hyperRPCErrorPararns'
classVariableNames: 'CurrentInstance TOGS'
pooDictionaries: "
category: 'Hypertext-KernelIO'

Fig 4.9 HyperRPC Clasm Definition

An example is provided t o illustrate how this interface works. Fig-

ure 4.9 shows class HyperRPC. HyperRPC is the class in Neptune's

Interface tha t allows the hypertext user interface subsystem (imple-

mented in Smalltalk) t o communicate with the hypertext abstract

machine, the 'HAM' (implemented in C and running as a separate pro-

cess under Unix). Instance variables toUnix and jromUnix are used t o

communicate with the HAM. These are implemented using 'pipes'

(Unix), and messages are sent t o the HAM one byte at a time. While

this is a n efficient and fast way of communication in Unix, the code

required is quite complex.

Figure 4.10 shows a method from class HyperRPC (in Neptune's

Small-Talk-80 interface), under the category 'node Operations'. This is

an example of how Neptune's interface communicates with HAM, send-

ing requests for and then receiving and storing information. This method

gets the attribute identified by attributelndex from node nodelndex at

versionTime. The variable tollnix sends information (nodelndex, attri-

butelndex, versionTime) t o HAM through pipes, and receives back some

information from HAM (the value of the attribute).

In GemDesign, this method talks t o Gemstone instead of Unix.

HyperRPC is the class in Neptune's Interface tha t handles all communi-

i
cation t o Unix. The user interface of GemDesign has used Neptune's

getNodeAttributeValue: nodehdex jor: attributehdex at: versionTime

"gets the value of attributehdex for node nodehdex at time versionTime"

1 1 . 1

toUniz ncztPut: 54 . getNodeAttributeValue command

toUniz neztNumbec / put: nodelndez.
"nodeIndexU

toUniz neztNumbcr: / put: attributclndez.
"attribute index"

toUniz neztNumber: / put: veruionTime.
"versionTimen

self waitForResponse iuNil ifTruc: ["nil].

r , Array new: t. r at:. 1 put: ((jromUniz nczt) = 1).
"isStringW

(r at: 1) ifTrue: [r at: t put: self getStringArgument I .
"string value"

ifFolsc: [r at: 2 put: (fromUniz ncztNumber: 4)] .
"integer value"

Fig 4.10 Neptune method ~clNolcA#rr'htcV.lrc.-onit Ve: f' .t=

interface, with some modifications. Instead of communicating with Unix

(on which the HAM is based), the interface needs t o communicate with

the GemStone database. T o achieve this a class variable is created for

class HyperRPC, ToGS, which is a n instance of the Smalltalk class

GemStoneObject. As mentioned in a previous paragraph, instances of

class GemStoneObject are 'proxies' within the Smalltalk database for

corresponding objects in the GemStone database. ToGS is initialized t o

contain an instance of GemStone class GSSTInterjace (described

above). All information from the interface will be relayed t o GemDesign

(on GemStone) through this class. For GemDesign, the method

described in Figure 4.10 is replaced by that in Figure 4.11.

In Smalltalk, when an instance of class GemStoneObject (ToGS)

finds the prefix 'gs' t o a message, i t removes the prefix and passes the

message t o its corresponding object in the database, which in this case is

a n instance of GemStone class GSSTInterjace. Instead of reading values

from Unix and creating the da ta structure represented by 'r' (Fig 4.9),

the GemStone application gets all the information it needs, (through

nodeIndex, attributelndex and versaonTime) and just passes the da t a

structure r. The message asLocalObject sent t o r replicates the da t a

structure represented by r (which is a GemStone da t a structure) into a

Smalltalk object.

getNodeAttributeValue: nodeIndex jor: attributehdex at: versionTime

"gets the value of attributehdex for node nodeIndex at time versionTimeW

I r l
r - TOGS gsgetValue: nodehdex ofAttribute: attributehdex at: versionTime.

