
Mult iway Merge Recovery in Optimist ic Part i t ioned
Operat ion o f Distributed Databases .

Shobha Prabakar
B.E., Mysore University, India, 1985

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science

August 1989

The thesis "Multiway Merge Recovery in Optimistic Partitioned Operation of Distri-

buted Databases" by Shobha Prabakar has been examined and approved by the follow- -
ing Examination Committee:

Anil darg U
Adjunct Assistant Professor
Thesis Research Advisor

David E. Maier
Professor

David G . Novick
Assistant Professor

Mult iway M e r g e Recovery i n Opt imis t ic Pa r t i t i oned Ope ra t i on
of Dis t r ibu ted Databases

ABSTRACT

Network Partitioning is a serious problem in distributed databases because it threatens
the reliability and availability of replicated data . The loss of communication between different
sites may lead t o destruction of mutual consistency of the database, unless restrictions are
imposed on transaction processing or the database is repaired after communication is reesta-
blished. Optimistic partitioned operation allows independent and unrestricted transaction pro-
cessing t o occur during partitioning and makes the database consistent after reconnection of the
partitions by backing out the transactions tha t cause inconsistencies.

Previous research using a graph theoretic approach t o optimistic partitioned operation
restricts partitions t o be merged only two a t a time. Our research is concerned with generaliz-
ing this approach by allowing more than two partitions to merge a t a time. Further, we simu-
lated the multiway merge algorithms t o evaluate their performance and analyze the advantages
and disadvantages as compared t o tweway merge recovery. Our results show tha t when
conflicts between transactions are low, multiway merging reduces the number of transactions
that are backed out.

Table of Contents

.. Abstract

1 . Introduction ..
1.1 Partitioning in DDBS ...

1.1.1 Network Partitioning ...
1.1.2 Maintenance of Mutual Consistency ...

1.2 Previous Work ..
1.3 Problem Statement and Thesis Overview ..

2 . Optimistic Partitioned Operations ...
2.1 Assumptions and Basic Definitions ...
2.2 Network Partitioning 2 ..
2.3 Partition Management Protocol ..

2.3.1 Partition Detection Protocol ..
2.3.2 Reconnection Detection Protocol ...

2.4 Serialization Graph and Merge Recovery ...
3 . Multiway Merging and Recovery ..

3.1 Reconnection Detection Protocol ..
3.1.1 Data Structures ..
3.1.2 Description of MRD Protocol ..
3.1.3 Algorithm for Reconnection detection Protocol ..

3.2 Multiway Merge Recovery ..
3.2.1 Partition History Graphs ..
3.2.2 Serialization Graph ...
3.2.3 Determining the Merge Set ...
3.2.4 Merge Recovery Algorithm ..
3.2.5 Graph Reduction Techniques ..

3.3 Message Cost of Multiway Merge ..
3.4 Run Time Cost of Multiway Merging ...

4 . Simulation and Results ..
... 4.1 Purpose of Simulation ...

4.2 Description of the Simulation Program ...
4.3 Assumptions ...
4.4 Simulation Parameters ; ..
4.5 Merge Wait Timer and Merge Degree Trade-off ...

4.5.1 Effect of Multiway Merging on Back-outs ...
4.5.2 Effect of Waiting Longer on Back-outs ..

I

4.5.3 Simulation Focus
4.6 Discussion of Results ...

4.6.1 Partitioning and Reconnection Profile ...
... 4.6.2 Result sets

4.6.3 Analysis of Simulation Results ...
4.7 Simulation Results Summary ...

5 . Conclusions ...
5.1 Summary of Thesis ..
5.2 Future Research ..

.. Appendix A
Appendix B ...

... References

CHAPTER 1

INTRODUCTION

A dis t r ibu ted d a t a b a s e sys tenz (D D B S) is a database implemented on a

network of computers located a t different sites and interconnected by a

communication subsystem. A user a t - o n e site has the ability t o access da ta

t h a t is stored a t any other site. In case of a site failure in a distributed

database, the remaining sites can still continue with their normal operation.

In particular, if the da ta is replicated a t several sites, then a transaction in

need of a particular da ta item may still be able t o access another site having

a copy of t h a t item. Thus, failure of a site need not necessarily lead t o the

shutdown of the entire system.

In a DDBS, query processing can be speeded up by deco~llposing a query

into many subqueries and executing them in parallel a t several sites. 111 the

case of a replicated database, some subqueries may b e processed a t the sites

which are found t o be less busy.

However, there is a price t o be paid for this increased availability of

d a t a and fast query processing capability. It is much more complex to

achieve intersite coordination. There is increased processing overhead

because of exchange of messages and the update propagation. In a

replicated database, all the copies of a da ta item must have the same value

when all the update activities end. This requirement is called mutual

consistency. T o maintain mutual consistency, an update operation on a da ta

item requires the update t o be performed on all the copies of t h a t d a t a item

[ASC 851, [Garc 811, [Ram 891. Algorithms for replicated d a t a management

also become more complex, especially in the face of site or conlmunication

link failures or both.

1.1. Partitioning in DDBS

The following description of network partitioning and mutual

consistency is from [Ma 86).

1.1.1. Network Partitioning

Network Partitioning is a serious problem in distributed databases

because it threatens the reliability and availability of replicated data.

Network Partitioning divides a network into groups of sites, called partitions.

Sites within a particular partition can communicate with each other but not

with the sites in any other partition. This loss of communication between

different sites may lead t o destruction of mutual consistency of the database,

unless restrictions are imposed on transaction processing. Mutual

inconsistency may result if the copies of a da ta item are updated t o different

values by different transactions in different partitions.

1.1.2. Maintenance of Mutual Consistency

T o maintain mutual consistency.in a DDBS in the face of partitioning,

one of the following three approaches can be taken [BeGo 841, [Ma 861.

(1) Do not allow any updates until the network is united. However,

queries or read-only transactions are allowed.

(2) The pessimistic approach, which allows a t most one partition t o

process new update transactions.

(3) The optimistic approach, which allows all the partitions t o process

new transactions independently.

The first approach is too restrictive because no update can be perfornled

anywhere even if only a single site is partitioned from the rest of the

network. Previous work on the pessimistic and optimistic approaches is

described in the next section.

1.2. Previous Work Pessimistic approach:

This approach is also called "conservative" since it never allows the

database t o become inconsistent [Wrig 831. Many protocols have been

suggested for transaction processing during partitioning t h a t guarantee

mutual consistency throughout the system by limiting the availability of

replicated data : rules are given tha t guarantee tha t each replicated da ta

item is accessible in a t most one partition. Updates are simply forwarded t o

the other partitions a t recovery. Thus, a n important problem using this

approach is how t o guarantee tha t each da ta item is updated in a t most one

partition. The methods or solutions proposed t o solve this problem include

voting [Ease 831, tokens [Lela 781, and the primary copy [WiLa 841. Since

this approach restricts da ta availability, it is appropriate for environments

where d a t a consistency is of paramount importance.

Optimistic approach:

This approach allows independent and unrestricted transaction

processing t o occur during partitioning and assumes tha t transactions can be

undone. As each partition updates the database, the database may diverge;

i.e., copies of da ta items may have different values at different sites. At

network reconnection time the database has t o be repaired. This approach is

called optimistic because it is hoped tha t the independent updates will not

conflict and hence will not have t o be undone. Studies have shown that , for

applications where data availability (as opposed t o temporary loss of

consistency and the resultant cost of transaction backout) is important,

optimistic partitioned operation can be attractive [Davi 821, [Garc 811, [AbTo

89).

One way t o make the da tabase consistent after partitioning is t o use

syntactic information t o backout or undo the transactions tha t cause

inconsistencies. For example, the graph theoretic method, described in

([Daga 811, [Davi 821, [Davi 841, [Wrig 831, and [WrSk 831) uses a serialization

graph t o perform conflict detection and resolution. This method is described

in detail in the next chapter.

1.3. P r o b l e m S t a t e m e n t and Thes i s Overview

Antony Vu Ma ([Ma 861) used the graph theoretic approach t o

investigate optimistic partitioned operation in distributed database systems.

His approach has the restriction that partitions can only be merged two a t a

time.

Our research is concerned with generalizing Ma's design of a transaction

processing mechanism using graph theoretic approach t o optimistic

partitioned operation in replicated distributed database systems. We

perform multiway merging by allowing more than two partitions t o merge a t

a time. We generalize the reconnection detection protocol and merge

recovery algorithms t o incorporate multiple partitions. Further, we simulate

the multiway merge algorithms t o evaluate their performance and analyze

the advantages and disadvantages a s compared t o the two-way-only merging.

The thesis is organized as follows. Chapter 2 contains a description of

the optimistic partitioned operation and two-way merge recovery. In

Chapter 3, we describe multiway reconnection detection protocol and

algorithms for multiway merge recovery. Chapter 4 contains a n overview of

the simulation program and the results of the simulation of multiway

merging and recovery. Finally, Chapter 5 contains the conclusions of our

research and suggestions for further work in this and related areas.

CHAPTER 2

OPTIMISTIC PARTITIONED OPERATIONS

In this chapter, basic definitions and assumptions used in this thesis are

stated. The necessary theoretical background for this thesis is provided and

previous work on the optinlistic partitioned operation using graph-theoretic

method for conflict detection and resolution is reviewed.

2.1. Assumptions and Basic Definitions

We assume tha t the database is fully replicated, i.e., a copy of each item

of the database is stored a t every site in the network. A transaction uses

READ operations t o access da ta items and WRITE operations t o possibly

modify them. The set of da ta items read by a transaction is called its

READSET. The set of da ta items inserted or modified by a transaction is

called its MrRITESET. We assume tha t the writeset of a transaction is a

subset of its readset. A transaction is executed atomically, i.e., the system

executes either all or none of its operations.

A transaction first tries t o obtain locks on all the d a t a items it needs t o

read or write. The locking protocol used is distributed two phase locking,

CHAPTER 2

OPTIMISTIC PARTITIONED OPERATIONS

In this chapter, basic definitions and assumptions used in this thesis are

stated. The necessary theoretical background for this thesis is provided and

previous work on the optiniistic partitioned operation using graph-theoretic

method for conflict detection and resolution is reviewed.

2.1. Assumptions and Basic Definitions

We assume tha t the database is fully replicated, i.e., a copy of each item

of the database is stored a t every site in the network. A transaction uses

READ operations t o access da ta items and WRITE operations t o possibly

modify them. The set of da ta items read by a transaction is called its

READSET. The set of da ta items inserted or modified by a transaction is

called its M I T E S E T . We assume tha t the writeset of a transaction is a

subset of its readset. A transaction is executed atomically, i.e., the system.

executes either all or none of its operations.

A transaction first tries t o obtain locks on all the d a t a items it needs t o

read or write. The locking protocol used is distributed two phase locking,

called distributed 2PL [TCB 831. If the transaction cannot obtain all the

locks, i t must wait until the transactions t h a t currently hold the required

locks are resolved. The transaction s tar t s execution once it obtains all the

locks it needs. When the transaction is committed a t the site of its

origination (its originator), update messages are sent t o the other sites (its

subordinates) in the rest of the system tha t are participating in tha t

transaction. Note tha t in the case of a fully replicated database, all the sites

participate in a non-read-only transaction.

