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ABSTRACT

Implementation of a Dynamic Primed Process Pool
for the Volcano Query Evaluation System

Gerald K. Bortvedt, M.S.
Oregon Graduate Center, 1989

Supervising Professor: Goetz Graefe

Volcano is a single-user, high-performance query evaluation system,

capable of parallel query evaluation on a shared-memory multi-processor

machine such as the Sequent Symmetry. Ancillary processes are forked by

each query as needed using the UNIX "fork" system call. The cost of fork-

ing a process can be very high and has proven to be a detriment to perfor-

mance. As a solution to this problem a system of persistent, reusable

processes, a "primed-process pool", is implemented. Mechanisms for

dynamic process loading, interprocess communication and dynamic process

creation are explored and their implementations are discussed. An experi-

mental performance evaluation is done comparing the primed-process pool

with the existing system. The mechanisms required to extend the primed-

process pool to a network of shared-memory machines are explored.
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CHAPTER 1

INTRODUCTION

The increased availability of multi-processor computers has focused

attention on the advantages and problems of parallel programming. The

database world is no exception. Within the relational database area con-

siderable effort has been spent to exploit this technology. The Gamma [1]

project at University of vVisconsin, the Bubba [2] project at MCC, the

Grace [3] database machine at the University of Tokyo, XPRS [4] at

University of California at Berkeley, Teradata, [5] at the Teradata cor-

poration and the Volcano [6] query evaluation system at The Oregon Gra-

duate Center, are a few examples.

To get a program to execute in parallel requires mechanisms to coordi-

nate the various processes involved. These mechanisms can add

significantly to the cost of executing the program. A very important aspect

of parallel programming is to minimize these costs. How and when new

processes are created is one mechanism that needs to be explored. The

cost of creating new processes can be very high. In an environment that

continually requires a group of similar processes, Le., a query evaluation
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system, it is beneficial to allow processes to exist between uses in an idle

state, so they can be reused at a later time. These benefits must, however,

be weighed against the cost of maintaining and communicating with these

processes.

In this thesis we explore the implementation of a pool of reusable

processes for the Volcano query evaluation system. The performance of the

system is compared experimentally with the current system to see if indeed

t-he benefits outweigh the costs.

1.1. Motivation

In the current implementation of Volcano, a query is evaluated by

compiling it with the Volcano library and then executing the resulting pro-

gram. The Volcano library contains functions necessary to evaluate a

query. If parallel execution is required, the process creates copies of itself

using the Dynix1 ."fork" system call. The cost of the Dynix "fork" system

call can add significantly to the overhead of parallel query evaluation.

When a fork call is executed, the operating system must allocate a

new process structure and copy into it all the information maintained in

IDynix is a trade mark or the Sequent Corporation, it is an enhanced version or the UNIX operating sys-
tern.
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tbe original process structure[7J. This information includes such things as

tbe process scheduling priority, pointers to other control blocks and lists of

related processes. A new page table is constructed and space in memory is

allocated for the new process. The data and stack segments of the original

process are then copied into this space. The text segment can be shared so

tbere is no reason to copy it. Copying of the data segment, stack seg-

ments, and page table accounts for much of the cost of the "fork" system

call. This cost increases with the size of the process being forked and the

amount of space it has allocated.

With the current implementation of Volcano new processes are created

for every query. When the evaluation of the query is complete the

processes are terminated. The processes used to evaluate a particular

query contains some subset of the routines contained in the Volcano

library. If a group of processes containing the entire Volcano library

existed and persisted from one query to the next, forking new processes for

each query would be unnecessary. The cost of creating new processes

would be paid once rather than for each query. The cost of forking

processes could be amortized over an arbitrary number of queries rather

than paid by each query individually. Reusing processes rather than creat-

ing new ones could reduce the execution cost of each query.
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One goal of this project was to develop and implement the mechan-

isms necessary for query evaluator processes to be reused, eliminating the

need to fork new processes for each query. This required the processes

used to evaluate the query to exist independent of the queries themselves.

The evaluator processes exist as a group of background processes waiting

for a request to evaluate a query. This group of processes will be referred

to as the primed-process pool. The primed-process pool will require a series

of mechanisms that can take a query input in some form, send it, directly

or indirectly, to the evaluator processes (the primed-process pool), convert

the query into a form the evaluators understand, wait for the query to be

evaluated, and then return the results to the user (Figure 1). Furthermore,

a mechanism must be developed to activate processes within the pool as

they are needed by a single query for parallel evaluation.

A second goal of this project is to explore designs and mechanisms

necessary to extend the primed-process pool and thus Volcano over

machine boundaries. Volcano is currently implemented to execute on a

multi-processor shared-memory machine. It is the belief of the Volcano

designers that high performance can be achieved by a network of shared-

memory machines[8]. Extending the primed-process pool entails developing

new or extending the existing communication mechanisms to work between
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machines. The data records need to be collected and sent between

processes on different machines rather than just pointers, as can be done in

a shared-memory environment. We would like to maintain the encapsula-

tion of the parallelism that currently exists in Volcano[6]. The fact that

the query processing is being done on multiple machines should be tran-

sparent to the user and all other procedures within the Volcano system, i.e,

no module within Volcano other than the exchange module (the module

responsible for parallelism) should have to treat records from a remote

machine in any special way.
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1.2. Structure of the Thesis

In the following chapter we discuss other work in this area. A brief

description of the Volcano query evaluation system follows, with emphasis

on the parts that are directly affected by this project. Chapter 4 discusses

the design and implementation of a reusable primed-process pool for Vol-

cano. Chapter 5 presents experimental performance comparisons bet-ween

the forkint system and the primed-process pool. The final chapter contains

a summary of the project, conclusions that can be drawn from the results

and what direction should be pursued next.
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CHAPTER 2

RELATED WORK

A number of corporations and universities have developed high perfor-

mance, multi-processor database machines. They fall into two basic

categories, the shared-nothing machines, Le., Gamma[l] and Bubba[2], and

the shared-memory machines, Le., Direct[9], Grace[3] and XPRS[4]. Of

these, only Direct and Gamma directly address the implementation issues

discussed in this thesis. Brief descriptions of the others are included.

XPRS is being developed at the University of California, Berkeley.

The goal of XPRS is to build a high performance database system that will

run on a conventional operating system[4]. It is designed to run on a single

processor machine, e.g., a Sun 4, or a multi-processor shared-memory

machine, e.g., a Sequent Symmetry. XPRS is being designed to take

advantage of expected advances in disk technology, bus speed and memory

size and speed.

Grace [3] is a parallel relational database machine being developed at

the University of Tokyo. Grace aims to achieve high performance by using

data-stream-oriented processing. In data-stream processing each relational
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operator is encapsulated in a module. The operand data or tasks are

passed between modules one task at a time. A similar system is used in

Volcano.

Bubba [2] is a highly parallel, shared-nothing database machine

developed at MCC in Austin, Texas. It is designed to employ on the order

of 1000 intelligent repositories (IRs). An intelligent repository consists of a

microprocessor, a disk controller, communication processor, a large main

memory and a disk. The IRs are connected by a network so any IR can

communicate to any other IR. The IRs are physically close to keep mes-

sage delays small.

