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ABSTRACT

Data-flow Analysis of Software Change

James N. Campbell, M. S.
Oregon Graduate Institute, 1990

Supervising Professor: Richard G. Hamlet

Structural testing techniques have been the subject of exten-

sive analysis. Until recently, all research has been oriented to the

newly-written program; no consideration has been given the modification

of existing software.

A new path descriptor, the dependency chain, was proposed, and

its use described in gauging the test requirements of a program change.

A set of essential changes, called change primitives, was described.

Generating the change in dependency chains for these change primitives

lead to a method for generating test data for larger changes. The

technique shows promise of extension.

vi
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1. INTRODUCTION

It has been reported that fifty percent or more of software

development costs are spent in maintenance [Brooks, Andr]. It has been

suggested that at least half of the software effort should be spent in

testing [Myers]. These two statements taken together mean that twenty-

five percent of software resources are expended on testing modifica-

tions to software. One-quarter of the software effort is spent testing

program changes. In spite of the importance of maintenance testing,

little has been done to study it and develop techniques for doing it

better.

Maintenance projects are traditionally allocated minimal

resources. They do not usually attract the brightest and most creative

people. They are usually scheduled over-optimistically, sometimes

whimsically so. Development activities attract the people, time, and

money.

Testing by its nature is scheduled late in the project. Any

schedule slip in any of the previous phases cheats the testing phase.

Any problem at any time chisels its little bit from testing. All these

tendencies conspire to deprive maintenance testing of adequate resources.

According to [Boeh], as paraphrased in [Andr]:
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"One of the most prevalent and costly mistakes made on

software projects today is to defer the activity of

detecting and correcting software problems until

late in the project."

Other phases of the development cycle have established method-

ologies. They have automated tools supporting them. The oldest comput-

er manual that comes to hand says of testing, ". . . a trial run should

be made with simple numbers so that the machine answer(s) can be checked

by hand." [Wyan] It also suggests "a reasonable degree of humility."

The thirty or so years that have passed since this was written have not

presented too much more than that as testing methodology. Try some

stuff and be prepared for the worst.

Considering the plight of the maintenance programmer, what are

the attributes of a software aid? Whatever methodology is used, there

isn't time to do a manual effort of test selection in parallel with the

programming effort. The solution should be automated. As tests are

accomplished, they should be accounted for automatically; the solution

should be instrumented. Ideally, the management control structure would

like to know the scope of the testing effort and be advised of progress;

the solution should be measurable. Since a maintenance task usually

involves some specific sub-set of the program and there are limited
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resources (always!), the solution should be directed and efficient. The

testing effort should be directed to just that required by the changes

to the program, and provide the best coverage with the fewest cases.

This paper describes a technique for generating test cases

that satisfies these requirements. It can be implemented as a compiler

option, since it is based on compiler optimization techniques. The

results can be stored and as tests are accomplished, instrumentation em-

bedded in the subject program can check off the test cases satisfied.

It is oriented toward those test cases that correlate with the changes

in the program; any unchanged code is not considered. The technique is

automated, instrumentable, measurable, systematic, and efficient.

On the other hand, this technique is not radical or revolu-

tionary; it arises from work already done in the field. In brief, this

technique looks at every input variable to the program. When this

variable is used in determining the value of another variable, that one

is traced until it is used to set the value of another, and so on until

the last variable is output from the program. This series of variables

receiving values and being used is called a dependency chain. The

dependency chain defines a set of paths through the program that have to

be executed to test the program's response to one set of input data.

Dependency chains are changed by changes to the program. Changes to the

dependency chain can be evaluated with regard to changes in test re-

quirements. The dependency chain is a device to reveal changes in
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testing required by changes in the program. Again, there is nothing

novel in this approach. What has been achieved is the realization that

the change to the program can be identified with a change in the set of

dependency chains and can be used to define a set of test cases as a

direct result of the change itself.

Mark Weiser [Weis82, Weis84] has developed the program slice,

which is similar to the dependency chain. A program slice is a minimal

subset of program instructions that contribute to one function. Weiser

uses it to study the mental habits of programmers while debugging.

The use of dependency chains is a structural testing tech-

nique. It provides knowledge of interrelationships over long stretches

of code that would be hard to recognize otherwise. It provides a useful

set of test cases that has to be considered the "starter set". Added to

this should be tests of program functions changed, and those tests that

the programmer decides are necessary from previous knowledge of the

application and the programming environment.

When we change a program, we want to test it as thoroughly as

possible. We see intuitively that for any change, there are two sets of

statements in the program: those affected by the change, which have to

be retested, and those unaffected by the change, for which further

testing would be less useful. Since we are always in a condition of

limited resources, we would prefer to concentrate our attention where it

would be most useful. To explore this requires answering two questions:
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What do we mean that the change "affects" a statement, and how do we

find such statements?

When we change a program, we intuitively feel that the testing

activity should be proportional to the size and complexity of the

change. If we make a small change in the format of a field on a print

line, we expect to be able to test the change with a simple test case or

two. If we make a more radical or complex change, say, one involving

several database accesses and a complicated logic path change, we would

expect to have to run many tests, requiring considerable thought in

their preparation, before feeling that the program had been adequately

tested. To explore this aspect of the problem requires a definition of

"size" and "complexity" in software.

It has to be noted that idea of concentrating attention on the

change made is not a universal opinion. Many authors recommend extensive

testing after modification, among them [Glass) and [Dunn). They address

the concern that limiting the testing to known effects disregards the

(likely) possibility of inadvertent and unplanned changes in areas of the

program that should not be affected. For those agreeing with this point

of view, the technique will assist maintenance of the regression li-

braries necessary for full system tests. Changes to the program can

generate changes to the regression library.
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The next chapter provides an overview of data-path techniques

and some related writings. Chapter 3 defines terminology. Chapter 4

presents a small language used for examples. Chapter 5 shows a way of

relating the effects different parts of the program have on one another,

the dependency chain. Chapter 6 describes the set of "change primi-

tives" that have been derived to help define the nature of a program

change. Chapter 7 uses material from all the previous chapters to

present the analysis. Chapter 8 shows its use in examples.
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2. BACKGROUND

There are many methods of testing software reliability. One

method is described by Andrion, et ale [Andr):

"A complete verification of a program, at any stage in the life

cycle, can be obtained by performing the test process for every

element of the domain. If each instance succeeds, the program

is verified, otherwise an error has been found. This testing

method is known as exhaustive testing and is the only dynamic

analysis technique that will guarantee the validity of the program.

Unfortunately, this technique is not practical. Frequently

functional domains are infinite, or if not infinite very large,

so as to make the number of required test instances infeasible."

With the goal of generating small test cases in order to

finish in a reasonable time, most testing methods partition the input

domain of the program into smaller sub-domains and choose one element to

represent each subdomain. The program is run for each representative

and the output compared to a known correct value. If the output

matches for each of the test cases, the program is said to be valid.
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2.1 FUNCTIONAL TESTING VS. STRUCTURAL TESTING

There are two primary techniques used to generate data sets to

test software, functional testing and structural testing. Functional

testing, also known as "black box" testing, concentrates on the

proposed function of the program. It uses the program specification

to generate test data. From the specification, ranges of valid

inputs, their interrelationships, and the corresponding proper outputs

are determined. The program is run, and the outputs are checked

against the set of valid outputs to verify the program's performance.

One Lmportant technique used in functional testing is cause-effect graphing

[Myers] .

Structural testing is concerned with looking into the program

and determining test data from analysis of the structure of the program.

There are several methods used in structural testing. One that has

provided a rich field of creative research is error-based testing

[Myers], which is oriented toward providing tests that uncover particu-

lar error conditions or classes of error conditions. While the

tendency to anticipate certain types of errors and test software for

these errors is traditional and wide-spread in an informal way, the

attempt here is to systematize the effort. One example of this is

Weyuker and Ostrand [OW) and their method of "revealing subdomains" of
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the program's input domain. Another class of error-based testing

methods is "mutation testing" techniques, which create modified versions

of the program, with minor changes [Hamlet]. The basis for the tech-

nique is to create test suites that distinguish the original program

from the modified ones. Mutation testing takes advantage of the obser-

vat ion that programmers write programs that are at least almost correct.

It has long been felt that software validation requires both

functional and structural testing [Andr]. A quick analysis should show

that this is reasonable. One taxonomy of errors [Good] identifies three

types of coding errors: a missing path, an incorrectly chosen path, and

an erroneous path. It can be seen that both functional and structural

methods can find the erroneous path. However, functional testing could

be fooled by an incorrectly chosen path that failed only under rare

circumstances. On the other hand, structural techniques are blind to

the problem of missing paths. In order to cover all three error types,

both methods are required.

2.2 STRUCTURAL TESTING METHODS

Other structural testing methods are called "path-based" or

"flow analysis" methods [RW], based on graph-oriented methods [Hecht].

These are based on selecting paths through the program, either "data-

flow" or "control-flow" or some combination. Data-flow techniques



10

depend on the values bound to variables and their use. Control-flow

techniques depend on the statement ordering and branching within the

program. Zeil [Zeil] has shown that data-flow methods can be more

selective in particular cases, that is, they can uncover more errors in

fewer test cases than control-flow methods. With all the path-flow

techniques, there is one area that has had little attention--program

modification. With few exceptions, the work has been done only in the

testing of new programs. This thesis investigates a path-based analysis

for testing the effect of a program change.

Test criteria are those rules by which a testing strategy

determines how much testing has been done, rules that determine to

what level the program is tested. One such criterion is all-statements.

