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ABSTRACT

Implemention of a Hypertext System in an
Object-Oriented Database

Sadhana Shenoy
Oregon Graduate Center, 1989

Supervising Professor: Dr. T. Lougenia Anderson

Hypertext is non-sequential or non-linear text. It is an electronic
medium for information processing, where data is stored as a network of
nodes interconnected by links. The fundamental concept of hypertext,
namely, the imposition of structure on a collection of related data to
facilitate its easy access, is not new. However, it is the
“electronification” of documents and especially their interconnections

that has lead to a renewed interest in Hypertext.

Conventional record-oriented database systems pose limitations of a
fixed and finite set of data types, and the need to normalize data.
Object-oriented databases overcome these limitations with their flexible
data-typing facility and ability to model data that is not suited to nor-
malized relations. GemStone is an object-oriented database server that

supports a model of objects similar to that of Smalltalk-80. GemStone




provides an object-oriented database language, called OPAL. GemStone
merges object-oriented language technology with database technology to
solve data management and information modeling problems that are not

easily solved by relational or hierarchical systems.

The purpose of this thesis is to implement the functionality of a
prototype hypertext system (Tektronix’s HAM - Hypertext Abstract
Machine) upon an object-oriented database (GemStone) and report on

the ease in using the object-oriented paradigm for a given application.

vi




CHAPTER 1

INTRODUCTION

The purpose of this thesis is to implement a software system using
an object-oriented language, and to report on the ease in using this
paradigm. The software system chosen for this project is a hypertext
system, (Tektronix’s HAM - Hypertext Abstract Machine), and is imple-

mented upon GemStone, which is an object-oriented database.

The first section in this chapter introduces the concepts of hyper-
text. The second section describes the object-oriented programming
technique, and the third discusses the need for object-oriented database

Servers.

1.1. Hypertext

The term "hypertext” was coined by Ted Nelson, and means non-
sequential or non-linear reading and writing. Hypertext is an electronic
medium for communication and thought-processing. In a hypertext sys-
tem, documents are represented by graphs. Graphs consist of nodes that

contain data, and of links that connect the nodes.

The basic capabilities of hypertext are the linking together of

discrete blocks of material to form networks of related information,




following paths through these networks, and attaching annotations.
Nodes represent objects in the database, machine-supported references

(links) between these objects allow non-sequential access to these nodes.

Nodes and links provide the representation system in hypertext.
Nodes provide a data structure and links a representation scheme to
hypertext applications. A node is a module of text that has some data
in it. The node size is entirely up to the user and his application. A
node can be considered a file, with semantic connotations ascribed by
the user. Thus, a single character, a single idea, or all information
about a specific subject can be put in a node. Hypertext nodes are not
restricted to contain only text, they can contain any representational
medium, such as structured graphics, digitized sound, bit-maps, audio
recordings, etc. Nodes have names, and usually, properties ascribed by

the user.

Nodes are connected by links. Links are used for connecting
related portions of separate documents, for referencing, for comments,
footnotes, annotations, margin notes and documentation. Links also
have names and attributes. They are directed, ie., they have a source
and destination. Sources and destinations of links are described

differently by hypertext systems. They can be single points in the text,

portions of text or even entire nodes. A link can usually be traversed in




both directions. Links reference by name (of destination node) or by
value. Linking can be done explicitly through referential and organiza-

tional links. Implicit linking occurs through keywords.

All hypertext systems have an underlying database. The database
can be thought of as a web or interconnection of nodes. Each node can
be displayed by a window on the screen. Nodes can be created or
removed, data can be entered, read, manipulated and stored back into
the database through these windows. Links are indicated through icons,
these links can be followed, and windows at the other end point of the

link opened and viewed.

Hypertext is a tool for readers as well as writers. To writers, it
provides an ideal environment in which varying material from numerous
sources can be brought together and processed harmoniously. New ideas
are not built all at once, they are developed along various different
planes and orientations. These parallel lines of thought contribute much
to each other, and grow together into a communicable and coherent
idea. Traditional text processing mechanisms make it difficult to
represent this process, mainly because there is no efficient way to
represent the connections (between independent modules of information)

that exist in the mind of the writer, no way to integrate independent

ideas.




Hypertext provides readers with a medium where voluminous infor-
mation from a multitude of sources is made easily accessible. The impli-
cit structure in the material is made explicit. High speed windows allow
readers to browse through referenced and documented material
effortlessly and links allow easy non-sequential access to physically

disconnected data, enriching the understanding of the subject matter.

The most striking and unique feature of hypertext is that it enables
non-sequential reading and writing. L'mks impart this nonlinieaty to
hypertext systems by providing a machine-supported mechanism to
reference and integrate various chunks of information within and
between documents. This feature makes it easy and unobtrusive to
express branches in the flow of thought, and allows the viewing of
material from varying angles by providing alternative successors to a
pértion of text. Conventional flat and sequential text is thus extended

beyond the "single dimension of linear flow" [Conklin 86].

Thus, it is this "machine-supported links" feature that is the distin-
guishing feature of hypertext systems. Jeff Conklin’s paper "A Survey
of Hypertéxt" [Conklin 86 seeks to establish the criterion of machine-
supported arbitrary cross-linking between data items or interdocument

links as being the fundamental feature of hypertext systems. Vannevar

Bush, who is credited with first describing hypertext in his "memex”,




considered this linking capability to be of primary importance,

' ... associative indexing, the basic idea of which is a provision
where by any item may be caused at will to select immediately and
automatically another. This is the essential feature of the memex. The

process of tying two items together is the important thing. " [Bush 45].

Most hypertext systems provide the ability to "filter" information.
Filtering allows users to choose and view pertinent information only.
"Attributes" or other selection criteria aeﬁne characteristics of and rela-
tionships between chunks of information by defining "values"”, and can
be used to select the desired information [Yankelovich et al. 85]. The
hypertext database can be browsed by search using filters or keywords,

and also by following trails established by links.

Hypertext systems can aid in creating better audiovisualization, as
the nodes in hypertext systems are not limited to contain only text, but
can contain a combination of many media. "The inclusion of animation,
computer-generated sound, and audio and video recordings adds a rich-
ness to electronic document systems that is impossible to recreate with

paper media." [Yankelovich et al. 85].

In conclusion, hypertext systems are particularly useful for idea-

processing, browsing and problem solving. They provide appropriate

tools for structuring ideas, and organizing material in various ways to




suit different viewpoints. Hypertext systems are also well suited for
exploring representational problems. They allow the user to view not
only the contents of documents, but the structure as well. "The ability
to work with unstructured information in conjunction with formalized,
systematically organized information is the chief advantage in using a

hypertext system rather than a database description language.”

[Marshall 87].

1.2. The Object-Oriented Programming Technique

Object-oriented programming was introduced in the 1960’s by a
language called SIMULA, where the notion of object was presented.
However, it was Smalltalk, an interactive, display-based implementa-
tion, that gave the object-oriented paradigm wide recognition. This pro-
gramming methodology has found use in a variety of applications, par-
ticularly in software systems development, artificial intelligence pro-

gramming, and simulation.

The following paragraphs define the primary features of object-

oriented programming (as supported by SmallTalk-80).
¢ Objects & Methods

Objects, not surprisingly, are the basic units in an object-oriented

programming language. They perform computations and save state, and




hence combine the functionality of procedures and data in a conven-
tional programming language. An object has a data structure as well as
a group of operations that define how to access and manipulate the data
contained in the data structure. An object has instance variables
(fields). These variables can contain any values, and can even be

pointers to other structured objects.

Objects communicate with each other by sending messages. Each
message contains a selector, which (;an be described as a procedure
name, and possibly message arguments corresponding to parameters.
A message expression is like a subroutine call. The set of messages that

an object understands are called its protocol.

When a message is sent to an object (the receiver ) it responds to
the message by executing a piece of code called a method, which is an
operation that implements the named message. A method consists of a
set of executable statements. Each method corresponds to a method

selector.
e Classes

A class is a description of a group of similar objects, a template

that is defined to describe the properties, characteristics and behavior of

a set of common objects [Yankelovich et al, 88].




Every object is an instance of some class. When more than one
object is an instance of the same class, each object has the same
number of variables as defined by the class, but the data in those vari-

ables can be different for each of the instances.

A class can have many types of variables. The two most commonly
used are instance variables and class variables. The value of a class
variable is shared by all the instances of a class, whereas the value of an
instance variable is specific to the instance of the class. All instances of

a class share the same methods.
e Subclasses and Inheritance

Inheritance is a technique that enables specialization in object-
oriented languages. It allows new classes to be built upon, or derived
from other, pre-existing classes. The new class is more specialized as it
contains more information or is more constrained than the pre-existing
class. The more specialized class is called the subclass, and the more
general one is the superclass. An object in a subclass inherits all the
instance variables and methods of the old class. New instance variables
and methods can be added by the subclass. The subclass can override a

method in the superclass by defining a method with the same selector as

the superclass.




y

e Data Abstraction & Encapsulation

Abstract data objects are fully characterized through the opera-
tions defined on them. Thus, there is no need to understand the inter-
nal representations and implementation of these objects. Objects in
object-oriented languages are abstract data objects with an external
interface, consisting of the set of operations defined on them. Object-
oriented languages support data abstraction since an object can be
manipulated only through its external interface. Changes can be made
to the structure or behavior of an object, and so long as visible behavior

of the object remains undisturbed, this change is not seen by the user.

Encapsulation is a technique for minimizing interdependencies
among separately written modules by defining strict external interfaces.
Data abstraction and encapsulation thus describe the same concept.
These techniques make it possible to change the implementation of a
module without affecting other interacting modules. This improves the

understandability of programs and makes it easy to modify them.
¢ Polymorphism

Polymorphism is a concept where different classes of objects can be
used in the same context. Each class responds to a set of messages
expected in the context. Different objects can respond to the same mes-

sage in their unique way, i.e., the methods that are executed in response
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to the message are directly associated with the receiver. This is an
important feature of object-oriented languages since it allows the
definition of flexible software elements amenable to extension and reuse.
¢ Binding

In many object-oriented languages, variables are not typed and
may contain objects of any class. It is not possible to determine stati-
cally exactly what method in what class will respond to a message.
When a message is sent to an object, the corresponding method is
looked up at run time in the object’s class. This is late or dynamic
binding, where the binding is based on the object whose operation is
invoked. Dynamic binding allows a programmer to create very flexible
code. Any object can be used as an argument as long as it can respond

to the messages sent to it.