Direct [9] is a multi-user database machine using the Version 6 UNIX

operating system. The host is a PDP 11/40, the back-end consists of eight

LSI 11/23 computers. The software protocol used to connect the front-end

host processes to the back-end (the server processes) is the UNIX port facil-

ity. A port is an. interprocess communication facility that allows a many-

to-one connection. The port is "owned" by a single process, that process

has exclusive read access to the port. Any number of processes can write

to it. The port allows for multiple users on the host to communicate with

the single controller process on the back-end. The back-end software con-

sists of four main process types, a process to manage the catalogs, a
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process to manage memory, a process to schedule a query's execution and

the query evaluator processes. The first three processes are implemented

on one processor. The remaining processors are used by query evaluator

processes, one per processor. To avoid writing a separate communication

subsystem, the port facility is also used for the interprocess communication

among back-end processes.

Gamma [1] is an operational prototype of a shared-nothing database

machine. It consists of 17 VAX 11/750 processors each with two mega-

bytes of memory. The processors are connected with a token ring. The

host, another VAX 11/750, is also included in the token ring. The host

machine uses the Berkeley UNIX operating system with communication

facilities similar to those in Version 6 UNIX. However, the database

machine itself uses NOSE, a minimal operating system developed to sup-

port database management systems. Nose provides a fast, reliable com-

munication link between the server processes and to the host machine.

Gamma uses a primed-process system. There are six distinct process types:

catalog manager, query manager, scheduler process, operator process,

deadlock detection process and a log manager. The catalog manager and

the query managers (one for each user) reside on the host machine. The

other processes reside on the 17 processor back-end machine. There is a
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scheduler process for each query. AI1 the scheduler processes were imple-

mented on a single processor. There is a single log manager and a single

deadlock detection process for the entire system, each are implemented on

a separate processor. The remaining processors are used by operator

processes. NOSE and Gamma are currently being ported to an Intel

IPse /2 hypercube with 32 nodes and 32 disks.
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CHAPTER 3

VOLCANO

Volcano is a high performance query evaluation system developed for

database research and education[S]. It is designed as a set of mechanisms

for exploring database design policies, such as how and when to use paral-

leI processing. Volcano is currently a single-user system capable of parallel

query evaluation. The system is based on a small core of operator modules

(about 15), e.g. a sort module, a file scan module, a module to create

indices. All the operators are implemented as £terators, Le., each consists

of an open, next, and close function. The operators are supplemented by

support functions. Support functions are specific to particular types of

data records, e.g., comparisons and hash functions. They are passed to the

operators by means of pointers.

To evaluate a query, a tree-structured query evaluation plan is gen-

erated by the user (Figure 2). Each node in the tree consists of four

pointers. The first three pointers are to the open, next and close functions

of the operator associated with that node. The fourth is a pointer to a

state record which contains the arguments necessary for that particular
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operator, such as pointers to support functions, and a pointer to the next

node or nodes in the tree. All the information associated with each node in
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the tree (the state) is also kept in its state record. Encapsulating this infor-

mation in the state record allows an operator to be used an arbitrary

number of times in a single query. A query tree can be arbitrarily complex

and the operators can be arranged in any logical manner.

To pass information from one operator to another a NEXT -RECORD

structure is used. A NEXT RECORD structure consists of the record

identifier (its physical location on the disk) and a pointer to the location in

the buffer where the re~ord currently resides. Passing pointers rather than

the records themselves eliminates the need for memory-to-memory copying

of records and contributes to Volcano's efficiency. To pass a

NEXT RECORD structure rather than the record itself requires the record

to be fixed in the buffer until all references to it are no longer required.

For more information on the Volcano's buffer system see reference[8].

Volcano's parallelism is encapsulated in a single module, the exchange

module[6]. The exchange module follows the same open, next, close para-

digm as all the other operators in the system. This uniformity allows the

exchange module to be inserted anywhere in a query tree. The exchange

module uses the Dynix "fork" system call to create processes as needed. To

decrease the time required the processes are forked using a propagation

scheme. The first process forks a process then both these processes fork
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new processes and so on until the required number of processes have been

forked.

When the open_exchange function is invoked it creates a port. A port

is a data structure in shared memory used to pass records from one process

to another. The opeILexchange then forks a single process. The original

process is now a consumer of the records that the new process, the pro-

ducer, produces. This producer process, the master producer, immediately

&xecutes the function execute_producers. This function forks the remaining

producers, if any more are required. Each producer starts executing the

query tree. The producers, rather than passing the records one by one to

the calling operator, as the other operators do, collect the

NEXT...RECORD structures in packets (Figure 3). When a packet is full,

it is inserted into the appropriate port and the consumer is alerted, by

means of a semaphore, that data is available. The consumer executes the

next_exchange fu~ction which returns the records to the requesting opera-

tor one record at-a-time.

The exchange module can be used for both intra-operator parallelism,

Le., the work of one operator spread out over a number of processes, and

inter-operator parallelism, Le., different operators executed by different

processes.



-

producer

onsume

port

r '
I

k
I

I pac et I
I I
L J

..

producer

The Exchange Module
Figure 3

15

..

producer



16

CHAPTER 4

THE PRIMED-PROCESS SYSTEM

The primed-process system for Volcano was developed in five stages.

These stages are examined in the five sections of this chapter. The first

section addresses the need to separate the query from the query evaluator

and how to associate them at run time. The next section explores the com-

munication requirements of the primed process system using only a single

evaluator process. The extension of this system to multiple evaluators is

presented in Section 3. Section 4 deals with the problem of a fixed size

process pool and demonstrates the solution. In the final section we explore

the needs and present a design for extending the primed-process pool over

a network of shared-memory machines (Figure 4).

4.1. Incremental Loading

In this section we explore a mechanism that allows a compiled pro-

gram to be associated with another program that already exists as an exe-

cuting process. This procedure, known as dynamic or incremental loading,

is provided by the Dynix link editor.
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query

results

A Distributed Primed-Process Pool

Figure 4

In the existing Volcano system, a query is compiled together with the

Volcano library to create an executable program. This program is only

capable of evaluating one particular query. A new executable program

must be created for each query to be evaluated. It is preferable to have

one executable program that can evaluate any query. For a program to be

capable of evaluating any query, the program must exist independently of

the queries it evaluates. To evaluate the query, the query is associated

with the query evaluator at run time. If a query were a simple data struc-

ture, associating the query with the query evaluator would be very

straightforward. The query could be read into the process directly.

Queries, however, include compiled code that must be linked to the
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evaluator process. To link the query and the evaluator process requires a

mechanism that allows new code, the query, to be inserted into a running

process, the query evaluator, in such a way that the running process can

execute the new code. Once the query is evaluated, the code associated

with it should disappear, leaving the query evaluator ready to accept

another query. The incremental loading facilities of the link editor

achieves both of these goals.

Incremental loading can be done by using the link editor (ld) command

with the -A option. The result of this command is the creation of an exe-

cutable file, (file A in Figure 5) that may be read into an existing program's

space, (program B in Figure 5) and executed as an extension to the exist-

ing program. The symbol table of the newly linked file, file A will reflect

the entries of both the object file being linked and those of the existing

program, program B. The symbol table of the currently executing program

(program B) remains unchanged. The ld command takes as arguments: the

name of the executable program (program B) the file will be read into, the

location within the address space of program B where the new executable

code (file A) will be placed and the point within this new code (the text

segment of file A) where execution will begin (the entry point). Sufficient

space must be allocated in the data space of program B, at the location
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specified, to accommodate the text and data segments of the new object

code, file A. The size of the data and text segments are available in the

header structure of the object file. This space can either be preallocated in

the data segment or it may be dynamically allocated in the heap space of

the existing process (Figure 5). The code is then read into this location by

the executing program (program B) using the "read" system call. Both the

space allocation and the read are explicitly coded in program B, they are

not part of the link editor command. Once the text and data segments

from file A have been read into the data space of program B, program B

can access both the text and data. The text segment of file A is accessed

by program B using a function call. The function is addressed by using the

entry point specified in the ld command. The address of the entry point is

read from the header structure of file A. The new text segment read in

from file A is not write protected as would normally be the case with stati-

cally loaded text. It is thus possible to overwrite the executable code.

