
THE FilterManager: MAINTAINING CONSTRAINTS

AMONG PROCESSES

Juliana Khing Hua Lim
B.Sc., National University of Singapore, 19S3

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science

May 1gSg

The thesis "The FilterManager: Maintaining Constraints Among Processes"

by Juliana K.H. Lim has been examined and approved by the following

Examination Committee:

David Maier
Professor, Oregon Graduate Center
Thesis advisor

Robert G. Babb II
Associate Professor, Oregon Graduate Center

,

\
Alan Borning
Associate Professor, University of Washington

ii

ACKNOWLEDGEMENTS

It has been my privilege to work on the FilterManager under the

direction of Dr. David Maier and benefit from his helpful suggestions. Allan

Schiffman provided insight on the socket interface for Smalltalk so that the

two implementations could work together. John Maloney and his group

provided ThingLabII for testing. I would like to thank Dr. Richard Kieburtz

and Dr. Ronald Cole for accomodating my use of goedel and groucho. I

appreciate the patience of Boris, Dwight, Sherri and Yeshwant while I used

Small talk on goedel and groucho.

I have also enjoyed strong support and encouragement from my family,

although half the world away, and many friends both near and far.

iii

TABLE OF CONTENTS

Acknowledgements Hi

Table of Cantents iv

List of Figures vii

Abstract ix

1. Introduction 1

1.1 0 bjective 1

1.2 Constraints Between Processes .. 1

1.3 Terminology .. 2

1.4 The FilterManager Approach .. 5

2. Problem Description .. 7

2.1 The Ultimate FilterManager 7

2.2 An Incremental Approach 9

2.3 Related and Background Work 10

2.4 Limitations of Existing Models 12

2.5 Design Goals 13

iv

3. The FilterManager 15

3.1 Conceptual Model 15

3.2 Implementation Model .. 20

3.3 Assumptions 36

4. Synchronization In The FilterManager 38

4.1 Communication Protocol 38

4.2 Update Phases 42

4.3 Polling Requests for the FilterManager's Services 45

4.4 Deadlocks 46

5. Issues In The FilterManager Solution 48

5.1 Cycles in the Filter Network 48

5.2 Initial Constraint-Satisfaction . 52

5.3 Non-satisfiable Constraints 54

5.4 Methods of Propagating Updates 56

5.5 Other Issues 58

6. Implementation Of The FilterManager 61

6.1 Implementation Environments 61

6.2 Organization of the FilterManager 65

v

6.3 Implementa tions 73

6.4 Portability and Environment Dependencies 73

6.5 Integration of Applications 76

7. Extensions To The FilterManager 77

7.1 Extensions to the Implementation 77

7.2 Extensions to the Model 82

References 85

Appendix gO

A.l Smalltalk Classes for the FilterManager 91

A.2 User-primitives for the FilterManager 92

A.3 How to use the FilterManager 93

A.4 Sample Applications gS

Epilogue ... 98

vi

LIST OF FIGURES

Fig. 1.1 A filter 3

Fig. 1.2 A filter in an open environment 4

Fig. 2.1 An example scenario 8

Fig. 3.1 The conceptual model of the FilterManager 16

Fig. 3.2 Object relationships within and outside a process 17

Fig. 3.3 A composite filter , 19

Fig. 3.4 The implementation model of the FilterManager 21

Fig. 3.5 The FilterManager in the example scenario 22

Fig. 3.6 Process registration with the FilterManager 31

Fig. 3.7 Process has the target object of a filter 33

Fig. 3.8 Process has the source object of a filter 35

Fig. 4.1 Message exchange initiated by FilterManagerClient 40

Fig. 4.2 Message exchange initiated by FilterManagerServer 41

Fig. 4.3 Phasing updates 43

Fig. 5.1 Graph representation of a filter network 49

Fig. 5.2 Traversing a filter network with cycles 51

vii

- -~~~ ~

Fig. 6.1 Organization of the FilterManagerServer 68

Fig. 6.2 Organization of the FilterManagerClient . 70

Fig. 7.1 A One-Way Filter 78

Fig. 7.2 Using A Bidirectional Filter ~ 7Q

viii

ABSTRACT

The FilterManager provides application processes with a way to

establish and maintain some invariant relationships among their states.

A relationship in the states of two application processes is identified by

a constraint that must be satisfied between an object in each process. This

constraint is represented by a filter (hence the name ''FilterManager") that

connects the two objects and is the mechanism by which they are kept

consistent. A filter works in both directions: when either of the objects

changes, the other is updated correspondingly.

The FilterManager manages the collection of filters as a network,

allowing a dynamic set or applications and relationships among them without

requiring the applications to be constantly aware of their environment and

relationships.

This thesis reports on the implementation of the FilterManager in

ParcPlace Smalltalk Versions 2.3 and 2.4. The implementation in Version 2.3

is on a Sun-3 Workstation with the SunOS 3.5 operating system, and that in

Version. 2.4 on a Sun-4 Workstation with the SunOS 4.0 operating system.

Each implementation maintains filters among applications written in the

same version of Smalltalk and on the same machine. In addition, the

implementation in Version 2.3 also manages filters among applications in

both versions and spanning both machine types.

ix

1

CHAPTER 1

INTRODUCTION

1.1. Objective

The objective of the FilterManager project is to investigate how a

network of constraints can be used to maintain some consistency in the

states of a set of application processes. Since the state of a process is

represented by the objects in its object space, a constraint established

between two objects, each existing in the context of a different process,

represents the way the two processes are related. These two processes are

otherwise independent, and may even be executing in different environments.

1.2. Constraints Between Processes

In an interactive user interface, when multiple views of a program object

are simultaneously presented to a user, there needs to be some consistency

among the object and all views of it. When a user changes some part of the

object in either the program, or one of its views, the change should be

reflected in every representation of the object.

Along the same lines, it would be useful to allow requirement of

consistency between two objects existing in the context of different

2

application processes. For example, an object in a GemStone object-oriented

database [Pur87] could be related to an object in an interface built with the

FilterBrowser [Ege87, EMB87], a tool for the designer of a user-interface.

Although the GemStone database and the FilterBrowser execute

independently, a constraint established between an object in each of their

object spaces identifies how their states are related. When either of the two

objects is updated, the other object should have a corresponding update, to

maintain a consistency in the relationship between the two processes.

This notion can then be extended to a network of such constraints

involving a set of objects in various application processes, with each process

being constrained in some part of its object space.

1.3. Terminology

A filter is the representation of a bidirectional constraint that connects

two objects and describes how they are related. In the model of the

FilterBrowser, a filter relates a source object in an application to a view

object that is the graphical representation of the application object (Fig.

1.1). The source and view objects that the FilterBrowser relates must belong

to the same invocation of a single application process.

The filter serves to maintain the consistency of the two objects it

connects when either one of them changes, and to perform various

transformations between the objects. It can be a composite filter, built up

3

Process state Display

Source Object

guage:
value = 63%

View Object

I ' ';

Filter

[

~"...

)

?

h...-.........................

Fig. 1.1 A filter: representing constraints bet:ween source and view objects
of an application.

from simpler filters, each of which represents a constraint to be maintained

between parts of the two objects.

In contrast, a filter in the model of the FilterManager represents a

constraint between two objects in different application processes (Fig. 1.2).

The filter is no longer in the closed environment of a single application but in

an open environment where the application processes are diverse and

.- --- -- - -

4

Application Process!

Application Process2

,

Filter

I

.'.
.......

l.......................................

Fig. 1.2 A filter in an open environment: representing constraints between
two objects in different processes.

dynamically changing. The source object of a filter refers to the object that

initiates a change and triggers the filter mechanism to maintain the

constraint; the target object of a filter is the receiver of the change. Since

filters work in both directions, the source object of a filter is not limited to be

at a specific end of the filter, and the object at either end becomes the source

object when it changes. The ends of a filter are typed, and a filter performs

a specific transformation between the two objects it relates.

- -- -- ----

I»

A process is an application executing in its own environment and having

its own object space. The term process will mean here an application

process, or a job in an operating system, rather than the Smalltalk class

Process, unless otherwise identified.

1.4. The FilterManager Approach

The moment an object that is related to objects in other application

processes changes is a good time to check on, and to enforce, the consistency

of its relationships with those other objects. Maintaining the consistency of

object relationships at the time of change ensures that each object in the

network is at most one step away from consistency in its relationships.

An: application process having constraints on its objects must contain a

number of routines for the FilterManager to support the filters representing

those constraints. An application process, however, does not contain the

entire support for filters because each process would then need to be aware of

the states of the processes it is related to.

In order for filters to be established between objects in different

processes, the FilterManager must first be executing and each process needs

to identify itself to the FiIterManager and the objects in its context that may

be constrained. Filters can then be established between these objects at the

initiative of any of the processes known to the FilterManager.

.. -. - -

8

The FilterManager has been implemented to manage filters spanning

Smalltalk applications written in Versions 2.3 and 2.4 or ParcPlace Smalltalk

on Sun-3 and Sun-4 Workstations with the SunOS 3.5 and SunOS 4.0

operating systems, respectively.

'1

CHAPTER 2

PROBLEM DESCRIPTION

2.1. The Ultimate FilterManager

The initial phase of exploring filters as a mechanism to build interfaces

began with the FilterBrowser [Ege87,EMB87], which is constructed based on

ThingLab [Bor81]. In it, filters relate an application object, the source of a

filter, to its graphical representation, the view of the filter. Since ThingLab

needs a global knowledge of the filters and the objects they connect, however,

this is a closed system where filters are limited to connecting objects within

the same Smalltalk process (in fact, within the same ThingLab invocation).

When interfaces must span processes and machines, filters need to be

established outside of a closed environment. In an open and dynamic system

where each application exists as a process in its own environment and with

its own object space, a filter is used to relate two application processes

rather than just two objects in one application. Maintaining the consistency

of the filter constraints in an open environment becomes more complicated

because little or no global knowledge can be assumed about the application

processes and their objects.

Consider the following scenario: three different applications are in

progress, each having an environment of its own (Fig. 2.1). A Smalltalk

8

Smalltalk application GemStone database graph browser

01

Q 0
02

0090
03

Q 0 0. ..,. ..,.
°0 " " :.. ,. .

Filter Fl / Filter F2 ./

1 ~ 1 1/

Fig. 2.1 An example scenario.

application with an interactive display created with the FilterBrowser, a

GemStone database, and a graph browser are executing as processes on

different machines. Some filters are established among some of the objects

managed by these different applications. Suppose, for example, that the user

at the interactive display of the Smalltalk application is experimenting with

an object 01, which is related by a filter Fl to an object 02 in the

GemStone database. The user at the graph browser is displaying a graph

object 03 which happens to be a part of some statistics generated from

GemStone database objects, 02 being among them. The objects 02 and 03

are thus connected by a filter F2. If the user at the display of the Smalltalk

application updates object 01, then both the objects 02 in the GemStone

database and 03 in the graph browser now potentially require updates for

consistency, as imposed by filters FI and F2.

2.2. An Incremental Approach

The problem can be viewed as a progression from the FilterBrowser,

which establishes and maintains a network of constraints between objects

within a single application process, to the FilterManager of the future, which

will manage a network of filters spanning processes, environments and

machines.

In the current version of the FilterManager, a model is developed and

implemented to extend the FilterBrowser to handle filters on objects in

different processes having similar environments: multiple Smalltalk images.

The current implementation is for Smalltalk processes, possibly residing on

different machines, and is restricted to equality filters, where the objects of a

filter are constrained to be identical in structure and equal in value.

Equality filters are sufficient for processes executing in similar environments

since any filter F can be redefined as the equality filter E followed (or

preceded) by F, where the equality filter E spans environments, but F is

entirely within one environment.

To extend this model to one in which the processes execute in dissimilar

environments, such as the GemStone database and the application with a

display created with the FilterBrowser as described earlier, other types of

10

filters would have to be included. Equality filters suffice for two processes

with similar environments because the type system is the same. When a

filter relates two objects in environments with dissimilar type systems,

however, the filter must perform type conversion. Such filters will include a

component that describes the transformation of an object from one

environment to another.

