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Abstract 

BACKGROUND: Overly simplistic or complex user interfaces of Computerized 

Provider Order Entry (CPOE) systems may impede clinical efficiency and the decision 

making process by increasing cognitive load and diverting physicians' attention from the 

clinical task at hand. In order to design better healthcare user interfaces, there is an 

imperative need for developing new evaluation methodologies to quantify the cognitive 

complexity of CPOE user interfaces. OBJECTIVES: To propose a method for 

quantitative measurement of cognitive complexity of CPOE user interfaces; to validate 

the developed metrics by characterizing and comparing the cognitive complexity of three 

CPOE systems; to gather preliminary usability data that can be correlated to quantitative 

estimations of cognitive load of user interfaces. METHOD: A quantitative analysis of 

cognitive complexity of CPOE user interfaces was performed by computing thirteen 

design metrics. This analysis was followed by a usability order entry study involving a 

total of 30 experienced clinician users of the three CPOE systems investigated. Study 

participants were timed as they entered seven generic orders in each system; various 

ordering issues were identified. Participants also completed a short survey regarding their 

computer skills as well as their experience and satisfaction with using CPOE systems. 

RESULTS: The quantitative evaluation showed a measurable difference in cognitive 

complexity between the three CPOE user interfaces. Furthermore, the usability study 

established that participants spent more time and were less satisfied with using an overly 

complex CPOE system than a system with a lower cognitive complexity score. 
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Introduction 

It is widely recognized that effective evaluation of clinical information systems, 

especially their user interfaces, is necessary in order to ensure that such systems are well 

designed to meet the day-to-day clinical needs of users. Conventional outcome-based 

evaluations are instrumental in providing information about how use of systems affects 

certain outcome measures, such as morbidity, mortality, cost of health care, and work 

efficiency, but do not provide feedback for improving the quality of clinical processes 

[1,2]. Other evaluation methods that are commonly used because of their convenience 

and richness of data collected are questionnaire-based surveys. Surveys have the 

disadvantage that are highly subjective and rely on participants' ability to recall and 

describe their interaction with the systems [2]. The same issues characterize qualitative 

methods of evaluation such as retrospective focus groups and interviews. 

To better understand a system's ability to meet the needs of users, new methods 

of assessment of medical information systems have been developed. These novel 

approaches borrow ideas from multiple fields of research including cognitive science, 

computer science, systems engineering, and usability engineering. The field of usability 

engineering has emerged from "the integration of evaluation methods used in the study 

of human-computer interaction aimed at providing practical feedback into design of 

computer systems and user interfaces" [2]. Employing these new evaluation methods can 

give us a better understanding of how systems can be developed or redesigned to better 

aid the complex processes of medical reasoning and decision making. 

This research study proposes to describe a quantitative approach to the summative 

evaluation of user interfaces of completed healthcare information systems based on 

usability testing. The method developed in this study can also be used in the formative 
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iterative evaluation of systems to help developers design more usable and efficient 

medical software. 

Background and Significance 

Computerized Provider Order Entry (CPOE) systems are clinical information 

systems that allow clinicians to enter patient orders directly into a computer rather than 

on paper. The reasons behind implementing CPOE systems in hospitals are explained by 

the potential of such systems to reduce the number of preventable clinical errors, 

streamline clinicians' workflow, standardize the delivery of medical care in US hospitals, 

and ultimately increase patient satisfaction and decrease healthcare costs. Some of the 

key factors for successful implementation and acceptance of CPOE systems by clinicians 

are ease of use and efficiency of systems as well as the design of the user interfaces [3]. 

Clinical information systems interfaces are inherently complex because of the 

"multifaceted nature of clinical medicine" [4]. However, poorly designed and overly 

complex CPOE user interfaces may hinder the users interactions with the systems by 

placing unnecessary cognitive demands on the working memory of physicians, causing 

them to focus on problematic aspects of the system instead of higher-order reasoning 

processes involved in clinical decision making [5]. This diversion of mental focus and the 

workflow delay it entails may result in some physicians' showing resistance to entering 

patient orders electronically. 

The distributed cognition theory, which gained recognition in human-computer 

interaction research in recent years, defines human cognition as a process of 

coordinating distributed internal representations stored in users' memory and external 
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representations (e.g., screen layout), effectively constituting an indivisible information­

processing system [ 6]. This paradigm, borrowed from cognitive science, helps explain 

how complex user interfaces, which serve as external representations for end users, may 

increase cognitive load making the learning process challenging and time-consuming. A 

user interface that is characterized by high mental load is thus said to be cognitively 

complex. A more formal definition of the concept of cognitive complexity in human­

computer interaction is offered by Rauterberg: "The complexity of the user's mental 

model of the dialog system is given by the number of known dialog contexts on one 

hand, and by the number of known dialog operations on the other hand" [7]. In other 

words, a cognitively challenging system is characterized by the use of many objects or 

constructs that have multiple relationships to one another. System simplicity would be 

defined as the exact opposite - a system with few constructs that have a limited number of 

possible dialog operations. 

User interface design metrics, also called usability metrics (Figure 1 ), can be 

employed to assess the cognitive complexity or simplicity of user interfaces. Usability 

has been defined by Preece et al. as the capacity of a system to allow users to carry out 

their tasks safely, effectively, efficiently, and in an enjoyable manner [8]. Constantine 

described three categories of usability metrics [9]: 

).> Preference metrics are subjective evaluations of users regarding the screen 

design, ease of use, and control of the system; 

).> Design metrics can objectively quantify various properties of user interfaces, 

such as screen information density and layout consistency, and can predict the 

usability of a completed system. 
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~ Performance metrics, such as task completion time and error rate, are 

objective measures that are usually used to drive the design process of new 

user interfaces. Usability testing refers to evaluation of information systems 

by employing performance metrics and it involves representative users 

directly interacting with systems. 

Figure 1 -Usability metrics employed to assess the user interface complexity 

The design metric suite includes structural, content-based, and task-based 

metrics. Structural metrics characterize the static architecture of the interface - number 

of objects on the screen, configuration of objects, number of colors used, etc.- whereas 

task-based metrics depend on the task performed by users and include measures such as 

the number of screens in the path, consistency of screen layout within the path, and 

number of keystrokes and mouse operations performed by users. Content-based metrics 

relate to both the functionality of objects on the screen and their actual meaning for users. 
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A combination of preference, performance, and well-designed structural and task­

based metrics can thus permit not only an objective evaluation of CPOE user interfaces 

but a comparison of different interface designs as well. By selecting and measuring a 

variety of design, preference, and performance measures, this research study proposed to 

investigate the user interfaces of one government and two commercial CPOE systems 

implemented at major hospitals in the Portland metropolitan area. The CPOE systems 

evaluated were all part of comprehensive electronic medical record systems: one 

outpatient system - EpicCare Ambulatory (abbreviated Epic), which is currently in the 

last phase of implementation at Oregon Health & Science University; one integrated 

outpatient/inpatient system - the Department of Veterans Affairs (VA) Computerized 

Patient Record System (CPRS), fully implemented at Portland VA Medical Center; and 

one inpatient system - Horizon Expert Orders, a McKesson electronic health record 

(EHR) product, which is being implemented at Providence Portland Medical Center 

under the customized name of ProvExpert. Epic and McKesson are two of the largest 

EHR vendors, making their software appropriate evaluation targets. The VA CPRS, a 

pioneer in CPOE systems, was selected because of its large user base and successful 

national-wide implementation. 

This quantitative evaluation study proposes a series of design metrics that can be 

used by prospective software purchasers to objectively compare interfaces of various 

clinical information systems when deciding which system they should select for 

implementation in their healthcare organization (summative system evaluation). System 

developers can also employ these quantitative measures to compare different system 

design proposals and determine the most usable interface design with the optimum 

cognitive complexity. Furthermore, the metrics can be incorporated directly into the 
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development environment to provide constant feedback to application programmers 

during the system development phase (formative iterative system evaluation). 

A second study outcome consists of the findings of the comparative analysis of 

the three commercial CPOE user interfaces in terms of their cognitive complexity and 

usability. These results may indicate which interfaces are characterized by high cognitive 

load and how that correlates with task efficiency and system ease of use. User interfaces 

can be redesigned to achieve lower complexity and higher usability scores. 

Previous Work 

In the last decade, many studies concerned with characterizing the complexity of 

clinical information systems and assessing its impact on users' behavior have been 

published. In 2003, a paper by Horsky et al. presented a methodology developed within 

the theoretical framework of distributed cognition for analyzing the cognitive demands of 

CPOE user interfaces [5]. As mentioned earlier, distributed cognition is a novel approach 

that defines cognitive processes as being distributed between users (as internal 

representations) and computers (as external representations) as opposed to belonging 

exclusively to the human being. In other words, the information that is required to carry 

out a task using a computerized system can be either located as an interface object or 

users can bring it to the task as a piece of knowledge that they possess. This paradigm is 

especially relevant to the evaluation of clinical information systems because it explains 

how newly adopted medical technology, if cumbersome, may negatively impact clinical 

reasoning and diagnosis generation. At the same time, the distributed cognition theory 

can help us understand how we can improve properties of user interfaces, especially the 
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graphical ones that are inherently rich in external representations, to mm1m1ze the 

cognitive load of users. More important than the availability of external representations is 

their availability in optimal configurations to facilitate the user-computer interaction and 

reduce errors. 

