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ABSTRACT 

Implemention of a Hypertext System in a n  
Object-Oriented Database 

Sadhana Shenoy 
Oregon Graduate Center, 1989 

Supervising Professor: Dr. T, Lougenia Anderson 

Hypertext is non-sequential or non-linear text. I t  is a n  electronic 

medium for information processing, where da ta  is stored as a network of 

nodes interconnected by links. The fundamental concept of hypertext, 

namely, the imposition of structure on a collection of related da ta  t o  

facilitate its easy access, is not new. However, i t  is the 

I I electronification" of documents and especially their interconnections 

tha t  has lead t o  a renewed interest in Hypertext. 

Conventional record-oriented database systems pose limitations of a 

fixed and finite set of da ta  types, and the need t o  normalize data.  

Object-oriented databases overcome these limitations with their flexible 

data-typing facility and ability t o  model da ta  tha t  is not suited t o  nor- 

malized relations. Gemstone is a n  object-oriented database server t ha t  

t supports a model of objects similar t o  tha t  of Smalltalk-80. Gemstone 



provides an object-oriented database language, called OPAL. Gemstone 

merges object-oriented language technology with database technology to 

solve data  management and information modeling problems that are not 

easily solved by relational or hierarchical systems. 

The purpose of this thesis is t o  implement the functionality of a 

prototype hypertext system (Tektronix's HAM - Hypertext Abstract 

Machine) upon an object-oriented database (Gemstone) and report on 

the ease in using the object-oriented paradigm for a given application. 



CHAPTER 1 

INTRODUCTION 

The purpose of this thesis is t o  implement a software system using 

an object-oriented language, and to  report on the ease in using this 

paradigm. The software system chosen for this project is a hypertext 

system, (Tektronix's HAM - Hypertext Abstract Machine), and is imple- 

mented upon Gemstone, which is an object-oriented database. 

The first section in this chapter introduces the concepts of hyper- 

text. The second section describes the object-oriented programming 

technique, and the third discusses the need for object-oriented database 

servers. 

1.1. Hypertext 

The term "hypertext" was coined by Ted Nelson, and means non- 

sequential or non-linear reading and writing. Hypertext is an  electronic 

medium for communication and thought-processing. In a hypertext sys- 

tem, documents are represented by graphs. Graphs consist of nodes that  

contain data, and of links that  connect the nodes. 

The basic capabilities of hypertext are the linking together of 

discrete blocks of material t o  form networks of related information, 



following paths through these networks, and attaching annotations. 

Nodes represent objects in the database, machine-supported references 

(links) between these objects allow non-sequential access t o  these nodes. 

Nodes and links provide the representation system in hypertext. 

Nodes provide a da ta  structure and links a representation scheme t o  

hypertext applications. A node is a module of text t ha t  has some data  

in it. The node size is entirely up t o  the user and his application. A 

node can be considered a file, with semantic connotations ascribed by 

the user. Thus, a single character, a single idea, or all information 

about a specific subject can be put in a node. Hypertext nodes are not 

restricted t o  contain only text, they can contain any representational 

medium, such as  structured graphics, digitized sound, bit-maps, audio 

recordings, etc. Nodes have names, and usually, properties ascribed by 

the user. 

Nodes are connected by links. Links are used for connecting 

related portions of separate documents, for referencing, for comments, 

footnotes, annotations, margin notes and documentation. Links also 

have names and attributes. They are directed, ie., they have a source 

and destination. Sources and destinations of links are described 

differently by hypertext systems. They can be single points in the text, 

portions of text or even entire nodes. A link can usually be traversed in 



both directions. Links reference by name (of destination node) or by 

value. Linking can be done explicitly through referential and organiza- 

tional links. Implicit linking occurs through keywords. 

All hypertext systems have an underlying database. The database 

can be thought of as a web or interconnection of nodes. Each node can 

be displayed by a window on the screen. Nodes can be created or 

removed, data  can be entered, read, manipulated and stored back into 

the database through these windows. Links are indicated through icons, 

these links can be followed, and windows a t  the other end point of the 

link opened and viewed. 

Hypertext is a tool for readers as well as writers. To writers, it 

provides an ideal environment in which varying material from numerous 

sources can be brought together and processed harmoniously. New ideas 

are not built all a t  once, they are developed along various different 

planes and orientations. These parallel lines of thought contribute much 

to  each other, and grow together into a communicable and coherent 

idea. Traditional text processing mechanisms make i t  difficult to  

represent this process, mainly because there is no efficient way to  

represent the connections (between independent modules of information) 

that  exist in the mind of the writer, no way t o  integrate independent 

ideas. 



Hypertext provides readers with a medium where voluminous infor- 

mation from a multitude of sources is made easily accessible. The impli- 

cit structure in the material is made explicit. High speed windows allow 

readers t o  browse through referenced and documented material 

effortlessly and links allow easy non-sequential access t o  physically 

disconnected data,  enriching the understanding of the subject matter. 

The most striking and unique feature of hypertext is t ha t  i t  enables 

non-sequential reading and writing. Links impart this nonlinieaty t o  

hypertext systems by providing a machine-supported mechanism t o  

reference and integrate various chunks of information within and 

between documents. This feature makes i t  easy and unobtrusive t o  

express branches in the flow of thought, and allows the viewing of 

material from varying angles by providing alternative successors t o  a 

portion of text. Conventional flat and sequential text is thus extended 

beyond the "single dimension of linear flow" [Conklin 861. 

Thus, i t  is this "machine-supported links" feature t ha t  is the distin- 

guishing feature of hypertext systems. Jeff Conklin's paper "A Survey 

Of Hypertextw [Conklin 861 seeks t o  establish the criterion of machine- 

supported arbitrary cross-linking between da ta  items or interdocument 

links as being the fundamental feature of hypertext systems. Vannevar 

*I Bush, who is credited with first describing hypertext in his memex", 



considered this linking capability to  be of primary importance, 

I* ... associative indexing, the basic idea of which is a provision 

where by any item may be caused a t  will to select immediately and 

automatically another. This is the essential feature of the memex. The 

process of tying two items together is the important thing. " [Bush 451. 

Most hypertext systems provide the ability to  "filter" information. 

Filtering allows users to  choose and view pertinent information only. 

*I Attributes" or other selection criteria define characteristics of and rela- 

tionships between chunks of information by defining "values", and can 

be used to  select the desired information [Yankelovich et al. 851. The 

hypertext database can be browsed by search using filters or keywords, 

and also by following trails established by links. 

Hypertext systems can aid in creating better audiovisualization, as 

the nodes in hypertext systems are not limited to  contain only text, but 

*I can contain a combination of many media. The inclusion of animation, 

computer-generated sound, and audio and video recordings adds a rich- 

ness t o  electronic document systems that  is impossible to  recreate with 

paper media." [Yankelovich et  al. 851. 

In conclusion, hypertext systems are particularly useful for idea- 

processing, browsing and problem solving. They provide appropriate 

tools for structuring ideas, and organizing material in various ways to  



suit different viewpoints. Hypertext systems are also well suited for 

exploring representational problems. They allow the user t o  view not 

only the contents of documents, but the structure as well. "The ability 

t o  work with unstructured information in conjunction with formalized, 

systematically organized information is the chief advantage in using a 

I #  hypertext system rather than a database description language. 

[Marshall 871. 

1.2. The Object-Oriented Programming Technique 

Object-oriented programming was introduced in the 1960's by a 

language called SIMULA, where the notion of object was presented. 

However, i t  was Smalltalk, a n  interactive, display-based implementa- 

tion, t ha t  gave the object-oriented paradigm wide recognition. This pro- 

gramming methodology has found use in a variety of applications, par- 

ticularly in software systems development, artificial intelligence pro- 

gramming, and simulation. 

The following paragraphs define the primary features of object- 
i 

oriented programming (as supported by SmallTalk-80). 

Objects & Methods 

Objects, not surprisingly, are the basic units in an  object-oriented 

programming language. They perform computations and save state,  and 



hence combine the functionality of procedures and da t a  in a conven- 

tional programming language. An object has a da ta  structure as well as 

a group of operations tha t  define how to  access and manipulate the da ta  

contained in the da ta  structure. An object has instance variables 

(fields). These variables can contain any values, and can even be 

pointers t o  other structured objects. 

Objects communicate with each other by sending messages. Each 

message contains a selector, which can be described as a procedure 

name, and possibly message arguments corresponding t o  parameters. 

A message expression is like a subroutine call. The set of messages that  

an  object understands are called its protocol. 

When a message is sent t o  an  object (the receiver ) i t  responds t o  

the message by executing a piece of code called a method, which is a n  

operation t ha t  implements the named message. A method consists of a 

set of executable statements. Each method corresponds t o  a method 

selector. 

Classes 

A class is a description of a group of similar objects, a template 

tha t  is defined t o  describe the properties, characteristics and behavior of 

a set of common objects [Yankelovich et  al, 881. 



Every object is an  instance of some class. When more than one 

object is a n  instance of the same class, each object has the same 

number of variables as defined by the class, but the da ta  in those vari- 

ables can be different for each of the instances. 

A class can have many types of variables. The two most commonly 

used are instance variables and class variables. The value of a class 

variable is shared by all the instances of a class, whereas the value of a n  

instance variable is specific t o  the instance of the class. All instances of 

a class share the same methods. 

Subclasses and Inheritance 

Inheritance is a technique tha t  enables specialization in object- 

oriented languages. I t  allows new classes t o  be built upon, o r  derived 

from other, pre-existing classes. The new class is more specialized as it 

contains more information or is more constrained than the pre-existing 

class. The more specialized class is called the subclass, and the more 

general one is the superclass. An object in a subclass inherits all the 

instance variables and methods of the old class. New instance variables 

and methods can be added by the subclass. The subclass can override a 

method in the superclass by defining a method with the same selector as 

the superclass. 



Data Abstraction & Encapsulation 

Abstract data  objects are fully characterized through the opera- 

tions defined on them. Thus, there is no need t o  understand the inter- 

nal representations and implementation of these objects. Objects in 

object-oriented languages are abstract da ta  objects with an  external 

interface, consisting of the set of operations defined on them. Object- 

oriented languages support da ta  abstraction since an  object can be 

manipulated only through its external interface. Changes can be made 

t o  the structure or behavior of an  object, and so long as visible behavior 

of the object remains undisturbed, this change is not seen by the user. 

Encapsulation is a technique for minimizing interdependencies 

among separately written modules by defining strict external interfaces. 

Data  abstraction and encapsulation thus describe the same concept. 

These techniques make it possible t o  change the implementation of a 

module without affecting other interacting modules. This improves the 

understandability of programs and makes i t  easy t o  modify them. 

Polymorphism 

Polymorphism is a concept where different classes of objects can be 

used in the same context. Each class responds t o  a set of messages 

expected in the context. Different objects can respond t o  the same mes- 

sage in their unique way, i.e., the methods t ha t  are executed in response 



t o  the message are directly associated with the receiver. This is a n  

important feature of object-oriented languages since it allows the 

definition of flexible software elements amenable t o  extension and reuse. 