' r asLocalObject

Fig 4.11 The method ~ctNodeAttri)utcVdue: joc at: modifled for GemDeaign.

petvalue: nodehdex ojAttribute: attributehdex at: versionTime

" gets value of attribute 'attributehdex' for nodeIndex at versionTimem

I n theAttr attrName x r

n .- self getNode: nodelndez.

z .= (nodelndez + attributeIndez - 1).
"Index of the system attribute. "
(uersionTime = 0) ;/True: / theAttr .- (selj getNodeAttribute: z) 1

ipalu e:

[n := currentGraph findversion: uersionTime ojNode: n .
attrName .- ((allObject8 detect: [:a a.id = z]) name) .
theAttr := n attributcSet detect: [:a I a name = attrName I] .
r .= Away new: 2.

(theAttr iaMemberOj: StringAttribute)
iflrue: / r at: 1 put: true]

ipalse: [r at: 1 put: jalse] .
r at: t put: theAttr value.

r

Fig 4.12 The method #efV.lrc: oflttnlhtc: at: in GemDecrign.

Replacing the code of the method getNodeAttribute:jor:at: by a sin-

gle message t o the variable TOGS is not the whole story. As mentioned

earlier in this chapter, a n additional level of indirection has been added

t o the interface of GemDesign. Objects are identified by integers in

Neptune, and strings in Gemstone. This mapping is done in the method

getVa1ue:ojAttribute:at: (Figure 4.12) in class GSSTInterjace.

This method first gets a pointer t o the node specified by nodeIndex.

(n := selj getNode: nodelndez). The method getNode: takes the numer-

ical identification of the node as passed by the interface, maps this t o

the nodes name in GemDesign, and then gets a pointer t o it. I t then gets

the current version of the node from the graph, (currentGraph findVer-

sion: ojNode), and then gets the attribute. It creates a da ta structure

similar t o tha t created by the original HyperRPC method, and returns

this structure t o Neptune's interface.

4.6. Implementation Results

The object-oriented paradigm provided a very elegant vehicle for

the implementation of a hypertext system. The components of hyper-

text, namely, graphs, nodes, links etc., were very naturally modeled as

objects in the OPAL language. Modifications in design could be kept

localized t o the specific objects in which they arose, without concern

about any other parts of the code. Similarly, proposed extensions could

also be handled easily. It took the researcher much less time than anti-

cipated t o finish and test the code for GemDesign.

The problems tha t arose were concerning the environment a t the

Oregen Graduate Center in which Gemstone was running, and

specifically, the serial connector between the Smalltalk workstation and

the database. The Tektronix 4400-series workstation used for this thesis

is connected t o the uVax via an RS-232-C cable between the worksta-

tions serial port and one of the Vax's terminal ports.

Under this configuration, Gemstone's response time is very poor.

Actions such as bringing up the browser, the method categories and

methods in the browser, performing a 'commit' t o the database are

extremely slow. For example, i t takes on a n average 20-30 seconds t o

bring up the Gemstone browser, approximately 20 seconds t o bring up a

class category, another 15 seconds t o bring up a class, 15-20 seconds t o

bring up method categories, and approximately 15 seconds t o bring up a

method. A deterioration of performance as compared t o Smalltalk is

naturally t o be expected, due t o the fact t ha t the database is not

housed on the same machine. But Gemstone's response time over the

RS-232 was very poor.

There were three reasons for this poor performance. The uVax, on

which the Gemstone database was running, is the slowest host for Gem-

Stone. Secondly, this was the first release of Gemstone, and hence not

as efficient as the subsequent releases. Thirdly, the RS-232-C cable tha t

connected the uVax t o the workstation was very slow. In addition, this

network malfunctioned on an average 2 t o 3 times a week during the

period t ha t it was used for the implementation of GemDesign. When

the bridge t o Neptune was written, the situation deteriorated and the

network started crashing twice a day (5 hours of use). This was a seri-

ous problem, as the server would go down without warning, thereby

returning the database t o the previously committed state. As mentioned

above, the response time of the network was very slow, making frequent

commits t o the database impractical.