Horsky's evaluation framework [5] involved a cognitive walkthrough of a CPOE 

system conducted by system experts who entered clinical orders in the system, followed 

by a usability study in which users were asked to place the same orders as the experts 

using the order entry application. The cognitive walkthrough is a powerful technique 

used in cognitive science that can be applied in medicine, in both laboratory and real­

world clinical settings, to determine if a clinician with a certain level of system 

knowledge can successfully complete the sequence of actions required by a task that the 

system is designed to support. The walkthrough evaluation reveals the relative 

distribution of resources at every system state identifying the interface dimensions that 

place considerable demands on the internal resources of users, especially on less 

experienced users that lack a robust understanding of the system configuration. The 

usability experiment can identify both types of ordering errors - omission and 

commission - that users make partly because of inadequate configuration of resources in 

the interface. The results of this extensive study indicated that the user interface of the 

commercial CPOE system investigated had suboptimal configuration of external 

resources and required users to rely heavily on their memory. Consequently, each of the 

seven clinicians involved in the usability study made ordering errors that were partially 

due to the system complexity and low usability. 

Several qualitative studies of usability testing and inspection of systems were 

performed by a research team lead by Kushniruk and Patel who have refined their 
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methodological approaches to the evaluation of health information systems for more than 

a decade [ 1 ,2, 10-13]. The researchers developed a portable usability laboratory consisting 

of audio and video recording equipment that could be taken to clinical settings to test 

users' interaction with computerized patient record systems in the 'thinking-aloud' 

approach (i.e., users verbalizing their thoughts while using the system). These evaluation 

studies demonstrated how usability engineering and cognitive task analysis approaches 

could be used to describe the dimensions of user interfaces (e.g., content and organization 

of information) that impede human-computer interaction and have an impact on users' 

cognitive processes, such as data collection, knowledge organization, and reasoning 

strategies. For example, a recent methodological review published by Kushniruk and 

Patel categorized the most frequent problems encountered by users while interacting with 

a clinical information system as "lack of consistency" in functionality of screen objects, 

"data entry blocked", "response time", "partial matches" in searches for medical terms, 

and "problem understanding system messages" [2]. Furthermore, the same study showed 

that 80% of the usability problems with a system can be identified by involving as few as 

8-12 subjects [2]. 

A 2005 literature review by Despont-Gros et al. found that the number of studies 

related to users' interaction with clinical information systems has increased dramatically 

in the past 10 years. However, a large number of these studies focused on evaluation of 

preference and performance variables, such as user satisfaction, user acceptance of 

information systems, users' success in task performing, and impact of systems on users 

[14]. 

In order to design new healthcare interfaces or redesign the existing ones to 

achieve optimum complexity and usability, there is an imperative need to further evaluate 
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the user interfaces of clinical information systems by using well-developed structural and 

task-based metrics and make the transition from current qualitative understandings of 

user interface complexity toward a quantitative representation of this critical interface 

property. 

Very few studies related to quantitative evaluation of graphical user interfaces 

(GUI) have been published. Of these few studies, the most salient is Comber and 

Maltby's development of a method for quantitative measurement of the complexity of the 

GUI screen layout [ 15-18]. Their work was based on Bonsiepe' s method for quantitative 

comparison of degree of order of two typographically designed pages [ 19). Bonsiepe 

concluded that printed pages with better arrangement of components were judged by 

subjects as more attractive and easier to read. 

Comber and Maltby were also inspired by Tullis' study concerned with evaluation 

of alphanumeric monochromatic screens [20]. Tullis investigated a wide variety of 

displays (a total of 52 screen formats) by employing six display measures and developed 

a prediction model to determine the relationship between the display measures and screen 

usability. Tullis concluded that simpler screen designs were more usable. Interestingly, 

Comber and Maltby, who compared the interface design of four different Microsoft 

Windows applications in terms of their usability, argued that users actually preferred 

screens of intermediate cognitive complexity than screens at either end of the complexity 

scale [ 15). The results of this usability study are presented in Table 1. Although screen 3 

had a mid-range value of complexity, 86% of the users who performed a task using this 

interface did not make any errors. In addition, the total time spent on screen 3 was the 

shortest and users rated this screen as the best design and the easiest to use. 
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USABILITY SCREEN 1 SCREEN 2 SCREEN 3 SCREEN 4 

Complexity 156 170 228 

Error-free 36% 79% 71% 

354 290 293 

Rating 4 7 0 

Table 1 -Comber and Maltby's summary of usability [15] (Table reproduced with permission) 

The authors acknowledged, however, that the unexpected results could be due to 

the small number of study participants (a total of seven) and limited number of screen 

formats investigated. Despite these limitations of the study, Comber and Maltby 

concluded that in the case of GUI screens there was a trade off between usability and 

complexity, usability being a function of complexity (Graph 1 ). The highest usability can 

be achieved at an intermediate value of complexity, which is the optimum complexity of 

a user interface. 

Optimum Complexity 

Complexity 

Graph 1 - Relationship between complexity and usability [15] (Graph reproduced with permission) 
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User interfaces characterized by low complexity do not have too much functionality, so 

they have a lower usability score. At the other extreme, interfaces that are too complex 

impede the user-system interaction, so they also show low usability. 

Purpose of Evaluation and Research Hypotheses 

The objective of this research was to complement the prevwus qualitative 

usability studies that identified features in the CPOE user interface that contributed to a 

greater cognitive load and resulted in greater effort on the part of users. The study 

focused on quantifying this cognitive load. The research aims were threefold: 

);.> To propose a method for quantitative measurement of cognitive complexity of 

CPOE user interfaces. 

);.> To validate the developed metrics by characterizing and comparing the cognitive 

complexity of three commercial CPOE systems. 

);.> To gather preliminary usability data that can be correlated to quantitative 

estimations of cognitive load of CPOE user interfaces. 

The research hypotheses of this study were as follows: 

1) The developed method for quantitative measurement of cognitive complexity of 

CPOE user interfaces is feasible and reproducible. 

2) There is a measurable difference in cognitive complexity between the three CPOE 

user interfaces. 
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3) Cognitive complexity of CPOE user interface affects users' performance and rating 

of CPOE ease of use. Specifically, clinicians will spend more time when entering 

orders into a more complex CPOE system than when placing the same orders into a 

system with a lower complexity score. Furthermore, clinicians will rate the overly 

complex system as more difficult to use. 

Evaluation Method and Metrics 

The research described in this paper extended the formal method for evaluating 

GUI interfaces developed by Comber and Maltby into a method for evaluating user 

interfaces of medical information technology. The quantitative evaluation of CPOE user 

interface consisted of two complementary approaches. First, the Principal Investigator 

performed a cognitive walkthrough of each CPOE system with the assistance of a 

physician highly skilled in computer ordering (David Dorr, M.D. for the Epic system, 

Blake Lesselroth, M.D. for CPRS, and Greg Sicard, M.D. for ProvExpert). Prior to this 

study, the Principal Investigator has attended training sessions to learn how to use each of 

the three computerized systems effectively and efficiently. 

The cognitive walkthrough involved entering four representative orders on a test 

patient: a medication, laboratory test, imaging test, and procedure (see the orders marked 

with an asterisk in Appendix A). This analysis was intended to identify the most efficient, 

error-free sequence of steps for placing an order in each CPOE system. After the action 

sequence for completing each clinical task was identified, a quantitative evaluation of the 

CPOE user interfaces was performed by measuring various design metrics, both 

structural and task-based metrics. A detailed description of the metrics is provided below 
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m the Design Metrics section. To demonstrate the measurement reproducibility, a 

succinct independent quantitative evaluation of the three user interfaces was conducted 

by a second investigator, Dean Sittig, Ph.D. 

The next step of the system evaluation was a usability order entry study. The 

following section describes the process of recruitment of study participants. 

Participant Recruitment 

For the usability study, a total of 30 experienced clinician users of the CPOE 

systems (having more than 6 months of experience) implemented at Oregon Health & 

Science University (OHSU), Providence Portland Medical Center (PPMC), and Portland 

Veterans Affairs (VA) Medical Center were selected. The participant recruitment focus 

was on clinical residents with at least three months of experience with the CPOE system 

and who belonged to groups such as internal medicine and family medicine. Because 

Internal Medicine residents at OHSU performed clinical duties at the VA hospital as well 

and used the CPOE systems implemented at both hospitals routinely, these residents (n = 

14) were recruited as subjects for both clinical sites. There was an additional Family 

Medicine resident recruited from OHSU. A number of 15 Internal Medicine residents 

from PPMC met the eligibility criteria and were also enrolled in the study. 

The eligibility criteria intended to recruit both female and male participants who 

were in the age range of 25-50 years and were using their hospital's CPOE system to 

place at least 40% of the patient orders. The participant recruitment process first involved 

getting study approval from the Medical Director of the practice from which physicians 

were selected. The Medical Director provided a list of physicians' names. An electronic 

mail (e-mail) was then sent to these physicians to request their participation in the study. 
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The clinicians who were willing and able to participate were enrolled in the study. The 

Principal Investigator met with participants on an individual basis at an agreed time when 

computers were less used on clinical wards in order to not disrupt the practice's 

workflow. The study required about 15 minutes of participants' time. Participants were 

awarded a $5 Starbucks gift certificate at the conclusion of the study. Funding was 

provided from an OHSU discretionary account. 