The two-phase commit protocol (2PC) is used t o achieve atomic

commitment ([Gray 791, [Kohl 811). The originator sends a message t o all its

subordinate sites asking them if the transaction can be committed. If so, the

subordinate site precommits the transaction and sends a 'yes' message back

t o the originator. If the transaction cannot be committed (for instance due

t o the d a t a items not being available for update a t t h a t site), the

subordinate sends a 'no' message t o the originator. If the originator receives

only 'yes' messages from all the subordinate sites, it commits the transaction

and sends commit messages t o all the sites. If, however, any subordinate

sends a 'no' message, the originator aborts the transaction and sends abort

messages t o all the subordinate sites tha t sent a 'yes' message. The write

locks held by a transaction are not released a t a subordinate until the

subordinate receives a n abort or commit message for the transaction from its

originator.

Certain failures during the 2PC protocol can leave transactions in the

precommitted state. The resolution of such transactions is described in the

next section.

2.2. Network Partitioning

Partitioning occurs because of link or site failures. I t may take more

than one link failure t o cause partitioning, depending on how the sites in the

network are connected t o each other. However, a site failure always results

in partitioning: a n inactive partition containing the failed site, and another

partition containing the rest of the sites. Since it is not possible t o

distinguish between a failure and a site t h a t is taking too long t o respond, in

practice the availability of a site is determined by the use of message

timeouts. The Partition Detection protocol described in [Ma 861 and

reviewed later in this chapter uses this mechanism t o detect partitioning.

If a system partitioning occurs after a transaction reaches the

precommit stage, the subordinate may not receive a commit or abort

message, leaving the precon~mit dangling and hence the locks unreleased.

The dangling precommit (DP) algorithms described in [Ma 861 release the

locks held by such a precommitted transaction by tentatively committing or

aborting the transaction. When the partitions merge, i t is possible t h a t one

partition decided t o commit the transaction whereas another aborted the

transaction. To remove such inconsistencies, some of the conflicting

transactions along with their dependents1 are rolled back. The strategies

used t o select the transactions t o be rolled back are described in the next

chapter.

The partitions can be merged when the failed links or sites recover.

When a reconnection between partitions is detected, a merge algorithm is

used t o repair the database using a graph theoretic method [Davi 841.

In the subsequent sections, we summarize the partition detection

protocol, the reconnection detection protocol, and the graph theoretic method

for conflict detection and resolution in optimistic partitioned operation [Ma

861.
.- . .

'The dependente of a transaction T are recursively defined a s the transactions t h a t read a d a t a i tem after i t
is written by T , and in turn, their dependents. Also refer t o the definition of a serialization graph in section 3.2.2
for the definition of transaction dependency.

2.3. Partition Management Protocol

Partitioning occurs a s a result of a site or communication link failure.

In the following discussion, the term failure is used t o describe both forms of

failures.

We assume tha t the network partitionings and partition reconnections

are discrete, i.e., there is a finite non-zero interval between partitionings and

reconnections. The protocol requires tha t all the sites in a partition agree on

the set of available sites and execute the proper recovery algorithms

whenever a partition or a reconnection occurs. If a failure is encountered

while a merge is taking place, the merge is aborted.

The Partition Management (PM) protocol consists of two separate

protocols: the Partition Detection (PD) and Reconnection Detection (RD)

protocols.

T o perform the PD and the RD protocols, some da ta structures are

required a t each site. Three flags, R-flag, A-flag, and M-flag are used t o

indicate the s ta tus of the node with respect t o partitioning or merging

activity. A site accepts transactions for processing only when the A-flag is

true. The R-Jag is set t o true while the site's current partition is undergoing

reconfiguration. The M-flag is set t o true while a site is undergoing a merge.

Each site also maintains its logical view of the network using a table called

the Network Status Table (NST). The NST contains entries for each site in
- -

the network. A site's entry is marked DOWN if t h a t site is perceived t o be

down; otherwise, i t is marked UP.

2.3.1. Partition Detection Protocol

We now give a n informal description of the PD protocol. For a detailed

formal description of the protocol, refer t o [Ma 86). The PD protocol consists

of two parts : normal operation and operation during reconfiguration.

For each site, another site in the network is assigned as a guardian. If

the network is partitioned, the guardian of a site is selected t o be within the

partition t o which the site belongs. If a partition is a single site partition,

the site has no guardian.

During normal operation, every site must periodically send a HI message

to its guardian. The only purpose of this message is t o inform the guardian

of its availability. If the guardian of a site does not receive the HI message

for a specified time period, the PD protocol is switched t o the reconfiguration

mode.

In the reconfiguration mode, the guardian broadcasts REORG messages

t o all the other sites in its partition. A site issuing REORG messages is
-. .

called a n initiator for the reconfiguration. It is possible t h a t multiple sites

send REORG messages a t the same time since there can be multiple failures

or multiple detections of the same failure. Such concurrent reconfiguration

at tempts are resolved using the R-flag and by checking whether the receiver

of a message is in the same partition as indicated by the Partition identifier

(Pid) of the intended recipient contained in the message. The REORG

messages also contain the proposed Pid for the new partition. The other

sites in the partition tha t receive the REORG messages send responses t o the

initiator indicating their willingness t o join the partition proposed by the

initiator. The initiator then becomes the coordinator for the new partition.

The coordinator then sends the new NST t o the sites t h a t agreed t o join the

partition. The transmission of the new NST marks the end of the

reconfiguration and resumption of the normal operation a t each site, but

within a limited partition.

For a more detailed explanation of the P D protocol, refer t o [Ma 881.

2.3.2. Reconnection Detection Protocol

The purpose of the RD protocol is t o detect reconnection of different

partitions. [Ma 861 describes the RD protocol t h a t is specific for two-way

reconnection and merging of partitions. The RD protocol for the generalized

multiway reconnection and merge recovery is explained in detail with a

formal algorithm in the next chapter.

2.4. Serialization Graph and Merge Recovery

When a reconnection between partitions is detected, the coordinators for

the partitions initiate the merge recovery algorithm. Processing of new

transactions in the merging partitions is suspended until the recovery is

complete. Each coordinator derives a global serial history of the transactions

t h a t were executed in its partition. The individual global serial histories are

used t o construct a serialization graph following a set of rules a s described in

[Ma 861. Presence of cycles in the serialization graph indicates conflicts

between transactions. Transactions are backed out until the graph is

acyclic. When a transaction is backed out, all its dependents are also

backed out. Backing out a transaction involves resetting the value of each

da ta item in the write set of the transaction t o the values t h a t were read by

t h a t transaction.

After the cycles are removed, the database is repaired by forwarding the

recovery information such as the list of backed out transactions t o the sites

in the merging partitions. The merge recovery algorithm is described in

greater detail in the next chapter.

CHAPTER 3

MULTIWAY MERGING AND RECOVERY

3.1. Reconnection Detection Protocol

[Ma 861 has a description of the two-way reconnection detection (RD)

protocol. In this section we describe how it can be generalized t o the

multiway reconnection detection (MRD) protocol.

3.1.1. Data Structures

In addition t o the da ta structures used by the PD protocol, the

multiway RD protocol uses the following da ta structures. The da ta

structures are meaningful only a t coordinator sites. Each partition

participating in a merge has its own coordinator. Among them, the

coordinator with the largest site number is chosen t o be merge coordinator.

Merge-info: A record (one a t each partition) t h a t keeps track of the

information about partitions involved in a particular merge. The up-to-date

merge information is kept track of in the current merge coordinator for the

merging partitions. The merge-info records a t coordinators other than the

merge coordinator are invalid.

Each inerge,iizjo record contains the following fields.

nummerge : number of partitions tha t are taking part in the merge. Initial

value is 0.

mrgtimer : The remaining time for which the merging partitions wait for the

other partitions t o join the merge. Initial value is the

maxintum~merge~time~, which is a parameter t h a t can be controlled by the

database administrator. It indicates the maximum time for which a merge

recovery will be delayed t o allow more partitions t o participate in the merge.

partition-list : List of partitions tha t are going t o merge. Each item in the

list is a pair consisting of the Pid of the partition and the site-id of the

coordinator for the partition.

NST : Holds the merge NST, i.e., the N S T t h a t will be applicable t o the

partition formed as the result of the merge.

coord-num: The coordinator for all the merging partitions. The initial value

is the site's own site-id.

3.1.2. Description of MRD Protocol

The description of the MRD protocol is strutured along the lines of the

description of the RD protocol in [Ma 861.

As long as the A-Jag is true, M-Jag is false and there is a t least one

DOWN site in the NST, periodically the coordinator of a partition

broadcasts MERGE-INVITATION (MI) messages carrying a copy of its ATST

t o the DOWN sites with site numbers greater than its own site number. The

reason for sending MI messages only t o greater site numbers is t o avoid

indefinite postponen~ent of merging [Ma 861. The transmission of the MI

message is called a probe. The interval between two consecutive probes

(tprobe) can be chosen randomly.

MI messages received by the non-coordinators are always ignored. Also,

upon receiving an MI from a coordinator B, a coordinator A will ignore the

message if its A-Jag is false (it is not active) or M-flag is t rue (it is already

merging or is in the middle of accepting a n MI from some other partition

coordinator, in which case it will not be ready a t t h a t time t o accept another

MI).

Next, partition A checks whether UP(NSTA) n UP(NSTB) is empty. If

the intersection is not empty, then A will ignore the MI because a failure has

not been detected by one of the partitions (for a n example, see [Ma 861).

Otherwise, A will set its M-flag t o true t o block receiving further MI'S. A

sets a timer called cancel-merge-timer, with the timer value equal t o

maximum communication delay for round trip message (2dmax), and sends

back MERGEREQUEST (MR) t o B containing A's and B's Pad's and stops

sending MI'S t o other DOWN sites. If site A does not hear from site B within

cancel-merge-timer after it sent the MR t o site B, then A aborts the merge

at tempt with B, resetting its M-flag t o false. A, then, will possibly t ry t o

merge with some other partition(s) by sending or accepting MI'S.

When B receives an MR message from A, it checks whether its A-flag is

true, M-flag is false and whether the Pid contained in MR is its current Pid

(this check is t o ensure t h a t the MR tha t it received is for a n MI sent by

itself) and whether it is still a merge coordinator. B might no longer be the

merge coordinator because, after sending the MI message, but before

receiving the MR message, B's partition might have agreed t o join the merge

being coordinated by some other merge coordinator.

If the message is not acceptable, due t o any of the conditions mentioned

above being false, then the message is ignored. Otherwise B agrees t o merge

with A by setting its M-flag t o true. A-flag is not set to false indicating tha t

it continues t o be a n active partition accepting new transactions. In this case

A will be the merge coordinator because MI reaches A from B only if A's site

number is greater than B's site number. The partition coordinator with

bigger site number is chosen to be the merge coordinator. Thus, B sets the

merge coordinator t o be A.

