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Mult iway M e r g e  Recovery i n  Opt imis t ic  Pa r t i t i oned  Ope ra t i on  
of Dis t r ibu ted  Databases  

ABSTRACT 
---------------- 

Network Partitioning is a serious problem in distributed databases because it  threatens 
the reliability and availability of replicated data .  The loss of communication between different 
sites may lead t o  destruction of mutual consistency of the database, unless restrictions are 
imposed on transaction processing or the database is repaired after communication is reesta- 
blished. Optimistic partitioned operation allows independent and unrestricted transaction pro- 
cessing t o  occur during partitioning and makes the database consistent after reconnection of the 
partitions by backing out the transactions tha t  cause inconsistencies. 

Previous research using a graph theoretic approach t o  optimistic partitioned operation 
restricts partitions t o  be merged only two a t  a time. Our research is concerned with generaliz- 
ing this approach by allowing more than two partitions to  merge a t  a time. Further, we simu- 
lated the multiway merge algorithms t o  evaluate their performance and analyze the advantages 
and disadvantages as  compared t o  tweway  merge recovery. Our results show tha t  when 
conflicts between transactions are low, multiway merging reduces the number of transactions 
that  are backed out. 
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CHAPTER 1 

INTRODUCTION 

A dis t r ibu ted  d a t a b a s e  sys tenz  ( D D B S )  is a database implemented on a 

network of computers located a t  different sites and interconnected by a 

communication subsystem. A user a t - o n e  site has the ability t o  access da ta  

t h a t  is stored a t  any other site. In case of a site failure in a distributed 

database, the remaining sites can still continue with their normal operation. 

In particular, if the da ta  is replicated a t  several sites, then a transaction in 

need of a particular da ta  item may still be able t o  access another site having 

a copy of t h a t  item. Thus, failure of a site need not necessarily lead t o  the 

shutdown of the entire system. 

In a DDBS, query processing can be speeded up by deco~llposing a query 

into many subqueries and executing them in parallel a t  several sites. 111 the 

case of a replicated database, some subqueries may b e  processed a t  the sites 

which are found t o  be less busy. 

However, there is a price t o  be paid for this increased availability of 

d a t a  and fast query processing capability. It is much more complex to 

achieve intersite coordination. There is increased processing overhead 



because of exchange of messages and the  update propagation. In a 

replicated database, all the copies of a da ta  item must have the same value 

when all the update activities end. This requirement is called mutual 

consistency. T o  maintain mutual consistency, an  update operation on a da ta  

item requires the update t o  be performed on all the copies of t h a t  d a t a  item 

[ASC 851, [Garc 811, [Ram 891. Algorithms for replicated d a t a  management 

also become more complex, especially in the face of site or conlmunication 

link failures or both. 

1.1. Partitioning in DDBS 

The following description of network partitioning and mutual 

consistency is from [Ma 86). 

1.1.1. Network Partitioning 

Network Partitioning is a serious problem in distributed databases 

because it  threatens the reliability and availability of replicated data.  

Network Partitioning divides a network into groups of sites, called partitions. 

Sites within a particular partition can communicate with each other but not 

with the  sites in any other partition. This loss of communication between 



different sites may lead t o  destruction of mutual consistency of the database, 

unless restrictions are imposed on transaction processing. Mutual 

inconsistency may result if the copies of a da ta  item are updated t o  different 

values by different transactions in different partitions. 

1.1.2. Maintenance of Mutual Consistency 

T o  maintain mutual consistency.in a DDBS in the face of partitioning, 

one of the following three approaches can be taken [BeGo 841, [Ma 861. 

(1) Do not allow any updates until the network is united. However, 

queries or read-only transactions are allowed. 

(2) The pessimistic approach, which allows a t  most one partition t o  

process new update transactions. 

(3) The optimistic approach, which allows all the partitions t o  process 

new transactions independently. 

The first approach is too restrictive because no update can be perfornled 

anywhere even if only a single site is partitioned from the rest of the 

network. Previous work on the pessimistic and optimistic approaches is 

described in the next section. 



1.2. Previous Work Pessimistic approach: 

This approach is also called "conservative" since it  never allows the 

database t o  become inconsistent [Wrig 831. Many protocols have been 

suggested for transaction processing during partitioning t h a t  guarantee 

mutual consistency throughout the system by limiting the  availability of 

replicated data :  rules are given tha t  guarantee tha t  each replicated da ta  

item is accessible in a t  most one partition. Updates are simply forwarded t o  

the other partitions a t  recovery. Thus, a n  important problem using this 

approach is how t o  guarantee tha t  each da ta  item is updated in a t  most one 

partition. The methods or solutions proposed t o  solve this problem include 

voting [Ease 831, tokens [Lela 781, and the primary copy [WiLa 841. Since 

this approach restricts da ta  availability, it is appropriate for environments 

where d a t a  consistency is of paramount importance. 

Optimistic approach: 

This approach allows independent and unrestricted transaction 

processing t o  occur during partitioning and assumes tha t  transactions can be 

undone. As each partition updates the database, the database may diverge; 

i.e., copies of da ta  items may have different values at different sites. At 

network reconnection time the database has t o  be repaired. This approach is 



called optimistic because it is hoped tha t  the independent updates will not 

conflict and hence will not have t o  be undone. Studies have shown that ,  for 

applications where data  availability (as opposed t o  temporary loss of 

consistency and the resultant cost of transaction backout) is important, 

optimistic partitioned operation can be attractive [Davi 821, [Garc 811, [AbTo 

89). 

One way t o  make the da tabase  consistent after partitioning is t o  use 

syntactic information t o  backout or undo the transactions tha t  cause 

inconsistencies. For example, the graph theoretic method, described in 

([Daga 811, [Davi 821, [Davi 841, [Wrig 831, and [WrSk 831) uses a serialization 

graph t o  perform conflict detection and resolution. This method is described 

in detail in the next chapter. 

1.3. P r o b l e m  S t a t e m e n t  and Thes i s  Overview 

Antony Vu Ma ([Ma 861) used the graph theoretic approach t o  

investigate optimistic partitioned operation in distributed database systems. 

His approach has the restriction that  partitions can only be merged two a t  a 

time. 



Our research is concerned with generalizing Ma's design of a transaction 

processing mechanism using graph theoretic approach t o  optimistic 

partitioned operation in replicated distributed database systems. We 

perform multiway merging by allowing more than  two partitions t o  merge a t  

a time. We generalize the reconnection detection protocol and merge 

recovery algorithms t o  incorporate multiple partitions. Further,  we simulate 

the multiway merge algorithms t o  evaluate their performance and analyze 

the  advantages and disadvantages a s  compared t o  the  two-way-only merging. 

The thesis is organized as follows. Chapter 2 contains a description of 

the optimistic partitioned operation and two-way merge recovery. In 

Chapter 3, we describe multiway reconnection detection protocol and 

algorithms for multiway merge recovery. Chapter 4 contains a n  overview of 

the  simulation program and the results of the simulation of multiway 

merging and recovery. Finally, Chapter 5 contains the conclusions of our 

research and suggestions for further work in this and related areas. 



CHAPTER 2 

OPTIMISTIC PARTITIONED OPERATIONS 

In this chapter, basic definitions and assumptions used in this thesis are 

stated. The necessary theoretical background for this thesis is provided and 

previous work on the optinlistic partitioned operation using graph-theoretic 

method for conflict detection and resolution is reviewed. 

2.1. Assumptions and Basic Definitions 

We assume tha t  the database is fully replicated, i.e., a copy of each item 

of the database is stored a t  every site in the  network. A transaction uses 

READ operations t o  access da ta  items and WRITE operations t o  possibly 

modify them. The set of da ta  items read by a transaction is called its 

READSET. The set of da ta  items inserted or modified by a transaction is 

called its MrRITESET. We assume tha t  the writeset of a transaction is a 

subset of its readset. A transaction is executed atomically, i.e., the  system 

executes either all or none of its operations. 

A transaction first tries t o  obtain locks on all the  d a t a  items it  needs t o  

read or  write. The locking protocol used is distributed two phase locking, 
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called distributed 2PL [TCB 831. If the transaction cannot obtain all the 

locks, i t  must wait until the transactions t h a t  currently hold the  required 

locks are resolved. The transaction s tar t s  execution once it  obtains all the 

locks it needs. When the transaction is committed a t  the  site of its 

origination (its originator), update messages are sent t o  the  other sites (its 

subordinates) in the rest of the system tha t  are participating in tha t  

transaction. Note tha t  in the case of a fully replicated database, all the sites 

participate in a non-read-only transaction. 

The two-phase commit protocol (2PC) is used t o  achieve atomic 

commitment ([Gray 791, [Kohl 811). The originator sends a message t o  all its 

subordinate sites asking them if the transaction can be committed. If so, the 

subordinate site precommits the transaction and sends a 'yes' message back 

t o  the  originator. If the transaction cannot be committed (for instance due 

t o  the  d a t a  items not being available for update a t  t h a t  site), the 

subordinate sends a 'no' message t o  the originator. If the originator receives 

only 'yes' messages from all the subordinate sites, it commits the transaction 

and sends commit messages t o  all the sites. If, however, any subordinate 

sends a 'no' message, the originator aborts the transaction and sends abort 

messages t o  all the subordinate sites tha t  sent a 'yes' message. The write 



locks held by a transaction are not released a t  a subordinate until the 

subordinate receives a n  abort or commit message for the  transaction from its 

originator. 

Certain failures during the 2PC protocol can leave transactions in the 

precommitted state. The resolution of such transactions is described in the 

next section. 

2.2. Network Partitioning 

Partitioning occurs because of link or site failures. I t  may take more 

than one link failure t o  cause partitioning, depending on how the sites in the 

network are connected t o  each other. However, a site failure always results 

in partitioning: a n  inactive partition containing the  failed site, and another 

partition containing the  rest of the sites. Since it is not possible t o  

distinguish between a failure and a site t h a t  is taking too long t o  respond, in 

practice the availability of a site is determined by the  use of message 

timeouts. The Partition Detection protocol described in [Ma 861 and 

reviewed later in this chapter uses this mechanism t o  detect partitioning. 

