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Abstract

A Broadcast Hierarchy Simulator
for the Intel iPSC

Kevin N. Jagla, M.S.
Oregon Graduate Center, 1989

Supervising Professor: Dan Hammerstrom

This paper discusses the features of a software program developed to

simulate a parallel architecture on the Intel Hypercube. The design has

parallel processors with no shared memory. The parallelism available in

our Intel iPSC, which has 32 processors, enables the software to simulate

the proposed architecture, including the interconnect bus. The simulations

uncover some important resource needs.

The major task of the simulator was to aid in hardware design. This task

required the program to be constructed to represent portions of the final

hardware design. A major feature of the design was a novel hierarchical

"come from" addressing scheme. This addressing scheme fit well with the

problem of updating many thousands of connection node weight~ based on one

node's output.

Performance figures were taken to assess the time consumed by each

function performed by the simulator. These figures were gathered by

simulating different sized neural networks. The results show how the

architecture reacts to certain bottlenecks. The simulations also show the

general applicability of a parallel approach.

vii



1. INTRODUCTION

This paper explains how to construct a simulator to aid research in

connectionist theory. The paper also explores performance issues related

to parallelism.

The primary goal of the simulation is to test a parallel architecture to

be used to model neural networks. Eventually the modeled architecture will

be used in a silicon chip, and a complete neural modeling system will be

designed from VLSI circuits.

The neural modeling system is designed to be flexible and can be "loaded"

with any given type of neural network architecture. These architectures

may have different node connection schemes, different input/output

functions, and different activation functions. This flexibility makes it

ideal for studying connectionist theory, and for prototyping applications

based on networks. The final VLSI system will be a hardware implementation

of the architecture simulated on the hypercube by this software package.

..-



2

2. DESIGN CONSIDERATIONS FOR A DISTRI8UTED SIMULATOR

2.1. Research Environment

To understand the design of the simulator, i~ is important to understand

that the simulator is not a stand-alone tool. Instead it is constructed

to fit within a larger research environment, which supports research in

connectionist theory. The environment has been developed with a layered

design approach similar to a VLSI design environment. Tools in the top

layer of the environment, such as Network Design Language (NDL) support

the design of a network, which is similar to high level VLSI design tools.

Lower layer tools, such as MAPPER [8ai88], specifies the most efficient

mapping of the network, which are similar to VLSI auto-routing tools.

Simulation tools are used to test performance of the neural network being

designed. These neural simulation tools ANNE (Another Neural Network

Simulator) and HAS (Hierarchical Architecture Simulator) are similar to

SPICE and other circuit simulation tools found in commercial design

packages. Together these network design tools allow one to take a neu~~

network design from conception to final hardware implementation.

2.2. Constructing a connectionist application

To avoid confusion between nodes in a user's network, and nodes of the

iPSC and nodes in the modeled architecture, connection nodes are

henceforth called CNs, hypercube nodes are referred to as HNs and

processor nodes in the modeled architecture are called PNs. To construct
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a connectionist application, the following general steps (and

corresponding tools) must be used. NDLlets you use high-level directives

to specify a network. MDLuses inputs from the researcher to create a

file containing a description of the desired network. Kapper gives you a

way to map specified connectionist nodes onto the target simulation

platform. Mapper takes information about the layout of the network from

the BIF (Beaverton Intermediate Format) file and merges it with

information about the simulation platform to create a new file specifying

how the network will be mapped onto the simulation platform. The last two

elements of the environment are the simulators built to run on the Intel

Hypercube.

ANNE[Bah8S] is a general purpose simulator for debugging networks and

verifying they are operating correctly. The second simulator HAS

(Hierarchical Architecture Simulator) tests how the application will run

on the proposed VLSI hardware. The model can be tested on HAS, and its

efficiency on the final VLSI system can be estimated.

In the research environment HAS models debugged networks. HASmeasures ~9w

efficiently a particular network will be on the hardware under

development. It provides information on how much system resources will be

necessary to model certain networks.

2.3. Flexibility to simulate many different types of neural models.

One of the design goals of the simulator was to make it flexible enough

to allow many different types of network models. Supporting flexibility
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led to a general view of what would be needed to allow many different

models to work: a set of neural functions, changeable between network

models, different types of data necessary to run certain models, and the

interconnected layout (or topography) of the network. All these had to be

conveyed to the ~imulator.

2.3.1. Handling of functions used by CN types.

Different types of networks contain different nodal algorithms for

processing the data each CN receives. So much flexibility is required for

user functions that a general approach was taken. Figure 1 depicts a

connection node. It has several input links connected to the connection

node at a particular site. The site is a conceptual portion of the

connection node where a function is used to modify the incoming link

values. This may be any function, but in the figure the site function

consists of summing together the product of the link weight and the input

value. The connection node then uses some type of activation function to

determine if the node will fire or not. In the figure, the activation

function is a sigmoid function using the value of the input site functi9n~

Finally based on the results of the activation function there is output

produced. The simulator was written such that there is an external user

procedure, provided by the user. The user codes the CN's algorithms within

the user procedure. The user procedure is written to conform to a simple

circular state diagram for all CN's:

STATE OlE: Receive messages based on results of last cycle.

STATE TWO: Store received value in a field on the link record.

S'lfl !BIll: Process results based on inputs and functions. In a



Figure 1

A Connection Node

g(x) = L(weight ; value)
i= l..n

f(x) -=
1-

1 + ea(x)

:.

'Output Links
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common case this step would multiply the received value by a weight,

and sum the result to a value, and use a sigmoid function to

determine its output.

STATE FOUR: Send messages that were generated by the calculation

2.3.2. Conn~~tivity Specification: How to you encode the network into the

file?

To recreate the network on the simulator, you must encode the connections

into the network file. In HAS, the encoding has another twist: each CN's

output is directed to a single process emulating a serial bus. Since this

bus broadcasts to many PNs, output goes to many CNs at once. The MAPPER

has information on the layout of HAS and its broadcast regions. Blr

[Bah88] contains the connection information in its link records. These

records show to whom each CN is connected. HAS contains Broadcast

Hierarchy links rather than CN links for output connections ~hat are read

into the simulator. Records are constructed to download to the different

PNs. Each PN receives the CN records, containing all of their links at a

time. These records are then loaded into areas set aside in memory. The

CN and its records are then available at only one PN. No maps exist in the

simulator of exactly where each CN is.

2.4. Control over timing constraints.

In the most general case, the simulator must be able to perform the

simulation by driving all CNs through their four states in lock step. This
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is desirable in testing. In some network configurations, lock step is the

only way the simulator will arrive at correct results. Some of the timing

issues in these networks have not been explored. So the ability to control

the timing mechanism was built into the simulator [BHJ88]. The basic

option allows the simulator to drive each CN through all four of its

states, then synchronize before continuing the simulation. Other options

include allowing a message within a certain time range to be accepted as

if it were on the correct cycle. The simulator can also allow any message

to be accepted, regardless of time stamp. There is also the possibility

of allowing the simulation to proceed until a specified step before

actually having to synchronize. Separate HNs would be able to "average"

their work load over ten simulation steps prior to stopping and

synchronizing. Networks may be found which will be relatively insensitive

to the consequences of late messages, and will be simulated with no

synchronizing step or a long time between steps.