When the system is extended to a multi-process system (the primed-

process pool), each process will need to access the code and data that is

dynamically loaded. To avoid reloading the query into each process, the

query is read into shared-memory. Any process within the process pool can

directly access both the code and the data associated with the query. The
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discussed later.
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It was considered desirable to change both the Volcano library and the

current test queries as little as possible. With multiple people working on

the same code concurrently, the fewer changes necessary, the fewer prob-

lems coalescing the changes and the less chance of introducing undesired

side effects. While the existing queries are for test purposes only, if they

can be used without major changes, valid performance comparisons will be

easier to make. The only change necessary in the test queries was to

change the name of the query function from "main" to the name of the file

the function was stored in, e.g., if the file was called "queryl" then the

function was also called "queryl ". This change was necessary to help

establish the entry point of the function in the newly loaded code. This

phase required no changes to the Volcano code itself.

4.2. Client/Server

The incremental loading facilities of the link editor allows us to

separate the query from the query evaluator. The query evaluator still

exists as a foreground process and, therefore, can only exist for one query

evaluation session. In the current implementation, if some number of

queries are evaluated, then the terminal is needed for some unrelated work,

the query evaluator has to be terminated. When it is required again it has
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to be restarted. We prefer the evaluator process existed as an idle back-

ground process between sessions, to be activated as necessary. This

mechanism is a basic client/server apparatus[lO] (Figure 6). We will now

discuss the design and implementation of this apparatus for Volcano.

The client in this case is a process that runs as a foreground process.

It is capable of accepting input from stdin and places its output on stdout

or stderr. It exists independently of the query and the query evaluator (the

server). It is possible to have multiple clients that are independent of each

Q Quuy
I
I
I
I
I
I

r---v---,
I
I
I
I

Query ~
~ :

I
I

: Client
I
I

Results :
I

»01
I
I
I
I
I
L.______

The Client/Server Apparatus
Figure 6

ury

I - Query- --

Client Server

Results -
i

-
:



23

other (This property is of limited usefulness at this time since Volcano is a

single-user system with no concurrency control. It is, however, a prere-

quisite to extending it to a multi-user system and, therefore, was included.).

At this stage, the purpose of the client process is "to accept a query from

the input device, relay it to the query evaluator and wait for the results to

be returned. The client exists for the duration of a query evaluation ses-

sian, which can consist of an arbitrary number of queries.

The server or query evaluator is a process (or later a group of

proceSSt3) that exists in the background, independently of any terminal or

other input device. The server has no inherent relationship with any par-

ticular client or query. The server contains all the code necessary to evalu-

ate any legal query (not including query specific support functions), Le., the

entire Volcano library. It also contains the code necessary to dynamically

load a query as discussed in the previous section. The query is received

from the particular client being served, loaded, evaluated and the results

are returned to the client. The server is then ready to evaluate another

query from the same or any other client. The server is totally independent

of the clients. It persists until it is explicitly killed, regardless of the

existence (or lack of) client processes.
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A major part of any client/server apparatus is the communication

scheme used to connect the client with the server. The Dynix operating

system, being implemented on a multi-process shared-memory machine,

offers a number of possible schemes for this communication. A location in

shared-memory can serve for message passing, the memory-mapping facility

may be used, or the data may be passed using sockets, an interprocess

communication facility provided by the operating system. Dynix also sup-

ports the Unix system V message-passing facility. These alternatives are

discussed briefly.

Using shared-memory to pass messages between two processes is very

straightforward. One process puts a message into the space, the other

takes it out. The problem is how to efficiently detect when a message is

available. If the receiving process must continually check to see if there is

a message available, it is in essence in a state of busy wait. Busy waits

and high performance are not normally compatible. The Dynix operating

system has a signal facility that would allow the sender to alert the

receiver that there is a message available, but this scheme requires the

sender to know the receiver's process identification number. To establish a

connection the processes involved also need to know the location in

shared-memory where the messages reside. To obtain this information the
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processes must communicate before the communication link can be created.

This information can be shared by storing it in a file known to both the

clients and the server.

There is also a semaphore mechanism available to synchronize

shared-memory access. This mechanism is more effective than signals to

manage the shared-space and alert processes to the presence of messages.

Using semaphores still requires information to be shared between the

processes, the location in shared-memory and the location of the sema-

phore, before the communication "link is established.

The memory-mapping facility allows a file to be mapped into the data

space of a process. This facility does not require a special file, as the previ-

ous schemes do, to hold information necessary to establish a connection. If

both the client and the server know the name of the file being mapped the

connection can be established. The information needed to create the con-

trol structure, either signals or semaphores, can then be passed. The major

shortcoming of this idea is its complexity. The mechanisms for alerting a

process a message is available and that used to actually pass the message

are separate. One mechanism that does both is preferable.

The socket facility seems to be the most appropriate of the mechan-

isms examined thus far, for this application. Using sockets is fairly
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complex and deserves some explanation. Sockets come in various flavors

depending on the environment they are being used in and the reliability

required. The variety we used were of the style SOCK-STREAM in the

UNIX domain. This variety was chosen based on the available environ-

meat (a UNIX type environment) and for reliability. The other type of

sockets currently implemented in the UNIX domain are of the style

DATAGRAM, which are not guaranteed to be delivered and thus require a

':message received" response[U]. Since message passing of any kind is

costJy we wish to avoid the need for the response message.

With a SOCK-STREAM type socket 'communication takes place

across a connection between two processes. The connection is established

by a series of system calls (Figure 7). Process A uses the system call

"socket" to create a socket of a specified type. The call returns a file

desc.riptor, an integer that is an index into process A's open file table. The

socket call establJshes a socket, one end of the communication connection.

The system call "bind" is then used to bind a file name to the socket. The

system call "listen" is used to establish that this socket is ready to accept a

connection and to set the size of the message queue. Currently the max-

imum number of messages the operating system will queue is five. The pro-

cess can now accept a connection using the system call "accept". The pro-
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cess will block on this call until a connection is established. When a con-

nection is established, the "accept" call returns another file descriptor that

can then be used to read or write a message across the communication link

.
h
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For process B (Figure 7) to connect with process A's waiting socket,

process B also uses the "socket" system call, which again returns a file

descriptor and establishes another socket. Process B uses the "connect"

system call, with the socket name bound by process A as an argument, to

establish the connection between the sockets in process A and process B.

The socket name must be known by both process A and process B. If the
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BIND
SOCKET
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establish connection
ACCEPT <--- -------------------- --->CONNECT

\READ socket connection WRITE I

CLOSE
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connect is successful, process B can read or write messages to process A,

and visa versa, using the "read" or "write" system call respectively, with

the file descriptor returned by the "socket" call. The connection can be

terminated by either process using the "close" system call. To re-establish

the connection both processes must close their respective connections, then

execute the system calls as before. Up to 4096 bytes can be buffered by the

socket. One possible hazard is that message boundaries are not preserved.