If a system partitioning occurs after a transaction reaches the 

precommit stage, the  subordinate may not receive a commit or abort 



message, leaving the precon~mit dangling and hence the locks unreleased. 

The dangling precommit (DP) algorithms described in [Ma 861 release the 

locks held by such a precommitted transaction by tentatively committing or  

aborting the transaction. When the partitions merge, i t  is possible t h a t  one 

partition decided t o  commit the transaction whereas another aborted the 

transaction. To  remove such inconsistencies, some of the conflicting 

transactions along with their dependents1 are rolled back. The strategies 

used t o  select the transactions t o  be rolled back are described in the  next 

chapter. 

The partitions can be merged when the failed links or sites recover. 

When a reconnection between partitions is detected, a merge algorithm is 

used t o  repair the database using a graph theoretic method [Davi 841. 

In the subsequent sections, we summarize the  partition detection 

protocol, the reconnection detection protocol, and the graph theoretic method 

for conflict detection and resolution in optimistic partitioned operation [Ma 

861. 
.- . . 

'The dependente of  a transaction T are recursively defined a s  the  transactions t h a t  read a d a t a  i tem after i t  
is written by T ,  and  in turn, their dependents.  Also refer t o  the  definition of  a serialization graph in section 3.2.2 
for the  definition of  transaction dependency. 



2.3. Partition Management Protocol 

Partitioning occurs a s  a result of a site or communication link failure. 

In the  following discussion, the term failure is used t o  describe both forms of 

failures. 

We assume tha t  the network partitionings and partition reconnections 

are discrete, i.e., there is a finite non-zero interval between partitionings and 

reconnections. The protocol requires tha t  all the sites in a partition agree on 

the set of available sites and execute the proper recovery algorithms 

whenever a partition or a reconnection occurs. If a failure is encountered 

while a merge is taking place, the merge is aborted. 

The Partition Management (PM) protocol consists of two separate 

protocols: the  Partition Detection (PD) and Reconnection Detection (RD) 

protocols. 

T o  perform the PD and the RD protocols, some da ta  structures are 

required a t  each site. Three flags, R-flag, A-flag, and M-flag are used t o  

indicate the  s ta tus  of the node with respect t o  partitioning or merging 

activity. A site accepts transactions for processing only when the A-flag is 

true. The R-Jag is set t o  true while the site's current partition is undergoing 

reconfiguration. The M-flag is set t o  true while a site is undergoing a merge. 



Each site also maintains its logical view of the network using a table called 

the Network Status Table (NST). The NST contains entries for each site in 
- - 

the network. A site's entry is marked DOWN if t h a t  site is perceived t o  be 

down; otherwise, i t  is marked UP. 

2.3.1. Partition Detection Protocol 

We now give a n  informal description of the PD protocol. For a detailed 

formal description of the protocol, refer t o  [Ma 86). The PD protocol consists 

of two parts  : normal operation and operation during reconfiguration. 

For each site, another site in the network is assigned as a guardian. If 

the network is partitioned, the  guardian of a site is selected t o  be within the  

partition t o  which the site belongs. If a partition is a single site partition, 

the site has no guardian. 

During normal operation, every site must periodically send a HI message 

to  its guardian. The only purpose of this message is t o  inform the guardian 

of its availability. If the  guardian of a site does not receive the HI message 

for a specified time period, the PD protocol is switched t o  the  reconfiguration 

mode. 



In the reconfiguration mode, the guardian broadcasts REORG messages 

t o  all the  other sites in its partition. A site issuing REORG messages is 
-. . 

called a n  initiator for the reconfiguration. It  is possible t h a t  multiple sites 

send REORG messages a t  the same time since there can be multiple failures 

or multiple detections of the same failure. Such concurrent reconfiguration 

at tempts are resolved using the R-flag and by checking whether the  receiver 

of a message is in the same partition as indicated by the Partition identifier 

(Pid) of the intended recipient contained in the message. The REORG 

messages also contain the proposed Pid for the  new partition. The other 

sites in the partition tha t  receive the REORG messages send responses t o  the  

initiator indicating their willingness t o  join the  partition proposed by the  

initiator. The initiator then becomes the  coordinator for the  new partition. 

The coordinator then sends the new NST t o  the  sites t h a t  agreed t o  join the 

partition. The transmission of the new NST marks the  end of the 

reconfiguration and resumption of the normal operation a t  each site, but 

within a limited partition. 

For a more detailed explanation of the P D  protocol, refer t o  [Ma 881. 



2.3.2. Reconnection Detection Protocol 

The purpose of the RD protocol is t o  detect reconnection of different 

partitions. [Ma 861 describes the RD protocol t h a t  is specific for two-way 

reconnection and merging of partitions. The RD protocol for the  generalized 

multiway reconnection and merge recovery is explained in detail with a 

formal algorithm in the next chapter. 

2.4. Serialization Graph and Merge Recovery 

When a reconnection between partitions is detected, the  coordinators for 

the partitions initiate the merge recovery algorithm. Processing of new 

transactions in the merging partitions is suspended until the recovery is 

complete. Each coordinator derives a global serial history of the  transactions 

t h a t  were executed in its partition. The individual global serial histories are 

used t o  construct a serialization graph following a set of rules a s  described in 

[Ma 861. Presence of cycles in the serialization graph indicates conflicts 

between transactions. Transactions are backed out  until the graph is 

acyclic. When a transaction is backed out,  all its dependents are also 

backed out. Backing out  a transaction involves resetting the value of each 

da ta  item in the write set of the transaction t o  the  values t h a t  were read by 



t h a t  transaction. 

After the cycles are removed, the database is repaired by forwarding the 

recovery information such as the list of backed out  transactions t o  the sites 

in the merging partitions. The merge recovery algorithm is described in 

greater detail in the  next chapter. 



CHAPTER 3 

MULTIWAY MERGING AND RECOVERY 

3.1. Reconnection Detection Protocol 

[Ma 861 has a description of the two-way reconnection detection (RD) 

protocol. In this section we describe how it  can be generalized t o  the  

multiway reconnection detection (MRD) protocol. 

3.1.1. Data Structures 

In addition t o  the da ta  structures used by the  PD protocol, the 

multiway RD protocol uses the  following da ta  structures. The da ta  

structures are meaningful only a t  coordinator sites. Each partition 

participating in a merge has its own coordinator. Among them, the 

coordinator with the largest site number is chosen t o  be merge coordinator. 

Merge-info: A record (one a t  each partition) t h a t  keeps track of the  

information about partitions involved in a particular merge. The up-to-date 

merge information is kept track of in the current merge coordinator for the 

merging partitions. The merge-info records a t  coordinators other than the 



merge coordinator are invalid. 

Each inerge,iizjo record contains the following fields. 

nummerge : number of partitions tha t  are taking part  in the merge. Initial 

value is 0. 

mrgtimer : The remaining time for which the merging partitions wait for the 

other partitions t o  join the merge. Initial value is the 

maxintum~merge~time~, which is a parameter t h a t  can be controlled by the 

database administrator. It  indicates the maximum time for which a merge 

recovery will be delayed t o  allow more partitions t o  participate in the merge. 

partition-list : List of partitions tha t  are going t o  merge. Each item in the 

list is a pair consisting of the Pid of the partition and the site-id of the 

coordinator for the partition. 

NST : Holds the  merge NST, i.e., the N S T  t h a t  will be applicable t o  the 

partition formed as the result of the merge. 

coord-num: The coordinator for all the merging partitions. The initial value 

is the site's own site-id. 



3.1.2. Description of MRD Protocol 

The description of the  MRD protocol is strutured along the lines of the 

description of the RD protocol in [Ma 861. 

As long as  the A-Jag is true, M-Jag is false and there is a t  least one 

DOWN site in the NST, periodically the coordinator of a partition 

broadcasts MERGE-INVITATION (MI) messages carrying a copy of its ATST 

t o  the DOWN sites with site numbers greater than its own site number. The 

reason for sending MI messages only t o  greater site numbers is t o  avoid 

indefinite postponen~ent of merging [Ma 861. The transmission of the MI 

message is called a probe. The interval between two consecutive probes 

(tprobe) can be chosen randomly. 

MI messages received by the non-coordinators are always ignored. Also, 

upon receiving an  MI from a coordinator B, a coordinator A will ignore the 

message if its A-Jag is false (it is not active) or M-flag is t rue (it is already 

merging or  is in the middle of accepting a n  MI from some other partition 

coordinator, in which case it will not be ready a t  t h a t  time t o  accept another 

MI). 

Next, partition A checks whether UP(NSTA) n UP(NSTB) is empty. If 

the  intersection is not empty, then A will ignore the  MI because a failure has 



not been detected by one of the partitions (for a n  example, see [Ma 861). 

Otherwise, A will set its M-flag t o  true t o  block receiving further MI'S. A 

sets a timer called cancel-merge-timer, with the  timer value equal t o  

maximum communication delay for round trip message (2dmax), and sends 

back MERGEREQUEST (MR) t o  B containing A's and B's Pad's and stops 

sending MI'S t o  other DOWN sites. If site A does not hear from site B within 

cancel-merge-timer after it sent the MR t o  site B, then A aborts the  merge 

at tempt with B, resetting its M-flag t o  false. A, then, will possibly t ry  t o  

merge with some other partition(s) by sending or accepting MI'S. 

When B receives an  MR message from A, it  checks whether its A-flag is 

true, M-flag is false and  whether the Pid contained in MR is its current Pid 

(this check is t o  ensure t h a t  the MR tha t  it  received is for a n  MI sent by 

itself) and whether it is still a merge coordinator. B might no longer be the  

merge coordinator because, after sending the  MI message, but  before 

receiving the  MR message, B's partition might have agreed t o  join the merge 

being coordinated by some other merge coordinator. 

If the  message is not acceptable, due t o  any of the  conditions mentioned 

above being false, then the message is ignored. Otherwise B agrees t o  merge 

with A by setting its M-flag t o  true. A-flag is not set to false indicating tha t  



it continues t o  be a n  active partition accepting new transactions. In this case 

A will be the merge coordinator because MI reaches A from B only if A's site 

number is greater than B's site number. The partition coordinator with 

bigger site number is chosen to  be the merge coordinator. Thus, B sets the 

merge coordinator t o  be A. 