All-statements designates that the test cases must be chosen so that

when testing is complete, every statement has been executed at least

once. A statement, in this context, means anything that changes data or

reads or writes data; a branch is not considered a statement for pur-

poses of this criterion. All-branches specifies that the every uncondi-

tional and conditional branch in the program has to have been executed

at least once by the time all the test cases have been considered. All-

branches is considered "stronger" than all-statements because satisfying

all-branches forces execution of all the statements in the program and

both branches resulting from conditions. All-statements could have left

one of these branches undone. As an example, a small program from Rapps
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and Weyuker [RW), in the GPL language, to be defined in detail in Chap-

ter 4:

The path <1, 2, 3, 4> satisfies the all-statements crite-

rion, but does not exercise the branch from 2 to 4. All-branches forces

a requirement to execute a path that includes the sub-path <2, 4>. Every

path that is required to satisfy all-statements is also required to

satisfy all-branches; we say that all-branches "subsumes" all-state-

ments. Since a case has be shown where all-branches requires a path

that all-statements did not «1, 2, 4», all-statements does not

subsume all-branches. Because of the graphic orientation of structural

testing, all-statements is also called all-nodes and all-branches is

called all-edges [RW]. Though all-statements or all-branches have

been recommended as minimal requirements in setting up software as sur-

ance plans [Andr), they are regarded as "weaker" criteria [RW). The

"strongest" in that it subsumes the others is all-paths, which calls for

executing every possible path through the program. The glaring problem

with this criterion is that any program with a loop allows for a poten-

1 read x, y

2 if x s 1000 goto a

3 y <- x + y

4 a: print x, y
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tially unlimited number of possible paths through the program. To quit

the testing after a finite number of passes through the loop, say k,

allows a possible error to occur when the processing of the program

passes through it k + 1 times.

It is well to remember that discussing "weak" and "strong"

methods may obscure that the processes are oriented to establishing test

requirements, and these requirements have to be met by test cases. The

quality of these test cases in uncovering program errors can have more

to do with the ability of the person creating the test cases than the

method generating the requirement. It is easy to overload the words

"weak" and "strong" with more meaning than they deserve.

The study of data-path testing methods is concerned with

extending test data selection criteria past the control-flow analysis

criteria such as all-paths, all-statements, and all-branches. Supple-

menting these criteria has been the subject of study by three different

groups of researchers: Rapps and Weyuker [RW], using Def-use paths,

Ntafos [Ntaf], using required element testing, and Laski and Korel

[Lask], using data environment and data context. An important analysis

by Clarke, et ale [Clar], studies these three families, looking at each

for their realization of their original intent and compares them, after

resolving them to a common notation.

Comparing selection criteria requires some additional concepts

and accompanying notation. A module M is a main program or subroutine.
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A path P is a subset of the set of all paths through M. A path crite-

rion C assigns a truth value to each pair (M, P). A pair (M, P) is said

to satisfv a criterion C iff C(M, P) is true. A criterion C1 subsumes

a criterion C2 iff every pair (M, P) that satisfies C2 also satisfies

C1. Two criteria that subsume each other are equivalent. C1

strictlv subsumes C2 iff C1 subsumes C2, but C2 does not subsume C1.

Two criteria are incomparable iff neither subsumes the other. If A

subsumes Band B subsumes C, A subsumes C.

2.2.1 DEF-USE GRAPH

Rapps and Weyuker base their analysis on the def-use graph,

which divides occurrences of variables into definitions, computational

uses, and predicate uses. A definition, or def, is any place at which

variable takes on a value, by assignment or input statement. A computa-

tional use, or c-use, is an occurrence of the variable in the calcula-

tion of a value bound to a variable or is an output of the program. A

predicate use, or p-use, is an occurrence of the variable in the test

expression portion of a conditional branch; its value at the time of

execution of the statement affects the flow of control through the

program.

A def-use path or DU-path is a path through the program that

originates at a def of a variable and terminates at a c-use or p-use of
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that variable, without encountering another def of the same variable.

They define a hierarchy of path selection criteria that subsume all-

statements and all-branches. They define new selection criteria all-

defs, all-uses, all-c-uses, all-p-uses, all-c-uses/some-p-uses, all-p-

uses/some-c-uses, and all-DU-paths, which they rank between the rather

weak all-statements and the essentially impossible all-paths. All-defs

is satisfied by tests that execute every def statement; all-DU-paths is

satisfied by tests that execute every DU-path. All-uses is satisfied if

there is a path executed from every def to every use of the variable.

All-c-uses is satisfied if all the paths are covered between every def

and all c-uses of all variables. All-p-uses is satisfied by coverage of

the paths between each def and all the p-uses of all variables. All-c-

uses/some-p-uses requires that paths from all defs to all c-uses be

covered and at least one p-use of any variable not used anywhere in a c-

use. All-p-uses/some-c-uses requires that paths from all defs to all p-

uses be covered and at least one c-use of any variable not used anywhere

in a p-use. The hierarchy is established by proving that one criterion

subsumes another. A criteria that subsumes another is said to be

"stronger" or "stricter" than the other, since it demands more knowledge

about the program's behavior (more tests) to satisfy the requirements it

generates. Rapps and Weyuker point out that stricter criteria tend to

demand more tests and practical considerations may indicate that a less

strict criterion be used.
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Using "A => B" to stand for "A subsumes B", Rapps and Weyuker

summarize their results with the following diagram.

all-paths

vn
V

all-c-uses/

some-p-uses

V
all-p-uses/
some-c-uses

V
all-defs

v

aur-uses
V

all-edges

II

V
all-nodes

Harrold and Soffa [Harr] have extended Rapps' and Weyuker's

work into the area of software maintenance, recognizing many of the same

concerns expressed in this paper, but concentrate on two different

topics: interprocedural flow and the effects of the program change on

the test history, the accumulated information gained in previous tests

of the program.
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2.2.2 REQUIRED ELEMENT TESTING

Ntafos defines required-element testing, which can be called a

hybrid of functional testing and structural testing. Required elements

are expressed as a structural component, such as a branch or path, and

an assertation of a condition that the test must satisfy. A set of

required elements is used as the selection criterion. He uses a control

structure similar to that of Rapps and Weyuker, but divides the data

occurrences differently. Data can be defined (d), undefined (u), and

referenced (r). A definition is the assignment of a value to the varia-

ble at that statement. An undefinition is the return of the variable to

a state of having no value assigned to it, such as a local variable on

exit from the segment in which it is defined or a loop control variable

on exit from the loop. A reference is his term for a use--any occur-

rence of the variable as in a function calculating a value, in a condi-

tional, or an output statement. An interaction is a reference (r) and a

definition (d) that reaches that reference; this is also called a dr

interaction (another name for the DU-path.) The basic structural unit

that Ntafos uses is the k-dr interaction, which consists of k statements

in which the reference to each variable in order is involved in the

definition of the next. A class of strategies called "required k-tuples"

is built by consideration of the k-dr interactions in the program. The
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k-dr interaction consists of k statements and k-l variables such that

there is a path that visits the statements in the order given, and each

statement after the first contains a reference of the variable defined

in the previous statement.

A required element is of the form {S;F}, where S is some

structural element to be tested and F is a functional component to be

observed. structural elements are such things as branches and paths.

Functional components are assertions to be satisfied. Within this

general format many different testing strategies can be described. A

required element {V, P(Y)}, where V is a program segment containing

statement Sand P(Y) is true if Y is odd. As examples of the extremes

that can be described with this notation, consider the "pure" functional

testing required element {[SO' to]; F), where So is the first statement

of the program, to is the last, and [SO' to] defines all the paths

between them, and F is any functional requirement. On the other hand,

the npure" structural testing all-edges is {{(Vi,vj) I (Vi,vj) e E} ; },

where E is the set of edges in the graph.

An example of the power of the assertion portion of the re-

quired element can be seen in considering the conditional IF X ~ Y

The normal testing procedure would be to choose the path X greater than

test case is said to cover the required element if it causes S to be

executed and satisfies F. For example, consider the statement

S: X = Y / 2. If we wish to test for an odd value for Y, we include a
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or equal to Y and the path X less than Y. A required element such as

{(Vi'Vj);X=Y} could be included in the required elements, where (Vi,Vj)

includes the conditional branch statement, and the assertion specifies

that X must equal Y, a potential source of error that might otherwise be

overlooked.

Two different strategies are specified: required k-tuples and

required k-tuples with assertions. Required k-tuples is a strictly

structural testing strategy that is the result of static analysis that

can be automated. The functional component of the required element is

nil. In the required k-tuples with assertions, the assertions generally

add the intuition and experience factor, as the programmer describes

various potential error conditions that have to be checked out. As

such, the assertions do not lend themselves to automation or instru-

mentation, since they don't flow directly from the structure of the

program. Ntafos suggests that it would be appropriate to implement this

part as an on-line, interactive application, with the programmer chang-

ing and adding to the assertions from one set of tests to another.

Ntafos studies the tradeoffs between required k-tuples and

required m-tuples with assertions, where m is less than k. The former

technique specifies tests covering larger portions of the program with

more interactions, while the latter allows detection of blunders that

may be missed by the other. Ntafos' study so far has been concentrated

on 3-tuples and 2-tuples with assertions. He has outlined plans to
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study higher values of m and k.

2.2.3 DATA ENVIRONMENT/DATA CONTEXT

Using an example program, Laski and Korel show three control-

flow test strategies and discuss their reliability for uncovering er-

rors. They say that "all-paths" is viable, but the number of paths

increases dramatically for a program of any size and soon testing be-

comes impractical. They claim that "all-branches" is not viable because

paths can be generated that satisfy this criterion but do not uncover

the some errors. Simila:rly,they show that "boundary-interior" testing

produces unreliable tests. "Boundary-interior" testing relates to loops

in the program: at least one test must immediately satisfy the condition

terminating the loop (the "boundary"), and at least one test must exe-

cute the statements making up the body of the loop (the "interior").

Laski and Korel base their analysis on the concepts of the

"data environment" and the "data context". Let xk represent the defini-

tion of variable x at statement k. We say that xk is live at statement

i if there is a control path from k to i free of another definition of

x. Another way of saying this is that there is a path from i to k that

is def-clear with respect to x. The data environment is defined at a

statement and is the set of all live definitions of all variables used

in the statement.
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An elementary data context is a n-tuple of definitions that

are live when a particular path from the beginning of the program to

statement i is designated; n is the number of variables input to state-

ment i. In other words, for a given path that reaches statement i, the

elementary data context is the list of definitions of the variables in i

that are live when statement i is reached. The data context DC(i) of

statement i is the set of all elementary data contexts at i. In other

words, it is the set of all n-tuples that can be generated by taking

paths through the program from the beginning to statement i, such that

each item in the n-tuple is a live definition of a variable used in

statement i.