B also stops its mrgtinzer because it is no longer the merge coordinator.

Then it sends a n ACICMERGEREQUEST (AMR) message back t o A. The

AMR contains B's merge information. Since B is no longer the merge

coordinator, after sending the AMR, B sets its M-flag t o false, stops sending

MI's t o other DOWN sites and stops accepting any MR's from other

coordinators. The responsibility for sending MI's and accepting MR's is

taken over by the new merge coordinator, A.

Next, B sets cancel-merge-timer t o the mrgtimer value in its merge-info

plus 2dmax round trip delay of the message. If some merge coordinator does

not send a PREPARE-TOMERGE message (to be explained later) by the

time B's cancel-merge-timer expires, B goes back t o its original s ta te and

tries t o merge with some other partition(s).l

I 'Note that B remains the coordinator for its partition even though it has agreed for merge with A.

When a merge coordinator receives an AMR, it checks whether its A-flag

is t rue and whether its Pid is same as the one t h a t it sent with the MR. If

these two conditions are satisfied, the cancel-merge-timer is stopped. If

either condition is not satisfied, some failure must have occurred in the

partition after the MR message was sent out and hence the AMR message is

ignored.

If nummerge in merge-info record equals the maximum number of

partitions allowed t o merge or the merge NST indicates a fully reconnected

network, the merge coordinator sets its mrgtimer t o zero and the procedure

followed for mrgtimer expiration (described in the next paragraph) is invoked

immediately. Otherwise, the mrgtimer is set t o the smaller of the two values

in the merge-info record a t the merge coordinator and the record received

with the AMR message. The reason for this action is t o avoid the merge

getting delayed indefinitely. Then the merge coordinator s tar t s sending h?I1s

t o other DOWN sites whose site id's are greater than its own site-id.

I
When the mrgtimer expires, the merge coordinator sets its A-flag t o false

I
and M-flag t o t rue and determines the new Pid. The new Pid is the

1 maximum Pid seen so far by the merging partitions plus one [Ma 861 (The
r

variable a t the coordinator for the partition). Next, i t sends a

PREPARE-TOMERGE (PTM) message t o all the sites of all the partitions

t h a t have agreed t o merge. The merge coordinator sends its merge-info

record with the P T M message. It updates its own NST. If a failure takes

place after the merge is initiated, the merge is aborted.

When a P T M arrives a t a site, the site checks whether its A-flag is true

and its Pid is the one of the Pid's in the partition list sent by the merge

coordinator. This check ensures tha t the site only accepts the P T M message

sent by its own merge coordinator and not some other merge coordinator. If

the conditions given above are satisfied, M-flag is set t o t rue and A-flag is set

t o false and the NST is updated t o new NST by all the sites. Then, the

merge recovery algorithm is executed. When the merge recovery is

completed, M-flag is reset t o false and A-flag is set t o true.

The illustration in Figure 3.1 shows how a 3-way merge is initiated.

Consider P,, P2, and PI as three partitions of a network with C1, C2, and C3

I
as their respective coordinators.

TIME

MRD PROTOCOL

Figure :3.1,
.. .

Assume t h a t site-id(C,) < site-id(C2) < site-id(C3). First C1 sends merge

invitations (MI) t o C2 and C3. C2 responds with a merge request (MR). C,

then sends an A M . message t o C2. C2 is now the merge coordinator for PI

and PP' Now, since C1 is no longer a merge coordinator it will ignore any

merge requests from C3. The merge coordinator C2 sends a n MI message t o

C3? which then responds with a h/LR message. C2 then sends a n AMR as the

response. The AMR carries the merge-info record maintained a t CS. The

partition-list in the merge-info record contains the Pids for PI and P2, and

the remaining merge timer value a t C2. C3 becomes the new merge coordina-

tor. The partition list in its merge-info record contains the Pids of P1, P2,

and P3. The merge timer is set t o the value in the AMR message fro111 C,
.G

since C3 was previously not a merge coordinator. If the network consists of

only the partitions Ply P2, and P3 then CS would immediately initiate a

merge. Otherwise, i t initiates a merge when its merge timer expires.

In the next section we give a formal algorithm for the MRD protocol

described above.

3.1.3. Algorithm for Multiway Reconnection Detection Protocol

The follo~ving algorithm is in a notation similar t o the syntax of the pro-

gramming language C. The da ta structures required are declared as struture

types and variables. The algorithm is described using a combination of com-

ments and pseudo-code.

Data Structures:

/* The following record defines the structure of a Pid */
struct pid-t

{
int seqnum; /* counter */
int orig; /* originator site */

1;

/* The following record defines the structure of the NST */
struct nst-t

{
struct pid-t Pid; /* Pid of the site's partition */
int status[MAX_NO-SITES]; /* indicates whether sites are Up or Down */

};

/* The following record defines the structure of the partition list
in the mergeinfo record a t the merge coordinator */

struct par t l is t - t
{

struct pid-t Pid; /*Pid of the merging partition*/
int coord; /* Coordinator for the partition */

1

/* The following record defines the structure of the merge information
record maintained a t the merge coordinator */

struct mergeinfo

{
int nummerge; /* no of partitions tha t are

participating in the merge */
int mrgtimer; /* The time for which merge is delayed

t o accept more partitions */
struct partJist-t partition-list[];

/* The list of coordinators of the
partitions t h a t are merging */

int c o o r d ~ u m ; /* the merge coordinator */
struct nst-t NST; /* new NST tha t gets updated whenever

a new partition joins the merge */
1;

int myid; /* site number of local site */
int coord(); /* return site number of coordinator */
int M a g ; /* active flag */
int Rflag; /* reconfigure flag */ .

int Mflag; /* Merging flag */
struct nst-t NST; /* network s ta tus table */

case (tprobe expires):
/* Now i t is time t o send the merge invitations; but first

make sure t h a t this site is eligible to transmit MI */

if (myid == my~mergeinfo.coorclnum && M a g && !Mflag
{

/* Send MI to each site with greater site-id tha t is marked as
Down in the current NST */

for p E {plp>myid && NST.status[p] == Down)

{
MERGEJNVITAT1ON.sender = myid;
MERGEJNVITATION.NST = NST;
send MERGEJNVITATION t o p;

1
1

/* Set timer for the next probe */
tprobe.set(2dmaz);
break;

case (MERGE JNVITATION received):
/* On receipt of the merge invitation message, check whether

this site is a coordinator, whether i t is "active" with respect
t o the rest of the network. Also, the sending site's NST and
this site's NST must not have any UP sites in common. If all
conditions are satisfied, then send an MR (merge request)

message to the sender. */
if (myid == my~merge~nfo.coord_num && M a g && !Mflag &&

U~(MERGEJNVITATION.NST) n Up(NST) == NULL)
{
/* Set the M-flag to prevent any further merges with this coord */
Mflag = TRUE;

/* Build the MR message */
MERGEJtEQUEST.sender = myid;
MERGEJ1EQUEST.pidl = MERGEJNVITATI0N.NST.pid;
MERGEBEQUEST.pid2 = NST.pid;

send M E R G E B E Q U E S T t o MERGEJNVITATION.sender;

/* Star t the cancel-merge-timer. If the originator of the
merge invitation does not respond before the timer expires,
this site will cancel the current merge and s ta r t accepting
MIS again. Till then this site will not accept any more MIS */

cancel-merge-timer.set(2dmaz);

tprobe.stop; /* restarted when merge request is acknowledged
or cancel-merge-timer expires */

1
break;

case (MERGEBEQUEST message received):
/* On receipt of a n MR message, stop the merge timer a t this
coordinator (if one has been started), and send the AMR message
t o the sender of the MR message. The sender is the merge
coordinator */
if (MERGEREQUEST.Pid1 == NST.pid && M a g && !Mflag &&

(myid == m y ~ m e r g e i n f o . c o o r d ~ u m))

{
/* Set the M-flag t o prevent any further merges with this coordinator */
Mflag = TRUE;

/* The larger of the node-ids of the sender and the receiver is
selected t o be the coordinator. Since the merge request is
in response t o a merge invitation, and mergeinvitation is always
sent from smaller node-ids t o larger node-ids,
MERGEREQUEST.sender must be the new merge coordinator */

/* Build and send the AMR */
ACK_MERGEREQ.mergeinfo = my-merge-info; /* includes N S T */
ACI<_MERGEREQ.sender = myid;
ACI<-MERGEJtEQ.pid = -&4ERGE_REQLEST.pid2;
send A C I L M E R G E R E Q ERGEREQ ERE QUEST.^^^^^^;

/* Star t the merge timer. If the PTM message does not arrive
before i t expires, this site resets its merge s ta tus and s tar ts
sending MIS again */

cancel-merge-timer.set(mrgtimer + Pdmaz);

Mflag = FACSE;
tprobe.stop;

}
break;

case (ACKXERGEREQ message):
if (M a g && (ACI<_MERGEREQ.pid == NST.pid))
{

/* The AMR has been received from the node t o which the MR message
was sent. Stop the merge timer. S ta r t i t again later with
the lower of the two values. */

cancel-merge-timer.stop;

/* Integrate the information in the AMR message into the merge-info
record a t this site */

my-mergeinfo.mrgtimer = minimum(my~mergeinfo.mrgtimer, ACKJll3RGEREQ.mrgtin1er);
my-mergeinfo.partition_list = union(my-mergeinfo.partition_list,

ACK_MERGE_REQ.partition_list);
my-mergeinfo.nummerge = mymergeinfo.nummerge + ACI<_MERGE-REQ.nummerge;
/* m y ~ m e r g e i n f o . c o o r d ~ u m is already set t o myid correctly */
my-mergeinfo.NST = union(my-mergeinfo.NST, ACK_MERGE-REQ.NST);

/* Initiate the merge immediately if the network is fully
reconnected, or the limit on the merge-degree has been
reached; otherwise, s t a r t the merge timer t o wait for
more partitions t o join the merge.*/

if ((my-mergeinfo.nummerge >= MAX-NUM-MERGE) 1;
(Merge NST indicates network is fully reconnected))

mrgtimer.set(0); /* initiate the merge immediately */
else
{
mrgtimer.set(my-mergejnfo.mrgtimer); /* a s updated above */
tprobe.set(2drnaz); /* Set probe timer for new round of MIS */

Mflag = FALSE;

1
break;

case (MRGTIMER expires):
/* Merge timer has expired. Initiate the merge */
if (myid == my-mergejnfo.coordmm)

{
M a g = FALSE;
Mflag = TRUE;

/* Determine the Pid for the new partition */
max-pid = max(mergeinfo.partition_list);
max-pid.seqnum++;
max-pid.orig = coord;

my-mergejnfo.NST.pid = max-pid;

/* Build the prepare-to-merge message */
PREPARE-TOMERGE.NST = my-mergeinfo.NST;
PREPARE-TOMERGE.partition_list = my-mergeinfo.partition_list;

send PREPARE-TOMERGE message to all the sites
of the partitions tha t have agreed t o merge;

NST = my-mergeinfo.NST;

1

break;

case (PREPARE-TOXERGE message):

/* On receipt of the PTM message, the site sets its M-flag and R-flag
t o indicate t h a t i t is merging; the A-flag is seCto false t o
prevent new transactions from being accepted. Then, the site
s tar ts sending HI messages t o i ts guardian and waits t o receive
the Update-lists after the merge recovery process is completed
at the merge coordinator */

/* First check whether the site is still in the intended partition */
if (AFlag && (NST.pid in PREPARE-TO_MERGE.partitiodist))
{

Mflag = Rflag = TRUE;
M a g = FALSE; I

.. .