B also stops its mrgtinzer because it is no longer the merge coordinator. 

Then it sends a n  ACICMERGEREQUEST (AMR) message back t o  A. The 

AMR contains B's merge information. Since B is no longer the merge 

coordinator, after sending the AMR, B sets its M-flag t o  false, stops sending 

MI's t o  other DOWN sites and stops accepting any MR's from other 

coordinators. The responsibility for sending MI's and accepting MR's is 

taken over by the new merge coordinator, A. 

Next, B sets cancel-merge-timer t o  the mrgtimer value in its merge-info 

plus 2dmax round trip delay of the message. If some merge coordinator does 

not send a PREPARE-TOMERGE message ( to be explained later) by the 

time B's cancel-merge-timer expires, B goes back t o  its original s ta te  and 

tries t o  merge with some other partition(s).l 

I 'Note that B remains the coordinator for its partition even though it has agreed for merge with A. 



When a merge coordinator receives an  AMR, it checks whether its A-flag 

is t rue and whether its Pid is same as the one t h a t  it  sent with the  MR. If 

these two conditions are satisfied, the cancel-merge-timer is stopped. If 

either condition is not satisfied, some failure must have occurred in the 

partition after  the MR message was sent out  and hence the  AMR message is 

ignored. 

If nummerge in merge-info record equals the maximum number of 

partitions allowed t o  merge or the merge NST indicates a fully reconnected 

network, the  merge coordinator sets its mrgtimer t o  zero and the  procedure 

followed for mrgtimer expiration (described in the next paragraph) is invoked 

immediately. Otherwise, the mrgtimer is set t o  the  smaller of the  two values 

in the  merge-info record a t  the merge coordinator and the  record received 

with the AMR message. The reason for this action is t o  avoid the merge 

getting delayed indefinitely. Then the merge coordinator s tar t s  sending h?I1s 

t o  other DOWN sites whose site id's are greater than its own site-id. 

I 
When the  mrgtimer expires, the merge coordinator sets  its A-flag t o  false 

I 
and M-flag t o  t rue and determines the  new Pid. The new Pid is the 

1 maximum Pid seen so far  by the merging partitions plus one [Ma 861 (The 
r 



variable a t  the coordinator for the partition). Next, i t  sends a 

PREPARE-TOMERGE (PTM) message t o  all the sites of all the  partitions 

t h a t  have agreed t o  merge. The merge coordinator sends its merge-info 

record with the P T M  message. It  updates its own NST. If a failure takes 

place after the  merge is initiated, the merge is aborted. 

When a P T M  arrives a t  a site, the site checks whether its A-flag is true 

and its Pid is the one of the Pid's in the partition list sent by the merge 

coordinator. This check ensures tha t  the site only accepts the P T M  message 

sent by its own merge coordinator and not some other merge coordinator. If 

the conditions given above are satisfied, M-flag is set t o  t rue and A-flag is set 

t o  false and the  NST is updated t o  new NST by all the  sites. Then, the 

merge recovery algorithm is executed. When the  merge recovery is 

completed, M-flag is reset t o  false and A-flag is set t o  true. 

The illustration in Figure 3.1 shows how a 3-way merge is initiated. 

Consider P,, P2, and PI as three partitions of a network with C1, C2, and C3 

I 
as their respective coordinators. 
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Assume t h a t  site-id(C,) < site-id(C2) < site-id(C3). First C1 sends merge 

invitations (MI) t o  C2 and C3. C2 responds with a merge request (MR). C, 

then sends an  A M .  message t o  C2. C2 is now the merge coordinator for PI  

and PP' Now, since C1 is no longer a merge coordinator it will ignore any 

merge requests from C3. The merge coordinator C2 sends a n  MI message t o  

C3? which then responds with a h/LR message. C2 then sends a n  AMR as the 

response. The AMR carries the merge-info record maintained a t  CS. The 

partition-list in the merge-info record contains the Pids for PI and P2, and 

the remaining merge timer value a t  C2. C3 becomes the new merge coordina- 

tor. The partition list in its merge-info record contains the Pids of P1, P2, 

and P3. The merge timer is set t o  the value in the AMR message fro111 C, 
.G 

since C3 was previously not a merge coordinator. If the network consists of 

only the partitions Ply P2,  and P3 then CS would immediately initiate a 

merge. Otherwise, i t  initiates a merge when its merge timer expires. 

In the next section we give a formal algorithm for the  MRD protocol 

described above. 



3.1.3. Algorithm for Multiway Reconnection Detection Protocol 

The follo~ving algorithm is in a notation similar t o  the syntax of the pro- 

gramming language C. The da ta  structures required are declared as  struture 

types and variables. The algorithm is described using a combination of com- 

ments and pseudo-code. 

Data Structures: 

/* The following record defines the structure of a Pid */ 
struct pid-t 

{ 
int seqnum; /* counter */ 
int orig; /* originator site */ 

1; 

/* The following record defines the structure of the NST */  
struct nst-t 

{ 
struct pid-t Pid; /* Pid of the site's partition */ 
int status[MAX_NO-SITES]; /* indicates whether sites are Up or Down */  

}; 

/* The following record defines the structure of the partition list 
in the mergeinfo record a t  the merge coordinator */ 

struct par t l is t - t  
{ 

struct pid-t Pid; /*Pid of the merging partition*/ 
int coord; /* Coordinator for the partition */ 

1 

/* The following record defines the structure of the merge information 
record maintained a t  the merge coordinator */ 

struct mergeinfo 

{ 
int nummerge; /* no of partitions tha t  are 



participating in the merge */ 
int  mrgtimer; /* The time for which merge is delayed 

t o  accept more partitions */ 
struct partJist-t partition-list[]; 

/* The list of coordinators of the 
partitions t h a t  are  merging */ 

int  c o o r d ~ u m ;  /* the merge coordinator */ 
struct nst-t NST; /* new NST tha t  gets updated whenever 

a new partition joins the merge */ 
1; 

int myid; /* site number of local site */ 
int coord(); /* return site number of coordinator */ 
int M a g ;  /* active flag */ 
int Rflag; /* reconfigure flag */ . 

int Mflag; /* Merging flag */ 
struct nst-t NST; /* network s ta tus  table */  

case (tprobe expires): 
/* Now i t  is time t o  send the merge invitations; but first 

make sure t h a t  this site is eligible to  transmit MI */ 

if (myid == my~mergeinfo.coorclnum && M a g  && !Mflag 
{ 

/* Send MI to  each site with greater site-id tha t  is marked as  
Down in the current NST */ 

for p E {plp>myid && NST.status[p] == Down) 

{ 
MERGEJNVITAT1ON.sender = myid; 
MERGEJNVITATION.NST = NST; 
send MERGEJNVITATION t o  p; 

1 
1 

/* Set timer for the next probe */ 
tprobe.set(2dmaz); 
break; 

case (MERGE JNVITATION received): 
/* On receipt of the  merge invitation message, check whether 

this site is a coordinator, whether i t  is "active" with respect 
t o  the  rest of the network. Also, the sending site's NST and 
this site's NST must not have any UP sites in common. If all 
conditions are satisfied, then send an  MR (merge request) 



message to  the sender. */ 
if (myid == my~merge~nfo.coord_num && M a g  && !Mflag && 

U~(MERGEJNVITATION.NST) n Up(NST) == NULL) 
{ 
/* Set the M-flag to  prevent any further merges with this coord */ 
Mflag = TRUE; 

/* Build the MR message */ 
MERGEJtEQUEST.sender = myid; 
MERGEJ1EQUEST.pidl = MERGEJNVITATI0N.NST.pid; 
MERGEBEQUEST.pid2 = NST.pid; 

send M E R G E B E Q U E S T  t o  MERGEJNVITATION.sender; 

/* Star t  the cancel-merge-timer. If the originator of the 
merge invitation does not respond before the timer expires, 
this site will cancel the current merge and s ta r t  accepting 
MIS again. Till then this site will not accept any more MIS */ 

cancel-merge-timer.set(2dmaz); 

tprobe.stop; /* restarted when merge request is acknowledged 
or cancel-merge-timer expires */  

1 
break; 

case (MERGEBEQUEST message received): 
/* On receipt of a n  MR message, stop the merge timer a t  this 
coordinator (if one has been started), and send the AMR message 
t o  the sender of the MR message. The sender is the merge 
coordinator */ 
if (MERGEREQUEST.Pid1 == NST.pid && M a g  && !Mflag && 

(myid == m y ~ m e r g e i n f o . c o o r d ~ u m ) )  

{ 
/* Set the  M-flag t o  prevent any further merges with this coordinator */ 
Mflag = TRUE; 

/* The larger of the node-ids of the sender and the receiver is 
selected t o  be the coordinator. Since the merge request is 
in response t o  a merge invitation, and mergeinvitation is always 
sent from smaller node-ids t o  larger node-ids, 
MERGEREQUEST.sender must be the new merge coordinator */ 



/* Build and send the AMR */ 
ACK_MERGEREQ.mergeinfo = my-merge-info; /* includes N S T  */ 
ACI<_MERGEREQ.sender = myid; 
ACI<-MERGEJtEQ.pid = -&4ERGE_REQLEST.pid2; 
send A C I L M E R G E R E Q   ERGEREQ ERE QUEST.^^^^^^; 

/* Star t  the merge timer. If the PTM message does not arrive 
before i t  expires, this site resets its merge s ta tus  and s tar ts  
sending MIS again */ 

cancel-merge-timer.set(mrgtimer + Pdmaz); 

Mflag = FACSE; 
tprobe.stop; 

} 
break; 

case (ACKXERGEREQ message): 
if ( M a g  && (ACI<_MERGEREQ.pid == NST.pid)) 
{ 

/* The AMR has been received from the node t o  which the MR message 
was sent. Stop the merge timer. S ta r t  i t  again later with 
the  lower of the two values. */ 

cancel-merge-timer.stop; 