This is in contrast to statically-typed languages, where operation
calls could be statically bound to the respective operations. Thus, the
check for whether values of the appropriate type are being assigned to

the variables that are the arguments of functions or operations is done

at compile time rather than at run time.
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1.3. Object-Oriented Database Servers
Why object-oriented servers?

Database systems technology has grown up in an environment of
commercial data processing, where data-intensive business applications
have requirements for persistence and sharing of data. Traditional
database systems based on relational or hierarchical data models have
evolved to meet the needs of these business applications. However,
these database systems are characteriéed by a predefined and limited
set of data types. In these systems, data is modeled by collections of
rigidly typed records. Many modern-day application domains consist of
complex data structures, and the traditional data models just do not
have the framework or power to represent them. Current database sys-
tems "are primarily an effort to implement abstract data types over the
memory of a machine” [Copeland, Maier 87]. They do not support easy
and natural modeling of data since designers are constrained to a fixed
set of predefined data types. Data has to be normalized, and contorted

to fit into the available form, thus artificial structure is imposed upon it.

In contrast, object-oriented databases are built on the concept of
an object rather than a record. Objects are a uniform programming

unit for computation and saving state, and as such are ideal for

representing collections of things that interact. The basic concepts of
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object-oriented languages (object identity, abstract data-typing, message
sending, data abstraction, inheritance and encapsulation) provide users
rich data modeling facilities. Object-oriented programming is a powerful
technique where a system can be structured as a collection of interacting
components, and provides a robust framework for creating, extending,
modifying and maintaining systems. Since a database is intended to
stand as a model of the application environment, there is a need to
incorporate the semantics into the data; model so that the database can
closely reflect the application. Object-oriented databases enable the user

to define data semantics through type extensibility.

The purpose of this thesis is to implement a software system using
an object-oriented language, and to report on the ease in using this
paradigm. The software system chosen for this project is a hypertext
system, (Tektronix’s HAM - Hypertext Abstract Machine) , and it was

implemented upon GemStone, which is an object-oriented database.

The remainder of this thesis is organized as follows: Chapter 2 pro-
vides an overview of some existing hypertext systems, Chapter 3
describes two commercially available object-oriented systems, Chapter 4

outlines the implementation of this thesis and Chapter 5 reports the

results of the implementation.
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CHAPTER 2

Hypertext Research Survey

2.1. Introduction

Jeff Conklin has categorized existing hypertext systems according to
the nature of their applications: macro-literary systems, problem
exploration tools, browsing systems and general hypertext technology
[Conklin 86]. Macro-literary systems were the pioneer hypertext sys-
tems. They were conceived to function as electronic libraries, providing
tremendous volumes of information on-line. Machine-supported interdo-
cument links, which constitute a fundamental feature of hypertext, were
introduced in these systems. The memex [Bush 45], NLS/Augment
[Engelbart, English 68] and the Xanadu project [Nelson 80] are examples
of systems in this category. Problem exploration tools provide a plat-
form for developing ideas and solving problems. For example, Xerox
PARC'’s PIE [Goldstein, Bobrow 80] is a tool for software design,
development and documentation. Browsing systems include ZOG
[Robertson et al. 81] and Hyperties, which allow easy access to, and

manipulation of, stored information. These find use in academic

environments. The more recently developed hypertext systems explore
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specific issues in the area of hypertext in addition to providing all the
facilities of the older systems. For example, Neptune [DeLisle, Schwartz
87a), NoteCards [Halasz et al. 87] and Intermedia [Meyrowitz 86a] have
found a variety of applications, and serve as tools for further research

and study of hypertext.

The rest of this chapter briefly describes some of the hypertext sys-
tems mentioned above. The hypertext .system used as a model in this
implementation is Tektronix’s Neptune. Neptune is discussed in detail in

Chapter 4.

2.2. An Overview of some Hypertext Systems
2.2.1. Bush’s Memex

Vannevar Bush introduced the concept of hypertext in "As We May
Think" [Bush 45]. He describes "memex"”, a mechanized private library,
as

"Consider a future device for individual use, which is a sort of
mechanized private file and library .... A memex is a device in which an
individual stores his books, records and communications, and which is

mechanized so that it may be consulted with exceeding speed and flexi-

bility. It is an enlarged intimate supplement to his memory." [Bush 45]
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His envisioned system consisted of "slanting translucent screens” on
which data could be projected, and a keyboard. Material or data is
stored on "improved microfilm”. Books, pictures, periodicals, newspa-
pers, pictures and business correspondences would all be stored in the
library. An indexing scheme would be provided for reading the material,

and facilities for non-sequential access would also be provided.

The memex sought to mechanically reproduce the mental process of
retrieving and characterizing information in that "selection by associa-
tion rather than by indexing may yet be mechanized." He described the
essential feature of memex to be the ability to join two items and create
“trails". Subsequently, recalling any one item meant that the other(s) in

the trail could also be instantly recalled.

The memex was certainly a visionary idea but the required
hardware was far beyond the (then) current technology. However the
two primary features of the Memex, mechanized information storage and
the fast and easy retrieval of this information define hypertext as it is

known today.
2.2.2. Engelbart’s NLS/ Augment

NLS (oN Line System) was developed in 1968 by Douglas Engelbart

at the Augmented Human Intellect (AHI) Research Center at Stanford

Research Institute. The research objective of the “interactive, multi-
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console computer-display system" [Engelbart, English 68] was to develop
a tool that would amplify the intellectual abilities of the user. The
research group’s aim was to do all of its work on-line, designing, plan-
ning, debugging and documenting, as well as intercommunications and

seratch work.

The research group had access to very sophisticated CRT work-
stations. These work stations had, in addition to a television display
and typewriter keyboard, two of Engelbart’s inventions, the mouse and
a 5 key handset. All of the "working information" was organized into
files. Files were organized as hierarchical structures, while specifying
structure was left to the user. Text was broken into arbitrary length
segments called statements, which were numbered according to their
serial location and positional hierarchy within the text. The first word
of a statement was its name. Reference links could be established

between statements within or across files.

Special mechanisms were provided for viewing and studying files,
allowing users to view specified portions of the file. View-specification
conditions allowed the user to specify the level or depth of the hierarchy
at which he wished to view the file (level clipping), displaying only a cer-

tain number of lines from each statement depending on the truncation

parameter (line truncation), and viewing only statements containing
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some desired content. This specification was made in a "high-level con-

tent analysis language.”

The concept of structured, multi-person distributed editing was
introduced in this system. Standard editing operations were available
for file modification, and hard copies could be produced with a help of
different output devices. Compiling, debugging, calculating and con-

ferencing facilities were also provided.

The NLS was unique, as it introduced many of the capabilities
mentioned above that are standard in all systems today. Known today

as NLS /Augment, it is marketed as a commercial network system.
2.2.3. Xanadu

Xanadu was developed by Ted Nelson, and is a system for storing,
accessing and manipulating linked and windowing text. Ted Nelson
wanted to replicate and extend the structure of the literary system on-
line, creating a unified literary environment — it was he who coined the
terms "hypertext" and "hypermedia”. The goal of the system was to
form a basic "linkage structure” that was a computerized version of the
implicit linkage and referral processes existing in the literature system.
A second goal was to build a universal, simple and fair system of elec-

tronic literature that builds on the structure and relationships already

present in literature.
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The creators of Xanadu "have endeavored to create a system for
text editing and retrieval that will receive, handle and present docu-
ments with links between them" [Nelson 80]. Documents and links are
the primary elements of the system. A document can contain both text

and links, thus everything in the system is a document.

A link is a connection between pieces of text. Many types of links
are allowed in the system (basically, the user can define any type of link
he desires), and links may have multi.ple end points. "Literary" links
include jump links (footnotes), quote links (quotations), correlinks (mar-
ginal notes) and equilinks (between the same item in two separate ver-

sions of the same document). Links may be filtered by type and origin.

Ted Nelson considers Xanadu to be a full blown implementation of
Vannevar Bush’s "memex", designed for “indefinite expansion”. Xanadu
is also intended for use as a publishing system since allocation of credit
and royalty is provided for. Royalty is paid automatically by a user on
a "byte-by-byte" basis.

The Zanadu system has been implemented and is marketed as an

on-line service. There is a version that runs on Sun workstations.
2.2.4. Pm

A "Personal Information Environment"” (PIE) was proposed in 1980

by Ira Goldstien and Daniel Bobrow [Goldstein, Bobrow 80]. The PIE




19

environment is a network-based approach to developing and document-
ing software. The PIE description language is based on the concepts in
KRL and FRL, and is written in Smalltalk. This description language

enables interactive program development.

PIE contains a network of nodes, each having several perspec-
tives. Each perspective presents a unique view of the entity
represented by the node and provides for specialized actions for the
specific view. Perspectives help a user document the various aspects of
his application. The authors offer the example of multiple views of a
Smalltalk class: one providing its definition and structure, another the
hierarchical organization of its methods, a third stating external

methods called from the class, and yet another contains documentation.

Nodes have contexts, which provide a way of storing different
values for the same node. During software development, alternate
designs can be stored and evolved in different contexts of the same node.
Contexts can be extended by creating layers. These layers store
modifications to contexts, thus back-up to a previous state can be easily
handled. Contracts exist between nodes and describe dependencies

between elements.

Traditional programming environments do not allow “alternative

definitions of procedures and data structures to exist simultaneously in

it dodks
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the programming environment" [Goldstein, Bobrow 80]. The PIE system
overcomes this difficulty by providing support for comparing and storing
alternative designs, and highlighting their differences. It provides the
capabilities to present the various aspects of an application program as
a single integrated structure. PIE’s networked database facilitates
cooperative design efforts. PIE can also be used as a prototype office

information system.
2.2.5. CMU ’s ZOG

ZOG is a networked, menu-based system developed in 1975 at
Carnegie-Melon University [Robertson et al. 81]. ZOG was initially

implemented on PDP 10 and VAX 11/780 machines.