2.5. Operates on the Intel iPSC/!.

The simulator was written to run on the Intel iPSC/1. The simulator ,was

designed to maximize the size of the network that could be held in the

simulator. Network maps, as used by the Rochester [FFGL88] simulator, were

not used by HAS. The simulator was to locate its connections through

either a point-to-point message to its output, or a message over one or

more broadcast regions. Kemory space was only allocated for holding the

CN data base and its current state.



- -..-

8

2.6. Use of input files written in BIF.

To develop a useful research environment it is necessary to have the

ability to transfer networks from one development tool to the next. To

accomplish this, a descriptive file was developed that contains all the

fields necessary to specify many different types of networks. (The file

specification is described in the Appendix of the User's Manual portion

of [Bah88]) The first file created, using NDL, is called Blr (Beaverton

Intermediate Format). NDL, HAPPER,ANNE, and HAS all use the BIF format

to read in networks.

A main feature of BIr is its ability to specify connections and their

weights. There is a major difference between a BIF file developed for the

other tools and the BIF file developed for HAS. To take advantage of the

broadcast hierarchies developed in HAS, the.BIF file specifies the output

of each CN in terms of which hierarchy it is connected to, rather than

what particular CNs receive the output. The use of hierarchies as output

destinations leads to an optimization within BIF and the simulator. In

transmitted and affects all CNs within that hierarchy. Often a highly

interconnected network in normal BIF will become a much smaller file when

readied for HAS.

- -.
examples of networks in which a great many of the connections are

contained within a hierarchy, only one link record is necessary to

represent all of these connections. In the simulator one message is
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3. THEHARDWARE

The Intel iPSe parallel system is a family of commercial machines that

contain processors linked in a hypercube network. The first of these

machines was based on the 80286 processor. The architecture of the iPSC

favors the complete separation of the problem into self contained PHs,

with little or no global information. The lack of global memory actually

fits well with the architecture being tested. The question is how well

will the architecture being simulated map onto the hypercube network? The

architecture simulated has eight processors in each hierarchy serviced by

a single broadcast bus. The eight PH per hierarchy grouping was mapped

onto an eight node segment of the iPSC. Every eight HN grouping,

representing a hierarchy, will have some messages that must travel three

node-hops and some that will only bave to go one node-bop. To understand

more of the simulation, a look at the architecture is necessary.
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4. THE NATUREOF THE PROBLEM

The architecture to be simulated consists of large numbers of relatively

simple processors [RuH88]. A conceptual look at the sections of the PN can

be seen in Figure 2. There is a section of memory used to download the

user' s simulation functions. In" the diagram ROM (Read Only Memory) is

shown for storing user functions (not modified during the run). Two areas

of associative memory are shown. One of the areas is fed the CN number

from each message and the memory decodes it to the CN numbers that are

affected by the message. The other associative memory area is used to

decode output messages, sending them to the proper hierarchies. The output

associative memory may not need to be large at all. A third portion is

devoted to a central processor. It applies the downloaded functions to the

different stored values of a CN. Finally there is the RAMstorage for the

CN's..The size of RAM storage will decide the number of CN's that can be

simulated.

The PHs communicate with each other using a hierarchical bus structure,

which allows communication with many processors in one bus-cycle. Figure

3 depicts the structure. In the figure, an eight PN hierarchy is shown.

All eight PNs are linked to one broadcast bus. The broadcast bus receives

messages from other hierarchies via the connection labeled "hierarchy

bus". The hierarchy bus connection intercepts messages coming from other

hierarchies to the broadcast bus and in turn captures outgoing messages

from the broadcast bus and directs them to their proper hierarchy. To

complete the communication link, each processor uses its bank of

associative memory to identify CNs that are receiving input from an input



Figure 2
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CN. Each processor performs a series of calculations using the input value

sent to it from an input CN and weights associated with the connection

link between the CNs. The user function is used by the simulator to

calculate a value using the input values and a function provided by a

user. The resulting value is transmitted as an output me$sage.

The hierarchy structure shown in Figure 3 is easy to connect into larger

and larger systems. Figure 4 depicts a possible layout for a 32-processor

system.



Figure -4
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5. FUNCTIONAL ORGANIZATION OF THE SIMULATOR

The simulator needs a certain organization to function on the Intel iPSC

and emulate the proposed architecture. To meet these needs, three basic

types of processes were developed. The first is cmgr1, the Cube Manager,

the second is pnO, the Physical Node, and the third is tbh, The Broadcast

Hierarchy.

The simulator also needs a general method for debugging the cube

processes. A debugging system was implemented between each HNand the cube

manager. A general purpose call was made that creates a message and

forwards it to the cube. The cube manager functions as an output for all

HNs. A benefit was the debugging method worked equally well on the Vax

running bsim, a cube simulator, or the iPSC, so conditional compile

statements were not necessary.

5.1. The Cube Manager: Cmgrl

There is only one processor in the iPSC with the ability to access and use

input/output. The processor called the cube manager is used to inter~ct

with the model under test and perform other tasks requested by the user.

It has little to do with the simulation of the neural model, or the

simulation of the hardware.

The first job of the cmgr1 is to load the BIF file. The user specifies

which Bll file is going to be simulated. In the next step, the file is

opened and each line is read into the simulator. Since no global

information is stored in the cube manager, no records are kept
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in the cube manager, they are all shipped directly to the HNs. The first

few fields contain type information commonto all CNs. It is sent to every

PN in the system. Next, the CN information is processed. To do this

efficiently, a record of CN information is prepared in the cube manager

to download into the HNs. Each record created goes to only one HN, the one

assigned a particular CN. The record is variable, since it is impossible

to tell how many sites or links a particular CN contains. When the last

link of the last site is finally read into the simulator, the cmgrl

determines which HN will receive the CN and it sends it. The loading

continues until all of the CN records have been forwarded to their

respective PNs on the HNs.

In handling user requests the cmgr1 is equipped with a user interface. The

interface accepts commands from the user that will control the simulator.

Some important commands include the use of setup commands for specifying

simulation time step size, specifying the BIl file to be loaded, and

specifying single step mode. There is also a single step command that

causes the simulator to single-step through the simulation. All these

operations aid the user in observing the simulation, and in modifying "the

simulation parameters.

if he wishes, and can be checked against a "convergence" array containing

expected final (or target) values for output CNs.

When the simulation is started, output CNs begin to produce output

messages. These need to be accessible to the user. Every output of an

output CN is directed to cmgrl. Here the outputs can be seen by the user
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5.2. The Node Process: pnO

The node process performs most of the neural network simulation. Its first

task is to set up communication with the cube manager. The cube manager

counts the number of received messages and compares the number with the

expected number of PNs. When the correct number of return messages is

received from the PNs, the cube manager begins sending packet messages

containing numbers of how many of each type of record will be received.

The four database records are Type records, CN records, Site records, and

Link records. Each PN allocates a block of memory for the expected number

of records. A record with the number for each type of database record is

taken from a configuration file developed prior to the simulation. After

sending the allocation message to each of the HNs, the cube manager begins

reading in the BIF file and sending to the HNs connection information. The

first records are the Type records. Due to their size they are sent to all

of the PNs. There is a chance that a type record may be stored in a PN and

never be used, but that is unlikely in most cases. Then the CNinformation

packets are sent. Each packet contains one CNrecord then two or more site
<"

records with their respective link records. After these have been sent '"by

the cube manager, it sends down a message to "sort" using a routine

internal to the PN. The only records that are actually sorted are the link

records. These are sorted to aid in searching for the address of a

message. After the sort the input file is read into the simulator and the

input messages are transmitted by the cube manager. The input messages are

directed to primary hierarchy processes. The hierarchy processes

distribute the input messages within their group of PNs. The input
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messages constitute the beginning of the first cycle of the simulator.