Binding 

In many object-oriented languages, variables are not typed and 

may contain objects of any class. I t  is not possible to determine stati- 

cally exactly what method in what class will respond t o  a message. 

When a message is sent t o  an  object, the corresponding method is 

looked up a t  run time in the object's class. This is late or  dynamic 

binding, where the binding is based on the object whose operation is 

invoked. Dynamic binding allows a programmer t o  create very flexible 

code. Any object can be used as an  argument as long as i t  can respond 

t o  the messages sent t o  it. 

This is in contrast t o  statically-typed languages, where operation 

calls could be statically bound t o  the respective operations. Thus, the 

i check for whether values of the appropriate type are being assigned t o  

t the variables tha t  are the arguments of functions or operations is done 

at compile time rather than at run time. 



1.3. Object-Oriented Database Servers 

Why object-oriented servers? 

Database systems technology has grown up in a n  environment of 

commercial da t a  processing, where data-intensive business applications 

have requirements for persistence and sharing of data.  Traditional 

database systems based on relational or  hierarchical da ta  models have 

evolved t o  meet the needs of these business applications. However, 

these database systems are characterized by a predefined and limited 

set of da t a  types. In these systems, data  is modeled by collections of 

rigidly typed records. Many modern-day application domains consist of 

complex da ta  structures, and the traditional da ta  models just do not 

have the framework or power t o  represent them. Current database sys- 

tems "are primarily a n  effort t o  implement abstract da ta  types over the 

memory of a machine" [Copeland, Maier 871. They do not support easy 

and natural modeling of da ta  since designers are constrained t o  a fixed 

set of predefined data  types. Data  has t o  be normalized, and contorted 

t o  fit into the available form, thus artificial structure is imposed upon it. 

In contrast, object-oriented databases are built on the concept of 

an  object rather than a record. Objects are a uniform programming 

unit for computation and saving state, and as such are ideal for 

representing collections of things tha t  interact. The basic concepts of 



object-oriented languages (object identity, abstract data-typing, message 

sending, da ta  abstraction, inheritance and encapsulation) provide users 

rich da ta  modeling facilities. Object-oriented programming is a powerful 

technique where a system can be structured as a collection of interacting 

components, and provides a robust framework for creating, extending, 

modifying and maintaining systems. Since a database is intended t o  

stand as  a model of the application environment, there is a need t o  

incorporate the semantics into the data  model so tha t  the database can 

closely reflect the application. Object-oriented databases enable the user 

t o  define da t a  semantics through type extensibility. 

The purpose of this thesis is t o  implement a software system using 

an object-oriented language, and t o  report on the ease in using this 

paradigm. The software system chosen for this project is a hypertext 

system, (Tektronix's HAM - Hypertext Abstract Machine) , and it was 

implemented upon Gemstone, which is an  object-oriented database. 

The remainder of this thesis is organized as follows: Chapter 2 pro- 

vides a n  overview of some existing hypertext systems, Chapter 3 

describes two commercially available object-oriented systems, Chapter 4 

I outlines the implementation of this thesis and Chapter 5 reports the 

results of the implementation. 



CHAPTER 2 

Hypertext Research Survey 

2.1. Introduction 

Jeff Conklin has categorized existing hypertext systems according to  

the nature of their applications: macro-literary systems, problem 

exploration tools, browsing systems and general hypertext technology 

[Conklin 861. Macro-literary systems were the pioneer hypertext sys- 

tems. They were conceived to  function as electronic libraries, providing 

tremendous volumes of information on-line. Machine-supported interdo- 

cument links, which constitute a fundamental feature of hypertext, were 

introduced in these systems. The memex [Bush 451, NLS/~ugment  

[Engelbart, English 681 and the Xanadu project [Nelson 801 are examples 

of systems in this category. Problem exploration tools provide a plat- 

form for developing ideas and solving problems. For example, Xerox 

PARC's PIE [Goldstein, Bobrow 801 is a tool for software design, 

development and documentation. Browsing systems include ZOG 

[Robertson e t  al. 811 and Hyperties, which allow easy access to, and 

manipulation of, stored information. These find use in academic 

environments. The more recently developed hypertext systems explore 



specific issues in the area of hypertext in addition to  providing all the 

facilities of the older systems. For example, Neptune [DeLisle, Schwartz 

87a], Notecards [Halasz et al. 871 and Intermedia [Meyrowitz 86a] have 

found a variety of applications, and serve as tools for further research 

and study of hypertext. 

The rest of this chapter briefly describes some of the hypertext sys- 

tems mentioned above. The hypertext .system used as a model in this 

implementation is Tektronix's Neptune. Neptune is discussed in detail in 

Chapter 4. 

2.2. An Overview of some Hypertext Systems 

2.2.1. Bush's Memex 

Vannevar Bush introduced the concept of hypertext in "As We May 

Think" [Bush 451. He describes "memex", a mechanized private library, 

as 

*I Consider a future device for individual use, which is a sort of 

mechanized private file and library .... A memex is a device in which an 

individual stores his books, records and communications, and which is 

mechanized so that  it may be consulted with exceeding speed and flexi- 1 
I 

bility. It is an  enlarged intimate supplement to his memory." [Bush 451 



His envisioned system consisted of "slanting translucent screens" on 

which da ta  could be projected, and a keyboard. Material or  da t a  is 

stored on "improved microfilm". Books, pictures, periodicals, newspa- 

pers, pictures and business correspondences would all be stored in the 

library. An indexing scheme would be provided for reading the material, 

and facilities for non-sequential access would also be provided. 

The memex sought t o  mechanically reproduce the mental process of 

retrieving and characterizing information in tha t  "selection by associa- 

tion rather than by indexing may yet be mechanized." He described the 

essential feature of memex t o  be the ability t o  join two items and create 

(I trails". Subsequently, recalling any one item meant tha t  the other(s) in 

the trail could also be instantly recalled. 

The memex was certainly a visionary idea but the required 

hardware was far  beyond the (then) current technology. However the 

two primary features of the Memex, mechanized information storage and 

the fast and easy retrieval of this information define hypertext as i t  is 

known today. 

2.2.2. Engelbart's NLS/ Augment 

NLS (ON Line System) was developed in 1968 by Douglas Engelbart 

a t  the Augmented Human Intellect (AHI) Research Center at Stanford 

Research Institute. The research objective of the "interactive, multi- 



console computer-display system" [Engelbart, English 681 was t o  develop 

a tool tha t  would amplify the intellectual abilities of the user. The 

research group's aim was t o  do all of its work on-line, designing, plan- 

ning, debugging and documenting, as well as intercommunications and 

scratch work. 

The research group had access t o  very sophisticated CRT work- 

stations. These work stations had, in addition t o  a television display 

and typewriter keyboard, two of Engelbart's inventions, the mouse and 

a 5 key handset. All of the "working information" was organized into 

files. Files were organized as hierarchical structures, while specifying 

structure was left t o  the user. Text was broken into arbitrary length 

segments called statements, which were numbered according t o  their 

serial location and positional hierarchy within the text. The first word 

of a statement was its name. Reference links could be established 

between statements within or across files. 

Special mechanisms were provided for viewing and studying files, 

allowing users t o  view specified portions of the file. View-specification 

I conditions allowed the user t o  specify the level or depth of the hierarchy 
I 

a t  which he wished t o  view the file (level clipping), displaying only a cer- 

tain number of lines from each statement depending on the truncation 

parameter (line truncation), and viewing only statements containing 



II some desired content. This specification was made in a high-level con- 

tent analysis language." 

The concept of structured, multi-person distributed editing was 

introduced in this system. Standard editing operations were available 

for file modification, and hard copies could be produced with a help of 

different output devices. Compiling, debugging, calculating and con- 

ferencing facilities were also provided. 

The NLS was unique, as i t  introduced many of the capabilities 

mentioned above that  are standard in all systems today. Known today 

as N L S / ~ u ~ m e n t ,  i t  is marketed as a commercial network system. 

2.2.3. Xanadu 

Xanadu was developed by Ted Nelson, and is a system for storing, 

accessing and manipulating linked and windowing text. Ted Nelson 

wanted t o  replicate and extend the structure of the literary system on- 

line, creating a unified literary environment - it was he who coined the 

terms "hypertextw and "hypermediaM. The goal of the system was t o  

1 form a basic "linkage structure" that  was a computerized version of the 

implicit linkage and referral processes existing in the literature system. 

A second goal was t o  build a universal, simple and fair system of elec- 



I* The creators of Xanadu have endeavored t o  create a system for 

text editing and retrieval tha t  will receive, handle and present docu- 

ments with links between them" [Nelson 801. Documents and links are 

the primary elements of the system. A document can contain both text 

and links, thus everything in the system is a document. 

A link is a connection between pieces of text. Many types of links 

are allowed in the system (basically, the user can define any type of link 

he desires), and links may have multiple end points. "Literary" links 

include jump links (footnotes), quote links (quotations), correlinks (mar- 

ginal notes) and equilinks (between the same item in two separate ver- 

sions of the same document). Links may be filtered by type and origin. 

Ted Nelson considers Xanadu t o  be a full blown implementation of 

Vannevar Bush's "memex", designed for "indefinite expansionw. Xanadu 

is also intended for use as  a publishing system since allocation of credit 

and royalty is provided for. Royalty is paid automatically by a user on 

a "byte-by-byteu basis. 

The Zanadu system has been implemented and is marketed as a n  

on-line service. There is a version tha t  runs on Sun workstations. 

2.2.4. PIE 

A "Personal Information Environment" (PIE) was proposed in 1980 

by Ira Goldstien and Daniel Bobrow [Goldstein, Bobrow 801. The PIE 



environment is a network-based approach t o  developing and document- 

ing software. The PIE description language is based on the concepts in 

KRL and FRL, and is written in Smalltalk. This description language 

enables interactive program development. 

PIE contains a network of nodes, each having several perspec- 

tives. Each perspective presents a unique view of the entity 

represented by the node and provides for specialized actions for the 

specific view. Perspectives help a user document the various aspects of 

his application. The authors offer the example of multiple views of a 

Smalltalk class: one providing its definition and structure, another the 

hierarchical organization of its methods, a third stating external 

methods called from the class, and yet another contains documentation. 

Nodes have contexts, which provide a way of storing different 

values for the same node. During software development, alternate 

designs can be stored and evolved in different contexts of the same node. 

Contexts can be extended by creating layers. These layers store 

modifications t o  contexts, thus back-up to  a previous s ta te  can be easily 

handled. Contracts exist between nodes and describe dependencies 

between elements. 

I 1  Traditional programming environments do not allow alternative 

definitions of procedures and data  structures t o  exist simultaneously in 



the programming environment" [Goldstein, Bobrow 801. The PIE system 

overcomes this difficulty by providing support for comparing and storing 

alternative designs, and highlighting their differences. It provides the 

capabilities t o  present the various aspects of a n  application program as 

a single integrated structure. PIE'S networked database facilitates 

cooperative design efforts. PIE can also be used as a prototype office 

information system. 