/* Integrate the information in the AMR message into the merge-info 
record a t  this site */ 

my-mergeinfo.mrgtimer = minimum(my~mergeinfo.mrgtimer, ACKJll3RGEREQ.mrgtin1er); 
my-mergeinfo.partition_list = union(my-mergeinfo.partition_list, 

ACK_MERGE_REQ.partition_list); 
my-mergeinfo.nummerge = mymergeinfo.nummerge + ACI<_MERGE-REQ.nummerge; 
/* m y ~ m e r g e i n f o . c o o r d ~ u m  is already set t o  myid correctly */ 
my-mergeinfo.NST = union(my-mergeinfo.NST, ACK_MERGE-REQ.NST); 

/* Initiate the merge immediately if the network is fully 
reconnected, or the limit on the merge-degree has been 
reached; otherwise, s t a r t  the merge timer t o  wait for 
more partitions t o  join the merge.*/ 

if ((my-mergeinfo.nummerge >= MAX-NUM-MERGE) 1; 
(Merge NST indicates network is fully reconnected)) 

mrgtimer.set(0); /* initiate the merge immediately */ 
else 
{ 
mrgtimer.set(my-mergejnfo.mrgtimer); /* a s  updated above */  
tprobe.set(2drnaz); /* Set probe timer for new round of MIS */ 



Mflag = FALSE; 

1 
break; 

case (MRGTIMER expires): 
/* Merge timer has expired. Initiate the merge */ 
if (myid == my-mergejnfo.coordmm) 

{ 
M a g  = FALSE; 
Mflag = TRUE; 

/* Determine the Pid for the new partition */ 
max-pid = max(mergeinfo.partition_list); 
max-pid.seqnum++; 
max-pid.orig = coord; 

my-mergejnfo.NST.pid = max-pid; 

/* Build the prepare-to-merge message */ 
PREPARE-TOMERGE.NST = my-mergeinfo.NST; 
PREPARE-TOMERGE.partition_list = my-mergeinfo.partition_list; 

send PREPARE-TOMERGE message to  all the sites 
of the  partitions tha t  have agreed t o  merge; 

NST = my-mergeinfo.NST; 

1 

break; 

case (PREPARE-TOXERGE message): 

/* On receipt of the  PTM message, the site sets its M-flag and R-flag 
t o  indicate t h a t  i t  is merging; the A-flag is seCto false t o  
prevent new transactions from being accepted. Then, the  site 
s tar ts  sending HI messages t o  i ts  guardian and waits t o  receive 
the  Update-lists after the  merge recovery process is completed 
at the merge coordinator */ 

/* First check whether the  site is still in the intended partition */ 
if (AFlag && (NST.pid in PREPARE-TO_MERGE.partitiodist)) 
{ 

Mflag = Rflag = TRUE; 
M a g  = FALSE; I 

.. . 



NST = PREPARE-TO_MERGE.NST; 
max-pid = NST.pid; 

H1,sender = myid; 
HI.pid = NST.pid; 
send HI t o  my guardian(); 
trec.set(tbh + dmaz - dmin); 
tsend.set(tbh); 

} 
break; 

case (CANCELBERGE-TIMER expires): 

/* A P T M  or a AhlR message tha t  was expected has not arrived. Cancel 
the merge. If this site is the merge coordinator, just set the 
Mflag t o  false. If i t  is not the merge coordinator reset the 
merge coordinator to  be this site's site-id. */ 

if (myid == my~merge~nfo.coordnum) 
MFlag = false; 

else 
my~mergeinfo.coordnum = myid; 

tprobe.set(2dmaz); 
break; 

3.2. Multiway Merge Recovery 

In this section we discuss the multiway merge recovery algorithm. This 

algorithm is a n  extension of Ma's two-way merge recovery algorithm [Ma 861, 

which is based on the graph-theoretic method for conflict detection and reso- 

lution. After the MRD protocol has initiated a merge, all the sites in the 

partitions tha t  are taking part  in the merge must finish their in-progress 

transactions and then execute the merge recovery algorithm. We assume tha t  

no new transactions are accepted by the merging partitions until the 



recovery is completed. 

Before we describe the merge algorithm, we first define the  concept's of 

the partition history graph, the serialization graph, and the merge set. 

3.2.1. Partition History Graphs 

The da ta  structure used t o  record the history of a partition is called a 

partition history graph (PHG). Each site in a network has a copy of the PHG 

of the partition of which it is a member. 

The PHG is defined below along with some related terms. The follo~ving 

definitions are reproduced here from [Ma 861 t o  set the stage for the  subse- 

quent description of the multiway merge recovery algorithm. For a detailed 

explanation of how a PHG is constructed and maintained, refer t o  [Ma 861. 

An example of a PHG is given in next chapter. 

A partition Pi is said t o  be a n  immediate predecessor of a partition P- if 
J 

and only if 1) Pi = P, or 2) there exists a site s in P such t h a t  s was a 

member of Pi and after s leaves Pi, the first active partition it joins is P .  
1 

The transitive closure of the immediate predecessor relation is called the 

predecessor o f  relation and is denoted by the symbol "I--" in the  following. 



Definition 3.1. A partition history graph (rooted at 0) of a partition P 

is a directed graph PHGo(P) = (V, E), where 

v = {0} u { Pi 1 Pi I-- P) 

E = { Pi -+ P. 1 Pi # P. and Pi is an immediate predecessor of 
J J 

Pj ) U { 0 - Pi if Pi does not have a predecessor }. 

If Pi and P. are two (not necessarily distinct) vertices in a PHGo(P), 
J 

then Pi dominates P .  (or Pi is a dominato~ of P.) if and only if every path in 
J J 

PHG (P) from 0 t o  P. contains Pi. Pi properly dominates P .  if and only if Pi 
0 J J 

# Pj and Pi dominates P Also, for each vertex P 
j' j' 

DOM(Pj) = { Pi Pi dominates P .  }. 
J 

A vertex P is the nearest common dominator of n vertices P I ,  PZ ,  ... P n 

in a partition history graph, if and only if 

(I) P dominates each of the n vertices and 

(2) if P' dominates each of the n vertices, and P' # P, then P' properly 

dominates P. 

The nearest common dominator of PI, ... P will be denoted by NCD(P,, n 

PZ, ... Pn) For a discussion of how t o  compute dominators of a set of vertices 

in a directed acyclic graph, see [AHU 741. 



3.2.2. Serialization Graph 

Let GHi denote the global serial history1 of transactions executed by the 

sites in Pi since a consistent logical database s ta te  D B . ~  

Definition 3.2 : 

Let a ,  b,  c, ... x, y denote the number of transactions executed in the various 

partitions being merged. 

Let GHl = Tll.Tid T12.Tid T13.Tid ... Tla.Tid 
Let GH2 = Tz1.Tid T2,.Tid T2,.Tid ... T2,.Tid 

Let GHn = Tnl.Tid T n, ..Tid Tn3.Tid ... Tny.Tid 

be the  global histories of P1, P2,  ... Pn as defined above. The serialization 

graph G(GHl, GH2, ... GHn) = (V, E) is the graph defined by: 

'The global serial history of a set of transaction is a serialization order of the transactions. For a rormal 
definition, see [Ma 861. 

2~ indicated by Lemma 5.5 in [Ma 861, the natural choice for the state DB is the initial logical database 
state in NCD of the merging partitions. 



E = {Dependency Edges) U {Precedence Edges) U {Interference Edges) 

(1) there exists a dependency edge Tci.Tid -+ Tck.Tid if and only if i < k 

and there exists X E Ws(Tci) n Rs(Tck) and forall j: i < j < k, X 

NOT E Ws(Tcj). The dependency edges indicate that  one transaction 

read a value produced by another transaction in the same partition. 

(2) there exists a precedence edge Tci.Tid --* Tck.Tid if and only if i < k 

and there exists X E Rs(Tci) fl Ws(TCk) and forall j: i < j < k , X 

NOT E Ws(Tcj) and these is no dependency edge Tci.Tid -r Tct.Tid. 

The precedence edges indicate that  a transaction read a value tha t  

was later changed by a second transaction in the same partition. 

(3) there exists an  interference edge Tci.Tid --* Tdj.Tid (c = l,..,n; d = 

l n ;  and c#d) if and only if there exists X E Rs(Tci) n Ws(Tdj) and 

Tci.Tid. Thus if there are P partitions, P(P-1)/2 combinations must be 

examined t o  construct interference edges. The interference edges 

represent the fact tha t  if a transaction in one partition read a data  

item, it must precede any transaction that  updated the same data  

item in some other partition. 



Figure 3.2 shows a serialization graph of transactions from three parti- 

tions. 

DEPENDENCE 
- - ,- -, INTERFERENCE 
- - - - -  

PRECEDENCE 
SERIALIZATION GRAPH 

Figure 3.2 



PI, PZ, and P3 are three partitions of a network. 

transactions T l l  and T12 belong t o  P I ,  

transactions T21, T22, and T23 belong t o  P2, and 

transactions T31 and T32 belong t o  P3. 

The solid arrows represent dependency edges. The dashed arrows represent 

interference edges.The dotted arrows represent precedence edges. 

TZ3 interferes with T l l ,  T IP  interferes with TZ2, T22 interferes with T32, 

and T32 interferes with T12. It  can be seen tha t  there are several cycles in 

the serialization graph, indicating tha t  the databases in the three partitions 

are mutually inconsistent. One of the cycles is: 

The strategies for removing the cycles in this graph are explained in a 

later section in this chapter. 

3.2.3. Determining the Merge Set 

Let Pi (i= 1, 2, ..., n) be the n partitions being merged. Let Pnew be the 

merged partition. Let Pncd be the NCD (PI, PI, ..., Pn) in PHG(Pnew). 



The set of transactions t h a t  are committed or retained in each partition 

is called the r e t a i n e d  s e t  (RS) for tha t  partition. Let RSi(P) be the set of' 

transactions executed in the partition P (i.e., for a transaction T t h a t  is exe- 

cuted in a partition P, T.Pid = P.Pid) and retained (i.e., not backed out )  in 

Pi. Obviously, P {- Pi. 

The following lemma and its proof are generalizations of its counterparts 

from [Ma 861. 