If there is more than one message queued in the socket buffer, care must be

taken that the length of the message read is equal to the length of the mes-

sage written or the messages may not arrive in the intended format.

The Unix system V message facilities offer features very similar to

sockets. Their implementation is, however, quite different. The structure

used to pass messages, unlike sockets, is not part of the operating system's

file system. This message facility builds a separate queue structure. Build-

ing a separate queue structure has the advantage that it does not use the

process's open file table (a very limited resource on the available machine).

However, it prohibits the easy redirection of data that is possible with

sockets. This message system is not extendible over machine boundaries.

Since data redirection and extension of the system over machine boun-

claries are important in this project, we have used sockets in our implemen-
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tation.

In our implementation (Figure 8), the server is started as a back-

ground process. It immediately creates a socket whose name is known to

the client and then blocks on the "accept" system call waiting for a client

to connect. The socket name is a compile time constant for both the

clients and the server. When a client is started as a foreground process

(Figure 8), it creates a unique file name, whose use will be discussed

Server

Starts in Background
Create Socket

Client

.Start in Foreground
Create Unique File Name
Read in Query
Establish Socket Connection

with Server

Send Query and Unique File Name
Close First Socket, Create New

Socket
Establish new Socket Connect
with Client

Redirect Output Through New
Socket

Dynamically Load Query
Evaluate Query
Returns Results to Client
Waits for Client to Connect

Return Results to the User

Wait for New Query

Order of Execution for Server and Client Processes

Figure 8
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shortly, then blocks on a read from the keyboard. When data is entered

on the keyboard, presumably the name of a file containing a query along

with its run time arguments, the client executes the series of system calls

necessary to establish a connection with the server. This established con-

nection is used to pass two messages to the server. The first message is the

unique file name mentioned above. The second message is the data entered

from the keyboard. Once the messages have been sent, the client closes its

end of the socket connection and proceeds to create a new socket using the

ullique file name it created. It then blocks on the "accept" system call and

waits for the server to connect. The server uses the file name passed in the

first message to create a socket and connect with the client. This socket is

used to pass the results of the query evaluation back to the client (Figure

9). This second socket raises the question of, if a socket is a two-way com-

munication link, which it is, why create a new socket? In a strictly single

user environment this second socket is unnecessary. However, in a multi-

user situation it is necessary to free the first socket to receive connections

from other clients. Since a multi-user environment is anticipated it seemed

reasonable to design the system with this intent in mind. In this way each

client will have a unique communication connection with the server.
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Once the output socket is connected, the server's standard output

streams, stdout and stderr, are redirected through the socket. The com-

piled queries need no special structure to handle the output; the regular C

function "printf" is sufficient. Requiring no special output structure is

important since the print routines are supplied as support functions not as

part of the Volcano library. The second message received from the client
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is separated into the query (a file name) and individual arguments, if any,

to be dynamically loaded as described earlier, and executed. When the

evaluation is completed, the next set of messages (a socket name and a

query) is extracted from the input socket queue and the process is

repeated.

When the session is complete, a "quit" entered from the keyboard will

terminate the client. The server will remain in the background as an idle

process. If "exit" is entered both the client and the server are terminated.

4.3. The Primed-Process Pool

The mechanisms described so far separate the query from the query

evaluator. The query evaluator can persist for an indefinite amount of

time and evaluate an arbitrary number of queries. The communication

mechanisms for conveying the query from the keyboard or other input dev-

ice to the query ~valuator and the results back to the appropriate display

device are provided. The next step is to extend the model to support

parallel processing by adding a multi-server primed-process pool (Figure

10).

A primed-process pool is a group of identical server processes that are

capable of working together on the same task. The term "primed" means
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the processes exist prior to their actual need. The client/server paradigm

discussed earlier is a special case of a primed-process pool where the pool is

restricted to one process. We are interested in the more general case of an

arbitrary number of processes.

For a process pool of an arbitrary number of processes to function

together, we again have a need for interprocess communication. There are

several levels of communication necessary. A process needs to be alerted

that its services are required and supplied with the information necessary

to perform them. Data needs to be passed between processes, and each
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process must be able to communicate the results to the appropriate output

device.

An efficient system to pass the data between processes already exists

in the Volcano system. This system, passing packets of record identifiers

via shared-memory, is equally appropriate in the new system and need not

be changed. This mechanism was discussed earlier in the Volcano section.

For the other communication requirements, all the communication

methods discussed earlier are considered along with the Dynix pipe

mechanism. Pipes were not considered earlier because they require the

processes communicating to have a common origin, Le., they are created

using the "fork" system call. The client/server model discussed earlier does

not have this property.

Pipes are implemented by the operating system using sockets. Two

one-way communication channels are created, one for writing messages and

one for reading. A pipe is created using the "pipe" system call. The system

call returns two file descriptors. The first descriptor is for reading, the

other is for writing. The "pipe" call is executed prior to forking more

processes. Since each forked process is an exact copy of the original pro-

cess, including the file descriptor table, it will inherit the pipe connection.

The processes can then communicate via the pipe. The connection remains
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open until one of the processes involved closes the connection using the

"close" system call. Once a pipe has been closed the connection cannot be

re-established. If more than one process is forked, they will all be able to

communicate over the same pipe. This establishes a many-to-many com-

munication connection between all the forked processes. When a message

is written using the pipe, it will be read by the first process that is able to

read from the pipe. The messages cannot be directed to a particular pro-

cess in the group.

In the primed-process pool there are three separate communication

needs to address, alerting dormant processes, communicating between

server processes and communicating between the client and the servers.

Each need shall be addressed separately. To trigger a sleeping process

within the process pool it is necessary to alert the process and send it the

information necessary to begin execution. This information amounts to

four integers: an identifier used by the exchange module to distinguish the

master producer from slave producers; the address of the descriptor in

shared-memory where the new process will begin execution (the state

record); the bindings (which are currently not being used but will be used

in future extensions to communicate environment variables between opera-

tors); and the address of the port used to pass data to the consumer.



36

The simplest way to accomplish this communication is by using the

pipe mechanism described earlier. If all the slave processes are blocked on

a read from the pipe, then simply writing the message will alert a process

that its services are needed. A separate message is written for each pro-

cess required. The fact that the messages cannot be directed to a particu-

lar process is not a concern since all the slaves are identical. With either

the memory-mapping or a shared-memory scheme the alert signal and the

information transfer would be separate actions.

The communication between the client and multiple servers is more

complex. Dynix doesn't suppo"rt a many-to-one communication connection

between processes that do not have a common ancestor, as in the case of

the servers and client. Pipes can't extend beyond their ancestral group

and sockets can only connect two processes at anyone time. Memory-

mapping is an alternative that was explored. A file is mapped into the

space of a client. The servers write into the file and the client simply

writes the data directly from its address space to the output device. This

method has the attractive feature that the information is not written and

read multiple times. It suffers, however, from two major shortcomings.

