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ABSTRACT 

REALTIME IMAGE GENERATION 
BY SYNCHRONIZED RAY CASTING THROUGH TEXTURES 

Raymond V. Sutton, M.S. 
Oregon Graduate Institute, 1990 

Supervising Professor: Robert G .  Babb I1 

Realtime computer generated imagery is based on filling polygons using 

highly pipelined processors; thousands of polygon/triangle processors operating 

in parallel have been considered when more detail is desired. For some 

applications such as automobile simulators, it may be possible t o  reduce the 

hardware and cost while providing realistic detail by changing the displayed 

primitive from a polygon to  a flat, full scale texture map; This paper describes 

a system for rendering texture maps in parallel and in synchronization with a 

raster scan. Ray casting is done by chips dedicated to  textures in their own 

memory, the closest opaque is chosen via arbitration on a bus, and the closest 

opaque and closer shadows are rendered via the bus. The results of a software 

simulation and hardware analysis of the system are presented, with emphasis 

on the design choices necessary to  make the scheme practical. 



Aircraft simulators based on computer generated imagery have proven to 
be a cost effective way to  teach flying t o  military and commercial 
pilots[9, chapter 111, especially in dangerous conditions. Similar devices might 
supplement current driver's education courses by demonstrating driving in 

\ 

dangerous situations and weather, and by allowing practice without the cost of 
an instructor. However aircraft type simulators are unsuitable for simulating 
cars due t o  their high cost relative t o  cars. The major hardware component of 

i 

an  automobile simulator will be its image generators. This paper describes a 
low cost, realtime image generator suitable for driver's education. 

The principal requirement of an  image generator for driver's education is a 
realtime view of roads, signs and other vehicles through a car window with one 
rearview mirror. A range of simulated environmental conditions is desired so 

Figure 1. Image Requirements for Driver's Education 

Required Feature Design Implication 
Essential object surfaces 

Diffuse (rather than specular) Ray casting (rather than ray tracing) 
Signal lights Selflit and switchable surface types 
Signs readable while moving Antialiased texture maps 
Textured roads to  judge speed Antialiased texture maps 

Essential object shapes 
Buildings, cars, roads Objects have nearly flat sides 

with irregular edges 
Environment 

Fog (instead of rain, snow) Objects obscured with distance 
Number of visible objects can be limited 

Diffuse overhead ambient Most shadows built into surface colors 
Moving vehicles need attached shadows 

Extra views 
A rearview mirror per window Mirror surface type, virtual eyepoint 
Ice reflection An inverted world as seen 

through ice holes in the street 
Speed 

Relative speed of cars 120 mph Rendering rate = monitor refresh rate 



the training can include the problems of dusk and bad weather tha t  are so 
hard t o  teach without a simulator. The detailed requirements for such an  image 
system are outlined in Figure 1, along with their implications for the image 
generator design. Two implications have a major impact on the design. The 
first is the appropriateness of planar texture maps with clear elements for 
modeling the essential objects in the training model. It is so approriate t o  the 
model tha t  all objects are modeled as texture arrays. The second major 
implication is the speed a t  which objects must be modeled. If the model must 
be rendered every time it is written t o  the monitor screen, there is little use for 
a refresh buffer and pixel color generation must occur on the average a t  the 
pixel clock rate. Since the pixel clock rate of monitors is approximately the 
clock rate of Very Large Scale Integration (VLSI) CMOS logic, the textures 
must be rendered in parallel. The requirements review suggests tha t  the model 
world for automobile simulation might be closer t o  the theater, with its painted 
flats and controlled lighting, than the shaded polygons of common graphics 
systems. In such a 'theatrical' model, image generation would be accomplished 
by ray casting in parallel through a model constructed with planar, full scale 
texture arrays with transparent elements. The analogy t o  theatrical scenery 
suggested the common name for the texture arrays -flats. 