LEMMA: Assuming tha t  the initial database s ta te  in any partition is con- 

sistent, if T E RSi(P) where P # Pncd and P !-- Pncd, then T cannot be in a 

serialization conflict with any transaction retained in partition P .  where j#i. 
J 

PROOF: The proof straightfor~vardly follows because, every site in the  merg- 

ing partitions was in Pncd (from the definition of NCD) and from the  assump- 

tion t h a t  the  initial logical database state  in Pncd is consistent. 
I 
I 

It  is possible for a transaction t h a t  reached the  precommit stage but  was 

I 
not resolved before a partitioning occured, t o  be committed in one partition 

and aborted in another a s  result of the dangling-precommit algorithms dis- 
I 

cussed in [Ma 861. The first step in determining the  merge set for PI, P,, ... , 
'd 



Pn is t o  back out  transactions t h a t  are  retained in one parti t ion but  backed 

out  in any  other  parti t ion t o  achieve a consistent resolution for them. 

After the  backing out  of transactions a s  described above, the  union of 

the retained sets  of all the merging partitions is formed. This union is called 

the merge set .  The  transactions in the merge set  a re  the  nodes of the  seriali- 

zation graph for the merge. The  following algorithm describes how the merge 

set  is constructed. 

Let  BS,(P) be the  set  of transactions executed in parti t ion P a n d  backed 

out  in Pi (P  k- Pi). Let DEPi(T) be the dependency set  of a transaction T in 

parti t ion Pi. In other words, DEPi(T) is the  set  of transactions T' such t h a t  

T '  is retained in Pi and  there is a pa th  of dependency edges from T t o  T'. 

Procedure for constructing Merge Set: 

let I1 = { P  such t h a t  Pncd I-- P I-- PI and P E V1 of PHG(P1)); 
let I2 = { P  such t h a t  P,,, I-- P I-- P2 and P E V2 of PHG(P2)}; 

let In = {P such t h a t  Pncd I-- P I-- Pn and P E Vn of PHG(P,)); 

for i = 1 to n do { 

u = 0; 
for each P E (I1 n I2 n I, ..: n In) do 



for each T E DEPi(U) do { 

let P be such t h a t  P.Pid = T.Pid; 
add T to BSi(P); 
remove T from RSi(P); 

1 
1 

PI-P, PI-P, pI-P"-I P I -P, 

h*s = ( U RS,(P) )  U ( U RS,(P)) U . . . U ( U RSn-,(P)) U ( U RS,(P)) 
Pncd I-p Pscd l -P Pncd I-p qrd I -P 

3.2.4. Merge Recovery Algorithm 

The multiway merge recovery algorithm is a straightforward extension of 

the two-way merge recovery algorithm described in [Ma 861. Instead of con- 

structing a serialization graph of transactions from two partitions, the  algo- 

rithm involves constructing a graph consisting of transactions from the AT 

partitions t h a t  are merging. The algorithm is outlined below. 

As described in the MRD protocol, the merge coordinator is the site with 

the highest site-id among the coordinators for the partitions participating in 

a merge. Let Cm denote the merge coordinator. First,  Cm uses the  algorithm 

described in Section 3.2.3 t o  determine the merge set from its own transac- 

tion information and the information it  receives from the  other coordinators 

participating in the merge. The information t o  be sent by each of the other 



coordinators are: 

(1) The retained transactions set (RS) and the backed out  transactions 

set (BS). 

(2) For each transaction retained in the coordinator's partition, the asso- 

ciated readset, writeset, the before values of the writeset and the 

read-from set.' 

After finding the merge-set, the merge coordinator constructs the multi- 

way serialization graph according t o  Definition 3.2 and then detects and 

resolves conflicts by detecting and eliminating cycles in the graph using stra-  

tegies described in the next section. The rest of the algorithm is mostly a s  

described in Section 5.7.2 of [Ma 86). The modification is t h a t  the Update 

~ i s t ~  must be constructed and distributed by each coordinator t o  sites in all 

other partitions. Thus, in Ma's algorithm only two update lists are con- 

structed - one for each partition being merged, t o  be distributed t o  the sites 

in the other partition. In the  multiway case, if there are N partitions partici- 

pating in the  merge, N update lists are constructed and each list is 

'The read-from se t  is used t o  const ruct  a serialization o rde r  of t h e  t r ansac t ions  executed in a pa r t i t i on .  T h e  
read-from se t  of a t r ansac t ion  T con ta ins  t h e  t r ansac t ions  t h a t  l a s t  modified each of t h e  d a t a  i t ems  read by T. 
T h e  read-from s e t  i s  formally defined in IMa 861. 

?he U p d a t e  Lis t  con ta ins  values  for logical d a t a  i t ems  t h a t  mus t  be broadcast  by each coordinator  Ci par t i -  
c ipa t ing  in  a merge to t h e  s i tes  t h a t  were no t  in C{s par t i t ion.  



distributed t o  the sites in the N-1 other partitions being merged. 

3.2.5. Graph Reduction Techniques 

While eliminating cycles from the serialization graph, we must strive t o  

minimize the number of transactions t h a t  must be backed out  a s  a result. 

Absolute minimization is an  NP-complete problem ([Davi 821, [Davi 841, [Wrig 

831). Hence, we must employ some heuristics t h a t  usually give good results. 

It  would be prohibitively expensive t o  enumerate and then break all cycles 

since the  total number of cycles potentially grows exponentially with the the 

number of nodes in the graph. Thus, we must find other more cost effective 

strategies for finding and eliminating all cycles. The basic idea is t o  break 

each cycle a s  soon as  it  is found; this removes several transactions and their 

edges from the  serialization graph, potentially removing several other cycles 

as  well. Thus, we might eliminate all cycles by breaking just a small propor- 

tion of them. 

The strategies used in the  simulation program t o  break cycles are the 

ones suggested in [Ma 861. [Wrig 831, [Davi 821, [WrSk 831 and [Dave 841 pro- 

vide performance studies supporting this approach. We iteratively break all 

2-cycles (cycles involving only two nodes) by removing the  node with lower 



weight. (Each node is given a weight defined as  the number of nodes con- 

nected t o  it via outgoing dependency edges.) If the graph is still cyclic then 

long cycles are found before short cycles and are broken by deleting the 

node with the lowest weight together with its dependency set.  

In the  example shown in Figure 3.2, T12 can be deleted since it does not 

have any dependents. Similarly, T32 can be deleted. However, since deleting 

T12 eliminates all cycles, T12 is the better candidate for deletion. This exam- 

ple is further discussed in the next chapter t o  illustrate how multiway merg- 

ing reduces transactions back-outs. 

The results of the simulation of the MRD protocol and the multiway 

merge recovery algorithm are presented in the next chapter. 

3.3. Message Cost of Multiway Merge 

The multiway reconnection algorithm requires a minimum of 4(N-1) mes- 

sages t o  be exchanged t o  initiate a n  N way merge. This is because a t  least 3 

messages (Merge Invitation, Merge Request and Acknowledge Merge Request) 

are required t o  include each of the N-1 other participants in the  merge-info 

of ' the merge coordinator, and N-1 Prepare-ToMerge messages are sent 



when the  merge is started. 

The original two-way reconnection algorithm [Ma 861 requires a t  least 3 

messages t o  initiate a two-way merge: Merge Invitation, Merge Request and 

Prepare T o  ~ e r ~ e . ~  Since it takes (N-1) merges t o  merge N partitions 2 a t  a 

time, the  number of messages required is a t  least 3(N-1). Thus, the multiway 

reconnection algorithm requires about (N-1) extra messages t o  be sent. 

3.4. Run Time Cost of Multiway Merging 

There are three major costs t o  performing a merge recovery: 

(1) The cost t o  compute the merge set. To  compute the  merge set we 

compare the  retained set of each partition against the  backed out set 

of all the other partitions. 

(2) The cost of constructing the serialization graph by finding the depen- 

dency, precedence, and the interference edges. Finding the  interfer- 

ence edges takes the longest time, since the read and write sets of 

every retained transaction in one partition have t o  be compared t o  

the  read and write sets of every retained transaction in each of the 

%a's RD protocol does not require the Acknowledge Merge Request message because only two  partitions are 
involved, and sending the merge request is sufficient t o  initiate a merge. 



other partitions. 

(3) The cost t o  find the conflicts by finding cycles in the serialization 

graph and backing out  some transactions and their dependents t o  

resolve the  conflicts. 

If X, and X2 are the number of transactions in two partitions being 

merged, the cost of the merge depends on X,*X2 since every transaction of 

one partition has t o  be compared against every transaction of the other par- 

tition. 

T o  perform two-way merges of N partitions, we need (N-1) merges. 

Each time, we analyze transactions from two partitions. If we assume t h a t  

on a n  average, each partition has x transactions, the  first merge involves (x 

& x) transactions. The second merge involves (2x-bl & x) transactions where 

b, is the number of transactions backed out  as  the result of the first merge. 

Thus in the (N-1)th merge there are ((N-l)x - B, x) transactions where B is 

the number of transactions backed out in the previous N-2 merges. Thus, 
.. . 

total cost of the (N-1) merges of 2 partitions a t  a time depends on: 



In a n  N way merge of N partitions, a total of Nx transactions is involved, x 

in each partition. The transactions in each partition have t o  be compared 

against the transactions from (N-1) partitions. Thus, the total cost is 

depends on: 

Note t h a t  the cost also depends on the actual number of dependency, pre- 

cedence and interference edges between the transactions. C(N,2) appears t o  

be lower than C(N,N). How much lower, depends on how many transactions 

are backed out  during the two-way merges. 

Thus, doing the all-way merge seems t o  be more expensive than  doing 

(N-1) t w e w a y  merges. However, the time increase is not exponential with N 

and is acceptable in cases where multiway merging reduces the number of 

transaction backouts. This point is discussed further in the next chapter. 



CHAPTER 4 

SIMULATION AND RESULTS 

We simulated the algorithms described in Chapter 3 t o  evaluate their 

performance vis-a-vis the algorithms described in [Ma 86). In this chapter, 

we give an  overview of the simulation program and analyze the results of a 

number of simulation runs. 