After they have been received, the CNs will determine if they will output

a record.

Another important function of the PN is the production of information for

eventual display on the terminal. Debugging information can be displayed

by the cube manager. Each debug statement is formatted into a buffer. The

buffer is used to create a message to be sent to the cube manager. Each

message arrives with an input value, the id of the CN that sent the

message, and a time stamp. A flag in the iPSC message packet is set to

differentiate packets for the cube manager. Incorporating this mechanism

removed the need for many conditional compilation statements, which would

have been necessary to allow debug statements for each type of machine.

5.3. The user function: user_fx

A part of each PN is a separately compiled portion called user_fx. Here

the user codes the functions that will be used by the simulator. Each CN

is expected to receive messagesl sum the messages received, or perform

some type of processing involving the received input. Finally the CN must

output some type of message depending on computed output values. The user

function is divided into four areas called user_modes to correspond to the

four steps outlined above. Within each user_mode area the user enters the

code specific to the desired simulation. The user function portion of the

simulator is compiled separately, then during the link step it is

connected to the other portion of the PN. The final image is downloaded

onto the HNs.
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When mode equals 1, the CNs are receiving messages from the broadcast

hierarchy, which is passing them on from other CNs. There is a field in

the link message that is used to store the value of the message received

on that particular input link. After the messages have been received there

are input values on all of the appropriate links.

When Mode equals 2, the values from the link fields are summed to the site

level and stored in a field called siteval.

When Mode equals 3, the CN's calculate the activation function which was

coded in the user function.

output = ~
1 + e-Ilhnl

The output result is stored in the CN field called value. Every CN has an

output value derived from its inputs. Even inputs of zero will create an

output value of 0.5.

When Mode equals 4 all of the CN's transmit their output messages. The

cycle begins again.

5.4. The Communication Process: TBH

.r ..~"

The simulation of the broadcast bus and its queue is done by the broadcast

hierarchy process. The broadcast hierarchy receives each message sent from

one CN to another. The broadcast hierarchy sequentially passes the

messages, and logs how many messages actually ocurred during a cycle.

Accumulated statistical data is sent to the cube manager at the end of

each cycle. The user can measure the number of messages sent during a

cycle.
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5.5. Process Structure

All of the work within the system is initiated via a message of a given

type. The message type is used to encode what the message is to perform.

There are two types of messages. The first type are those messages

initiated by the system to perfprm the simulation. The second type are

those messages that support the functioning of the simulator. Such a

message might be a request to load a new BIF description, a command

message to initiate cycle control, or other messages initiated by the user

interface.

Along with the transaction nature of the simulator is the use of processes

to emulate bus or other hardware units. The design leads to a group of

processes each with a specific job to perform emulating the hardware

system. The cube manager is the command process and only services the

simulator during operation. The cube manager's most important job during

the simulation is to provide the message initiating the next simulation

step.

In the HHs, PHs are constructed to perform certain operations. First the

PHs read in downloaded neural data and store the CNs they will control.

Second, PHs receive and send information based on results of internal

calculation.

The process found in one HN per hierarchy is the broadcast hierarchy

process or tbh. Tbh is an integral part of the communication link between

PHs. PHs are required to send their output messages through the broadcast

hierarchy. The process acts as the bus for a group of eight PNs. The
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broadcast hierarchy sends received messages on to the eight PNs and keeps

track of message traffic.

The design creates a software simulator that performs like the envisioned

hardware. The use of simple processes to emulate portions of the system

help point out some of the areas where performance bottlenecks will occur.

Also measurement information can be transmitted from the PMs to the cube

manager for display.
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6. HAPPING THE BROADCASTHIERARCHY

One bus structure being simulated is called the Broadcast Hierarchy. A

hierarchy consists of four PNs in a shared bus network. These four PN

units are then connected to four more identical units, creating an eight

PN building block for the next level of integration. See Figure 3 for an

example of the 8 PN building block used to create a 32 PN hierarchy cell.

As scaling continues a network of processors is created. The architecture

is useful for simulating connectionist networks. First, if a connectionist

network can be laid out among the processors such that a majority of its

communication occurs in localized areas, then the simulation will benefit

from the large amount of local bandwith that is available in the

architecture.

Second, is the availability of a bus that can broadcast to many CNs at

once. In high fanout networks when one CN outputs a value, the value is

sent to several thousand other CNs. The broadcast bus allows a CN to

transmit to many CNs in one message cycle, the architecture anticipates

the high fanout characteristic of some networks. The user maps the netwqrk

to insure CNs expecting output from an input CN can be reached in one

hierarchical region. If a good mapping of network graph to broadcast

hierarchy was accomplished, each CN sends one message and services all of

its receivers. An efficient mapping cuts down on message traffic as the

architecture scales [HoB86].

To simulate the broadcast bus on the Intel iPSC/1, the simulator maps the

hierarchical bus structure onto the cube. Figure 5 shows the approach.
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Eight PNs are mapped to eight BNs in the architecture model. An

independent software process is used to simulate the broadcast hierarchy.

A broadcast hierarchy is assigned for every eight PNs. The broadcast

hierarchy passes messages to the CNs contained in its eight HN sector of

the Intel hypercube. A separate process is used in order to i~sure that

a simple first in, first out queue is used passing messages within the

eight BN hierarchy. Each message to the hierarchy must queue up and pass

through the hierarchy bus process. To pass messages to eight PNs on the

iPSCIl requires several message steps. First the broadcast hierarchy

contacts the PNs it can reach. Let each of the eight BNs occupy a vertex

on a cube. If the broadcast hierarchy is on vertex 0, then it can contact

PN 0 (the PN process sharing HN0 with the bus process), and PN 1 (on 8N

1), PN 2 and PN 4. These are the only PNs the broadcast hierarchy can

communicate with directly. The four arrows in figure four emanating from

the broadcast hierarchy represent the messages described. These PNs are

one hop from the broadcast hierarchy. In order to communicate with the

other four PHs the messages need to be forwarded. Code is in the PN to

forward a message from PN 1 to PN 3, from PN 2 to PN 6, and from PH 4 ~o

PN 5, as seen in figure 5. Finally the last PN 7 is contacted by PN 3. All

of this code can be used in other eight 8N groups of the cube.



Figure 5 Mapping the Broadcast Hierarchy
onto the Hypercube

The Broadcast Hierarchy.

0= PN

Hypercube Bus Structure

Architecture Mapped' to Cube
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7. TIMING ALGORITHMS FOR

PARALLEL SIMULATORS

One of the most difficult decisions to make in designing HASwas how to

preserve chronological time in the simulation. In order to simulate a bus

structure it is important the simulator realistically model the

characteristics of the bus structure. Otherwise two different portions of

the simulation may be counting on control of the broadcast bus at the same

time. Properly modeling the serial nature of the bus is also critical in

assessing bus bandwidth requirements. Assessing bus bandwidth was

accomplished by using two separate approaches. First, one process

functions as the broadcast bus and the simulation is insured that a single

queue is used to model the bus resource. The bus exhibits the serial

nature necessary for a realistic simulation. Second, control over how the

simulator is synchronized was desired. The simulator was to have the

Ability to allow each processor to continue to the next cycle, allowing

the HNs the ability to run at their own speed. Three different timing

mechanisms were explored to insure that all processors in the cube were

working on the same time step.