In the Synchronized Texture Casting architecture, each flat array is stored 
in the texture memory of an  "application specific" integrated circuit (ASIC) 
responsible for its display. For each pixel in the raster scan, each chip selects 
the element cast t o  in its texture. The independent images for each texture are 
then composited by a pipeline distributed across the chips. In the pipeline, the 
closest opaque element is chosen by a proximity arbitration between chips, then 
the chosen chip renders its element while closer shading pixels modify the 
image. Such a n  architecture provides an  inherently realtime display of a 
number of surfaces. The number of surfaces is limited by the hardware, but it 
may be increased by the addition of ~ ~ I C / m e r n o r ~  chip pairs t o  the hardware. 
The surfaces can be as detailed as the texture and color resolution allow. The 
scheme's disadvantages include ray casting's limitations, the preprocessing 
required t o  convert graphic objects into texture arrays, and those objects that  
can't be reduced t o  a few planes. Ray casting was chosen as  adequate for 
automobile simulation, tha t  is general reflection, refraction, point light sources 
and their shadows are not required. The simplest and most accurate way t o  
model the everyday world is t o  digitize photographs of its surfaces, so 
preprocessing is not a problem. The number of surfaces needed can be 
controlled with some 'theatrical' license in the choice of objects modeled. 

The following sections describe the Synchronized Texture Casting scheme, 
a software simulation of its operation, the simulation results and the planned 
hardware implementation. The description is organized around the system 
integration techniques used and the  design choices made. The conclusion 
discusses each of the design choices in turn. 



2. Related Work 

2.1. Driver's Simulators 
Driver's education usually ends in sessions with one car plus one instructor 

per student, but this is too expensive for more of the course. Mechanical aids 
that  allow one instructor t o  teach a whole class simultaneously come in several 
varieties[l3]. 

(1) Cockpit per driver and a shared jilm. The feedback t o  control input is 
not from the scene but from the instructor if the input is sufficiently 
wrong. 

(2) Cockpit per driver with shadows of a miniture model cast to a screen. The 
feedback t o  control input is immediate but the model is static and not 
clear. 

(3) One of several cars on a test track with radio contact to an instructor. 
The test track and need for visual contact with the instructor limit this 
aid t o  intersections and parking. 

Despite their limitations, these teaching aids are effective, less expensive 
than one instructor and car per student, and liked by the students. They can 
be considered as part task teaching aids rather than complete simulators; they 
teach such skills as survelliance, braking or parking. None of them, nor even 
the usual one instructor and car session, cover hazardous conditions and 
weather. No complete, aircraft type simulators are in common use for driver's 
education. 

2.2. Texture Maps 

Current aircraft simulators are based on points and polygons, and usually 
use high speed, highly pipelined scan line techniques[g, chapter 41. To achieve 
the detail required for signs in a driver training model, many small but complex 
polygons are required, which strains the processor speed. Texture mapping has 
been used as  a way t o  simply render detailed objects since the early days of 
graphics[8]. To  render a texture map, a raster position is mapped in perspective 
t o  an  object position and then to  a texture map location, where the location's 
color and often other characteristics are found. The object surfaces are often 
curved. The approach has not been converted t o  hardware, apparently because 
of the perspective divides needed a t  each pixel, but single 
numerator/denominator calculations have been implemented as chips[ll]. 

Texture maps are not applicable t o  realtime scan line techniques. Scan line 
techniques gain their advantage by calculating groups of pixels a t  a time. With 



textures, each pixel must be separately accessed from the texture arry; if it is 
clear, the next deeper texture must be tried. Thus a t  least one and often more 
clock cycles are necessary per pixel, so the average is greater than one clock per 
pixel. As a result, textures must be rendered in parallel when using dense forms 
of logic such as CMOS. 

2.3. Parallel Rendering 
There are two basic parallel image generation techniques. In the first, 

objects are assigned to  processors and pixels are passed by the processors. Each 
processor is responsible for coloring pixels with its object's color if it is visible. 
Object parallel rendering has been implemented for the cases where the objects 
are polygons and triangles[l] [4]. In the second parallel technique, pixels are 
assigned t o  processors and objects are passed by the processors[5]. In the pixel 
processor case, a quarter million processors are needed for a driver's education 
scene; in the triangle processor case, about a thousand processors are needed 
for active triangles. In both cases, the processors are simple, and the authors in 
the pixel and triangle cases suggest that  a hundred and ten processors 
respectively can be accommodated per VLSI chip. In the best (triangle) case, 
this still requires a hundred chips per window of a simulator. Since both 
approaches use polygons as their priinitive object, they also require a 
preprocessor capable of locating tens of thousands of polygons per raster frame, 
or tens of millions of floating point operations per second. These approaches are 
to6 expensive for automobile simulation. 