First, having multiple processes writing into a common space requires syn-

chronization. Since the output is generated by support functions supplied
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with the query, it is difficult to synchronize. Even if it were possible, it is

not desirable. One of the major attributes of Volcano is its ability to do

parallel processing without a great amount of synchronization. Adding

another layer of synchronization would cause unacceptable degradation in

performance. The second problem with this design is that the client needs

to check continually to see if there was information in its buffer to be writ-

ten out. This check would cause the client process to be in a busy wait or

to be activated at some fixed interval of time. The client would be using

CPU cycles regardless of whether there was any useful work for it to do.

This situation is not tolerable in a high performance system.

In the absence of any direct many-to-one communication facilities we

opted for an indirect method using pipes and a socket (Figure 11). The

output generated by the servers is redirected through a pipe. One desig-

nated process in the group blocks on a read from the pipe. This 'process is

also connected to the client via a socket. When data is read from the pipe

it is then written to the socket. This scheme suffers from the obvious

drawback that the data is read and written several times before it reaches

its destination. It also requires an extra process. This scheme does have

several advantages. The design does not require any special print routine

in support functions, nor does it require the client to be activated arbi-
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trarily to check for data. This option seems to be the cleanest and most

efficient of those available.

The primed-process pool is implemented with five process types: the

master server, the output daemon, the first slave, the slave slave, and the

daemon daemon (Figure 12). In the current single user system there is one

instance of the master server, the first slave, the output daemon and the

daemon daemon. There can be an arbitrary number of slave slave
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processes. The first four process types (master server, output daemon, first

slave and slave slave) are discussed here, the discussion of the daemon dae-

mon is deferred until the next section.

When the primed-process pool is first executed a single process IS

started. This process allocates space in shared-memory for the Volcano

buffer and establishes two pipes for communication between the processes

in the server pool. One pipe is to communicate messages between server

processes and one is for communicating results to the appointed output

daemon, Le., information that is destined for the client. The process then

forks slaves. The number of slaves forked is a command line argument. If

no argument is given, there is a default, which is a compile time constant.

The original process assumes the role of the master server.

The master server creates a socket with a name that is known to the

clients, it then blocks on the "accept" system call waiting for a client to

request service. When a request is received, the master server activates the

output daemon (the appointed communication process) to create and con-

nect the return socket to the client. The master server then activates the

first slave, passing it the query and any parameters received from the

client. The master server can now wait for another request from a client.
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The output daemon handles the output duties of the process pool.

After connecting the output socket to the client, the output daemon blocks
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on a read from the output pipe. To help reduce the overhead of the multi-

pIe reads and writes, the output from the pipe is buffered. The results are

only written to the client when the buffer is full or when all the outputs

have been received from the slave processes. Buffering reduces the number

of read and write system calls necessary to handle the output as well as

reducing the frequency with which the client is activated. The size of the

buffer is a compile time constant. It is currently 1024 bytes.

The first slave is the process that actually begins executing the query.

It calls the procedure that executes the dynamic load. The query is loaded

and executed as described earlier. If more processes are needed to evaluate

the query, they are activated by the exchange module using the

starLnew_process routine (to be described later). When the first slave has

completed its part of the evaluation, it waits for the other slaves, if any, to

complete. When all the slaves have completed, the first slave alerts the

output daemon that the evaluation is complete so the output daemon can

flush the output buffer. The first slave then executes a routine to flush the

Volcano buffer and waits for a new query to evaluate.

A slave slave is activated when more than one process is required to

evaluate the query. It is passed a message consisting of the integer values

discussed earlier. These integers are used as arguments to the
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execute_producer function which is part of the exchange module. The

modifications that were necessary to the exchange module will be discussed

shortly. A slave slave process may be activated by the first slave or by

another slave slave. The activation is always done by a call to the

startJIew_process from the open exchange function. A global active pro-

cess counter is incremented for each new process started. When the

execute_producers function completes, the slave slave process decrements

the active process count and waits for another request for service.

In the current implementation, the master server and the output dae-

mon are the same process. In a single-user environment it wasn't necessary

to use two processes. This arrangement also acts as a safeguard to prevent

multiple queries from being introduced into the system. The introduction

of multiple queries is possible since the system does support multiple

clients. When the environment is extended to support multiple users and

the proper concurrency controls are in place, the output daemon can easily

be moved to a separate process. All the code necessary is encapsulated in

one routine. With multiple users it will be necessary for each user to have

their own output daemon process. This extension will require a separate

output pipe for each output daemon. Separate pipes are necessary because

messages sent through pipes canno~ be directed to a particular receiver. If
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only one output pipe were used, the results might not be transmitted to the

correct user.

The only process in the process pool that is restricted to a particular

task is the master server; all other processes may assume any role. A pro-

cess may be the first slave for one query and a slave slave for the next.

This flexibility allows all inter-server communication to be done on one

pipe, which is important in an environment where the number of open file

descriptors is limited. Keeping the processes as general as possible will also

make extending the system to a. multi-user system easier.

To achieve parallel processing in the previous version of Volcano, the

opeILexchange function forked a master producer which immediately exe-

cuted the execute_producers routine. The execute_producers routine would

create a port to pass records to the consumer(s), fork the required number

of slave producers, and continue with the parallel execution of the query.

In the current implementation the opeILexchange function creates the

port and then calls the start.Jlew_process procedure. This procedure main-

tains a count of the number of active processes. If there is not a sufficient

number of processes available, the daemon daemon is invoked. The

start.Jlew_process procedure then sends out the appropriate number of

messages on the inter-server pipe to start the appropriate number of slave
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slaves. The slave slaves then execute the execute_producers routine. This

procedure now receives the port address as an argument, and the code to

execute the fork has been removed. The only other change needed was to

re-initialize some global variables after execution completes.

As mentioned earlier, the query is loaded in shared space. The state

records, which are part of the data structures included with the query, are

written to by each process. Some of the information stored in the state

record is unique to the individual process, it is therefore necessary to copy.
the state records for each operator into private space. This copying is

done by the open function of each operator. Any further references to that

state record are made to the private copy rather than the original version

in shared space.

4.4. The Dynamic Primed Process Pool

Since the servers are independent of the queries it is not possible to

know a priori how many processes are necessary. If a query requests more

processes than are available, the query will stop, waiting for a nonexistent

process to complete. This situation could be prevented by starting enough

processes at the time the server is booted to accommodate the most com-

plex query. Starting a sufficient number of processes requires a great deal



45

of omniscience on the part of the user, or spawning an excessive number of

processes at boot time. Neither situation is desirable. To resolve this

problem in a more satisfactory way we have implemented a daemon dae-

mono

The purpose of the daemon daemon process is to fork a specified

number of processes on request. When the number of processes available

for use drops below a given threshold, the daemon daemon is activated.

The daemon forks the requested number of processes then goes back to

sleep. The requested number is either the number required to maintain the

threshold or a predetermined minimum, whichever is greater. Both the

threshold value and the minimum are compile-time constants. When the

start.Jlew_process function is called, it compares the number of active

processes plus the number of requested processes against the total number

of processes. If the number of needed processes is within the threshold of

the total number of processes, then the daemon daemon is activated. If

the requested number of processes is greater than the minimum, then the

requested number of processes are forked, otherwise the minimum number

are forked. i.e. The threshold is 5, the total number of processes is 20, the

minimum number to start is 6 and currently 14 processes are active. A

request for 4 new processes is made. 20 - (14 + 4) is less than the threshold,
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5 so the daemon daemon is activated. The minimum,6 is greater than the

number of processes to be activated, 4 so 6 new processes are created.