2.3. Related and Background Work

The FilterBrowser [Ege87, EMB87] provides the designer of a user-

interface with a tool that uses constraint-satisfaction to build interfaces. It

allows constraints among objects in an interface to be defined graphically. It

models the de~cription and maintenance of these constraints using filters,

which may be composites of simpler filters. ThingLab [Bor8!], on which the

FilterBrowser implementation is based, uses constraint-satisfaction

techniques to plan and solve constraints defined among objects. Animus

[Dui86], an animation toolkit, introduces the dimension of time into

ThingLab.

Other graphic tools handle relationships in different ways and for

different purposes. One facility provided by the PV [Bro85] system is the

dynamic display of the contents of specified data structures of a program as

it executes. Incense [Mye83]is a system that displays the data structures of

an executing program and allows a programmer to interactively investigate

11

those data structures. BALSA [Bro88, Bro84] and its descendant systems

provide multiple views of a data structure that are simultaneously and

dynamically updated with the execution of the animated algorithm, which is

a specially modified version of the original program.

The ANTICS [Dio78]system is used as a visual aid to the operation of

an animated LISP program. The GARDEN [Rei86] system, a successor to

the PECAN [Rei84, Rei83] system, provides a means to simulate the

message-passing mechanism of Smalltalk, and the active-values mechanism of

access-oriented programming [Ste86, Ste83]. In access-oriented programming,

when an active-value is accessed, it triggers a corresponding action.

These models all exhibit a common. trait - that of objects having to

maintain some relationships among themselves. They serve as toolkits for

the design and testing of user-interfaces, algorithms, programs and other

systems, within a single environment. Some form of global or shared

information is maintained among all the objects and/or processes in the

system, and the simultaneous and dynamic updates on related objects are

handled through this common information.

The Database Access Manager used by the Humanizer [Gro85], on the

other hand, maintains a separate database of information on which processes

periodically check to maintain the consistency of the relationships among

their objects.

12

2.4. Limitations or Existing Models

The Smalltalk application, the GemStone database and the graph

browser described in the scenario are independent applications in the sense

that each one is complete and can exist on its own. Yet, because all three

applications happen to be executing simultaneously on some set of objects

that are semantically related, some form of consistency among these

processes is desirable. Constraints can be established to identify and

maintain the required consistency.

Maintaining the constraints by having each process broadcast all

changes in any object it manipulates is inefficient because not every change is

interesting to the other processes. Process interactions in this context pose a

different problem from process interactions in the context of operating

systems. An application process needs only to interact with other processes.

if the object being changed is at one end of any filters; this interaction is

limited to those processes whose objects are the targets of those filters.

The models of the various user-interface toolkits mentioned above could

perhaps be extended to handle related objects in a predefined set of

applications. A database could be used to maintain some global state with

which to enforce consistency among the set of applications, and the Model-

View-Controller paradigm of Smalltalk could be adopted. to handle

relationships. Most databases, however, do not have a mechanism to notify

clients of changes, and the clients would have to poll the database for

changes. An application should not have to track all events in the

13

environment in order to maintain a state of consistency, as this would result

in either a high overhead, or low consistency. Furthermore, concurrency

control in a database prevents the changes made by a client to data from

being visible until the transaction is completed. Long-running transactions

by a client on the database impede rather than enhance consistency.

Another limitation on this approach is that when the environment is to

be an open one, with a dynamic and diverse set of application processes, the

addition of each new application is complex. The database that maintains

the global state must be able to handle any new types of objects used in the

new application. It must be provided with information on how to perform

object transformations between these new object types and existing types. In

addition, if the application has an environment that is different from the

environments of all other applications, the database would need to know how

to perform type-conversion between the new environment and the existing

ones.

2.5. Design Goals

The FilterManager was designed with the objective of managing filters

representing the constraints existing among a dynamic set of application

processes. Each process participating in a filter network requires only that

the FiIterManager be accessible from its environment. Since the object

relationships among processes have a semantic nature and are thus dynamic

14

over time and with the environment, a process should not have to be

dependent on a static environment to allow its relationships to be

maintained.

Since heterogeneity is to be a characteristic of the eventual

FilterManager, it is desirable for an application process to require as little

modification as possible to participate in a filter network. In particular, the

application itself should be able to operate in any of the environments it was

originally set up for, without requiring a special modification for each

environment or system. The FilterManager should take care of the system-

specific, or environment-specific, details of managing filters on the objects of

an application process, so that a process can participate in a filter network

with little more than the establishment of a filter.

In the ultimate filter system, there would also need to be support for

creating new kinds of filters so that the services of the FilterManager can be

extended to manage new environments and new kinds of constraints.

15

CHAPTER 3

THE FilterManager

3.1. Conceptual Model

The conceptual model of the FilterManager describes what an

application programmer sees when constraints are established among some

objects from a set of application processes, while the implementation model

describes the software components of the FilterManager and their roles.

Consider generalizing the functionality of th~ FilterBrowser [Ege87] so

the two objects of a filter need not belong to the same process (Fig. 3.1). In

particular, they belong to the object spaces of two different processes that

reside in possibly dissimilar environments.

Each process manages and manipulates some objects in its own private

object space. A process can choose to make some of its objects known to

other processes. A filter can then be established between any two of these

objects, each from the object space of a different process, to represent and to

maintain a constraint between them. When one of the two connected objects

changes, it becomes the source object of the filter, and the other object, the

target object, is changed correspondingly to maintain the constraint.

In the conceptual model of the FilterManager, a process does not need

to check on the relationships that its objects have with objects outside its

18

Process PI Process P2

Objects

01 02 03

OQO

Objects

04 05

<;) 0

Filter Fl

}-

/

............

Fig. 3.1 The conceptual model of the FilterManager.

private object space. Instead, a filter describes each of these relationships,

and the FilterManager performs constraint-satisfaction on a network of these

filters.

This model can be realized as a system of three types of components,

the processes whose objects may be related in some way, the filters that

describe those relationships, and the FilterManager, which maintains the

network of filters.

1'1

3.1.1. Processes

Each application process has its own object space representing its state;

these objects may have two kinds of relationships (Fig. 3.2). An object may

be related to other objects within the process, but such relationships exist

only within the context or the process and have no direct bearing on other

Application Process PI

. Application
Process P2

objects

Filter
'.

I

....-
-...........

)

1

9
.Un."..-.

Fig. 3.2 Object relationships within and outside a process.

18

processes. An object may also be related to objects in other application

processes, and the process must identify them as objects that may have

filters established on them.

3.1.2. Filters

A filter identifies how two objects are related, and holds information

about each object and the process it belongs to. The two objects may be

from the same process, or from different processes, and the filter connecting

them contains a well-defined transformation that allows the constraint to

hold in both directions without loss of information.

Since the relationship between two objects may be rather complex, a

.filter could be a composite of other simpler filters. For example, a filter

between a Fahrenheit thermometer and a Celsius thermometer could consist

of one filter to scale the ratio of the units, followed by another filter to

translate the values to the same base, as seen in Fig. 3.3.

3.1.3. .The FilterManager

The FilterManager, as its name suggests, manages the network of filters

representing constraints between processes. It ensures that when one object

in the filter network changes, all the objects related to it are updated

correspondingly.

degF degC

Tl T3

Filter Fl

T2 = Tl * 5/9

Filter F2
I

T3 = T2 -32

'\j
,.J.'"

.......

\..............

Filter F

Fig. 3.3 A composite filter.

The services of the FilterManager are available to an application process

after it is registered; a process may manipulate constraints on its objects by

adding or removing filters. It may also find out about other processes and

their objects.

20

3.2. Implementation Model

In the implementation model, the FilterManager consists of a server

process, the FilterManagerServer, that is installed as an independent

application process, and the FilterManagerClient, a set of routines compiled

in each application process (Fig. 3.4). Communication between the

FilterManagerServer and each FilterManagerClient takes the form of a well-

defined communication protocol over sockets. For each object that the

application identifies as a potential source or target object of a filter, the

FilterManagerClient associates an object handler to perform additional

functions on behalf of the object. A description of each component follows

an illustration of how they relate.

To see how the components of the ~ystem relate, consider the scenario

described earlier. The Smalltalk application having a display created with

the FilterBrowser, the GemStone database, and the graph browser are

applications executing on different machines (Fig. 3.5). Constraints exist

between an object 01 in the Smalltalk application and object 02 in the

GemStone database, as well as between object 02 and an object 03 in the

graph browser.

To maintain the constraints between objects 01 and 02, and between

objects 02 and 03, the FilterManager must be operational. Suppose the

FilterManagerServer is executing, and each of the three application processes

has recompiled the FilterManagerClient routines as a part of its context.

The Smalltalk application, GemStone database and graph browser register

21

Process PI Process P2

o 000
----------- -----------

Objects

01 02 03

000
I I. I I I

FilterManagerClient,

component residing in processes
Objects

04

~
05

a
I I

~
I

I
I ·, Filter Fl

I

-i\, "socket
"-.A ------

,. "f,
~

..'.................

\
,

\
I
I

socket /"

",,17 ~=====4:",
I

--

FilterManagerServer, component as an independent application

'______------------------------------------

Fig. 3.4 The implementation model of the FilterManager.

22

/A'/' I'.
I \

/ I Filter F2

J : i 1/
I

\ socket
\

~
.J

~ ~- ~ ,

Smalltalk application

FilterManager

(Client)

01

q
-71

/
/

I
I
I

: socket

'11 v:"

Filter Fl'.
", '.,

{......

I

/:t'

Processes:
Smalltalk-

application (01)
GemStone (02)
graph browser (03)

GemStone database

FilterManager

(Client)

02

o
':', I

Filters:
Fl (01,02)
F2 (02,03)

FilterManager (Server)---------------------------------

Fig. 3.5 The FilterManager in the example scenario.

graph browser

---_._------

socket-----
;f -----'"...

\
I
I

I
I

I>

..

23

objects 01, 02 and 03 respectively with the FilterManager. An object

handler is created for each of these objects by the FilterManagerClient in the

respective processes. Pointers to the object and its object handler are

swapped, and the object handler keeps the new pointer to its object. The

constraints are requested, and filters Fl and F2 are established by the

FilterManager.

When object 01 in the Smalltalk application is updated, the update

reaches the object via its object handler. Since object 01 is at one end of a

filter, its object handler informs the FilterManagerClient in the Smalltalk

application of the update. The FilterManagerClient communicates the

update to the FilterManagerServer through a socket. The

FilterManagerServer, which knows about filter Fl, determines the target

object of Fl given that object 01 changed, which in this example is object

02 in the GemStone database. The FilterManagerClient in the GemStone

database is thus informed of the update required on object 02, and the

object handl8r of 02 is delegated the task of sending the update to its

object.

However, the FilterManagerServer also finds that object 02 is related to

yet another object 03 through filter F2. Hence the FilterManagerClient in

the graph browser is also informed of the relevant update. In this way, a

change in object 01 is propagated to all other objects that have some

relationship to it, whether directly, as for object 02, or indirectly, as for

object 03.

24

The sections following describe in greater detail each component of the

implementation model and its role.

3.2.1. Sockets

A socket (Joy, Lef, Sec] provides a process with a channel for

communication with other processes. The sockets used by the FilterManager

use the server-client role model; sockets, rather than pipes, must be used

because the processes that need to communicate are not related in a parent-

child process hierarchy.

A server socket is associated with an application process that is willing

to provide some service to other processes; the socket provides a means for

other processes to communicate their requests to the process providing the

service. The server socket is created with a call to the operating system and

given an identification by being bound to a communication port on the host

specified by the service process, usually the host on which it is executing. It

needs to have a queue initialized for outstanding service requests, which take

the form of requests for connections from client sockets. To process a

request, the service process accepts the first connection in the queue of

connections on the server socket. An accepted connection is given a new

descriptor and forms an open communication path between the service

process and the process requesting the service. Messages can be exchanged in

both directions over a connected socket between the two processes, and the

26

processes have to co-ordinate their exchanges. The service process can

terminate its services by closing its open connections and shutting down its

server socket.