Testing strategies are derived from these concepts. The first

is to require that each definition of the data environment of every

statement be tested at least once. The second is to test the data

context of every statement at least once.

Laski and Korel use these data-flow strategies to test the

same example program and determine that the first, definition liveness,

is inadequate, but that the second, based on the data context, is reli-

able for that program. They claim that this demonstrates the power of

data-flow over control-flow methods. They follow this with a discussion

of error types (corresponding to [Good]), and the reliability of the

techniques, when used to attempt detection of these error types.

They emphasize in concluding that data-flow analysis lends
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itself to being automated; the techniques are related to compiler code

optimization techniques.

2.3 SUMMARY OF STRUCTURAL METHODS

There are some common features to data-flow testing methods.

They are best at detecting a particular set of errors, transference

errors. A transference error is one in which a variable is bound to an

incorrect value and causes another variable to be incorrect when used in

assignment or calculation. While a data-flow technique can identify a

path, it can't always detect whether the path is feasible, that is,

whether there exists any combination of values of the program's

variables that will allow the path to be executed completely.

The ideal is to construct error-revealing paths; these are

paths that reliably expose errors every time they are executed. Since

the program is not subject to change by the tester, the best that can be

achieved in the general case is a set of error-sensitive paths, paths

that will expose the error if executed with the correct revealing values

bound to the variables involved. An example of an error-sensitive path

is a statement with a potential zero-divide error that may be executed

many times before the denominator takes on the value zero.

One fundamental limitation of structural methods is that they

may test a particular program well, but they do nothing to show that the
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program does what it was intended to do. Functional testing methods are

established to do this. However, experience has shown that structural

methods complement functional methods, since the two tend to reveal a

different set of errors. Howden says [How], "A programmer has three

sources of information for constructing test data: the program to be

tested, its specification, and his knowledge of commonly occurring

programming errors....
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3.TERMIHOLOGY

Structural control-flow testing techniques typically start by

generating a directed graph or digraph from the program code. A digraph

is a structure <N, E>, where N is a set of nodes and E is a set of edges

in N x N.

A node is a program segment consisting of a set of program

statements that necessarily execute together, in the normal course of

the program's execution. A group of statements will execute together if

there are no control mechanisms that can interrupt or redirect program

flow once their execution has begun. A node is defined by a conditional

branch immediately before it or a branch instruction passing control to

its first instruction, and a branch instruction passing control out of

it. More formally, a node is a series of consecutive program statements

<sl' s2' . . .,sn> such that, when n > 1, for i = 2,. . ., n, si is

always executed immediately after si-1 and si-1 is always executed

immediately before si'

An edqe is a relationship between two nodes, i and j, such

that the last statement of node i can be immediately followed in execu-

tion by the first statement of node j. The edge corresponds to control

flow.
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A path is a sequence of nodes <nl, n2, . . ., nk> such

that there is an edge from ni _ 1 to ni for i = 2, 3, .
., k. A

simple path is a path such that ni ~ nj for any i ~ j.

A definition of a variable at a node occurs when the value of

the variable is modified there by a read or assignment statemnt. DEF(s)

represents the set of all variables defined at node s.

A ~ of a variable occurs at a node when the value of the

variable is required to execute the statement in which it occurs. A.use

is any occurrence of the variable that is not a definition, coming in

two categories: predicate use (p-use), which is the occurrence of the

variable in an expression associated with a condition, and computational

use (c-use), which is the occurrence of the variable in an expression

that determines the value of a variable. However, the c-use will be the

only use considered here. USE(s) is the set of c-use variables used at

node s.

The predicate portion of the conditional will be treated as a

simple boolean switch for the purposes of this analysis. The variable

involved in the condition does not enter into the def-use couple or

dependency chain.

A definition clear path, or def-clear path, is defined with

respect to a particular variable. We say that a path is def-clear with

respect to x if it contains no definition of x.
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4. GPL--GEHERIC PROGRAMMING LANGUAGE

For the purposes of exposition, a simple language, based on

the formal programming language of Rapps and Weyuker [RW], is used to

show the technique without being so complicated itself that it inter-

feres with the examples. It is called GPL, or Generic Programming

Language. There are several reasons for using this rather primitive

language. It doesn't seem useful to present the examples in an actual

programming language in common use. If a reader doesn't know the lan-

guage, the example has no force. If the reader knows the language well,

it may become the focus of attention: Are the examples in good form for

the language? Are the best language features used for the sample pro-

gram? Is the code efficient? These problems are avoided by using a

language that anyone can understand, but that no one will become at-

tached to. At the same time, the language has the major contructs that

are found in any higher-level programming language.

There are facilities of more powerful languages missing from

GPL: arrays, pointers, and procedure calls, for instance. This is

deliberate, in the interest of limiting the scope of the thesis. They

provide some interesting topics for further research.
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4.1 TYPING

There is only one type, real, and no declaration mechanism.

4.2 I/O

GPL has two I/O statements. The Read statement is the only

input statement. It consists of the keyword read followed by any number

of variables, separated by commas. The Print statment is the only output

statement. It consists of the keyword print followed by any number

of variables, separat~d by commas.

4.3 BRANCHING

There are two ways to control the program flow, conditional

and unconditional branches. Any statement can have a label, which pre-

cedes the statement and is separated from it by a colon. Every label

must be the target of a branch statement somewhere in the program.

The unconditional branch is the keyword goto followed by any

valid label.
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The conditional branch consists of five elements:

if cond then goto lab

if, then, and goto are keywords, lab is any label in the pro-

gram, and cond is a condition of the form

operandi operator operand2,

where operandi and operand2 can be variable names or numeric values,

and operator is any of the standard relational operators (=, <, >, ~,

s , and :f).

4.4 ASSIGNMENT

The assignment statment is

var <- val

where var is any variable, '<-' is the assignment operator, and val

is a variable, numeric literal, or some computation of the form

vall numop va12,
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where vall and val2 are variables or numeric literals and numop

is any of the standard arithmetic operators (+, -, *, I, and %).

4.5 PROCESSING HALT

The keyword stop indicates the end of processing.

4.6 EXAMPLE

A small example will help to understand GPL.

This program reads in an end-of-data indicator and a tempera-

ture in degrees Celsius. It converts this to degrees Fahrenheit and

prints both numbers. It repeats this until the end-of-data indicator

equals -1, when it halts processing.

a: read e, c

if e = -1 then goto x

f <- c * 9

f <- f I 5

f <- f + 32

print c, f

goto a

x: stop
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5. DEPENDENCY CHAINS

There is much information in the structure of a program. It

is assumed that the program has been written and tested in development.

A change is made. What is required to take advantage of our previous

knowledge of the program to somehow limit the testing to just that

required by the change? -There has to be a way to relate the interde-

pendencies of the variables and the values bound to them at various

points in the program until there is a complete transference from the

program's inputs to its outputs. There has to be an analysis of changes

in general so that algorithms can be defined for each potential change.

Finally, there has to be an algorithmic approach to relating the change

in the program to a change in the testing requirements. This last is to

demonstrate that with the proper compiler support and instrumentation,

the whole process can be automated.

Note that there are two possible strategies to isolating the

test requirements of a given change, given a technique for generating

test requirements of a given program. One is to analyze the program

before and after the change, store the requirements, and throw out the
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intersection of the two sets from the second set. An example will show

some of the problems associated with this approach. Consider the pro-

gram:

If the criterion all-statements is used to generate require-

Two tests provide complete coverage of the requirements.

10 read x, y

20 if x > y then goto a

30 q <- x + x

40 goto b

50 a: q <- y * Y

60 b: print q

70 stop

ments for testing this program, the following set is the result.

a. Execute statement 10

b. Execute statement 20

c. Execute statement 30

d. Execute statement 40

e. Execute statement 50

f. Execute statement 60

g. Execute statement 70
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1. x = 5, Y = 3

Satisfies a, b, e, f, and g

2. x = 5, Y = 10

Satisfies a, b, c, d, f, and g

Change the program by changing statement 30 and adding two

statements, 61 and 62.

The test requirements generated from the changed program:

10 read x, y

;, 20 if x > y then goto a

30 q <- x * x

40 goto b

50 a: q <- y * Y

60 b: print q

61 Y <- Y - 1

62 if Y > 0 then goto a

70 stop



striking the-intersection of the two sets produces a set of

test requirements generated from the changes:

h. Execute statement 61

i. Execute statement 62

Running test 2 will satisfy these requirements. However,

there has been no test of the changed statement 30. This method is not

dependable.

The second strategy is to derive the new requirements from

the original program and the changes that transformed it to the new

version. This method has been chosen.

£
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a. Execute statement 10

b. Execute statement 20

c. Execute statement 30

d. Execute statement 40

e. Execute statement 50

f. Execute statement 60

g. Execute statement 70

h. Execute statement 61

i. Execute statement 62
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The dependency chain is the essential construct in this analy-

sis. The first link is a statement at which a variable is bound to a

value; the value is independent of any variable in the program, either

read at the statement or a literal assignment. The next link is a

statement at which this variable is used in calculating the value of

some other variable. This other variable is used in the calculation of

another, and so on. Eventually there is a statement that puts data out

of the program, the end of the dependency chain. The strategy for

choosing test data is to select data that will execute the statements in

the sequence that they appear in the dependency chain.

5.1 VARIABLE-STATEMENT PAIRS

In order to define the dependency chain, some basic defini-

tions are required.

Let V be the set of all variables in the program, and S be the

set of all statements in the program. A variable-statement pair, (x,i)

is any member of V x S.

A def-use couple, denoted by [(v,s) (v,t)], where (v,s) and

(v,t) are variable-statement pairs, is the set of simple paths p such

that v € DEF(s), v € USE(t), and p is def-clear with respect to v be-

tween sand t.
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IN is the set of all statements s such that DEF(s) ~ ~ and

USE (s) = ~; i. e. a variable is defined, but without dependence on the

value of any other variable, as in a read statement or literal assign-

mente

OUT is the set of all statements s such that DEF(s) = ~ and

USE(s) ~ ~; i. e., a variable is used but no variable receives a value,

as in an output statement.