7.1. Misra Algorithm

In lookingfor an efficient technique to control timing on a parallel

simulation, the work of K. M. Chandy and J. Misra was considered

[ChHis79]. His study of timing for simulations concentrated on event

driven simulations and their problems when implemented on a parallel

machine. The major drawback up until
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their work was based on the fact that event driven simulations worked

from an event queue which was global to the problem. Thus, event driven

simulations were sequential problems, which do not benefit much from

parallelism. To overcome running the simulation sequentially, Misra

focuses on the timing problem in a new way: First he assumes that between

two processes there is a link, such that if one process sends an ordered

set of messages the order will be preserved on the link. Then he can say

that if one process receives a message from another process, the process

knows it has received all of the messages prior to that message. The

simulation introduces time-stamped messages from each process sent to all

of the processors expecting lnput. The order of the messages insures the

processes know that no other messages are coming from a given process.

One synchronization approach uses null messages to ensure a process is

still operational when no output was developed. After processing each

input message, a process generates a message, only sometimes it is a null

message which is nothing but the time stamp. The use of null messages

allows all portions of the system that receive a message to continue,

knowing the receipt of a null message signals the process is not going to

have output this cycle.

The problem with implementing the Misra null message algorithm rests in

the extensive use of message passing to insure that chronological time is

preserved. The simulator has communication as its biggest bottleneck with

the connectionist messages. The use of scarce bus resources to implement

this algorithm is not feasible, and the extra messages used to implement
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the algorithm would overwhelm the simulation. In figure 6, a simple system

is modeled using Misra's algorithm. In some circumstances many of the

messages are overhead to support the algorithm. So it was decided to not

use the Misra's algorithm, since it is a poor design fit to the problem

being addressed.

7.2. Time Warp

Another timing algorithm considered for the simulator was Time Warp, which

was developed at the Rand Corporation [Jef84]. The algorithm was

originally implemented in Lisp at Rand, and was adopted by a group at the

Jet Propulsion Laboratory. They implemented the Time Warp on a 32 node

Mark II Hypercube. In time warp, messages are processed and their time

stamps are noted. As long as the time stamps are in order the simulation

proceeds normally. If a message is received that has a time stamp earlier

than the current time, then the algorithm turns back the time clock,

unsending messages that had been received. This leads to more sections of

the simulation having to perform the same process. Finally the message can

be incorporated at the proper time and the simulation proceeds. This'

process requires a series of history files to be kept to allow the time

to be backed up. Figure 7 depicts the series of history files that need

to be stored. Since the nodes on the ipsc/1 do not have much space

available for storage, the algorithm would not fit well with the available

resources. The message needs of a neural network simulation and the needs

of storage would overwhelm the iPSC/I. Also the job implementing the Time

Warp on the Intel Cube would be a long project in itself, since much of
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the operating system had to be rewritten to allow for the Time Warp

algorithm. In the inte~~qt of limiting the scope of the project, the Time

Warp was abandoned as a viable choice for controlling timing.
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7.3. Time Stepped Synchronization

The actual synchronization method used by the simulator is step

synchronization. In th~ step synchronization model, the simulator is

stepped through time and all the events that must occur in a cycle are

done. There is a move to the next cycle and the cycle repeats. The time

step algorithm allows parallelism because each process moves through the

steps in a cycle at its own pace. The algorithm does restrict each process

to moving at the pace of the slowest BN.

Syncronization is maintained by using a relaxation algorithm. The

simulation waits a time interval after the last message received. If no

messages are received during the time t, then the PN assumes it has

received the last message. At this time it contacts the cube manager, who

waits to hear from all active processors. When all have sent a message,

the cube manager advances the time stamp in each processor .nd the cycle

repeats. If a message is received prior to the time t elapsing, then the

timer is reset.

The time t is determined empirically. The simulator is run with a small

t. If messages are still in transit and the PN signals for another step

early, the out of order messages are reported back to the cube manager.

The time t is then increased, and when no messages are being reported

back, the simulator is running with sufficient delay to catch slower or

in transitmessages.
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Load balancing helps optimize the speed of the simulation. The load can

be balanced by properly assigning CNs evenly across the simulator. Mapper

can do this. Since processor load is directly related to messages

received, the relative load can be estimated by the number of messages the

processor will need to process per cycle.
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8. USING SEPARATE PROCESSES TO EMULATE

BROADCAST HIERARCHY

To control the Broadcast Hierarchy's bus and provide simulation parameters

of bandwidth and cycle times, a process was used for each region of the

hierarchy. In the simulator there are eight PNs sharing a bus. Each time

a CN fires, it creates a message intended for one or more CNs. The message

is directed by output links to specific hierarchies, but not PNs or CNs.

When a hierarchy receives a message, all eight PNs read the message, which

consists of the CNnumber, the value being passed as an output value, and

the cycle that the message was created. All eight PNs look to see if the

message received was intended for them. The PNs have a table of valid

input CNnumbers. If the input CNnumber of the message has a match in the

input link table, then there is one or more CNs that need to be updated

based on the value received. In the simulator the associative memory

lookup is emulated with a list of input links sorted into input CN order.

The broadcast bus in the simulated architecture has the benefit of trading

off computer processing power for bus bandwidth. With HNs containing many

CNs, the number of iPSC/1 messages that are sent is decreased. The

structure lends itself to scaling, which is more difficult to achieve in

highly interconnected schemes. Each message causes eight PNs to do a table

lookup to determine if they are being addressed. Forcing eight PNs through

The process looks through the input CN list, finds the input CN, and

updates the CNs with an value from the input CN. The HN then applies the

message value to all of the links that have that input CN index.
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a look-up table is efficient because it is implemented in associative

memory. The worst case is when only one CN in a hierarchy is being

addressed. When the networks are more interconnected many CNs share the

same input CN, and the efficiency is greater [BaH86].
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9. IMPLEMENTATION OF HAS

The implementation of the simulator was begun using a VAX 780 computer

running Unix 4.2 Bsd and equipped with the Intel cube simulator, bsim.

The initial job was to partition the simulator into two groups of

functions. First was a set of functions performed at the cube manager

level. One of these functions was the loading and unloading of files.

Another cube manager function was the communication of information to and

from the user. The cube manager is the only input/output capability for

the HNs. The cube manager is also used to display messages and errors. In

addition, timing controls are implemented in the cube manager. Each HN

shares a communication channel directly to the cube manager, which served

as the communication channel for timing control messages.

On the HNs, there are two distinct types of processes. The first receives

the CN records from BIF and actually performs the updates to the CN

records. The other is a process developed to emulate the broadcast Bus.

The broadcast process is busy receiving messages, gathering statistical

data and sending messages to PNs during the simulation.

9.1. Load process

The simulator was made more flexible by adding the ability to load Blr

files. During the loading sequence, the input BIF file is scanned and a

single record is created for each CN. The record created contains the top

level CN information followed by information about the CN's sites and the

links to each site. When the scanner detects the beginning of another CN,
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the created record is directed to the HN that will store it, as determined

by KAPPER. At the PN the CN record is divided into three parts. The first

is the connection node record. This record is added to a memory space

already allocated. The second portion of the record is the site

information. The sites of the CN are added to the list of site records.

And, finally, all of the input and output links for the CN are added to

the link records. When the HNs have all received their information, the

link records are sorted according to whom they are connected. The sorted

link records are used to determine the receivers of input messages.