A client socket is created' by an application process which needs a

service that another process is willing to provide. The client process initiates

a request for the service by connecting the socket it has created to the server

socket of the service process. The server socket is identified by the

communication port it is bound to. When the connection has been accepted

by the service process, communication between the two processes can

proceed. The communication path is broken when either the server socket is

shut down, or the connection is closed.

Sockets can be created with specific properties; the sockets used for the

FilterManager must not block for read or write operations, so that an

incomplete operation results in a return instead of a wait. For each server

socket created, the FilterManagerServer must request the operating system

to notify it via the operating system signal SIGIO when any operations are

completed on that socket. Each accepted connection takes on the properties

of the server socket and is treated as an open file descriptor by both

processes using it. The limiting number of open connections that a process

may have at any time is the number of available file descriptors. There may

thus be multiple open connections on a socket between two processes, and a

process may have multiple sockets.

A closed connection cannot be reopened. To restore a communication

path between two processes after a connection has been closed, the processes

28

have to repeat the connection procedure. A communication path cannot be

initiated over a server socket; only processes with client sockets may initiate

communication.

3.2.2. Processes

When an application process is to have constraints between itself and

another process maintained by the FilterManager, it has to identify itself to

the FilterManager. During registration with the FilterManager, an

application process identifies the objects in its context that may be known to,

and constrained by, other processes. The registering process is given a

unique name by which it is known to other processes and to the

FilterManager. The identified objects are the only objects in the context of

the process that may be related to objects of other application processes

registered with the FiIterManager. A process may register or deregister

objects after the initial registration.

As long as a process remains registered, the FilterManager maintains

any constraints on its registered objects, and ensures that when any of these

objects become target objects of filters, they are updated. The

FilterManager also handles the propagation of updates when any of these

objects become the source object of a filter.

A terminating process is required to deregister from the FilterManager;

a process can also deregister when it is no longer interested in participating

21

in the filter network. At process deregistration, all constraints between

objects of the process and those of other processes are removed..

3.2.3. Object Handlers

For each object in an application process that may be the source or

target object of a filter, the FilterManagerClient in that process creates and

maintains an object handler. The object handler for an object assumes the

identity of the object in the process and retains that identity, keeping a

count of the filters that have been connected on it. All messages generated

within the application process and sent to the object arrive at the object

handler. The object handler examines each message for a resulting change in

state of the object before sending the message to the object. If the state of

the object will change and the object is constrained, the object handler

notifies the FilterManagerClient once the object has been updated.

In addition, an object handler receives messages from the

FilterManagerClient requesting it to increment or decrement the number of

filters on the object it represents, and messages informing it of an update in

the object when it is the target of a filter. The FilterManagerClient does not

need to be notified of any changes in the object as a result of these messages.

When an object is deregistered, the pointers to the object handler and

its object are swapped again, so that the identity of the object is restored.

This is done after first ensuring that any existing constraints on the object

r
I

28

can be removed. Each type of object has its own type of object handler, and

the protocol to an object handler of a type contains the protocol for the type,

and other messages.

3.2.4. Filters

Each type of constraint has a separate filter definition, and a process

identifying a constraint between two objects specifies the type of filter to be

used, by name. The FilterManagerServer creates an instance of a filter of

the specified definition to connect the two objects. :-A filter contains

information about the type of constraint, the two objects being constrained,

and the application process to which each object belongs. The only

restriction - that the FilterManager places on the filters that can be

established is that an object cannot be directly related to itself. Filters that

relate two objects of the same process are managed by the FilterManager in

the same manner as filters spanning processes.

When an object at one end of a filter is updated, the

FilterManagerServer tells the filter the identity of the changed object, so that

it knows which participant of the filter is the source object. The filter also

receives sufficient information about the update, so that together with the

type of constraint that the filter represents, it can determine the kind of

update that must be made to its target object.

28

3.2.5. The FilterManager

3.2.5.1. The FilterManager's State and Initialization

The FilterManager consists of two separate sets of routines. The

FilterManagerServer executes as a separate application process, maintaining

information about the dynamic environment of application processes and the

constraints existing among them. The FilterManagerClient is a set of

routines compiled into each application process, maintaining information for,

and performing functions of, the FilterManager specific to the process.

The FilterManagerServer keeps a directory of the processes that are

registered; for each process, it maintains a server socket, called the request

socket, and an open connection, the target connection, using that socket. A

set of constrained objects is associated with each process. The

FilterManagerServer has a directory of filter definitions and a table of all the

filters that are established. In addition to a request socket for each

registered process, it maintains a special server socket, the registration

socket.

The FilterManagerClient keeps a directory of objects (actually, their

object handlers) for all objects in the application process that may have

filters established on them. It keeps the identity of the request socket, which

is the server socket set up by the FilterManagerServer for communication

with the client, and maintains the same target connection that the

30

FilterManagerServer has for that process, using that socket.

Registered processes and their objects are known to the

FilterManagerServer by unique symbolic names. The FilterManagerClient in

each application process maps the symbolic name of a registered object. to

the object in the process. Filter types are identified by name in a process

and mapped to their corresponding definitions by the FilterManagerServer.

The FilterManagerClient keeps the identity of a server socket by the

communication port number and the host it resides on; all other sockets,

including open connections, are identified with socket descriptors similar to

open file descriptors.

When the FilterManagerServer is invoked, it creates the registration

socket and writes the socket address in a standard file so that any registering

process can determine where a communication path to the FilterManager is

to be found. To cater for application processes residing on different.

machines, the registration socket should really be maintained by a name

server. The FilterManagerServer polls the registration socket for connection

requests from registering and deregistering processes.

3.2.5.2. Process Registration

The FilterManagerClient, having been recompiled in the application

process, is first active when the process registers (Fig. 3.6). It requests a

connection on the registration socket to register the process and to determine

31

register

registration socket
for all processes

I
I
I
I
I
I
I ---------
I r ,
I I I
I source I source I

I messages I connection ~I :"

L.- - - - - - - ~> to be - ~ - - - - - - - - - .
I requested I
I I I

: ,- - - - i:- target messages :
r--I .<-r----------------
I L J I

I target . II . I
I connectIOn I

I open I
I I

request socket
for Pi---------

FilterManager
(Server)

'----------.

Fig. 3.6 Process registration with the FilterManager.

the unique identification that the FilterManagerServer will use for the

process.

Once an application process registers with the FilterManager, the

FilterManagerServer establishes a separate request socket for that process to

-I I
I
I

Filter-I

Process I Manager
Pi : (Client)

J
IL

82

initiate any subsequent communication. Since connections cannot be

initiated on a server socket, an open connection, the target connection, is

established using the request socket to allow the FilterManagerServer to

initiate message exchanges with that process. Both the request socket and

the target connection are maintained until process deregistration, and the

FilterManagerServer polls the socket for connection requests.

The FilterManagerClient handles source messages, messages initiated by

itself to the FilterManagerServer, and target messages, messages initiated by

the FilterManagerServer to itself, with two separate processes in a parent-

, child hierarchy. Managing source and target messages separately allows an

application process to be both making a request to the FilterManager and

servicing a request from the FilterManager simultaneously without deadlocks.

(Deadlock issues are discussed further in Section 4.4.) The

FilterManagerClient thus spawns a child process that waits at the target

connection of the application process for target messages. It is then dormant

in the application process until one of three events occurs: a message arrives

from the FilterManagerServer, a constrained object is updated, or the

programmer of the application requests some services of the FilterManager.

3.2.5.3. Target Messages

When the FilterManagerServer needs to initiate a message exchange

with the FilterManagerClient in an application process, it sends a target

aa

message via the target connection (Fig. 3.7). This situation arises when the

process has a target object or a filter that has to be updated ror consistency,

as well as when the FilterManagerServer needs to know about the registered

objects or that process.

The application process receives a notification rrom the operating system

via the SIGIO signal that wakes the child process waiting at the target

connection. The child process interrupts the application process to process

request socket

Process

I
I
I Filter-
I
I
I
I Manager

: (Client)

FilterManager
(Server)

target
connection

FilterManagerClient wakes up
reads socket message
performs relevant update

FilterManagerServer writes
to open connection

Fig. 3.7 Process has the target object or a filter.

84

the message, before becoming dormant again, awaiting the next target

message.

3.2.5.4. Source Messages

The processing of a source message requires the FilterManagerClient in

an application process to request a connection, the source connection, via the

request socket of that process (Fig. 3.8). Source connections are requested on

demand by the FilterManagerClient and need not be kept open, as in the

case of target connections. Once the FilterManagerServer has accepted the

connection and serviced the request, the connection is closed.

Source messages arise when a constrained object in an application

process changes and the FilterManagerClient in that process needs to pr?vide

the FilterManagerServer with the identity of the changed object and the

nature of the change. The FilterManagerServer uses the filter information it

keeps to propagate the update of the object to all processes that have

objects related to it.

Some routines are provided by the FilterManagerClient for the

programmer of an application to change the set of objects that may be

constrained, and to add and remove filters. There are also queries that can

be made on the identities of other registered application processes, and their

objects. Except for the registration of objects and the deregistration of an

unconstrained object, these utilities also generate source messages. In

8S

request socket

Process

I

: Filter-
I
I

I Manager
: (Client)

FilterManager
(Server)

FilterManagerClien
connects
writes update mess

'ManagerServer
cepts connection
ads socket message

Fig. 3.8 Process has the source object of a filter.

addition, when a filter is added, initial constraint-satisfaction has to be

performed so that the newly-constrained objects are consistent.

3.2.5.5. Process Deregistration

At process deregistration, the FilterManagerClient is responsible for

informing the FilterManagerServer that the application process no longer

wants constraints to be maintained on its objects. The FilterManagerClient

sends a deregistration message via the registration socket, and waits for the

source
connection

I I

I I

target
Filt

age
connection

ac
re

88

FilterManagerServer to inform it that all constraints are satisfied and

deregistration can proceed. In the meantime, the client processes any further

socket messages that the FilterManagerServer sends via the target

connection. The client must process these to ensure .that its state is

consistent with the other processes at the time of deregistration. Once the

FilterManagerClient has completed the consistency checks and is allowed to

continue with deregistration, it takes the relevant actions to close its socket

and discards the object handlers, reinstating the objects they represent. The

FilterManagerClient terminates its processing and removes its state from the

state of the application process so that none of the information it maintained

remains with the process.

3.3. Assumptions

The FilterManager assumes the equivalence of all filters connecting a

group of related objects. In a network where every constraint on a group of

related objects is equivalent, the objects can be grouped into equivalence

classes. Each object in an equivalence class is related to every other object

in the class. A change in one object needs to be propagated to each object in

its class exactly once in order for all objects to achieve a consistent state.

Even filters in the network that were not applied would. have their

constraints satisfied once every related object has had one update. The

FilterManager uses this assumption when propagating updates to all objects

17

that are related to a changed object. As long as each new filter established

is equivalent to the filters that are connected to the two objects being

constrained, the resulting filter network will be consistent.

38

CHAPTER 4

SYNCHRONIZATION IN THE FilterManager

4.1. Communication Protocol

As with any processes that communicate, the FilterManagerServer and

tbe FilterManagerClient component in each process need to have a well-

defined protocol for communication once a connection has been accepted.

The sending and receiving of messages must be co-ordinated to ensure that

messages are not lost or in error, and that deadlocks do not occur. Most of

the details' of message transmission are already handled through the

implementation of sockets by the operating system and the supporting

communications software.