2.2.5. CMU 's ZOG 

ZOG is a networked, menu-based system developed in 1975 at 

Carnegie-Melon University [Robertson et  al. 811. ZOG was initially 

implemented on PDP 10 and VAX 11/780 machines. 

In the ZOG system, each data  segment, called a frame, is 

displayed on the screen along with a set of menu items called selec- 

tions. Standard ZOG commands such as Edit, Help, Back, Next, 

Return, etc. are represented by global pads on the bottom of the screen. 

A sequence of frames can be viewed by making the desired selections. 

Data is represented as a hierarchical network of frames divided into 

subnets. Subnets operate essentially as subroutines. ZED, the ZOG 
i: 

editor, allows new frames t o  be added and modified, and the network 

can be augmented by a user to suit his specific needs. 



ZOG has been designed t o  serve a large user community, and as "a 

particular interface for man-computer interaction." I t  has found use as 

a guidance system, a computer-aided instruction system, a database and 

browsing system. ZOG has been installed as a computer-based informa- 

tion management system on the USS CARL VINSON. 

A major problem with the system is tha t  it is very difficult t o  grow 

the really large nets tha t  are an  essential ingredient of ZOG. 

2.2.6. B r o w n  Universi ty 's  I n t e r m e d i a  

Intermedia is a large-scale, object-oriented hypertext/hypermedia 

system. The Intermedia project was developed in 1984 at the Institute 

for Research in Information and Scholarship (IRIS) at Brown University. 

It was a part of Brown University's campuswide "Scholar's Workstation 

Project" . The system provides the ability t o  create sophisticated link- 

j 
ages between documents from a variety of applications. I t  also provides 

a development framework for creating additional applications with tha t  

capability (Meyrowitz 86a]. 

Intermedia was developed as a tool t o  facilitate computer-aided, 
1 
1 computer-supported teaching and research in a scholastic environment. 

The educational goals of the project are audio-visualization, encouraging 

exploration of an information-rich environment, making software tools 

available t o  professors t o  "create webs of information," and t o  students 



t o  "follow trails of linked information, annotate text... and communicate 

with other students and professors " [Meyrowitz 86a]. 

Intermedia runs on a network of Unix-based workstations. The 

system is composed of the MacApp layer, the Intermedia layer, and the 

Graphics and Text Building Blocks. Additionally, the six major applica- 

tion units are Intertext, InterDraw, Interval, Interpix, and Interspect. 

These are the text processor, graphics editor, timeline editor, scanned- 

image viewer and a three-dimensional object viewer. 

The system was developed as  a framework of software tools with 

integrated hypertext capabilities so that  it could be used in routine 

application tasks such as the creation and update of documents. 

Intermedia integrates all the functionality of a hypertext system 

into each application, so that  users can take advantage of the system's 

capabilities within the framework of their routine work rather than  use 

Intermedia as a distinct application. The system creates a document 

f 
tha t  can contain texts, graphics, spreadsheets etc. A document can be 

B viewed through a window. Links are created between blocks in a 

E 
document. Keywords and explainers at tach attributes t o  blocks and 

links. These facilities allow the creation of webs. Webs are contexts or  

databases containing sets of documents and interconnecting links t o  

these documents. Maps are visual representations of webs and facilitate 



23 

the understanding of webs by providing easy and efficient access t o  the 

webs. 

T o  evaluate the success and utility of Intermedia, i t  is being used in 

a variety of educational and work settings. Intermedia material already 

used in courses has proved very useful, demonstrating tha t  hypermedia 

systems have tremendous potential. 

2.2.7. Xerox PARC's NoteCards 

The NoteCards system was developed a t  Xerox PARC by Frank 

Halasz, Thomas Moran and Randall Trigg [Halasz et  a1 871. NoteCards 

is a n  extensible computer environment developed t o  aid the collection, 

analysis and processing of information. I t  is designed as a "general pur- 

pose idea processing environment" [Halasz e t  a1 87). The NoteCards sys- 

tem is implemented on Xerox D series Lisp machines. The interface con- 

sists of Lisp functions that  give a programmer tremendous flexibility t o  

create new applications using NoteCards. NoteCards, Links, Browser 
t 

and FileBoxes are the basic objects defined in the system. A notecard is 

a computerized version of the 3 x 5  paper index card. Each notecard 

contains editable data,  such as text, graphics etc. A notecard can be 

characterized by its type. A user can define new types t o  suit his appli- 

cation. Links are typed objects tha t  connect notecards. A browser dep- 

icts a network of notecards, and FileBoxes file or order collections of 



related notecards. With these basic objects, NoteCards creates a 

II semantic network of electronic notecards interconnected by typed links" 

[Halasz e t  al. 871. 

NoteCards has about 70 users within Xerox, and externally the sys- 

tem is in use at universities, government and industrial sites. 

NoteCards has met its goal of creating an  environment for information 

management. However, it lacks support for multi-person or collaborative 

work, and i t  does not have sophisticated tools for displaying large 

graphs and other structures. 



CHAPTER 3 

Object-Oriented Databases 

There are two object-oriented database servers that  are commercially 

available today, Servio Logic's GemStone and and Ontologic's VBASE. 

The Gemstone database server has been used in this implementation. 

The next sections will summarize VBASE, and describe Gemstone a t  

some depth. 

3.1. VBASE: an object-oriented development environment 

Ontologic's VBASE Integrated Object System is an object-oriented 

development environment that  combines a procedural object language 

and persistent objects into one integrated system [Andrews, Harris 871. 

VBASE was inspired by the need t o  bring together language and data- 

base functionality t o  form a single, object-oriented system, t o  develop 

software systems and production applications. 
I 

The VBASE architecture comprises of four layers: the language, 
I$ 

P abstraction, representation and storage layers. Each layer has a VBASE 

I specification and implementation. VBASE is implemented on top of Sun 

OS 3.2 Unix. The TDL (Type Definition Language) specifies the data  

model. The COP (C Object Processor) is used t o  write application pro- 



grams, and implement operations. 

Probably the most distinctive feature of VBASE is t ha t  i t  is an  

object- system tha t  also provides strong typing. In TDL, all object 

definitions and properties are associated with data  types. It is a block 

structured language, and allows the definition of constants, variables, 

enumerations, unions and variants. Parameterization (the ability t o  

specify the types of objects contained within other objects), a capability 

often not found even in procedural languages, is another significant 

feature of VBASE. VBASE also has a special exception handling 

mechanism. Exceptions are types, thus a hierarchy of exceptions can be 

defined, and properties and operations can be defined for them. 'Except' 

and 'raise' statements transfer control t o  a exception handler rather 

than return control t o  the caller. 

In addition t o  providing most of the expected database functionali- 

ties, VBASE also supports persistence of objects, and clustering objects 

on disks. Support for inverse relationships automatically implies t ha t  

one-to-one, one-to-many, and many-to-one relationships between objects 

can be maintained. 

F" VBASE had set two goals for itself, integrating a procedural 

language with support for persistent objects, and providing strong typ- 1 
ing. VBASE has emerged as a relatively complete development system, 



it is object-oriented, strongly typed, and supports persistent objects 

[Andrews, Harris 871. 

3.2. GemStone 

GemStone is an object-oriented database server developed at Servio 

Logic Development Corporation tha t  merges object-oriented language 

concepts with database systems. GemStone provides a n  object-oriented 

programming language called OPAL, which serves as the da ta  definition 

and da ta  manipulation language for the GemStone system. OPAL pr* 

vides standard database storage and retrieval functions as well as pro- 

gramming facilities for general computation that  are comparable t o  C or 

Pascal. The GemStone system was built on the premise tha t  a "combi- 

nation of object-oriented language capabilities with the storage manage- 

ment functions of a traditional data  management system will result in a 

system tha t  offers further reductions in application development efforts." 

[ Maier et  al. 861 

The goals and requirements of the GemStone system, as specified 

by Maier e t  al. fall under three categories, tha t  i t  provide an  extensible 

da ta  model, general database amenities, and a programming environ- 

ment. These are briefly outlined in the following paragraphs. 



An extensible da ta  model means tha t  a user should be able t o  

define new da ta  types and operations on them so tha t  the structure as 

well as the behavior of objects can be modeled. Its da ta  model must 

support arbitrary levels of data  structuring, and separate type definition 

from type instantiation. No artificial limitations should be imposed on 

data  items. Additionally, variations in structured objects should be 

allowed, and arbitrary data  items as  values should be allowed. 

General database functions such as a multiuser environment, con- 

current access and serializability of transactions, private ownership of 

data  objects, stable storage for da ta  objects, atomic commit and abort 

of transactions and authorization and system management functions 

need t o  be provided. 

The programming environment must include a n  interactive inter- 

face for the OPAL language (for defining new database objects, execut- 

ing queries, etc.) and a procedural interface t o  conventional languages. 
k 

ri 
(a) The Gemstone Architecture 

k The Gemstone configuration used in this research consists of the 

OPAL language and the storage management software running in the 

DEC VAX/VMS environment. IBM-PC's or  Smalltalk machines 
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the OPE (Opal Programming Environment) t o  enable the user t o  build, 

execute and debug OPAL programs. The OPE consists of a n  OPAL 

browser, source code workspace, and a bulk loader and dumper. Figure 

3.1 illustrates the architecture. 

Conceptually, the Stone process provides secondary storage 

management, concurrency control, authorization, transactions, recovery, 

and support for associative access. I t  manages workspaces for active 

sessions [Maier et  al. 861. In Figure 3.1, the Stone process is represented 

by the rectangle named "DATA MANAGEMENT KERNEL". A 

separate Gem process is maintained for each session. The Gem process 

is above the Stone process; i t  compiles and executes OPAL code, pro- 

vides session control. In Figure 3.1, the rectangles named "OPAL 

COMPLIER/INTERPRETER" represent two Gem processes. 

(b) OPAL: Gemstone's unified database language 

The object-oriented programming language called OPAL serves as 

the da ta  definition and da ta  manipulation language for the Gemstone 

system. OPAL is a powerful, general purpose programming language 

based on ideas from knowledge representation, abstract da t a  types, 

semantic da t a  languages, set-theoretic data  models and non-procedural 

query languages. I t  provides rich da ta  modeling facilities with a n  inter- 

face t o  a high level programming language (C) [Copeland, Maier 871. 
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OPAL is derived from Smalltalk-80, and its syntax and semantics are 

almost identical t o  it. 

OPAL'S object model is identical t o  tha t  of Smalltalk-80. The 

three primary concepts are object, message and class, which are 

equivalent t o  record, procedure call and record type respectively, in a 

conventional system [Purdy et  al. 871. An object is a well designed data  

structure with a set of operations that  provide access t o  and enable the 

manipulation of the da ta  contained the data  structure. Communication 

between objects is achieved through messages. Message sending is the 

only way through which the da ta  contained in a n  object can be 

accessed. A class is a description of one or more similar objects. The 

structure, methods and messages of a class's instances are factored and 

stored once in a single object describing the class, i.e. the class defining 

object. Classes are organized into a class hierarchy through which the 

structures and methods are inherited. 