The researcher has not worked with any other object-oriented data-

base server, and has no other means for comparing the performance of

this system with its contemporaries. Even so, the current Gemstone

installation is unsatisfactory as far as speed and reliability goes.

Gemstone itself presented problems of its own. OPAL, Gemstone's

database language, does not provide any graphics classes at all. There

is no support for user interfaces of any sort. This proved t o be a real

handicap, because it took the researcher almost as long t o design and

implement the bridge t o Neptune's Interface, as it took t o design the

actual hypertext system. GemDesign identifies objects by their name,

while Neptune needs an integer identification. Due t o this difference in

naming systems, the mapping between these two systems took as much

effort as GemDesign, and the code created was as complex as the under-

lying hypermodel. If OPAL had some provision for graphics, we would

have written a much simpler interface t o GemDesign in OPAL, thereby

saving the effort of understanding Neptune's interface, and mapping it

t o GemDesign.

~ m e n i t i e s such as a 'file out' mechanism for code in the Gemstone

browser are not provided by Gemstone. This means t ha t the user has

t o individually copy methods out into files. (Subsequent releases of Gem-

Stone have corrected this). Error debugging facilities were not provided

by Gemstone in OPE release 1.3. An error during implementation is

brought t o the users notice through an error notifier, which simply men-

11 tions the kind of error tha t has occurred (e.g., Gemstone error: An

at tempt was made t o store a n object of type blah into an instance vari-

able constrained t o be of type blahl"). This does not give the user a

clue as t o the whereabouts of the error (Assuming tha t there are plenty

of instances of the class whose instance variable is constrained t o be of

type blahl). Smalltalk, on the other hand, puts up a debugger t ha t

takes the user right up t o the method where the error was caused, and

the user can also view the values of all variables in tha t method. This

makes finding the reason for the error quite simple.

No break-down analysis was done on the amount of time taken t o

perform a n operation in GernDesign. The important fact in this regard

is tha t the time taken by the Gemstone database t o perform hypertext

functions such as creating a node is orders of magnitude less compared

t o the total time taken by the current Gemstone configuration at the

Oregon Graduate Center t o perform and display such a function. As

mentioned in one of the preceding paragraphs, the performance of the

network was very poor. The network's response time dominated

Gemstone's performance completely, and to the extent t ha t measuring

and analyzing running times of the two implementations (GernDesign

and Neptune) seemed pointless.

CHAPTER 6

Conclusions

The goal of this thesis was to implement a prototype hypertext system

(Tektronix's Neptune) in an object-oriented database. The implementa-

tion was completed using Gemstone's database language, OPAL. OPAL

is derived from Smalltalk-80, its syntax and semantics are almost identi-

cal t o it.

The purpose of the thesis was to test the ease of using the object-

oriented paradigm for a given application. This paradigm lent itself

very well for the design of a prototype hypertext system. Nodes and

links, which are the basic objects in 8 hypertext systems, were objects in

OPAL as well. The behavior of objects was also very well captured.

For example, operations on nodes such as creating, opening and modify-

ing could be elegantly coded as methods for the corresponding class.

Many software systems can be naturally de-composed into objects.

The functionality of such a system can be distributed amongst its object

components, so that the system consists of indiviual objects, each

describing what i t does. The object-oriented paradigm with its object-

message model exactly fits the requirements of many system software

tasks today.

Thus the main results of implementing this thesis can be summar-

ized as follows:

1. The prototype hypertext system was easily modeled by the object-

oriented paradigm.

2. No comparative analysis could be performed t o comment on the per-

formance of the Gemstone database. The primary reason was t ha t

Gemstone's current network configuration at the Oregon Graduate

Center performed very, very poorly, and completely dominated the per-

formance of the Gemstone database. Thus, this suggests t ha t the

current Gemstone configuration a t the Oregon Graduate Center is not

appropriate for any practical application.