In the ZOG system, each data segment, called a frame, is
displayed on the screen along with a set of menu items called selec-
tions. Standard ZOG commands such as Edit, Help, Back, Next,
Return, etc. are represented by global pads on the bottom of the screen.
A sequence of frames can be viewed by making the desired selections.
Data is represented as a hierarchical network of frames divided into
subnets. Subnets operate essentially as subroutines. ZED, the ZOG

editor, allows new frames to be added and modified, and the network

can be augmented by a user to suit his specific needs.
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ZOG has been designed to serve a large user community, and as "a
particular interface for man-computer interaction." It has found use as
a guidance system, a computer-aided instruction system, a database and
browsing system. ZOG has been installed as a computer-based informa-

tion management system on the USS CARL VINSON.

A major problem with the system is that it is very difficult to grow

the really large nets that are an essential ingredient of ZOG.
2.2.6. Brown University’s Intermedia

Intermedia is a large-scale, object-oriented hypertext /hypermedia
system. The Intermedia project was developed in 1984 at the Institute
for Research in Information and Scholarship (IRIS) at Brown University.
It was a part of Brown University’s campus-wide "Scholar’s WorkStation
Project” . The system provides the ability to create sophisticated link-
ages between documents from a variety of applications. It also provides
a development framework for creating additional applications with that
capability [Meyrowitz 86a).

Intermedia was developed as a tool to facilitate computer-aided,
computer-supported teaching and research in a scholastic environment.
The educational goals of the project are audio-visualization, encouraging

exploration of an information-rich environment, making software tools

available to professors to "create webs of information,” and to students
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to "follow trails of linked information, annotate text... and communicate

with other students and professors " [Meyrowitz 86a].

Intermedia runs on a network of Unix-based workstations. The
system is composed of the MacApp layer, the Intermedia layer, and the
Graphics and Text Building Blocks. Additionally, the six major applica-
tion units are Intertext, InterDraw, Interval, Interpix, and Interspect.
These are the text processor, graphics editor, timeline editor, scanned-

image viewer and a three-dimensional object viewer.

The system was developed as a framework of software tools with
integrated hypertext capabilities so that it could be used in routine

application tasks such as the creation and update of documents.

Intermedia integrates all the functionality of a hypertext system
into each application, so that users can take advantage of the system'’s
capabilities within the framework of their routine work rather than use
Intermedia as a distinct application. The system creates a document
that can contain texts, graphics, spreadsheets etc. A document can be
viewed through a window. Links are created between blocks in a
document. Keywords and explainers attach attributes to blocks and
links. These facilities allow the creation of webs. Webs are contexts or

databases containing sets of documents and interconnecting links to

these documents. Maps are visual representations of webs and facilitate
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the understanding of webs by providing easy and efficient access to the

webs.

To evaluate the success and utility of Intermedia, it is being used in
a variety of educational and work settings. Intermedia material already
used in courses has proved very useful, demonstrating that hypermedia

systems have tremendous potential.
2.2.7. Xerox PARC’s NoteCards

The NoteCards system was developed at Xerox PARC by Frank
Halasz, Thomas Moran and Randall Trigg [Halasz et al 87]. NoteCards
is an extensible computer environment developed to aid the collection,
analysis and processing of information. It is designed as a "general pur-
pose idea processing environment” [Halasz et al 87]. The NoteCards sys-
tem is implemented on Xerox D series Lisp machines. The interface con-
sists of Lisp functions that give a programmer tremendous flexibility to
create new applications using NoteCards. NoteCards, Links, Browser
and FileBoxes are the basic objects defined in the system. A notecard is
a computerized version of the 3X5 paper index card. Each notecard
contains editable data, such as text, graphics etc. A notecard can be
characterized by its type. A user can define new types to suit his appli-

cation. Links are typed objects that connect notecards. A browser dep-

icts a network of notecards, and FileBoxes file or order collections of




24

related notecards. With these basic objects, NoteCards creates a
"semantic network of electronic notecards interconnected by typed links"

[Halasz et al. 87].

NoteCards has about 70 users within Xerox, and externally the sys-
tem is in use at universities, government and industrial sites.
NoteCards has met its goal of creating an environment for information
management. However, it lacks support for multi-person or collaborative

work, and it does not have sophisticated tools for displaying large

graphs and other structures.
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CHAPTER 3

Object-Oriented Databases

There are two object-oriented database servers that are commercially
available today, Servio Logic’s GemStone and and Ontologic’s VBASE.
The GemStone database server has been used in this implementation.
The next sections will summarize VBASE, and describe GemStone at

some depth.

3.1. VBASE: an object-oriented development environment

Ontologic’s VBASE Integrated Object System is an object-oriented
development environment that combines a procedural object language
and persistent objects into one integrated system [Andrews, Harris 87].
VBASE was inspired by the need to bring together language and data-
base functionality to form a single, object-oriented system, to develop

software systems and production applications.

The VBASE architecture comprises of four layers: the language,
abstraction, representation and storage layers. Each layer has a VBASE
specification and implementation. VBASE is implemented on top of Sun

OS 3.2 Unix. The TDL (Type Definition Language) specifies the data

model. The COP (C Object Processor) is used to write application pro-
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grams, and implement operations.

Probably the most distinctive feature of VBASE is that it is an
object system that also provides strong typing. In TDL, all object
definitions and properties are associated with data types. It is a block
structured language, and allows the definition of constants, variables,
enumerations, unions and variants. Parameterization (the ability to
specify the types of objects contained within other objects), a capability
often not found even in procedural l‘anguages, is another significant
feature of VBASE. VBASE also has a special exception handling
mechanism. Exceptions are types, thus a hierarchy of exceptions can be
defined, and properties and operations can be defined for them. ‘Except’
and ‘raise’ statements transfer control to a exception handler rather

than return control to the caller.

In addition to providing most of the expected database functionali-
ties, VBASE also supports persistence of objects, and clustering objects
on disks. Support for inverse relationships automatically implies that
one-to-one, one-to-many, and many-to-one relationships between objects

can be maintained.

VBASE had set two goals for itself, integrating a procedural

language with support for persistent objects, and providing strong typ-

ing. VBASE has emerged as a relatively complete development system,
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it is object-oriented, strongly typed, and supports persistent objects

[Andrews, Harris 87].

3.2. GemStone

GemStone is an object-oriented database server developed at Servio
Logic Development Corporation that merges object-oriented language
concepts with database systems. GemStone provides an object-oriented
programming language called OPAL, which serves as the data definition
and data manipulation language for the GemStone system. OPAL pro-
vides standard database storage and retrieval functions as well as pro-
gramming facilities for general computation that are comparable to C or
Pascal. The GemStone system was built on the premise that a "combi-
nation of object-oriented language capabilities with the storage manage-
lﬁent functions of a traditional data management system will result in a
system that offers further reductions in application development efforts."”

[ Maier et al. 86]

The goals and requirements of the GemStone system, as specified
by Maier et al. fall under three categories, that it provide an extensible

data model, general database amenities, and a programming environ-

ment. These are briefly outlined in the following paragraphs.
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An extensible data model means that a user should be able to
define new data types and operations on them so that the structure as
well as the behavior of objects can be modeled. Its data model must
support arbitrary levels of data structuring, and separate type definition
from type instantiation. No artificial limitations should be imposed on
data items. Additionally, variations in structured objects should be

allowed, and arbitrary data items as values should be allowed.

General database functions such és a multiuser environment, con-
current access and serializability of transactions, private ownership of
data objects, stable storage for data objects, atomic commit and abort
of transactions and authorization and system management functions

need to be provided.

The programming environment must include an interactive inter-
face for the OPAL language (for defining new database objects, execut-

ing queries, etc.) and a procedural interface to conventional languages.

(a) The GemStone Architecture

The GemStone configuration used in this research consists of the
OPAL language and the storage management software running in the
DEC VAX/VMS environment. IBM-PC’s or Smalltalk machines

networked to a VAX run a set of interactive interface programs called
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the OPE (Opal Programming Environment) to enable the user to build,
execute and debug OPAL programs. The OPE comsists of an OPAL
browser, source code workspace, and a bulk loader and dumper. Figure

3.1 illustrates the architecture.

Conceptually, the Stone process provides secondary storage
management, concurrency control, authorization, transactions, recovery,
and support for associative access. It manages workspaces for active
sessions [Maier et al. 86]. In Figure 3.1, the Stone process is represented
by the rectangle named "DATA MANAGEMENT KERNEL". A
separate Gem process is maintained for each session. The Gem process
is above the Stone process; it compiles and executes OPAL code, pro-
vides session control. In Figure 3.1, the rectangles named “OPAL

COMPLIER /INTERPRETER" represent two Gem processes.

(b) OPAL: GemStone’s unified database language

The object-oriented programming language called OPAL serves as
the data definition and data manipulation language for the GemStone
system. OPAL is a powerful, general purpose programming language
based on ideas from knowledge representation, abstract data types,
semantic data languages, set-theoretic data models and non-procedural
query languages. It provides rich data modeling facilities with an inter-

face to a high level programming language (C) [Copeland, Maier 87].
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OPAL is derived from Smalltalk-80, and its syntax and semantics are

almost identical to it.

OPAL’s object model is identical to that of Smalltalk-80. The
three primary concepts are object, message and class, which are
equivalent to record, procedure call and record type respectively, in a
conventional system [Purdy et al. 87]. An object is a well designed data
structure with a set of operations that provide access to and enable the
manipulation of the data contained the‘data structure. Communication
between objects is achieved through messages. Message sending is the
only way through which the data contained in an object can be
accessed. A class is a description of one or more similar objects. The
structure, methods and messages of a class’s instances are factored and
stored once in a single object describing the class, i.e. the class defining
object. Classes are organized into a class hierarchy through which the

structures and methods are inherited.

The basic syntactic unit of an OPAL program is the statement. A
statement contains one or more expressions. An OPAL expression can
be a literal, variable name, message expression, assignment, etc.

OPAL’s major language constructs are message expressions and method

definitions [Purdy et al. 87].
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The form of all message expressions is <receiver> <message>.
The receiver is a variable or expression representing the object for whom
the message is intended, and which will receive and interpret the mes-
sage. The second part of a message expression, the message, is made up
of a selector, and possibly some arguments. On execution of the mes-

sage expression, a result is returned to the sender.

There are three kinds of messages, unary, binary and keyword.
Unary messages have no arguments, and the selector is a single

identifier. For example,

zoo closingTime
is an unary message expression. ‘closingTime’ is the selector, and this

expression has no arguments.

(z001 numberOfAnimals) <= (2002 numberOfAnimals) and
8*9
are examples of binary messages, where ‘<=’and ‘*’ are selectors, and

‘(2002 numberOfAnimals)’ and ‘9’ are arguments of the message.