The basic syntactic unit of an  OPAL program is the statement. A 

statement contains one or more expressions. An OPAL expression can 
i 

be a literal, variable name, message expression, assignment, e t  c. 
$ 
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The form of all message expressions is <receiver> <message>. 

The receiver is a variable or expression representing the object for whom 

the message is intended, and which will receive and interpret the mes- 

sage. The second part of a message expression, the message, is made up 

of a selector, and possibly some arguments. On execution of the mes- 

sage expression, a result is returned t o  the sender. 

There are three kinds of messages, unary, binary and keyword. 

Unary messages have no arguments, and the selector is a single 

identifier. For example, 

zoo closing Time 

is an  unary message expression. 'closingTime' is the selector, and this 

expression has no arguments. 
b I 

I 
t 
1 

E 
(zoo1 numberOjAnimals) <= (zoo2 numberOjAnimals) and 

are examples of binary messages, where '<=' and '*' are selectors, and 

I 
'(zoo2 numberOjAnimals) ' and '9' are arguments of the message. 

Keyword messages have multipart selectors, the selector in the mes- 



zooAnimab at: 1 put: "Sheba the lioness". 

Methods describe all the action and execution in Gemstone. Each 

class defines the methods its instances will understand. A method 

definition names the method's selector, and possibly some formal argu- 

ments. A method can also contain temporary variables. The body of a 

method consists of OPAL statements, and possibly a return statement. 

Methods are defined within the scope of the object (a class instance) 

tha t  is the receiver of the message, and can thus access the named 

instance variables of the receiver. An example of a method is, 

name: aName 

This method sets the instance variable 'name '. 

A name := aName. 

Gemstone is a computationally complete and extensible programming 

language. OPAL extends Smalltalk in the area of associative access 

support for queries. This extension is supplied by providing a n  indexed 

associative access mechanism, which is a system for maintaining indexes 

t o  large collections and for using these indexes t o  retrieve collections ele- 

i ments quickly. 

OPAL was implemented by writing the object storage manager, the 

OPAL compiler, and interpreter. This system provides a multi-user, 

I 



disk-based system as opposed t o  the single-user, memory resident 

Smalltalk system [Maier e t  al. 851. 

(d) Gemstone's database f e a t u r e s  

Gemstone combines the powerful da ta  type definition and code 

inheritance properties of Smalltalk-80 with permanent da t a  storage, 

multiple concurrent users, transactions and secondary indexes [Maier et  

al. 85). The main database features of .Gemstone are the provision for 

sharing of objects (through a private list of dictionaries called the Sym- 

bolList for each user), resilience t o  common failure modes, security 

(through user authentication), a centralized server and primary and 

secondary storage management facilities [Purdy e t  al. 871. Gemstone 

provides a Smalllalk-like execution model for execution of its methods, 

and support for multiple concurrent users. 

Gemstone supports multiple concurrent users. Gemstone's transac- 

tion control uses an  optimistic concurrency control policy. Gemstone 

F provides for fast associative access t o  members of collections by allowing 

users t o  dynamically add or remove associative access structures t o  aid 

such searches. 

F In summary, Gemstone is a pioneer object-oriented database sys- 

tem developed t o  merge object-oriented programming language technol- 



ogy with database technology. I t  solves da ta  management and informa- 

tion modeling problems tha t  are not easily solved by relational or  

hierarchical systems. 



CHAPTER 4 

Implementation 

The purpose of this thesis is to  implement a large software system 

in an object-oriented language, and report on the ease of using the 

object-oriented paradigm for an application. An existing software sys- 

tem, Tektronix's Neptune, (or specifically, its engine, the HAM) was 

selected as the candidate application and a re-implementation was done 

using the object-oriented database management system Gemstone. This 

implementation, which we have called GemDesign, will be discussed in 

this chapter. The first section describes the Neptune hypertext system. 

The second section provides an overview of the design of the system; the 

third details the implementation. The fourth section provides some gen- 

eral notes on the implementation, while the fifth describes the interface 

between GemDesign and Neptune's Smalltalk interface. The final sec- 

tion discusses the results of implementing GemDesign. 

Figure 4.1 (a) gives an overview of Neptune's architecture. The 

Hypertext Abstract Machine (HAM) is implemented in C, its user inter- 

face is implemented in Smalltalk-80. GemDesign uses the Gemstone 

database. I t  is written in OPAL, which is Gemstone's data  definition 

and da ta  manipulation language. (Fig 4.1 (b) ). No separate interface 
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was written for GemDesign (for reasons detailed later in the chapter). 

Instead, Neptune's SmallTalk-80 interface was ported and used in Gem- 

Design. 

4.1. Tektronix's  NEPTUNE 

Tektronix's Neptune was designed to support software develop- 

ment. Neptune has a layered architecture consisting of two major layers: 

the Hypertext Abstract Machine (HAM) and the user interface. The 

HAM is a bottom-level transaction-based server. It is implemented in C, 

and runs on Unix servers such as Magnolia's (a  workstation developed 

for internal use a t  Tektronix) , Tektronix's 4400 series workstations, 

VAX machines, etc. The user interface is the topmost graphical layer 

and provides browsing and editing facilities. Application layers consist- 

ing of programs that  use hypertext data can be built on top of the 

HAM. 

The HAM is a generic hypertext model based on five entities: node, 

link, attribute, graph and context. Nodes contain arbitrary, editable 

data. A node is an archive or a Ale. Complete version histories are 

maintained for archives, while a file contains only the current version. 

Efficient storage and access facilities are provided to  all versions of a 

node. 



Nodes can be connected by links. Links can be traversed bi- 

directionally. The endpoints of a link have offsets within the node; a link 

is anchored at an iconic point in the da ta  of a node. Links relate two 

nodes either within the same context, or in two different contexts. (Con- 

texts allow users t o  keep related information together, and will be 

defined more fully below.) The latter type of link is known as a cross- 

context link, and facilitates da ta  sharing between contexts by making a 

single node accessible in both the contexts. Links can have attribute/ 

value pairs attached t o  them, and version histories can be maintained 

for a link, depending on the types of the nodes t o  which the link is 

attached. 

Attributes are defined for nodes, links and contexts. The HAM pr* 

vides a set of predefined attributes for which values can be assigned. 

Attributes characterize the objects for which they are defined and are 

used primarily for querying and filtering the graph. Changes t o  attri- 

butes can be archived. Nodes and links can have any number of 

i 
attribute-value pairs attached t o  them. These serve as a n  efficient 

accessing mechanism, allowing desired objects t o  be 'filtered' from large 

graphs. 

A graph is a top-level HAM object. It is made up of nodes and 

links, attributes and contexts. The version history (past states) of a 



40

graph is maintained through the versions of all its components. A graph

usually contains all the information available for a particular project.

Contexts partition the objects or data within a graph, Le., a con-

text contains nodes, links and attributes. Contexts are organized in a

tree structure. Version histories are maintained for contexts. When a ~':;.j
g'"I';
tll:
J)JI

::)1graph is created, its root context is created as well. All contexts except

the root context have parent contexts.
\,,"
).,
"'II
i~1

The user interface provides browsers through which documents and
:;;:
,:"

;~I,.,

nodes can be viewed and edited. The three primary browsers are the

graph browser, which displays a pictorial view of the graph, the docu-

browser, node differences browser, and the versions browser. Figure 4.2

[DeLisle, Schwartz 87b] shows a graph as displayed by Neptune's graph

browser. Nodes are represented by rectangles and the arrows between

nodes are links. This graph shows a paper, titled TOOlS paper, with

sections Introduction, Hypertext systems, Contexts, etc. Each section is

represented by a node in the graph. Some sections have further subsec-

tions which are also represented by nodes. Sections are 'linked' to their

subsections.

ment browser, for browsing the hierarchical structures of nodes and

links, and the node browser, which displays an individual node in a

graph. Other browsers provided by Neptune include the attribute
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Fig. 4.2. Neptunes Graph Browser 



The HAM maintains the integrity of the da ta  t ha t  it manages by 

providing a transaction recovery mechanism. All the operations pr* 

vided by the HAM are atomic transactions; if a transaction does not 

complete the completed portions of the transaction are undone. A 

multi-person, exclusive-writer protocol is enforced for the da ta  contained 

in a graph. 

The primary applications of Neptune have been for supporting 

document preparation and managing software code. Ongoing applica- 

tions include use as a CAEE database, a CAD database and a field ser- 

vice support database. 

4.2. Design 

The last section summarized the functionality and the architecture 

of the original Neptune system as implemented a t  Tektronix. The 

remainder of this chapter discusses the re-implementation of Neptune 

using Gemstone. 

Graph 

A graph in GemDesign is created with a unique name. A graph 

contains all the information pertaining t o  a document. All objects in a 

graph are uniquely identified by their names. A graph contains nodes 

and links, and attributes defined for these objects. Figure 4.2 displays a 



graph named TOOIS.revise with a number of nodes, and links between 

them. 

Node 

Nodes are be created by specifying a name and some contents. 

Example nodes in Figure 4.2 are Hypertext systems, Properties of Hyper- 

teztsystems, Interactive User Interface, etc. Contents of a node can be 

modified, i.e., edited. The hypertext system allows attributes t o  be 

defined for a node. Attributes have names and values. These allow the 

user t o  characterize and a t tach special meaning t o  a node. Nodes can 

be deleted from a graph. 

Link 

Links are also given unique names. Links have source and destina- 

tion nodes, and are attached t o  specific positions in the contents of a 

node. For example, in Figure 4.2, source node Appendix and destination 

node Context Operations are joined by a link. Links can also have attri- 

butes. Links can be explicitly deleted, and if either the source or the 

destination node is deleted, so is the link. 

Attributes 

Attributes are defined for nodes and links. An attribute has a 

value, which is either a string or a n  integer. Attributes contain the oid 

(object identifier) of their owners. Attributes are used mainly t o  



traverse or  filter a graph, i.e., retrieve a subset of all the nodes and links 

in a graph based on the values of their attributes. 

Versions 

Past  s tates of nodes, links and a graph are maintained by a ver- 

sioning scheme in GemDesign. Nodes and links are maintained as linked 

lists of past versions. When a versioned node is modified, a new node is 

created with the new information. All unchanged da ta  is passed on t o  

the new node. 

A node is versioned if its contents or name change as  a result of 

changing the contents, or if a link is added t o  or deleted from a node. A 

link is versioned if its attachment in either the source or the destination 

node changes, or if its name changes. Attributes are also versioned 

when their values change. 

Context 

Contexts are a partitioning scheme for hypertext graphs. When a 

hypertext system is used for a project tha t  requires cooperative work by 

its developers, contexts allow individuals t o  work independently with 

subsections of the graph, and then 'merge' this work with the group 

effort. Contexts support multi-person, co-operative software develop- 

ment efforts, providing a computer environment t o  support software 

design and development efforts. Figure 4.2 shows one context of the 



graph named TOOIS.revise. Versions of the graph could exist in other 

contexts of the graph. 

The contexts scheme implemented in GemDesign is a linear, non- 

branching versioning scheme. Nodes can be copied into subsidiary con- 

texts, and then merged back into the primary context. Links can be 

cross-context, ie, connect two nodes existing in different contexts. 