3. Synchronized Texture Casting Architecture 
The caster card planned for driver's education draws raster displays in 

real time by ray casting t o  flats in parallel and in synchronization with a raster 
scan. In the first major integration technique applied, a caster chip and its 
associated texture memory are responsible for rendering a flat. The display 
procedure is outlined in Figure 2 and the card block diagram of Figure 3. The 
interchip bus identified in the figures forms a 22 bit digital wired-or bus, which 
is the second major integration technique. During the horizontal and vertical 
synchronization portions of a raster scan, it is used t o  load 16 bit words t o  the 
caster chips and through them the Texture SRAM. During the active portion of 
the scan, it provides both proximity arbitration and output composition. 
Priority encode/decode hardware controls which chip on the bus uses it for 
input data  during syncs and its output portion when active. The data  transfer 
t o  the caster chip's control registers and texture memory is directed by the 
loader state machine of Figure 3 and occurs between main memory and a FIFO 

Figure 2. Image Generation for One Raster Field 
Procedure 

FGr each flat/viewpoint combination in the world model 
Transform flat t o  viewer/window frame 
If flat in window and within visible range (through fog) 

If flat not loaded in a caster I 

Select an  available caster 
Prepare display list t o  expand flat into memory 

If new or modified, write color lookup table 
Prepare display list for the flat in its section 

At start  of vertical sync, load each caster's display list 
During remaining syncs, load and expand any new flat 
For each piqel in the raster scan, cast a ray t o  all flats 

If the ray misses the flat, skip pixel 
If mirror color and enabled, drive mirror line 

Else if flat has wrong visibility, skip pixel 
If color number is not an  enabled tint/glass, 

Participate in depth arbitration for closest opaque 
with final selection by priority encode/decode 

If closest opaque, drive flat-in-caster and color number 
If enabled tint/ glass closer than opaque, drive outputs 

For each pixel, combine color and environment values 

Unit /Bus Lines 

Main program 
Caster driver 

Loader + casters 
Loader + casters 
Parallel Casters 

mirror line 

proximity lines 

fEat/color lines 
tint, glass lines 

Environment LUT + Color LUT 
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Figure 3. Synchronized Texture Casting Card Block Diagram 

queue in each caster chip. 

In the first major design choice, an  image is limited t o  approximately 24 
flats. In the second major design choice, each of sixteen chips handles up t o  two 
flats whose bounding boxes don't overlap horizontally. The nonoverlap 
requirement means tha t  all chips can't be assigned two flats. The horizontal 
resolution is set by the caster chip a t  640 pixels per line (512 pixels in the 
software simulation). The pixel rate and number of lines are set by the card as 
appropriate for NTSC or VGA monitors. The pixel periods of 80 and 40ns for 
these monitors are major factors in both the caster chip design and the cost of 
their texture memory. However, the basic caster functions can be heavily 
pipelined. Basically eight additions and a texture memory access per pixel by 



each casting engine are needed t o  orient and display a window's view of a 
world of flats. Details of the ray casting, distance arbitration and pixel 
rendering calculations are described below in turn. 

3.1. Ray Casting 

The third major design choice is ray casting t o  full-scale, planar texture 
maps, in which case the texture t o  object transformation is unity and only the 
object t o  screen transform is needed. Considering tha t  most objects important 
to  the training model can be based on flat surfaces, the planar design choice 
seems reasonable. Assume the simulation program provides the positions of a 
flat's corners in an  eye coordinate system (XYZ) oriented t o  the window's 
surface, which is a t  a distance (D) from the eye as shown in Figure 4. As each 
pixel occurs in the raster scan of the window, a ray is cast through the pixel t o  
the flat. To  calculate the texture cell indexes (u and v) and the flat depth (2) 
hit by the ray as a function of X and Y, they are fit t o  planar equations based 
on their values a t  three of the flat's corners. The coefficients of the plane 
equations are selected by assigning indexes of 0 and 1 t o  opposite flat edges, so 
that  a flat is present when both indexes are between these values and clear 
otherwise. 