9.2. Implementation details of the timing process.

The use of the time driven simulation technique preserves chronological

time at a reasonable cost. The timing algorithm steps the simulation in

time by using a global timer. In the simulator the cube manager contains

the mechanism for the global timer. The simulator inputs the first input

vector upon initialization, and then the simulator begins a cycle. As the

messages are received a routine is invoked that checks the number of

messages that have been received and compares it to a previous count ._9.f

the messages received. The synchronizing routine is started with the

receipt of the first message. The amount of time the simulator waits

between checks is programmable and will be based on actual system results.

When the timing routine discovers that no new messages have been received

since the last check, it increments a counter. When the counter reaches

a maximum value, which is programmable, the PN assumes that no further

messages will be received. The timing routine sends a message to the cube
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manager requesting a step to the next time cycle. When the cube manager

has received a similar request from all of the HNs, it sends a message to

continue with the next time stamp contained in it. Whenthe individual PNs

receive this message, they send out all of the messages for the next

cycle, and the cycle repeats.

9.3. Explanation of a complete cycle on the simulator

The following description explains the steps used in the simulator to

complete a cycle.

1). The first step of a cycle involves the receipt of a message from the

cube manager used to flag the beginning of a cycle. The timing message is

sent to every specified HNof the simulator.

2). The next portion of the cycle has the PN scan its input links in a

step that sums the values of the links into the sites. The sum of the link

values is stored in the site record.

3). The next portion of the cycle uses the summed value in a calculation

that determines the value used as output. It is here where the activation~.

function is applied to the sum of the inputs. The value of the calculation

is stored at the CN node record in the output field of the CN record.

4). Finally the CN records are scanned and those with values to output

have messages formatted and sent.

5). The messages are received by another CN from its broadcast process.

The broadcast process notes the message in its metrics and then passes the
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message on to the PNs located in HNs 0,1,2, and 4 or the modulus 8 of

numbers 0,1,2 and 4 in other hierarchies.

HN 1 passes a message on to HN 3; HN 2 passes a message on to HN 6; HN 4

passes a message on to HN 5. Then in a final communication, HN 3 sends a

message to HN 7 completing the massaging necessary to simulate an eight

PN hierarchy on the hypercube.

6}. The last step begins when the synchronization routine determines a PN

has not received any messages within the default wait. The synchronization

routine sets a flag and the PN contacts the cube manager with a message

signifying it is ready to move to the next simulation step.
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10. The Experiment

The simulations were run in a batch mode on the hypercube. The results

were captured on the Vax. Using recorded output allowed time to evaluate

results. An added benefit of batch mode was that the output files serve

as a record of the experiments.

The first set of tests were used to verify that the simulator was capable

of modeling neural networks. Tests were to document the ability of the

simulator to drive a known network to known output values. Both the output

values and the number of cycles were checked with expected results. To

accomplish this task the simulator was set to require the nodes

synchronize after every step. In a simple 4x3 network calculations show

what each output state will be for each of the four steps necessary for

the system to converge. In figure 8, there is a 4x3 network with an input

vector of zeros.

In the first cycle the messages passing from layer 1 to layer 2 and layer

2 to layer 3 will have a values of 0.5. This is because the sum of the
.--~'

inputs will be zero, and then the sigmoid function of zero equals 0.5.

In the second cycle the input remains zeros, messages are stable from

layer 1 to layer 2 with a value of 0.500. The messages from layer 2 to

layer 3 will reflect the value of summing 4 inputs of 0.5 which is 2 and

taking the sigmoid of 2 which is 0.880 rounded. This is also the value

that layer 3 will produce. In the third cycle of the network the input

remains zeros, the first layer remains 0.500, the second layer remains
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0.880 and finally the output layer begins producing 0.971. At this point

the network has reached convergence.

The simulator was expected to go through the same cycles with similar

results with three different types of networks. One was a three layer

network with'eight CNs per layer. The next was a three layer network with

15 CNs per layer and finally a three layer network with 32 CNs per layer.

The expected message values were calculated prior to running the tests.

In the second phase of experiments the simulator was used to develop

performance numbers while simulating neural networks. Performance numbers

were taken on particular functions performed. The relation of each

function to the whole, shows what size resources need to be in a system

based on this architecture. In order to gather statistics, the PNs had

timing statements added to their code. These timing statements where

placed around functions. At the end of a cycle, the PN would communicate

the collected data via the message passing channel with the cube manager.

Additional statements were added to obtain timing on areas of particular

interest.

Each network was mapped several different ways. These were permutations

of two variables, number of processors and number of hierarchies. The

first configuration used is all of the network in one PN. In all but the

largest network this was possible. Next the mapping would involve more PNs

until all eight PNs of one hierarchy were used. PNs were added in powers

of two. So the first set of performance runs involved 1, 2, 4, and 8 PNs.

Next the network was distributed over two hierarchies. Then the same

permutation was used all the way to 16 PNs.
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11. PERFORMANCE

The purpose of the simulator is to study the performance of the simulated

hardware architecture. The final hardware will be much faster than the

simulator. In order for the hardware to be effective, certain

characteristics must be present in the simulation. The accurate simulation

to uncover these characteristics is more important than the raw speed of

the simulator. In order to benefit from a parallel simulation, the

simulated problem must be inherently parallel. This allows the problem to

be partitioned among multiple processors to solve the problem faster than

would be possible on a single processor. A second and equally important

characteristic is scalability, which allows the addition of processors

without incurring a non-proportional amount of overhead.

The need for these characteristics within the. simulation model

demonstrates that the use of parallel architecture introduces complexity

and potential overhead to the simulation. These obstacle~ can in fact

obscure the measured performance of the simulated hardware architecture.

In effect, when a problem is translated to a parallel architecture the

problem becomes a part of a larger problem. The larger problem contains

the original algorithm and also the algorithms and overhead that come with

supporting the problem in a parallel environment.

Data is collected in several ways to analyze how major portions of

simulator cycle time is used. By reviewing timing data, areas of

performance are identified that are caused by the parallel platform on



42

whi~h the algorithm is run. These have little to do with the analysis of

the simulated architecture directly. They do tend to be part of the larger

problem of overhead and as such point to areas where all parallel

architectures have problems. The analysis also allows one to review some

of the potential overheads that can be expected in such an architecture.

11.1 Evaluating performance.

To analyze the performance of the simulation, each simulation cycle was

divided into four parts. Each part represented a major function the

processor would have to perform. Output statements were added that timed

the part using the internal clock of the HN. Each HN timed how long it

took to perform each step of the simulation. The performance results were

captured using script files. The final numbers were entered into a Lotus

123 speadsheet and averages were taken for each step and for the total.

Also the number of links updated per second was calculated. Links updated

per second shows the performance changes in the simulation as the neural

model is moved over larger numbers of processors. Running the neural model

on different numbers of processors also reveals the ability of the
..

architecture to scale effectively. To get additional information there was

a standard number of runs done per network/processor simulation. First the

network was executed on one PN only. The same network was then mapped to

t~o PNs, then four PNs and then eight PNs. All of the mapping was done

within one eight PN hierarchy. Next the same network was remapped using

two PNs, each in its own hierarchy. The network was then mapped to four

PN IS, two in each hierarchy. Finally 16 PNs in two hierarchies were
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simulated.The simulation cycle contained four major parts. The first part

contains the time it takes to multiply the input by the weight of the link

and sum the results into the site value. The site value is input for the

sigmoid function. The next part that is timed is the actual calculation

of the sigmoid function and the storing of t~e result in the CN field

called "output". The third part timed involves taking the CN outputs,

building a message and transmitting it. Finally, the last part timed

involves the receipt of messages, their passing on to other HNs, and the

time taken to locate the affected CNs and place the results on the

respective links.