There are now a total of 26 processes, 18 are active. With this scheme

there should always be at least the threshold number of processes available

for service.

Variables containing a count of the total number of processes and the

number of processes in use are stored in shared memory. To keep the

numbers correct a lock is maintained when these values are updated. In

the worst case the lock is held for one comparison and two updates. When

a process has completed execution one decrement is necessary to the

"processes in use" variable. Since the lock is held for only short periods,

performance should not be affected.

The daemon daemon is implemented as part of a slave server, rather

than a special process. The actual code executed by a slave server is con-

trolled by a flag in the message that activates the process. In this way,

when more processes are necessary, the first available slave server will

become the daemon daemon. After all the processes requested have been

forked, the daemon daemon will again be available as a slave server.

There is currently no mechanism to reduce the number of processes. If

it is found to be necessary, it can easily be added as part of the cleanup
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procedure after a query is processed or after a session is completed.

4.5. The Distributed Primed-Process Pool

Volcano is designed as a tool to explore database design policies,

including different machine configurations. One configuration that we wish

to explore is a network of shared-memory machines. The current imple-

mentation of Volcano is incapable of functioning beyond the boundaries of

a single shared-memory machine. The data distribution mechanisms used

by the system are dependent on a shared-memory architecture. The

mechanisms necessary to extend the system across machine boundaries are

thought to be similar to those developed for the primed-process pool.

Therefore, it is an appropriate time to explore this extension.

The problem of extending Volcano across machine boundaries can be

broken into four major sections, collecting the data to be sent to a remote

machine, re-introducing data received into the Volcano system, the com-

munication mechanism necessary to transmit the data between machines

and a communication mechanism to transmit the results to the correct user

on the correct machine.

Within a shared-memory machine records can be passed from one pro-

cess to another simply by passing a pointer to their location in the shared
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buffer. Passing pointers to memory locations obviously will not work with

multiple machines. The actual records need to be passed. A mechanism to

accomplish this needs to be developed. A mechanism is also needed to

insert the records received from a remote machine into the Volcano buffer

space of the requesting machine. These records must be inserted in such a

way that they can be processed by the current Volcano system as if they

were generated locally.

The basic tools necessary to collect records already exist within the

Volcano buffer management system. Space must be allocated within the

buffer to create a packet of records to be transmitted to a remote machine.

This space allocation can be done by creating a file on a virtual device. A

virtual device is a data structure within the Volcano buffer. It has the

same basic characteristics as a real device or file with one exception; it

does not exist outside of the buffer. Once all the records in a file on the

device are unfixed the file disappears. Files are divided into units called

clusters. The cluster size of this file will be the size of a data message. As

the records required by the requesting machine are found or created, they

are appended to the file. When a cluster is full, the records are shipped to

the appropriate machine. The cluster can then be unfixed in the buffer and

a new cluster begun.
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When the records are received by the other machine, they are read

into a new cluster in a file on a virtual device. If these records were

created on the remote machine, Le., the product of a join, they will have

no meaningful record identifiers associated with them. Therefore, it is

necessary to treat these records differently than the records generated and

processed within the same machine. The records in the cluster must be

scanned (as the file-.$can operator would scan a file) and record identifiers

assigned. The records can then be introduced back into the usual Volcano

stream, passing the record identifier (the NEXT-RECORD structure) on to

the next operator.

To extend Volcano across machine boundaries, several levels of com-

munication are required. The initial message sent to a remote machine will

consist of the compiled query. AB a separate message, the point in the

query tree at which the remote machine is to begin processing must be sup-

plied. This, "startup message", is considered as a separate message

because the query need only be transmitted once while the machine may be

requested to perform several operations on the same query starting at

different locations in the tree. These messages can originate from any pro-

cess on the requesting machine and are sent to the process pool on the

remote machine. The query is loaded into shared space and can be
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accessed by any process in the pool. The records being processed must also

be sent between machines. They will be sent from the process generating

the records on one machine to a particular accepting process or group of

processes on the second machine.

The only inter-machine communication mechanism available in the

Dynix environment is the socket paradigm discussed earlier. Establishing

the socket names for inter-machine communication is slightly more compli-

CJ!,ted than intra-machine communication. It involves the machine host

name and a physical port address. The limitations on the socket paradigm

are the same: only two processes can be connected by a socket at anyone

time, and it takes several system calls to establish a socket. With these

limitations in mind several options are considered.

The most direct approach is to allow the process requesting the remote

machine to establish a connection directly to a server process on the

remote machine. .This approach entails creating a socket connection to a

known socket address on the remote machine, and sending the necessary

information. Ideally, considering the overhead involved in establishing a

socket connection, we would like to maintain this connection between

machines. Unfortunately, maintaining this connection is not practical for

three reasons. First, the process that sent the message may not be the one
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that will process the information that is returned. This information may

be handled by several processes, e.g., multiple consumers. Second, the con-

nection is made to a known address on the remote machine. It is not possi-

ble for machine B to maintain a socket for every process on machine A

waiting for a potential connection. Machine B cannot know at boot time

how many processes machine A has or may have in the future, and

machine B can only maintain a limited number of socket addresses for use

by other machines. Third, the process on the remote machine that

received the message may not be the process that will generate the data

requested. There may be multiple producer processes on the remote

machine generating data for the consumer(s) on the other machine(s) (Fig-

ure 13).

A second alternative is to use a single process to do the communica-

tion between machines. This design is similar to that used between the

clients and the server pool on a single machine. This communication dae-

mon would establish a socket connection with a remote machine. When a

server process on machine A had a message to send to machine B, machine

A would transmit the message to its communication daemon which in turn

would send the message to machine B. This scheme has the advantage

that the inter-machine connection need only be established once. Each
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machine would have a single channel to each auxiliary machine by which

to transmit information. Having a single persistent channel between

machines eliminates the overhead of creating new socket connections, for

each message. This design does, however, require each message be read

and written an additional time for each message sent and possibly for each

message received (on the receiving end an additional read and write may
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be necessary depending on how much work the receiving process does itself

and how much it passes on to other processes). Measured by the number

of system calls required, this design will still be cheaper than opening and

closing sockets. A socket requires two system calls to request a connect,

h
." dOl

d
" . " II d " I " IIone to accept t e connectIOn, a rea an a WrIte ca , an a c ose ca

on each end to terminate the connection. There is a total of seven system

calls per message. With the central communication daemon there would be

at most six per message, two writes and one read to send, two reads and

one write to receive. Having centralized communication could prove to be

a performance problem. A bottleneck may occur when the records are

being passed between machines. The transmission of the query and the

message supplying the starting location in the query tree would not be a

problem. The query is transmitted only once, as the initial message, and

the starting location messages are short and relatively infrequent. Sending

'all the data records through one process may prove to be a problem. The

actual costs involved need to be explored further.

A third alternative is a combination of the first two. The query and

the starting point messages could be transmitted using the centralized com-

munication daemon. The data records would be transmitted directly from

the process on machine B generating them to the process on machine A
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that will process them. A unique socket connection between a consumer on

machine A and the producer on machine B could be established by includ-

ing in the starting point message a socket name that the consumer is wait-

ing on. With a perfunctory examination, this alternative seems viable.

However, a closer examination reveals two fatal flaws. The one-to-one link

structure of a socket restricts the consumer-producer relationship to be

one-to-one. In most situations this relation is actually one-to-many or

many-to-many. The second flaw requires the consumer process on machine

A to process records received from producers on machine A as well as deal

with the communication link to machine B. One process cannot block on a

read from a socket and process records concurrently. To execute both

functions concurrently two separate processes are required, which suggests

the second alternative may be the most workable.