\ 

X and Y can then be replaced by the window's pixel coordinates (x, y) using the 
perspective equation[6]. 

The resulting equation for Z can be solved to  find Z as a function of x and y, 
and the result substituted in the u,v equations. In the caster chip, the flat 
coordinates for the texture cell and the flat proximity (71 can then be calculated 

+Y 

U ,--? ----- .*.+--- 
ray I 

I f) 1 
r--------; - - Y " i ' Flat 

i 
y, 

\# , ,.---- 
_.-. 

;-- --------.-.- - ---.----.--.*..,... *-- , ,.-.-I 
._-- 

z ,---- 
~ ~ e ~ d i n t  D 

Monitor Screen 

' i x  

Figure 4. Ray Casting Coordinate Systems . 



with the equations: 

Since the raster scan uses these calculations in sequences of x and then y, the 
multiplications can be replaced with repeated addition, and only the additions 
that  depend on x are required for every pixel. 

Most three dimensional graphics systems use floating point arithmetic for 
accuracy over a large range of values. The fourth major design choice is t o  use 
a form of block floating point in the calculations. The coefficients are all shifted 
as a group so tha t  integer overflow is just avoided when the numerator and 
denominator are calculated a t  the bounding box extremes. The quotients are 
unaffected by the group shift. The only place the block exponent is used 
explicitly is when proximity p is shifted in hardware before proximity 
arbitration. 

A direct implementation of these equations would also require two divisions 
per pixel per flat, which would require half of the chip's area. Instead, in the 
fifth major design choice, serial divisions calculate u and v a t  the end points of 
short horizontal segments, and p, u and v are then linearly interpolated 
between these points. Interpolation should be done in power of 2 segment 
lengths because a division by the segment length is necessary in the conversion 
from change per segment t o  change per pixel. Because greater than eight bit 
precision is required in the division (8 bits for u plus one bit of overrange test 
and 6 fraction bits t o  provide accurate interpolation) and each bit takes a 
clock cycle in serial' division, interpolation segments of 16 pixels would be 
convenient. Unfortunately, 16 pixel segments converted straight edges in flats 
t o  curves with cusps a t  segment boundaries, which appear as  scallops. 
Therefore 8 pixel interpolation segments are required, and the divisions must be 
done in two sections. Minor scalloped edges are still visible with 8 pixel 
interpolation on a few tilted flats, as will be shown in Figure 17. 

The Caster Chip Front End block diagram shown in Figure 5 summarizes 
the calculation pipeline. Four groups of eight clocks make up the pipeline. The 
first clock group uses one adder to  do all multiplications by repeated addition 
and transfer the results t o  the remaining data  path elements. The second and 
third clock groups use four adders for the u,v serial division stages, while the 
fourth group uses three adders for interpolation. Two additional adders in a 
single clock stage handle antialiasing, as will now be described. 

3.2. Antialiasing 

The casting procedure so far makes no provision for spatial filtering of the 
texture arrays, which can lead t o  aliasing[8]. The problem occurs a t  two levels, 
in building the texture arrays and in casting them t o  the screen. The first level 





t restrictions due t o  the fact that  vehicles are limited t o  roads. 

Probably no more than one precombined set of flats will be required 
because another antialiasing technique is available, although it has a limited 
resolution range. In the sixth major design choice, filtering is included as an 
average by the eye over several fields of a jittered regular sampling grid[3]. By 
experiment with the software simulation, jitter was chosen to  be the maximum 
of f % of a texture element, f % of a screen element and the fourth power of the 
ratio of the flat's average depth to  the visual range. The first two terms cover 
the cases where the texture element is larger or smaller than a screen pixel, 
respectively. Since self-lit pixels are visible to  1.5 times the visible range, the 

I 
third term provides a maximum corona[lO] of f 5  screen pixels around lights. 