However, there are a number of different implementations of sockets,

depending on both the domain and type of sockets, as well as the protocol

used. Rules vary with implementation for reliable delivery of each message

sent, for sequencing of message delivery to tally with the sequence of message

sending, for message boundaries, and even for error recovery. To avoid a

dependency on the type of sockets used, the FilterManager employs a simple

protocol for synchronous communication between the FilterManagerServer

and the FilterManagerClient in each application process. This

communication protocol is then mapped into the specific socket

implementations as read-write sequences.

ag

4.1.1. Sequencing or Message Exchanges

Once a connection from the FilterManagerClient in an application

process has been accepted by the FilterManagerServer, their message

exchanges are synchronized and take the following sequence: type of request,

response, text of request, reply. This sequence lends simplicity to

synchronization and deadlock avoidance. The specific exchange of messages

depends on the context for which communication is taking place.

When the FilterManagerClient in an application process is requesting

information from the FilterManagerServer, it initiates a source connection on

the request socket and sends a message over the socket indicating that a

query is to follow (Fig. 4.1). It then waits until the FilterManagerServer

responds before sending the text of the query and awaiting a reply.

Similarly, if a filter is to be established or removed, or a constrained object

has changed, the FilterManagerClient indicates that a request for service is

to follow, and then waits for the FilterManagerServer to respond before

sending the text of the request over the socket. To standardize the message

exchanges, the FilterManagerClient also waits for the FilterManagerServer to

indicate that it has completed the request.

The FilterManagerServer initiates messages to the FilterManagerClient

in an application process in a similar way (Fig. 4.2). In this case, the

messages to be sent are either instructions to the FilterManagerClient about

a change of its state, or a request for information, and they are sent via the

target connection between the two processes that is kept open for this

40

Server Socket

Fig. 4.1 Message exchange initiated by FilterManagerClient.

FilterManagerClient source FilterManagerServer

connection

Request connectionI

requested
) ,- - - - - -,

Send request-type

Wait for response I

1- _ _ _ _ _,

CJ)
Accept connection

Read request-type

connection (Send response
Receive response (accepted

Send request-text)

Wait for reply) IRead request

Perform service

(Send reply
Receive reply I(Close connection
Close connection

.----

41

Fig. 4.2 Message exchange initiated J?yFilterManagerServer.

purpose. The FilterManagerServer sends a message indicating the type of

request to follow, waits for the FilterManagerClient to respond, and proceeds

to send the text of the request. Again, for uniformity, the

FilterManagerServer waits for a reply from the FilterManagerClient in both

cases.

target
connection

FilterManagerServer

>CJ
FilterManagerClient

Send request-type I

Wait for response .

IRead request-type(Send response
Receive response

Send request-text)

Wait for reply) I Read request
Perform request

(
I Send reply

Receive reply I

-

42

4.1.2. Assumptions

In employing the protocol described, it is assumed that the sockets used

provide a guaranteed delivery of all messages sent. Neither the

FilterManagerServer nor the FilterManagerClient concerns itself with error

recovery from lost messages and message resends. Stream sockets, the

specific implementation of sockets used, provide error recovery and message

resends, and an interface can be built to provide the FilterManager with

sockets having this functionality if the sockets used for implementation do

not do so.

Another assumption made is that outstanding connections are queued in

the sequence in which they are requested. Although the FilterManagerServer

applies its ow~ policy of selecting a socket to check for an outstanding

connection request, assuming that the connections on each socket are queued'

according to request ensures that no request for a connection is ignored.

Again, stream sockets possess this facility, and other socket implementations

that require the communicating processes to do their own sequencing will

need an interface to provide this feature.

4.2. Update Phases

In a filter network, an object may be directly or indirectly related to

other objects. When an object 01 is directly related to some other objects, a

- -. . - -- - ---. _0__-_ ._ __

43

filter is established between object 01 and each of the other objects (Fig.

4.3a). Objects 03 and 04 are indirectly related to object 01; there is no

filter connecting objects 01 and 03, or 01 and 04, but there are filters

connecting object 01 through some intermediate objects and filters, to object

03, and similarly, object 04 (Fig. 4.3b).

(b)

P2 P3 P4

(a)

Fig. 4.3 Phasing updates.

PI

r-
01 I PI P2 P3 P4

I:l I:l I:l 1:4

'.'.'.

In either case, when object 01 changes, a consistent state for the

processes in the filter network is one where objects 02, 03 and 04 reflect the

change corresponding to that in object 01. The FilterManagerServer

therefore should treat the propagation of an update in source object 01 to

target objects 02, 03 and 04 as a single task rather than as three separate

tasks. Since the FilterManagerServer has information on all the .filters

established, it can propagate a change in an object to all objects that are

both directly and indirectly related, as a single update phase. At the end of

the update phase, consistency has been re-established.

To propagate updates in phases, the FilterManagerServer accepts a

request from the FilterManagerClient in one application process at a time,

and completes the processing of that request in a single update phase before

proceeding to process the next request. For example, suppose the

FilterManagerServer receives a notification from the FilterManagerClient in

process PI that object 01 has been updated (Fig. 4.3a, b). An update phase

would then constitute the FilterManagerServer interacting with the

FilterManagerClient in each of the processes P2, P3 and P4 to effect the

relevant updates in objects 02, 03 and 04. Only after these interactions

does the FilterManagerServer accept another request. from the

FilterManagerClient in any process. Each FilterManagerClient, on the other

hand, has a child process that handles update requests even while it has a

connect request outstanding. The child process interrupts the processing of

the application and the FilterManagerClient, whenever an update request

arrives, to perform the update. This scheme ensures that an object is

--- u_ -- -..----

46

inconsistent in its relationships by at most one update at any time.

When a target object of a process is first updated by the FilterManager

in an update phase UI, and then changes again as a result of constraint-

satisfaction or computation within the private object space of the process,

the second update is not part of update phase UI. The second update thus

makes the object become the source object of a filter in a separate and

subsequent update phase, U2.

4.3. Polling Requests for the FilterManager's Services

When many application processes are registered with the FilterManager,

more than one FilterManagerClient may request service from the

FilterManagerServer at the same time. To ensure that only one of the

requests is processed at a time and hence enforce update phases, the

FilterManagerServer determines when it is ready to accept a request, and

which request it will accept.

For simplicity, the FilterManagerClient in each registered application

process is polled for a request to the FilterManagerServer in a round-robin

fashion. Polling takes the form of determining if a connection has been

requested on the request socket of a process. The registration socket of the

FilterManagerServer is also polled together with the other sockets. This

policy implies an equal priority for each request. Once a connection is found,

polling stops, the connection is accepted and the request serviced before

48

polling proceeds.

Different schemes of polling could implement priorities to include some

knowledge of the states of the processes. For example, the

FilterManagerClient in a process may be polled with a. relative frequency

proportional to the number of constrained objects it has. As long as polling

is not continued during an update phase, the FilterManagerServer and the

FilterManagerClient in each application process are synchronized.

4.4. Deadlocks

In the context of the FilterManager and its communication protocol,

deadlocks can arise in the following situation: The FilterManagerServer is

waiting for the FilterManage"rClient in an application process to respond, and

the same FilterManagerClient is waiting for a reply from the

FilterManagerServer.

An example is when the FilterManagerClient in a process PI has

requested a connection and is awaiting the response of the

FilterManagerServer. However, the FilterManagerServer is busy processing

the request of the FilterManagerClient in another process P2, and finds that

some object in process PI is the target object of a filter. The

FilterManagerServer sends a message to the FilterManagerClient in process

PI and awaits a response. Both are now waiting, and neither can proceed.

When an object in a process is indirectly related to another object in the

--- ... -.- - .. -~. -- ---

47

same process via external filters, a similar situation results.

To avoid this situation, an implementation of the FilterManager must

ensure that the FilterManagerClient in an application process is installed to

handle source and target messages simultaneously. Each client process thus

has two additional operating system processes in a parent-child hierarchy

that implement the FilterManagerClient. At process registration, the

FilterManagerClient is initiated as the parent process managing source

messages, and spawns a child process to manage target messages. While the

parent process of the FilterManagerClient in an application process is

waiting for its connection to be accepted, or for the FilterManagerServer to

reply, the child process responds to, and takes action on, any target

messages.

A parent-child hierarchy of processes provides simplicity in sharing of

sockets and a single control over the processes. Besides avoiding deadlocks,

this approach allows updates on target objects in an application process to

be effected as soon as a message containing the required update is delivered.

48

CHAPTER 5

ISSUES IN THE FilterManager SOLUTION

This chapter discusses the policies that the FilterManager uses, and the

alterna tives.

5.1. Cycles in the Filter Network

The filters established on the objects of application processes registered

with the FilterManager, and their objects, may be treated as a graph; the

objects being the nodes of a graph, and the filters the edges between them

(Fig. 5.1).

The propagation of a change in a constrained object to all related

objects is analogous to visiting every node in the connected subgraph that

contains a specified node. If each object in the filter network is represented

as a node in a graph, then all filters on it can be represented as edges

incident on that node. When an object becomes the source object of a filter,

it forms the root of a connected subgraph to be traversed. Each filter

activated is an edge traversed, and each target object updated is a node

visited. The objective, then, is to visit each node in the subgraph starting

from the root.

Process P2

Process P3

Process PI
Objects

03 04 05

000

Obj.~~ l / ,

'" /

01 02 '" '" " , , _ _ _ _ :: '"Q Q ",'" ---- -- -" ..,- -." .."..- .."..-- .,,-' -
'--'-----------------

Objects

06

o'"

(a) a filter network

(b) graph representation

05
03

04

Fig. 5.1 Graph representation of a filter network.

Since filters are established to identify constraints representing the way

objects are related in a set of application processes, it is not unusual for

-._-.

50

cycles to occur in the graph representing a filter network (Fig. 5.2a).

When a cycle occurs in the connected subgraph of a filter network to be

traversed, an edge should never be traversed more than once, Le., a filter

should never be applied more than once in an update phase. Besides

avoiding redundant work, this rule defines a bound on the number of updates

needed to achieve consistency when an object changes. However, it does not

prevent an object from being sent multiple update messages if it has many

filters on it. Assuming the equivalence of all filters in a connected subgraph,

it is necessary to send an object only one update message in a single update

phase. To ensure that an object is a target object only once in an update

phase, a traversal of the connected subgraph must never visit a previously

visited node. This implies that during an update phase, some filters in the

connected subgraph of objects are not applied. Since all the filters

connecting those objects are assumed equivalent, however, any of those filters

that are not applied would still satisfy their constraints as a result of the

application of the other filters.

In each update phase, a breadth-first traversal is made on a subgraph of

the filter network (Fig. 5.2b). The only objects that are examined are in the

connected subgraph whose root is the object that changed. Eac~ such object

is visited exactly once in a breadth-first traversal order, and any filters on it

will only be applied if the filter has not been applied yet and the object at

the other end of the filter has not been visited yet. Breadth-first traversal

defines a partial ordering on the updating of the objects in a filter network.

However, under the assumption that all chains of filters between two objects

61

(a) cycles in a
filter network

8
(b) breadth-first

traversal

Fig. 5.2 Traversing a filter network with cycles.

52

are equivalent, the order of updates does not affect the result of the update

phase.

5.2. Initial Constraint-Satisfaction

The two endpoints of a filter are typed; the role played by the

FilterManager in the establishment of a consistent filter involves ensuring

that the type of the object attached to each endpoint agrees with the type of

the endpoint.

Immediately after a filter has been established, however, the two objects

may not yet satisfy the constraint required between them, since they have

been previously unconstrained. Thus it is necessary that an initial

propagation of updates be done just after a filter is established. The choice

of which of the two objects to designate as the source object is obvious only

in some instances.

There are a few different approaches that the FilterManager could take

to decide how initial constraint-satisfaction should be done. The simplest

way is to always propagate changes from the process requesting the

establishment of a filter could have its object be made the target object of

the filter, and assume a state corresponding to the object that is being

esta blishment of a filter. The target object that was previously

unconstrained is then made to conform to the object in the process

identifying the constraint. Conversely, the process requesting the

53

constrained in the other process. In the case where neither of the two

objects being constrained belongs to the process requesting a filter, this

approach is equivalent to making an arbitrary choice between the two

objects for a source object.