11.2 Effects of parallelism on the original problem

To aid in demonstrating the effects of parallelism on the problem, please

refer to figures 9 through 11. As the numbers of PNs are increased, it can

be seen in Figure 9 that the original problem experiences a dramatic

increase of speed. Therefore, the original problem scales onto parallel

processors well. Once a process has received its input values, it can

proceed without waiting for additional data. Some of the parallelism ~~

lost when the processors synchronize at the end of each cycle, but it does

not take a great deal of extra time when the numbers of links that require

update are spread evenly across the processors. Also the time scheduled

for synchronization is a fixed quantity, so it scales with HNs, becoming

a smaller and smaller portion of the overall time.
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The performance changes a little when the additional step of putting the

results onto the hypercube interconnect is added. The effect can be seen

in Figure 10. Here we still see the positive results of additional

processors, but this has a limit that appears to be reached when eight

processors ar~ involved. Beyond that, the speedup begins to level off.

Also in the larger networks there is a spillover effect that may be

accounted for by collisions beginning to occur on the ethernet bus. The

bus contention causes the communication times to increase by an order of

magnitude from what is experienced with light message traffic. Time is

consumed contending for the scarce bus resource. Finally the results

become different altogether when the time taken to receive messages is

added as shown in Figure 11. The parallel speedup witnessed in the solving

of the original problem becomes overwhelmed by the message passing

overhead. Weare solving the original problem faster with the introduction

of parall,e1ism, but we are paying for the parallelism with overheads that

are an order of magnitude larger than the speedup returns!

11.3. Solving the parallel problem

We have traded in our original problem of updating links faster for a

larger less tractable problem involving interprocessor communication. We

have decreased the processing ~ime of our original problem correctly with

a viable parallel algorithm, but throughput results are poor overall. In

order to look at this larger problem, further timing was done topartition

the message receiving portion of the problem. Some time is used by

interprocess communication, some time is used doing such things as looking

up CNs in tables. For further study, timing steps were introduced to
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divide the receipt of messages into several pieces. First the time

involved in actually receiving the message. Receiving a message includes

the opening of the channel, the receipt of message and the closing of the

channel. The second portion of the message cycle involves forwarding the

message to other HNs within the hierarchy. The final contribution to the

cycle is the table lookup operation to determine if a CN is affected and

the updating of the affected CN's links. The results are shown in Figures

12 and 13. The portions performed within the PNs are once again measured

in hundreds of milliseconds, the message receipt step remains several

thousands of milliseconds long.

The analysis of the simulator cycle has identified that the majority of

time is spent passing messages. Message passing is handled by the

operating system and the hardware, and lies outside the programmer's

control. As the simulator is currently designed, no amount of work on the

internal algorithms will significantly affect throughput. We have hit a

resource limit of the Intel Hypercube. The only hope for increasing speed

is to begin to manage the scarce interprocess communication resource. Even

this can only help to a point.

11.4. Managing the scarce interprocess communication resource

Several steps could be taken to minimize the amount of message passing the

simulator needs to do. All of these will involve some compromise of the

original design. One of the most straightforward changes would be to send

messages in packets instead of individually. As a series of messages are

processed, the resulting output would be placed in a message buffer. The
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buffer would not be sent until a specified number of messages were ready

tc be sent, or at the end of a message cycle if the buffer limit was not

reached. Similarly, in the step in which a process communicates inputs to

other members of the hierarchy, the messages could be sent in packets. All

of these changes would create a new relationship between the simulator's

emulation of the hierarchical bus and the hardware bus being modeled. The

simulation would not relate to the final bus. There would have to be some

way to account for the fact that messages from a particular PN would be

arriving all at the same time. The update of CNs in all of the PNs would

occur in different order. All of a particular HN's messages would arrive

at the same time, be processed, and potentially a packet of results could

end up being sent out. Finally there is the possibility that certain HNs

messages would always be last. These effects would need to be studied and

allowances made in the analysis to extrapolate useful performance data for

the architectureunder study. A smaller point is that it will take some

time to manage the creation of packets. Since it is done in parallel, it

will be positively affected by additional HNs, but it is still some

additional time. In many ways the drawback of decreased performance i~.
./

preferable to the complexity one would introduce in solving the resource

problem.

11.5. A New Mapping of the Application onto the Hypercube.

Another method that may prove useful in upgrading the performance of the

simulator on the hypercube goes back to the original mapping of the

problem onto the cube. Since the hierarchies were set up to include eight
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PHs, the final message passing algorithm ended up including messages that

in the worst case needed to be passed from HH to HN three times to reach

their destination. With the message passing identified as the primary

bottleneck, it might be useful to limit the hierarchies to four PNs each,

which is the number of HNs that can be communicated to by the bus process

without having two or three hops (message passing between HNs to get to

another HN) involved in the passing of information. The use of a new

mapping would not compromise the serial nature of message passing,

although it would change the architecture. Since the architecture is built

to be scalable, simplification is a less troublesome compromise than

message management. A new mapping involving four PNs would allow more

hierarchies to be simulated on the 32 HN hypercube so it would also allow

more tests involving problems that use a greater number of hierarchies.

The message passing traffic would be reduced from ten messages required

per output message, to five messages required. The reduction of messages

would affect performance positively. The new mapping probably is not

enough to actually solve the message passing overhead problem by itself.

The new mapping will reduce the number of messages by one half. The
- .~-

resulting speedup should be a factor of 2. But the message passing

overhead is an order of magnitude larger, not simply a factor of two

larger. The problem must be tackled by providing an interconnect an order

of magnitude faster then the existing interconnect available on the

iPSC!1. .
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12. CONCLUSIONS

12.1. Usefulness of Parallelism in Solving Neural Network Problems.

A general conclusion is that parallelism will help forward the research

of neural networks by providing .a method to solve the large amount of

processing in the neural model. The usefulness of parallelism will be

limited by the ability to share data between processors.

12.2. Sizing Resource Needs.

Another important conclusion about the architecture under consideration

involves the sizing of the storage for use in holding CNs in the

simulator. Since "come from" addressing causes the number of messages sent

to expand at a much slower rate than the complexity of the network

overall, by allowing one message to be received by many CNs simultaneously

there are economies of scale. These economies are not realized with small

networks, since the broadcast bus will carry the same overhead essentially

for small networks that it has for large networks. The larger the network

one can simulate, the greater the efficiency. So an important resource f~r

the final silicon implementation will be storage at the processor level.

The greater the storage, the larger the network, and the more efficient

the overall system. I would recommend storage at the processor level be

considered at the several megabytes level. Several megabytes per processor

will allow the kind of networks that are needed to benefit from the

overall architecture.
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12.3. Effects of Hierarchies on Performance

A observation on how mapping networks to different numbers of hierarchies

affects its performance. Here results are somewhat less obvious, because

the message passing so overwhelms the other portions of the test that

differences between performing the test using one hierarchy and two are

not very different. There is a trend that shows the fastest simulator

times were reached when the problem was spread between more than one

hierarchy. The serial nature of the broadcast bus is one factor helped by

using two hierarchies. In effect if two hierarchies handle the message

passing, the message passing begins to display some concurrency too, which

results in a faster message passing stage and the simulator runs more

quickly. Larger networks would exhibit this characteristic more so than

small networks. The best results were obtained using four processors per

hierarchy. The actual number of processors per hierarchy is probably

dependent on the hypercube as much as. the design of the broadcast bus, so

it is difficult to generalize to what would be the optimum number of

for a faster overall bus override the need for many processors on a

broadcast bus.