4.3. Implementat ion 

GemDesign has been implemented in Gemstone's database 

language, OPAL. The following sections give the functional 

specifications and descriptions of the implementation. The major classes 

with their instance and class variables are presented, and their opera- 

tions are discussed. For a description of the other classes that  support 

these major classes, refer t o  the Appendix of the thesis, which contains 

the code of the implementation. 

4.3.1. HyperGraph 

This class is the superclass of three primary classes, graph, node 

and link. Figure 4.3 presents the definition of this class, along with t ha t  

of its subclasses. This class has four instance variables, name, creation- 

Time, rootContext and contextset. The instance variable name is not 

used by instances of HyperGraph but by instances of its subclasses. It 



Object subclass: 'HyperGraphl 
instVarNames: # (  name' 'rootcontext' 

'creationTimel 'contextset' ) 
classvars: # (  'gra hDirectoryl ) 
poolDictionaries : i [ 1 
1nDictionary: H perModel 
constraints: # [y 
isInvariant: false 

HyperGraph subclass: 'Graph' Hy erGraph subclass: 'Node' Hy erGraph subclass: 'Link' 

1nstVarNames: # (  'nodeset' YnstVarNames : # ( ' ofGraphl YnstVarNames : # ( ' ofGraph ' 
'linkset' 'allNodeAttrsl 'attributeset' 'sourceLinks' 'attributeset' 'fromNodel 
'allLinkAttrsf 'allNamesl 'destLinksl 'contents' 'toNodel 'fromPosl 'toPosl 
'root' ) 'flink' 'blink' ) 'flink' 'blink' ) 

classvars: "1 classvars: # (  ) 
classvars: # (  ) 

1Dictionar es: #[] poolDictionaries: #[] poolDictionaries: #[I 
gictionary: H rModel 1nDictionary: H erModel 1nDictionax-y: H er~odel 
constraints: I [{came, string] ] constraints: # [$y#name, String] 1 constraints: # [  #name, String11 
isInvariant: false isInvariant: false 
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Fig 4.3 The Claaa IiyperGraph and SubClssses 



represents the user-given name, and uniquely identifies objects in the 

graph. The instance variable creationTime is computed from the local 

computer's system clock and calendar, and is assigned t o  each object 

when created. Rootcontext contains the oid of the root context of a 

graph. Contextset is a set containing all the contexts of a graph. 

GraphDirectory is a class variable, containing a list of all the 

graphs created. Each of its elements is an  Association, with names of 

the graphs as  key and the oid of the graph as value. 

4.3.2. Graph 

Graph is a subclass of class hypergraph. I t  contains all the infor- 

mation about a particular graph. It inherits variables from its super- 

class. In addition, nodeset, linkset, allNodeAttributes, allLinkAttributes, 

and allNames are instance variables declared by this class. Instance 

variable nodeset contains all the nodes that  are created in the graph. 

LinkSet contains the links that  connect nodes in this graph. The 

instance variables allNodeAttrs and allLinkAttrs are sets t ha t  contain 

all the attributes defined for all the nodes and links, respectively, in a 

graph. The variable allNarnes is a set containing all the names assigned 

to  the nodes and links in the graph. Through this variable, the unique- 

ness of names declared for nodes and links is ascertained. 



The following methods define graph operations in GemDesign: 

a createGraph: aName 

a openGraph: aName 

a deleteGraph: aName 

a get Graph ViaAttributes: nAttrName value: nAttrValue 1inkAttr: 

lAttrName with Value: nAttrValue versionTime: aTime 

a 1ineariteGraph: rootNode versionTime: aTime nodeAttrName: 

aName value: aValue linkA t trName: sLAttrName attr Value: 

aLAt t rValue 

The method createGraph: aName creates a new hypertext graph 

with name aName uniquely identified by its name. The method open- 

Graph: aName opens a graph named aName , i.e., returns a pointer t o  

the graph. The method deleteGraph: aName deletes a graph named 

aName by removing its entry from the graphllirectory . 

The method getGraphGraph ViaAttributes: nAttrName value: nAt- 

trValue linblttr: LAttrName with Value: lAt trValue returns a sub 

graph of the existing hypertext graph, formed by accessing all the nodes 

and links of the graph, and filtering these nodes and links based on  cer- 

tain attributes. First, all nodes tha t  have a n  attribute nAttrName 

with value nAttrValue are returned. Then all links t ha t  have the 

attribute lAttrName with value lAttrValue and connect two filtered 



nodes (above), are returned. Thus, a partially connected sub-graph of 

the original graph is the result. 

The method LinearizeCraph: rootNode versionTime: aTime 

nodeAttrName: aName value: aValue 1inkAttrName: aLAttrName 

attrValue: aLAttrValue returns a sub-graph of the hypertext graph at 

aTime , formed by doing a depth first search via the links starting a t  

node rootNode. An array of two elements is returned, the first element 

is the node list comprising of the nodes encountered during this depth 

first search, having the attribute named aName with value aValue. 

The second element is a link list containing links, each of which connect 

two nodes in the node list, and have a n  attribute named aLAttrName 

with value aLAttrValue. 

In Neptune, users can filter and browse graphs by supplying a 

nodepredicate and a linkpredicate. These predicates are expressions 

consisting of attribute names, relational operators and values, and are 

based on the predicate grammar described in [DeLisle, Schwartz 87a]. 

! In GemDesign, no extensive grammar has been defined, the filtering pro- 

cess occurs as described above. 



4.3.3. Nodes 

Node is a subclass of class HyperGraph. The instance variables of 

this class are ojGraph, sourcelinks, destlinks, attributeset, contents, 

jLink and blink. Instance variable ojGraph is the name of the graph t o  

which the node belongs. Sourcelinks and destlinks are sets of oid's of all 

the links of which a node is the source or destination respectively. Attri- 

buteSet is a set of all the attributes of a node. The variable contents 

contains the text, or the data  of a node. The instance variables jLink 

and bLink are pointers t o  the node which is ahead (behind) in the ver- 

sion list of a node. 

The following methods define node operations in GemDesign: 

createNode: nodeName withcontents: somecontents 

openNode: aNode versionTime: aTime 

modijyContents: somecontents ojNode: aNode withltnks: aSet 

changeName: aName ojNode: aNode 

The method createNode: nodeName withcontents: somecontents 

creates a new node in the hypertext graph, with name nodeName and 

contents somecontents. The name of a node has t o  be unique, so a 

check is done t o  verify that. The node is added t o  the instance variable 



nodeset of the graph. The method deleteNode: aName deletes node 

aName from the current version of the graph. All the links attached t o  

this node, and the attributes of this node are deleted. The method open- 

Node: aNode versionTime: aTime returns a pointer t o  the appropriate 

version (specified by aTime ) of node aNode. If the versionTime is 0, 

then the current node is opened. Otherwise, the version list of the node 

is traversed, and the appropriate version returned. The method 

modijyContents: somecontents ojNode: aNode withlinks: aSet creates 

a new version of the node aNode with contents somecontents is 

created. Each link whose position in the contents of the node has been 

changed (links in aSet ) is also versioned. The method changeName: 

aName ojNode: aNode changes the name of node aNode t o  aName. 

A new version is created for the node. 

4.3.4. Link 

Link is a subclass of class HyperGraph. The instance variables of 

this class are toNode, jromNode, fromPos, toPos, attributeset, jLink and 

t bLink. The instance variables toNode and fromNode are the source and 

I destination nodes respectively, of a link. The instance variables jromPos 

and toPos are the character positions of the link in the contents of a 

! node. These represent an  integer value that  refers t o  the position 

numerically. Variable attributeset is a set of all the attributes of a link. 



Finally, jLink and bLink are the oid's of the link which is ahead (behind) 

in the version list of a link. 

The following methods define link operations in GemDesign: 

createLink: linkName from: sourceNode spos: sInteger to: dest- 

Node dpos: dInteger 

deletelink: d i n k  

openlink: aLink versionTime: aTime 

newversion: ofLink sourceNode: aNode newPos: anInteger 

newVersion: ofLink destNode: aNode newPos: anInteger 

new Version: ofLink newName: aName 

The method createlink: linkName from: sourceNode spos: sIn- 

teger to: destNode dpos: dInteger creates a new link linkName 

between sourceNode and destNode, a t  character positions sInteger 

and dInteger. Links are identified by unique names, so a check is done 

to  verify that .  The new link is added t o  the instance variable linkset 

of the graph, and also t o  the instance variables sourceLinks and dest- 

Links of the source and destination nodes respectively. 

The method deletelink: d i n k  deletes link aLink from the current 

version of the graph. Both the source and destination nodes of the link 

are versioned, and the link's attributes are deleted. The method open- 



Link: aLink versionTime: aTime returns the oid of the appropriate ver- 

sion (specified by aTime ) of link aLink versionTime is 0, then the 

current link is opened. Otherwise, the version list of the link is 

traversed, and the appropriate version returned. 

The next three methods describe link versioning. Links are ver- 

sioned when the position at which the Iink is attached t o  a node changes 

as a result of the contents of the either the source or destination node 

changing. Links are also versioned when their name changes. The 

method new Version: ofLink sourceNode: aNode newPos: anInteger 

versions link ofLink when the contents of its source node change. A 

new version is created for the link, the value of its instance variable 

fromPos is set t o  anInteger (the new position of the Iink in the source 

node). Similarly, the method newversion: ofLink destNode: aNode 

newPos: anInteger versions link ofLink when the contents of its desti- 

nation node change. A new version is created for the link, the value of 

its instance variable toPos is set t o  anInteger (the new position of the 

link in the destination node). The method newversion: ofLink 

newName: aName versions link ofLink when its name changes. The 

new name is aName. 



4.3.5. Attribute 

Attributes are defined for nodes, links and contexts. Figure 4.4 

shows the class definition. The instance variables declared in this class 

are name, creationTime, value, owner, fLink and blink. The instance 

variable name is the name of a n  attribute. The variable creationTime is 

computed from the the local computer's system clock and calendar. 

Value contains the contents assigned to  an  attribute, and is a string or 

an  integer. The variable owner is the oid of the object for which the 

attribute has been defined. Instance variables flank and bLink are the 

oid's of the attribute which is ahead (behind) in the version list of a n  

attribute. 

The method newForOwner: ownerItself name: attrName with- 

Value: somecontents creates a new attribute for the object ownerIt- 

self. If somecontents is a string, then an  object of class StringAttri- 

bute (subclass of Attribute) is created, else an  object of class IntegerAt- 

tribute (subclass of Attribute) is created. 