Keyword messages have multipart selectors, the selector in the mes-

sage expression below is af:put:, while the arguments are ‘1’ and ‘sheba

the lioness’’,

PO o O
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z00Ansimals at: 1 put: "Sheba the lioness".

Methods describe all the action and execution in GemStone. Each
class defines the methods its instances will understand. A method
definition names the method’s selector, and possibly some formal argu-
ments. A method can also contain temporary variables. The body of a
method consists of OPAL statements, and possibly a return statement.
Methods are defined within the scope ‘of the object (a class instance)
that is the receiver of the message, and can thus access the named

instance variables of the receiver. An example of a method is,
naeme: aName
This method sets the instance variable ‘name’.

" name = aName.
GemStone is a computationally complete and extensible programming
language. OPAL extends Smalitalk in the area of associative access
support for queries. This extension is supplied by providing an indexed
associative access mechanism, which is a system for maintaining indexes
to large collections and for using these indexes to retrieve collections ele-

ments quickly.

OPAL was implemented by writing the object storage manager, the

OPAL compiler, and interpreter. This system provides a multi-user,

’ _‘.%‘3“4‘4“1‘\&' oo
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disk-based system as opposed to the single-user, memory resident

Smalltalk system [Maier et al. 85].

(d) GemStone’s database features

GemStone combines the powerful data type definition and code
inheritance properties of Smalltalk-80 with permanent data storage,
multiple concurrent users, transactions and secondary indexes [Maier et
al. 85). The main database features of GemStone are the provision for
sharing of objects (through a private list of dictionaries called the Sym-
bolList for each user), resilience to common failure modes, security
(through user authentication), a centralized server and primary and
secondary storage management facilities [Purdy et al. 87]. GemStone
provides a Smalllalk-like execution model for execution of its methods,

and support for multiple concurrent users.

GemStone supports multiple concurrent users. GemStone’s transac-
tion control uses an optimistic concurrency control policy. GemStone
provides for fast associative access to members of collections by allowing
users to dynamically add or remove associative access structures to aid

such searches.

In summary, GemStone is a pioneer object-oriented database sys-

tem developed to merge object-oriented programming language technol-

s

IRy . W N T 2 ¥ A S




o
i
2
.
i
4
9

35

ogy with database technology. It solves data management and informa-

tion modeling problems that are not easily solved by relational or

hierarchical systems.
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CHAPTER 4

Implementation

The purpose of this thesis is to implement a large software system
in an object-oriented language, and report on the ease of using the
object-oriented paradigm for an application. An existing software sys-
tem, Tektronix’s Neptune, (or specifically, its engine, the HAM) was
selected as the candidate application and a re-implementation was done
using the object-oriented database management system GemStone. This
implementation, which we have called GemDesign, will be discussed in
this chapter. The first section describes the Neptune hypertext system.
The second section provides an overview of the design of the system; the
third details the implementation. The fourth section provides some gen-
eral notes on the implementation, while the fifth describes the interface
between GemDesign and Neptune’s Smalltalk interface. The final sec-

tion discusses the results of implementing GemDesign.

Figure 4.1 (a) gives an overview of Neptune's architecture. The
Hypertext Abstract Machine (HAM) is implemented in C, its user inter-
face is implemented in Smalltalk-80. GemDesign uses the GemStone

database. It is written in OPAL, which is GemStone's data definition

and data manipulation language. (Fig 4.1 (b) ). No separate interface
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was written for GemDesign (for reasons detailed later in the chapter).
Instead, Neptune’s SmallTalk-80 interface was ported and used in Gem-

Design.

4.1. Tektronix’s NEPTUNE

Tektronix’s Neptune was designed to support software develop-
ment. Neptune has a layered architecture consisting of two major layers:
the Hypertext Abstract Machine (HAM) and the user interface. The
HAM is a bottom-level transaction-based server. It is implemented in C,
and runs on Unix servers such as Magnolia’s (a workstation developed
for internal use at Tektronix) , Tektronix’s 4400 series workstations,
VAX machines, etc. The user interface is the topmost graphical layer
and provides browsing and editing facilities. Application layers consist-
ing of programs that use hypertext data can be built on top of the

HAM.

The HAM is a generic hypertext model based on five entities: node,
link, attribute, graph and context. Nodes contain arbitrary, editable
data. A node is an archive or a file. Complete version histories are
maintained for archives, while a file contains only the current version.
Efficient storage and access facilities are provided to all versions of a

node.
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Nodes can be connected by links. Links can be traversed bi-
directionally. The endpoints of a link have offsets within the node; a link
is anchored at an iconic point in the data of a node. Links relate two
nodes either within the same context, or in two different contexts. (Con-
texts allow users to keep related information together, and will be
defined more fully below.) The latter type of link is known as a cross-
context link, and facilitates data sharing between contexts by making a
single node accessible in both the contexts. Links can have attribute/
value pairs attached to them, and version histories can be maintained
for a link, depending on the types of the nodes to which the link is

attached.

Attributes are defined for nodes, links and contexts. The HAM pro-
vi.des a set of predefined attributes for which values can be assigned.
Attributes characterize the objects for which they are defined and are
used primarily for querying and filtering the graph. Changes to attri-
butes can be archived. Nodes and links can have any number of
attribute-value pairs attached to them. These serve as an efficient
accessing mechanism, allowing desired objects to be ‘filtered’ from large

graphs.

A graph is a top-level HAM object. It is made up of nodes and

links, attributes and contexts. The version history (past states) of a

PR T TR T e
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graph is maintained through the versions of all its components. A graph

usually contains all the information available for a particular project.

Contexts partition the objects or data within a graph, i.e., a con-
text contains nodes, links and attributes. Contexts are organized in a
tree structure. Version histories are maintained for contexts. When a
graph is created, its root context is created as well. All contexts except

the root context have parent contexts.

The user interface provides browsers through which documents and
nodes can be viewed and edited. The three primary browsers are the
graph browser, which displays a pictorial view of the graph, the docu-
ment browser, for browsing the hierarchical structures of nodes and
links, and the node browser, which displays an individual node in a
graph. Other browsers provided by Neptune include the attribute
browser, node differences browser, and the versions browser. Figure 4.2
[DeLisle, Schwartz 87b] shows a graph as displayed by Nebtune’s graph
browser. Nodes are represented by rectangles and the arrows between
nodes are links. This graph shows a paper, titled TOOIS paper, with
sections Introduction, Hypertext systems, Contexts, etc. Each section is
represented by a node in the graph. Some sections have further subsec-
tions which are also represented by nodes. Sections are ‘linked’ to their

subsections.




TOOIS.revise: Graph Browserl

Editing Hyperdocuments

INTRODUCTION Existing Hypertext Systems|
HYPERTEXT SYSTEMS Properties of Hypertext Systems

Applications of Hypertext]
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0 EXAMPLE Deriving vs. Merging]
and Instances |

Merging Version Histories|
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APPENDIX

Context Attribute Operations]

type ~- .

Fig. 4.2. Neptunes Graph Browser
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The HAM maintains the integrity of the data that it manages by
providing a transaction recovery mechanism. All the operations pro-
vided by the HAM are atomic transactions; if a transaction does not
complete the completed portions of the transaction are undone. A
multi-person, exclusive-writer protocol is enforced for the data contained
in a graph.

The primary applications of Neptune have been for supporting
document preparation and managing software code. Ongoing applica-

tions include use as a CAEE database, a CAD database and a field ser-

vice support database.

4.2. Design

The last section summarized the functionality and the architecture
of the original Neptune system as implemented at Tektronix. The
remainder of this chapter discusses the re-implementation of Neptune

using GemStone.

Graph

A graph in GemDesign is created with a unique name. A graph
contains all the information pertaining to a document. All objects in a
graph are uniquely identified by their names. A graph contains nodes

and links, and attributes defined for these objects. Figure 4.2 displays a
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graph named TOOIS.revise with a number of nodes, and links between

them.
Node

Nodes are be created by specifying a name and some contents.
Example nodes in Figure 4.2 are Hypertext systems, Properties of Hyper-
teztsystems, Interactive User Interface, etc. Contents of a node can be
modified, i.e., edited. The hypertext system allows attributes to be
defined for a node. Attributes have naﬁes and values. These allow the
user to characterize and attach special meaning to a node. Nodes can

be deleted from a graph.
Link

Links are also given unique names. Links have source and destina-
tion nodes, and are attached to specific positions in the contents of a
node. For example, in Figure 4.2, source node Appendiz and destination
node Context Operations are joined by a link. Links can also have attri-
butes. Links can be explicitly deleted, and if either the source or the

destination node is deleted, so is the link.
Attributes

Attributes are defined for nodes and links. An attribute has a
value, which is either a string or an integer. Attributes contain the oid

(object identifier) of their owners. Attributes are used mainly to

V-
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traverse or filter a graph, i.e., retrieve a subset of all the nodes and links

in a graph based on the values of their attributes.

Versions

Past states of nodes, links and a graph are maintained by a ver-
sioning scheme in GemDesign. Nodes and links are maintained as linked
lists of past versions. When a versioned node is modified, a new node is
created with the new information. All unchanged data is passed on to

the new node.

A node is versioned if its contents or name change as a result of
changing the contents, or if a link is added to or deleted from a node. A
link is versioned if its attachment in either the source or the destination
node changes, or if its name changes. Attributes are also versioned

when their values change.
Context

Contexts are a partitioning scheme for hypertext graphs. When a
hypertext system is used for a project that requires cooperative work by
its developers, contexts allow individuals to work independently with
subsections of the graph, and then ‘merge’ this work with the group
effort. Contexts support multi-person, co-operative software develop-

ment efforts, providing a computer environment to support software

design and development eflorts. Figure 4.2 shows one context of the
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graph named TOOIS.revise. Versions of the graph could exist in other

contexts of the graph.

The contexts scheme implemented in GemDesign is a linear, non-
branching versioning scheme. Nodes can be copied into subsidiary con-
texts, and then merged back into the primary context. Links can be

cross-context, ie, connect two nodes existing in different contexts.

4.3. Implementation

GemDesign has been implemented in GemStone’s database
language, OPAL. The following sections give the functional
specifications and descriptions of the implementation. The major classes
with their instance and class variables are presented, and their opera-
tions are discussed. For a description of the other classes that support
these major classes, refer to the Appendix of the thesis, which contains

the code of the implementation.