NST = PREPARE-TO_MERGE.NST;
max-pid = NST.pid;

H1,sender = myid;
HI.pid = NST.pid;
send HI t o my guardian();
trec.set(tbh + dmaz - dmin);
tsend.set(tbh);

}
break;

case (CANCELBERGE-TIMER expires):

/* A P T M or a AhlR message tha t was expected has not arrived. Cancel
the merge. If this site is the merge coordinator, just set the
Mflag t o false. If i t is not the merge coordinator reset the
merge coordinator to be this site's site-id. */

if (myid == my~merge~nfo.coordnum)
MFlag = false;

else
my~mergeinfo.coordnum = myid;

tprobe.set(2dmaz);
break;

3.2. Multiway Merge Recovery

In this section we discuss the multiway merge recovery algorithm. This

algorithm is a n extension of Ma's two-way merge recovery algorithm [Ma 861,

which is based on the graph-theoretic method for conflict detection and reso-

lution. After the MRD protocol has initiated a merge, all the sites in the

partitions tha t are taking part in the merge must finish their in-progress

transactions and then execute the merge recovery algorithm. We assume tha t

no new transactions are accepted by the merging partitions until the

recovery is completed.

Before we describe the merge algorithm, we first define the concept's of

the partition history graph, the serialization graph, and the merge set.

3.2.1. Partition History Graphs

The da ta structure used t o record the history of a partition is called a

partition history graph (PHG). Each site in a network has a copy of the PHG

of the partition of which it is a member.

The PHG is defined below along with some related terms. The follo~ving

definitions are reproduced here from [Ma 861 t o set the stage for the subse-

quent description of the multiway merge recovery algorithm. For a detailed

explanation of how a PHG is constructed and maintained, refer t o [Ma 861.

An example of a PHG is given in next chapter.

A partition Pi is said t o be a n immediate predecessor of a partition P- if
J

and only if 1) Pi = P, or 2) there exists a site s in P such t h a t s was a

member of Pi and after s leaves Pi, the first active partition it joins is P .
1

The transitive closure of the immediate predecessor relation is called the

predecessor o f relation and is denoted by the symbol "I--" in the following.

Definition 3.1. A partition history graph (rooted at 0) of a partition P

is a directed graph PHGo(P) = (V, E), where

v = {0} u { Pi 1 Pi I-- P)

E = { Pi -+ P. 1 Pi # P. and Pi is an immediate predecessor of
J J

Pj) U { 0 - Pi if Pi does not have a predecessor }.

If Pi and P. are two (not necessarily distinct) vertices in a PHGo(P),
J

then Pi dominates P . (or Pi is a dominato~ of P.) if and only if every path in
J J

PHG (P) from 0 t o P. contains Pi. Pi properly dominates P . if and only if Pi
0 J J

Pj and Pi dominates P Also, for each vertex P
j' j'

DOM(Pj) = { Pi Pi dominates P . }.
J

A vertex P is the nearest common dominator of n vertices P I , PZ , ... P n

in a partition history graph, if and only if

(I) P dominates each of the n vertices and

(2) if P' dominates each of the n vertices, and P' # P, then P' properly

dominates P.

The nearest common dominator of PI, ... P will be denoted by NCD(P,, n

PZ, ... Pn) For a discussion of how t o compute dominators of a set of vertices

in a directed acyclic graph, see [AHU 741.

3.2.2. Serialization Graph

Let GHi denote the global serial history1 of transactions executed by the

sites in Pi since a consistent logical database s ta te D B . ~

Definition 3.2 :

Let a , b, c, ... x, y denote the number of transactions executed in the various

partitions being merged.

Let GHl = Tll.Tid T12.Tid T13.Tid ... Tla.Tid
Let GH2 = Tz1.Tid T2,.Tid T2,.Tid ... T2,.Tid

Let GHn = Tnl.Tid T n, ..Tid Tn3.Tid ... Tny.Tid

be the global histories of P1, P2, ... Pn as defined above. The serialization

graph G(GHl, GH2, ... GHn) = (V, E) is the graph defined by:

'The global serial history of a set of transaction is a serialization order of the transactions. For a rormal
definition, see [Ma 861.

2~ indicated by Lemma 5.5 in [Ma 861, the natural choice for the state DB is the initial logical database
state in NCD of the merging partitions.

E = {Dependency Edges) U {Precedence Edges) U {Interference Edges)

(1) there exists a dependency edge Tci.Tid -+ Tck.Tid if and only if i < k

and there exists X E Ws(Tci) n Rs(Tck) and forall j: i < j < k, X

NOT E Ws(Tcj). The dependency edges indicate that one transaction

read a value produced by another transaction in the same partition.

(2) there exists a precedence edge Tci.Tid --* Tck.Tid if and only if i < k

and there exists X E Rs(Tci) fl Ws(TCk) and forall j: i < j < k , X

NOT E Ws(Tcj) and these is no dependency edge Tci.Tid -r Tct.Tid.

The precedence edges indicate that a transaction read a value tha t

was later changed by a second transaction in the same partition.

(3) there exists an interference edge Tci.Tid --* Tdj.Tid (c = l,..,n; d =

l n ; and c#d) if and only if there exists X E Rs(Tci) n Ws(Tdj) and

Tci.Tid. Thus if there are P partitions, P(P-1)/2 combinations must be

examined t o construct interference edges. The interference edges

represent the fact tha t if a transaction in one partition read a data

item, it must precede any transaction that updated the same data

item in some other partition.

Figure 3.2 shows a serialization graph of transactions from three parti-

tions.

DEPENDENCE
- - ,- -, INTERFERENCE
- - - - -

PRECEDENCE
SERIALIZATION GRAPH

Figure 3.2

PI, PZ, and P3 are three partitions of a network.

transactions T l l and T12 belong t o P I ,

transactions T21, T22, and T23 belong t o P2, and

transactions T31 and T32 belong t o P3.

The solid arrows represent dependency edges. The dashed arrows represent

interference edges.The dotted arrows represent precedence edges.

TZ3 interferes with T l l , T IP interferes with TZ2, T22 interferes with T32,

and T32 interferes with T12. It can be seen tha t there are several cycles in

the serialization graph, indicating tha t the databases in the three partitions

are mutually inconsistent. One of the cycles is:

The strategies for removing the cycles in this graph are explained in a

later section in this chapter.

3.2.3. Determining the Merge Set

Let Pi (i= 1, 2, ..., n) be the n partitions being merged. Let Pnew be the

merged partition. Let Pncd be the NCD (PI, PI, ..., Pn) in PHG(Pnew).

The set of transactions t h a t are committed or retained in each partition

is called the r e t a i n e d s e t (RS) for tha t partition. Let RSi(P) be the set of'

transactions executed in the partition P (i.e., for a transaction T t h a t is exe-

cuted in a partition P, T.Pid = P.Pid) and retained (i.e., not backed out) in

Pi. Obviously, P {- Pi.

The following lemma and its proof are generalizations of its counterparts

from [Ma 861.

LEMMA: Assuming tha t the initial database s ta te in any partition is con-

sistent, if T E RSi(P) where P # Pncd and P !-- Pncd, then T cannot be in a

serialization conflict with any transaction retained in partition P . where j#i.
J

PROOF: The proof straightfor~vardly follows because, every site in the merg-

ing partitions was in Pncd (from the definition of NCD) and from the assump-

tion t h a t the initial logical database state in Pncd is consistent.
I
I

It is possible for a transaction t h a t reached the precommit stage but was

I
not resolved before a partitioning occured, t o be committed in one partition

and aborted in another a s result of the dangling-precommit algorithms dis-
I

cussed in [Ma 861. The first step in determining the merge set for PI, P,, ... ,
'd

Pn is t o back out transactions t h a t are retained in one parti t ion but backed

out in any other parti t ion t o achieve a consistent resolution for them.

After the backing out of transactions a s described above, the union of

the retained sets of all the merging partitions is formed. This union is called

the merge set . The transactions in the merge set a re the nodes of the seriali-

zation graph for the merge. The following algorithm describes how the merge

set is constructed.

Let BS,(P) be the set of transactions executed in parti t ion P a n d backed

out in Pi (P k- Pi). Let DEPi(T) be the dependency set of a transaction T in

parti t ion Pi. In other words, DEPi(T) is the set of transactions T' such t h a t

T ' is retained in Pi and there is a pa th of dependency edges from T t o T'.

Procedure for constructing Merge Set:

let I1 = { P such t h a t Pncd I-- P I-- PI and P E V1 of PHG(P1));
let I2 = { P such t h a t P,,, I-- P I-- P2 and P E V2 of PHG(P2)};

let In = {P such t h a t Pncd I-- P I-- Pn and P E Vn of PHG(P,));

for i = 1 to n do {

u = 0;
for each P E (I1 n I2 n I, ..: n In) do

for each T E DEPi(U) do {

let P be such t h a t P.Pid = T.Pid;
add T to BSi(P);
remove T from RSi(P);

1
1

PI-P, PI-P, pI-P"-I P I -P,

h*s = (U RS,(P)) U (U RS,(P)) U . . . U (U RSn-,(P)) U (U RS,(P))
Pncd I-p Pscd l -P Pncd I-p qrd I -P

3.2.4. Merge Recovery Algorithm

The multiway merge recovery algorithm is a straightforward extension of

the two-way merge recovery algorithm described in [Ma 861. Instead of con-

structing a serialization graph of transactions from two partitions, the algo-

rithm involves constructing a graph consisting of transactions from the AT

partitions t h a t are merging. The algorithm is outlined below.

As described in the MRD protocol, the merge coordinator is the site with

the highest site-id among the coordinators for the partitions participating in

a merge. Let Cm denote the merge coordinator. First, Cm uses the algorithm

described in Section 3.2.3 t o determine the merge set from its own transac-

tion information and the information it receives from the other coordinators

participating in the merge. The information t o be sent by each of the other

coordinators are:

(1) The retained transactions set (RS) and the backed out transactions

set (BS).

(2) For each transaction retained in the coordinator's partition, the asso-

ciated readset, writeset, the before values of the writeset and the

read-from set.'