12.4 Time Stepped Synchronization

The use of a time stepped synchronization scheme was found to be effective

in handling the simulator's need for a method to keep all portions of the

processors on a bus. Number of processors used is an implementation
-.

consideration that should be made modular. Let the need for storage

override any desire to include more processors on the bus. Let the need
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simulator on the same cycle. It was easy to adapt to a problem and was

easy to implement. These characteristics are offset by the loss of some

fraction of the parallelism available. This loss was not noticeable

compared to other performance issues.

.""
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User Manual for
HAS - HierarchicalArchitecture Simulator

A program to simulate a proposed architecture

'1. General Description of Usage

HAS is a simulator used to asses the performance of

different neural networks mapped onto the Broadcast Hierarchy

simulation system [Bai88]. It is built to operate within a neural

network development environment developed at Oregon Graduate

Center by the CAP (Cognitive Architecture Project). In this

environment the neural network itself is built, mapped to the

target simulation system, and debugged, using other tools. When

the network arrives at this simulator it is operational.This

simulator measures its performance on the proposed simulation

system. A good explanation of the steps used to build a neural

network is contained in the "User's Manual for ANNE" by Casey

Bahr [Bah88].

To proceed the following pieces of the puzzle must be at
.

hand:

A. A BIF file of the network to be simulated. [Bah88]

B. A user function procedure written in c.

C. A set of files used by the HAS simulator. One is an input file

containing the initial inputs to the network, another is a

configuration file called "setupfile".

The next sections will deal with how to construct these pieces.
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2. BIF Network File

A BIF file contains information about the neural network

being simulated [Bah88] and also some information on the mapping

of the neural network onto the target architecture. A model of a

connection node for the simulator can be seen in Figure 1. In

this model there are four main areas. The first is the input

links, these are used to describe the connections between the

function could be developed to reflect this. The third area is

the activation function. This can be any function desired and can

include a threshold value that determines if output will be

initiated. Last is the output link. The output link directs the

output to the proper hierarchy.

The original network is developed using the NDL design tool. For

a complete explanation of NDL see reference [Jon88a]. A file that

has been developed using NDL should then be mapped to the intel'

hypercube using the MAPPER [Bai88]. The most important difference

between a BIF file mapped to the HAS simulator and preceding BIF

files is the transformation that occurs when the initial BIF file

is mapped to the Broadcast Hierarchy. Most importantly the number

of output links in the file drop dramatically, and most

connection nodes have only one output link, or at most four. The

four possible output links have in the cn field a number between

0-4.

connection nodes. The second is the site areas. These allow

different functions to be initiated based on the site. For

instance one site could be for negative inputs and a site



Figure I

A Connection Node

g(x) = L (weight "value)
i= loon

f(x) =

'OutputLinks
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Once the BIF file is ready for use it is included in the

directory where the simulation will be running, and is input by

the cube manager process and read down into the cube processors.
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3. User Code

In the final design the set of functions that will be used

in the processors will be downloaded as a separate file into a

memory area. These downloaded functions will be written by the

designers of the neural network. HAS node images el.o need to be

linked with a C procedure called user_fx.o to create a complete

node process. User_fx.o is the section of code developed to

emulate the connection node processing steps. To do this, use the

makefile supplied with the code.

3.1 Example of a user_fx.

An example of the necessary structure for the- user function

is included in Appendix A. The example controls a feed forward

neural network with no learning step included. This would be

emulating a neural network part that had been trained on ANNE or

another network emulator, then downloaded onto the Broadcast

Hierarchy. The most important point is to notice that several

modes are used to specify which type of function is to be called.

The user_fx is called four times during the simulator's cycle.

During each pass, the function's parameter list contains the

start addresses for the appropriate CN record and its Site being

addressed and the Link being used. The values of these records

are used along with some temporary variables. The results are

evaluated and the changes stored back in the database.

3.2 Constructing the executable image
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The system has its own makefile available. The user develops

a user_fx similar to the one above, then using make creates and

object file user_fx.o. Issue the command make user_fx and the

compiler will be invoked with the proper switches creating the

object image. Or Issue command make elO, and the makefile will

create the executable image and automaticallycompile the new

user_fx.c file.
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4. HAS simulator support files

The first file that needs to be built is the file containing

the input vector. This is done by feeding standard output

messages into the system from the cube manager. The file is

constructed using an editor. For each input node a record is

created. A record appears as such: "-1 500 0". The -1 refers to

the connection node address in an input link. The 500 is the

value actually multiplied by the weight of the link. The final

field is the time stamp. Since this is the input vector it is

arbitrarily assigned a time stamp of O.

The second file constructed is the configuration file or

"setupfile". The configuration file contains two different types

of records. The first record is designated with an "X". It

carries information concerning the size BIF file that is to be

read into the simulator:

4.1 Memory Allocation Record

Fields 1
o

2
X

3
4

Record Layout
4 5
24 48

6
1200

7
o

8
o

Field 1 Value shown 0

This field is the HN destination. In this case this record

will go the processor node O.

Field 2 Value shown X

This is used in the node to designate this is a record for

allocating memory for the network database.
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Field 3 Value shown 4

This is how many Types of Connection nodes there will be.

Each node may store only those types it needs. Currently since

there have been only four or so types of nodes, each node was

sent all of the potential types.

Field 4 Value shown 24

The number of connection nodes to be stored.

Field 5 Value shown 48

The number of sites to be stored.

Field 6 Value shown 1200

The number of links to store.

Fields 7 and 8

Padding in this record.

4.2 Parameter Setting Record

parameters within the simulator. It has

. ~.,~~.

Field 1 Value shown 0

The HN destination for this record. In this case the record

will be shipped to processor O.

Field 2 Value shown Y

This field is used to designate that this record will be

setting parameters for the simulator.

The second record sets

the following layout:
Record Layout

Fields 1 2 3 4 5 6 7 8
0 y 16 4000 4 0 2 2
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Field 3 Value shown 16

This field is used to specify how many HN's will be used in

the simulation. In this case a 16 processor hypercube will be

used for processing.

Field 4 Value shown 4000

This field is used to specify how many loops the timing

procedure will do before setting a flag "no new messages".

As part of the timing mechanizm for determining if it is ready

for the next cycle, the process will loop in a read procedure

probing for messages 4000 times then go increment a variable "no

new message". The routine was originally expected to use a timing

interrupt for this portion, but no timing signal was available on

the node processor.

Field 5 Value shown 4

This field is used to specify how many times the "no new

messages" flag will be set before the HN signals to the cube

manager it is ready for the next step. Along with the preceding

timing loop the limit for "no new message" is 4. Using the last----

two variables the simulator will wait in a timing loop 4000

cycles long 4 times before deciding that no new message are going

to arrive during the current simulator cycle.

Field 6 Value shown 0

This field set the

would be set to o.