S The method defined in the above paragraph creates a new attri- 

bute. The methods t ha t  handle the definition, deletion and versioning of 

attributes for nodes and links are defined as follows. 

a addAttribute: attrName withvalue: somevalue toNode: aNode 



Object subclass: 'Attribute' 
instVarNames: #( 'name' 'creationTime' 'value' 

'owner' 'flink' 'blink') 

constraints: #[#[#name, String]] 
bInvariant: false 

Fig 4-4. Attribute C l u  Definition 

Object subclass: 'Context' 
instVarNames: #( 'name' 'ownGraph' 'attributes' 

'creationTime ') 

poolDictionaries: # 0 
ifiictionary: HyperModel 

ishvariant: false 

Fig 4 6 .  Context C l u  Dehition 



deleteAttribute: anAttribute ojNode: aNode 

a newA Version: ofAttribute with: aValue jot: anElement 

The method addAttribute: attrName withvalue: somevalue 

toNode: aNode creates a new attribute with the name attrName and 

value somevalue. This attribute is added t o  the variable attributeset 

of the node, and to the instance variable allNodeAttrs of the graph. The 

method deleteAttribute: anAttribute ojNode: aNode deletes the attri- 

bute anAttribute from the current version of the node aNode. The 

method newAVersion: ofAttribute with: aValue lor: anElement ver- 

sions the attribute ofAttribute , and gives it the new value aValue 

The methods pertaining t o  links are very similar: 

a addAttribute: attrName with Value: somevalue tolink: aLink 

The first method creates a new attribute with the name attrName and 

value somevalue for link &ink and t o  the instance variable 'allLin- 

i 
kAttrs' of the graph. The second method deletes the attribute anAttri- 

bute from the current version of the link &ink. 

I 



4.3.6. Context 

Contexts are defined for graphs. Figure 4.5 shows the class 

definition. The instance variables of this class are name, creationTime, 

attributes and ownGraph. The instance variable name is the name of 

the context, creationTime is computed from the the local computer's 

system clock and calendar. Instance variable attributes is a set of attri- 

butes defined for a context, and ownGraph is the oid of the graph t ha t  

the context represents. 

The following methods define context operations in GemDesign: 

createNew: aName olGraph: aGraph 

copyNode: aNode into: aContext 

mergeNode: aNode jromContext: aContext 

The method createNew: aName ojGraph: aGraph creates a new con- 

text, with a new empty graph. The method copyNode: aNode into: 

aContext copies node aNode from the current context into acontext. 

aNode could be a current node, or a version. The attributes of aNode 

are also copied. The links are copied, and maintained as cross context 

links in the graph of acontext. The method mergeNode: aNode jrom- 

Context: aContext merges node aNode from context aContext into 

the primary context. If this node already exists in the graph, then i t  is 

versioned, and a copy of aNode is the new current node. The links are 



58 

similarly dealt with, i.e., if the link already exits, then it is versioned, 

else a new link is created. Attributes are copied in the same manner. 

The methods for creating and versioning attributes for contexts are 

createStrAttribute: aString with Value: aValue 

cAtrUpdate: anAttr withVal: aVal 

The first method creates a n  attribute for the context, and adds it t o  the 

variable 'attributes' of the context. -The second method versions a n  

existing attribute anAttr, and assigns i t  the new value aVal. 

4.4. General notes on the implementation 

4.4.1. Access to database objects 

The HAM maintains directories t o  represent the structure of the 

graph and its objects. These directories provide access t o  the basic 

components of the graph. GernDesign makes use of OPAL'S indexed 

associative access mechanism, which is a way t o  efficiently access ele- 

ments of large collections. This mechanism is implemented (in Gem- 

Stone) using index structures such as E t r ee s  on the object's instance 

I variables. Using indexes it is possible t o  find values without having to 

I do a full sequential search. In order t o  perform comparisons without 

message passing and t o  be able t o  build and maintain indexes on an  



object's instance variables, OPAL needs some assurances about what 

kinds of objects those variables represent. As OPAL builds indexes tha t  

use as keys the values of instance variables within the elements of a col- 

lection, there is a requirement tha t  these instance variables be con- 

strained t o  contain only specified kinds of objects. OPAL can create 

two kind of indexes, identity and equality indexes. 

In this implementation, objects are identified by unique names, and 

retrieved on the basis of their names, i.e., indexes are built (by OPAL) 

on this variable. T o  make this possible several constraints were needed. 

When a graph is created, an  Equality index is created on its variables 

nodeset, linkset, allNodeAttrs, and allLink4ttrs. All these variables are 

sets, constrained t o  contain elements of only one class, class Header. 

The name instance variable of this class is constrained t o  be of class 

String. 

It is pertinent t o  mention here that  the instance variable name of 

objects in GemDesign provide a unique entry point into a graph, in the 

absence of a n  user interface with a pointing device. Navigation between 

links, nodes and attributes in the graph is done using objects identifiers. 



4.4.2. Physical vs Logical Design 

Attributes 

An attribute defined for a node (link) can be accessed from the 

node's (link's) instance variable attributeset, as well as from the instance 

variable allNodeAttributes ( allLinkAttributes ) of the graph t o  which the 

node (link) belongs. This does not mean tha t  there is more than  one 

copy of a particular attribute, rather, both the instance variables men- 

tioned above contain the object identifier of the particular attribute. 

This promotes the efficiency of the program by involving less search 

while accessing attributes. 

Versioning the contents of a node 

In GemDesign, changing the contents of a node results in the ver- 

sioning of tha t  node with the new version containing the updated con- 

tents. Contents are represented by objects of class Attribute, and are 

kept as a linked list of its versions. Any change in the contents means 

li 
tha t  a new version will be created t o  contain the new, updated contents. 

This approach is in contrast t o  the system used in Neptune, where 



Database Aspects 

In Neptune, transactions and concurrency control mechanisms were 

explicitly managed. GemDesign did not have t o  implement this mechan- 

ism, since GemStone provides these facilities automatically. GemStone 

manages concurrent object access, and prevents concurrent operations 

from fouling shared objects by requiring users t o  encapsulate object 

accesses in sets of OPAL instructions called transactions. 

4.5. The Interface 

The user interface was implemented by porting Neptune's graphical 

interface layer, written in Smalltalk-80 t o  GemDesign. The GemStone- 

Smalltalk Interface (GSI) provides a set of SmallTalk classes tha t  allow 

a Smalltalk application t o  communicate with the GemStone database. 

Figure 4.6 shows the structure of the Gemstone-Smalltalk Interface. 

Class GemStone represents the GemStone database, while instances of 

class Gemstoneobject are "proxies", within the Smalltalk object space, 

for corresponding objects in the GemStone database. GemStoneMessage 

implements the protocol for communicating with the GemStone Object 

Server. Vserver implements the communications layer t o  the GemStone 

Object Server. 
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The following section discusses the classes in GemDesign tha t  serve 

as  a layer between the OPAL implementation of the hypertext model, 

and the Smalltalk-80 interface layer of Neptune. 

4.5.1. The Interface Classes 

The two primary classes used in GemDesign for the interface are 

InterjaceElement and GSSTInterjace. These are detailed below: 

I 

InterjaceElement 

Every object created in the database is represented t o  Neptune 

through instances of this class. Fig 4.7 shows the class definition. The 

instance variables are name, id and objectItselj. The instance variable 

name is the name of the database object, id is the identification number 

I 
created for each object by GemDesign, and objectltselj is a pointer t o  

I 
the object in the database. In GemDesign all objects are uniquely 

I 
identified by their names. On  the other hand, Neptune identifies a n  

object with a unique identification number. The class InterjaceElement 

establishes a correspondence between objects in Neptune and Gem- 

Design. When a new object is created, a n  instance of this class is also 

created t o  represent it. The instance variable name records the name of 

the object, (for future retrieval from the database), a new identification 

number is created for the object, recorded in instance variable id (for 



Object subclass: 'InterfaceElement' 
instVarNames: #( 'name' 'id' 'element') 
classvars: #() 
plDictionaries: # 0 
inDictionary : HyperModel 
constraints: #[#[#name, String], 

#[#id, Integer11 
islovariant: false 

Fig 4 7  InterfrceEIernent Clrru Dewtion 

Object subclass: 'GSSTloterface' 
instVarNames: #( 'allobjects' 'currentlodtx' 'currentGraph' 

'currentContext ') 
classvars: #() 
poolDictionaries: # 1 
inDictionary: HyperModel 
constraints: # 
islnvariant: false 

Fig 4-8 InterfaceElement Clasa DeM~tion 



identification in Neptune) and this id is sent t o  Neptune. 

Thus, class InterjaceElement provides a mapping between objects in 

Neptune and GemDesign. This level of indirection is essential t o  the 

port, since the alternative was recoding major portions of Neptune. 

This class communicates all the information from the hypertext 

graphs created in the database to  Neptune's Smalltalk-80 interface. 

The messages tha t  were sent t o  Neptune's HAM unit (HAM is Neptune's 

transaction-based server) from its Smalltalk interface are now sent t o  

this class. This class then directs them to  the appropriate method in 

GemDesign, and returns the results of executing these messages. Figure 

4.8 shows the class definition. The instance variables are currentGraph, 

currentContext, allObjects and currentlndex. The instance variable 

currentGraph is a pointer to  the graph tha t  is currently active, and 
I 

currentContext is a pointer t o  the context in which the graph is operat- 
I 

ing. The variable allObjects is a set, the elements of which are of class 

InterjaceElement. Each time the interface sends a message t o  this class, 

the elements of this set are searched for the appropriate object in the 

graph. This search is conducted by using OPAL'S indexed associative 

access mechanism. The variable currentlndex is an  integer tha t  is used 

t o  assign numerical identification t o  new objects created in the graph. 



Object subclass: #HyperRPC 
instanceVariableNames: 'toUnix fromunix hyperRPCErrorCode' 

'hyperRPCErrorMessage hyperRPCErrorPararns' 
classVariableNames: 'CurrentInstance TOGS' 
pooDictionaries: " 
category: 'Hypertext-KernelIO' 

Fig 4.9 HyperRPC Clasm Definition 



An example is provided t o  illustrate how this interface works. Fig- 

ure 4.9 shows class HyperRPC. HyperRPC is the class in Neptune's 

Interface tha t  allows the hypertext user interface subsystem (imple- 

mented in Smalltalk) t o  communicate with the hypertext abstract 

machine, the 'HAM' (implemented in C and running as a separate pro- 

cess under Unix). Instance variables toUnix and jromUnix are used t o  

communicate with the HAM. These are implemented using 'pipes' 

(Unix), and messages are sent t o  the HAM one byte at a time. While 

this is a n  efficient and fast way of communication in Unix, the code 

required is quite complex. 

Figure 4.10 shows a method from class HyperRPC (in Neptune's 

Small-Talk-80 interface), under the category 'node Operations'. This is 

an example of how Neptune's interface communicates with HAM, send- 

ing requests for and then receiving and storing information. This method 

gets the attribute identified by attributelndex from node nodelndex at 

versionTime. The variable tollnix sends information ( nodelndex, attri- 

butelndex, versionTime ) t o  HAM through pipes, and receives back some 

information from HAM (the value of the attribute). 

In GemDesign, this method talks t o  Gemstone instead of Unix. 