After finding the merge-set, the merge coordinator constructs the multi-

way serialization graph according t o Definition 3.2 and then detects and

resolves conflicts by detecting and eliminating cycles in the graph using stra-

tegies described in the next section. The rest of the algorithm is mostly a s

described in Section 5.7.2 of [Ma 86). The modification is t h a t the Update

~ i s t ~ must be constructed and distributed by each coordinator t o sites in all

other partitions. Thus, in Ma's algorithm only two update lists are con-

structed - one for each partition being merged, t o be distributed t o the sites

in the other partition. In the multiway case, if there are N partitions partici-

pating in the merge, N update lists are constructed and each list is

'The read-from se t is used t o const ruct a serialization o rde r of t h e t r ansac t ions executed in a pa r t i t i on . T h e
read-from se t of a t r ansac t ion T con ta ins t h e t r ansac t ions t h a t l a s t modified each of t h e d a t a i t ems read by T.
T h e read-from s e t i s formally defined in IMa 861.

?he U p d a t e Lis t con ta ins values for logical d a t a i t ems t h a t mus t be broadcast by each coordinator Ci par t i -
c ipa t ing in a merge to t h e s i tes t h a t were no t in C{s par t i t ion.

distributed t o the sites in the N-1 other partitions being merged.

3.2.5. Graph Reduction Techniques

While eliminating cycles from the serialization graph, we must strive t o

minimize the number of transactions t h a t must be backed out a s a result.

Absolute minimization is an NP-complete problem ([Davi 821, [Davi 841, [Wrig

831). Hence, we must employ some heuristics t h a t usually give good results.

It would be prohibitively expensive t o enumerate and then break all cycles

since the total number of cycles potentially grows exponentially with the the

number of nodes in the graph. Thus, we must find other more cost effective

strategies for finding and eliminating all cycles. The basic idea is t o break

each cycle a s soon as it is found; this removes several transactions and their

edges from the serialization graph, potentially removing several other cycles

as well. Thus, we might eliminate all cycles by breaking just a small propor-

tion of them.

The strategies used in the simulation program t o break cycles are the

ones suggested in [Ma 861. [Wrig 831, [Davi 821, [WrSk 831 and [Dave 841 pro-

vide performance studies supporting this approach. We iteratively break all

2-cycles (cycles involving only two nodes) by removing the node with lower

weight. (Each node is given a weight defined as the number of nodes con-

nected t o it via outgoing dependency edges.) If the graph is still cyclic then

long cycles are found before short cycles and are broken by deleting the

node with the lowest weight together with its dependency set.

In the example shown in Figure 3.2, T12 can be deleted since it does not

have any dependents. Similarly, T32 can be deleted. However, since deleting

T12 eliminates all cycles, T12 is the better candidate for deletion. This exam-

ple is further discussed in the next chapter t o illustrate how multiway merg-

ing reduces transactions back-outs.

The results of the simulation of the MRD protocol and the multiway

merge recovery algorithm are presented in the next chapter.

3.3. Message Cost of Multiway Merge

The multiway reconnection algorithm requires a minimum of 4(N-1) mes-

sages t o be exchanged t o initiate a n N way merge. This is because a t least 3

messages (Merge Invitation, Merge Request and Acknowledge Merge Request)

are required t o include each of the N-1 other participants in the merge-info

of ' the merge coordinator, and N-1 Prepare-ToMerge messages are sent

when the merge is started.

The original two-way reconnection algorithm [Ma 861 requires a t least 3

messages t o initiate a two-way merge: Merge Invitation, Merge Request and

Prepare T o ~ e r ~ e . ~ Since it takes (N-1) merges t o merge N partitions 2 a t a

time, the number of messages required is a t least 3(N-1). Thus, the multiway

reconnection algorithm requires about (N-1) extra messages t o be sent.

3.4. Run Time Cost of Multiway Merging

There are three major costs t o performing a merge recovery:

(1) The cost t o compute the merge set. To compute the merge set we

compare the retained set of each partition against the backed out set

of all the other partitions.

(2) The cost of constructing the serialization graph by finding the depen-

dency, precedence, and the interference edges. Finding the interfer-

ence edges takes the longest time, since the read and write sets of

every retained transaction in one partition have t o be compared t o

the read and write sets of every retained transaction in each of the

%a's RD protocol does not require the Acknowledge Merge Request message because only two partitions are
involved, and sending the merge request is sufficient t o initiate a merge.

other partitions.

(3) The cost t o find the conflicts by finding cycles in the serialization

graph and backing out some transactions and their dependents t o

resolve the conflicts.

If X, and X2 are the number of transactions in two partitions being

merged, the cost of the merge depends on X,*X2 since every transaction of

one partition has t o be compared against every transaction of the other par-

tition.

T o perform two-way merges of N partitions, we need (N-1) merges.

Each time, we analyze transactions from two partitions. If we assume t h a t

on a n average, each partition has x transactions, the first merge involves (x

& x) transactions. The second merge involves (2x-bl & x) transactions where

b, is the number of transactions backed out as the result of the first merge.

Thus in the (N-1)th merge there are ((N-l)x - B, x) transactions where B is

the number of transactions backed out in the previous N-2 merges. Thus,
.. .

total cost of the (N-1) merges of 2 partitions a t a time depends on:

In a n N way merge of N partitions, a total of Nx transactions is involved, x

in each partition. The transactions in each partition have t o be compared

against the transactions from (N-1) partitions. Thus, the total cost is

depends on:

Note t h a t the cost also depends on the actual number of dependency, pre-

cedence and interference edges between the transactions. C(N,2) appears t o

be lower than C(N,N). How much lower, depends on how many transactions

are backed out during the two-way merges.

Thus, doing the all-way merge seems t o be more expensive than doing

(N-1) t w e w a y merges. However, the time increase is not exponential with N

and is acceptable in cases where multiway merging reduces the number of

transaction backouts. This point is discussed further in the next chapter.

CHAPTER 4

SIMULATION AND RESULTS

We simulated the algorithms described in Chapter 3 t o evaluate their

performance vis-a-vis the algorithms described in [Ma 86). In this chapter,

we give an overview of the simulation program and analyze the results of a

number of simulation runs.

4.1. Purpose of Simulation

The purpose of the simulation was t o evaluate whether multiway

merging improves upon two-way merging with respect t o the percentage of

transactions t h a t are completed and the percentage of transactions t h a t have

t o be backed-out.

In the MRD protocol, the merge timer controls how long a merge

recovery is delayed t o permit more partitions t o join the merge. As the

merge timer value increases, the chance of further site or link recoveries

increases and hence the number of partitions t h a t participate in a merge

increases. Our expectation was tha t there is a trade-off between the benefits

of increased degree of merging and the increased conflicts due to waiting

longer before initiating a merge.' Our investigation focussed on finding an

optimal value for the merge timer, i.e., the value tha t yields the least

percentage of backed-out transactions or highest percentage of completed

transactions.

4.2. Description of the Simulation Program

The simulator is a generalized version of Bahra's simulator [Bahr 871 for

optimistic partitioned operation of DDBS as described in [Ma 861. We

rewrote major portions of the simulator t o incorporate the multiway

reconnection detection protocol and the multiway merge recovery algorithm.

[Bahr 871 presents a detailed description of the simulator program structure,

da ta structures and the algorithms. Here we present a n overview of the

modified simulation program.

The program simulates optimistic partitioned operation and multiway

merge recovery in distributed database system. It is a n event driven

simulation program. Every action of the , distributed database systenl is

'This trade-off is described in more detail i n section 4.5.

represented by a n event. Some of the events are: transaction arrival, link

failure, link recovery.

The events are processed chronologically and new events are generated

as necessary during execution by the program. The time when an event

occurs is generated randomly, except for events t h a t need t o occur a t fixed or

predetermined times as dictated by the PD and the MRD protocols. The

mean values are different for each random event depending upon the nature

of the event. These mean values can be changed t o simulate different

environments for the distributed system.

The simulator consists of four major modules:

(1) PD protocol: This module is a complete implementation of the events

and messages tha t comprise the partition detection protocol.

(2) MRD protocol: This module is a complete implementation of the

multiway reconnection detection protocol described in the previous

chapter.

(3) Transaction Execution: This module simulates the events such as

locking, commit and abort t h a t are associated with transaction

execution.

(4) Merge Recovery: This module is a faithful implementation of the

multiway merge recovery algorithm. Determination of the merge set,

construction of the serialization graph, and cycle detection and

elimination are all implemented by this module.

Thus, only network partitioning and transaction execution are

simulated. The P D and MRD protocols and the merge recovery algorithms

are implemented and run as described in the previous chapters.

4.3. Assumptions

T o simplify the simulation program the following assumptions are made.

a Communication subsystem:

(1) The network is 'point-to-point', i.e., the sites are connected pairwise

and not by a bus-like link such as Ethernet.

(2) If a receiver A receives two messages from a sender B, then the

messages are received in the same order in which they are sent.

(3) The messages arriving a t any site are uncorrupted.

(4) The network partitionings and reconnections are discrete, i.e., there is

a non-zero interval between any two partitionings, any two

reconnections, and between a partitioning and a reconnection.

(5) All the sites within a partition agree on the set of available sites.

(6) There are no failures during recovery.

(7) The time delay for communication between any two sites depends

upon the relative distance between the sites. For sites closer together

the communication time is less,than for sites which are farther apart .

The relative distance is measured in terms of the number of sites a

message must pass through before it reaches its final destination.

Database:

(1) The database is fully replicated.

(2) The writeset of a transaction is a subset of its readset i.e., a

transaction has t o read a da ta item before it can write or update the

item.

4.4. Simulation Parameters

The parameters given below can be changed t o study the behavior of the

transaction execution and transaction back-out in the system.

- number of sites.

- database size.

- transaction arrival rate.

- READsET/WRITESET size.

- time between link failure per link.

- link recovery time per link.

- time between site failure.

- site recovery time.

- merge wait time.

Not all the parameters mentioned above have a strong influence on the

performance of two-way or multiway merging. For instance, site-failure

interval and site-recovery interval have no effect on our investigation, since

no transactions are backed-out a s the result of a recovering site rejoining the

network. Further, early simulation runs indicated t h a t the number of sites,

the transaction arrival rate, and the link failure and recovery intervals do

not have much impact on the pat tern of the results.

The probability of conflicts (as indicated by the interference edges in a

serialization graph) between transactions run in the different partitions

participating in the merge has the greatest impact. Conflicts increase as the

ratio of the writeset size t o the readset size of transactions increases.

Conflicts decrease if the percentage of read-only transactions increases.

Conflicts increase if the sizes of the readset and writeset increase in

proportion t o the database size.

Hence, we concentrated on varying the merge timer values for diff'erent

combinations of the following parameters:

database size

R e a d s e t p r i t e s e t size

percentage of read-only transactions

The degree of merge is varied automatically a s the merge timer value is

varied. As the merge timer value is increased, the merge recovery is delayed

for a longer time and more links recover before the merge recovery is

initiated, leading t o more partitions participating in the merge.

4.5. Merge Wait Timer and Merge Degree Trade-Off

We now describe the trade-off between the expected benefits of an

increased degree of merging and the expected increase in conflicts due t o

waiting longer before completing a merge.