5.2 FORMAL DEFINITION OF DEPENDENCY CHAINS

A dependency chain 1s a sequence of variable-statement couples

such that:

tn E OUT,

ti-1 for 1 < i s n, and

for 1 s i S n.

Dave Maier has pointed out that this formalism lacks the

ability to define a def-use couple [(d,i) (d,i)], where d is used at

statement i in the calculation of a new value of d. This is a flaw.

When this instance was originally considered, it was felt to be a spe-
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cial case of looping, which is not included in this study. The solution

would be to redefine the simple path (section 5.1) to allow a statement

to occur more than once, when it is the first and last statement of the

path. With this redefinition, the def-use couple and dependency chains

would fall into place and process this case correctly.

5.3 BUILDING DEPENDENCY CHAINS

Once the def-use couples are determined, dependency chains can

be formed. The first step is to find all the variables v such that v E

DEF(i), where i E IN. Each input variable may be used in the definition

of another variable, this forms a def-use couple. The new variable is

in turn used somewhere else, and so on. Eventually there is a use with

no definition, an output statement, which is the end of the dependency

chain. The result of this analysis is that the program is considered as

a set of interlocking pairs of defs and uses, similar to the required

element testing of Ntafos [Ntaf).

EXAMPLE:

10 read x, y

20 if x < y then goto a

30 r <- x * x

50 goto b
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IN = {IO}

OUT = {70}

60 a: r <- y * Y

70 b: print r

80 stop

DEF(IO) = {x, y}

DEF(30) = {r}

DEF(60) = {r}

USE(30) = {x}

USE(60) = {y}

USE (70) = {r}.

The def-use couples are:

[(x,IO) (x,30)]

[(y,IO) (y,60)]

[(r,30) (r,70)]

[(r,60) (r,70)].
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From these dependency chains, the following paths are built:

<10, 20, 30, 50, 70>

<10, 20, 60, 70>.

Tests have to be developed that will execute the statements in

The dependency chains are:

«x,10) , (x,30), (r,30), (r,70», and

«y,10), ( y , 60) , (r,60), (r,70».
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6. CHANGE PRIMITIVES

The change primitives are the smallest essential changes that

can be made to a program. In order to define change primitives, the

consideration is that there are only two things that can be done to

data, definition and use, and there are only two ways to affect the flow

of control, conditionally and unconditionally. There are only three

operations that can be performed on programming entities--add, change,

and delete. Thus, the change primitives are defined as a completely

exhaustive set of changes.

The use of change primitives allows the sketching of an induc-

tive proof that the use of dependency chains will provide consistently

good results for changes of any size. consider that any change is

composed of individual, "atomic" changes. Each of these can be

applied individually. Make the first of these changes and apply the

techniques to generate a set of tests. Make the next change and add

the resulting changes to the first set. Repeat this for all the small

changes that make up the original change. It can be seen that there may

be too many tests in the final set some later change could obviate a

test required by an earlier change but there will be no tests miss-
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ing. Each required test for the whole change has to be generated by one

of the detail changes.

Each change primitive is discussed in this c~apter and ana-

lyzed for dependency chain requirements in Chapter 7. The following

table should assist in navigating through these two sections.

Add Change Delete

Definition 6.2.1, 7.2 6.2.2, 7.3 6.2.3, 7.4

Use 6.3.1, 7.5 6.3.2 6.3.3

Unconditional

Branch 6.4.1, 7.6 6.4.1 6.4.1

Conditional

Branch 6.4.2.1 6.4.2.2 6.4.2.3



40

6.1 MOTIVATION

In order to compute the activity required to re-test the program,

we have to consider the change primitives and look at the activity
!

necessary for each. We consider each from the point of view that the

original program was tested to the point that every dependency chain

was exercised and we plan to test to the same standard only the added

test requirements after the change.

6.2 DEFINITION

6.2.1 CREATION

Introducing a new definition into a program has two possible

impacts: it can create new def-use couples, and it may truncate existing

ones. As an example of both of these effects, consider this program

segment before and after a single definition is inserted into the code

at line 12:
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20 z <- x * x 20 z <- x * x

Assuming that these are the only references to x in the pro-

gram, the first program has two def-use couples defined for x, [(x,10)

(x, 11)] and [(x,10) (x,20)]. The introduction of statement 12 kills

[(x,10) (x,20)] and creates [(x,12) (x,20)]. The couple [(x,10) (x,11)]

is not affected.

An added definition can be of three forms: 1) the assignment

of a literal constant, 2) an input statement, or 3) a computation in

terms of another variable; for example:

10 read x 10 read x

11 y <- x + 3 11 Y <- x + 3

13 . . . 12 x <- 2

13

1) x <- 100

2) read x

3) x <- y + 3
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In cases 1) and 2), the definition involves no other variable.

Therefore, this definition and any uses it reaches form the first link

of new dependency chains. These chains must be tested.

Example:

Starting with the program:

Add statement 35, x <- 9000.

10 read x, y

20 print y

30 - if Y > 0 then goto a

40 print x

50 goto b

60 a: print x

70 b: y <- x * x

80 print y

90 stop



r

43

In this case, the uses of x that can be reached by the new

definition are at 40 and 70, with def-use couples [(x,35) (x,40») and

[(x,35) (x,70»). The new dependency chains are «x,35),(x,40» and

«x,35),(x,70),(y,70),(y,80». These new chains have to be tested and

make up the test requirements due to the change.

In case 3), the definition depends on use variables. These

variables have definitions, and subchains can be traced backward from

them to input variables. These subchains form the prefixes of the new

dependency chains. The suffixes are calculated as in case 1).

10 read x, y

20 print y

30 if y > 0 then goto a

35 x <- 9000

40 print x

50 goto b

60 a: print x

70 b: y <- x * x

80 print y

90 stop
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Example:

The newly-defined y at 45 uses the x at 45, for which the def

is at 10. Since this is the only definition of x that reaches statement

45, every new dependency chain will begin with the subchain «x,lO),

(y,45». The only suffix to be considered is «y,45), (y,50». This

new dependency chain is «x,10), (x,45), (y,45), (y,50». Testing this

chain is the added testing requirement caused by the added statement.

10 read x, y

20 print x

30 print y

40 if x > 0 then goto a

50 print y

60 a: stop

Add statement 45:

10 read x, y

20. print x

30 print y

40 if x > 0 then goto a

45 y <- x * x

50 print y

60 a: stop
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6 .2 .2 CHANGE

There are two ways that a definition can be changed: 1) a

function change in terms of the same use variable, and 2) a.change in

variable for the same or a different function. This can be represented:

1) y <- f(x) => y <- g(x), and

2) Y <- f(x) => y <- h(z).

In this case 1), the important factor is that nothing has

changed in any dependency chain leading up to this statement. Only

the portion following the changed statement can be affected, and then

new chains will be formed only because of the data transfers that depend

on the value of y.

Case 2) can be treated as a deletion of the first variable and

addition of the new one. As such, it will be treated in section 6.3

concerned with use variables.

Example of case 1):
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Change the statement at 100:

10 read u, v, w, x

20 if x = 1 then goto a
.

t

r

30 if x = 2 then goto b

40 if x = 3 then goto c
I

t

50 a: y <- u

I 60 goto d
I

70 b: y <- v

80 goto d

\\ 90 c: y <- w

100 d: z <- y * y

110 - print z

120 stop

10 read u, v, w, x

20 if x = 1 then goto a

30 if x = 2 then goto b

40 if x = 3 then goto c

50 a: y <- u

60 goto d

70 b: y <- v

80 goto d
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The function of y at statement 100 has been changed. The

value of y could have been set at statement 50, 70, or 90. However, the

paths from these defs to 100 have been tested and are not changed.

«w,lO), (w,90), (y,90), (u,lOO), (z,lOO), (z,llO».

6.2.3 DELETION

It is obvious that deleting a definition from a program re-

moves all the def-use couples that contained it. However, deleting a

definition can also create def-use couples.

Consider the following example, in which statement 21 is

removed.

90 c: y <- w

100 d: z <- y + Y

110 print z

120 stop

To test this change, use the dependency chains

< (u, 10 )-, (u,50), (y,50), (y,lOO), (z,lOO), (z,llO»,

«v,lO), (v,70), (y,70), (y,lOO), (z,lOO), (z,llO»,

and
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If these are the only references to x in the program, there is just

one def-use couple that contains x, [(x,21) (x,22»). In the changed

program, deleting statement 21 has eliminated that path, but has "uncov-

ered" [(x,10) (x,22») and [(x,15) (x,22»).

The deletion of a definition is potentially the most extensive

change that can be made as far as the testing that it demands. When a

definition is deleted, any other definition of the same variable that

is still live at the point of the deleted definition now has potential

10 read x, y 10 read x, y

11 goto 20 11 goto 20

12 . . . 12

13 . . . 13

14 . . . 14

15 x <- y + 3 15 x <- y + 3

16 goto 20 16 goto 20

17 . . . 17

18 . . . 18

19 . . .
- 19

20 read y 20 read y

21 x <- Y * Y

22 r <- x * x 22 r <- x * x
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:impact on the uses of the variable. These are called "exposed"

definitions.

This is an important point to study for the reason that this

effect is usually not planned by the programmer. The def deleted is

i usually the primary focus of attention. The danger is that the program-

t

mer may forget the new def-use couples created by this act.

When a definition is deleted, a new def-use couple is created

f~r every definition of the same variable that reaches the place of the

deleted definition and every use that was reached by the deleted

definition.

As an example of the impact of these exposed definitions and

the new def-use couples, consider this code portion.