REFERENCES

b d r e w s , Harris 87)

Timothy Andrews, Craig Harris

Cedi* h a p a g e and Databuc Adocrncu ir an Object-Orirrtcd Dedponwrt

E a w m
OOPSLA 1987 Conference Proceedings.

[Bloom, Zdonik 87)

Toby Bloom, Stanley B. Zdonik

Iurcr in thc D&p o j Object-Oriented Programming Languaga

OOPSLA 1987 Proceedings.

b h 861
Grady Booch

O&ct Oricrtcd D c d o p c r t

IEEE Transaction On Software Engineering, Vol SE12, No 2 February 1986.

(Bush 451

Vannevar Bush

Jlr Wc May TIirt

Atlantic Monthly, 110.176, pp 101-108, July 1945.

[Campbell, Goodman 871

Brad Campbell, Joseph Goodman

E4.M: A Ccrerd-Prrpmc &per t& Abstract Ma J k c

Hypertext 1987 Papers.

[Conklin 861

Jeff Conklin

A S u m q oj Hmcrkrt
1986 Microelectronics and Computer Tecnology Corporation (MCC).

[Copeland, Maier 87)

George Copeland, David Maier

M&ag Sm.III& II D a t a b ~ e S ~ ~ C I I)

Proc. ACM/SIGMOD International Conference on the Management of Data, 1984.

Mwge/O)t'cct Ropamming: An ewhtiorary Change in Proyamming Tecrdogy

IEEE Software 1:1, January 1984.

[Cox 861

Brad J Cox

e c t - % e r t e d ~ o p a m m ~ n g An Eodrtiorary Approach

Addison Wesley, 1986.

[DeLisle, Schwartz 8781

Norm DeLisle, Mayer Schwartz

A Hgpertut Sptem for Imfonnatior managcmenC Fwnctiond Specification

Technical Report No. CR-8415a, CRL Tektronix Inc.

[DeLisle, Schwartz 87b)

Norm DeLisle, Mayer Schwartz

G a t & A Partiering Concept for Hmerlctt

ACM Transactions on Office Information Systems, Vo1.5 No.2, April 1987, Pages 168-186.

PeLisIe, Schwartz 8701

Norm DeLisle, Mayer Schwartz

A Hmcrtcd S p t e n for D u i p Iajonnation managcmcrt: Dcsign and Irnplcmertion

Technical Report No. CR-86-59, CRL Tektronix Inc.

PeLisle, Schwartz 87d]

Norm DeLisle, Mayer Schwartz

Neptame: Hgpertul Sptcm for CAD Application8

Technical Report No. CR-85-50, 1986, CRL Tektronix Inc.

pngelbart, English 681

D C Engelbart, W K English.

A Ruearch Centcr for Argmcnting Hrman Intellect

AFIPS Conference Proceedings, Volume 33, Part 1 ,The Thompson Book Company, Washington
DC, 1968.

[Goldberg 841

Adele Goldberg

SMALLTALK-80 lXe Imtencfk Programming Enmirorment

Addison-Wesley , 1983

[Goldstein, Bobrow 801

Ira Goldstein, Daneil Bobrow

-ti011 for a Programming Emwirormcrt

Proceedings of the First Annual Conference of the National Association for Artificial Intelli-
gence, Stanford, Ca, August 1980.

[Halasz et al. 871

Frank Halasz, Thomas Moran, Randall Trigg

N o k C a r h ir a f i idr l l

CHI + GI 1987 , Toronto, Canada, April 5 -9 , 1987.

[Jacobson 871

Ivar Jacobson

Object Oticrtcl Dedopmcnt in an I n l u h i a l EnIlironmcat

OOPSLA 1987 Proceedings.

(Kerr, Percival 871

R K Kerr, D B Percival

Uu of Object-On'del Programming in a Time Seriu An+& Syatem

OOPSLA 1987 Proceedings.

[Maier, Price 841

David Maier, D. Price

Data MOM +cqrircment. for crgkcering appliertioru

Proc. IEEE 1st Int. Workshop on Expert Database Systems, 1984, pp. 759 - 765 .