In optimistic partitioned operation, transactions executed in different

partitions potentially conflict with each other. These conflicts are

represented by cycles involving interference edges in the serialization graph

built during the merge recovery. As described earlier, the cycles must be

eliminated by backing out some transactions t o derive a global serialization

order for the transactions.

4.5.1. Effect of Multiway Merge on Back-outs

As the degree of merge increases the number of transactions t h a t are

backed-out tends t o decrease. This effect can best be explained by means of

a n example. Suppose a distributed database is divided into the partitions PI,

P2, P3 and as reconnection takes place, they can be merged two a t a time, or

all three a t once. Further suppose transactions T1, T2, and T3 are executed

in the partitions P I , P2, and P3 respectively. T1 conflicts with T2 and T3.

There are no other conflicts.
.. .

Suppose PI is first merged with P2. The cycle elimination algorithm

might back out T2 since it conflicts with T1. Later when P3 is merged with

the merged partition, either T I or T 3 h a s ' to be backed-out t o eliminate the
.. .

cycle in the serialization graph for the merge. However, if all three partitions

are merged a t once, the cycle elimination algorithm can detect t h a t backing

out TI is sufficient t o remove all cycles from the serialization graph. Thus,

the number of backed-out transactions has been reduced due t o the increased

visibility of interference provided by the increased degree of merge. This

aspect is hereafter referred t o as visibility.

In the example shown in Figure 3.2 also, we can see how multiway

merging improves upon two way merging. If PI and P3 merge first and then

the resulting partition merges with P2, the two two-way merge recoveries

might result in both T32 and T12 being backed-out. However, when all three

partitions are merged together, the merge recovery algorithm can detect tha t

backing out T I P removes all cycles, thereby saving T32.

4.5.2. Effect of Waiting Longer on Back-outs

The longer the partitions remain separate, the greater the number of

transactions t h a t are executed independently in the partitions. As the

number of transactions in partitioned operation increases, the possibility of

conflicts between transactions executed in different partitions increases. This

increase is because there is a greater chance of overlap in the d a t a items

accessed and modified in the different partitions. Increased conflicts result in

more cycles in the serialization graph and, in general, result in a greater

number of transactions being backed-out t o eliminate cycles in the graph.

Since increasing the merge timer value delays the merging of partitions,

i t tends t o increase the number of transactions t h a t are backed-out.

4.5.3. Simulation Focus

From the above discussion, we can see tha t increasing the merge timer

value yields two conflicting effects. I t potentially increases the degree of

merge by delaying the merge t o allow more partitions t o be reconnected; this

effect would tend t o reduce the number of transactions t h a t are backed-out.

A t the same time, it also tends t o increase the back out rate due t o increased

conflicts.

Our goal was t o find out how the variation of the merge timer value

would affect the overall back out rate, and whether there are some optimal

values t h a t minimize the back out rate. We performed several sets of

simulation runs t o study the behavior. For each set of runs, all the

simulation parameters, except the merge timer value were set t o the same

value. Different sets of runs were obtained by varying the level of conflicts

by changing the database size, readset size, the writeset-tereadset ratio, and

the percentage of read-only transactions. In the following sections, we

present the results of the different simulation runs and then summarize the

results.

4.6. Discussion of Results

4.6.1. Partitioning and Reconnection Profile

The database is fully connected a t the beginning and a t the end. As

simulation progresses, partitions are formed via link failures and are

reconnected after link recoveries. All the cases given below have the same

link failure mean-time and link recovery mean-time. The link failures and

recoveries are distributed randomly in the simulation.

The constant parameters for the simulation were:

Number of Sites = 8

Total simulation time = 65

Link Failure mean = 25

Link Recovery mean = 15

The number of sites was chosen t o be 8 for the following reasons:

(1) Choosing a smaller number would limit the degree of merge t o too

small a number, limiting the comparisons we could make on the

variation of the back-out rate with the merge degree.

(2) Choosing a larger number would have increased the simulation time

without yielding much additional information.

The link failure mean and the link recovery mean were chosen after

many trials t o provide a non-trivial combination of the partitionings and

reconnections. Some of the criteria used were:

(1) The number of sites in partitions should vary, e.g., not all should be

single site partitions for every merge.

(2) It should not always be the case t h a t partitions t h a t are isolated

earlier are reconnected earlier.

(3) It should be possible t o increase the degree of the merge up t o the

maximum possible (8 in this case) by increasing the merge wait timer

value appropriately.

The merge-degree (the number of partitions t h a t participate in a merge)

for successive merges in a particular run for different merge wait timer values

are as follows2:

The partition history graph for the merge timer value 14 is shown in figure

4.1 as a n example:

?or instance, in the following table, for the run with a merge timer value of 14, there are 2 two-way merges
followed by a six-way merge.

Figure 4.1

4.6.2. Result Sets

T h e tables and graphs in Appendix A are representative of the simulation

runs we performed. Some runs were repeated multiple times with different

seeds for the random number generator. These runs a re gathered together,

and the mean values are shown in a separate table and graph. An analysis

of t he results presented in Appendix A is presented in the next section.

4.6.3. Analysis of Simulation Results

In the following discussion, we refer t o the tables a n d graphs in Appendix A.

The result sets a re grouped into three major categories. The value of the

variable parameters for each category a re indicated.

Category 1: Large Database, Small Read and Write Sets:

DBSIZE = 1000;

Number of data-items accessed and modified = 5 t o 20';

 he transactions are divided into 4 sets, each containing about 25% of the total transactions. The sets
bave 5, 10, 15 and 20 i tems respectively in their readset. To which set a particular transaction belongs is deter-
mined using a random number.

Thus only 0.5 t o 2% of the items are accessed by a transaction and,

hence, there is a relatively low possibility of conflicts. This case is

represented by the Tables 4.1 through 4.5.

(l) (a) Low write-set percentage (2096, 40%, 60%):

When the write-set of transactions is a relatively small percentage (20%,

40%, 60%) of the read-set, represented by Tables 4.1 t o 4.3, there are two

optimal points t h a t result in the least percentage of transactions being

backed-out. The primary one, with 26% back-out rate, is when the merge

wait time is such t h a t the degree of merge is 3 or 4. For the above set of

link failure and recovery parameters, the merge wait time is about 8 t o 10.

The secondary optimal point, with 28% back-out rate, is when all the parti-

tions merge together. In this simulation set, this point is represented by the

merge wait time of 26 t o 28.

The primary optimal point is reached because initially the increased visibility

(over the two-way case) of transactions t h a t run in different partitions

reduces the back-out rate. After tha t , with increasing merge wait time,

conflicts increase as the number of transactions tha t a re processed in the

partitioned s ta te increases. This leads t o increasing number of backed-out

transactions, peaking a t the merge wait time of 22 t o 24, when a 7 way fol-

lowed by a two-way merge is performed t o reunite all the partitions. After

t h a t , we reach the case where the merge wait t ime is long enough for all the

parti t ions t o merge together. In this case, there is maximum visibility over

the conflicts between transactions. The increased visibility counteracts the

effects of the increased conflicts, thereby greatly reducing t h e number of

backed-out transactions a n d thus results in the secondary optimal point.

(l) (b) High Write Set Percentage (80%, 100%):

When the write-set is a high percentage of the read-set, the conflicts between

transactions are very high. In this case, the back-out ra te keeps on increas-

ing a s t h e merge wait time increases. This category is represented by Tables

4.4 a n d 4.5. T h e increased visibility provided by merging multiple transac-

tions cannot adequately compensate for t he higher r a t e of increase of

conflicts. Even the complete visibility provided by merging all t h e parti t ions

fails t o be as effective a s in the lower conflict cases described (a). Thus , in

these cases i t is bet ter t o proceed with a merge as soon as two parti t ions

merge.

Category 2: Larger Read and ~ r i a e Set Sire:
.. .

DBSIZE = 200; Number of da ta items = 5 t o 20;

Thus, the number of da ta items is 2.5% t o 10% of the database. This

percentage is larger than the previous case, and hence causing more conflicts.

This case is represented by the tables 4.6 through 4.9.

All these cases generate high conflicts amongst the transactions. The

increase in conflicts results in the back-out rate increasing as the merge wait

time increases. Thus in this case, a s in case (lb) , it is better t o merge as

soon as two partitions merge.

Category 3: 50% Read Only transactions plus 50% update transac-

t ions:

DBSIZE = 1000; Number of da ta items = 5 t o 20;

Since half the transactions are read only, the conflicts are even lower than

case (1). This case is represented by the tables 4.11 through 4.15.

In this case, when the write-sets of the update transactions is a low per-

centage of the read-sets (20%, 40%), the conflicts are very low. Thus, the

behavior described in (l a) holds except t h a t the merge wait time of 2 yields

fewer back-outs than the all-merge case (merge wait time = 26). The reduc-

tion in back-outs might be because with so many read-only transactions, the

two-way merge sees much fewer conflicts and having a long merge wait time

increases conflicts t o the level where the all way merge cannot compensate

enough.

However, for write-set percentages of 60, 80, and 100, it is clear t h a t we

should merge as soon as possible since the back-out rate keeps increasing as

the merge wait time increases.

Testing for Statistical Significance of Results:

T o validate tha t the difference between the mean values of the back-out

rates for the low conflict cases and the high conflict cases is statistically

significant, we performed the two ta i led pa i rwise t - t e s t [Mid 761 on a represen-

tative selection from the simulation results. The details of the test are

presented in Appendix B. This analysis indicates t h a t we can have high levels

of confidence in the effect of varying the merge wait timer value, the size of

database, and the writeset percentage. For writeset percentage of 60 and

100 however, we note tha t the null hypothesis cannot be rejected with

confidence. This suggests tha t the high conflict cases might yield back-out

rates that are close t o each other.

Testing the Goodness of the Random Number Generator:

I t was indicated earlier tha t the sequence of events tha t are simulated is

generated based on random numbers. The size of the readset and the partic-

ular d a t a items accessed by a particular transaction are also determined

using random numbers.

The simulator generates the random numbers using the Berkeley Pascal

random number generator function, random. This generator is a linear

congruential random number generator. To test the randomness of the ran-

dom number sequence, we performed the maximum-of-t/Kolmogorov-Smirnov

[Knu 691 test on a sequence of 10000 random numbers generated using the

generator mentioned above.

The test was performed as follows: The 10000 numbers were divided

into sets of 5 each (thus the test was maximum-of-t with t = 5). The max-

imum value of each set was determined, giving 2000 values. These 2000 max-

imum values were divided into sets of 20, giving 100 sets. Each set was

sorted and the values Kn+ and Kn- were computed as given on page 49 of

[Knu 691. The resulting values of Kn+ and Kn- were found t o be between the

25th and 75th percentile of the table shown in page 48 of [Knu 691, thus indi-

cating t h a t the random number generator we used generates a sequence of

numbers with satisfactory randomness.

4.7. Simulation Results Summary

As described earlier, there are two counteracting effects:

(1) Increasing the merge wait time increases the number of conflicts and

hence the number of back-outs.

(2) Increasing the merge wait time increases the degree of merge, which

reduces the back-outs due t o the increased visibility of conflicts.