The Survey Instrument 

Limited demographic data of participants was collected as part of the usability 

study - age, gender, medical specialty, and institution where residents practiced 

medicine. Participants were also asked to complete the following short survey regarding 

their computer skills as well as their experience and satisfaction with using CPOE 

systems. 

1. How would you rate your computer skills on a scale of 1-1 0 ( 1 = never used, 

10 =expert)? 

2. What kind of tasks do you use computers for? Check all that apply: e-mail, 

reviewing patient results, entering patient notes, computerized provider order entry 

(CPOE), research, leisure activities. 

3. How long have you been using the CPOE system implemented at this hospital? 

4. How would you rate the ease of use ofthis CPOE system on a scale of 1-5 

(1 =very difficult, 5 =very easy to use)? 

5. Please estimate the percentage of clinical orders you enter into the CPOE system as 

opposed to on paper. 
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6. Do you have prior experience with any other CPOE systems? If your answer is yes, 

please specify the other CPOE systems you have used and rate their ease of use 

from 1 to 5 ( 1 = very difficult, 5 = very easy to use). 

The study complied with the Investigative Review Board (IRB) requirements from 

OHSU, PPMC, and the VA Medical Center, and approval to proceed was obtained. At 

the time the collected data were analyzed, data were anonymous and aggregated. 

Procedure 

Residents recruited from the three clinical sites (OHSU, Providence, and the VA 

Medical Center) were given a list of seven representative patient orders (see Appendix A) 

and were asked to enter these orders in the CPOE system that they used on a test patient 

(no actual clinical data was viewed or sent). The seven clinical orders were carefully 

designed so that clinicians would be able to enter them in both outpatient and inpatient 

CPOE systems. Also, the selected orders matched closely the preconfigured orders 

available in each system. 

The study participants were observed while entering and signing the orders. The 

time it took each participant to successfully submit these orders was recorded with a stop 

watch and the ordering issues encountered by residents were noted. Participants were not 

asked to think aloud while entering orders. The task completion time included the time 

spent by clinicians on backing out of any incorrect paths they chose. To ensure that the 

task completion time was not affected by an unacceptable response delay of the system, 

the CPOE system delay was also measured for random tasks. 
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Design Metrics 

The design metrics used to quantify the cognitive complexity of CPOE user 

interface can be categorized into structural metrics that characterize the interface layout 

and task-based metrics that are based on aspects of the tasks carried out through the user 

interface. The CPOE screen complexity (SC) was measured by computing eight 

structural metrics. The overall cognitive complexity (CC) included the complexity of 

each screen with which the users interacted to complete a task and was quantified by 

computing five task-based metrics. 

In this study, the evaluation of the CPOE user interfaces was based on well-tested 

design principles called usability heuristics, which were proposed by Nielsen in 1994 

[21]. Key qualitative features of the user interface were quantified using structural and 

task-based metrics: esthetics, clutter, simplicity, redundancy, and consistency. Therefore, 

this study provided a quantitative instantiation of Nielsen's user interface heuristics 

(Table 2). 

QUALITATIVE FEATURES QUANTITATIVE METRICS 

System Order 
Esthetics Distribution Order 

Color Count 

Clutter Information Density 

Screen Object Count 
SimQiicit~ Weighted Hidden Action Count 

Redundanc~ Shortcuts Count 

Modified Display Area% 
Consistenc~ Screen Inconsistencies Count 

Table 2- Quantitative instantiation of Nielsen's usability heuristics 
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The following structural metrics were employed to characterize the screen 

complexity: 

1. Screen Object Count represented the total number of actionable and information 

objects visible on the screen. An actionable object was defined, in the context of 

this research, as any selectable option on the screen, including free-text fields, 

with which the user could interact to cause a change in the system status. 

Examples of actionable objects included toolbar icons, radio buttons, free-text 

fields, vertical and horizontal scroll bars, tabs, etc. An information object, as 

opposed to the actionable object, could not be selected by a mouse click or 

keystroke but it provided the user with some clinical or system-related 

information. Some information objects were actually actionable objects that were 

not enabled for selection but they became selectable on subsequent screens. 

Examples of information objects were: patient's demographics, patient's vitals, 

chart headings, medication ordering instructions, etc. 

2. Information Density was defined as the percentage of display area covered by 

actionable and information objects. A rectangle was drawn around each object 

and the density index was expressed as the ratio of the sum of rectangle areas to 

the total screen area. 

3. Shortcuts Count represented the number of redundant actionable objects that 

were displayed on the screen to offer the user a shorter route to perform a task 

than the one usually found hidden in pull-down menus or sub-menus. Examples 
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of shortcuts included tabs, buttons, and toolbar icons that were associated or not 

with visible action label. 

4. Screen Inconsistencies Count was defined as the number of screen objects that 

either had identical functionality but were displayed under different labels or 

invoked a different function but had the same label. 

The previous four quantitative metrics were computed for this study to evaluate how 

much information, including the redundant information, was visible on each screen, how 

consistently that information was displayed to the user, and how tightly packed the screen 

characters were. 

Entropy has been widely used as a quantitative measure of system disorder in 

areas such as thermodynamics and information theory. The next two entropy-based 

metrics, system order and distribution order, investigated the layout complexity of the 

user interface. System order measured the complexity with respect to the size (height and 

width) of display objects, whereas distribution order evaluated the complexity with 

respect to the objects' position (horizontal and vertical) on the screen. The more grouping 

and alignment a user interface had the lower its entropy was, hence the less complex the 

interface was. 

5. System Order was determined by classifying screen objects in classes based on 

common heights and widths. A modified version of Shannon's entropy formula 

[22], based on the proportion of objects in each class, was used by Comber and 

Maltby in their studies [ 16-18] to arrive at a layout complexity figure. The same 
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formula was employed in this study to quantify the degree of order of the screen 

layout. 

n 

C = - N I pi log2 Pi where: 
j;] 

Pi= ni In 

C = complexity with respect to the size of the ith type element on the screen 

N =number of objects in each class (widths or heights) 

n = number of classes (number of unique widths or heights) 

ni = number of objects in the ith class 

Pi = proportion of the ith class 

6. Distribution Order was determined by classifying screen objects in classes based 

on horizontal position (measured from the top of the screen) and vertical position 

(measured from the side of the screen) and then applying the same modified 

version of Shannon's entropy formula. 

n 

C =- N I pi log2Pi where: 
j;] 

Pi= ni In 

C = complexity with respect to the position of the ith type element on the screen 

N = number of objects in each class (distance from the top or side of the screen) 

n =number of classes (number of unique distances) 
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ni = number of objects in the ith class 

Pi = proportion of the ith class 

The system and distribution order metrics identified four classes of objects for each 

screen and quantified the complexities of objects' size (height and width) and objects' 

alignment on the screen (horizontal position and vertical position). The sum of the four 

complexity figures constituted the layout complexity of each screen. 

7. Weighted Hidden Action Count. This structural metric counted the total number 

of items hidden in pull-down menus and sub-menus, which could potentially be 

selected by the user to advance to the desired dialog state of the system. The count 

was weighted by the menu depth (i.e., weight 1 was applied to options from the 

pull-down, weight 2 to options from the cascading menu opened by selecting a 

choice from the pull-down menu, and so on). 

8. Color Count constituted the number of colors employed to highlight certain 

background sections or to make key screen objects more prominent. 

The following task-based metrics were computed to assess whether there was a 

significant difference in the overall cognitive complexity among the CPOE systems. 

9. Dialog State Count was determined by counting the total number of screens in 

the path identified as the most efficient for entering a patient order in each system. 

A dialog state was defined as the current configuration of the external 

representations of the distributed resources model. The internal representations 
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were stored in and retrieved from the user's memory. The Dialog State Count 

metric can be viewed as an indicator of cognitive navigation effort. 

10. Pop-up Window Count was the number of temporary windows that suddenly 

appeared when the user selected an actionable object with the mouse or pressed a 

special function key. Pop-up windows generally contained text-free fields and 

menus of commands and disappeared from the screen once one of the commands 

was selected. A special type of a pop-up window was the window that opened 

when the user selected an option from a pull-down menu. 

11. Modified Display Area% was defined as the sum of percentages of screen area 

that was changed when transitioning from the main ordering screen to subsequent 

screens. This is a measure of consistency of screen layout. A well-designed 

system would have its external representations distributed equally between 

screens so that they place similar cognitive demands on users. 

12. Keystroke/Mouse Click Count was calculated by counting the total number of 

user actions that were part of the command sequence needed to carry out each of 

the computerized tasks. It was assumed that a mouse click included the mouse 

operation of positioning the cursor on the screen. 

13. Screen Complexity Sum was computed by adding the cognitive complexity 

scores of all screens in the path. 
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A summary description of structural and task-based metrics computed for this study is 

presented in Table 3. 