20 x <- q

21 goto 100

30 x <- r

31 goto 100

40 x <- s

41 goto 100
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50 x <- t

51 goto 100

60 x <- u

61 goto 100

100 x <- y * 2

200 a <--x

201 print a

300 b <- x

301 print b

400 c <- x

401 print c

500 d <- x
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501 print d

600 e <- x

601 print e

In this example, there is a definition of x at statement 100,

five other definitions of x that are live at statement 100, and five

uses of x that are reached from statement 100. These are the only

references to x in the program. Assume that the path to each definition

of x is simple, with just one unique prefix each. The testing consists

of five dependency chains, with common proper prefixes through statement

100, then to each of the five uses of x.

Should the definition of x at 100 be deleted, each of the five

definitions of x can serve each of the uses of x, for a total of

twenty-five new dependency chains to be tested.

6.3 USE

Changes due to uses differ from changes due to definitions,

because the effects of uses on paths are different than the effects of

definitions. A definition starts a new path; as shown above, it can

interrupt a path. A use is not as powerful--a def-use path can go

through a use. For instance, in the program segment:
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the path [(x,10) (x,11») does not interrupt [(x,10) (x,12»).

6.3.1 ADDITION

Adding a use creates new paths, as many paths as there are

definitions that reach the new use.

When adding a-use, the key is to find all the definitions of

the use variable that reach the changed statement and combine each with

the new use to form new def-use couples. These def-use couples are then

new prefixes that are then matched up with the suffixes that depend on

the def-use paths originating at the definition variable in the changed

statement. For example, consider:

10 read x

11 y <- x + 5

12 z <- x * x

10 read x, y

11 a: z <- x + 7

12 v <- z * 2

13 print v

14 y <- z + 1

15 if x > y then goto a

16 stop
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«x,10), (x,ll), (z,ll), (z,12), (v,12), (v,13» is the only

dependency chain.

Add a use by changing statement 11:

11 a: z <- x + y + 7

This results in two new dependency chains being added to the

set that has to be exercised:

«x,10), (x,ll), (z,11), (z,14), (y,14), (y,ll), (z,ll), (z,12), (v,12),

(v,13», and «y,10), (y;ll), (z,ll), (z,12), (v,12), (v,13».

6.3.2 CHANGE

In section 6.2.2, the replacement

1) Y <- f(x) => Y <- g(x)

was treated. The other change that could be considered,

2) Y <- f(x) => Y <- h (z)

can be seen to be a simultaneous addition of the use of z, treated in
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6.3.1 above, and deletion of the use of x, discussed in 6.3.3 below.

6.3.3 DELETION

No existing dependency chains are changed deleting a use, and

none are added. At least one is lost, but there is nothing to test in

response to this.

6.4 BRANCHES

6.4.1 UNCONDITIONAL

Adding, changing, and deleting an unconditional branch are all

equivalent operations. Consider that every statement carries an implic-

it branch to the next, unless specifically overridden.

is really

10 start

20 read x

30 print x

40 stop
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Changing the original program by inserting a branch statement

can be seen to be changing one of the implicit branches, as in 39 below.

Similarly, deleting a branch is actually changing a branch to

point to the next sequential instruction. For example, the program:

10 start

19 goto a

20 a: read x

29 goto b

30 b: print x

39 goto c

40 c: stop

10 start

19 goto a

20 a: read x

29 goto b

30 b: print x

39 goto a

40 c: stop
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10 start

20 read x, y

30 print x

40 goto z

50 print y

60 z: stop

is equivalent to:

10 start

19 goto a

20 a: read x, y

29 goto b

30 b: print x

39 goto c

40 c: goto z

49 goto d

50 d: print y

59 goto e

60 e: z: stop

Deleting statement 40 is the same as changing it to

40 goto d
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Since changing a branch can be seen as adding a branch and

deleting can be seen as changing a branch, adding unconditional branches

alone will be treated.

An unconditional branch can lead to the deletion of a depend-

ency chain or a creation of one. Consider the example program:

The only dependency chain is «x,10), (x,20), (z,20), (z,30».

Adding a branch,

21 goto 60

deletes this dependency chain, since there is no longer any chain that

reaches an output statement. Adding this statement to the original

program:

31 goto 50

results in adding a new dependency chain:

«y,10), (y,50».

10 read x, y

20 z <- x * 2

30 print z

40 goto 60

50 print y

-60 stop
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6.4.2 CONDITIONAL

6.4.2.1 ADDITION

Adding a conditional branch has the same impact on testing require-
)

ments as adding an unconditional branch. There are two paths after

the conditional branch is added. The first is the "true" case, the

one that will be followed if the predicate is true; this is the same

as if the branch had been unconditional. The other branch is the

"false" branch, the one that will be followed if the predicate is

false; this has already been tested.

6.4.2.2 CHANGE

Changing the conditional branch is the same as changing the

equivalent unconditional branch, by similar argument.

6.4.2.3 DELETION

Deleting a conditional branch has no impact on the testing

requirements of the program, since the false branch, which has been

tested,is now taken unconditionally.

Any add, change, or delete in any branch, conditional or uncondi-

tional, impacts test requirements through the changes in def-use paths

that result.
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6.5 SUMMARY

In order to analyze software changes, the concept of the

change primitive was introduced. Any change can be decpmposed into a

set of change primitives. Twelve candidate change primitives were

proposed in this chapter, but analysis demonstrated that only five are

required for further consideration. They will be treated in more detail

in Chapter7.
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7. DEPENDENCY CHAIN ANALYSIS

Since an important aspect of this presentation is the eventual

automatic generation and instrumentation of dependency-chain-based test

cases, it is necessary to show that there are algorithms to govern the

process. That is, there are consistent rules that can be applied to a

set of dependency chains based on a given change. These rules then

result in a new set of dependency chains that relate the program changes

to test requirement changes.

This section uses the analysis of Chapter 6 and the defini-

tions of Chapter 5 to derive the appropriate test response for each

change requirement.

7 .1 COMPONENTS OF DEPENDENCY CHAIN FORMATION

The following are needed for the formation of dependency

chains to be tested.
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I is the def-use couple formation operator, forming a def-use

couple from two variable-statement pairs.

I I is the concatenation operator, building longer dependency

chains from two smaller sub-chains, under the condition that the

last variable-statement pair of the first sub-chain is the same as

the first of the second sub-chain. Often the concatenation opera-

tor is used to build a new dependency chain from a sub-chain and a

def-use couple; for this purpose, [(x,i) (x,j») will also stand for

«x,i), (x,j». I I takes two operands, but it is associative and

can be applied successively to build up longer chains:

a II b II c II d = a II (b II (c II d».

DefUse(s)

The set of def-use couples [(x,i) (x,j») such that statement s is

in a path between i and j.

DepChain(v,s,t)

The set of dependency chains that contain the def-use couple

[(v,s) (v,t»). Dependency chain D contains the def-use couple

[(x,i) (x,j») if the two variable-statement pairs (x,i) and (x,j)

appear in that order together in D.
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Reach(s,x)

The set of variable-statements pairs (x,j) such that a definition

of variable x at j is "live" at statement s (that is, there is a

def-clear path with respect to x from j to s.)

Pref(v,s,w,t,u)

The set of sub-chains that are the prefixes of the dependency

chains from (v,s) to (w,t), truncated after statement u.

Source(s)

The set of variabTe-statement pairs (y,j) such that there is a

def-use couple [(y,j) (y,s)], Y E USE(s), and Y E DEF(j).

Suff(v,s,w,t,u)

The set of sub-chains that are the suffixes of the dependency

chains from (v,s) to (w,t), truncated before statement u.

First(d)

The variable-statement pair that is the "definition" pair (x,i)

of def-use couple d, when d is written as [(x,i) (x,j)].

Last(d)

The variable-statement pair that is the "use" pair (x,j) of the
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def-use couple d, when d is written [(x,i) (x,j»).

Orig(s,x)

The set of def-use couples [(x,j) (x,k») such that [(x,j) (x,k»)

e DefUse(s). In other words, Orig is the set of def-use couples

through s that define and use x.

BuildChain(x,i)

The set of dependency sub-chains generated from the def-use

couples [(x,i) (x,j») for all j such that x e U5E(j). Note that

these may be complete dependency chains if i e IN.

In some of the following algorithms, sets are easy to define,

but individual elements are easier to use in computation. To get around

this in the formal proofs, there is a notational convenience, a "while"

construction, and a function "elt_of", which will select one item from a

set, delete it from the set, and return it as the value of the function.

It returns a special value (sYmbolized by "p"), to indicate that the set

is exhausted. The type returned by "elt_of" is that of the set that it

is working on; applied to a set of def-use couples, it returns a def-use

couple, and so on. To understand its use, consider an example using the

function DefUse, defined above, which returns a set of def-use couples

through s. In order to deal with these, the function "elt of" working
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on DefUse selects one def-use couple from this set, returns it as the

value of the function, and deletes it from the set. Eventually the

function returns a null value ("1)") when the set is depleted.

The while controls the use of the function:

while ([(x,i) (x,j)] = elt_of(DefUse(s» r 1)

do

some process on x, i, and j

enddo

Once a dependency chain is created or changed in the process,

the function "collect" is used to record it in a set of dependency

chains. This set is the result of the process, when it is finished.

7.2 ADDING A DEFINITION

In the following analysis, a previously existing statement s'

is used to retrieve information about the program as it was before the

change. The selection of s' is done in the following manner. In most
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cases, s' is the statement immediately preceding the added statement s.

If s is the first statement in a multi-line node, s' is the statement

ilnmediately after s. If s is a single statement node, s' is the final

statement of every node that can execute before s; the analysis has to

be repeated for each occurrence of s'.

In generating the new dependency chains to test, there are two

cases, based on whether the added statement s E IN.

7.2.1 Case I: S E IN

while (x = elt_of(DEF(s)) 1 ~) ;find a variable

do ; defined at s

while ([(x,a) (x,t)] =-elt_of(Orig(s',x)) 1 ~) ;find a def-use

do

d = (x,s) I (x,t)

while (c elt_of(DepChain(x,a,t)) 1 ~) ; find

do dep chain from old d-u

c' = d I I Suff(c,s') create new dep chain

collect c' ; record the new dep chain

enddo

enddo

enddo

; through s, with an

; origin at a def of x

create a new d-u couple

from new def, old use
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In less formal terms, this case starts with the new defini-

tion, which must be the head of each new dependency chain. Find all the

uses reached by this new definition. The new dependency chain is formed

by "grafting" the new definition onto the front of the old chains.