An alternative would be to take the source object to be the object with

a larger network of filters already established on it. This results in having

fewer updates to propagate, but the network of filters on both objects have

to be examined before a choice can be made.

The FilterManager could also identify the target object as the one whose

state has not changed since its initialization, or the one belonging to the

application process that was registered with the FilterManager later. In

principle, however, the invocation of an application process and its

registration with the FilterManager do not necessarily occur together, and

this approach might not always be the right choice either.

Finally, a combination of these strategies could also be used.

Ultimately, the option taken would trade simplicity in decision-making, and

possibly more updates to be propagated, for more overhead in making a

hopefully better decision, and fewer updates to be propagated.

The current implementation of the FilterManager makes the object in

the process requesting the establishment of a filter the target object. When

neither object belongs to the process, the source object is taken to be the

second object identified for the filter.

- - - ..--...--

54

6.3. Non-satisfiable Constraints

Not all constraints in a filter network can always be satisfied, even if

they are all consistent with each other. For example, a Fahrenheit.

thermometer in one application process may be unbounded in its upper limit

and may be manipulated to read an extr~mely high value, whereas a Celsius

thermometer in another application process has an upper limit on its

temperature readings. If both thermometers are supposed to be reading the

temperature of the same room, then a constraint can be established between

the two objects, which are in different application processes. When the

temperature in the room is raised beyond some limit, the constraint between

the two thermometers cannot be satisfied, since the Fahrenheit thermometer

will be able to reflect the correct temperature while the Celsius thermometer

will not, and their values will not reflect the same temperatures.

The FilterManager, however, does not concern itself with whether a

constraint may be satisfied. It simply specifies the changes required of all

target objects as a result of a change in a source object, without attempting

to find out if a target object was able to perform a specified update. There

are four possible ways of handling a constraint that cannot be satisfied.

One is for the target object to consider that the constraint is satisfied

beyond a limiting value. For example, as long as the Fahrenheit

thermometer has a reading beyond the equivalent maximum reading of the

Celsius thermometer, the Celsius thermometer keeps its maximum

temperature reading. The constraint is considered satisfied, and the

-- -- - - - --- ---- _ __ h ____

66

Fahrenheit thermometer may continue to register even higher readings.

Another approach is to force a compromise between the two objects to

keep the constraint satisfied, so that the states that one object can have is

bounded by the possible states of its related object. An example of this is

where the two applications had thermostats instead of thermometers. When

the Fahrenheit thermostat is moved beyond the limit of the Celsius

thermostat, maintaining the constraint would mean that the setting on the

Fahrenheit thermostat be limited to the equivalent of the maximum setting

on the Celsius thermostat.

The application process with the target object could reject the update

entirely, and restore the original value of the target object, effectively

causing another update phase that cancels out the first change. The Celsius

thermostat is reset to the setting that was in effect before the Fahrenheit

thermostat was raised, and the constraint has to be satisfied by requiring the

Fahrenheit thermostat to be reset to its initial setting also.

Finally, the filter could be flagged as unsatisfied, and the two

application processes are notified.

The first approach considered a constraint satisfied within some

limitations, whereas the other approaches require a constraint to be strictly

satisfied. Hierarchies of constraints [Bor87], where constraints are given

different strengths, allow a mix of strategies, so that weaker constraints can

be violated to preserve stronger ones. New types of filters can be created to

handle the first approach because it identifies how the target object is to be

- _. - - -----.-..---...-.
. _0 __'''0 ____

68

updated, i.e., to a maximum limit, without requiring any subsequent update

in the source object. When a subsequent update is necessary to strictly

satisfy the constraints, however, a separate update phase is needed in which

the object that was previously the target object becomes the source of a

change. Requiring a separate update phase for an update resulting from a

constraint that cannot be satisfied sets a bound on the number of updates

required within a single update phase as a result of a change in one object.

The FilterManager currently does not provide for unsatisfied filters to be

flagged and for application processes to be notified. Each process has to

have its own policy to handle non-satisfiable constraints.

5.4. Methods or Propagating Updates

Assuming that only consistent filters are established, propagation of

updates to enforce the consistency of the source and target objects could

take one of two forms, or even possibly a combination of the two.

A target object could be made consistent with the source object by

being told how it should update itself so as to correspond ~o the source

object. For example, if a filter connects two thermometers, and one

thermometer has its reading raised from Tl to T2 degrees, then the target

thermometer could be sent an update message to raise its temperature

reading by (T2 - Tl) degrees. Propagating updates by sending target objects

update messages corresponding to the updates in the source objects involves

67

a more thorough type-checking when filters are established. The filter must

check that both of its objects will know how to respond to any update

message that it might send to them.

Alternatively, a target object could be reconstructed to be made

consistent with the updated source object. In the example, the target

thermometer could be replaced in its application process with a thermometer

whose temperature reading is T2 degrees. Propagating updates by replacing

the target objects makes it necessary for the FilterManagerClient in a

process to reconstruct an object for the process each time the object becomes

the target of a filter. This method of propagating an update requires the

structure and value of the updated object to be passed from one application

process to another; the desaiption of the object is passed as parts of socket

messages between the FilterManagerServer and the relevant

FilterManagerClients.

In the model for the FilterManager, the filters do the work of identifying

how the target object should be updated. To propagate updates by update

messages, a filter needs to know how the source object has changed, and then

determine how the target object should be changed. To replace a target

object instead, a filter uses the changed source object and the type of

constraint it represents to reconstruct the target object. In both of these

methods of updating target objects, if an update results in a type change of

the target object, its object handler also has to be changed to the

appropriate type. In an environment where filters are generally established

on large and complex objects, sending update messages would be a more

..- - --. -----------

68

efficient way of propagating updates, since replacement would require

reconstruction of large objects. However, when filters are usually established

on simple objects, perhaps parts of these same large objects, then

replacement is a simple way to propagate updates.

The current implementation of the FilterManager propagates updates by

reconstructing the target object; no type-checking is implemented.

5.5. Other Issues

5.5.1. Floating the Registration Socket

The final goal for the FilterM~nager is to manage constraints established

between application processes that reside on different systems. Ideally, the

application processes registered with the FilterManager should not have to

depend on the FilterManagerServer being operational on a specific system.

With this goal in mind, it is necessary to allow the port number and host

name of the FilterManager's registration socket to be variable.

To ensure that the FilterManagerClient in a registering application

process can determine where the registration socket is, this information is

written in a well-known location, a file whose name is known to both the

FilterManagerServer and every FilterManagerClient. Since the contents of

this file changes each time the FilterManagerServer is terminated and

reinitialized, the FilterManagerClient can always find the current location of

68

the registration socket. As long as application processes are registered, the

FilterManagerServer cannot be terminated and the address of the socket

remains valid. To prevent any FilterManagerClient from attempting to

connect to a communication port when the FilterManagerServer is not

operational, the FilterManagerServer sets the contents of this file to nil when

it is terminating its services.

accessible and recognized by all the machines. Ideally, the processes on the

various machines should not have to be concerned with the exact location

and accessibility of this file; a filename service would .require the

FilterManagerClient in each process to provide only the name of the file.

However, the provision of a filename service is non-trivial for heterogeneous

systems, as each system has its own convention for filenames and file

formats. This has been addressed by others [Ber, Com, Not] and has not

been included in the scope of the FilterManager itself.

To provide the accessibility desired, a name server is needed for the

address of the FilterManager's registration socket.

When the application processes utilizing the services of the

FilterManager span machines, this file containing the location of the

registration socket must be located on a machine whose file system is

-

80

5.5.2. Signals

The model of the FilterManager includes an open connection for each

registered application process, maintained by both the FilterManagerServer

and the FilterManagerClient in the process. It serves as a communication

path for message exchanges initiated by the FilterManagerServer to the

FilterManagerClient, since the FilterManagerServer cannot initiate an

exchange until a connection is accepted from the FilterManagerClient.

A much tidier way of handling this problem would involve installing a

signal handling routine for each FilterManagerClient, causing it to initiate a

connection upon receipt of a specific user-defined operating system signal.

The FilterManagerServer would then send the signal to the relevant process

whenever it needed to initiate a message exchange. However, the UNIX

operating system limits a process to sending signals only to processes within.

the same process group, unless it executes in privileged mode. Hence this

option is not viable, at least for testing and implementation.

81

CHAPTER 6

IMPLEMENTATION OF THE FilterManager

6.1. Implementation Environments

Implementation of the FilterManager was done in Smalltalk-80 to take

advantage of the possibility of using previous work done in filters and

constraint systems, including the FilterBrowser [Ege87, EMB87] and

ThingLab [Bor8!]. There was also a view to a simpler integration with some

of these systems, which would be the application processes utilizing the

services of the FilterManager.

A characteristic of the implementations of Smalltalk u~ed for

experimenting with and implementing the FilterManager is that the

Smalltalk image assumes that it is always invoked from the console, and any

attempt to invoke Smalltalk while remotely logged in results in its invocation

at the console.

6.1.1. Tektronix Smalltalk

Experimentation with the design of the FilterManager started with

Tektronix Smalltalk Version 2.3a on a Tektronix 4405 workstation with the

UTek operating system. The operating system interface provided in

--- ---

82

Smalltalk made the task of executing an operating system call from within

this version of Smalltalk a simple one.

The design of the FilterManager was implemented in parts and each

part was tested for practicality and the results of the testing were used to.

refine the design. Both design and implementation were carried to the stage

where the FilterManagerServer and FilterManagerClient needed to introduce

synchronization in their communication protocol to abstract from specific

socket implementations. Since this implementation of Smalltalk assumes

exclusive control of both the mouse and the console display when invoked,

and does not execute in a window, it was not possible to view multiple

Smalltalk images simultaneously. Multiple Smalltalk images can be invoked,

but only one can be active while the rest have to be suspended and

represented as icons. To see what is happening in another Smalltalk image,

the current image has to be suspended into an icon and the icon of the other

expanded.

A Smalltalk image puts itself into an idle state when suspended as an

icon and refuses to respond to wakeup signals from other processes, waking

up only when made the current image to be displayed. This makes it

impossible for the FilterManagerServer and the FilterManagerClient in an

application process to have any form of synchronous two-way communication

using Tektronix Smalltalk. Therefore the implementation of the

FilterManager on Tektronix Smalltalk was abandoned.

. .- - - - -~.. - - -. - -. -.- -_ h.._ - . -. - - - - -.

83

8.1.2. ParcPlace Smalltalk-80

The implementation of the FilterManager was eventually moved to

ParcPlace Smalltalk Version 2.3 on a Sun-3 Workstation with the SunOS 3.5

operating system, and then ported to ParcPlace Smalltalk Version 2.4 on a

Sun-4 Workstation with the SunOS 4.0 operating system. With either

version of ParcPlace Smalltalk, each Smalltalk image can be invoked in a

separate window on the console. With some modification to the Smalltalk

'image [Sch], it is possible to make Smalltalk time-share the operating system

with other application processes. Two or more Smalltalk images, each in its

own window on the console, can then execute simultaneously and

communicate with each other.

Variables in workspa.ces implemented in ParcPlace Smalltalk must be

declared before each use, and are not persistent (unlike workspace variables

in Tektronix Smalltalk), because the workspaces are implemented without

local variable dictionaries. Neither implementation of the FilterManager

attempts to do anything about this, since the workspaces in the Tektronix

implementation of Smalltalk do provide persistent local variables, and it can

safely be assumed that persistent local variables can also be provided for

ParcPlace Smalltalk. Instead, a global dictionary is created for each

registered application process for the duration of its registration with the

FilterManager. The process uses the dictionary to declare the required

variables, and those variables are used when persistent variables are needed.

- ----- -.-----------

84

The implementation of the FilterManager in Version 2.3 makes use of an

operating system interface that is provided with the Smalltalk code as a

separate utility. As that interface is insufficient for the purposes of the

FilterManager, some user-defined primitives1 for Smalltalk had to be defined

and installed to provide the remaining operating system interface that was

required. The implementation uses stream sockets from the Internet domain,

since the provided interface uses those. Socket communication for sockets

from the Internet domain is not limited to the same file system, and the

FilterManager can thus handle constraints defined between application

processes on different systems.