HyperRPC is the class in Neptune's Interface tha t  handles all communi- 

i 
cation t o  Unix. The user interface of GemDesign has used Neptune's 



getNodeAttributeValue: nodehdex jor: attributehdex at: versionTime 

"gets the value of attributehdex for node nodehdex at time versionTime" 

1 1 . 1  

toUniz ncztPut: 54 . getNodeAttributeValue command 

toUniz neztNumbec / put: nodelndez. 
"nodeIndexU 

toUniz neztNumbcr: / put: attributclndez. 
"attribute index" 

toUniz neztNumber: / put: veruionTime. 
"versionTimen 

self waitForResponse iuNil ifTruc: ["nil]. 

r , Array new: t. r at:. 1 put: ((jromUniz nczt) = 1). 
"isStringW 

(r at: 1) ifTrue: [r at: t put: self getStringArgument I .  
"string value" 

ifFolsc: [r at: 2 put: (fromUniz ncztNumber: 4) ] . 
"integer value" 

Fig 4.10 Neptune method ~clNolcA#rr'htcV.lrc.-onit Ve: f' .t= 



interface, with some modifications. Instead of communicating with Unix 

(on which the HAM is based), the interface needs t o  communicate with 

the GemStone database. T o  achieve this a class variable is created for 

class HyperRPC, ToGS, which is a n  instance of the Smalltalk class 

GemStoneObject. As mentioned in a previous paragraph, instances of 

class GemStoneObject are 'proxies' within the Smalltalk database for 

corresponding objects in the GemStone database. ToGS is initialized t o  

contain an instance of GemStone class GSSTInterjace (described 

above). All information from the interface will be relayed t o  GemDesign 

(on GemStone) through this class. For GemDesign, the method 

described in Figure 4.10 is replaced by that  in Figure 4.11. 

In Smalltalk, when an  instance of class GemStoneObject ( ToGS ) 

finds the prefix 'gs' t o  a message, i t  removes the prefix and passes the 

message t o  its corresponding object in the database, which in this case is 

a n  instance of GemStone class GSSTInterjace. Instead of reading values 

from Unix and creating the da ta  structure represented by 'r' (Fig 4.9), 

the GemStone application gets all the information it needs, (through 

nodeIndex, attributelndex and versaonTime ) and just passes the da t a  

structure r. The message asLocalObject sent t o  r replicates the da t a  

structure represented by r (which is a GemStone da t a  structure) into a 

Smalltalk object. 



getNodeAttributeValue: nodeIndex jor: attributehdex at: versionTime 

"gets the value of attributehdex for node nodeIndex at  time versionTimeW 

I r l  
r - TOGS gsgetValue: nodehdex ofAttribute: attributehdex at: versionTime. 

' r asLocalObject 

Fig 4.11 The method ~ctNodeAttri)utcVdue: joc  at: modifled for GemDeaign. 

petvalue: nodehdex ojAttribute: attributehdex at: versionTime 

" gets value of attribute 'attributehdex' for nodeIndex at versionTimem 

I n theAttr attrName x r 

n .- self getNode: nodelndez. 

z .= ( nodelndez + attributeIndez - 1 ). 
"Index of the system attribute. " 
(uersionTime = 0 ) ;/True: / theAttr .- ( selj getNodeAttribute: z ) 1 

ipalu e: 

[ n  := currentGraph findversion: uersionTime ojNode: n . 
attrName .- (( allObject8 detect: [:a a.id = z]) name ) . 
theAttr := n attributcSet detect: [:a I a name = attrName I ]  . 
r .= Away new: 2. 

( theAttr iaMemberOj: StringAttribute ) 
iflrue: / r at: 1 put: true] 

ipalse: [ r at: 1 put: jalse] . 
r at: t put: theAttr value. 

r 

Fig 4.12 The method #efV.lrc: oflttnlhtc: at: in GemDecrign. 



Replacing the code of the method getNodeAttribute:jor:at: by a sin- 

gle message t o  the variable TOGS is not the whole story. As mentioned 

earlier in this chapter, a n  additional level of indirection has been added 

t o  the interface of GemDesign. Objects are identified by integers in 

Neptune, and strings in Gemstone. This mapping is done in the method 

getVa1ue:ojAttribute:at: (Figure 4.12) in class GSSTInterjace. 

This method first gets a pointer t o  the node specified by nodeIndex. 

( n := selj getNode: nodelndez ). The method getNode: takes the numer- 

ical identification of the node as passed by the interface, maps this t o  

the nodes name in GemDesign, and then gets a pointer t o  it. I t  then gets 

the current version of the node from the graph, ( currentGraph findVer- 

sion: ojNode ), and then gets the attribute. It creates a da ta  structure 

similar t o  tha t  created by the original HyperRPC method, and returns 

this structure t o  Neptune's interface. 

4.6. Implementation Results 

The object-oriented paradigm provided a very elegant vehicle for 

the implementation of a hypertext system. The components of hyper- 

text, namely, graphs, nodes, links etc., were very naturally modeled as 

objects in the OPAL language. Modifications in design could be kept 

localized t o  the specific objects in which they arose, without concern 



about any other parts of the code. Similarly, proposed extensions could 

also be handled easily. It took the researcher much less time than  anti- 

cipated t o  finish and test the code for GemDesign. 

The problems tha t  arose were concerning the environment a t  the 

Oregen Graduate Center in which Gemstone was running, and 

specifically, the serial connector between the Smalltalk workstation and 

the database. The Tektronix 4400-series workstation used for this thesis 

is connected t o  the uVax via an  RS-232-C cable between the worksta- 

tions serial port and one of the Vax's terminal ports. 

Under this configuration, Gemstone's response time is very poor. 

Actions such as  bringing up the browser, the method categories and 

methods in the browser, performing a 'commit' t o  the database are 

extremely slow. For example, i t  takes on a n  average 20-30 seconds t o  

bring up the Gemstone browser, approximately 20 seconds t o  bring up a 

class category, another 15 seconds t o  bring up a class, 15-20 seconds t o  

bring up method categories, and approximately 15 seconds t o  bring up a 

method. A deterioration of performance as compared t o  Smalltalk is 

naturally t o  be expected, due t o  the fact t ha t  the database is not 

housed on the same machine. But Gemstone's response time over the 

RS-232 was very poor. 



There were three reasons for this poor performance. The uVax, on 

which the Gemstone database was running, is the slowest host for Gem- 

Stone. Secondly, this was the first release of Gemstone, and hence not 

as efficient as the subsequent releases. Thirdly, the RS-232-C cable tha t  

connected the uVax t o  the workstation was very slow. In addition, this 

network malfunctioned on an  average 2 t o  3 times a week during the 

period t ha t  it was used for the implementation of GemDesign. When 

the bridge t o  Neptune was written, the situation deteriorated and the 

network started crashing twice a day (5 hours of use). This was a seri- 

ous problem, as the server would go down without warning, thereby 

returning the database t o  the previously committed state. As mentioned 

above, the response time of the network was very slow, making frequent 

commits t o  the database impractical. 

The researcher has not worked with any other object-oriented data- 

base server, and has no other means for comparing the performance of 

this system with its contemporaries. Even so, the current Gemstone 

installation is unsatisfactory as far  as speed and reliability goes. 

Gemstone itself presented problems of its own. OPAL, Gemstone's 

database language, does not provide any graphics classes at all. There 

is no support for user interfaces of any sort. This proved t o  be a real 

handicap, because it took the researcher almost as  long t o  design and 



implement the bridge t o  Neptune's Interface, as it took t o  design the 

actual hypertext system. GemDesign identifies objects by their name, 

while Neptune needs an  integer identification. Due t o  this difference in 

naming systems, the mapping between these two systems took as much 

effort as GemDesign, and the code created was as complex as the under- 

lying hypermodel. If OPAL had some provision for graphics, we would 

have written a much simpler interface t o  GemDesign in OPAL, thereby 

saving the effort of understanding Neptune's interface, and mapping it 

t o  GemDesign. 

~ m e n i t i e s  such as a 'file out' mechanism for code in the Gemstone 

browser are not provided by Gemstone. This means t ha t  the user has 

t o  individually copy methods out  into files. (Subsequent releases of Gem- 

Stone have corrected this). Error debugging facilities were not provided 

by Gemstone in OPE release 1.3. An error during implementation is 

brought t o  the users notice through an  error notifier, which simply men- 

11 tions the kind of error tha t  has occurred (e.g., Gemstone error: An 

at tempt was made t o  store a n  object of type blah into an  instance vari- 

able constrained t o  be of type blahl"). This does not give the user a 

clue as t o  the whereabouts of the error (Assuming tha t  there are plenty 

of instances of the class whose instance variable is constrained t o  be of 

type blahl). Smalltalk, on the other hand, puts up a debugger t ha t  



takes the user right up t o  the method where the error was caused, and 

the user can also view the values of all variables in tha t  method. This 

makes finding the reason for the error quite simple. 

No break-down analysis was done on the amount of time taken t o  

perform a n  operation in GernDesign. The important fact in this regard 

is tha t  the time taken by the Gemstone database t o  perform hypertext 

functions such as creating a node is orders of magnitude less compared 

t o  the total time taken by the current Gemstone configuration at the 

Oregon Graduate Center t o  perform and display such a function. As 

mentioned in one of the preceding paragraphs, the performance of the 

network was very poor. The network's response time dominated 

Gemstone's performance completely, and to the extent t ha t  measuring 

and analyzing running times of the two implementations (GernDesign 

and Neptune) seemed pointless. 



CHAPTER 6 

Conclusions 

The goal of this thesis was to implement a prototype hypertext system 

(Tektronix's Neptune) in an object-oriented database. The implementa- 

tion was completed using Gemstone's database language, OPAL. OPAL 

is derived from Smalltalk-80, its syntax and semantics are almost identi- 

cal t o  it. 

The purpose of the thesis was to  test the ease of using the object- 

oriented paradigm for a given application. This paradigm lent itself 

very well for the design of a prototype hypertext system. Nodes and 

links, which are the basic objects in 8 hypertext systems, were objects in 

OPAL as well. The behavior of objects was also very well captured. 

For example, operations on nodes such as creating, opening and modify- 

ing could be elegantly coded as methods for the corresponding class. 

Many software systems can be naturally de-composed into objects. 

The functionality of such a system can be distributed amongst its object 

components, so that  the system consists of indiviual objects, each 

describing what i t  does. The object-oriented paradigm with its object- 

message model exactly fits the requirements of many system software 

tasks today. 



Thus the main results of implementing this thesis can be summar- 

ized as follows: 

1. The prototype hypertext system was easily modeled by the object- 

oriented paradigm. 