4.3.1. HyperGraph

This class is the superclass of three primary classes, graph, node
and link. Figure 4.3 presents the definition of this class, along with that
of its subclasses. This class has four instance variables, name, creation-

Time, rootContext and contextSet. The instance variable name is not

used by instances of HyperGraph but by instances of its subclasses. It
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HyperGraph subclass:

instVarNames: #( 'nodeSet'
'linkSet' ‘'allNodeAttrs'
'allLinkAttrs' 'allNames'
'root')

classVars: #(

EoolDictionar es: #[]

nDictionary: rModel

constraints: ¥?ename, String]]

isInvariant: false

'Graph'

Object subclass:

'HyperGraph 46
instVarNames name rootContext'
creationTlme ‘contextSet' )

classVars: #(
oolDictionaries:
i1nDictionary: H perModel
constraints: ¥
isInvariant: false

HygerGraph subclass: 'Node'
nstVarNames: #( 'ofGraph'
'attributeSet' 'sourceLinks'
'destLinks' ‘'contents'
'flink' 'blink' )
classVars: #(
oolDictionaries: #{]

inDictionary: HyperModel
constraints: {?#name, String]]
isInvariant: false

Fig 4.3 The Class HyperGraph and SubClasses

raﬁhDirectory )

HygerGraph subclass: 'Link'
nstvarNames: #( 'ofGraph'
'attributeSet' 'fromNode'
'toNode' 'fromPos' 'toPos'
'*flink' 'blink' )
classvars: #( )
oolDictionaries: #[]

inDictionary: HXYerModel
constraints: #name, String]]
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represents the user-given name, and uniquely identifies objects in the
graph. The instance variable creattonTime is computed from the local
computer’s system clock and calendar, and is assigned to each object
when created. RootContext contains the oid of the root context of a

graph. ContextSet is a set containing all the contexts of a graph.

GraphDirectory is a class variable, containing a list of all the
graphs created. Each of its elements is an Association, with names of

the graphs as key and the oid of the graph as value.
4.3.2. Graph

Graph is a subclass of class hypergraph. It contains all the infor-
mation about a particular graph. It inherits variables from its super-
class. In addition, nodeSet, linkSet, allNodeAttributes, allLinkAttributes,
and allNames are instance variables declared by this class. Instance
variable nodeSet contains all the nodes that are created in the graph.
LinkSet contains the links that connect nodes in this graph. The
instance variables allNodeAttrs and allLinkAtirs are sets that contain
all the attributes defined for all the nodes and links, respectively, in a
graph. The variable allNames is a set containing all the names assigned

to the nodes and links in the graph. Through this variable, the unique-

ness of names declared for nodes and links is ascertained.
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The following methods define graph operations in GemDesign:
o createGraph: aName
e openGraph: aName
o deleteGraph: aName

e getGraphViaAtiributes: nAttrName wvalue: nAttrValue UlLnkAttr:

1AttrName withValue: nAttrValue versionTime: aTime

o linearizeGraph: rootNode versionTime: aTime nodeAtirName:
aName value: aValue UnkAttrName: sLAttrName attrValue:

aLAttrValue

The method createGraph: aName creates a new hypertext graph
with name aName uniquely identified by its name. The method open-
Graph: aName opens a graph named alName , i.e., returns a pointer to
the graph. The method deleteGraph: aName deletes a graph named

aName by removing its entry from the graphDirectory .

The method getGraphGraphViaAtiributes: nAttrName value: nAt-
trValue lnkAtir: 1AttrName withValue: 1AttrValue returns a sub
graph of the existing hypertext graph, formed by accessing all the nodes
and links of the graph, and filtering these nodes and links based on cer-
tain attributes. First, all nodes that have an attribute nAttrName
with value nAttrValue are returned. Then all links that have the

attribute lAttrName with value l1AttrValue and connect two filtered
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nodes (above), are returned. Thus, a partially connected sub-graph of

the original graph is the result.

The method IlinearizeGraph: rootNode versionTime: aTime
nodeAttrName: aName value: aValue linkAtirName: aLAttrName
attrValue: aLAttrValue returns a sub-graph of the hypertext graph at
aTime , formed by doing a depth first search via the links starting at
node rootNode. An array of two elements is returned, the first element
is the node list comprising of the nodes encountered during this depth
first search, having the attribute named aName with value aValue.
The second element is a link list containing links, each of which connect
two nodes in the node list, and have an attribute named aLAttrName

with value alLAttrValue.

In Neptune, users can filter and browse graphs by supplying a
nodePredicate and a linkPredicate. These predicates are expressions
consisting of attribute names, relational operators and values, and are
based on the predicate grammar described in [DeLisle, Schwartz 87a).

In GemDesign, no extensive grammar has been defined, the filtering pro-

cess occurs as described above.
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4.3.3. Nodes

Node is a subclass of class HyperGraph. The instance variables of
this class are ofGraph, sourceLinks, destLinks, attributeSet, contents,
fLink and bLsnk. Instance variable ofGraph is the name of the graph to
which the node belongs. SourceLinks and destLinks are sets of oid’s of all
the links of which a node is the source or destination respectively. Attri-
buteSet is a set of all the attributes of a node. The variable contents
contains the text, or the data of a node. The instance variables fLink
and bLtnk are pointers to the node which is ahead (behind) in the ver-

sion list of a node.
The following methods define node operations in GemDesign:

createNode: nodeName withContents: someContents

deleteNode: alName

openNode: aNode verstonTime: aTime

modifyContents: someContents ofNode: aNode withLinks: aSet

changeName: aName ofNode: aNode

The method createNode: nodeName withContents: someContents
creates a new node in the hypertext graph, with name nodeName and

contents someContents. The name of a node has to be unique, so a

check is done to verify that. The node is added to the instance variable




51

nodeSet of the graph. The method deleteNode: aName deletes node
aName from the current version of the graph. All the links attached to
this node, and the attributes of this node are deleted. The method open-
Node: -a.Node versionTime: aTime returns a pointer to the appropriate
version (specified by aTime ) of node aNode. If the versionTime is 0,
then the current node is opened. Otherwise, the version list of the node
is traversed, and the appropriate version returned. The method
modifyContents: someContents ofNode: aNode withLinks: aSet creates
a new version of the node alNode with contents someContents is
created. Each link whose position in the contents of the node has been
changed (links in aSet ) is also versioned. The method changeName:
alName ofNode: aNode changes the name of node alNode to aName.

A new version is created for the node.

4.3.4. Link

Link is a subclass of class HyperGraph. The instance variables of
this class are toNode, fromNode, fromPos, toPos, attributeSet, fLink and
bLink. The instance variables toNode and fromNode are the source and
destination nodes respectively, of a link. The instance variables fromPos
and toPos are the character positions of the link in the contents of a

node. These represent an integer value that refers to the position

numerically. Variable attributeSet is a set of all the attributes of a link.
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Finally, fLink and bLink are the oid’s of the link which is ahead (behind)
in the version list of a link.
The following methods define link operations in GemDesign:

o createLink: linkName from: sourceNode spos: sInteger to: dest-

Node dpos: dinteger
o deleteLink: aLink
e openlLink: aLink versionTime: aTime
o newVersion: ofLink sourceNode: aNode newPos: anInteger
o newVersion: ofLink destNode: aNode newPos: anInteger
e newVersion: ofLink newName: aName

The method createLink: linkName from: sourceNode spos: sIn-
teger fo: destNode dpos: dInteger creates a new link linkName
between sourceNode and destNode, at character positions sInteger
and dInteger. Links are identified by unique names, so a check is done
to verify that. The new link is added to the instance variable linkSet
of the graph, and also to the instance variables sourceLinks and dest-

Links of the source and destination nodes respectively.

The method deleteLink: aLink deletes link aL.ink from the current

version of the graph. Both the source and destination nodes of the link

are versioned, and the link’s attributes are deleted. The method open-
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Link: aLink versionTime: aTime returns the oid of the appropriate ver-
sion (specified by aTime ) of link aLink versionTime is O, then the
current link is opened. Otherwise, the version list of the link is

traversed, and the appropriate version returned.

The next three methods describe link versioning. Links are ver-
sioned when the position at which the link is attached to a node changes
as a result of the contents of the either the source or destination node
changing. Links are also versioned when their name changes. The
method newVersion: ofLink sourceNode: aNode newPos: anInteger
versions link ofLink when the contents of its source node change. A
new version is created for the link, the value of its instance variable
fromPos is set to anInteger (the new position of the link in the source
node). Similarly, the method newVersion: ofLink destNode: aNode
newPos: anInteger versions link ofLink when the contents of its desti-
nation node change. A new version is created for the link, the value of
its instance variable toPos is set to anInteger (the new position of the
link in the destination node). The method newVersion: ofLink
newName: aName versions link ofLink when its name changes. The

new name is alName.
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4.3.5. Attribute

Attributes are defined for nodes, links and contexts. Figure 4.4
shows the class definition. The instance variables declared in this class
are name, creationTime, value, owner, fLink and bLink. The instance
variable name is the name of an attribute. The variable creationTime is
computed from the the local computer’s system clock and calendar.
Value contains the contents assigned to an attribute, and is a string or
an integer. The variable owner is the oid of the object for which the
attribute has been defined. Instance variables flink and bLink are the
oid’s of the attribute which is ahead (behind) in the version list of an

attribute.

The method newForOwner: ownerltself name: attrName with-
Value: someContents creates a new attribute for the object ownerlt-
self. If someContents is a string, then an object of class StringAttri-
bute (subclass of Attribute) is created, else an object of class IntegerAt-

tribute (subeclass of Attribute) is created.

The method defined in the above paragraph creates a new attri-
bute. The methods that handle the definition, deletion and versioning of

attributes for nodes and links are defined as follows.

o addAttribute: attrName withValue: someValue toNode: aNode




Object subclass: ’Attribute’
instVarNames: #( 'name’ ’creationTime’ 'value’
’owner’ 'flink’ "blink’)
classVars: #()
poolDictionaries: #[]
inDictionary: HyperModel
constraints: #|#|#name, String]|
islnvariant: false

Fig 4-4. Attribute Class Definition

?