DESIGN METRICS DESCRIPTION 

Screen Object Total actionable and information objects visible 
Count on a screen 

Information Density Percentage of display area covered by screen 
objects 

Shortcuts Count Total redundant actionable objects that are 
routes for tasks shorter than the usual ones 

Screen Total screen objects with either identical 
Inconsistencies functionality but different labels or different 

STRUCTURAL Count functionality but same label 
METRICS 

System Order Complexity with respect to the size (height and 
width) of screen objects 

Distribution Order Complexity with respect to the position 
(horizontal and vertical) of screen objects 

Weighted Hidden Total hidden potential actions in pull-down and 
Action Count cascading menus weighted by the menu depth 

Color Count Total colors used on each screen 

Dialog State Count Total number of screens required to enter a 
clinical order 

Pop-up Window Total number of temporary windows that 
Count suddenly appear when selecting an actionable 

object 

TASK-BASED Modified Display Sum of percentages of screen area changed 
METRICS Area% between the main ordering screen and 

subsequent screens 

Keystroke I Mouse Total user actions that are part of the command 
Click Count sequence needed to enter an order 

Screen Complexity Sum of cognitive complexity scores of all 
Sum screens in the path 

Table 3- Summary description of the structural and task-based metrics computed for this study 
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Collection of Design Metric Data 

As described in the Evaluation Method section, the Principal Investigator 

performed a cognitive walkthrough of each CPOE system in order to compute the design 

metrics, both structural and task-based metrics. The cognitive walkthrough involved 

entering four representative clinical orders on a test patient - a medication, laboratory 

test, imaging test, and procedure. The clinical orders were as follows: 

1. Nitroglycerin sublingual 0.4 mg subling q5min x 3 pm start today for chest pain 

2. CBC with automated differential stat 

3. Ultrasound abdomen complete routine, reason: periumbilical abdominal pain 

4. EKG now, reason: chest pain 

The screens that showed the signing of the orders were not included in the analysis. 

Design metrics were computed on a total of 64 CPOE screenshots (19 (30%) of Epic, 23 

(36%) ofProvExpert, and 22 (34%) ofCPRS), which were inserted into Microsoft Office 

Power Point slides. Screenshots were saved after free-text fields were populated (e.g., 

after the order name was typed in the order search box). Additionally, screenshots were 

scaled to the size of PowerPoint slides unless they were captures of pop-up windows, 

which were left at their original size (Figure 2). 

A rectangle was drawn around each actionable (black rectangle) and information 

object (red rectangle). For computing the Modified Display Area % metric, another 

rectangle (blue) was drawn around the screen area that was changed in transition from the 

main screen to subsequent screens (Figure 3). Drawing rectangles was done as accurately 

and consistently as possible by zooming in on the screenshots at 200% magnification and 

setting spacing between grid lines at 1/24'' inches. 
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Figure 2- Rectangles drawn on the screen capture of a CPRS pop-window 

Figure 3- Rectangles drawn on the main ordering screenshot of Epic 

The drawing of the rectangles was done manually using a series of pre-defined rules 

(see Appendix B). However, the identification of the object type (actionable or 

information), object counting, determination of object size and position on the screen, 

and the computation of entropy-based measures (system order and distribution order) 

were done automatically by a set of programs using the information contained in the 

drawn rectangles. 
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This set of programs, written as a Microsoft Visual Basic for Application (VBA) 

macro, as well as in Java and Python, were pipelined and executed in batch by a Perl 

script "invoker.pl" (Appendix C) for the purpose of clustering screen objects into classes 

and calculating their layout complexity as a function of the objects' relative size and 

screen position (Figure 4 ). The programs were written in collaboration with Hari Krishna 

Rekapalli and Ravi Teja Bhupatiraju, both Graduate Research Assistants in the 

Department of Medical Informatics & Clinical Epidemiology at OHSU. 

Figure 4- Execution of sequential programs to determine the size and position of screen objects 

and compute the entropy-based complexity layout metrics 
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Microsoft PowerPoint slides that contained the rectangles delimiting the actionable 

and information objects were fed as input to a VBA macro (Appendix D). The macro 

automatically identified the size, position, type, and count of the screen objects using the 

OLE (Object Linking and Embedding) automation, which provided an infrastructure to 

access and manipulate Microsoft Office objects. The results of the VBA macro were 

converted by a Java program, "convert.java" (Appendix E) into a tab-separated format. 

The results were further processed by a Python program "data.py", which clustered 

screen objects into distinct classes and calculated the entropies for size and positional 

dimensions ofthese objects. 

The Python program (Appendix F) is comprised of a main section and a method 

called 'getList' that takes the input file with values separated by tabs and populates a 

dictionary data structure with strings "height", "width", "horizontal" (position) and 

"vertical" (position) as keys and the corresponding sizes and positions as values. The 

dictionary thus populated is subsequently used by the main section of the program that 

first sorts the size and position values in ascending order. It then groups all the values, 

which differ by no more than 10% when compared to a reference, into a class. The first 

object in the set is initially considered as reference; then reference becomes the object 

that differs from the original reference by more than 1 0%. This process of updating the 

reference and grouping objects based on the reference continues iteratively until all the 

screen objects are classified into their respective categories. 

A count was made for the objects in each class. Then, the proportion of objects in 

each class was calculated as a ratio of the number of objects in that class to the total 

number of screen objects. Entropy-based complexity measures, system order and 

distribution order, were calculated using the proportion of objects in each class. 
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Specifically, the complexity of size (height and width), as well as the complexity of 

position (horizontal and vertical) were calculated using the modified version of 

Shannon's entropy formula described in the Design Metrics section. 

System Order= I (Complexity of height, Complexity of width) 

Distribution Order = I (Complexity of horizontal position, Complexity of vertical 

position) 

Layout Complexity = I (System order, Distribution order) 

A spreadsheet was used to compute the Information Density and Modified 

Display Area % metrics and to record the rest of the design metrics. Having the height 

and width of screen objects automatically fed into an Excel spreadsheet, information 

density was calculated as the ratio of the sum of rectangle areas to the total screen area. 

The sum of percentages of display area that changed between the main ordering screen 

and subsequent screens was also easily calculated using algebraic functions in Excel. 

Data Analysis 

Data analysis was conducted using version 13 of the Statistical Package for the 

Social Sciences (SPSS 13.0 for Windows). Data collected in the usability study involving 

experienced clinician users of the CPOE systems was processed using one-way analysis 

of variance (ANOVA). The ANOVA model tested for differences in the means of 11 

outcome variables observed on the sample of participants grouped according to a single 

categorical variable (the CPOE system). The outcome variables were as follows: 

~ Demographic information about the study participants: 
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• Age 

• Gender 

• Specialty 

~ Computer experience of participants: 

• Computer skills rated on a Likert-type scale ranging from 1 to 10 (1 = never 

used, 1 0 = expert) 

• Number of tasks for which participants used computers (out of 6 tasks: email, 

rev1ewmg patient results, entering patient orders, CPOE, research, leisure 

activities) 

~ Experience with using CPOE systems: 

• Number of months using the current CPOE 

• Percentage of orders submitted electronically (as opposed to on paper) 

• Number of other CPOE systems used 

~ CPOE preference and performance metrics: 

• Ease of use of current CPOE system rated on a scale of 1-5 (1 =very difficult, 

5 = very easy to use) 

• Task completion time (the time to successfully enter seven generic orders in 

the CPOE system) 

• CPOE response delay 

When significant results were obtained from the overall F-test (ANOVA), 

multiple pairwise post hoc comparison tests (Bonferroni-adjusted comparisons) were 

further carried out to determine which particular group means differ. ANOVA could be 

used only if the assumption of homogeneity of within-group variances (assessed by the 
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Levene's test) was met. Because three of the above outcome variables - CPOE 

experience, percentage of orders submitted electronically, and task completion time -

were not normally distributed within groups, a non-parametric alternative to one-way 

ANOVA given by the Kruskal-Wallis test was carried out. Unlike the analogous 

AN 0 VA, the Kruskal-Wallis test does not assume a normal population and tests for 

equality of population medians among groups. Kruskal-Wallis was followed by the non­

parametric equivalent of the post hoc comparison technique, which is the Wilcoxon­

Mann-Whitney test. 

Structural metrics that quantified the screen complexity were analyzed using the 

Principal Component Analysis (PCA). The rationale behind selecting the PCA approach 

was to reduce the data complexity by summarizing a larger number of variables into a 

smaller number of factors and uncovering any patterns in the set of multivariate data. 

There were other reasons for employing PCA to analyze this data set: 

~ PCA did not assume a dependent variable was specified; 

~ it could be used for strongly correlated variables; 

~ it standardized the original variables that were on very different scales. 

The way PCA works is by seeking a linear combination of variables such that the 

maximum variance is extracted from the correlated variables resulting in a smaller set of 

uncorrelated factors. By summarizing data in this manner, subsequent analyses can be 

greatly simplified. The derived variables (the principal components) that explain between 

70 and 90% of the total variation of the original variables are retained, the rest being 

excluded from interpretation [23]. PCA component scores, which were calculated in 

SPSS using the factor loading (weight) of each structural metric, represented the 

weighted screen complexity scores. 
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Finally, the five task-based metrics that quantified the overall cognitive complexity of 

a CPOE system were analyzed carrying out a multivariate one-way analysis of variance 

(one-way MANOVA). This technique examined the differences in the cognitive 

complexity concept underlying the multiple dependent variables broken down by CPOE 

system type. As in the case of one-way analysis of variance, MANOV A was followed by 

a compilation of pairwise post hoc comparison tests (Bonferroni-adjusted comparisons) 

for each task-based metric. 