[Maier et al. 85)

David Maier, Allen Otis, Alan Purdy

Object-Oriented Databue Dmlopmed at Scrrio Logic

Databsse Engineering 8:4, Deccember 85.

w i e r et al. 86)

David Maier, Jacob Stein, Allen Otis, Allan Purdy

D m l o p c r t o j rr wet -Or ic r ted DBMS
Proceedings of OOPSLA '86 , Portland Oregon.

waier, Stein 861

i David Maier, Jacob Stein

IJuirfi in u Object-01icrlcd DBMS
Tecnical Report CS/E86-006, Oregon Graduate Center, Beaverton, Oregon, May 86.

WacLennan 83)

Bruce J MacLennan

A Yicv Of Object On'cnicd Programming

Naval PostGraduate School, Monterey California, February 1983.

v e y e r 871

Bertrand Meyer

R c w e W i w TLc Cuc /or w e t - O n c r t c d D a i p
IEEE Software, March 1987.

weyrowitz 86a]

Norman Meyrowitz

InterMedia: The Architecture and Construction o j an Object-OrientedHyperMedia System
and Applications Frame Work

Proceeding of OOPSLA '86, Portland Oregon.

~ e y r o w i t r 86b]

Norman Meyrowitz

Z&ritcllcc C Report

IRIS Tecnical Report 85-7, Institute for Research in Information and Scholarship, Providence,
RI , July 1985.

wcallef 88)

Josephine Micallef

Eacapulation, R e m 3 d i f ~ a r l lkierdcibdit J i m Objeci-chien fed Programming Languages

Journal Of Objectoriented Programming, Vol.1, No.1, Aprilway 88.

[Nelson 801

Theodore H Nelson

Repfacing ihc Prk tcd W o r k A Comflete Litera- Sptem,

1013-1023, IFlP Proceedings, October 1980.

[Nygaard 86)

/ Kristen Nygaard

1 Suic Concept. i Object Oriented Rogramnhg

i SIGPLAN Notices, V 21 #LO October 1986.

/ penny, Stein 871

4 D. Jason Penney, Jacob Stein

C l a ~ Modification i Lle CenSlone Object-Oriented DBMS

Proceedings of OOPSLA '86, Portland Oregon.

I purdy et a1. 871

j Alan Purdy, David Maier, Bruce Schuchardt

In tept ing an Object Sewer With Other Wod&

ACM Transactions on Office Automation Systems, April 87.

(Rentsch 821

Tim Rentsch

Object Oriented Progranrmkg

SIGPLAN Notices, vol.17. no.9. p.51, September 1982.

b b e r t s o n et a1 811

G.Robertson, D. McCracken, A.Newel1

Tlc ZOC Approad to Man-& J h e Commrnication

International Journal of Man-MAchine studies, Vo1.14 , 1981 .

[Seidwitz 871

Ed Seidwitz

Object-Oricnted Programming h S'arllTdk and Ada

1987 Conference on Objectoriented Systems, languages and Applications, October 1987.

[Smith, Zdonik 871

Karen Smith, Stanley B Zdonik

Intcrnaedia : A Case Studg of the Diflcrences Between Relational and Object-Oriented DAta-
~ O I C Sg8t~??U

Proceedings of OOPSLA '87.

[Snyder 86)

Alan Snyder

E c a p d a t i o n and Idenlanee ir Object-On'cnted Programming Lenguogca

Proceedings of OOPSLA '86.

[Stroustrup 881

Bjarne Stroustrup

WI.t u object-Olicrtcd P + o # r e m m ~ P
IEEE Software, May 1988.

(Weyer, Borning 851

Stephen H Weyer, Alan A. Borning

A h k l y p c l3cctroric Eacydopclu

ACM Transactions on Office Information Systems, Vol 3 No.1 January 85.

[Yankelovich et al. 851

Nicole Yankelovich, Norman Meyrowitz, Andries van Dam

R c e l i y 8 r l Wrik'y the a c c t m i r Boo)
IEEE Software October 1985.