7.1.2 Case II: s ~ IN

while (x = elt_of(DEF(s» ; 0) ; find a variable

do ; defined at s

while ([(x, a) (x,t)] = elt_of(Orig(s',x» ; 0) ; find a d-u couple

do ; thru s' originating

; at a def of x

d = (x,s) I (x,t) ; make new d-u couple

while (c = elt_of(DepChain(x,a,x,t» ; 0) ; find an old

do ; dependency chain

while (y = elt_of(USE(S» ; 0) ; find var used in def

do

while ((y,u) = elt_of(Reach(s,y» ; 0) ; find reaching def

do ; of that variable

d' = (y,u) I (y,S)

[(y,u) (y,v)] = Orig(u,y)

while (c' = elt_of(DepChain(y,u,y,v» ; 0)

; create new d-u couple

; find d-u couple thru

; var-stmt pair

.

find dep chain,
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do

c''= Pref(c',n) I I d' I I d I I Suff(c,s') ;build new dep chain

collect c" ;record the new chain

enddo

enddo

enddo

enddo

enddo

enddo

This case is similar to the previous one, except that the new

definition now becomes (with each use it reaches) a connecting link

between the first part of old dependency chains leading to it and the

last part of the dependency chains dependent on its use.

7.3 CHANGING A DEFINITION

Since none of the dependency chains are affected by this

change, the reaction is to find all the dependency chains that contain

the variable-statement pair that represent the changed definition, and

test them. In order to find them, the first step is to find the def-use

couples through the changed statement for the use variables in that
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statement. From these we can find all the dependency chains that

contain these def-use couples. We test these chains.

while ([(v,s) (v,t)] = elt_of(Orig (s,y» f Q)iffnd all def-use couples

do i thru s that use y

while (d = elt_of(DepChain(v,s,t» f Q) find the

do i dep chains thru them

d' = d

collect d' i record these chains

enddo

enddo

No dependency chains are created or destroyed. This process

finds the dependency chains "containing" the changed definition. Note

this this primitive could be consolidated to the application of a dele-

tion of a definition and addition of a definition. However, this would

be at the expense of added complexity, with no real benefit.

7.4 DELE~IHG A DEFIHI~IOH

The impact of deleting a definition of variable x from state-

ment s is to expose its uses to definitions that were stopped by the one

deleted. The strategy is to find all the uses reached by the definition

deleted, associate them with all the definitions of the same variable
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"- that now reach those uses, and form new dependency chains around the

1-
def-use couples thus created.

i
"

while «x,i) = elt_of(Reach(s,x) ~ 0) ; find all defs of x

do that reach s

while ([(x,j) (x,k») = elt_of(Orig(s,x» ~ 0); find d-u couples

while ([v,t) (v,u») = elt_of(Source(i» ~ 0); find d-u leading to i

do

while (c = elt_of(DepChain(v,t,u» ~ 0) find dep chains

do ; for those d-u couples

while (c' = elt_of(DepChain(x,j,k» ~ 0) ; find dep chains

do : for d-u couples above

d = Pref (c,i) II 0' II Suff (c',k) create new dep chains

collect d record these chains

enddo

enddo

enddo

enddo

enddo
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The definitions that were stopped from reaching uses by the

deleted definitions can now form new dependency chains. The result

could be thought of as multiple added definitions.

7.5 ADDING A USE

This section describes the situation in which an existing

definition in statement s calculated in terms of one or more variables

is changed to a function of a different use variable. In order to find

the set of dependency chains to be tested, we find their prefixes by

working back from the new use and the suffixes of the old set of depend-

ency chains. The original use variable is y, the new is y'.

while «v,t) = elt_of(Reach(s,y'» f 0) ; find all the defs

do ; of y' reaching s

while (p = elt_of(Orig(v,t» f 0) ; find d-u couples

do ; beginning at defs

while (d = elt_of(DepChain(p» f 0) find dep chains

do ; containing d-u couples

while (b = elt_of(DefUse(s» f 0) find dep chains

do ; thru stmt s

while(d' = elt_of(DepChain(b» f 0) ; generate

do

c = Pref(d,s) II Suff(d' ,s) ; new dep chains

collect c ; record chains

enddo
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enddo

enddo

enddo

enddo

This process can be thought of as finding a whole new set of

"heads" for the "tails" of the previously existing dependency chains.

7.6 ADDING A BRANCH

A new branch creates new dependency chains by grafting new

suffixes to the chains going through the new branch statement.

while (d = elt_of(DefUse(s» f ~) find d-u couples

do ; thru stmt s

while (c = elt_of(DepChain(d» f ~) find dep chain

do containing couples

c' = Pref(c,s) get prefix of chain

f = First(d) get var-stmt pair

while (c" = elt_of(BuildChain(f» f ~) build sub-chain

do

n = c' II c"

collect n

enddo

enddo

dependent on pair

; create new dep chain

record the new chain
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enddo

Since the dependency chains that existed before are still the

same up to the changed branch statement, this process can be thought of

as grafting new "tails" onto the previously existing "heads".

7.7 SUMMARY

This chapter demonstrated the algorithms that an automated

system could use to respond to any of the change primitives described in

Chapter 6. These algori~hms, with information stored at the time of the

creation of the program, will generate the test requirements necessary

to test the program change.
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8. EXAMPLES

These examples attempt to illustrate the usefulness of depend-

ency chains in focusing the testing effort on portions of a program

affected by a change. Where the effects of the change are small and

local to a few statements, that portion of the program is identified for

scrutiny. When the effects of a change are more pervasive, more of the

program is selected for testing.

8.1 EXAMPLE I

The first example is from Rapps and Weyuker [RW), a program

that computes xY.

10 start

20 read x, y

30 if Y < 0 then goto a

40 pow <- Y

50 goto b
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The variable-statement pairs in this program are:

(x,20)

(y,20)

(pow,40)

(y,40)

(pow,60)

(y,60)

(z,70)

(z,90)

(x,90)

60 a: pow <- -y

70 b: z <- 1

80 c: if pow = 0 then goto d

90 z <- z * x

100 pow <- pow - 1

110 goto c

120 d: if y >= 0 then goto e

130 z <- 1 / z

140 e: answer <- z

150 print answer

160 stop'
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(pow,100)

(z,130)

(answer, 140)

(z,140)

(answer,150)

The def-use couples in this program are:

[(x,20) (x,90)]

[(y,20) (y,40)]

[(y,20) (y,~O)]

[(pow,40) (pow, 100) ]

[(pow,60) (pow, 100) ]

[(z,70) (z,90)]

[ (z, 70) (z, 130) ]

[(z,70) (z,140)]

[(z,90) (z,130)]

[(z,90) (z,140)]

[(z,130) (z,140)]

[(answer,140) (answer,150)]
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The dependency chains are:

1. «x,20), (x,90), (z,90), (z,130), (z,130), (z,140),

(answer, 140) (answer,150»

2. «x,20), (x,90), (x,90), (z,90), (z,140), (answer,140),

(answer,150»

3. «z,70), (z,90), (z,90), (z,130), (z,130), (z,140),

(answer,140), (answer,150»

4. < (z,70), (z,90), (z,90), (z,140), (answer, 140) ,

(answer,150»

5. < (z, 70), (z, 130), (z, 130), (z, 140), (answer, 140) ,

(answer,150»

6. «z,70), (z,140), (answer,140), (answer,150»

Paths corresponding to these chains:

1. a. 20, 40, 70, 90, 100, 130, 140, 150 *

1. b. 20, 60, 70, 90, 100, 130, 140, 150

2. a. 20, 40, 70, 90, 100, 140, 150

2. b. 20, 60, 70, 90, 100, 140, 150 *

3. 70, 90, 100, 130, 140, 150

4. 70, 90, 100, 140, 150

5. 70, 130, 140, 150 *

6. 70, 140, 150

* Infeasible
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In these examples, the feasible paths were found manually.

There is no manual or automated method to resolve feasibility in the

general case.

A test satisfies a path if it 'traverses the statements of the

path in the order specified with no intervening "foreign" statements.

Looping requires that some subset of the statements may be repeated.

Suppose that when the program is developed, the following

tests are done:

Test I: x = 2, Y = 2

Path traversed: 20, 40, 70, 90, 100, 90, 100, 140, 150

Cases satisfied: 2.a., 4.

Test II: x = 2, Y = -2

Path traversed: 20, 60, 70, 90, 100, 90, 100, 130, 140, 150

Cases satisfied: 1.b., 3.

Test III: x = 2, y = 0
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Path traversed: 20, 40, 70, 140, 150

Case satisfied: 6.

With three tests, we have satisfied five of eight required
I

cases. On inspection, we can see that the other three cannot be satis-

fied, since they depend on values that are mutually exclusive to be

bound to the same variable. In l.a., y must take on values both less

than and greater than zero, with no intervening assignement statement.

In 2.b., Y must take on similarly conflicting values. In case 5., pow

must be equal to zero, y must be less than zero, and yet the two must

be equal.

The program is now considered complete and put into produc-

tion(of course, these are not the only test cases run, merely the ones

required by dependency chain analysis). The final compile includes pre-

and post-processor routines necessary to record the internal relation-

ships required for the analysis: for every statement, the def-use paths

containing it and for every def-use path, the dependency chains

containing it. We now consider two different and independent changes

to the program and the corresponding changes in the test scenarios.
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8.1.1 A SMALL CHANGE

Introduce a small change.

Change

130 z <- 1 / z

to

130 z <- 1 -/ x

In order to find the new paths, we follow the algorithm of

section 7.5. This is an example of an added use.