Results 

Quantitative Evaluation - Structural Metrics 

The eight structural metrics that quantified the screen complexity were analyzed 

usmg the PCA approach. The main aim of this analysis was to identify interesting 

patterns of screen complexity among the different CPOE systems. A correlation matrix of 

the data outputted in SPSS showed that interrelations between structural metrics were 

substantial, most of the correlation coefficients being above 0.8. The color count was the 

least correlated with the rest of the metrics (correlation coefficient = 0.6). These results 

suggested that some simplification of the data using the PCA technique would be 

possible. Of the eight components extracted by PCA, the first principal component 

explained 86% of the total variance of the observed variables. The scree plot (Graph 2) 

illustrates how component 1 alone gives an adequate representation of the data, its 

eigenvalue of 6.9 being above the standard threshold of 1 [23], which helped to 

determine, along with the percentage of total variance explained, the number of 
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components retained in analysis. Therefore, one-component solution was considered to 

be appropriate. 

6 

Q) 

~ 4 
> c: 
Q) 
C) 3 
w 

0 

3 4 5 6 8 

Principal Component Number 

Graph 2 - Scree plot for structural metrics 

The principal component 1 matrix (Table 4) illustrates a high positive correlation 

with each of the structural metrics and is simply a weighted average of the variables, thus 

providing a measure of the overall screen complexity. The second table (Table 5) 

presents the factor 1 loadings used by SPSS to automatically compute the component 

scores, which represent the weighted screen complexities. Specifically, the screen 

complexity was computed as the sum of the products of the standardized scores of 

structural metrics and the corresponding component loadings. The screen complexity 

scores were used to further compute the Screen Complexity Sum metric, a task-based 

measure. 
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Component Matri)(i 

Component 

1 
Screen Object Count .971 

Information Density .882 

Shortcuts Count .931 

Screen 
Inconsistencies .918 
Count 

System Order .984 

Distribution Order .987 

Weighted Hidden 
.952 

Actions Count 

Color Count .777 

a. 1 components extracted. 

Table 4- Principal component 1 matrix 

Component Score Coefficient Matrix 

Component 

1 
Screen Object Count .141 

Information Density .128 

Shortcuts Count .135 

Screen 
Inconsistencies .133 
Count 

System Order .143 

Distribution Order .143 

Weighted Hidden 
.138 

Actions Count 

Color Count .113 

Table 5- Component 1 loadings used to calculate 

the screen complexity scores 

Table 6 shows the median differences in structural metrics among CPOE systems. 

The results are presented by screen type. There were two major types of screens: main 

full-size screens that look very similar with change of display area of approximately 15-

20% and pop-up windows that were 100% different from the main screens. Thus, main 

screens included the first ordering screen and the similar screens in the path. ProvExpert 

did not have any pop-up windows. The color shading helps to signify the metric 

differences. For the main screens, Epic scored the highest in every structural metric. 

Furthermore, some measurements in Epic were twice or even three times higher than in 

ProvExpert (e.g., number of objects, information density, shortcuts count, entropy-based 

metrics ). ProvExpert achieved either the lowest scores or similar to the CPRS scores. 

Lower scores of entropy-based metrics, system order and distribution order, mean that the 
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screen objects were grouped by size and aligned on the screen, horizontally and 

vertically. The more grouping and alignment a system had the less complex it was. 

MAIN 
SCREENS 

Screen 
Inconsistencies 
Count 

System Order 

Distribution 
Order 

Weighted 
Hidden Actions 
Count 
Color Count 

MAIN SCREENS 

Epic ProvExpert 

POP-UP WINDOWS 

CPRS Epic 

170.8 234.7 

236.1 329.5 

Table 6- Median differences in structural metrics among CPOE main screens and 

pop-up windows 

In the case of pop-up windows, most of the differences were not significant (non-

parametric ANOVA). Exceptions were information density, which was twice higher in 

CPRS (expected result since CPRS is made up of pop-up windows in a proportion of 

64% as opposed to 42% in Epic), shortcuts count and hidden action count (which were 

both 0 for CPRS). 

To assess the reliability of the metrics, a second investigator, Dean Sittig, Ph.D. 

performed a succinct independent quantitative evaluation of the main ordering screen of 

each CPOE system. Dr. Sittig's results (Table 7 - 2nd evaluation column) were very 

similar to the 1st evaluation results obtained by the Principal Investigator (metric 
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differences between 0% and 4.1 %), except in the case of the system order metric that 

turned out to be more difficult to reproduce. 

EPIC 

I 

PROVEXPERT 

CPRS 

STRUCTURAL 
METRIC 

Screen Object Count 

Information Density 

1sT 

EVALUATION 

153 

33.93 

2ND 

EVALUATION 

155 

34.27 

METRIC 
DIFFERENCE 

1.3% 

1% 

System Order 876 60 963.31 9.9% 

Distribution Order 1265.53 1313.03 3.8% 

Screen Object Count 62 61 1.6% 

Information Density 17.44 16.98 2.6% 

System Order 313.28 394.04 25.8% 

Distribution Order 443.94 425.87 4.1% 

Screen Object Count 94 94 0% 

Information Density 17.08 16.74 2% 

Table 7- Selected structural metric differences between two independent CPOE evaluations 

However, differences in system order measurements did not change the fact that 

Epic had the highest complexity with respect to the size (height and width) of screen 

objects and ProvExpert the lowest system order, thus having the best grouping of objects 

based on their size. 

Quantitative Evaluation - Task-based Metrics 

Task-based metrics were computed to assess whether there was a significant 

difference in the overall cognitive complexity among the CPOE systems. Levene's test 
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was computed to test the homogeneity of variances assumption [23] and it was found that 

variances were identical across different systems. As opposed to ANOVA that requires 

only the homogeneity of variances assumption to be met, in multivariate designs, because 

there are multiple dependent measures, it is also required that their intercorrelations 

(co variances) are homogeneous across the cells of the design [23]. Box's test of equality 

of covariance matrices could not be computed for the task-based metrics because of the 

low number of data points (12 in total, 4 computations of each metric per system). 

However, MANOV A is fairly robust to violations of the homogeneity of covariances 

assumption [23]. Normality for the data set was therefore assumed relying on the 

robustness of one particular multivariate test, Pillai' s trace test, which also has the highest 

statistical power [23]. As shown in Table 8, four commonly used multivariate tests were 

computed and all of them were highly significant (p-value < 0.001) meaning that the set 

of five metrics that measured the cognitive complexity of a CPOE system was affected by 

the type of system. 

Effect Value F Hypothesis df Error df Sig. 
Intercept Pillai's Trace .980 49.585a 5.000 5.000 .000 

Wilks' Lambda .020 49.585a 5.000 5.000 .000 
Hotelling's Trace 49.585 49.585a 5.000 5.000 .000 
Roy's Largest Root 49.585 49.585a 5.000 5.000 .000 

CPOE Pillai's Trace 1.861 16.049 10.000 12.000 .000 
Wilks' Lambda .001 40.021a 10.000 10.000 .000 
Hotelling's Trace 232.136 92.854 10.000 8.000 .000 
Roy's Largest Root 225.713 270.856b 5.000 6.000 .000 

a. Exact statistic 

b. The statistic is an upper bound on F that yields a lower bound on the significance level. 

Table 8- Multivariate tests computed for task-based metrics 
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Because the overall multivariate test was significant, univariate one-way 

ANOVAs and pairwise Bonferroni-adjusted comparison tests were examined for each 

metric to determine if mean values on each outcome variable were also different among 

systems. Only two task-based metrics- the number of pop-up windows and the sum of 

screen complexities - were statistically significant at the 0.05 level. The Modified 

Display Area % metric, although not significant (p = 0.058) showed an interesting trend. 

ProvExpert, the system with the lowest screen complexity score, showed intermediate 

consistency between the CPOE main screen and subsequent screens, whereas Epic, the 

most complex system, proved to be the most consistent in the user interface design (see 

Table 9). CPRS also had a high percentage of screen area that was different between 

screens. These findings can be explained by examining the number of dialog states 

necessary to accomplish a task in each system. By increasing the number of dialog states, 

the percentage of modified area increases as well, especially if all the screens in the path 

besides the main screen are pop-up windows (as in the case of CPRS). The percentage of 

area that changed when transitioning from the CPRS main ordering screen to each pop-up 

window was 100%. However, a clinician interacting with a user interface characterized 

by lower design consistency may actually prefer such an interface because it requires less 

manipulation (lower number of keystrokes and mouse clicks) and it takes less time 

(shorter task completion time) to complete a task. In the usability study, users of CPRS 

rated their system's ease of use the highest. This suggests that the above assumption may 

be valid. 
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EPIC 
(E) 

Dialog State Count 4.8 

Pop-up Window 
Count 

Modified Display 
Area% 

Keystroke I Mouse 
Click Count 
Screen Complexity 
Sum 

PROVEXPERT 
(P) 
5.8 

CPRS 
(C) 
5.5 

SIG. (BETWEEN 
GROUPS) 

NS 

Table 9- Mean differences in task-based metrics among CPOE systems 

Table 9 Legend: 

NS =the mean difference was non-significant at the 0.05 level 

E = Epic, P = ProvExpert, C = CPRS 

Graph 3 shows a comparison of the mean values of three task-based metrics, 

Screen Complexity Sum, Dialog State Count, and Pop-up Window Count across systems. 