[Yankelovich et al. 881

Nicole Yankelovich, Bernard Haan, Norman Meyrowitz, Steven Drucker

h t c r r r c d k k e p t end the Coutnct ion of 8 S c e d c u Imjormetior Eawiroamcrrt

Computer January 1988.

APPENDIX

GEMDESIGN: The Code

I Class Definitions: HyperModel

Object subclass: 'Attribute'
instVarNames: #('name' 'creationTime' 'value'

'owner' 'flink' 'blink')
clsssVars: #()
poolDictionaries: #[]
inDictionary: HyperModel
constraints: #[#[#name, String]]
islnvariant: false

Object subclass: 'Context'
instVarNames: #('name' 'ownGraph' 'attributes' 'creationTime')
classVars: #()
poolDictionaries: # []
inDictionary: HyperModel
constraints: #[
islnvariant: false

Attribute subclass: 'DeletedAttribute'
instVarNames: #()
classvars: #()
poolDictionaries: #[
inDictionary: HyperModel
constraints: #[
isInvariant: false

Object subclass: 'DeletedElement'
instVarNames: #('name' 'creationTime' 'blink'

'flink')
classVars: #()
poolDictionaries: #I
inDictionary: HyperModel
constraints: #
ielnvariant : false

DeletedElement subclass: 'DeletedLink'
instVarNames: #()
classVsrs: #()
pooIJXctionaries: # D
inDictionary: HyperModel
constraints: # 0
Snvar iant : false

DeletedElement subclass: 'DeletedNode'
instVarNames: #()
classVars: #()
poolDictionaries: # U
inDictionary: HyperModel
constraints: #
i8Invariant: false

HyperGraph subclass: 'Graph'
instVarNames: #('nodeset' 'linkset' 'allNodeAttrs'

'allLinkAttrs' 'allNames')
classVars: #()
poolDic tionaries: # [I
inDictionary: HyperModel
constraints: # n
isInvariant: false

Object subclass: 'GSSTInterface'
instVarNames: #('al10bjects7 'currentlndex' 'currentGraph'

'currentcontext ')
classVars: #()
poolDictionaries: #[I
inDictionary: HyperModel
constraints: # 0
isInvariant: false

Object subclass: 'Header'
instVarNames: #('name' 'element')
classVars: #()
poolDictionaries: #
inDictionary: HyperModel
constraints: #[#[#name, String]]
ishvariant: false

Object subclass: 'HyperGraph'
instVarNames: #('name' 'rootcontext' 'creationTime'

'contextset')
elassVars: #('graphDirectory ')
poolDictionaries: # 0
inDictionary: HyperModel
constraints: #I
islnvariant: false

Attribute subclass: 'IntegerAttribute'
instVarNames: #()
classvars: #()
poolDictionaries: # 0
inDictionary: HyperModel
constraints: # 0

I ishvariant: false

Set subclass: 'InterfaceSet'
instVarNames: #()
classvars: #()
poolDictionaries: # []
Wictionary: HyperModel
constraints: InterfaceType
ishvariant : false

Object subclass: 'InterfaceElement'
instVarNames: #('name' 'id' 'element')
classVars: #()
poolDictionaries: # 1
inDictionary: Hyperhfodel
constraints: #[#[#name, String],

#[#id, Integer]]
isInvariant: false

HyperGraph subclass: 'Link'
instVarNames: #('oiGraph' 'attributeset' 'frornNode'

'toNode' 'flink' 'blink' 'fromPos'
'toPos')

classVars: #()
poolDictionaries: # 1
inDictionary: HyperModel
constraints: #[#[#name, String]]
ishvariant : false

HyperGraph subclass: 'Node'
instVarNames: #('oiGraph' 'attributeset' 'sourceLinks'

'destLinks' 'contents' 'flink' 'blink')
classVars: #()
poolDictionaries: # 0
inDictionary: HyperModel
constraints: #[#[#name, String]]
islnvariant : false