So far the discussion has focused on the sending end of the connection.

We now address the receiving end. The machine receiving the message has

two methods with which it can handle messages from multiple machines.

There can be one process that receives all the messages from all the

machines, or there can be a receiving process associated with each remote

machine. The single process scheme requires the sockets to be multiplexed.

Multiplexing is accomplished with the "select" system call[7].
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When using the "select" system call, the sockets to be multiplexed are

created, bound to a name and marked ready to accept a connection. The

socket, bind and listen system calls are executed. A bitmap is created

using the file descriptors as indices, indicating the file descriptors to wait

on. The process will then block on the "select" call. When a connection is

pending on a multiplexed socket, the select call executes, zeroing all bits in

the bitmap except the one associated with the pending connection. The

indicated connection can be accepted and the message transmitted in the

usual fashion. If the "select" call is to be used again to receive new mes-

sages, the socket must be closed and the bitmap reset. The performance

problems associated with repeatedly connecting and reconnecting sockets

were discussed earlier.

The second alternative has a process whose sole purpose is to process

messages from a specific machine. It would establish a connection with a

remote machine and that connection could exist as long as the connection

was deemed useful. This design has some clear advantages over the previ-

ous design. The socket reconnection overhead is eliminated. This design

would be very easy to extend as new machines were added to the system.

A slave server could easily be converted into a communication daemon for

the new machine. Likewise, if a machine was removed from the system the
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communication daemon could be terminated or converted back to a slave

server. To add or delete machines in the first scheme would require the

server pool to be recompiled.

When a remote machine is needed to assist in evaluating a query, the

first information it will need is the query to evaluate. The query can be

transmitted in various forms, as a source file, an object file or an as execut-

able code. One assumption we make about our distributed system is that

1\11the machines are identical (at least to the point where code could be

compiled on one machine and executed on the other). Without this

assumption the source file have to be sent.

The form of the query that is the most convenient to transmit in the

current test environment is not the best for the system in general and vice

versa. In the more general case the object file would be sent to the remote

machine via a socket connection. The remote machine would allocate the

space necessary ~nd execute a dynamic load. Any subsequent starting

location messages received would be relative to the head of the dynamically

loaded file. With this design there is effectively no restrictions on the size

of the query or on the location on the remote machine it is placed.

In the current test environment it is more convenient to send the exe-

cutable code, the actual data and text segments of the query as it exists in
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the executing program. In the test queries some of the parameters are set

at run time, such as the number of processors requested. If only the object

file is sent, these parameters will never get set. When the query is passed

between machines in the form of executable code, it is necessary that the

code be loaded into the same relative address on the remote machine as it

is on the original machine. If the code is not loaded into the same relative

location on the new machine any references to the code will be incorrect.

To guarantee the code is loaded into the correct location, it is necessary to

statically allocate the space into which the query is loaded. Statically aile-

eating space strictly limits the size of the query. The simplest way to

avoid this restriction is to rewrite the test queries, not using command line

arguments. The command line arguments have proven to be convenient for

testing purposes. It is, therefore, this author's recommendation that the

second design (transmitting the executable code) be implemented until the

testing phase of the project has been completed or until there is a more

convenient means to implement queries. The conversion to the more gen-

eral method should be straightforward.

A separate communication link is used to return the results to the

user. Part of the mechanism already exists, the output daemon process.

The remote machine's output daemon can write the output on a socket to
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the requesting machine rather than to a client process (with a single-user

paradigm there would be no client process on the remote machine). The

receiving machine could use one of the schemes discussed earlier for receiv-

ing the results. It is necessary to separate the communication links for the

results from that of the records to be processed because they do not neces-

sarily go to the same machine. As an example, machine A starts a query,

then calls machine B for help. Machine B in turn calls machine C for help.

The records that machine C is producing will be returned to machine B for

possibly more processing. However, if any output bound for the user IS

generated, it can go directly from machine C to machine A for display.

,

I
Using the previous discussion as a basis we now discuss an implemen-

tation design. Each machine has two communication processes for each

remote machine. One is used for sending information and one for receiving

information. This scheme eliminates the need to open, close and reopen

sockets during query processing. This scheme will increase the number of

processes contending for a limited number of processors on each machine.

This contention may cause extra context switches, which are also expen-

sive. The guaranteed expense of opening and closing sockets would prob-

ably be a much greater detriment to performance than the possible proces-

sor contention.
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The sending process is connected to the server processes by a pIpe.

The pipes are established at the time the process pool is booted. The

number of pipes established is the limiting factor in the number of

machines that can be connected in one system. If more machines are

needed, the process pool needs to be rebooted with more pipes established.

When a server process on machine A (Figure 14) has information to send to

a remote machine B, it sends the information through the pipe associated

with the machine B to the sender process associated with machine B. The

sender process then forwards the message to machine B via a socket (Fig-

ure 14).

The receiving process on machine B responds in different ways depend-

ing on the type of message sent. Each message sent contains a header that

can be examined to determine the type and size of the message. If the

message contains a query, it can be loaded dynamically as done on the ori-

ginal machine (or if the current test queries are being used, simply read

into the preallocated space). The output daemon needs to be started and

told where the results should be sent. In the case of a starting location

message, the receiver process adjusts the starting location to correspond to

the correct address on its machine. Along with the starting location, this

message should include the number of processes that are being requested
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and some means of identifying the process( es) on the sending machine that

will process the returning data. The requested processes can then be

started using the starLnew_process routine. This routine will be modified

so it can alert the processes it starts that the records they produce need to

be packaged and sent to the appropriate consumer(s) on the remote

machine.
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If the message received includes data, the receiving process will read

the data into a cluster on a virtual device. The consumer process( es) wait-

ing for the records will be alerted that data is ready for processing. The
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exact mechanism to alert the consumer and transmit the cluster location

needs further investigation.

Many of the designs discussed, including several that were not recom-

mended, were tested in a partial implementation of the distributed system.

Due to a limitation of time and machine resources (particularly the number

of open files allowed under the current system configuration), the full

design as described above was not implemented. Our trial implementation

attempted to use a direct "process to remote machine" approach. The pro-

cess requesting work from the remote machine creates a socket, sends the

required message, closes the socket, then sleeps until data is returned. All

messages are received by the master server. The messages are handled as

described in the above design. When the records are returned to the

requesting machine, the dormant process is reactivated and the records

received are introduced into the normal Volcano processing stream. We

hoped that a method for multiplexing the connection could be developed

that did not require continually reconnecting the sockets. When this

method was not forthcoming, this implementation was discontinued.



62

The original implementation of the primed-process pool required most

of the file descriptors available. Subsequent revisions have freed several

descriptors. It should now be possible to attempt, at least a limited imple-

mentation of the recommended design.