I~ Screen Comple)QtySum - Dialog State Count ......._ ~p WndowCount I 

EPIC PROv£XPERT CPRS 

Graph 3- Mean comparison of screen complexity, dialog state, and pop-up window count 
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This graph aims to answer the following questions frequently asked by designers of 

clinical information systems: 

~ Should a system require a user to go through multiple screens of low cognitive 

complexity or fewer screens that are more complex in order to accomplish a 

certain task? 

~ Should the screens following the main ordering screen be mostly pop-up windows 

or full-size screens that display information unnecessary to the task at hand? 

Graph 3 suggests that systems with lower overall screen complexity scores (ProvExpert 

and CPRS) had a higher number of simpler screens, whereas Epic, which was more 

complex had fewer but more cognitively challenging screens. This graph also shows that 

the number of pop-up windows versus the total number of screens in the path did not 

matter in achieving a lower complexity figure. (ProvExpert system had zero pop-up 

windows and the lowest screen complexity whereas CPRS, also a less complex system, 

had the highest mean of pop-up window count, 3.5.) 

The Usability Order Entry Study 

A total of 30 experienced clinician users of the CPOE systems implemented at 

OHSU, Providence Medical Center, and the VA hospital were recruited. Of the 30 

participants, 14 (46.7%) were Internal Medicine residents who practiced at OHSU and 

the VA, thus being enrolled as subjects who tested both Epic and CPRS systems. There 

were 15 (50%) Internal Medicine residents recruited from Providence Medical Center 

and one additional (3.3%) Family Medicine resident from OHSU (who used only the 

Epic system). Table 10 presents the summary of the survey data: the mean age of study 
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participants, their gender and specialty distributions, rating of their computer skills, the 

median CPOE experience and percentage of orders submitted electronically (as opposed 

to on paper), and mean number of other CPOE systems used. 

Demographic 

Computer 
experience 

CPOE 
experience 

Age 

Gender 

Specialty 

%orders 
submitted 
electronical 
No. of other 
CPOE systems 
used 

EPIC PROVEXPERT 
(E) (P) 

30.4 31.3 

9 M (60%) 8 M (53.3%) 
6 F (40%) 7 F (46.7%) 

141M 15 IM (100%) 
(93.3%) 

1 FM 
7.5 7.2 

Table 10- Summary of survey data 

Table 10 Legend: 

IM = Internal Medicine, FM = Family Medicine 

NS = non-significant difference at the 0.05 level 

E = Epic, P = ProvExpert, C = CPRS 

CPRS 
(C) 

30.6 

9 M (64.3%) 
5 F (35.7%) 

141M 
(100%) 

7.5 

* = median values reported instead of mean values (variables greatly skewed) 

SIG. (BETWEEN 
GROUPS) 

NS 

NS 

NS 

NS 

E vs. P (p = 0.001) 
p vs. c (p = 0.001) 

E vs. P (p = 0.008) 
p vs. c (p = 0.039) 

One-way ANOVA carried out for age, gender, specialty, computer skills, and 

response delay showed no significant difference between the three CPOE systems. 

However, there were significant differences among systems for all the other outcome 

variables tested using either parametric or non-parametric methods as described in the 

previous section. The VA residents used CPRS for a median of 19.5 months as opposed 
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to the OHSU residents who had only 6 months of experience with Epic (p = 0.001 ), and 

the Providence residents who used ProvExpert for 7 months (p = 0.001). It is important to 

note that a one-month experience entering orders in an outpatient system does not equal a 

one-month experience entering orders in an inpatient CPOE because the number of orders 

submitted in the inpatient setting is much higher. There was also a significant difference 

in the experience with using other CPOE systems than the current one, the Providence 

residents being less familiar with additional clinical information systems. Furthermore, 

the Providence residents tended to use computers to accomplish a lower number of tasks 

(5.3 tasks as opposed to 5.8 tasks for OHSU/VA residents). Because at Providence 

Medical Center residents were still allowed to submit certain clinical orders on paper, the 

percentage of orders entered electronically was significantly lower (80%) than at OHSU 

and the VA (1 00% at both clinical sites). 

The most important findings of the usability study were related to the users' 

preference and performance metrics. The preference metric was a subjective evaluation 

of users regarding the ease of use of the CPOE systems rated on a 5 point scale, with 1 

being very difficult to use and 5, very easy. Table 11 presents the results of these metrics: 

mean ease of use of current CPOE, median task completion time, and mean response 

delay. 

PREFERENCE & 
PERFORMANCE 

METRICS 
Ease of use 
(1 = very difficult, 
5 = ve 
Task 

EPIC 
(E) 

PROVEXPERT 
(P) 

CPRS 
(C) 

SIG. (BETWEEN 
GROUPS) 

Table 11 -Summary of preference and performance metrics 
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OHSUN A residents rated Epic somewhat difficult to use (2.4 on average) and 

CPRS somewhat easy (average score of 4.3), whereas Providence residents considered 

ProvExpert a system of intermediate ease of use (mean of3.3). In the case ofthis metric, 

each of the three pairwise comparison tests had a highly significant p-value. Interestingly, 

the performance metric task completion time was also significantly different for Epic 

(median of 5.3 minutes) versus ProvExpert (3.3 minutes) and CPRS (3.3 minutes). It is 

important to emphasize that the task completion time was not affected by the system 

response delay, which was shown to be similar among the three CPOE systems. System 

response delay was the amount of time that elapsed between a user's mouse click or 

keystroke and the appearance of the new screen as the result of the user action. Response 

delay was measured randomly for each CPOE system during the order entry study. 

The bar graph below (Graph 4) presents a graphical representation of the 

significant differences found in the users' CPOE experience, preference, and performance 

metrics between Epic, ProvExpert, and CPRS. 

•EPIC • PRCNBQ=>ERT oCPRS I 

N::>.Cbrrputer a=cE % Bectronic N::>.Oher Ease of LSe Task 

Tasks Experience Qders a=a:s Used O::lrrpletion 

lirre 

Graph 4- Significant differences in outcome variables among CPOE systems 
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Qualitative Analysis of User Actions 

Participants in the usability study were observed while submitting orders into 

CPOE systems and ordering errors as well as system-related issues were recorded. 

Overall, Epic users experienced more difficulty placing orders electronically. Some Epic 

users neglected to change test priority from the default selection routine to urgent. Others 

expressed confusion as to which priority option to choose when entering a STAT test, 

extreme emergency or urgent. Epic users also commented on the lack of commonly used 

aliases for certain medications or tests (e.g., ntg for nitroglycerin, abdominal us for 

ultrasound abdomen complete test). All 15 Epic users who were enrolled in the study 

spent considerable time (approximately 40 seconds) trying to find the ultrasound 

abdomen complete test among Preference List matches, which were displayed on more 

than three scrolling screens. Residents searched for various keywords, such as us, u/s, 

ultrasound, abd, abdominal ultrasound, but they were able to locate the imaging test on 

the long list of order matches only after typing the exact name of the order. This issue 

was the reason why some residents made the error of selecting the incorrect ultrasound 

test. Another problem related to the way the system was implemented was encountered 

by the majority of residents when placing the culture urine, bacterial test. Submitting this 

order required selection of the specimen source and specimen type but an identical pop­

window containing a list of over 500 categories opened for both order attributes. A final 

type of error made by Epic users represented the selection of the medication with the 

wrong default dose. (Epic contains lists of medication orders with the same medication 

name but with different doses and/or administration routes.) 

The residents recruited from Providence found their CPOE system relatively easy 

to use. However, these residents made an ordering error similar to the one made by their 
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OHSU counterparts - they repeatedly neglected to modify default options for two order 

parameters: test priority and duration of medication order. Most of the Providence 

residents realized the error before submitting the order but they made another mistake by 

not entering the duration of medication in the appropriate text field. (They used the 

Comments field instead.) 

The order submission by CPRS users was not error-free either. Instead of 

completing the test requested date, some VA residents modified the test priority level 

because the two order attributes had adjacent free-text fields. Residents also showed 

some difficulty of finding medication orders under various categories on the extensive 

medication menu. Therefore, most residents preferred to ignore this categorized menu 

and use the ALL MEDICATIONS search engine instead. 

In summary, the CPOE user interface content and layout may affect the 

clinicians' performance. Epic users in particular seemed to have more difficulty entering 

orders in their system and spent more time to accomplish the task. 

Summary of Results 

In the Previous Work section of this thesis, Graph 1, which was originally 

published by Comber and Maltby in one of their papers concerned with investigation of 

complexity of Windows applications' interface design [17], illustrated the trade-off 

between usability and complexity of GUI screens. Comber and Maltby believed that the 

highest usability could be achieved at an intermediate value of complexity, which was 

called optimum complexity of a user interface. User interfaces characterized by very low 

complexity did not have enough functionality, thus achieving a low usability score. At 
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the other extreme, interfaces that were too complex showed low usability as well. Graphs 

5 and 6 represent two superimposed graphs, one being the graph created by the two 

researchers and the other being a SPSS scatterplot made using the thesis data and in 

which the Screen Complexity Sum metric (on the X axis) was plotted against the ease of 

use on the Y axis (Graph 5) and task completion time (Graph 6, in which the Y axis is in 

reverse order, the shortest task completion time corresponding to the highest usability). 