The only def of x reaching 130 is (x,20). The only def-use

couple that starts at (x, 20) is [(x,20) (x,90»). The two dependency

chains (call them UdU) containing this def-use couple are:

1. «x,20), (x,90), (z,90), (z,130), (z,130), (answer,140),

(answer,150», and

2. «x,20), (x,90), (z,90), (z,140), (answer,140), (answer,150».
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There are three dependency chains (call them "d''') going

through statement 130:

1. «x,20), (x,90), (z,90), (z,130), (z,140), (answer,140),

(answer, 150»,

3. «z,70), (z,90), (z,90), (z,130), (z,140), (answer,140),

(answer, 150», and

5. «z,70), (z,130), (z,140), (answer,140), (answer,150»

The new dependency chains are generated from the prefix of the

d chains above, truncated"at statement 130 and the suffixes of the d'

chains, truncated at statement 130. Dependency chain 2 of (d) is not

involved because it does not go through statement 130. Combining chain

1. (from (d» with 1, 3, and 5 (from (d'» gives:

1/1 «x,20), (x,130), (z,130), (z,140), (answer,140),

(answer, 150»,

1/3 «x,20), (x,130), (z,130), (z,140), (answer,140),

(answer, 150», and

1/5 «x,20) , (x,130), (z,130), (z,140), (answer,140),

(answer,150».
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This one dependency chain requires us to execute the paths:

The only feasible path is

20, 30, 60, 70, 80, 90, 100, 110, 80, 120, 130, 140, 150.

In order to execute this path, we must execute the program with

the values

y < 0 and any x.

Try x = 2 and y = -2.

The value of answer that prints is 1/2, not 1/4, which is the

correct value. This test uncovers the error inserted by this change.

With no testing methodology at all, the programmer could

choose to run just one test, Test I from Section 8.1 (x = 2, Y = 2.)

This produces the correct answer, but does not test the change and does

not reveal the error. Another test suite would be the repetition of the

20, 30, 40, 50, 70, 80, 120, 130, 140, 150 *

20, 30, 60, 70, 80, 120, 130, 140, 150 *

20, 30, 40, 50, 70, 80, 90, 100, 110, 80, 120, 130, 140, 150 *

and 20, 30, 60, 70, 80, 90, 100, 110, 80, 120, 130, 140, 150
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whole set of three tests from 8.1. Two of these tests are not produc-

tive in that they do not exercise the changed code. This is not a great

expenditure of resources, but consider that a larger program may have a

regression library of hundreds of cases, with only a few specific to a

small change like this one. Many of the test cases waste the effort

required to run them and evaluate their results.

8.1.2 ANOTHER CHANGE

Going back to the original program, we look at a change with more impact

than the one in 8.1.1.

70 b: z <- y

Analyzed using the analysis of Section 7.3, this process

generates a much larger set of new dependency chains.

9. «y,20), (y,70), (z,70), (z,90), (z,90), (z,130), (z,140),

(answer,140), (answer,150»

10. «y,20), (y,70), (z,70), (z,90), (z,90), (z,140), (answer,140),

(answer,150»

11. «y,20), (y,70), (z,70), (z,130), (z,140), (answer,140),

(answer, 150»

12. «y,20), (y,70), (z,70), (z,140), (answer,140), (answer,150»
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The paths required by these chains:

Eight paths are generated by these dependency chains, but three

survive after incompatible conditions are considered.

In order to test these paths, the following test cases must be

considered.

In response to these requirements, run the test values and

receive the following results.

9.a. 20, 40, 70, 90, 100, 130, 140, 150 *

9.b. 20, 60, 70, 90, 100, 130, 140, 150

10.a. 20, 40, 70, 90, 100, 140, 150

10.b. 20, 60, 70, 90, 100, 140, 150 *

l1.a. 20, 40, 70, 130, 140, 150 *

l1.b. 20, 60, 70, 130, 140, 150 *

12.a. 20, 40, 70, 140, 150

12.b. 20, 60, 70, 140, 150 *

9.b.: y < 0 and any x (1)

10.a.: y > 0 and any x (2)

12. a. : y = 0 and any x (3)
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x y calculated correct

answer answer

(1) 2 -3 - 1 / 64 1/8

(2) 2 3 64 8

(3) 2 o o 1

Note that mere observation of the sample program, with the

conditions on the value ~f y at 30 and 120 would have lead to the same

or similar requirements, but this ability to define test requirements

from simple observation is difficult with programs of any size.

In this example, we see a one-character change in the program

that has produced requirements for the same number of tests as the

original program required. The two examples drawn from this fairly

sLmple program show that the size of the test requirements is appropri-

ate to the intuitive feel for the "size" of the change. The first,

which can be seen to have a relatively small impact on the program,

required less testing than the second, which effected a more influential

variable at a more critical point of the program.
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8.2 EXAMPLE PROGRAM II

A slightly more complex example, a bill of materials master

file update pre-edit. The appendix contains a more complete analysis.

1 start

2 a: read func, parent, comp, qty, um

3 if parent = 999999999 then goto z

4 if func = 0 then goto b

5 if func = 1 then goto c

6 if func = 2 then goto d

7 if func = 3-then goto e

8 if func = 9 then goto f

9 errmess <- 1

10 print func, parent, comp, qty, um, errmess

11 goto a

12 b: delparent <- parent

13 delcomp <- comp

14 goto a

15 c: addparent <- parent

16 addcomp <- comp

17 addqty <- qty

18 ad dum <- um

19 goto a
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20 d: chgparent <- parent

21 chgcamp <- camp

22 chgqty <- qty

23 chgum <- urn

24 gata a

25 e: inqparent<- parent

26 inqcamp <- camp

27 gata a

28 f: if chgparent = parent then gata g

29 gata i

30 g: if chgcamp~ camp then gata h

31 gata i

32 h: chgparent <- 0

33 chgcamp <- 0

34 qty <- chgqty

35 urn<- chgum

36 i: if chgparent = 0 then gata j

37 errmess <- 2

38 print chgparent,chgcamp,errmess

39 chgparent <- 0

40 j: if chgcamp = 0 then gata k

41 chgcamp <- 0

42 errmess <- 3
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43 print chgparent,chgcomp,errmess

44 k: if delparent = parent then goto 1

45 goto n

46 1: if delcomp = comp then goto m

47 goto n

48 m: delparent <- 0

49 delcomp <- 0

50 goto a

51 n: if delparent = 0 then goto 0

52 errmess <- 4

53 print delparent,delcomp, errmess

54 0: if inqparent = parent then goto p

55 goto r

56 p: if inqcomp = comp then goto q

57 goto r

58 q: print parent, comp, qty, urn

59 r: if addparent = parent then goto s

60 goto u

61 s: if addcomp = comp then goto t

62 goto u

63 t: errmess <- 5

64 print addparent,addcomp,errmess

65 addparent <- 0
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66 addcomp <- 0

67 addqty <- 0

68 addurn<- 0

69 u: if addparent > 0 then goto v

70 goto w

71 v: print addparent, addcomp, addqty, addum

72 addparent <- 0

73 addcomp <- 0

74 addqty <- 0

75 addurn<- 0

76 goto a

77 w: print parent, comp, qty, urn

78 goto a

79 z: stop
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8 .2 .1. CHANGE 1

Delete statement 41.

The defs of chgcomp that reach the use at 43 are at 21 and 33.

The variable-statement pairs added are [(chgcomp, 21) (chgcomp,

43)] and [(chgcomp, 33) (chgcomp, 43)].

In order to test this change, we have to exercise the paths:

1. 2,4,5,6,20,2,4,5,6,7,8,28,36,40,42,43

2. 2,4,5,6,20,2,4,12,2,4,5,6,7,8,28,36,40,42,43

3. 2,4,5,6,20,2,4,5,15,2,4,5,6,7,8,28,36,40,42,43

4. 2,4,5,6,20,2,4,5,7,25,2,4,5,6,7,8,28,36,40,42,43

5. 2,4,5,6,20,2,4,5,8,9,2,4,5,6,7,8,28,36,40,42,43

6. 2,4,5,6,20,2,4,5,6,7,8,28,30,36,40,42,43

7. 2,4,5,6,20,2,4,5,6,7,8,28,36,37,40,42,43

8. 2,4,5,6,7,8,28,30,32,36,37,40,42,43

In order to exercise these paths, the following sets of data are

input.



func parent comp

1. 102 o 1

9 1 1 10

o 1 10

o 1

1 1 10

o 2 10

o 2

1 2 10

o 2 10

o 2

1 2 10

6. 2 o 2 10

qty

o

o

o

90

urn

1

1

1

o

1

1

o

2

1

o

2

1

2. 2

0

9

3. 2 -0 1 10 1

1 0 1 0 0

9 1 1 10 1

4. 2

3

9

5. 2

5

9
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9 o 3 10 2

7. 2 1 2 10 1

9 2 2 10 2

8. 2 1 2 10 1

9 1 2 10 2

The results of tests show that there is no error from this

change. It has achieved its purpose, correcting a coding error that

obscured some important information supporting an error type 3, which

means that there was a change put in for a missing parent/component

pair.

In this case, the regression library may contain hundreds of

test cases, but the changed can be tested with just eight test cases.
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8.2.2. CHANGE 2

7.1 if func 4 then goto ea

77.3 x: parent <- newparent

77.4 y: print parent, comp, qty, um

In effect, adding this function calls for an almost total re-

test of the whole program. To see this, consider that the addition of

the branch at 7.1 calls for testing that sub-path for every dependency

chain that depends on the read of a variable at statement 2 and a use

of that variable anywhere after statement 7. The first twenty de-

pendency chains satisfy this requirement; each will require at least one

path through the new statements. Of course, not all of these new path

requirements are unique. However, each existing function has to be re-

tested, in conjunction with the new one. Again, the level of response

is proportional to the "size" of the change.

27.1 ea: oldparent <- parent

27.2 newparent <- comp

27.3 goto a

77 w: if oldparent = 0 then goto y

77.1 if oldparent = parent then goto x

77.2 goto a
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9. CONCLUSIONS

This thesis has presented a structural testing technique for

describing the effects of program changes on program testing require-

program that a variable receives a value and is used. The dependency

chain represents all the simple paths between those places. Testing

program changes is made more manageable by the use of dependency chains.