Set subclass: 'SctOfAttributes'
instVarNames: #()
clrssvars: #()
poolDictionaries: # 0
inDictionary : HyperModel
constraints: Attribute
f i v a r i a n t : false

Set subclass: 'SetOfHeaders'
instVarNames: #()

classVars: #()
poolDictionaries: #[I
inDictionary: HyperModel
constraints: Header
bhvariant: false

Set rubclass: 'Setoninks'
instVarNames: # ()
classvars: #() '

poolDictionaries: # 1
inDictionary: HyperModel
constraints: Link
isInvariant: false

Set subclass: 'SetOfNodes'
instVarNames: #()
classvars: #()
poolDictionaries: # 1
inDictionary: HyperModel
constraints: Node
islnvariant : false

Attribute subclass: 'StringAttribute'
instVarNames: #()
classvars: #()
poolDictionaries: # 0
inDictionary: HyperModel
constraints: # U
isInvariant: false

Class ATTRIBUTE

i

3 lnstsnce Protocol for class Attribute
1

Category: kuturee Vuiablee

name

name: aName

creation Time

creation Time: aTime

ualu e

value: aValue

owner

ownec anowner

flink

flank: d i n k ,

blink

blink: d i n k

Class protocol for class Attribute

a Category: b t m c e Creation

newForOwnec ownerItself name: attrName withvdre: someContents

Class CONTEXT

Instance Protocol for class Context

Category: Inlrtmce Vuirbl-

name

name: aName

ereationTime

treationTime: aTime

attributes

attributeu: aSet

omGraph

own Graph: aGraph

s Category: Attribute Operations

createStrAttribute: aString withvalue: anotherstring

createInUitribute: aString uithVolue: anInteger

cStrUpdate: a*tr tmth: aString

cIntUpdate: anAttr with: anInteger

Class protocol for class Context

Category: Instance Creation

crcatcNcw: rName ojGraph: aGraph

I i Class GSSTINTERFACE

I Instance Protocol for class GSSTInterface

I I Category: Instance Variables

current Graph: aGraph

currentContezt

currentcontezt: aContext

allobjects

d lobjec ts : aSet

I Category: Context Operations I {
I I

getConteztAttrValue: contextIndex for: attributehdex at: versionTime

sctConteztAttribute: contexthdex withIndez: attributeIndex as: boolVal with: aString with:
anhteger

Category: Graph Operatiom

addNode .
createGraph

I openGraphPath: graphId at Time: crTime

gctCraph: versionTime nodePredicate: aString1 linkpredicate: aString2 nodeAttr6: na lin-
M t t r s : la

addLinkFrom: BomNodehdex to: toNodehdex rpor: fromCurPos dpos: toCurPos /romContez-
tld: fcontextId toContczt1d: tcontextId

dertrogGraph

Category: Node Operatiom

IeleteNode: aNodehdex

IelctcAttribute: attributehdex jorNode: nodelndex

retNodeAttrValuc: nodeIndex jot: attributehdex as: boolVa1 with: aString with: anInteger

getNodeVersions: nodehdex

openNode: nodehdex nodeVersionTimc: aTime nodeAttrs: anIntl attrlnd: anArl linkAttrs:
anht2 iAttrInd: anArr2

Category: Link Operations

deletcLink: aLinkhdex

deleteAttribute: attributelndex forLink: linklndex

I setLinkAttrValue: linklndex for: attributehdex as: boolval with: aString with: anlnteger