4.1. Purpose of Simulation 

The purpose of the simulation was t o  evaluate whether multiway 

merging improves upon two-way merging with respect t o  the percentage of 

transactions t h a t  are completed and the percentage of transactions t h a t  have 

t o  be backed-out. 

In the MRD protocol, the merge timer controls how long a merge 

recovery is delayed t o  permit more partitions t o  join the merge. As the 

merge timer value increases, the chance of further site or  link recoveries 

increases and hence the number of partitions t h a t  participate in a merge 

increases. Our expectation was tha t  there is a trade-off between the  benefits 



of increased degree of merging and the increased conflicts due to waiting 

longer before initiating a merge.' Our investigation focussed on finding an 

optimal value for the merge timer, i.e., the value tha t  yields the least 

percentage of backed-out transactions or highest percentage of completed 

transactions. 

4.2. Description of the Simulation Program 

The simulator is a generalized version of Bahra's simulator [Bahr 871 for 

optimistic partitioned operation of DDBS as described in [Ma 861. We 

rewrote major portions of the simulator t o  incorporate the multiway 

reconnection detection protocol and the multiway merge recovery algorithm. 

[Bahr 871 presents a detailed description of the  simulator program structure, 

da ta  structures and the algorithms. Here we present a n  overview of the 

modified simulation program. 

The program simulates optimistic partitioned operation and multiway 

merge recovery in distributed database system. It  is a n  event driven 

simulation program. Every action of the ,  distributed database systenl is 

'This trade-off is described in more detail  i n  section 4.5. 



represented by a n  event. Some of the events are: transaction arrival, link 

failure, link recovery. 

The events are processed chronologically and new events are generated 

as necessary during execution by the program. The time when an  event 

occurs is generated randomly, except for events t h a t  need t o  occur a t  fixed or  

predetermined times as  dictated by the PD and the MRD protocols. The 

mean values are different for each random event depending upon the nature 

of the event. These mean values can be changed t o  simulate different 

environments for the distributed system. 

The simulator consists of four major modules: 

(1) PD protocol: This module is a complete implementation of the events 

and messages tha t  comprise the partition detection protocol. 

(2) MRD protocol: This module is a complete implementation of the 

multiway reconnection detection protocol described in the previous 

chapter. 

(3) Transaction Execution: This module simulates the  events such as 

locking, commit and abort t h a t  are associated with transaction 

execution. 



( 4 )  Merge Recovery: This module is a faithful implementation of the 

multiway merge recovery algorithm. Determination of the merge set,  

construction of the serialization graph, and cycle detection and 

elimination are all implemented by this module. 

Thus, only network partitioning and transaction execution are 

simulated. The P D  and MRD protocols and the merge recovery algorithms 

are implemented and run as described in the previous chapters. 

4.3. Assumptions 

T o  simplify the simulation program the following assumptions are made. 

a Communication subsystem: 

(1) The network is 'point-to-point', i.e., the sites are connected pairwise 

and not by a bus-like link such as  Ethernet. 

(2) If a receiver A receives two messages from a sender B, then the 

messages are received in the same order in which they are sent. 

(3) The messages arriving a t  any site are uncorrupted. 

(4) The network partitionings and reconnections are discrete, i.e., there is 

a non-zero interval between any two partitionings, any two 



reconnections, and between a partitioning and a reconnection. 

(5) All the  sites within a partition agree on the  set of available sites. 

(6) There are no failures during recovery. 

(7)  The time delay for communication between any two sites depends 

upon the relative distance between the sites. For sites closer together 

the communication time is less,than for sites which are farther apart .  

The relative distance is measured in terms of the  number of sites a 

message must pass through before it reaches its final destination. 

Database: 

(1) The database is fully replicated. 

(2) The writeset of a transaction is a subset of its readset i.e., a 

transaction has t o  read a da ta  item before it  can write or update the 

item. 

4.4. Simulation Parameters 

The parameters given below can be changed t o  study the behavior of the 

transaction execution and transaction back-out in the system. 



- number of sites. 

- database size. 

- transaction arrival rate. 

- READsET/WRITESET size. 

- time between link failure per link. 

- link recovery time per link. 

- time between site failure. 

- site recovery time. 

- merge wait time. 

Not all the parameters mentioned above have a strong influence on the 

performance of two-way or multiway merging. For instance, site-failure 

interval and site-recovery interval have no effect on our investigation, since 

no transactions are backed-out a s  the result of a recovering site rejoining the  

network. Further,  early simulation runs indicated t h a t  the  number of sites, 

the  transaction arrival rate, and the  link failure and recovery intervals do 

not have much impact on the pat tern of the results. 

The probability of conflicts (as indicated by the  interference edges in a 

serialization graph) between transactions run in the different partitions 

participating in the merge has the greatest impact. Conflicts increase as the 



ratio of the writeset size t o  the readset size of transactions increases. 

Conflicts decrease if the percentage of read-only transactions increases. 

Conflicts increase if the sizes of the readset and writeset increase in 

proportion t o  the database size. 

Hence, we concentrated on varying the merge timer values for diff'erent 

combinations of the following parameters: 

database size 

R e a d s e t p r i t e s e t  size 

percentage of read-only transactions 

The degree of merge is varied automatically a s  the merge timer value is 

varied. As the merge timer value is increased, the  merge recovery is delayed 

for a longer time and more links recover before the  merge recovery is 

initiated, leading t o  more partitions participating in the merge. 

4.5. Merge Wait Timer and Merge Degree Trade-Off 

We now describe the trade-off between the expected benefits of an  

increased degree of merging and the expected increase in conflicts due t o  

waiting longer before completing a merge. 



In optimistic partitioned operation, transactions executed in different 

partitions potentially conflict with each other. These conflicts are 

represented by cycles involving interference edges in the  serialization graph 

built during the merge recovery. As described earlier, the cycles must be 

eliminated by backing out  some transactions t o  derive a global serialization 

order for the transactions. 

4.5.1. Effect of Multiway Merge on Back-outs 

As  the degree of merge increases the number of transactions t h a t  are 

backed-out tends t o  decrease. This effect can best be explained by means of 

a n  example. Suppose a distributed database is divided into the partitions PI, 

P2, P3 and as reconnection takes place, they can be merged two a t  a time, or  

all three a t  once. Further  suppose transactions T1, T2, and T3 are executed 

in the partitions P I ,  P2, and P3 respectively. T1 conflicts with T2  and T3. 

There are no other conflicts. 
.. . 

Suppose PI is first merged with P2. The cycle elimination algorithm 

might back out  T2  since it  conflicts with T1. Later  when P3 is merged with 

the merged partition, either T I  or  T 3 h a s  ' to  be backed-out t o  eliminate the  
.. . 



cycle in the  serialization graph for the merge. However, if all three partitions 

are merged a t  once, the cycle elimination algorithm can detect t h a t  backing 

out  TI is sufficient t o  remove all cycles from the serialization graph. Thus, 

the number of backed-out transactions has been reduced due t o  the  increased 

visibility of interference provided by the increased degree of merge. This 

aspect is hereafter referred t o  as  visibility. 

In the  example shown in Figure 3.2 also, we can see how multiway 

merging improves upon two way merging. If PI and P3 merge first and then 

the  resulting partition merges with P2, the two two-way merge recoveries 

might result in both T32 and T12 being backed-out. However, when all three 

partitions are merged together, the merge recovery algorithm can detect tha t  

backing out  T I P  removes all cycles, thereby saving T32. 

4.5.2. Effect of Waiting Longer on Back-outs 

The longer the  partitions remain separate, the  greater the  number of 

transactions t h a t  are executed independently in the partitions. As the 

number of transactions in partitioned operation increases, the  possibility of 

conflicts between transactions executed in different partitions increases. This 



increase is because there is a greater chance of overlap in the  d a t a  items 

accessed and modified in the different partitions. Increased conflicts result in 

more cycles in the serialization graph and,  in general, result in a greater 

number of transactions being backed-out t o  eliminate cycles in the graph. 

Since increasing the  merge timer value delays the merging of partitions, 

i t  tends t o  increase the number of transactions t h a t  are backed-out. 

4.5.3. Simulation Focus 

From the  above discussion, we can see tha t  increasing the  merge timer 

value yields two conflicting effects. I t  potentially increases the  degree of 

merge by delaying the merge t o  allow more partitions t o  be reconnected; this 

effect would tend t o  reduce the number of transactions t h a t  are backed-out. 

A t  the same time, it  also tends t o  increase the back out  rate  due t o  increased 

conflicts. 

Our goal was t o  find out  how the variation of the merge timer value 

would affect the overall back out  rate, and whether there are some optimal 

values t h a t  minimize the back out  rate. We performed several sets of 

simulation runs t o  study the  behavior. For each set of runs, all the 

simulation parameters, except the merge timer value were set  t o  the  same 



value. Different sets of runs were obtained by varying the level of conflicts 

by changing the database size, readset size, the writeset-tereadset ratio, and 

the percentage of read-only transactions. In the following sections, we 

present the results of the different simulation runs and then summarize the 

results. 

4.6. Discussion of Results 

4.6.1. Partitioning and Reconnection Profile 

The database is fully connected a t  the beginning and a t  the end. As 

simulation progresses, partitions are formed via link failures and are 

reconnected after link recoveries. All the cases given below have the same 

link failure mean-time and link recovery mean-time. The link failures and 

recoveries are distributed randomly in the simulation. 

The constant parameters for the simulation were: 

Number of Sites = 8 

Total simulation time = 65 

Link Failure mean = 25 

Link Recovery mean = 15 



The number of sites was chosen t o  be 8 for the following reasons: 

(1) Choosing a smaller number would limit the degree of merge t o  too 

small a number, limiting the comparisons we could make on the  

variation of the back-out rate with the merge degree. 

(2) Choosing a larger number would have increased the simulation time 

without yielding much additional information. 

The link failure mean and the link recovery mean were chosen after 

many trials t o  provide a non-trivial combination of the partitionings and 

reconnections. Some of the criteria used were: 

(1) The number of sites in partitions should vary, e.g., not all should be 

single site partitions for every merge. 

(2) It  should not always be the case t h a t  partitions t h a t  are isolated 

earlier are reconnected earlier. 