The program change is described in terms of changes to dependency chains

and these changes to the chains are reflected in changes to test re-

quirements.

In order to study program changes, the concept of change

primitives was introduced. These are the smallest changes that can be

made to a program and serve to categorize any program change. Once the

change primitives were established, algorithms were described for each

change primitive, to demonstrate the process for changing the dependency

chain to reflect the program change.

ments. The entity introduced to facilitate this technique is the de-

pendency chain. A dependency chain is a set of sub-paths within the

program, described by def-use couples, which represent places in the
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This research is only a beginning and several topics suggested

themselves but were set aside in the interest of completion of the main

topic. One that comes immediately to mind is to enlarge the concept of

the def-use couple by allowing for a def-p-use couple, tracing the path

between a variable definition and its use in a conditional predicate.

One that would seem to have real value is a p-use-def couple, which

would trace a dependency of a definition on some conditional that exer-

cised control over whether of not a definition is even executed. En-

larging the concept of the dependency chain to allow for stored values

would lead to studying interactions in a system of programs working with

the same data files. The dependency chain would seem to have potential

as a metric of program complexity; it would be worth determining whether

a program is easier to understand and maintain if it has a smaller

number of longer dependency chains, or more chains with fewer links.
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APPENDIX: EXAMPLE II DETAIL

This program preedits the changes for a bill of material file

update. Because of the limitations of GPL, the update transactions are

imbedded in the incoming file with the master file itself. There are

four fields, the assembly (parent), the part in the assembly

(component), the quantity (qty) and unit of measure (urn). There are

four update functions (func), delete (0), add (1), change (2), and

inquiry (3). The master record itself has a 9 in the function code.

1 start

2 a: read func, parent, comp, qty, urn

3 if parent = 999999999 then goto z

4 if func = 0 then goto b

5 if func = 1 then goto c

6 if func = 2 then goto d

7 if func = 3 then goto e

8 if func = 9 then goto f
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9 errmess <- 1

10 print func, parent, comp, qty, urn,errmess

11 goto a

12 b: delparent <- parent

13 delcomp <- comp

14 goto a

15 c: addparent <- parent

16 addcomp <- comp

17 addqty <- qty

18 addum <- urn

19 goto a

20 d: chgparent <- parent

21 chgcomp <- comp

22 chgqty <- qty

23 chgum <- urn

24 goto a

25 e: inqparent <- parent

26 inqcomp <- comp

27 goto a

28 f: if chgparent = parent then goto g

29 goto i

30 g: if chgcomp = comp then goto h

31 goto i
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32 h: chgparent<- 0

33 chgcemp <- 0

34 qty <- chgqty

35 urn<- chgum

36 i: if chgparent = 0 then gete j

37 errmess <- 2

38 print chgparent,chgcemp,errmess

39 chgparent<- 0

40 j: if chgcemp = 0 then gete k

41 chgcemp <- 0

42 errmess <--3

43 print chgparent,chgcemp,errmess

44 k: if de1parent = parent then gete 1

45 gote n

46 1: if de1cemp = cemp then gote m

47 gete n

48 m: de1parent<- 0

49 de1comp <- 0

50 geto a

51 n: if de1parent = 0 then gete 0

52 errmess <- 4

53 print de1parent,de1cemp,errmess

54 e: if inqparent = parent then gete p
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55 goto r

56 p: if inqcomp = comp then goto q

57 goto r

58 q: print parent, comp, qty, urn

59 r: if addparent = parent then goto s

60 goto u

61 s: if addcomp = comp then goto t

62 goto u

63 t: errmess <- 5

64 print addparent, addcomp, errmess

65 addparent <- 0

66 addcomp <- 0

67 addqty <- 0

68 addum <- 0

69 u: if addparent > 0 then goto v

70 goto w

71 v: print addparent, addcomp, addqt y , addum

72 addparent <- 0

73 addcomp <- 0

74 addqty <- 0

75 addum <- 0

76 goto a

77 w: print parent, comp, qty, urn



78 goto a

79 z: stop

The variable-statement pairs in the program are:

(func,2)

(parent,2)

(comp,2)

(qty,2)

(um,2)

(errmess,9)

(func,lO)

(parent, 10)

(comp,lO)

(qty,lO)

(um,lO)

(errmess,lO)

(delparent,12

(parent, 12)

(delcomp,13)

(comp,13)

(addparent,15)

(parent,15)

103
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(addcomp,16)

(comp,16)

(addqty,17)

(qty,17)

(addum,18)

(um,18)

(chgparent,20)

(parent,20)

(chgcomp,21)

(parent,21)

(chgqty, 22)-

(qty,22)

(chgum,23)

(um,23)

(inqparent,25)

(parent,25)

(inqcomp,26)

(comp,26)

(chgparent,32)

(chgcomp,33)

(qty,34)

(chgqty,34)

(um,35)
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(chgum,35)

(errmess,37)

(chgparent,38)

(chgcomp,38)

(errmess,38)

(chgparent,39)

(chgcomp,41)

(errmess,42)

(chgparent,43)

(chgcomp,43)

(errmess,4-3)

(delparent,48)

(delcomp,49)

(errmess,52)

(delparent,S3)

(delcomp,S3)

(errmess,S3)

(parent,S8)

(comp,S8)

(qty,S8)

(um,S8)

(errmess,63)

(addparent,64)
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(addcomp,64)

(errmess,64)

(addparent,65)

(addcomp,66)

(addqty,67)

(addum,68)

(addparent,71)

(addcomp,71)

(addqty, 71)

(addurn,71)

(addparent,72)

(addcomp,73)

(addqty,74)

(addurn,75)

(parent, 77 )

(cornp,77)

(qty,77)

(urn,77)

The def-use couples in this example are:
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[(func,2) (func,10)]

[(parent,2) (parent, 10) ]

[(comp,2) (comp,lO)]

[(qty,2) (qty,lO)]

[(um,2) (qty,lOj]

[(parent,2) (parent,12)]

[(comp,2) (comp,13)]

[(parent,2) (parent,lS)]

[(parent,2) (parent,20)]

[(parent,2} (parent,2S)]

[(parent,2) (parent,S8)]

[ (parent, 2 ) (parent, 77) ]

[(comp,2) (comp,16)]

[ (comp, 2 ) ( comp, 21) ]

[ (comp, 2 ) ( comp, 26 ) ]

[ (comp, 2 ) (comp,S8)]

[ (comp, 2 ) ( comp, 77 ) ]

[ (qty, 2 ) (qty,17) ]

[ (qty, 2 ) (qty,S8)]

[ (qty, 2 ) (qty, 77)]

[ (um, 2) (um,18)]

[(um,2) (um, 23) ]
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[(um,2) (um,58)]

[(um,2) (um,77)]

[(errmess,9) (errmess,lO)]

[(delparent,12) (delparent,53)]

[(delcomp,13) (delcomp,53)]

[(addparent,15) (addparent,64)]

[(addparent,15) (addparent,71»)

[(addcomp,16) (addcomp,64)]

[(addcomp,16) (addcomp,71»)

[ (addqty, 17) (addqty, 71) ]

[(addum,18) (addum,71)]

[(chgparent,20) (chgparent,38»)

[(chgparent,20) (chgparent,43»)

[(chgcomp,21) (chgcomp,38»)

[(chgcomp,21) (chgcomp,43)]

[(chgparent,32) (chgparent,38»)

[(chgcomp,33) (chgcomp,38»)

[(chgcomp,41) (chgcomp,43»)

[(chgparent,39) (chgparent,43»)

[(qty,34) (qty,58»)

[(qty,34) (qty,58)]

[(um,35) (um,58»)

[(um,35) (um,77)]
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[(errmess,37) (errmess,38»)

[(errmess, 42 ) (errmess, 43) )

[ (errmess, 52) (errmess, 53) )

[ (errmess, 63) (errmess, 64) )

The dependency chains generated by this program are:

1. «parent,2) (delparent,12) (delparent,S3»

2. «comp,2) (delcomp,13) (delcomp,S3»

3. «parent,2) (addparent,lS) (addparent,64»

4. «parent,21 (addparent,15) (addparent,71»

5. «comp,2) (addcomp,16) (addcomp,64»

6. «comp,2) (addcomp,16) (addcomp,71»

7. «qty,2) (addqty,17)(addqty,71»

8. «um,2) (addum,18) (addum,71»

9. «parent,2) (chgparent,20) (chgparent,38»

10. «parent,2) (chgparent,20)(chgparent,43»

11. «comp,2) (chgcomp,21)(chgcomp,38»

12. «parent,2) (parent,58)>

13. «parent,2) (parent,77»

14. «comp,2) (comp,S8»

15 . < (comp, 2 ) (comp, 77 )>

16. «qty,2) (qty,58»
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17. < (qty, 2) (qty, 77) >

18. «um,2) (urn, 58»

19. «um,2) (um,77»

20. «errmess,9) (errmess,10»

21. «errmess,37) (errmess,38»

22. < (chgparent, 32) (chgparent,38»

23. < (chgcomp, 33) (chgcomp,38»

24. «chgcomp,41) (chgcomp,43»

25. < (chgparent, 39) (chgparent,43»

As an example of path requirements generated by these depen-

dency chains, number 1 calls for execution of these paths:

1.a. 2,4,12,2,5,6,7,8,28,36,40,44,51,52

1.b. 2,4,12,2,5,15,2,6,7,8,28,36,40,44,51,52

1.c. 2,4,12,2,5,6,20,2,7,8,28,36,40,44,51,52

1.d. 2,4,12,2,5,6,7,25,2,8,28,36,40,44,51,52

1.e. 2,4,12,2,5,6,7,8,9,2,28,36,40,44,51,52

1.f. 2,4,12,2,5,6,7,8,28,30,36,40,44,51,52

1.g. 2,4,12,2,5,6,7,8,28,30,32,36,37,40,44,51,52

1.h. 2,4,12,2,5,6,7,8,28,36,40,41,44,51,52

1.i. 2,4,12,2,5,6,7,8,28,36,40,44,46,51,52
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