T o what extent the second effect overcomes the first effect determines

whether or not we should wait for a multi-way merge and for how long. The

outcomes in the particular cases have been explained above.

In all the cases, i t can be observed t h a t merging seven-way and then

two-way yields the maximum back-out rate. This increase in back-outs is

because this case suffers the maximum conflicts and yet does not have the

benefit of the complete visibility of a n all-way merge. We can clearly see

t h a t the all-way merge cases always have fewer back-outs than the seven-

way plus two-way merge cases even though their merge wait time is longer.

This effect shows t h a t increased visibility does reduce back-outs.

CHAPTER 5

CONCLUSIONS

This chapter summarizes our research, s tates our conclusions and

suggests directions for further research.

5.1. Summary of Thesis

This thesis is concerned with optimistic partitioned operation of

distributed databases. We have generalized the algorithms in [Ma 861 t o

permit reconnections and merge recovery of more than two partitions a t a

time. We have presented the results of our simulation of the multiway

algorithms and compared the merging message overhead and runtime costs of

two-way vs. multiway merging.

The results of our simulation show tha t , when the conflict between

transactions in different partitions is low, multiway merging does indeed

improve upon two-way merging by reducing the number of transactions tha t

are backed out. The reason for low conflicts could be a combination of: (i) a

small percentage of da ta items being accessed by each transaction, or (ii)

write-set being a small subset of the read-set, o r both. When the conflicts

t

are high, it is better t o merge partitions a s soon as they are reconnected.

We found tha t the benefits of multiway merging come a t the cost of

increased message overhead and longer time required t o carry out the merge

recovery. Since the sites participating in the merge recovery do not process

transaction for the duration of merge recovery, we can say t h a t multiway

merging leads t o reduced availability. Thus, whether or not multiway

merging is desirable might depend upon whether reduced transaction back-

out rate or increased availability is considered t o be the more important goal

for a given distributed database installation.

It is difficult t o give a specific recommendation as t o how long a merge

should be delayed t o allow more partitions t o be reconnected, since t h a t

would depend upon the actual link failure and recovery intervals in a specific

network. I t might be possible t o derive such a recommendation if the study

were t o be conducted with da ta from a real distributed database.

5.2. Future Research

I t would be interesting t o investigate the advantages and disadvantages

of multiway merging in the context of a real distributed database. It may

then be possible t o derive realistic esti&ates of the costs and t o find a

specific optimal value for the merge-wait-timer for t h a t database, given its

mean link-failure and link-recovery intervals.

In t he MRD protocol, the merge recovery is not performed if a failure

occurs before the merge is initiated. I t is possible t o add messages t o confirm

the participation of partitions t h a t have not suffered a failure a n d proceed

with the merge recovery for only those partitions. W e have not incorporated

this feature since i t seems t o add more complexity t o the protocol. If future

studies show it t o be worthwhile, the MRD protocol can be enhanced t o

recover from pre-merge failures.

The reconnection and merge recovery algorithms could be modified so

t h a t some of the actions taken during merge recovery a re done a s soon a s

two parti t ions decide t o merge. For instance, the merge-set computation

during merge recovery compares the backed-out a n d retained transaction sets

of each partition. This task can be performed during reconnection itself so

t h a t the merge recovery algorithm takes less time.

APPENDIX A

SIMULATION RESULTS

The following tables and graphs are representative of the simulation

runs we performed. All the rows in a table represent the same transactions,

readsets and writesets - only the merge wait timer value is different for

different rows of a table. I11 each table, the first column gives the merge wait

timer values. The other columns give the number of committed, aborted1

and backed out transactions, and their percentages of the total number of

transactions.

'Transactions can be aborted either because they c a n n o t o b t a i n s o m e required locks, or because they are in
progress when a part i t ioning occurs.

Database Size = 1000 items. Seed = 7774755
Number of Data items read = 5 to 20.
Percentage of Write Set = 20 % of read set.

cornmited -

40-
a

0
4----o.

_ 0 - - - - - - - - - 4 & .
g 30- c

n \

. * - - + - - - - - d F b---,
e

20 -
backed - - ,

10 -
0 I I I I I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Merge wait time

Database Size = 1000 items. Seed = 56743
Number of Data items read = 5 to 20.
Percentage of Write Set = 20 % of read set.

A - - - -

----\ C - - - - -
.

4 . . . I - w O .- . +---
- - - -+ - - - - -4

backed - --
10

I I I I I I I I I I I I I 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Merge wait time

Database Size =
Number of Data
Percentage of W

1000 items. Seed
items read = 5 to

'rite Set = 20 % of

= 101489
20.

' read set.

-
commited -

-

1:
-

-

I \ , - ----

%

c- \ 0 - 4 b---. \

' k - - - - - - - - 4 -
backed--- -

I I I I I I I I I I 1 I I I
14 16 18

rge wait time

Database Size = 1000 items. Seed = 4235761
Number of Data items read = 5 to 20.
Percentage of Write Set = 20 % of read set.

100

90 -
cornrnited -

80 -
P
e 70 -
r
C 60 -
e

0
n

50 -

4 0 -
a

&---. . a---+-----+---
g 30 - .

v . , .
' + , ,+ - - - - -4 b---

e
20 -

backed - -,
10 -

0 1 I I I I I I I I ' I I I I I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Merge wait time

Database Size = 1000 items.
Number of Data items read = 5 to 20.
Percentage of Write Set = 20 % of read set.

-
commited -

-

- - -
-

-

- 0
*---.

* 0 - - - - . a----- - w / .
C . . .

. * - - - - - - - -4
b---

-
backed - - , -

I I I I I I 1 I 1 I I I I I

Merge wait time

Database Size = 1000 items. Seed = 7774755
Number of Data items read = 5 to 20.
Percentage of Write Set = 40 % of read set.

100

90 -
cornmited -

80 -
P
e 70 -
r
C 60 -
e A

50 - -
n

0 C - - - 0
+---r

40- I - _ * - - - - -4

fl -.--- a
g 30-
e

20 -
backed - , ,

10 -

0 I I I I I I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Merge wait time

1 C - -- - - - -

Database Size = 1000 items. Seed = 7774755
Number of D a t a items read = 5 to 20.
Percentage of Write Set = 60 % of read set.

12 14 1'6 18 20
Merge wait tim;,

-
commited -

-

-
-

A - -
. - d

-

-
backed - , , -

I I I I I I I I I I I I I I

Database Size = 1000 items. Seed = 56743
Number of D a t a items read = 5 to 20.
Percentage of Write Set = 60 % of read set .

---+- -------

backed - --

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Merge wait time

--- - - -- - -- - -

cornmited -

Database Size = 1000 items. Seed = 101489
Number of Data items read = 5 to 20.
Percentage of Write Set = 60 % of read set.

commited -

backed - - - I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Merge wait time

Database Size = 1000 items. Seed = 4235761
Number of Data items read = 5 to 20.
Percentage of Write Set = 60 % of read set.

-
commited -

-
-

-
A - - - - 4 , . .. -. - A h - A -

0
0 - 4

-

-
-

I I I I I I I I I I 1 I 1 I

backed - - -

Merge
16 18

wait time

commited -

Database Size = 1000 items.
Number of D a t a items read = 5 t o 20.
Percentage of Write Set = 60 % of read set.

-

-

-

-
L A - - -

- ,

d

-
-

backed - - -
-

I I I 1 I I I I I 1 I I I I
12 14 16 18 20 22 24 26 28
Merge wait time

Database Size = 1000 items. Seed = 7774755
Number of Data items read = 5 to 20.
Percentage of Write Set = 80 % of read set.

0

0 2 4 6 8 10 12 14 16 18

Merge wait time

-
commited - -

-

-
- ---------- - - - - -a

. - /
0

-
-

backed - ,,
-

I I I I I I 1 I I I I I I I

Database Size = 1000 items. Seed = 7774755
Number of Data items read = 5 to 20.
Percentage of Write Set = 100 % of read set.

0

0 2 4 6 8 10 12 14 16 18
Merge wait tim&

-
commited - -

-
-

*'-+--). -
d

- _
4

-C---

-

-

-
backed - - - -

I I I I I I I 1 I I 1 I I 1

Database Size = 1000 items. Seed = 56743
Number of Data items read = 5 to 20.
Percentage of Write Set = 100 % of read set.

0 2 4 6 8 10 12 14 16

Merge wait ti

-- - -. .

commited - -
-

-

-

- &-*----
-- ----

I -
-
-
-

backed - - - -

I I I I I I I I I I I 1 1 I

Database Size = 1000 items. Seed = 101489
Number of Data items read = 5 to 20.
Percentage of Write Set = 100 % of read set.

12 14 16 18
Merge wait time

-
commited - -

-

-
__----- - &

- - ----a

-
-

-
backed - - - -

I I I I I I I I I I I I 1 I

Database Size = 1000 items. Seed = 4235761
Number of D a t a items read = 5 to 20.
Percentage of Write Set = 100 % of read set.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Merge wait time

commited -

C

0

0
- -+ - - - - - - - -4

A
A A - * -

backed - , -

I I I I I I 1 I I I I I I I

Database Size = 200 items. Seed = 7774755
Number of Data items read = 5 to 20.
Percentage of Write Set = 20 % of read set.

-
commited -

-

-
I & - A -

-

-
C-----4 - /

/
/

- c----- -------- -+--4
-

backed - --
-

I I I I I 1 I I I I I I I I

Merge wait time

Database Size = 200 items. Seed = 56743
Number of Data items read = 5 to 20.
Percentage of Write Set = 20 % of read set

commited -

backed - - -

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Merge wait time

commited -

I Database Size = 200 items. Seed = 4235761
Number of Data items read = 5 to 20.

, Percentage of Write Set = 20 % of read set.

100

90 -
commited -

80 -
P
e 70 -
r
c (jO-

e
50 -

A

n
e l r - - - - . b--..

40- /

a 8

g 30- -c--- -----------/
cC

e
20 -

backed - - -
10 -

0 I I I I I I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Merge wait time

commited -

backed --.-

Database Size = 200 items.
Number of Data items read = 5 to 20.
Percentage of Write Set = 20 % of read set.

100

90 -

80 -
P
e 70 - A A

A - - h

r -
C 60 -
e
n

50 -
,--------

4 0 - 1

a /
/

g 30 - --- -------- -----4 .--
e

20 -
10 -

0

o 6 i b 2 1 ,6 8 o 2 4 6 8 30
Merge wait time

.. .

Database Size = 200 items. Seed = 7774755
Number of Data items read = 5 to 20.

, Percentage of Write Set = 40 % of read set.

-
commited -

-

-
-

0 ----C-,
A 0

-C---, -

- -------- ------ - - - - 4

-

-
-

I I I I I I I I I I I I I 1

backed - - -

0 2 4 6 8 10 12 14 16 18
Merge wait time

cornmited-
-

-
-

-
A A A A - - -

/
/ -,--.- --,,- -------'

c--

backed - - -

I I I I I I I I I I 1 I I I

Number of Data items read = 5 to 20.
Percentage of Write Set = 60 % of read set.