(3) It should be possible t o  increase the degree of the merge up t o  the 

maximum possible (8 in this case) by increasing the merge wait timer 

value appropriately. 



The merge-degree (the number of partitions t h a t  participate in a merge) 

for successive merges in a particular run for different merge wait timer values 

are as  follows2: 

The partition history graph for the merge timer value 14 is shown in figure 

4.1 as a n  example: 

?or instance, in  the  following table,  for the  run with a merge timer value of 14, there are 2 two-way merges 
followed by a six-way merge. 



Figure 4.1 



4.6.2. Result Sets 

T h e  tables and  graphs in Appendix A are representative of the  simulation 

runs we performed. Some runs were repeated multiple times with different 

seeds for the random number generator. These runs a re  gathered together, 

and  the  mean values are  shown in a separate  table and  graph. An analysis 

of t he  results presented in Appendix A is presented in the  next section. 

4.6.3. Analysis of Simulation Results 

In the  following discussion, we refer t o  the  tables a n d  graphs in Appendix A. 

The  result sets  a re  grouped into three major categories. The  value of the  

variable parameters  for each category a re  indicated. 

Category 1: Large Database, Small Read and Write Sets: 

DBSIZE = 1000; 

Number of data-items accessed and  modified = 5 t o  20'; 

 he transactions are divided into 4 sets,  each containing about 25% of the  total transactions. The sets 
bave 5, 10, 15 and 20 i tems respectively in their readset. To which set  a particular transaction belongs is deter- 
mined using a random number. 



Thus only 0.5 t o  2% of the items are accessed by a transaction and,  

hence, there is a relatively low possibility of conflicts. This case is 

represented by the Tables 4.1 through 4.5. 

( l ) (a)  Low write-set percentage (2096, 40%, 60%): 

When the write-set of transactions is a relatively small percentage (20%, 

40%, 60%) of the read-set, represented by Tables 4.1 t o  4.3, there are two 

optimal points t h a t  result in the least percentage of transactions being 

backed-out. The primary one, with 26% back-out rate, is when the  merge 

wait time is such t h a t  the degree of merge is 3 or 4. For the above set of 

link failure and recovery parameters, the merge wait time is about 8 t o  10. 

The secondary optimal point, with 28% back-out rate, is when all the  parti- 

tions merge together. In this simulation set,  this point is represented by the  

merge wait time of 26 t o  28. 

The primary optimal point is reached because initially the  increased visibility 

(over the  two-way case) of transactions t h a t  run in different partitions 

reduces the  back-out rate. After tha t ,  with increasing merge wait time, 

conflicts increase as the number of transactions tha t  a re  processed in the 

partitioned s ta te  increases. This leads t o  increasing number of backed-out 



transactions,  peaking a t  the merge wait  time of 22 t o  24, when a 7 way fol- 

lowed by a two-way merge is performed t o  reunite all the  partitions. After 

t h a t ,  we reach the  case where the  merge wait  t ime is long enough for all the 

parti t ions t o  merge together. In this case, there is maximum visibility over 

the  conflicts between transactions. The  increased visibility counteracts the 

effects of the  increased conflicts, thereby greatly reducing t h e  number of 

backed-out transactions a n d  thus  results in the  secondary optimal point. 

( l ) (b)  High Write  Set Percentage (80%, 100%): 

When the  write-set is a high percentage of the read-set, the conflicts between 

transactions are  very high. In this case, the back-out ra te  keeps on  increas- 

ing a s  t h e  merge wait  time increases. This category is represented by Tables  

4.4 a n d  4.5. T h e  increased visibility provided by merging multiple transac- 

tions cannot adequately compensate for t he  higher r a t e  of increase of 

conflicts. Even the  complete visibility provided by merging all t h e  parti t ions 

fails t o  be as effective a s  in the lower conflict cases described (a). Thus ,  in 

these cases i t  is bet ter  t o  proceed with a merge as soon as two  parti t ions 

merge. 

Category 2: Larger Read and ~ r i a e  Set Sire: 
.. . 



DBSIZE = 200; Number of da ta  items = 5 t o  20; 

Thus, the number of da ta  items is 2.5% t o  10% of the database. This 

percentage is larger than the previous case, and hence causing more conflicts. 

This case is represented by the tables 4.6 through 4.9. 

All these cases generate high conflicts amongst the transactions. The 

increase in conflicts results in the back-out rate increasing as the merge wait 

time increases. Thus in this case, a s  in case ( lb) ,  it is better t o  merge as  

soon as  two partitions merge. 

Category 3: 50% Read Only transactions plus 50% update transac- 

t ions: 

DBSIZE = 1000; Number of da ta  items = 5 t o  20; 

Since half the transactions are read only, the  conflicts are even lower than 

case (1). This case is represented by the tables 4.11 through 4.15. 

In this case, when the write-sets of the update transactions is a low per- 

centage of the read-sets (20%, 40%), the conflicts are very low. Thus, the 

behavior described in ( l a )  holds except t h a t  the  merge wait time of 2 yields 

fewer back-outs than the all-merge case (merge wait time = 26). The reduc- 

tion in back-outs might be because with so many read-only transactions, the 



two-way merge sees much fewer conflicts and having a long merge wait time 

increases conflicts t o  the level where the all way merge cannot compensate 

enough. 

However, for write-set percentages of 60, 80, and 100, it  is clear t h a t  we 

should merge as  soon as  possible since the back-out rate keeps increasing as 

the merge wait time increases. 

Testing for Statistical Significance of Results: 

T o  validate tha t  the difference between the  mean values of the  back-out 

rates for the low conflict cases and the high conflict cases is statistically 

significant, we performed the two ta i led pa i rwise  t - t e s t  [Mid 761 on a represen- 

tative selection from the simulation results. The details of the  test are 

presented in Appendix B. This analysis indicates t h a t  we can have high levels 

of confidence in the effect of varying the merge wait timer value, the  size of 

database, and the writeset percentage. For writeset percentage of 60 and 

100 however, we note tha t  the null hypothesis cannot be rejected with 

confidence. This suggests tha t  the high conflict cases might yield back-out 

rates that are close t o  each other. 

Testing the Goodness of the Random Number Generator: 



I t  was indicated earlier tha t  the sequence of events tha t  are simulated is 

generated based on random numbers. The size of the readset and the partic- 

ular d a t a  items accessed by a particular transaction are also determined 

using random numbers. 

The simulator generates the random numbers using the  Berkeley Pascal 

random number generator function, random. This generator is a linear 

congruential random number generator. To  test the randomness of the ran- 

dom number sequence, we performed the maximum-of-t/Kolmogorov-Smirnov 

[Knu 691 test on a sequence of 10000 random numbers generated using the 

generator mentioned above. 

The test was performed as follows: The 10000 numbers were divided 

into sets of 5 each (thus the test was maximum-of-t with t = 5). The max- 

imum value of each set was determined, giving 2000 values. These 2000 max- 

imum values were divided into sets of 20, giving 100 sets. Each set was 

sorted and the  values Kn+ and Kn- were computed as  given on page 49 of 

[Knu 691. The resulting values of Kn+ and Kn- were found t o  be between the  

25th and 75th percentile of the table shown in page 48 of [Knu 691, thus indi- 

cating t h a t  the random number generator we used generates a sequence of 

numbers with satisfactory randomness. 



4.7. Simulation Results Summary 

As described earlier, there are two counteracting effects: 

(1) Increasing the merge wait time increases the number of conflicts and 

hence the number of back-outs. 

(2) Increasing the merge wait time increases the degree of merge, which 

reduces the back-outs due t o  the increased visibility of conflicts. 

T o  what  extent the second effect overcomes the first effect determines 

whether or not we should wait for a multi-way merge and for how long. The 

outcomes in the  particular cases have been explained above. 

In all the  cases, i t  can be observed t h a t  merging seven-way and then 

two-way yields the maximum back-out rate. This increase in back-outs is 

because this case suffers the maximum conflicts and yet does not have the  

benefit of the  complete visibility of a n  all-way merge. We can clearly see 

t h a t  the all-way merge cases always have fewer back-outs than  the seven- 

way plus two-way merge cases even though their merge wait time is longer. 

This effect shows t h a t  increased visibility does reduce back-outs. 



CHAPTER 5 

CONCLUSIONS 

This chapter summarizes our research, s tates  our conclusions and 

suggests directions for further research. 

5.1. Summary of Thesis 

This thesis is concerned with optimistic partitioned operation of 

distributed databases. We have generalized the algorithms in [Ma 861 t o  

permit reconnections and merge recovery of more than  two partitions a t  a 

time. We have presented the results of our simulation of the  multiway 

algorithms and compared the merging message overhead and runtime costs of 

two-way vs. multiway merging. 

The results of our simulation show tha t ,  when the  conflict between 

transactions in different partitions is low, multiway merging does indeed 

improve upon two-way merging by reducing the number of transactions tha t  

are backed out. The reason for low conflicts could be a combination of: ( i )  a 

small percentage of da ta  items being accessed by each transaction, or  (ii) 

write-set being a small subset of the read-set, o r  both. When the conflicts 

t 



are high, it  is better t o  merge partitions a s  soon as  they are reconnected. 

We found tha t  the benefits of multiway merging come a t  the  cost of 

increased message overhead and longer time required t o  carry out the merge 

recovery. Since the sites participating in the merge recovery do not process 

transaction for the duration of merge recovery, we can say t h a t  multiway 

merging leads t o  reduced availability. Thus, whether or not multiway 

merging is desirable might depend upon whether reduced transaction back- 

out  rate  or  increased availability is considered t o  be the more important goal 

for a given distributed database installation. 

It  is difficult t o  give a specific recommendation as  t o  how long a merge 

should be delayed t o  allow more partitions t o  be reconnected, since t h a t  

would depend upon the actual link failure and recovery intervals in a specific 

network. I t  might be possible t o  derive such a recommendation if the study 

were t o  be conducted with da ta  from a real distributed database. 

5.2. Future Research .. . . 

I t  would be interesting t o  investigate the advantages and disadvantages 

of multiway merging in the context of a real distributed database. It  may 

then be possible t o  derive realistic esti&ates of the costs and t o  find a 



specific optimal value for the merge-wait-timer for t h a t  database,  given its 

mean link-failure and  link-recovery intervals. 