getvalue: linkhdex ojLinkAttribute: atributelndex at: versionTime

getLinkAttributcs: aLinkhdex versionTime: aTime

Category: Private

getNode: objecthdex

gctAttributc: objecthdex

get%ink: objecthdex

getLinMttributc: attrhdex

getNodcAttributc: attrIndex

gctAttributeIndcz: aString

c r t o t e I n ~ e m e n t : fromIndex

findld: anObj

cztraellltttibuteValucs: nurnAttrs jorlndicce: attrvalues jorNodc: nodelndex

cttractlltt~butcValucs: numAttl-s jorIndiccr: attrvalues jortink: linkIndex

r eztraetNodcAttributcs: aNode
i

1 findTimcStamp: objld

i findElcment: anld

pctTimeStamp: aNode id: anhteger

! Class protocol for class GSSTInterface

1 Category: Instance Creation

Class GRAPH

Instance Protocol for class GRAPH

Category: Instance Vuiables

allNames

allhhmes: aSet

allNodeAttru: aSet

allLinkA ttrs

allLinlLAttrs: aSet

linkset

linkset: aSet

nodeset

nodeset: aSet

I Category: Graph Operations
I

getCraphVioAttn*buteu: nAttrName value: nAttrValue linkAttr: lAttrName withValtie: nAt-
trValue vcrsionTime: aTime

1inearizcCraph: rootNode versionTime: aTime nodeAttrName: aName value: aValue linkAt-
trName: sLAttrName attrValue: aLAttrValue

I Category: Node Operatiom

crerteNodc: nodeName withContcnts: somecontents

1JeteNodc: aNode

openNodc: aNode veruion Time: aTime

findversion: aTime oflode: aNode

modifyContentr: somecontents ojNodc: aNode withLinkr: linkArr

changcNamc: .Name ojNodc: aNode

IelctcAttributc: anAttribute jromNodc: .Node

rewAVersion: ofAttribute with: aVa1ue jor: rnElement

eddAttributc: attrName withValut: someVrlue toNodc: aNode

rpdatctinka: newNode with: IinkArr

Category: Link Operations

createlink: IinkName jrom: murceNode rpor: shteger to: destNode dpos: dhteger othcrCon-
tczt: aContext1

newversion: ofLink aourccNode: aNode newPos: anhteger

Category: Privrte

i ucrsionFromNodc: &Link
4

I
ucrsionToNode: aNode ofiinks: aLinkSet

IelctcAllLinh: rNode

IclctcDcrtLinh: aNode

IcletcSourccLinh: aNode

IeletcAInSct: rnAttribute

IcletcAttributcs: adlement

crcateNew Version: aNode

ncwCVcrrion: aNode with: someContents

crcatcDclLink: aLink

fie Weadcc anElement

parrepred: stringl

findVcreion: versionTime ofAtlr: anAttr

fictGraphViaAttributes: string1 value: string2 1inkAiir: string3 withValue: string4

Class Protocol for class Graph

a Category: Inetance Creation

crcatcCraph: aName

Class HYPERGRAPH

Instance Protocol for class HyperGraph

a Category: Indance Variables

name

name: aName

rootcontczt

rootContczt: acontext

ercationTime

creationTime: aTime

eonteztset

contcztSet: aSet

Category: Graph Acceaa

addGraph: aGraph

openGraph: aName

dclcteGraph: aName

Class protocol for class HyperGraph

Category: Jnatance Creation ,

Class Interf aceElement

Instance Protocol for class InterfaceElement

Category: Instance Varirblee

name

name: aName

i d

id: anlnteger

element

clement: anobject

Class protocol for class InterfaceElement

a Category: Instance Creation

creutcNcw: aName andld: anInteger andElement: theElement

MTA

The author was born on October 7, 1960 in Dhulia, India. She received

a Bachelor of Commerce in Accounting and Computer Science from the

University of Bombay, India in 1981. She also completed requirements of

the Indian Institute Of Chartered Accountants for certification as a

Chartered Accountant.

The author came to the US in 1983, and received a Bachelor of Sci-

ence degree from the University of Phoenix, Arizona in 1985. She began

studies in Computer Science a t the Arizona State University. In 1986,

the author moved to Beaverton, Oregon and enrolled in the Oregon Gra-

duate Center as a part-time student in the Computer Science Depart-

ment.

The author is married to Sunil Shenoy, and has a daughter,

Anushka, age 3.

The author is working for Servio Logic Develpoment Corporation in

Beaverton.