The use of jitter for texture coordinates would ordinarily require 
multiplication of jitter size by a weighted random number. Bessel weighting is 
appropriate for corona[lO], where the jitter shape will be most obvious. Because 
the multiplier is random, the product can be approximated by a bitwise and. 
Other operations a t  the line and pixel level vary the multiplicand to  
approximate the Bessel shape; the first is done by the basic adders during line 
setup calculations and the second uses a bitwise or a t  every pixel t o  weight the 
multiplicand to  a number between M and 94. The continued adjusting of the 
multiplicand also masks any pattern in the jitter due t o  the bitwise and 
product. The operations are (C syntax): 

float weight [4]={l, 15/16, 7/8, 3/41; 

1 

line-jitter = jitter-u * weight [prg-u ()& 31; 

i 

pixeljitter =(prg-u & 1) ? l inej i t ter  : ( l inej i t ter  >>1 I l inej i t ter  >>2); 

pixel-delta =pixel-jitter & prg-u ; 
* 

u' =u + ((prg-u () & 2) ? pixel-delta : -pixel-delta); 
I 

i 

1 3.3. Proximiby Arbitration 
d The closest opaque texture cell is located by comparing p between those 

caster chips tha t  have cast t o  an  opaque color in their flat. As part of the 
second major integration, this comparison is done on the interchip bus rather 
than in separate hardware. The comparison also provides a measure of distance 
from the viewpoint, which is needed to  render fog. The arbitration is done 
serially, most significant bit first, on the wired-or (precharged) bus. The 
arbitration is effectively parallel because the color rendering is delayed in each 
chip by the same amount. 

A mirror signal is processed before the proximity arbitration; any flat with 
an enabled mirror element in the ray discharges the mirror line and causes the 
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Figure 6. Two Stages of the Caster Chip Arbitration Pipeline 

arbitration t o  be done between those flats flagged as visible in the reflected 
space rather than in the direct space. This technique does not allow the mirror 
to  be hidden by closer opaques, but avoids the need for both a reflected and 
direct view proximity arbitration and satisfies the automobile simulation need 
for one close rearview mirror per window. 

/ 
The 16 bit proximities in the caster chips could be compared directly using 

16 bus pins, but this would be excessive since most of proximity's resolution is 
concentrated a t  high proximity/short distances. A more even distribution of 
distance resolution can be achieved by switching t o  a floating point format with 
two exponent bits before comparison, which is an  additional function of the 
first two pipe stages. In this way the number of bus pins needed for proximity 
comparison is reduced t o  12. 

The proximity arbitration itself is done a bit a t  a time, starting with the 
most significant bit, searching for the largest proximity (closest distance). 
Referring t o  t h e  logic of the last two arbitration stages in Figure 6, those 
casters with an  opaque, visible cell in the higher half of the proximity space 
being processed by a particular bus line discharge the line, and any casters 
with visible cells in the lower halfspace when the wired-or line is discharged are 
identified as hidden and drop out of the arbitration. The two pipe stages 
following proximity arbitration contain the priority encode/decode hardware 
used for final caster selection. 



An ice view is expected t o  be necessary for training since ice is usually 
detected visually by image motion in it relative t o  the street. Ice reflections 
could be handled as another mirror type, but the fact tha t  ice can be hidden by 
closer flats would necessitate parallel direct and ice proximity arbitration, and 
then use of the ice flats if the closest direct surface was ice type. Fortunately a 
hardware solution is not necessary since components of the direct and ice 
reflected view are not superimposed in the model. Clear or t inted holes are left 
in the ground surface of the model, so that  a copy of the direct model inverted 
about the ice plane can be seen when proximity arbitration doesn't indicate a 
closer ground surface. To  'roughen' the ice, jitter is increased by 1 screen pixel 
per 2.5 meters tha t  ice reflected flats are behind the ice, with a minimum 
increase of 1.6 screen pixels. 

3.4. The Texture Map 

In the seventh major design choice, flats are texture arrays of four bit 
color numbers with dimensions of 256 by 128, so tha t  two arrays will fit in a 
64k by 4 static RAM paired with each casting chip. This design choice sets 
limits on the texture array aspect ratio, element resolution and color resolution. 
The physical aspect ratios of the example flats in Figure 7 support the choice of 
texture element aspect ratio; the mean aspect ratio is 2.5:1, with 2:l the closest 
binary ratio. Note that  streets can have higher aspect ratios which are really 
limited only by surface topology. The suitability of the 32 thousand element 
arrays will be shown by example later. A lookup table t o  convert color number 
to  RGB intensities is necessary so that  signal lights can be switched on or off 
without modifying the texture array, but it also means only small color 
numbers need be stored in the texture array. In the example flats in Figure 7, 
all fifteen assignable ,colors per flat were used only t o  add detail inside houses 
as seen through the windows. 