In  t he  MRD protocol, the  merge recovery is not performed if a failure 

occurs before the  merge is initiated. I t  is possible t o  add  messages t o  confirm 

the  participation of partitions t h a t  have not suffered a failure a n d  proceed 

with the  merge recovery for only those partitions. W e  have not incorporated 

this feature since i t  seems t o  add  more complexity t o  the  protocol. If future 

studies show it t o  be worthwhile, the MRD protocol can  be enhanced t o  

recover from pre-merge failures. 

The  reconnection and  merge recovery algorithms could be modified so  

t h a t  some of the  actions taken  during merge recovery a re  done a s  soon a s  

two parti t ions decide t o  merge. For  instance, the  merge-set computation 

during merge recovery compares the  backed-out a n d  retained transaction sets  

of each partition. This task  can  be performed during reconnection itself so 

t h a t  the  merge recovery algorithm takes less time. 



APPENDIX A 

SIMULATION RESULTS 

The following tables and graphs are representative of the  simulation 

runs we performed. All the rows in a table represent the same transactions, 

readsets and writesets - only the merge wait timer value is different for 

different rows of a table. I11 each table, the first column gives the merge wait 

timer values. The other columns give the  number of committed, aborted1 

and backed out  transactions, and their percentages of the  total number of 

transactions. 

'Transactions can be aborted either because they  c a n n o t  o b t a i n  s o m e  required locks,  or  because they  are in 
progress when a part i t ioning occurs.  



Database Size = 1000 items. Seed = 7774755 
Number of Data  items read = 5 to 20. 
Percentage of Write Set = 20 % of read set. 
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Database Size = 1000 items. Seed = 56743 
Number of Data items read = 5 to 20. 
Percentage of Write Set = 20 % of read set. 
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Database Size = 1000 items. Seed = 4235761 
Number of Data items read = 5 to 20. 
Percentage of Write Set = 20 % of read set. 
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Database Size = 1000 items. 
Number of Data items read = 5 to  20. 
Percentage of Write Set = 20 % of read set. 
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Database Size = 1000 items. Seed = 7774755 
Number of Data items read = 5 to  20. 
Percentage of Write Set = 40 % of read set. 
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Database Size = 1000 items. Seed = 7774755 
Number of D a t a  items read = 5 to 20. 
Percentage of Write Set = 60 % of read set. 
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Database Size = 1000 items. Seed = 56743 
Number of D a t a  items read = 5 to 20. 
Percentage of Write Set  = 60 % of read set .  
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Database Size = 1000 items. Seed = 4235761 
Number of Data items read = 5 to 20. 
Percentage of Write Set = 60 % of read set. 
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Database Size = 1000 items. Seed = 7774755 
Number of Data items read = 5 to  20. 
Percentage of Write Set = 80 % of read set. 
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Database Size = 1000 items. Seed = 7774755 
Number of Data items read = 5 to 20. 
Percentage of Write Set = 100 % of read set. 
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Database Size = 1000 items. Seed = 56743 
Number of Data items read = 5 to  20. 
Percentage of Write Set = 100 % of read set. 
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Database Size = 1000 items. Seed = 101489 
Number of Data items read = 5 to  20. 
Percentage of Write Set = 100 % of read set. 
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Database Size = 1000 items. Seed = 4235761 
Number of D a t a  items read = 5 to 20. 
Percentage of Write Set = 100 % of read set. 
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Database Size = 200 items. Seed = 7774755 
Number of Data  items read = 5 to 20. 
Percentage of Write Set = 20 % of read set. 
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Database Size = 200 items. Seed = 56743 
Number of Data items read = 5 to 20. 
Percentage of Write Set = 20 % of read set 
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I Database Size = 200 items. Seed = 4235761 
Number of Data items read = 5 to 20. 

, Percentage of Write Set = 20 % of read set. 
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Database Size = 200 items. Seed = 7774755 
Number of Data items read = 5 to  20. 

, Percentage of Write Set = 40 % of read set. 
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Number of Data items read = 5 to 20. 
Percentage of Write Set = 60 % of read set. 
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Database Size = 200 items. Seed = 4235761 
Number of Data items read = 5 to 20. 
Percentage of Write Set = 60 % of read set. 
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Database Size = 200 items. 
Number of D a t a  items read = 5 to 20. 
Percentage of Write Set = 60 % of read set. 
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Database Size = 200 items. Seed = 7774755 
Number of Data items read = 5 to  20. 
Percentage of Write Set = 80 % of read set. 
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Database Size = 1000 items. Seed = 7774755 
Number of Data items read = 5 to 20. 
50% read-only & 50% transactions have Write Set = 20 % of read set. 
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Database Size = 1000 items. Seed = 7774755 
Number of D a t a  items read = 5 to  20. 
50% read-only & 50% transactions have Write Set = 40 % of read set. 
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Database Size = 1000 items. Seed = 7774755 
Number of Data  items read = 5 to  20. 
50% read-only & 50% transactions have Write Set = 60 % of read set. 



Database Size = 1000 items. Seed = 7774755 
Number of D a t a  items read = 5 to  20. 
50% read-only & 50% transactions have Write Set = 80 % of read set. 
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Database Size = 1000 items. Seed = 7774755 
Number of Data  items read = 5 to 20. 
50% read-only & 50% transactions have Write Set = 100 % of read set. 
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APPENDIX B 

TEST FOR STATISTICAL SIGNIFICANCE 

To check that  the simulation results were significant, we conducted 

multiple simulation runs for different sequences of random numbers (i.e., with 

different seeds). The results for the repeated runs are in Tables 4.1.1 through 

4.8.3 of Appendix A. The Tables 4.1.1, 4.1.2 and 4.1.3 correspond t o  Table 

4.1.0 and so on. I t  can be seen that  the results change very little for the 

different runs. The mean values for the percentages of committed, aborted 

and backed out transactions are tabulated in Tables 4.l.mean thru 4.8.mean. 

It can be seen from the corresponding graphs tha t  the values for the different 

repeated runs are close t o  the corresponding mean values. Thus, the 

standard deviations across the runs would be extremely small. 

To verify that  the various sets of simulation results are statistically 

significant, we performed the two tailed pairwise t-test [Mid 761 on them. The 

t-test was performed by pairing the percentage of backed out transactions 

from four sets of results of two different runs for the same merge wait timer 

value and computing the mean and standard errors of the differences 

between the paired values. The value of t is the mean value of the 

differences divided by the standard error of the differences. We had 4 



samples1 (from 4 runs) of the back-out percentages. From Table A-1 in [Mid 

761, the  value of t must be greater than 3.182 for the difference between the 

means for two different back-out percentages t o  be considered statistically 

significant t o  the 95 percent confidence level. 

The values of t for a representative selection of the Tables 4.1 through 

4.15 are given below. For instance, the value of t for the comparison between 

the back-out percentages in Tables 4.1 through 4.1.3 and 4.3 through 4.3.3 

for a merge wait timer value of 2 is 29.009. Thus the mean values for the  

above two collections of runs is considered t o  be statistically significant 

above the  99.999 confidence level. The other values t h a t  were computed 

were: 

Comparison of Tables 4.1 through 4.1.3 
Merge Wait Timer values: 2 and 12 

meanl: 29.205000 
mean2: 26.357500 
mean of differences: 2.847500 
standard error: 0.183411 
value of t is: 15.525241 
The means are  different a t  more than 99.999% confidence level. 

Comparison of Tables 4.1 through 4.1.3 and 4.3 through 4.3.3 
Merge Wait Timer value: 2 

meanl: 39.260002 
mean2: 29.205000 

'ID statistics terminology, this implies that the degrees-of-freedom is 3. 



mean of differences: 10.055000 
standard error: 0.346610 
value of t is: 29.009512 
The means are different a t  more than 99.999% confidence level. 

Comparison of Tables 4.1 through 4.1.3 and 4.3 through 4.3.3 
Merge Wait Timer value: 12 

meanl: 43.990005 
mean2: 26.357500 
mean of differences: 17.632502 
standard error: 0.617956 
value of t is: 28.533605 
The means are different a t  more than 99.999% confidence level. 

Comparison of Tables 4.1 through 4.1.3 and 4.3 through 4.3.3 
Merge Wait Timer value: 2 

meanl: 40.902500 
mean&: 29.205000 
mean of differences: 11.697501 
standard error: 0.569548 
value of t is: 20.538231 
The means are different a t  more than 99.999% confidence level. 

Comparison of Tables 4.1 through 4.1.3 and 4.5 through 4.5.3 
Merge Wait Timer value: 12 

meanl: 44.677502 
mean2: 26.357500 
mean of differences: 18.320002 
standard error: 0.604988 
value of t is: 30.281605 
The means are different a t  more than 99.999% confidence level. 

Comparison of Tables 4.1 through 4.1.3 and 4.6 through 4.6.3 
Merge Wait Timer value: 26 

meanl: 43.580002 
mean2: 28.262501 
mean of differences: 15.317500 
standard error: 0.274208 



value of t is: 55.860933 
The means are  different a t  more than 99.999% confidence level. 

Comparison of Tables 4.3 through 4.3.3 and 4.5 through 4.5.3 
Merge Wait Timer value: 2 

meanl: 40.902500 
mean2: 39.260002 
mean of differences: 1.642501 
standard error: 0.405121 
value of t is: 4.054348 
The means are different a t  more than 95% confidence level. 

Comparison of Tables 4.3 through 4.3.3 and 4.5 through 4.5.3 
Merge Wait Timer value: 12 

meanl: 44.677502 
mean2: 43.990005 
mean of differences: 0.687499 
standard error: 0.330690 
value of t is: 2.078982 
The means are  different a t  more than 90% confidence level. 

In the last case, the difference between the means is not as  strong as  in 

the other cases tha t  are shown. However, since both are high conflict cases, 

i t  is possible t h a t  both give back-out percentages close t o  each other. 

From the above analysis, we conclude t h a t  the results obtained by 

varying the parameters are significantly different from each other and are not 

dependent on the choice of the seed or the  sequence of random numbers used 

t o  generate simulated events. 
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