S8 Object subclass: "Context’
instVarNames: #( 'name’ ’ownGraph’ "attributes
‘creationTime’)
- classVars: #()
. poolDictionaries: #[]
inDictionary: HyperModel
constraints: #]]
islnvariant: false

Fig 4-5. Context Class Definition
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o deleteAttribute: anAttribute ofNode: aNode
o newA Version: ofAttribute with: aValue for: anElement

The method aeddAttribute: attrName withValue: someValue
toNode: aNode creates a new attribute with the name attrName and
value someValue. This attribute is added to the variable attributeSet
of the node, and to the instance variable allNodeAttrs of the graph. The
method deleteAtiribute: anAttribute ofNode: alNode deletes the attri-
bute anAttribute from the current version of the node aNode. The
method newA Version: ofAttribute with: aValue for: anElement ver-

sions the attribute ofAttribute , and gives it the new value aValue
The methods pertaining to links are very similar:
e addAttribute: attrName withValue: someValue toLink: aLink
e deleteAttribute. anAttribute ofLink: aLink

The first method creates a new attribute with the name attrName and
value someValue for link aLink and to the instance variable ‘allLin-

kAttrs’ of the graph. The second method deletes the attribute anAttri-

bute from the current version of the link aLink.
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4.3.6. Context

Contexts are defined for graphs. Figure 4.5 shows the class
definition. The instance variables of this class are name, creationTime,
attributes and ownGraph. The instance variable name is the name of
the context, creationTime is computed from the the local computer’s
system clock and calendar. Instance variable attributes is a set of attri-
butes defined for a context, and ownGraph is the oid of the graph that

the context represents.
The following methods define context operations in GemDesign:
o createNew: aName ofGraph: aGraph
o copyNode: aNode into: aContext
o mergeNode: aNode fromContext: aContext

The method createNew: aName ofGraph: aGraph creates a new con-
text, with a new empty graph. The method copyNode: aNode tnto:
aContext copies node aNode from the current context into aContext.
alNode could be a current node, or a version. The attributes of aNode
are also copied. The links are copied, and maintained as cross context
links in the graph of aContext. The method mergeNode: alNode from-
Contezt: aContext merges node aNode from context aContext into

the primary context. If this node already exists in the graph, then it is

versioned, and a copy of aNode is the new current node. The links are
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similarly dealt with, i.e., if the link already exits, then it is versioned,

else a new link is created. Attributes are copied in the same manner.
The methods for creating and versioning attributes for contexts are
e createStrAtiribute: aString withValue: aValue
o cAtrUpdate: anAttr withVal: aVal

The first method creates an attribute for the context, and adds it to the
variable ‘attributes’ of the context. The second method versions an

existing attribute anAttr, and assigns it the new value aVal.

4.4. General notes on the implementation

4.4.1. Access to database objects

The HAM maintains directories to represent the structure of the
graph and its objects. These directories provide access to the basic
components of the graph. GemDesign makes use of OPAL’s indexed
associative access mechanism, which is a way to efficiently access ele-
ments of large collections. This mechanism is implemented (in Gem-
Stone) using index structures such as B-trees on the object’s instance
variables. Using indexes it is possible to find values without having to

do a full sequential search. In order to perform comparisons without

message passing and to be able to build and maintain indexes on an
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object’s instance variables, OPAL needs some assurances about what
kinds of objects those variables represent. As OPAL builds indexes that
use as keys the values of instance variables within the elements of a col-
lection, there is a requirement that these instance variables be con-
strained to contain only specified kinds of objects. OPAL can create

two kind of indexes, identity and equality indexes.

In this implementation, objects are identified by unique names, and
retrieved on the basis of their names, i.e., indexes are built (by OPAL)
on this variable. To make this possible several constraints were needed.
When a graph is created, an Equa]ity index is created on its variables
nodeSet, linkSet, allNodeAttrs, and allLinkAttrs. All these variables are
sets, constrained to contain elements of only one class, class Header.
The name instance variable of this class is constrained to be of class

String.

It is pertinent to mention here that the instance variable name of
objects in GemDesign provide a unique entry point into a graph, in the

absence of an user interface with a pointing device. Navigation between

links, nodes and attributes in the graph is done using objects identifiers.
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4.4.2. Physical vs Logical Design
e Attributes

An attribute defined for a node (link) can be accessed from the
node’s (link’s) instance variable attributeSet, as well as from the instance
variable allNodeAttributes ( allLinkAttributes ) of the graph to which the
node (link) belongs. This does not mean that there is more than one
copy of a particular attribute, rather, both the instance variables men-
tioned above contain the object identifier of the particular attribute.
This promotes the efficiency of the program by involving less search

while accessing attributes.

e Versioning the contents of a node

In GemDesign, changing the contents of a node results in the ver-
sioning of that node with the new version containing the updated con-
tents. Contents are represented by objects of class Attribute, and are
kept as a linked list of its versions. Any change in the contents means
that a new version will be created to contain the new, updated contents.
This approach is in contrast to the system used in Neptune, where

storage overhead is kept to a minimum by using a reverse delta to cap-

ture differences in the updated contents.
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e Database Aspects

In Neptune, transactions and concurrency control mechanisms were
explicitly managed. GemDesign did not have to implement this mechan-
ism, since GemStone provides these facilities automatically. GemStone
manages concurrent object access, and prevents concurrent operations
from fouling shared objects by requiring users to encapsulate object

accesses in sets of OPAL instructions called transactions.

4.5. The Interface

The user interface was implemented by porting Neptune's graphical
interface layer, written in Smalltalk-80 to GemDesign. The GemStone-
Smalltalk Interface (GSI) provides a set of SmallTalk classes that allow
a Smalltalk application to communicate with the GemStone database.
Figure 4.6 shows the structure of the GemStone-Smalltalk Interface.
Class GemStone represents the GemStone database, while instances of
class GemStoneObject are "proxies”, within the Smalltalk object space,
for corresponding objects in the GemStone database. GemStoneMessage
implements the protocol for communicating with the GemStone Object
Server. Vserver implements the communications layer to the GemStone

Object Server.
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Session Control
and
Application Support

............ Foreign Object Access

Remote Procedure Calls

Network Communications

3 Ny GemStone Object Server

Fig 4.6 The GemStone SmallTalk Interface

(Servio-Logic Corp.’s
GemStone manual)
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The following section discusses the classes in GemDesign that serve
as a layer between the OPAL implementation of the hypertext model,

and the Smalltalk-80 interface layer of Neptune.

4.5.1. The Interface Classes

The two primary classes used in GemDesign for the interface are

InterfaceElement and GSSTInterface. These are detailed below:

o InterfaceElement

Every object created in the database is represented to Neptune
through instances of this class. Fig 4.7 shows the class definition. The
instance variables are name, +d and objectltself The instance variable
name is the name of the database object, ¢d is the identification number
created for each object by GemDesign, and objectltself is a pointer to
the object in the database. In GemDesign all objects are uniquely
identified by their names. On the other hand, Neptune identifies an
object with a unique identification number. The class InterfaceElement
establishes a correspondence between objects in Neptune and Gem-
Design. When a new object is created, an instance of this class is also
created to represent it. The instance variable name records the name of
the object, (for future retrieval from the database), a new identification

number is created for the object, recorded in instance variable id (for




Object subclass: ’InterfaceElement’
instVarNames: #( ‘name’ ’id’ ’element’)
classVars: #()
poolDictionaries: #|]
inDictionary: HyperModel
constraints: #|# [#name, String),

#[#id, Integer]

islnvariant: false

Fig 4-7 InterfaceElement Class Definition

Object subclass: 'GSSTInterface’
instVarNames: #( 'allObjects’ ’currentIndex’ ’currentGraph’

’currentContext’)

 classVars: #()

. . poolDictionaries: #[|

inDictionary: HyperModel

constraints: #])

islnvariant: false

Fig 4-8 InterfaceElement Class Definition
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identification in Neptune) and this id is sent to Neptune.

Thus, class InterfaceElement provides a mapping between objects in
Neptune and GemDesign. This level of indirection is essential to the

port, since the alternative was recoding major portions of Neptune.

o GSSTInterface

This class communicates all the information from the hypertext
graphs created in the database to Neptune’s Smalltalk-80 interface.
The messages that were sent to Neptune’s HAM unit (HAM is Neptune’s
transaction-based server) from its Smalltalk interface are now sent to
this class. This class then directs them to the appropriate method in
GemDesign, and returns the results of executing these messages. Figure
4.8 shows the class definition. The instance variables are currentGraph,
currentContext, allObjects and currentindez. The instance variable
currentGraph is a pointer to the graph that is currently active, and
currentContext is a pointer to the context in which the graph is operat-
ing. The variable allObjects is a set, the elements of which are of class
InterfaceElement. Each time the interface sends a message to this class,
the elements of this set are searched for the appropriate object in the
graph. This search is conducted by using OPAL’s indexed associative

access mechanism. The variable currentIndez is an integer that is used

to assign numerical identification to new objects created in the graph.




Object subclass: #HyperRPC
instanceVariableNames: 'toUnix fromUnix hyperRPCErrorCode’
’hyperRPCErrorMessage hyperRPCErrorParams’
classVariableNames: ‘CurrentInstance ToGS’
poolDictionaries: ”

category: 'Hypertext-KernellO’

Fig 4.9 HyperRPC Class Definition
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An example is provided to illustrate how this interface works. Fig-
ure 4.9 shows class HyperRPC. HyperRPC is the class in Neptune's
Interfa_ce that allows the hypertext user interface subsystem (imple-
mented in Smalltalk) to communicate with the hypertext abstract
machine, the ‘HAM’ (implemented in C and running as a separate pro-
cess under Unix). Instance variables toUniz and fromUniz are used to
communicate with the HAM. These are implemented using ‘pipes’
(Unix), and messages are sent to the H.AM one byte at a time. While
this is an efficient and fast way of communication in Unix, the code

required is quite complex.

Figure 4.10 shows a method from class HyperRPC (in Neptune's
Small-Talk-80 interface), under the category ‘node Operations’. This is
an example of how Neptune’s interface communicates with HAM, send-
ing requests for and then receiving and storing information. This method
gets the attribute identified by attributeIndex from node nodelndezr at
versionTime. The variable toUniz sends information ( nodelndez, attri-
butelndez, versionTime ) to HAM through pipes, and receives back some

information from HAM (the value of the attribute).

In GemDesign, this method talks to GemStone instead of Unix.