Alternative socket implementations are stream and datagram sockets

from the UNIX domain, and datagram sockets from the Internet domain.

UNIX domain sockets restrict communication to processes sharing a single

file system. Datagram sockets require an interface to ensure that the

sequence of socket operations is identical on both the server and client ends,

and to handle message resends in case of errors. Hence stream sockets in the

Internet domain was the most practical implementation to use.

ParcPlace Smalltalk Version 2.4 arrived just about the time the

implementation of the FilterManager on Version 2.3 was completed. Due to

substantial differences in the two versions [Parc24], particularly in the

Jprimitive methods are methods built into the Smal1tallc virtual maehiDe. They are not expressed in the
Smal1t&11clanguage and eannot be ehanged by the programmer. A user-defined primitive is a pieee or eode provid-
ed by the user to Smal1tallcto be used &8a primitive method.

- --...--. . -- - -- --

86

operating system interface for sockets, porting the FilterManager involved

more than simply recompiling the source code. Although Version 2.4 contains

operating system calls for socket operations as a part of the standard system,

some other system calls that were provided in Version 2.3 are not available,

and user-defined primitives had to be defined and installed for them.

The operating system on the Sun-4 Workstation, SunOS 4.0, schedules

processes with a least-recently-used policy. This policy does not always work

well when any of the application processes is on the same machine as the

FilterManagerServer, since the FilterManagerServer is continuously active

and polling for connections. Eventually the processor is given to the

application process which is actively waiting for a reply from the

FilterManagerServer, and the FilterManagerServer is waiting for the

processor to schedule it so that it could send a reply. It helps to get the

processor allocated to the FilterManagerServer if the cursor is placed in its

window.

6.2. Organization or the FilterManager

The Smalltalk classes implementing the components of the

FilterManager and its supporting classes are as follows:

88

FilterManager

FilterManagerServer

FilterManagerClient

ExternalFilter

EqualityFilter

ProcessObject

ObjectHandler

CollectionHandler

TextHandler

IntegerHandler

TreeNode

FMWkspDict

The socket interface with the operating system in ParcPlace Smalltalk

Version 2.3 required enhancing the class Socket with server socke~ operations.

For time-sharing support, the class InputState was modified, and a user-

defined primitive was added. User-defined primitives consist of subroutines

written in C and called from Smalltalk to provide additional functionality

. -

87

that the Smalltalk implementation does not, and are used in the

implementation of the FilterManager to perform operating system calls that

do not bave an interface in the Smalltalk implementation. In Version 2.3,

user-defined primitives provide server socket operations to create and

terminate a socket and to accept connections. In Version 2.4, user-defined

primitives allow a process to determine its process id and to terminate itself.

The implementation of the FilterManager in Smalltalk classes

corresponds very closely to the roles described in the implementation model,

except for a few additional supporting classes. In addition, ParcPlace

Smalltalk Version 2.4 is substantially different from Version 2.3 in the

organization of classes supporting socket operations. Only details of specific

interest, and differences between the implementation model and the actual

implementation will be highlighted here.

The FilterManager class is a superclass of the FilterManagerServer and

the FilterManagerClient classes, implementing what is common beween the

two. In particular, because messages sent over sockets are byte strings, the

FilterManager class contains methods to encode and decode these strings into

the formats useable by its subclasses to ensure that consistency is maintained

for socket messages. Some constants, such as the name of the file to which

the location of the FilterManagerServer's registration socket is written, are

also maintained by the FilterManager class.

There is only a single instance of the FilterManagerServer class,

identified as a Smalltalk global variable, #FM, in the Smal1talk image that is

installed as the FilterManager application process (Fig. 6.1). The

88

FilterManagerServer puts the name each registering application process

Registration socket

Directory
of Processes

PI -i ~
P2

P3

Process PI information

request socket

target connection

CJ
constrained objects

_ _ pOOl 0 02 0 03"

Set of Filters

I
I
\
\

\
, , '-
~

Fig. 6.1 Organization of the FilterManagerServer.

Filter Fl information

o
Object 01
Process PI

Object 08
Process P5

- - - -----

e8

gives, into its directory of processes, mapping the name to the process itself.

This name defaults to the process id of the process, as known to the

operating system, if another process is already registered by that name, so

that each registered proceSshas a unique name.

Although the model of the FilterManagerServer includes knowledge of

the definitions of filter types, the FilterManagerServer implemented in

Smalltalk does not require a separate directory for these definitions, since the

set of subclasses of the class ExternalFilter serves that purpose.

Initialization of the FilterManagerServer starts up an instance of the

Smalltalk class Process that performs the polling of sockets of registered

application processes and handles the servicing of requests. The current

implementation of the FilterManagerServer also does not allow the

termination of the FilterManager's services while constraints are still

established or client processes still registered.

The FilterManagerClient is installed as a single instance of the

FilterManagerClient class in an application process, also identified as a

Smalltalk global variable #FM (Fig. 6.2). Since the FilterManagerClient

appears in a separate application from the FilterManagerServer, and each

process can only have a single instance of the FilterManagerClient class,

there is no conflict in this usage.

The FilterManagerClient class provides its application process with an

interface to the FilterManager by means of utilities for FilterManager

services, and prompts for an application name at registration time. The

FilterManagerClient, when activated by the use of these utilities, serves as

__h _ _ __

70

Application Process PI

Fig. 6.2 Organization of the FilterManagerClient.

the parent process initiating message exchanges with the

FilterManagerServer. Its spawned child process, an instance of the Smalltalk

class Process, is started up at process registration and lies dormant waiting

for messages initiated by the FilterManagerServer via the open connection.

The application process is interrupted while a socket message from the

FilterManagerServer is being processed and any object updates effected.

request target
005socket connection

CJ 003
Directory oC
ObjectHandlers

OHI
002

...
... ObjectHandler...

OH2 ... CorObject 01"';b
OH3 o --- - - -- - - - 0 01
... Object 01

2 004
#Filters

FilterMangerClient

'11

The Smalltalk global variable #FMDict, an instance of FMW1cspDict

which is a subclass of Dictionary, is set up by the FilterManagerClient for

the application process it resides in. Variables that need to remain persistent

for the duration of the time the process is registered have to be put into the

dictionary with their names. This dictionary allows the programmer of an

application process to view the objects without seeing their object handlers

while the process is registered.

Each object that is declared as having the potential to be a source or

target object of a filter has an instance of the ObjectHandler class created to

manipulate it. The become: message in Smalltalk is used to swap identities

of the instance of the ObjectHandler and the object. All messages meant for

the object are thus received by its object handler instead, until the object

handler is discarded and the object restored with its original identity. The

class CollectionHandler implements object handlers for strings, arrays and

sets, the class IntegerHandler for numbers, and the class TextHandler for

text.

Instances of the class ProcessOb;"ect represent registered application

processes.

Each subclass of the ExternalFilter class represents a different type of

filter; the current implementation has a single subclass, the EqualityFilter

class, which constrains its source and target objects to be identical in

structure and equal in value. An instance of a filter represents a constraint

between two objects. Since the FilterManager performs updates by

reconstruction of target objects, each message to a filter about an updated

--- -- - - - -- --

'12

object carries information about the structure and value of that object.

Instances of the TreeNode class are used to represent nodes in the

subgraph to be traversed when the FilterManagerServer is propagating

updates of an object. The breadth-first search tree of the subgraph to be

traversed is not specifically built for each update request, but a linked list of

TreeNode instances, representing nodes in the tree to be visited, is

maintained during a single update phase. The update phase is completed

when traversal is completed and the list is empty.

Each instance of the Socket class represents a socket; instances of

Socket are kept for the server sockets maintained by the

FilterManagerServer, and for any open connections (both source and target).

The operating system and the Smalltalk primitives implementing socket

operations manipulate a socket through its socket identifier found in its

instance variable handle. Since only client services are provided for Version.

2.3, all server socket services are user-defined primitives coded in C and

installed in the Smalltalk image. In Version 2.4, the classes for socket

operations are organized differently, with the classes UnixSocketAccessor,

UnixIOAccessor and IOAccessor providing both server and client socket

services.

-_. -. -

78

6.3. Implementations

The FilterManager is implemented in both Versions 2.3 and 2.4 of

ParcPlace Smalltalk. Version 2.3 runs on a Sun-3 Workstation with the

SunOS 3.5 operating system, and Version2.4 on a Sun-4 Workstation with

the SunOS 4.0 operating system.

Each implementation of the FilterManager was tested using sample

applications written in the same version of Smalltalk and executing on the

same machine. In addition, the implementation of the FilterManagerServer

in Version 2.3 handles filters whose processes span both versions of Smalltalk,

each version on a different machine. The implementation in Version 2.4

cannot do the same because the operating system interface provided in that

version of Smalltalk uses a different socket protocol.

Appendix A.4 contains an example of a network of filters spanning two

applications that was used to test the FilterManager.

6.4. Portability and Environment Dependencies

The implementation of the FilterManager has been abstracted as much

as possible to tie in with the implementation model and hence to avoid

dependency on a specific environment. Some dependencies do exist, however,

partly as a result of using Smalltalk as an implementation environment, and

partly due to the interface with the operating system.

.- -- '" --- ---

74

6.4.1. Time-Sharing Modification

The line between the environment and the application is indistinct for

Smalltalk applications. The implementation of the FilterManager as an

application was kept as separate from the Smalltalk environment as possible

by creating subclasses of system classes, wherever possible, instead of

modifying the system classes themselves. Because of the need to make

Smalltalk time-share the operating system with other processes, however, this

principle gets violated right from the start. It was necessary to modify the

Smalltalk system code and state to achieve time-sharing. Furthermore, a

user-defined primitive is used to add this functionality.

6.4.2. User-defined Primitives and Sockets

Since the installation and numbering of user-defined primitives are

different in Versions 2.3 and 2.4 of ParcPlace Smalltalk, an application that

is written identically in both versions would become two separate

implementations once it uses the FilterManager.

As mentioned, Smalltalk primitives providing socket operations are

implemented using different protocols in Versions 2.3 and 2.4, and different

subsets of primitives required for the implementation of the FilterManager

are available. Another dependency, mentioned earlier, is the difference in the

organization of classes that provide an interface to the operating system, in

'16

particular, file and socket operations.

6.4.3. File for Registration Socket

The file for the FilterManager's registration socket, FMServerFile, is

created on a file system configured to be accessible to both the Sun-3 and

Sun-4 Workstations. This file reference must be modified (in the class

method setup of the FilterManager class) to the desired home directory before

use.

When the FilterManagerServer is not active as an application process, or

is not ready to provide services, such as when it is terminating, the file is

nullified so that the FilterManagerServer in any process attempting to

register will know that the services of the FilterManager are not available.

6.4.4. Policies

For simplicity, the FilterManager implements propagation of updates by

replacing the target object with a reconstructed object containing the update

corresponding to the change in the source object. Since equality filters are

used, this involves reconstructing an exact match of the source object for the

target object.

_A. --- - - -..- - - - - - - - - - ..-

78

The policy for selecting the source object for initial constraint-

satisfact10n is also the simplest one - the source object belongs to the

process identifying the constraint. When neither object of a filter belongs to

the process requesting its establishment, the first object identified for the

filter is taken to be the source object for initial constraint-satisfaction. This

policy is implemented in the FilterManagerServer with the method

initialConstraint, and by switching the objects used in that method, the

process identifying the constraint could be made to have the target object

instead. Similarly, the first object identified for a filter could be made a

target object.

6.5. Integration or Applications

An attempt was made to install ThingLabII and to use it as an example

of an application process that would use the FilterManager. This was

successful only for the simplest objects created in ThingLabII because the

current implementation of the FilterManager propagates updates by

reconstruction of objects rather than by update messages. ThingLabII

objects are generally complex objects with a structural depth that take up

too much object space for the FilterManager to handle.