-
commited - -

& A I - A -
A 4 - d - -----+------

/
/ --.--- ------- --4

C - * - -

backed - - -

I I I I I I I 1 I I I I I I

Merge wait time

backed - - -

Database Size = 200 items. Seed = 4235761
Number of Data items read = 5 to 20.
Percentage of Write Set = 60 % of read set.

I

1

-
commited - -

-
-

-
A A - - A A - -

-
/ - /

,*-- + ------ -----4
c- -

backed - - - -

1 I I I I I I I I 1 I I I I

Merge wait time

Database Size = 200 items.
Number of D a t a items read = 5 to 20.
Percentage of Write Set = 60 % of read set.

comrnited -

backed - - -

0

0 2 4 6 8 10 12 14 16 18

Merge wait time

Database Size = 200 items. Seed = 7774755
Number of Data items read = 5 to 20.
Percentage of Write Set = 80 % of read set.

-
commited -

-

-

-
-

- b A - A A A - A CI--C---------

"
A A A A - - A - -

-
backed , ,,

-

I I 1 I I I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Merge wait time

Database Size = 1000 items. Seed = 7774755
Number of Data items read = 5 to 20.
50% read-only & 50% transactions have Write Set = 20 % of read set.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Merge wait time

A - cornmited -

C
--

M .
\ *------- \

C # - - - - . b - - - a
c C - --,-----.---+ backed - - -

I I I I I I I I I I I I I I

Database Size = 1000 items. Seed = 7774755
Number of D a t a items read = 5 to 20.
50% read-only & 50% transactions have Write Set = 40 % of read set.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Merge wait time

-

-
commited -

-

-

-

-
-

#---- . \ . \ - *-- - ---+ ----- \ --. -
- - - - -4 L---

--a*-

-
backed - - - -

I 1 I I I I I 1 I I I I I I

Database Size = 1000 items. Seed = 7774755
Number of Data items read = 5 to 20.
50% read-only & 50% transactions have Write Set = 60 % of read set.

Database Size = 1000 items. Seed = 7774755
Number of D a t a items read = 5 to 20.
50% read-only & 50% transactions have Write Set = 80 % of read set.

cornmited -
-

*----
_ # & @ . .

- - - - -4
+---.

A - - - - - - -4------.r

4 -w-
0

d

backed - - -

I I I 1 I 1 I I I 1 I I I I

Database Size = 1000 items. Seed = 7774755
Number of Data items read = 5 to 20.
50% read-only & 50% transactions have Write Set = 100 % of read set.

commited -

h A A A - -

__-_ CCC-------- - - - - - - -4
/

C -T.

0 @

backed - --

I I I I I I I I I I I I I I

APPENDIX B

TEST FOR STATISTICAL SIGNIFICANCE

To check that the simulation results were significant, we conducted

multiple simulation runs for different sequences of random numbers (i.e., with

different seeds). The results for the repeated runs are in Tables 4.1.1 through

4.8.3 of Appendix A. The Tables 4.1.1, 4.1.2 and 4.1.3 correspond t o Table

4.1.0 and so on. I t can be seen that the results change very little for the

different runs. The mean values for the percentages of committed, aborted

and backed out transactions are tabulated in Tables 4.l.mean thru 4.8.mean.

It can be seen from the corresponding graphs tha t the values for the different

repeated runs are close t o the corresponding mean values. Thus, the

standard deviations across the runs would be extremely small.

To verify that the various sets of simulation results are statistically

significant, we performed the two tailed pairwise t-test [Mid 761 on them. The

t-test was performed by pairing the percentage of backed out transactions

from four sets of results of two different runs for the same merge wait timer

value and computing the mean and standard errors of the differences

between the paired values. The value of t is the mean value of the

differences divided by the standard error of the differences. We had 4

samples1 (from 4 runs) of the back-out percentages. From Table A-1 in [Mid

761, the value of t must be greater than 3.182 for the difference between the

means for two different back-out percentages t o be considered statistically

significant t o the 95 percent confidence level.

The values of t for a representative selection of the Tables 4.1 through

4.15 are given below. For instance, the value of t for the comparison between

the back-out percentages in Tables 4.1 through 4.1.3 and 4.3 through 4.3.3

for a merge wait timer value of 2 is 29.009. Thus the mean values for the

above two collections of runs is considered t o be statistically significant

above the 99.999 confidence level. The other values t h a t were computed

were:

Comparison of Tables 4.1 through 4.1.3
Merge Wait Timer values: 2 and 12

meanl: 29.205000
mean2: 26.357500
mean of differences: 2.847500
standard error: 0.183411
value of t is: 15.525241
The means are different a t more than 99.999% confidence level.

Comparison of Tables 4.1 through 4.1.3 and 4.3 through 4.3.3
Merge Wait Timer value: 2

meanl: 39.260002
mean2: 29.205000

'ID statistics terminology, this implies that the degrees-of-freedom is 3.

mean of differences: 10.055000
standard error: 0.346610
value of t is: 29.009512
The means are different a t more than 99.999% confidence level.

Comparison of Tables 4.1 through 4.1.3 and 4.3 through 4.3.3
Merge Wait Timer value: 12

meanl: 43.990005
mean2: 26.357500
mean of differences: 17.632502
standard error: 0.617956
value of t is: 28.533605
The means are different a t more than 99.999% confidence level.

Comparison of Tables 4.1 through 4.1.3 and 4.3 through 4.3.3
Merge Wait Timer value: 2

meanl: 40.902500
mean&: 29.205000
mean of differences: 11.697501
standard error: 0.569548
value of t is: 20.538231
The means are different a t more than 99.999% confidence level.

Comparison of Tables 4.1 through 4.1.3 and 4.5 through 4.5.3
Merge Wait Timer value: 12

meanl: 44.677502
mean2: 26.357500
mean of differences: 18.320002
standard error: 0.604988
value of t is: 30.281605
The means are different a t more than 99.999% confidence level.

Comparison of Tables 4.1 through 4.1.3 and 4.6 through 4.6.3
Merge Wait Timer value: 26

meanl: 43.580002
mean2: 28.262501
mean of differences: 15.317500
standard error: 0.274208

value of t is: 55.860933
The means are different a t more than 99.999% confidence level.

Comparison of Tables 4.3 through 4.3.3 and 4.5 through 4.5.3
Merge Wait Timer value: 2

meanl: 40.902500
mean2: 39.260002
mean of differences: 1.642501
standard error: 0.405121
value of t is: 4.054348
The means are different a t more than 95% confidence level.

Comparison of Tables 4.3 through 4.3.3 and 4.5 through 4.5.3
Merge Wait Timer value: 12

meanl: 44.677502
mean2: 43.990005
mean of differences: 0.687499
standard error: 0.330690
value of t is: 2.078982
The means are different a t more than 90% confidence level.

In the last case, the difference between the means is not as strong as in

the other cases tha t are shown. However, since both are high conflict cases,

i t is possible t h a t both give back-out percentages close t o each other.

From the above analysis, we conclude t h a t the results obtained by

varying the parameters are significantly different from each other and are not

dependent on the choice of the seed or the sequence of random numbers used

t o generate simulated events.

REFERENCES

[AHU 741

[ASC 851

[Bahr 871

[DaGa 811

[Davi 821

[Davi 841

[Ease 831

[Garc 811

[Gray 791

[Kohl 811

[Knu 691

[Lela 781

[Ma 861

Aho,A.V., Hopcroft,J.E., and Ullman,J.D. The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974, pp. 209-217.

Abbadi,A.E., Skeen,D., and Cristian,F. "An Efficiant, Fault-tolerant Protocol For
Replicated Databases", proc 4th ACM SIGACT/SIGMOD Symp. Principles of
Database Systems, March 85.

Abbadi,A.E., Toueg, S. "Maintaining Availability in Partitioned Replicated
Databases", ACM Transactions on Database Systems, 14, 2, June 1989, pp.
264-290.

Bahra, R.S. "Performance Simulation of Optimistic Operations in Partitioned
Distributed Database Systems" hf.S. Thesis, Dept. of Computer Science, South-
ern Illinois University a t Carbondale, Dec 1987.

Davidson,S.B. and Garcia-Molina,H. "Protocols for Partitioned Distributed
Database Systems", Proc. Symp. Reliability in Distributed Soft.ware and Data-
base Systems, July 1981.

Davidson,S.B. "Evaluation of an Optimistic Protocol for Partitioned Distributed
Database Systems", Tech. Rep. #299, EECS Dept., Princeton Univ., 1982.

Davidson,S.B. "Optimism and Consistency In Partitioned Distributed Database
Systems", ACM Trans. Database Systems 9, 3, Sept. 1984.

Eager,D.L., and Sevcik,I<.C. "Achieving Robostness in Distributed Database Sys-
tems", ACM Trans. Database Systems 8, 3, Sept. 1983.

Garcia-Molina,H. Performance of Update Algorithms for Replicated Data, UMI
Research Press, 1981.

Gray,J.N. "Notes on Database Operating Systems", in Operating Systems: An
Advanced Course, Eds. R. Bayer, R.M. Graham, and G. Seegmuller, Springer
Verlag, 1979. pp. 394-381.

Kohler,W.H. "A Survey of Techniques for Synchronization and Recovery in
Decentralized Computer Systems", ACM Computing Surveys, Vol 13, No. 2,
June 81.

Knuth, D.E. The Art o j Computer Programming, Vol 2: Seminuinerdcal Algo-
rithms, Second Edition, pp 45-68.

Lelann,G. "Algorithms for Distributed Data-sharing Systems which Use Tick-
ets", Proc. 3rd Berkeley Workshop on Distributed D a t a Management and Com-
puter Networks, 1978.

Ma, Antony Vu. "Optimistic Partitioned Operation in Distributed Database
Systems" Ph.D. Thesis, Computer Science Dept., University of Illinois a t
Urbana-Champaign, 1986.

[Mid 761 Middlebrooks, J.E. Statistical Calculations, How to Solve Statistical Problems,
1976.

[Ram 891 Ramarao, K.V.S. "Detection of Mutual Inconsistency in Distributed Databases",
Journal of Parallel and Distributed Computing 6, pp. 498-514 (1989)

[TCB 831 Thanos, C., Carlesi, C., and Bertino, E. "Performance Evaluation of Two-Phase
Locking Algorithms in a System for Distributed Databases", Proc. 3rd Symp. on
Reliability in Distributed Software and Database Systems, 1983.

[Wrig 831 Wright,D.D. Managing Distributed Databases in Part i t ioned Networks, Ph.D.
Thesis, Dept. of Computer Science, Cornell University, Sept. 1983.

[WiLa 841 Wilkinson,W.I<., and Lai,h?.-Y. " Managing Replicate Data in JASMIN", Proc.
4th Symp. on Reliability in Distributed Software and Database Systems, 1984.

[WrSk 831 Wright,D.D., and Skeen,D. "Merging Partitioned Databases", Tecnical Report,
83-547, Dept of Computer Science, Cornell University, April 1983.