2. No comparative analysis could be performed t o  comment on the per- 

formance of the Gemstone database. The primary reason was t ha t  

Gemstone's current network configuration at the Oregon Graduate 

Center performed very, very poorly, and completely dominated the per- 

formance of the Gemstone database. Thus, this suggests t ha t  the 

current Gemstone configuration a t  the Oregon Graduate Center is not 

appropriate for any practical application. 
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APPENDIX 

GEMDESIGN: The Code 



I Class Definitions: HyperModel 

Object subclass: 'Attribute' 
instVarNames: #( 'name' 'creationTime' 'value' 

'owner' 'flink' 'blink') 
clsssVars: #() 
poolDictionaries: #[] 
inDictionary: HyperModel 
constraints: #[#[#name, String]] 
islnvariant: false 

Object subclass: 'Context' 
instVarNames: #( 'name' 'ownGraph' 'attributes' 'creationTime') 
classVars: #( ) 
poolDictionaries: # [] 
inDictionary: HyperModel 
constraints: #[ 
islnvariant: false 

Attribute subclass: 'DeletedAttribute' 
instVarNames: #() 
classvars: #() 
poolDictionaries: #[ 
inDictionary: HyperModel 
constraints: #[ 
isInvariant: false 

Object subclass: 'DeletedElement' 
instVarNames: #( 'name' 'creationTime' 'blink' 

'flink') 
classVars: #() 
poolDictionaries: #I 
inDictionary: HyperModel 
constraints: # 
ielnvariant : false 

DeletedElement subclass: 'DeletedLink' 
instVarNames: #() 
classVsrs: #() 
pooIJXctionaries: # D 
inDictionary: HyperModel 
constraints: # 0 
Snvar iant :  false 



DeletedElement subclass: 'DeletedNode' 
instVarNames: #() 
classVars: #() 
poolDictionaries: # U 
inDictionary: HyperModel 
constraints: # 
i8Invariant: false 

HyperGraph subclass: 'Graph' 
instVarNames: #( 'nodeset' 'linkset' 'allNodeAttrs' 

'allLinkAttrs' 'allNames' ) 
classVars: #() 
poolDic tionaries: # [I 
inDictionary: HyperModel 
constraints: # n  
isInvariant: false 

Object subclass: 'GSSTInterface' 
instVarNames: #( 'al10bjects7 'currentlndex' 'currentGraph' 

'currentcontext ') 
classVars: #() 
poolDictionaries: #[I 
inDictionary: HyperModel 
constraints: # 0 
isInvariant: false 

Object subclass: 'Header' 
instVarNames: #( 'name' 'element') 
classVars: #() 
poolDictionaries: # 
inDictionary: HyperModel 
constraints: #[#[#name, String]] 
ishvariant: false 

Object subclass: 'HyperGraph' 
instVarNames: #( 'name' 'rootcontext' 'creationTime' 

'contextset') 
elassVars: #( 'graphDirectory ') 
poolDictionaries: # 0 
inDictionary: HyperModel 
constraints: #I 
islnvariant: false 

Attribute subclass: 'IntegerAttribute' 
instVarNames: #() 
classvars: #() 
poolDictionaries: # 0 
inDictionary: HyperModel 
constraints: # 0 



I ishvariant: false 

Set subclass: 'InterfaceSet' 
instVarNames: #() 
classvars: #() 
poolDictionaries: # [] 
Wictionary: HyperModel 
constraints: InterfaceType 
ishvariant  : false 

Object subclass: 'InterfaceElement' 
instVarNames: #( 'name' 'id' 'element') 
classVars: #() 
poolDictionaries: # 1 
inDictionary: Hyperhfodel 
constraints: #[#[#name, String], 

#[#id, Integer]] 
isInvariant: false 

HyperGraph subclass: 'Link' 
instVarNames: #( 'oiGraph' 'attributeset' 'frornNode' 

'toNode' 'flink' 'blink' 'fromPos' 
'toPos') 

classVars: #() 
poolDictionaries: # 1 
inDictionary: HyperModel 
constraints: #[#[#name, String]] 
ishvariant : false 

HyperGraph subclass: 'Node' 
instVarNames: #( 'oiGraph' 'attributeset' 'sourceLinks' 

'destLinks' 'contents' 'flink' 'blink') 
classVars: #() 
poolDictionaries: # 0 
inDictionary: HyperModel 
constraints: #[#[#name, String]] 
islnvariant : false 

Set subclass: 'SctOfAttributes' 
instVarNames: #() 
clrssvars: #() 
poolDictionaries: # 0 
inDictionary : HyperModel 
constraints: Attribute 
f i v a r i a n t :  false 

Set subclass: 'SetOfHeaders' 
instVarNames: #() 



classVars: #() 
poolDictionaries: #[I 
inDictionary: HyperModel 
constraints: Header 
bhvariant: false 

Set rubclass: 'Setoninks' 
instVarNames: # () 
classvars: #() ' 

poolDictionaries: # 1 
inDictionary: HyperModel 
constraints: Link 
isInvariant: false 

Set subclass: 'SetOfNodes' 
instVarNames: #() 
classvars: #() 
poolDictionaries: # 1 
inDictionary: HyperModel 
constraints: Node 
islnvariant : false 

Attribute subclass: 'StringAttribute' 
instVarNames: #() 
classvars: #() 
poolDictionaries: # 0 
inDictionary: HyperModel 
constraints: # U  
isInvariant: false 



Class ATTRIBUTE 

i 

3 lnstsnce Protocol for class Attribute 
1 

Category: kuturee Vuiablee 

name 

name: aName 

creation Time 

creation Time: aTime 

ualu e 

value: aValue 

owner 

ownec anowner 

flink 

flank: d i n k ,  

blink 

blink: d i n k  

Class protocol for class Attribute 

a Category: b t m c e  Creation 

newForOwnec ownerItself name: attrName withvdre: someContents 



Class CONTEXT 

Instance Protocol for class Context 

Category: Inlrtmce Vuirbl- 

name 

name: aName 

ereationTime 

treationTime: aTime 

attributes 

attributeu: aSet 

omGraph 

own Graph: aGraph 

s Category: Attribute Operations 

createStrAttribute: aString withvalue: anotherstring 

createInUitribute: aString uithVolue: anInteger 

cStrUpdate: a*tr tmth: aString 

cIntUpdate: anAttr with: anInteger 

Class protocol for class Context 

Category: Instance Creation 

crcatcNcw: rName ojGraph: aGraph 



I i Class GSSTINTERFACE 

I Instance Protocol for class GSSTInterface 

I I Category: Instance Variables 

current Graph: aGraph 

currentContezt 

currentcontezt: aContext 

allobjects 

d lobjec ts :  aSet 

I Category: Context Operations I {  
I I  

getConteztAttrValue: contextIndex for: attributehdex at: versionTime 

sctConteztAttribute: contexthdex withIndez: attributeIndex as: boolVal with: aString with: 
anhteger 

Category: Graph Operatiom 

addNode . 
createGraph 

I openGraphPath: graphId at Time: crTime 

gctCraph: versionTime nodePredicate: aString1 linkpredicate: aString2 nodeAttr6: na lin- 
M t t r s :  la 

addLinkFrom: BomNodehdex to: toNodehdex rpor: fromCurPos dpos: toCurPos /romContez- 
tld: fcontextId toContczt1d: tcontextId 

dertrogGraph 



Category: Node Operatiom 

IeleteNode: aNodehdex 

IelctcAttribute: attributehdex jorNode: nodelndex 

retNodeAttrValuc: nodeIndex jot: attributehdex as: boolVa1 with: aString with: anInteger 

getNodeVersions: nodehdex 

openNode: nodehdex nodeVersionTimc: aTime nodeAttrs: anIntl attrlnd: anArl linkAttrs: 
anht2  iAttrInd: anArr2 

Category: Link Operations 

deletcLink: aLinkhdex 

deleteAttribute: attributelndex forLink: linklndex 

I setLinkAttrValue: linklndex for: attributehdex as: boolval with: aString with: anlnteger 

getvalue: linkhdex ojLinkAttribute: atributelndex at: versionTime 

getLinkAttributcs: aLinkhdex versionTime: aTime 

Category: Private 

getNode: objecthdex 

gctAttributc: objecthdex 

get%ink: objecthdex 

getLinMttributc: attrhdex 

getNodcAttributc: attrIndex 

gctAttributeIndcz: aString 

c r t o t e I n ~ e m e n t :  fromIndex 

findld: anObj 



cztraellltttibuteValucs: nurnAttrs jorlndicce: attrvalues jorNodc: nodelndex 

cttractlltt~butcValucs: numAttl-s jorIndiccr: attrvalues jortink: linkIndex 

r eztraetNodcAttributcs: aNode 
i 

1 findTimcStamp: objld 

i findElcment: anld 

pctTimeStamp: aNode id: anhteger 

! Class protocol for class GSSTInterface 

1 Category: Instance Creation 



Class GRAPH 

Instance Protocol for class GRAPH 

Category: Instance Vuiables 

allNames 

allhhmes: aSet 

allNodeAttru: aSet 

allLinkA ttrs 

allLinlLAttrs: aSet 

linkset 

linkset: aSet 

nodeset 

nodeset: aSet 

I Category: Graph Operations 
I 

getCraphVioAttn*buteu: nAttrName value: nAttrValue linkAttr: lAttrName withValtie: nAt- 
trValue vcrsionTime: aTime 

1inearizcCraph: rootNode versionTime: aTime nodeAttrName: aName value: aValue linkAt- 
trName: sLAttrName attrValue: aLAttrValue 

I Category: Node Operatiom 

crerteNodc: nodeName withContcnts: somecontents 

1JeteNodc: aNode 

openNodc: aNode veruion Time: aTime 

findversion: aTime oflode: aNode 

modifyContentr: somecontents ojNodc: aNode withLinkr: linkArr 



changcNamc: .Name ojNodc: aNode 

IelctcAttributc: anAttribute jromNodc: .Node 

rewAVersion: ofAttribute with: aVa1ue jor: rnElement 

eddAttributc: attrName withValut: someVrlue toNodc: aNode 

rpdatctinka: newNode with: IinkArr 

Category: Link Operations 

createlink: IinkName jrom: murceNode rpor: shteger to: destNode dpos: dhteger othcrCon- 
tczt: aContext1 

newversion: ofLink aourccNode: aNode newPos: anhteger 

Category: Privrte 

i ucrsionFromNodc: &Link 
4 

I 
ucrsionToNode: aNode ofiinks: aLinkSet 

IelctcAllLinh: rNode 

IclctcDcrtLinh: aNode 

IcletcSourccLinh: aNode 

IeletcAInSct: rnAttribute 

IcletcAttributcs: adlement  

crcateNew Version: aNode 

ncwCVcrrion: aNode with: someContents 



crcatcDclLink: aLink 

fie Weadcc anElement 

parrepred: stringl 

findVcreion: versionTime ofAtlr: anAttr 

fictGraphViaAttributes: string1 value: string2 1inkAiir: string3 withValue: string4 

Class Protocol for class Graph 

a Category: Inetance Creation 

crcatcCraph: aName 



Class HYPERGRAPH 

Instance Protocol for class HyperGraph 

a Category: Indance Variables 

name 

name: aName 

rootcontczt 

rootContczt: acontext 

ercationTime 

creationTime: aTime 

eonteztset 

contcztSet: aSet 

Category: Graph Acceaa 

addGraph: aGraph 

openGraph: aName 

dclcteGraph: aName 

Class protocol for class HyperGraph 

Category: Jnatance Creation , 



Class Interf aceElement 

Instance Protocol for class InterfaceElement 

Category: Instance Varirblee 

name 

name: aName 

i d  

id: anlnteger 

element 

clement: anobject 

Class protocol for class InterfaceElement 

a Category: Instance Creation 

creutcNcw: aName andld: anInteger andElement: theElement 
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