77

CHAPTER 7

EXTENSIONS TO THE FilterManager

7.1. Extensions to the Implementation

The FilterManager can be extended in two ways; extensions to the

implementation involve an enhancement of the implemented FilterManager,

whereas extensions to the model involve some redesign of the model that has

been discussed.

7.1.1. One- Way Filters

The current implementation of the FilterManager model deals only with

equality filters that are reversible, i.e., work in both directions. In particular

applications, it might be useful to have filters that work in one direction

only.

An example of a one-way constraint would be between a thermostat

setting and the temperature of a room (Fig. 7.1). . When the setting on the

thermostat rises, the temperature of the room should eventually warm up to

the temperature that was set on the thermostat. Similarly, when the setting

on the thermostat is lowered, the room should also cool down. In other

words, the temperature of the room is constrained to take the temperature at

78

'"

\'" (One-way)

\'" Filter

""~

...~

..'~.

~ ,/
[Y.....

Application
with Thermostat

Application
with Temperature

Fig. 7.1 A one-way filter.

which the thermostat is set.

On the other hand, if the temperature in the room should change due to

some other causes, the setting on the thermostat does not fluctuate with it.

This example can be modelled using bidirectional filters (Fig. 7.2).

Application process PI has the thermostat TI with the temperature setting

and application process P2 has the temperature reading of the room. An

additional thermostat T2 is created for process P2 and a filter PF, internal

to process P2, is set up between thermostat T2 and temperature reading R to

7S1

Process PI Process P2

~
..,/'

.............

I I
I I
I I
I I
I I

.. I I. I I-- ~ -I-
i ' . I I \
! I I \
! I I

I I
I I
I I
I Io

.--

Filter F

~.....

/

Filter PF /
',r 1,../

I I
' J

Thermostat

TI
Thermostat

T2

u

Temperature
Reading R

Application
with Thermostat

Application with Temperature

Fig. 7.2 Using a bidirectional filter.

handle the relationship between the thermostat setting and the temperature

reading. A bidirectional equality filter F is then established between the

thermostats Tl and T2.

When the thermostat setting on Tl is adjusted, filter F constrains

thermostat T2 to take an identical setting, and filter PF causes the

temperature reading to follow suit. If the temperature reading R fluctuates,

however, filter PF that is maintained by the process P2 prevents a

80

corresponding change in the thermostat setting T2, and hence the thermostat

setting Tl does not change. Although bidirectional filters can be used in this

example, some overhead is involved, in both the additional object and filter

that are internal to the process P2.

7.1.2. Type-checking

Since the endpoints of a filter are typed, it is possible to check that

when a filter is being established, the types of its endpoints do correspond

with the types of the objects that are being related. This type-checking has

not been implemented, however, and the current implementation of the

FilterManager assumes consistency without checking, leaving the

responsibility to the user. To include type-checking, the FilterManager has

to retrieve the types of the objects being related, and compare them with the

types of the endpoints of the filter. Type-checking could be done by either

the FiIterManagerServer or the FilterManagerClient.

7.1.3. Policies and Options

Some of the issues in the design of the model for the FilterManager

depend very much on the context in which its services are to be used, and

the registered application processes. Since this is the case, the simplest

options were generally chosen for implementation. However, in specific

. .. -- -

81

circumstances, these options would probably not prove to be the best options,

and it would be nice to implement more of these policies as options that the

initiator of the FilterManager can select when starting up the

FilterManagerServer. Policies that could be specified as options would be the

strategies for initial constraint-satisfaction and non-satisfiable constraints.

7.1.4. Terminating the FilterManager's Services With Active

Clients

In the current implementation, the FilterManagerServer, which

represents the FilterManager as an application process providing services,

will not respond to a shutdown request if any constraints still exist or any

processes are still registered. When no processes are registered, the

FilterManager needs only to know the state of its registration socket in order

to terminate. To allow a termination of the FilterManager's services while

processes are still registered, many more conditions need to be accounted for,

including the states of the registered processes and their sockets.

7.1.5. Error Recovery

The FilterManager has been implemented without error-checking and

recovery for broken communication paths. It assumes that a communication

path, once established, is reliable until closed. In principle, this assumption

82

should be true since a large part of the error-handling and recovery is

managed by the socket implementations and the communications software.

In practice, however, a process might terminate abnormally and the

FilterManagerClient in the process may .not have the opportunity to

deregister the process. Abnormal termination results in a broken

communication path, and can be checked for during each interaction with a

process over a socket.

7.2. Extensions to the Model

7.2.1. Filters and Environments

In the model of the FilterManager, the focus has been on equality filters.

Equality filters are sufficient for representing a constraint between two

objects that exist in the context of different application processes of similar

environments. For example, an equality filter between two Smalltalk objects

each in a different Smalltalk application process can constrain the two

objects appropriately, since the two objects will have the same definitions if

they are identical in structure.

In contrast, a C application process and a Smalltalk application process

will not have the same definitions for identical objects, and this situation will

generally be the case for application processes with dissimilar environments.

To establish filters among objects in processes with dissimilar environments,

- -- - ---- --. - ---.-----

83

the FilterManager would also have to handle more complex filters that would

perform the necessary transformation on an object from one environment to

its equivalent object in the other environment.

In including complex filters, the conceptual model of the FilterManager

remains unchanged; it is the implementation model that may change, as

more information might be needed about the environments a process belongs

to. A possible way to handle complex filters would be for the FilterManager

to have its own independent type system. The FilterManagerClient installed

in each application process will then perform the necessary type conversions

on a constrained object into the corresponding type of the FilterManager and

vice versa. This approach would also involve implementing a version of the

FilterManagerClient component for each environment in which an

application process might need the services of the FilterManager. Equality

filters can then be used for this implementation, since environment

transformations are handled by the FilterManager.

Another approach would be to define the transformations in the filter

definitions; a filter type must be defined for object transformation between

every pair of environments in which an application may need the services of

the FilterManager. This approach would not only cater for multiple

environments but also for constraints in which there is a bound beyond which

the constraint is relaxed.

.----.-- ... -. -. ..--

84

7.2.2. Persistence

The FilterManager has been modelled for a dynamic and transient set of

. application processes. The constraints established between two processes

hold only as long as the FilterManager is in operation, both applications are

executing, and the constraints are not removed. These constraints are not

persistent beyond the deregistration of an application, and no provision is

made for a constraint that really should be persistent. When an application

that deregistered with the FilterManager registers again, its constraints must

be re-established.

Although the FilterManager serves a purpose different from that of

databases, persistence might be useful where a group of related applications

are commonly in execution simultaneously. Each time more than one of

these applications is invoked, the constraints between them must hold. If the.

FilterManager could manage persistent constraints as well, the users of these

applications would find it very convenient not to have to check for the other

application processes and re-establish the necessary constraints.

[Art87]

[Bas77]

[Bea82]

[Ber88]

[Bor81]

[Bor87]

[Bro88]

[Bro85]

85

REFERENCES

Artsy, Y., Chang, H., Finkel, R., "Interprocess Communication
in Charlotte," IEEE Software, Vol4, No 1, Jan 1987, pp 22-28.

Baskett, F., Howard, J.H., Montague, J.T., "Task
Communication in Demos," ACM Proceedings of the Sixth
Symposium on Operating Systems Principles, Nov 1977, pp 23-
31.

Beach, R.J., Beaty, J.C., Booth, K.S., Plebon, D.A., Fiume,
E.L., "The Message is the Medium: Multiprocess Structuring of
an Interactive Paint Program," Computer Graphics, ACM
SIGGRAPH '82 Conference Proceedings, Vol 16, No 3, Jul 1982,
pp 277-287. .

Bershad, B.N., Levy, H.M., "A Remote Computation Facility for
a Heterogeneous Environment," IEEE Computer, Vol 21, No 5,
May 1988, pp 50-60.

Borning, A., "The Programming Language Aspects of ThingLab,
a Constraint-Oriented Simulation Laboratory," ACM
Transactions on Programming Languages and Systems, Vol 3, No
4, Oct 1981, pp 353-387.

Borning, A., Duisberg, R., Freeman-Benson, B., Kramer, A.,
Woolf, M., "Constraint Hierarchies", Proceedings, OOPSLA '87,
Oct 1987, pp 48-60.

Brown, M.H., "Exploring Algorithms Using BALSA-II," IEEE
Computer, Vol 21, No 5, May 1988, pp 14-36.

Brown, G.P., Carling, R.T., Herot, C.F., Kramlich, D.A.,
Souza, P., "Program Visualization: Graphical Support for
Software Development," IEEE Computer (Feature on Visual

88

Programming), Vol 18, No 8, Aug 1985, pp 27-35.

[Bro84] Brown, M.H., Sedgewick, R., "A System for Algorithm
Animation," Computer Graphics, ACM SIGGRAPH '84
Conference Proceedings, Vol 18, No 3, Ju11984, pp 177-186.

[Com86] Comer, D., Murtagh, T.P., "The Tilde File Naming Scheme,"
Proceedings of the 6th International Conference On Distributed
Computing Systems, May 1986, pp 500-514.

[Dio78] Dionne, M.S., Mackworth, A.K., "ANTICS: A System for
Animating LISP Programs," Computer Graphics and Image
Processing, Vol 7, No 1, 1978, pp 105-119.

[Dui86] Duisberg, R.A., "Constraint-Based Animation: Temporal
Constraints in the Animus System," Computer Research
Laboratory, Tektronix, Technical Report No. CR-86-37, Aug
1986.

[Ege87] Ege, R.K., "Automatic Generation of Interfaces Using
Constraints," PhD Dissertation, Oregon Graduate Center, July
1987.

[E:MB87] Ege, R.K., Maier, D., Borning, A., "The Filter Browser -
Defining Interfaces Graphically," Proceedings, European
Conference on Object-Oriented Programming, Jun 1987,
Lecture-Notes in Computer Science 276, Goos, G., ed,
Hartmanis, J., ed, pp 140-150.

[GoI83] Goldberg, A., Robson, D., Smalltalk-80: The Language and its
Implementation, Addison-Wesley, 1983.

[Gro85] Grossman, M.B., ''Humanizer - A Framework for Implementing
Flexible Human-Machine Interfaces," unpublished manuscript,
Dept of Computer Science and Engineering, Oregon Graduate
Center, May 1985.

87

[Hoa78] Hoare, C.A.R., "Communicating Sequential Processes,"
Communications of the ACM, Vol 21, No 8, Aug 1978, pp 666-
677.

[Joy] Joy, W., Fabry, R., Lemer, S., McKusick, M.K., Karels, M.,
"Berkeley Software A,rchitecture Manual 4.3BSD Edition," UNIX
Programmers' Supplementary Documents.

[Lef] Leffier, S.J., Fabry, R.S., Joy, W.N., Lapsley, P., "An Advanced
4.3BSD Interprocess Communication Tutorial," UNIX
Programmers' Supplementary Documents.

[Lon85] London, R.L., Duisberg, R.A., "Animating Programs Using
Smalltalk," IEEE Computer (Feature on Visual Programming),
Vol 18, No 8, Aug 1985, pp 61-71.

[Mai86] Maier, D., Nordquist, P., Grossman, M., '1)isplaying Database
Objects," Oregon Graduate Center, Technical Report No CSE-
86-001, Jan 1986.

[Mor83] Morgenstern, M., "Active Databases as a Paradigm for Enhanced
Computing Environments," Proceedings, Ninth International
Conference on Very Large Databases, Schkolnick, M., Thanos,
C., ed., Oct 1983, pp 34-42.

[Mye83] Myers, B.A., "Incense: A System for Displaying Data Structures,"
Computer Graphics, ACM SIGGRAPH '83 Conference
Proceedings, Vol 17, No 3, Ju11983, pp 115-125.

[Not88] Notkin, D., Black, A.P., Lazowska, E~D., Levy, H.M., Sanislo,
J., Zahorjan, J., ''Interconnecting Heterogeneous Computer
Systems," Communications of the ACM, Vol 31, No 3, Mar
1988, pp 258-273.