Field 7 Value shown 2

time stamp of the node processors. Most
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This field sets how late a time stamp is acceptable for

processing. So if you are on step 11 and a message comes in with

step 8, it is not processed. If a message with the time stamp 9

comes in it is acceptable.

Field 8 Value shown 2

This field determines how early a time stamp is acceptable
for

processing. So if you are on step 11 and a message comes in with

time stamp 14, it is not processed. If a message with the time

stamp 13 comes in it is acceptable.
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5. Starting the Simulator

A script file has been constructed to aid in the starting of

the simulator. The name of the file is starthas. The user needs

to have the executable image for the nodes, pnO created by the

make file. There needs to be a copy of the cmgr1 executable in

the directory also. The inputfil and the setupfile need to be in

the directory with the simulator, and a copy of a BIF file to be

simulated. The user then types "starthas". The script file first

reloads a copy of the operating system into all of the nodes.

This is a mild type of initialization.It usually works. If

nothing happens, then perhaps you have forgotten to issue the

"getcube" command. If the cube is unable to initialize it will

return with a message that says "unable to initialize cube".

Other possible messages are: "node X does not respond", or

"checksum error in node 10". All of these messages mean that the

cube was unable to get off the ground. The best thing to try at

this point is a "load -R". This issues a hard reset to the

machine. Usually this will be successful. If it is not, try

again. If after a few times nothing seems to be working, your

only option is to notify the systems administration. Usually they

can re-initialize the cube and get it working again.

If the script file does work it will say "load successful" three

the simulator will immediately begin to load the file.

times as it loads in copies of the executable code into the

nodes. Then the cmgr1 will be started. After this it will ask for

the name of the BIF file. You enter the name of your BIF file and
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Appendix A

The following is an example of user_fx.c. It uses a summation of

the inputs followed by the use of a sigmoid function to generate

the next cycle's outputs. All of the code within each mode step

may be changed by the user to suit their particular need.

/* */
/* user_function - This is supplied by the user and */
/* calculates the needs of the network node. It gives the*/
/* user a full copy of the connectionnode, and also a */
/* copy of the input message is available to the user in */
/* the global buffer buf. */
/* all changes to the connection node record occur here. */
/**********************************************************/
'include "common.h"
'include <math.h>
'include <stdio.h>
'include "escan.h"
'define E 2.7182818

void user_function(C,T,S,L,buf)
struct CNode *C;
struct CNtype *T;
struct sitemem *S;
struct linkmem *L;
char *buf;
I

extern
extern
extern
extern
extern
extern
extern

#if CUBE

extern int sprintf();
'endif

int mes_cnx, mes_value, mes_time;
int siteval, current inval;
int cn index; -
double dblval;
float wt, inval;

int output_value, out-pidi

struct step_variables
int apid;
int userfx_mode;
char cmgr_buf[256];
void send_output();
void main();
int send_cmgr();

step;
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Ix This section is used in debug to insure the records are xl

Ix properly retrieved from the database. xl

if( apid == 100 )
I
Ixsprintf(cmgr_buf,"Apid %d Cn type %d Cn index %d cn state

%d \n",apid,C->type,C->index,C->state);*1

Ixsend_cmgr(O);*1

l*sprintf(cmgr_buf,"Apid %d type_index %d Type_name %s
Initpot %d \n",apid,T->index,T->name,T->initpot);*1

l*send_cmgr(O);*1

l*sprintf(cingr_buf,"Apid %d Site .name %d Site iotype %d

Site value %d \n",apid,S->name,S->iotype,S->value);*1

l*send_cmgr(O);*1

l*sprintf(cmgr_buf,"Apid %d Link index %d Link cnx %d Link

weight %f \n",apid,L->index,L->cnx,L->weight);*1

l*send_cmgr(O);*1
I

1* A variable userfx_mode is used to identify which stage of the *1
1* processing is occuring. Mode == 1 is the stage where messages *1
1* are begin received. At this point in time the inputs are begin*1
1* stored in their input links. Mode 1 continues until all of the*1
1* inputs are received, and the node has let the cube manager *1
1* know that it is ready to proceed. Mode == 2 begins when the *1
1* cube manager signals for the beginning of next cycle. The node*1
1* then begins by summing all of the inputs from the Links into *1
1* the S->siteval. Next Mode == 3 occurs in which the activation *1
1* function is performed on the stored S->siteval. Since this. *1
1* network has only one input site, only one is processed. *1
1* The result of the activation function is stored in ~he *1
1* C->output field. When this is completed, the next step is *1
1* Mode == 4. In Mode 4 the Activation values are formatted into *1

1* a message and the message is output to The BroadCast Hierarchy*1
1* These messages become the messages recieved in Mode == 1, and *1
1* the cycle continues. *1
if (userfx_mode== 1)

I
sscanf(buf,"%d %d %d",&mes_cnx, &mes_value, &mes_time);

I*sprintf(cmgr_buf,"apid %d mes_cnx %d mes_value %d mes_time %d

\n",apid,mes_cnx,mes_value,mes_time);*1
l*send_cmgr(O);*1

L->inval = mes_value;

l*sprintf(cmgr_buf,"Apid %d mode %d C->index %d L->inval %d

L->weight %f \n",apid,userfx_mode,C->index,L->inval,L->weight);*1
l*send_cmgr(O);*1

I

else if (userfx_mode== 2)
I
I*sprintf (cmgr_buf,"apid %d S->siteval %d",apid,S->siteval) ;*1
/*send_cmgr(O)i*/

~.'"
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siteval = S->siteval;

wt = L->weight/1000;

current_inval = L->inval;

/*sprintf(cmgr_buf,"Apid %d mode %d L->index %d siteval %d wt %f

current_inval

%d",apid,userfx_mode,L->index,siteval,wt,current_inval);*/

/*send_cmgr(O);*/

inval = (int) «float)current_inval)*wt;

/*sprintf(cmgr_buf,"apid %d Cnode: %d inval %f
\n",apid,C->index,inval);*/

/*send_cmgr(O);*/
siteval +=inval;

S->siteval = siteval;

/*sprintf(cmgr_buf,"apid, %d mode . %d S->slteval %d
\n",apid,userfx_mode,S->siteval);*/

/*send_cmgr(O);*/
}

else if(userfx_mode== 3)
I

siteval = S->siteval;

/*sprintf(cmgr_buf,"userfx_mode %d S->siteval %d C->index %d
\n",userfx_mode,siteval,C->index);*/

/*send_cmgr(O);*/
/* Here for the 8x8 it is necessary to distinguish */
/* between the first set of nodes and all others. */
if(C->index < 8)

I
C->output = siteval;

I

else
I

dblval = «double) (siteval/1000.0»;
dblval = (1.0/(1.0 + exp(-l.O *dblval»);
C->output = (int) (dblval*1000);

}

/*sprintf(cmgr_buf,"Apid %d userfx_mode %d C->index %d
C->output %d \n",apid,userfx_mode,C->index,C->output);*/

/*send_cmgr(O);*/
}

else if (userfx_mode == 4)
I

if(C->output != 0)
I
sprintf(buf,"%d %d %d",C->index,C->output,step.time_stamp);
send_output(L->cnx); .

/*sprintf(cmgr_buf,"Apid %d L->cnx %d outbuf %s
\n",apid,L->cnx,L->weight,buf);*/

/*send_cmgr(O);*/
I

.-~-"



else
{

/*sprintf(cmgr_buf,"Apid

\n",apid,userfx_mode);*/

/*send_cmgr(O);*/

%d incorrect

17
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