The design of the distributed primed-process system is heavily depen-

dent on facilities provided by the operating system. The most important

facilities an operating system could provide for this type of project is a

fast, reliable interprocess communication system. This system should

include a direct many-to-one or many-to-many communication facility

capable of communicating across machine boundaries. This project would

also benefit from the ability to address messages to a particular process or

processes.
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CHAPTER 5

PERFORMANCE TESTING

The main goal of this project was to reduce the overhead caused by

creating processes using the "fork" system call. To determine if we accom-

plished this goal, tests are designed to measure the cost of this overhead

and not the cost of evaluating a query, which is largely unaffected by the

primed-process mechanisms. The queries used in the tests consists of two

types of operators, the exchange operator and the create-file operator. The

createJile operator creates a file with no records in it. This operator is

included to supply the exchange operator with a child node in the query

tree. The system is not designed to have an exchange module as a leaf of a

tree. This query is effectively doing no work, so the cost of the execution is

determined entirely by the creation or activation of new processes by the

exchange module.

Three different query trees were used for the tests. The first tree

included one exchange module, the second, three and the third, five. The

first query tree was run with the degree of parallelism varying from one to

eight. The second and third query trees were run with one, four and eight
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processes per exchange. The cost of various operations were measured as

well as the total time required for the query to complete. The total time

was taken from the time the query began executing to the time a second

query could be entered. This time included the initialization and cleanup

costs involved in each system. In the primed-process system individual

costs were measured for the incremental load, the connection of a socket,

the cost of reformating the devices after the query completed and the cost

of the actual execution of the query. For the system using forking, the

query execution was again measured as well as the cost of mounting and

unmounting the devices. The times were measured as elapsed times using

the system microsecond clock. Each test was run ten times, five to collect

individual times and five to collect overall time. The tests were run in two

sets so the cost of collecting the individual times were not included in the

overall times.

The tests were designed to be run on the Oregon Graduate Center's

eight-processor Sequent Symmetry. The tests were actually run on a

fourteen-processor Symmetry that the Sequent Corporation generously

allowed us to use. This machine is used specifically for experimentation
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and benchmarking.1 We had exclusive use of the machine for the duration

of the tests. The memory allocated by the Volcano memory management

system was relatively small, five megabytes. Attempts were made to run

the tests with a much larger buffer, fifty megabytes. The test would not

run as designed. Some problems with the operating system had been

discovered earlier and these problems were presumed to be the cause of the

restriction on available space for the buffer.2 We will, hopefully, be able to

rerun these tests in the future. We suspect that the larger buffer, requiring

a larger page table, has an effect on the cost of forking processes.

5.1. Results

A summary of the results of queries 1, 2 and 3 are shown in Tables 1,

2 and 3 respectively. The times shown are an average of the middle three

results of each set of five tests. In some cases one of a set of five test

results were two to three times greater or smaller than the other four

results. Values that were very high or low were considered to be measure-

ment errors or influenced by the operating system and thus ignored. The

IThe machine was equipped with experimental processors that deliver a.bout 5 MIPS per CPU.

~he machine was also being used with experimental versions of the Dynix operating system. We suspect
that an experimental version was running a.t the time. The operating system modifications affected file system
operations, not process operations, so we a.re confident that our measurement are representative of the produc-
tion operating system.
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times are expressed in seconds. The "exchange cost" reflects the cost of

forking or acquiring processes. The "total costs" includes all the costs from

the time the query is first read to the time the results are printed on the

screen. Tables 4 and 5 shows the cost of various components of the total

costs.

* cost is elapsed time in seconds
Table 1

* cost is elapsed time in seconds
Table 2

Cost* with 1 Exchange Module
number of exchange cost total costs

processes forked primed forked primed
1 .065 .021 .802 .930

2 .199 .019 .986 .926

3 .235 .018 1.034 .931

4 .279 .019 1.089 .922

5 .311 .020 1.135 .910

6 .358 .022 1.191 .906

7 .362 .024 1.203 .900

8 .394 .027 1.275 .922

Cost * with 3 Exchange Modules
number of exchan e cost total costs

processes forked primed forked primed
1 .140 .043 .852 .950

4 .465 .051 1.284 .960

8 .723 .093 1.685 1.044
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* cost is elapsed time in seconds
Table 3

Figure 15 shows a comparison of the process acquisition with the

primed-process system versus forking processes in the original system with

one exchange module. Using primed processes clearly provides better per-

formance than process forking. Figures 16 and 17 using three and five

exchange modules, respectively, also illustrate the same improvement.

Figures 15, 16 and 17 show how the cost of forking processes is directly

dependent on the number of processes forked. The cost per process

decreases with the number of processes forked because of the propagation

scheme used. The primed-process system also increases with the number of

processes but at a much slower rate. .As the number of processes required

increases, the benefits gained by using primed processes also increases.

Figures 18, 19 and 20 compare the total costs of each of the query

trees tested. The total cost of the primed-process system is dominated by

Cost * with 5 Exchange Modules
number of exchange cost total costs

processes forked primed forked primed
1 .215 .055 .937 . .997
4 .659 .081 1.497 1.060
8 1.110 .1562 2.026 1.094
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8

Fixed Costs* for the Primed Process System

Action Cost

socket connection .008

incremental load .643

format device .105

Fixed Costs* for the Forking System

Action Cost

mount device .716

dismount device .095
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the cost of the incremental load. Even with five exchange modules using

eight processes each, the incremental load is over half the total cost (Table

3). The indirect method used to do an incremental load will account for
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some of the cost. The link editor is accessed by a Dynix command, not a

system call. To invoke the link editor the system call "system" was used.

This system call creates a new shell process (forks a process) to execute the

command. The link editor must also read the object file being loaded and

the symbol table of the executing process. This work requires two reads

from a device. The total cost in the forking system includes the cost of

allocating and de allocating space in memory as well as the cost of execut-

ing the query. When the total costs are considered, the primed-process sys-

tern still reduces the overhead when more than two processes are required.
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1
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Time
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CHAPTER 6

SUMMARY AND CONCLUSION

The performance tests have clearly demonstrated that the primed-process

system requires less overhead than the previous system. What is more

significant than the actual numbers is the rate at which the costs increase.

The overhead for simple queries with little parallelism is small in both sys-

terns. With the primed system this overhead is almost constant, increasing

very little with the complexity of the query. The overhead of the forked

system increases rapidly with the complexity of the query. This behavior

suggests the performance gains of the primed-process system will be quite

significant for complex queries.

We anticipated if very large main memories are available they will

become an important part of high-performance database systems. If, as

suspected, the cost of forking increases with the amount of memory a pro-

cess has allocated, the cost of forking processes will become very significant

even for simple queries. Earlier tests measured costs up to 700 milliseconds

to fork a process with a 70 megabyte buffer. Starting processes in the

primed-process system does not involve copying process structures and page

tables, as does the forking system. This copying adds significantly to the
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cost of forking processes. The increase in memory allocation should, there-

fore, have no effect on the primed-process system. Thus, the performance

gain will be even more significant.

We have implemented a dynamic primed-process pool for the Volcano

query evaluation system. The evaluation system can exist independently of

the queries it is to evaluate. It can evaluate multiple queries without being

recompiled. By changing the "fork on demand" paradigm to a system of

pre-existing processes we have significantly reduced the overhead of start-

ing a new process. This change has improved the overall performance of

the system. Many of the mechanisms necessary to extend Volcano to a dis-

tributed system were explored. Many of those used to implement the

primed-process pool can be extended to work in a distributed system. The

basic elements to extend the system to a multi-user system are also now

available.

The next phase of the project should be to implement the distributed

primed-process pool. While it should be possible to have a limited imple-

mentation with the present equipment and system configuration, it may be

necessary to do the implementation in a different environment more suit-

ably configured for the project.
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