[Parc23] The Smalltalk-80 Programming System Version 2.3, ParcPlace
Systems.

88

[Parc24] The Smalltalk-SO Programming System Version 2.4, ParcPlace
Systems.

[PurS7] Purdy, A., Schuchardt, B., Maier, D., ''Integrating an Object
Server with Other Worlds," ACM Transactions on Office
Information Systems, Vol 5, No 1, Jan 19S7, pp 27-47.

[ReiS6] Reiss, S.P., "An Object-Oriented Framework for Graphical
Programming," Brown University, Mar 19S6.

[ReiS4] Reiss, S.P., "Graphical Program Development with PECAN
Program Development Systems," Proceedings, ACM
SIGSOFT /SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Apr 19S4, pp
30-41.

[ReiS3] Reiss S.P., "PECAN: Program Development Systems That
Support Multiple Views," Brown University, Technical Report
No. CS-S3-2Q, Dec 19S3.

[SchSS] Schiffman, A.M., "Time-Sharing Citizenry for Smalltalk-SO under'
UNIX," ParcPlace Newsletter, Vol 1, No 2, Winter 19S5, pp 9-
10.

[See] Sechrest, S., "An Introductory 4.3BSD Interprocess
Communication Tutorial," UNIX Programmers' Supplementary
Documents.

[SteS6] Stefik, M.J., Bobrow, D.G., Kahn, K.M., "Integrating Access-
Oriented Programming into a Multiparadigm Environment,"
IEEE Software, Vol 3, No 1, Jan 19S6, pp 1001S.

[SteS3] Stefik, M., Bobrow, D.G., Mittal, S., Conway, L., "Knowledge
Programming in LOOPS: Report on an Experimental Course," AI
Magazine, Vol 3, No 3, 19S3, pp 3-13.

88

[Sun88] System Services Overview, Part No. 800-1753-10, Revision A, of
9 May 1988, Sun Microsystems.

[Tek87] Tektronix Smalltalk User's Manual, Part No. 070-6454-00, Nov
1987.

[Unix] UNIX Interface Reference Manual

[Veg86] Vegdahl, S.R., ''Moving Structures between SIIialltalk Images,"
Proceedings, OOPSLA '86, Sept 1986, pp 466-471.

APPENDIX

81

A.l SMALL TALK CLASSES FOR THE FilterManager

The Smalltalk classes created to implement the FilterManager in both Versions 2.3 and
2.4 of ParcPlace Smalltalk are listed below. A count of the methods is given for each class.

Classes implementing the FilterManager:

FilterManager 21
FilterManagerServer 50
FilterManagerClient 50

Classes supporting the FilterManager's structures:

ExternalFilter 15
EqualityFilter 1
ProcessObject 14
ObjectHandler 14
CollectionHandler 14
TextHandler 4
IntegerHandler 1
TreeNode 9
FMWkspDict 5

In Version 2.3, the class Socket was enhanced with ten methods to provide server
socket operations.

02

A.2 USER-PRIMITIVES FOR THE FilterManager

The following user-primitives were written in C for the implementation of the
FilterManager in ParcPlace Smalltalk Version 2.3.

setupServer.c ."Create a server socket."
acceptConnection.c "Accept an outstanding connection."
shutdownlnMode.c "Terminate a server socket."

The following user-primitives were written in C for the implementation of the
FilterManager in ParcPlace Smalltalk Version 2.4.

retrievePid.c "Get the process id."
terminateProcess.c "Terminate a process."

A user-primitive was ab-..;-added to provide time-sharing capability to the Small talk
implementations:

awaitEvent.c

Installation of user-primitives to the Smalltalk executable requires interface routines to
be added to it:

installPrim.c

- ""-- --.

g3

A.a HOW TO USE THE FilterManager

These instructions on the installation and use of the FilterManager assume that the
user already has a ParcPlace Smalltalk image in use for some application. Installation
comes. in two partsj installing the FilterManager as an application providing services, and
installing the FilterManager within an existing application.

General Installation

This installation must be done for the Smalltalk image that is to serve as the
FilterManagerServer application process, as well as for each Smalktalk image that is to have
the capability of utilizing that service. Relevant files can be found in the directory
indallFM.

1. Compile the user-defined primitivesj execute the makefile.

2. Install the user-defined primitivesj use d8QU&er with the usual command-line
parameters to invoke Smalltalk.

3. For Version 2.3, ensure that the operating system interface is in placej file-in the files
UnixSy&temCall.&tand Socket.&tfrom the directory /u&r/&malltalk/unix.code.
For Version 2.4, perform updates to the socket interfacej file-in the files ioWait.&tand
connectTo.&t.

4. File-in the source code for the FilterManager: for Version 2.3, the files are
SocketServer.&t, FM2.9-Filten.&t, FM2.9-Handler&.d and FM2.9-Componenta.dj for
Version 2.4, the files are FM2.4-Filter&.d,FM2.4-Handler&.&tand FM2.4-Component&.&t.

5. H time-sharing is desired, apply the modifications given in [Sch]j the instructions can
be found in the file timeShare.W&.

6. Initialize the FilterManager: edit the shared file in the method createCon&tant&File
and re-execute the method, open a workspace and do FilterManager initialize.

7. Save the Smalltalk image. The FilterManager is installed in the image. The Smalltalk
executable is st80User.

Starting up the FilterManager's Serviees

Once installed in a Smalltalk image as the FilterManager, the FilterManagerServer
must be started up as an application process providing services to other application
processes.

1. Start Smalltalk using &t80Uaerwith the usual command-line parameters and the
Small talk image that is the FilterManager application.

2. Open a workspace and do FilterManagerSenJer 6ootdrap. This starts up the
FilterManagerServer in this Smalltalk image.

U.i~ the FilterManager'. Services from an Application Process

Once the FilterManager has been installed in an application process, the process needs
to be registered with the FilterManager beCoreit can utilize its services.

1. Start Smalltalk using d80Uaer with the usual command-line parameters and the
Smalltalk image that contains the application.

Open a workspace and do FilterManagerClient inatall. A name will be requested for,
and the FilterManagerClient is started up in this Smalltalk image as the global
variable #FM.

Put the objects on which filters may be established into the dictionary at the Smalltalk
global variable #FMDict as (object-name to object) associations. Identify these objects
to the FilterManager with an allowFilteraOn:or an allowFilteraOnSet.

The FilterManager's services are now available; an example oCsome of the utilities can
be Cound in the file ClientEzamp/e.wa. Sample applications can be found in the files
FMCdemo.wa and FMC2demo.wa. (Please refer to Appendix AA.)

The FilterManager's services may be terminated by a FM ahutdown. It is necessary to
do this before exiting from the Smalltalk image.

2.

3.

4.

'"
0).

Terminating the FilterManager's Services

The FilterManager's services may only be terminated when all filters have been
removed and all application processes have deregistered.

1. In a workspace, do FM &/autdown.This terminates both the FilterManager and the
Smalltalk image.

Implemented Utilities:
allowFiltersOn:
allowFiltersOnSet:
constrain:oC:and:oC:with:
constrain:oC:by:with:
disallowFiltersOn:
getObject:ofProcess:
objectsOfProcess:
otherRegisteredProcesses
release:and:oC:
updateObject:with:

"Register an object."
"Register a set of objects."
"Request a filter."
"Request a filter."
"Deregister an object."
"Retrieve object."
"Retrieve object names."
"Retrieve process names."
"Remove a filter."
"Update utility."

--- u___ u

86

A.4 EXAMPLE APPLICATIONS

This example demonstrates the use oCthe FilterManager by two applications registered
with the FilterManager as clientl and elientf. A network oCfilters is established among their
objects. The files FMOdemo.wa and FMOfdemo. wa contain the ~ode Corthis demonstration
to be used in the application processes registered as elientl and dient2 respectively.

The Collowingdiagram shows the filter network used for Example 1; the filters are
requested and released in numbered stages spanning both processes.

client 1 client2

"INITIALIZATION -CLIENTl"

FilterManagerClient install. "Process registration; a name will be prompted for."

FMDict at: #sl put: 'a first string'. "Identify local variables."
FMDict at: #s2 put: 'workspace dictionary variable'.
FMDict at: #s3 put: 'also a FilterManager object'.

FM allowFiltersOnSet: (Set with: #sl with: #s2 with: #s3). "Register objects by name."

88

"UTILITIES"

"Registration and deregistration or objects."
FMDict at: #al put: (Set with: 'set one' with: 'set two' with: 'set three').
FMDict at: #a2 put: (Array new: 2 withAlI: 'different type').
FM allowFiltersOnSet: (Set with: #al with: #a2).
FM allowFiltersOn: #s1.
FM disallowFiltersOn: #a1.

"Updates"
FMDict at: #sl put: 'local variable update'.
(FMDict at: #sl) replaceFrom: 1 to: 14 with: 'process update' startingAt: 1.
FM updateObject: #s2 with: 'FilterManager update utility'.

"QUERIES"

FMDict.
FM openObjects.
FM otherRegisteredProcesses.
FM objectsOCProcess:#client2.
FM getObject: #sl oCProcess:#client2.

"Local variables"
"Object handlers"

"Process names"
"Object names"
"Object structure"

"NETWORK -EG I"

(1) FM constrain: #53 or: #client2 by: #52 with: EqualityFilter.
FMDict at: #s2 put: 'one-to-one constraint'.

"Filter 1"

(3) FM constrain: #53 or: #client2 by: #sl with: EqualityFilter.
FMDict at: #s2 put: '51 indirect rrom 52'.

"Filter 2"

(6) FMDict at: #51 put: 'head or a chain'. "Filter 3"

(8) FM release: #52 and: #53 or: #client2.
FM release: #s2 and: #sl or: #client2.
FMDict at: #sl put: 'broken cycle'.

"Filter I"
"Filter 3"

"TERMINATION"

FM shutdown. "Process deregistration."

"INITIALIZATION - CLIENT2"

FilterManagerClient install.

FMDict at: #sl put: 'a first string'.
FMDict at: #s2 put: 'workspace dictionary variable'.
FMDict at: #s3 put: 'also a FilterManager object'.

FM allowFiltersOnSet: (Set with: #51 with: #s2 with: #s3).

"NETWORK- EG 1"

(2) FMDict at: #s3 put: 'source object in client2'.

(4) FMDict at: #s3 put: 'root of tree'.

(5) FM constrain: #s2 of: #clientl by: #sl with: EqualityFilter.
FMDict at: #s3 put: 'show change in sl'.

(7) FM constrain: #sl of: #clientl by: #sl with: EqualityFilter.
FMDict at: #s3 put: 'fun with a cycle'.
FMDict at: #sl put: 'cycle around again'.

"NETWORK- EG 2"

"No type-checking is performed."
FM constrain: #a2 of: #clientl by: #s2 with: EqualityFilter.
FMDict at: #s2 put: 'no type-checking'.

"TERMINATION"

FM shutdown.

87

"Filter 1"

"Filter 2"

"Filter 3"

"Filter 4"

Epilogue

is

Ah! If I had a version of the FilterManager with one-way filters that could

handle brain-waves, how much simpler and more consistent my task would

have been !

goedel

groucho

Biography

The author was born on 23rd Dee Ig61 in Sabah, East Malaysia, but moved
to Singapore at an early age for the benefit of an English education. She
graduated with a B.Sc. from the National University of Singapore in IgS3
and received the Data Processing Managers' Association prize. In her first
appointment with Systems & Computer Organization, she was involved with
the prototyping of an application model using various database tools for
evaluation purposes. She was subsequently appointed systems programmer
and administrator for an IBM system for almost two years. In February of
19S6 she left S&C to try a career in applied research with the then Research
Division of the Institute of Systems Science. Initially working with encoding
schemes on write-once optical disks, she received a merit prize, the Tan Kah
Kee Young Inventors' Award, for the scheme her project team had designed.
Encouraged by her managers to pursue graduate studies in the U.S., she left
her project team in the middle of the design and development of a multi-
media database management system, and joined OGC in Sept IgS7.