HyperRPC is the class in Neptune’s Interface that handles all communi-

cation to Unix. The user interface of GemDesign has used Neptune's
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getNodeAttribute Value: nodelndex for: attributelndex at: versionTime
"gets the value of attributelndex for node nodelndex at time versionTime"
T

toUniz neztPut: 54 . getNodeAttributeValue command

toUniz nextNumber: 4 put: nodelndez.
"nodeIndex"

toUniz nextNumber: 4 put: attribute/ndez.
"attribute index"

toUniz nextNumber: 4 put: versionTime.
"versionTime"

self waitForResponse isNil ifTrue: ["nil/.

r_ Array new: 2. r at: 1 put: ({fromUniz next) = 1).
"isString"

(r at: 1) ifTrue: [r at: 2 put: self getStringArgument | .
"string value"

ifFalse: [r at: 2 put: (fromUniz neztNumber: 4) | .
“integer value"”

Fig 4.10 Neptune method getNodeAttributeValuc: for: at:
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interface, with some modifications. Instead of communicating with Unix
(on which the HAM is based), the interface needs to communicate with
the GemStone database. To achieve this a class variable is created for
class HyperRPC, ToGS, which is an instance of the Smalltalk class
GemStoneObject. As mentioned in a previous paragraph, instances of

class GemStoneObject are ‘proxies’ within the Smalltalk database for

corresponding objects in the GemStone database. ToGS is initialized to
contain an instance of GemStone class GSSTInterface (described
above). All information from the interface will be relayed to GemDesign
(on GemStone) through this class. For GemDesign, the method

described in Figure 4.10 is replaced by that in Figure 4.11.

In Smalltalk, when an instance of class GemStoneObject ( ToGS )
finds the prefix ‘gs’ to a message, it removes the prefix and passes the
message to its corresponding object in the database, which in this case is
an instance of GemStone class GSSTInterface. Instead of reading values
from Unix and creating the data structure represented by ‘r’ (Fig 4.9),
the GemStone application gets all the information it needs, (through
nodelndez, attributeIndex and versionTime ) and just passes the data
structure r. The message asLocalObject sent to r replicates the data
structure represented by r (which is a GemStone data structure) into a

Smalltalk object.
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getNodeAttribute Value: nodelndex for: attributelndex at: versionTime
“gets the value of attributelndex for node nodelndex at time versionTime"
iri

r_ ToGS gsgetValue: nodelndex ofAttribute: attributeIndex at: versionTime.

“r asLocalObject

Fig 4.11 The method getNodeAttributeValuc: for: at: modified for GemDesign.

getValue: nodelndex ofAttribute: attributelndex at: versionTime

* gets value of attribute ’attributelndex’ for nodelndex at versionTime"

| n theAttr attrName x r |

n = self getNode: nodelndez.

z == (nodeIndez + attributeIndez - 1 J.

"Index of the system attribute. "

(versionTime = 0 ) ifTrue: [ theAttr = ( self getNodeAttribute: z ) |
ifFalse:

[ n := currentGraph findVersion: versionTime ofNode: n .
sttrName := ( { allObjects detect: [ :a} a.id = z/) name ).
theAttr ;= n attributeSet detect: [ :a| a name = attrName | | .

r = Array new: 2.
( theAttr isMemberOf: StringAttribute )
ifTrue: [ r at: 1 put: truef
¢fFalsc: [ r at: 1 put: false/ .
r at: £ put: theAttr value.

a

r

Fig 4.12 The method getValue: ofAtiribute: at: in GemDesign.
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Replacing the code of the method getNodeAttiribute:for:at: by a sin-
gle message to the variable ToGS is not the whole story. As mentioned
earlier in this chapter, an additional level of indirection has been added
to the interface of GemDesign. Objects are identified by integers in
Neptune, and strings in GemStone. This mapping is done in the method

getValue:ofAttribute:at: (Figure 4.12) in class GSSTInterface.

This method first gets a pointer to the node specified by nodelndex.
( n := self getNode: nodelndex ). The méthod getNode: takes the numer-
ical identification of the node as passed by the interface, maps this to
the nodes name in GemDesign, and then gets a pointer to it. It then gets
the current version of the node from the graph, ( currentGraph findVer-
ston: ofNode ), and then gets the attribute. It creates a data structure
similar to that created by the original HyperRPC method, and returns

this structure to Neptune’s interface.

4.6. Implementation Results

The object-oriented paradigm provided a very elegant vehicle for
the implementation of a hypertext system. The components of hyper-
text, namely, graphs, nodes, links etc., were very naturally modeled as
objects in the OPAL language. Modifications in design could be kept

localized to the specific objects in which they arose, without concern
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about any other parts of the code. Similarly, proposed extensions could
also be handled easily. It took the researcher much less time than anti-

cipated to finish and test the code for GemDesign.

The problems that arose were concerning the environment at the
Oregen Graduate Center in which GemStone was running, and
specifically, the serial connector between the Smalltalk workstation and
the database. The Tektronix 4400-series workstation used for this thesis
is connected to the uVax via an RS—23§-C cable between the worksta-

tions serial port and one of the Vax’s terminal ports.

Under this configuration, GemStone’s response time is very poor.
Actions such as bringing up the browser, the method categories and
methods in the browser, performing a ‘commit’ to the database are
extremely slow. For example, it takes on an average 20-30 seconds to
bring up the GemStone browser, approximately 20 seconds to bring up a
class category, another 15 seconds to bring up a class, 15-20 seconds to
bring up method categories, and approximately 15 seconds to bring up a
method. A deterioration of performance as compared to Smalltalk is
naturally to be expected, due to the fact that the database is not
housed on the same machine. But GemStone’s response time over the

RS-232 was very poor.
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There were three reasons for this poor performance. The uVax, on
which the GemStone database was running, is the slowest host for Gem-
Stone. Secondly, this was the first release of GemStone, and hence not
as efficient as the subsequent releases. Thirdly, the RS-232-C cable that
connected the uVax to the workstation was very slow. In addition, this
network malfunctioned on an average 2 to 3 times a week during the
period that it was used for the implementation of GemDesign. When
the bridge to Neptune was written, the situation deteriorated and the
network started crashing twice a day (5 hours of use). This was a seri-
ous problem, as the server would go down without warning, thereby
returning the database to the previously committed state. As mentioned
above, the response time of the network was very slow, making frequent

commits to the database impractical.

The researcher has not worked with any other object-oriented data-
base server, and has no other means for comparing the performance of
this system with its contemporaries. Even so, the current GemStone

installation is unsatisfactory as far as speed and reliability goes.

GemStone itself presented problems of its own. OPAL, GemStone’s
database language, does not provide any graphics classes at all. There

is no support for user interfaces of any sort. This proved to be a real

handicap, because it took the researcher almost as long to design and
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implement the bridge to Neptune’s Interface, as it took to design the
actual hypertext system. GemDesign identifies objects by their name,
while Neptune needs an integer identification. Due to this difference in
naming systems, the mapping between these two systems took as much
effort as GemDesign, and the code created was as complex as the under-
lying hypermodel. If OPAL had some provision for graphics, we would
have written a much simpler interface to GemDesign in OPAL, thereby
saving the effort of understanding Neptune’s interface, and mapping it

to GemDesign.

Amenities such as a ‘file out’ mechanism for code in the GemStone
browser are not provided by GemStone. This means that the user has
to individually copy methods out into files. (Subsequent releases of Gem-
Stone have corrected this). Error debugging facilities were not provided
by GemStone in OPE release 1.3. An error during implementation is
brought to the users notice through an error notifier, which simply men-
tions the kind of error that has occurred (e.g., "GemStone error: An
attempt was made to store an object of type blah into an instance vari-
able constrained to be of type blahl"). This does not give the user a
clue as to the whereabouts of the error (Assuming that there are plenty

of instances of the class whose instance variable is constrained to be of

type blahl). Smalltalk, on the other hand, puts up a debugger that
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takes the user right up to the method where the error was caused, and
the user can also view the values of all variables in that method. This

makes finding the reason for the error quite simple.

No break-down analysis was done on the amount of time taken to
perform an operation in GemDesign. The important fact in this regard
is that the time taken by the GemStone database to perform hypertext
functions such as creating a node is orders of magnitude less compared
to the total time taken by the currenf, GemStone configuration at the
Oregon Graduate Center to perform and display such a function. As
mentioned in one of the preceding paragraphs, the performance of the
network was very poor. The network’s response time dominated
GemStone’s performance completely, and to the extent that measuring
and analyzing running times of the two implementations (GemDesign

and Neptune) seemed pointless.
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CHAPTER 5§

Conclusions

The goal of this thesis was to implement a prototype hypertext system
(Tektronix’s Neptune) in an object-oriented database. The implementa-
tion was completed using GemStone’s database language, OPAL. OPAL
is derived from Smalltalk-80, its syntax and semantics are almost identi-

cal to it.

The purpose of the thesis was to test the ease of using the object-
oriented paradigm for a given application. This paradigm lent itself
very well for the design of a prototype hypertext system. Nodes and
links, which are the basic objects in a hypertext systems, were objects in
OPAL as well. The behavior of objects was also very well captured.
For example, operations on nodes such as creating, opening and modify-

ing could be elegantly coded as methods for the corresponding class.

Many software systems can be naturally de-composed into objects.
The functionality of such a system can be distributed amongst its object
components, so that the system consists of indiviual objects, each
describing what it does. The object-oriented paradigm with its object-
message model exactly fits the req_uirements of many system software

tasks today.
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Thus the main results of implementing this thesis can be summar-

ized as follows:

1. The prototype hypertext system was easily modeled by the object-

oriented paradigm.

2. No comparative analysis could be performed to comment on the per-
formance of the GemStone database. The primary reason was that
GemStone’s current network configuration at the Oregon Graduate
Center performed very, very poorly, and completely dominated the per-
formance of the GemStone database. Thus, this suggests that the
current GemStone configuration at the Oregon Graduate Center is not

appropriate for any practical application.
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GEMDESIGN: The Code




Class Definitions: HyperModel

Object subclass: ’Attribute’

instVarNames: #( 'name’ 'creationTime’
‘owner’ 'flink’ 'blink’)

classVars: #()
poolDictionaries: #|)
inDictionary: HyperModel
constraints: # [# [#name, String]]
isInvariant: false

‘value’

Object subclass: ’Context’
instVarNames: #( 'name
classVars: #( )
poolDictionaries: #[]
inDictionary: HyperModel
constraints: #[|
isinvariant: false

?