The three CPOE dots fit relatively well on the bell-shape complexity-usability curve . 
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Graph 5- Relationship between CPOE cognitive complexity and ease of use 
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Graph 6- Relationship between CPOE cognitive complexity and task completion time 

Similar to what Comber and Maltby found, the above graphs suggest that a CPOE 

system of mid-range complexity (CPRS) and not the least complex one (ProvExpert), 

achieved the highest usability, meaning the highest ease of use rating and lowest task 

completion time. ProvExpert is the least complex system probably because it was 

designed as a CPOE module used by clinicians only to submit patient orders, thus lacking 

functionality to accomplish other clinical tasks (e.g., writing progress notes, discharge 

notes, etc.). 

On the other hand, it seems that Epic system fits on the descending slope of the 

complexity-usability curve, meaning that its overly complex user interface places 

unnecessary cognitive demands on users' memory, which makes the system harder and 

more time-consuming to manipulate. 
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Discussion 

The main objective of this thesis was to develop a method to quantify the 

cognitive complexity that characterizes user interfaces of computerized provider order 

entry systems. Usability data were also collected to demonstrate how task completion 

time and CPOE ease of use correlate to quantitative estimations of system cognitive load. 

By summarizing the data collected in the usability and quantitative evaluation 

studies, interesting findings can be revealed. Users spent more time on average to 

accomplish a given task (5.5 minutes) using a CPOE system characterized by a high 

complexity score (Epic score = 3.7) and rated the ease of use of this system the lowest 

(2.4) on a 5-point scale, with 1 being very difficult and 5 very easy to use. On the other 

hand, CPOE systems of similarly low complexity (complexity scores for ProvExpert and 

CPRS being -2.1 and -1.6, respectively) were subjectively evaluated by users as relatively 

easy (ProvExpert ease of use of 3.3) or very easy to use (CPRS rating of 4.3). The mean 

values of task completion time for ProvExpert and CPRS were very similar as well (3.3 

and 3.1, respectively). These results illustrate that cognitive complexity of CPOE user 

interface may affect users' performance and rating of CPOE ease of use. Clinicians spent 

more time when submitting orders into a more complex CPOE system than when placing 

the same orders into a system with a lower complexity score. Furthermore, clinicians 

rated the overly complex system as more difficult to use. 

The study participants did not differ in age, gender, specialty, or computer skills. 

However, residents recruited from Providence Medical Center had a more limited 

experience with using computers in general and CPOE systems in particular, regarding 

not only the number of systems used in the past but also the percentage of patients orders 

submitted in their current system. Moreover, Providence data included two outliers 
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representing two residents who were clearly opposed to using both computers and clinical 

information systems. For this reasons, it was expected that Providence residents would 

have an increased task completion time and decreased ease of use rating. That was not the 

case as ProvExpert achieved usability figures similar to the CPRS scores, which were the 

best among the three systems. Therefore, it can be argued that the VA residents' 

extensive CPOE experience (24 months on average) was not the only factor that 

contributed to achieving the best task completion time and the best rating of system ease 

of use. Another factor might be the design of user interface that proved to have low 

cognitive complexity. 

The high complexity of the Epic user interface could be explained by examining 

the high values of each of the eight structural metrics computed. For example, the 

information density index for Epic was exactly twice as much as the index for the other 

two systems. Information density is considered in the literature to be one of the main 

factors that affect the interaction between user and computer interface. Danchak proposed 

that display loading should not exceed 25 percent [24]. This proposed guideline was 

based on his analysis of cathode-ray tube (CRT) displays that were judged by users as 

well-designed and that showed an information density of 15 percent. On the other hand, 

NASA proposed for the design of the Spacelab module display of the Space Shuttle that 

the information density not to exceed 60 percent of the total available character area [25]. 

Modern clinical information systems have mostly graphic user interfaces, which are 

inherently complex as they reflect the complexity of clinical data and of the medical field 

in general. For this reason, it was expected that CPOE user interfaces would show a 

screen density level falling between the two guidelines presented - that is, within the 

range of 25-60 percent. It turned out that an information density index of approximately 
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18 percent (ProvExpert index= 17.7, CPRS index= 17.8) would make a CPOE system 

have low complexity and high usability. 

Another distinctive feature of Epic was the high number of shortcuts displayed. 

Shortcuts are generally considered very useful for experienced users who appreciate a 

flexible system that allows them to accomplish a task in more than one way. However, 

shortcuts offered for too many tasks and more than one shortcut for the same task 

contribute to a high screen object count and may negatively affect the users' interaction 

with the system. 

The number of hidden actions in pull-down and cascading menus in Epic was also 

significantly higher (count= 257) when compared to ProvExpert and CPRS (counts of 5 

and 3, respectively). Most of these hidden menus contained extensive lists of options that 

may have placed additional cognitive demands on the users' memory. Furthermore, 

selection of an item in the pull-down menu required multiple user actions (click the 

menu, scan the item list, and select item) and thus more time than selection of a visible 

screen object. 

A number of screen colors higher than 7 proved to contribute to high screen 

complexity. The count of user interface inconsistencies, either inconsistencies in object 

labels or functionalities, was not particularly high in Epic (only 5 inconsistencies could 

be detected) but it was higher than in the other two systems that actually did not have any 

screen inconsistencies. Finally, the degree of order of the Epic screen layout was almost 

three times lower than that of ProvExpert or CPRS layout. Despite its high screen object 

count, Epic's layout complexity could have been reduced by using fewer fonts, grouping 

objects by size (width and height), and aligning them better on the screen (horizontally or 

vertically). 
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Of the task-based metrics computed for this study, only the keystroke/mouse click 

count was relatively high in Epic. Regarding the number of dialog states, Epic system 

was designed in such manner that in order to accomplish a task, users needed to interact 

with only a few screens but very complex ones. It turned out that to achieve low system 

complexity it was necessary to reverse the relationship between the screen count and 

screen complexity. However, it did not matter whether the sequence of screens included 

multiple pop-up windows or none at all. As discussed in the Results section, these 

findings are particularly important for developers of clinical information systems. 

Limitations of the Study 

Due to time constraints, the scope of this quantitative study was limited to 

evaluation of three CPOE systems. Also, computation of content-based metrics was 

beyond the scope of the study. The results of this study can be used for further research to 

develop a regression model with the complexity metrics as its independent parameters 

and a usability measure, for example, time it takes to complete entering orders in the 

system, as the dependent variable. This regression model can more accurately identify the 

metrics that are important in predicting performance of a CPOE system. To increase its 

external validity and generalizability, the model needs to be extended so that more 

information systems are included in evaluation. 

This research involved comparison of cognitive complexities of three relatively 

different CPOE systems - one outpatient, one inpatient, and one integrated 

outpatient/inpatient - that were in different phases of implementation, one of the systems 

being fully implemented for several years, which had an effect on the content developed 

in the system and its layout. Also, the study groups were different in: 
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~ the level of system use -more orders submitted in an inpatient CPOE system; 

~ experience with the currently used CPOE - VA residents had extensive CPRS 

training; 

~ experience with computers and other CPOE systems- Providence residents were 

less experienced. 

Another limitation of the study was that task-based metrics were computed for the 

sequence of screens obtained by entering four representative orders in each system. Due 

to the low number of data points for these metrics, the Principal Components Analysis 

approach could not be employed to compute an overall system complexity figure. Only 

complexity scores for each CPOE screen were calculated. A more comprehensive 

quantitative evaluation of the task-related cognitive complexity may result in additional 

interesting findings. 

Future Research 

There are many interesting research opportunities involving the computation and 

use of the design metrics developed in this pilot study. Further research needs to be 

conducted to provide additional empirical validation of the design metrics. Thus, more 

clinical information systems that have matching characteristics must be evaluated to 

increase external validity and generalizability of the study. For the proposed method of 

quantifying cognitive complexity of user interfaces to be practically applied to an 

extended system evaluation, design metrics need to be incorporated directly into the 

development environment to be computed automatically. This way, system designers will 

be able to receive objective on-the-fly feedback about the complexity and usability of the 

user interface and modify it accordingly to achieve the optimal balance between the two 
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outcome variables. Furthermore, an evaluation module added to the development 

environment will allow computation of a usability index from the complexity-usability 

relationship illustrated by this study. A usability index along with a cognitive complexity 

score can be used to characterize the user interface of a clinical information system 

influencing the system selection of prospective software purchasers. 

It would also be interesting to conduct a comparative study that includes both 

novice and experienced CPOE users to investigate whether these two groups of users 

perceive the screen display differently. The hypothesis needed to be tested would be that 

expert users group and recall screen objects according to their functionality paying 

attention only to objects needed for the task at hand, whereas novice users notice all the 

screen objects exhibiting difficulty selecting the right action on the screen. This 

experiment can employ various content-based metrics (e.g., similarity metrics currently 

used to annotate images) to quantify the functionality of screen objects and their actual 

meaning for users. Additional research is also needed to investigate whether the users' 

process of learning the user interface navigation is affected by the system complexity. 

Such study may answer the question "What is the optimum system complexity that 

enables users to learn how to use a system effectively?" Achieving optimum complexity 

may mean that aligning objects on the screen to reduce the display disorder is not as 

important for the learning process as grouping objects based on their functionality. 