'ownGraph’ ’attributes’ ’creationTime’)

Attribute subclass: 'DeletedAttribute’
instVarNames: #()
classVars: #()
poolDictionaries: #]]
inDictionary: HyperModel
constraints: #|]
isinvariant: false

Object subclass: 'DeletedElement’

instVarNames: #( 'name’ ‘creationTime’ 'blink’
flink’)

classVars: #()

poolDictionaries: #||

inDictionary: HyperModel

constraints: #[]

isInvariant: false

DeletedElement subclass: "DeletedLink’
instVarNames: #()
classVars: #()
poolDictionaries: #]
inDictionary: HyperModel
constraints: # ]
isInvariant: false
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DeletedElement subclass: 'DeletedNode’
instVarNames: #()
classVars: #()
poolDictionaries: #|]
inDictionary: HyperMode!l
constraints: #])
islnvariant: false

HyperGraph subclass: *Graph’
instVarNames: #( 'nodeSet’ YlinkSet’ 'alilNodeAttrs’
'allLinkAttrs’ ‘alilNames’ )
classVars: #()
poolDictionaries: #|]
inDictionary: HyperModel
constraints: #|]
isInvariant: false

Object subclass: *GSSTInterface’
instVarNames: #( ’allObjects’ ’currentlndex’ ’currentGraph’
’currentContext’) '
classVars: #()
poolDictionaries: #||
inDictionary: HyperModel
constraints: #]
islnvariant: false

Object subclass: 'Header’
instVarNames: #( 'name’ ’element’)
classVars: #()
poolDictionaries: #][]
inDictionary: HyperModel
constraints: #[#[#name, String])
islnvariant: false

Object subclass: 'HyperGraph’

instVarNames: #( ’name’ rootContext’ 'creationTime’
’contextSet’)

classVars: #( 'graphDirectory’)

poolDictionaries: #||

inDictionary: HyperModel

constraints: #[]

islnvariant: false

Attribute subclass: 'IntegerAttribute’
instVarNames: #()
classVars: #()
poolDictionaries: #]|
inDictionary: HyperModel
constraints: #|)
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isInvariant: false

Set subclass: 'InterfaceSet’
instVarNames: #()
classVars: #()
poolDictionaries: # ||
inDictionary: HyperModel
constraints: InterfaceType
isnvariant: false

Object subclass: 'InterfaceElement’
instVarNames: #( 'name’ 'id’ ’element’)
classVars: #()
poolDictionaries: #[]
inDictionary: HyperModel
constraints: # [#|#name, String],

#{#id, Integer])

isIlnvariant: false

HyperGraph subclass: °Link’

] instVarNames: #( 'ofGraph’ ’attributeset’ fromNode’
L toNode’ flink’ ’blink’ fromPos’

' "toPos’)

1 classVars: #()

poolDictionaries: #|)
inDictionary: HyperModel
constraints: # [# [#name, String])
isInvariant: false

HyperGraph subclass: 'Node’
instVarNames: #( 'ofGraph’ ’attributeSet’ ’sourceLinks’
'destLinks’ ’contents’ *flink’ *blink’)
classVars: #()
poolDictionaries: # |
inDictionary: HyperModel
constraints: #[#[#name, String]]
isInvariant: false

Set subclass: 'SetOfAttributes’
instVarNames: #()
classVars: #()
poolDictionaries: #]]
inDictionary: HyperModel
constraints: Attribute
isInvariant: false

Set subclass: 'SetOfHeaders’
instVarNames: #()




classVars: #()
poolDictionaries: #|
inDictionary: HyperModel
constraints: Header
isInvariant: false

Set subclass: *SetOfLinks’
instVarNames: #()
classVars: #() -
poolDictionaries: #|]
inDictionary: HyperModel
constraints: Link
isInvariant: false

Set subclass: 'SetOfNodes’
instVarNames: #()
classVars: #()
poolDictionaries: #]
inDictionary: HyperModel
constraints: Node
isInvariant: false

Attribute subclass: StringAttribute’
instVarNames: #()
classVars: #()
poolDictionaries: # ]
inDictionary: HyperModel
constraints: #]
islnvariant: false
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Class ATTRIBUTE

Instance Protocol for class Attribute

e Category: Instance Variables
name
name: aName
creationTime
creationTime: aTime
value
value: aValue
owner
owner: anOwner

flink

flink: aLink,
blink

blink: aLink

Class protocol for class Attribute

e Category: Instance Creation

newForOwner: ownerltsell name: attrName withValue: someContents
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Class CONTEXT

Instance Protocol for class Context

e Category: Instance Variables
name
name: aName
creationTime
creationTime: aTime
attributes
attributes: aSet
ownGraph

ownGraph: aGraph

» Category: Attribute Operations
ereateStrAttribute: aString withValue: anotherString
ereateIntAttribute: aString with Value: anlnteger
cStrUpdate: anAttr with: aString

cIntUpdate: anAttr with: anlnteger

Class protocol for class Context

e Category: Instance Creation

createNew: aName ofGreph: aGraph
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Class GSSTINTERFACE

Instance Protocol for class GSSTInterface

o Category: Instance Variables
currentindez
currentindez: anlndex
currentGraph
currentGraph: aGraph
currentContext
currentContezt: aContext
allObjects

aliObjects: aSet

e Category: Context Operations

getContertAttrValue: contextlndex for: attributelndex at: versionTime

sctContertAtiribute: contextlndex with/ndez: attributelndex as: boolVal with: aString with:
aninteger

¢ Category: Graph Operations
eddNode
createGroph

4 openGraphPath: graphld atTime: crTime

getGraph: versionTime nodePredicate: aStringl linkPredicate: aString2 nodeAttrs: na lin-
kAttrs: la

addLinkFrom: fromNodelndex to: toNodelndex spos: fromCurPos dpos: toCurPos fromContez-
tld: fcontextld toConteztld: tcontextld

destroyGraph
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¢ Category: Node Operations
deleteNode: aNodelndex
deleteAttribute: attributelndex forNode: nodelndex
getNodeAttributes: aNodelndex versionTime: aTime
setNodeAttrValue: nodelndex for: attributelndex as: boolVal with. aString with: anInteger
getValue: nodelndex ofAttribute: attributelndex at: versionTime
getNodeVersions: nodelndex

openNode: nodelndex nodeVersionTime: aTime nodeAttrs: anintl attrind: anArl linkAttrs:
anint2 tAttrInd: anArr2

modifyContents: s ofNode: aNode withLinks: JinkArr

¢ Category: Link Operations

deleteLink: aLlinkIndex

deleteAtiribute: attributelndex forLénk: linkIndex
i setLinkAttrValue: linkIndex for: attributelndex as: boolval with: aString with: anInteger
getValue: linkIndex ofLinkAttribute: atributelndex at: versionTime

getLinkAttributes: alinkIndex versionTtme: aTime

o Category: Private

getNode: objectIndex

getAttribute: objectindex
getLink: objectIndex
geiLinkAttribute: attrIndex
getNodeAttribute: attrindex
getAttributeIndex: aString
ereateIntElement: fromIndex

findld: anObj




createClntElement. fromIndex

makeName

eztractAttribute Values: numAttrs forIndices: attrValues forNode: nodelndex
extractAttribute Values: numAttrs forIndices: attrValues forLink: linkIndex
estractLinkAttributes: aLink

extractNodeAttributes: aNode

findTimeStamp: objld

findElement: anld

getTimeStamp: aNode ¢d: anlnteger

Class protocol for class GSSTInterface

Category: Instance Creation

createNew
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Class GRAPH

Instance Protocol for class GRAPH

e Category: Instance Variables
allNames |
allNames: aSet
aliNodeAttrs
aliNodeAttrs: aSet
aliLinkAttrs
aliLinkAttrs: aSet
linkSet
linkSet: aSet
nodeSet

nodeSet: aSet

e Category: Graph Operations
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getGraphViaAttributes: nAttrName value: nAttrValue linkAttr: 1AttrName withValue: nAt-

trValue verstonTime: aTime

linearizeGraph: rootNode versionTime: aTime nodeAttrName: aName value: aValue linkAt-

trName: sLAttrName atirValue: aLAttrValue

s Category: Node Operations
createNode: nodeName withContents: someContents
deleteNode: aNode
openNode: aNode versionTime: aTime

findVersion: aTime ofNode: aNode

modifyContents: someContents ofNode: aNode withLinks: linkArr
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changeName: aName ofNode: aNode

deleteAttribute: anAttribute fromNode: aNode

newA Version: of Attribute with: aValue for: anElement
sddAttribute: attrName withValue: someValue toNode: aNode

updateLinks: newNode with: linkArr

Category: Link Operations

createLink: linkName from: sourceNode spos: sInteger to: destNode dpos: dinteger otherCon-
tezt: aContextl

. deleteLink:
aLink

openLink: aLlink versionTime: aTime

findVersion: aTime ofLink: aLink

newVersion: ofLink sourceNode: aNode newPos: anlnteger
newVersion: ofLink destNode: aNode newPos: anlnteger
newVersion: ofLink newName: aName

addAttribute: attrName withValue aValue toLink: aLink

Category: Private

versionFromNode: aLink

verstonToNode: aNode ofLinks: aLinkSet
deleteAllLinks: aNode

deleteDestLinks: aNode
deleteSourceLinks: aNode

deleteAInSet: anAttribute
deletcAttributes: anElement

createNewVersion: aNode

newCVersion: aNode with: someContents




ereateDelLink: aLink

getHeader: anElement

parsePred: stringl

findVersion: versionTime ofAtir: anAttr

getGraph ViaAttributes: stringl value: string2 linkAttr: string3 withValue: string4

Class Protocol for class Graph

o Category: Instance Creation

createGraph: aName
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Class HYPERGRAPH

Instance Protocol for class HyperGraph

o Category: Instance Variables
name
name: aName
rootContext
rootContezt: aContext
creationTime
creationTime: aTime
conteztSet

conteztSet: aSet

s Category: Graph Access
addGraph: aGraph
openGraph: aName

deleteGraph: aName

Class protocol for class HyperGraph

o Category: Instance Creation

ereateNew
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Class InterfaceElement

Instance Protocol for class InterfaceElement

e Category: Instance Variables
name
name: aName
id
¢d: anlnteger
element

element: anObject

Class protocol for class InterfaceElement

e Category: Instance Creation

createNew: aName andJd: anlnteger andElement: theElement
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