Conclusions 

The significance of this pilot study is that it proposed a series of design metrics 

for quantifying the cognitive complexity of CPOE user interfaces. Results showed that 
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clinicians spent more time submitting orders into a more cognitively challenging CPOE 

system. Also, users rated the most complex system as more difficult to use. The study had 

two main goals, which were met: to show a measurable difference in cognitive 

complexity among CPOE user interfaces using the proposed design metrics; and to 

demonstrate that the computation of the metrics was feasible and reproducible. However, 

of the thirteen design metrics there was one structural metric, system order, which turned 

out to be more difficult to reproduce. The complexity-usability relationship described in 

the literature for the graphical user interfaces appeared to be valid for the CPOE systems 

evaluated. A system of mid-range complexity achieved the highest usability. Future 

research needs to be conducted to demonstrate the generalizability of this pilot study. 
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Appendix A: Representative Clinical Orders 

MEDICATIONS: 

1. Nitroglycerin sublingual 0.4 mg subling q5min x 3 prn start today for chest pain * 

2. Miconazole 2% topical cream topical bid x 10 days start today 

3. Ciprofloxacin 500 mg po bid x 10 days start today 

LABORATORY TESTS: 

4. CBC with automated differential stat * 

5. Culture urine, bacterial routine 

IMAGING TEST: 

6. Ultrasound abdomen complete routine, reason: periumbilical abdominal pain * 

PROCEDURE: 

7. EKG now, reason: chest pain* 

Note: The orders marked with an asterisk were used to conduct the cognitive 

walkthrough of each CPOE system and perform the computation of design metrics. 
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Appendix B: Rules for Drawing Rectangles around Screen 

Objects and Computing Design Metrics 

• The entire name of a clinical order, including the order code, was considered one 

object (specifically, actionable object if it could be selected for further editing). 

• Where a selectable (actionable) area of a tab, toolbar options, or menu bar had 

characters or characters with icons, the entire area was selected. 

• Every screen option that could be selected by keystroke or mouse click, one or 

double click, and left or right click, was considered an actionable object. 

• Actionable objects that were not enabled on a screen were considered information 

objects on that particular screen but once they became active (available for 

selection), they were counted as actionable objects. 

• Although free-text fields were counted as actionable objects, they were not 

included in the calculation of information density if they were left blank. 

Therefore, a rectangle with the same height as the height of the free-text field and 

with a width small enough to not considerably affect the computation of the 

information density metric was drawn on top of each blank free-text field in order 

to be included in the automatic detection of actionable objects (see explanation of 

object automatic detection in the next section.) 

• Each sentence (delimited by colon or semicolon) included in ordering instructions 

was considered one information object. 

• A screen label and the data value associated with the label were considered two 

different information objects. For example, "Provider: Smith, John M." included 2 
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information objects, one was the label "Provider" and the other, the full name of 

the provider. 

• As a general rule, the extent to which a rectangle was drawn around a string of 

words on the screen was determined based on semantics. For example, "enter 

comments for this order (optional)" was considered one information object 

because each word of the string taken separately could not provide the user with 

the same meaning as the entire string. 

• To compute the Weighted Hidden Action Count, only the actionable options from 

pull-down and cascading menus were counted. 

• A particular type of shortcuts in a CPOE user interface was considered the right­

click menu frequently used by clinicians to edit, discontinue, renew or sign 

selected clinical orders. 

• To compute the Modified Display Area % metric, the percentage of area that 

changed when transitioning from the main ordering screen to a pop-up window 

was assumed 1 00%. The estimation of this change was done by careful visual 

inspection of the two screens. 
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Appendix C: Perl Script for Invocation and Batch Processing of 

Programs 

# !/usr/bin/perl 

$a= system("java convert"); 

$b = system("python data.py"); 

#$c = system("del VBAnotconverted.txt"); 

#$d = system("del final_input.txt"); 

if(($a > -1) and ($b > -1) and ($c > -1) and ($d > -1)) 

{ 

print "Please check your results in final_output.xls.\n"; 

} 

else 

{ 

print "$a $b $c\n"; 

} 
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Appendix D: VBA Macro for Accessing and Manipulation of 

Microsoft Office PowerPoint Objects 

Sub Test() 

Dim TX, TY As Integer 

Dim cur slide As Slide 

Set cur _slide= Application.ActivePresentation.Slides(76) 

Dim c 1, c2 As Integer 

Dim s As Integer 

hFile = CurDir & "\ VBAnotconverted.txt" 

fnum = FreeFile() 

Open hFile For Output As fnum 

Write #fnum,; "Height Width Horizontal Vertical"; 

Write #fnum, 

For s = 1 To cur_slide.Shapes.Count 

Dim cur_shape As Shape 

Set cur_shape = cur_slide.Shapes.Item(s) 

With cur_shape 

Ifcur_shape.Type = 1 Then 

If .Line.ForeColor = 0 Then 

c1 = c1 + 1 

Write #fnum, 0; Round((.Height I 72), 2); Round((.Width I 72), 2); 

Round((.Left I 72), 2); Round((.Top I 72), 2) 

Else 

c2 = c2 + 1 
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Write #fnum, 1; Round((.Height I 72), 2); Round((.Width I 72), 2); 

Round((.Left I 72), 2); Round((.Top I 72), 2) 

End If 

End If 

End With 

Next s 

Write #fnum, "Black-objects"; c1 

Write #fnum, "Other-Color-objects"; c2 

Close #fnum 

End Sub 
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Appendix E: Java Code for Data Formatting 

import java.util. *; 

import java.io. *; 

class convert 

{ 

public static void main( String[] args) 

{ 

try 

{ 

BufferedReader br =new BufferedReader(new FileReader("VBAnotconverted.txt")); 

BufferedWriter bw =new BufferedWriter(new FileWriter("final_input.txt")); 

StringTokenizer str =null; 

String t = null; 

I lbw. write("Height\t Width \tHorizontal\tVertical "); 

I /bw.newLine(); 

while( ( t = br.readLine() )!=null) 

{ 

if(t.starts With("O")) 

{ 

} 

str =new StringTokenizer(t,","); 

str.nextToken(); 

while(str.hasMoreTokens()) 

{ 

bw.write(str.nextToken()+"\t"); 

} 

bw.newLine(); 
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else if(t.startsWith("l ")) 

{ 

} 

str =new StringTokenizer(t,","); 

str.nextToken(); 

while( str .hasMore Tokens()) 

{ 

bw. write( str .nextToken()+"\t "); 

} 

bw.newLine(); 

else if( (t.startsWith("\"B")) II (t.startsWith("\"0"))) 

{ 

} 

} 

br.close(); 

bw.close(); 

bw.newLine(); 

str =new StringTokenizer(t,","); 

bw. write( str.nextToken()+": "); 

bw.write(str.nextToken()); 

bw.newLine(); 

} catch(Exception e) { System.out.print(e);} 

} //end of main 

} //end of class 
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Appendix F: Python Program for Computing Entropy-based 

Metrics 

import sys 

import glob 

import os.path 

import math 

def getList(fileName): 

file= open(fileName,'r') 

height=[] 

width= [] 

horizontal = [] 

vertical = [] 

for line in file: 

fields = line.split() 

if len( fields) == 4: 

height.append((float(fields[O]))) 

width.append((float(fields[l ]))) 

horizontal.append( (float( fields [2]))) 

vertical.append((float(fields[3]))) 

file.close() 

Dx {"Height" :height, "Width" :width, "Horizontal" :horizontal, 

"Vertical" :vertical} 

return Dx 

myDx = getList("final_input.txt") 

out= open("final_output.xls", "w") 

file = open("final_ input.txt" ,'r') 
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for line in file: 

if (line.startswith("\"B") or line.startswith("\"0")): 

out.write("%s\n"%line) 

file.close() 

for tag in myDx.keys(): 

hlist = myDx[tag] 

sortedList = [] 

for el in hlist: 

sortedList.append( el) 

sortedList.sort() 

classesDx = {} 

listDx = {} 

className = 1 

numberl = sortedList[O] 

classStatsDx = {} 

for number2 in sortedList : 

if ( number2 > (numberl * 1.1) ) : 

className+=1 

numberl = number2 

classesDx.setdefault(className,[]).append(number2) 

listDx[number2] = className 

out.write("%s \t Class Name\n" %tag) 

for el in hlist: 

className = listDx[el] 

out.write("%.2f\t %d \n" %(el,className)) 

for className in classesDx.keys(): 
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scores = classesDx[ classN arne] 

probability = float(len(scores) )/float(len( sortedList)) 

classStatsDx[ className] =probability 

entropy= 0 

netProb = 0.0 

netNumOfObj = 0 

out.write("\nClass Name \t Number of Objects in each Class \t Probability \t 

p*log(p )\n") 

for className in classStatsDx.keys(): 

probability= classStatsDx[ className] 

prob =probability 

netProb += probability 

numOfObjects = len( classesDx[ className]) 

netNumOfObj += numOfObjects 

ent1 =probability* math.log(probability,2) * (-1.0) 

entropy+= ent 1 

out.write("Class %d \t %d \t %.2f\t %.2f\n"% (className,numOfObjects,prob,(-

1 *ent1))) 

out.write("Totals \t %d \t %.2f\t %.2£\n\n" %(netNum0fObj,netProb,(-1 *entropy))) 

entropy*= float(len(sortedList)) 

out.write("Entropy = %.2£\n\n\n"% entropy) 

out. close() 
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