Image data  can be very large; the fifty flats tha t  might be used in a local 
area would require two thirds of a megabyte uncompressed. A training model 
consisting of several hundred areas would exceed optical disk capacity. Existing 
image compression chips could improve this situation dramatically. However, 
another problem occurs when texture maps are moved from processor memory 
to a caster chip'$ texture memory. For minimum chip pinout, several new flats 
would be loaded to  the caster chip over the interconnect bus and then to  the 
texture map during one scan synchronization period, which is too much with 
uncompressed flats. Therefore, flats are compressed by an  algorithm for which 
decompression requires little logic for expansion on the caster chip. 

Several compression schemes were considered t o  take advantage of the 
high spacial coherence of flats. The first scheme attempted encoded single color 
runs as a color number and a short length or a long extension of the last color. 
This scheme was counterproductive when halftone techniques from printing 
technology were used t o  modulate between colors (i.e. trade element resolution 



Figure 7. 

Flat 
File 

bal1.F 
bush.F 
car.right .F 
car.shad0w.F 
h0od.F 
front l.F 
front2.F 
garage01 .F 
lawn12.F 
mirr0r.F 
roof 1 .F 
roof2 .F 
sign.185.F 
signa1.F 
sig.shadow .F 
street.1ight.F 
steps.F 
street .e.F 
street .F 
street.ne.F 
tree .F 
tween12.F 

- 
Compressed Byte Code Decompression Algorithm (C Syntax) 

Characteristics of 

Flat Comp 
Bytes Ratio 

969 18.18 
3527 4.74 
2589 6.50 
3861 4.12 
1580 10.84 
3377 4.95 
3592 4.65 
3617 4.62 
3759 4.44 
806 22.20 

3757 4.44 
1744 9.77 
2040 8.31 
2232 7.34 
1675 10.20 
2088 8.11 
1296 13.34 
2993 5.60 
3283 5.10 
3826 4.36 
3265 5.12 
3052 5.49 

for( i-O;i<7;i++) *pixelptr++ = Reg[R[i]]; 0 

Binary Flats in Software Simulations 

Physical Aspect 
Size(cm) Ratio 

30*24 1.25 
300*200 1.50 
396*128 3.09 
520*300 1.73 
140*114 1.23 

1000*350 2.86 
1000*350 2.86 
1000*304 3.29 

2690* 1383 1.95 
18*6 3 .OO 

1OOO*400 2.50 
1000*400 2.50 
400* 150 2.67 
600*145 4.13 
600* 145 4.13 
570*50 11.40 

140*200 1.43 
2700*1358 2.45 
3300* 1250 2.64 
2690* 1383 1.95 

550*400 1.37 
2500* 1120 2.23 

R [o] R [I] R [2] & [a] R [4] k [5] :R [6] , .  . 

Colors 
Used 

3 
4 

13 
7 
3 

15 
15 
12 
12 
3 
3 
5 
4 

11 
7 
4 
2 
7 

14 
6 
5 
9 

Reg[R] = Color; 1 R  i cklor ; ; 
for( i==O;i<Count;i++) *pixelptr++ = Regp];  

count 

1 
N Count = (EC0~nt&12)?EC0~nt:EVal[ECount]; 

for( i=o;i<Count;i++) *pixelptr++ = Reg[R]; 

Figure 8. Two Color Flat Compression Coding 

constant int EVal[4]={ 32, 49, 66, 115 ); R : ~ c d u n t  8 



for color resolution). In the two color compression used in the simulations, 
horizontally repeated colors or sequences of color pairs are encoded into bytes 
with the help of two registers[2] as shown in Figure 8. The scheme also allows 
signs t o  be created on the fly because a compressed flat consisting essentially of 
codes with seven register indexes can be considered a bitmap and can be 
modified with character bitmaps. The compression ratio of the flats used in the 
examples is between 4 and 6%, as shown in Figure 7, with simple flats going 
higher. Further compression could make use of vertical coherence, but would 
sometimes require both a read and a write t o  the texture memory for one pixel, 
and was judged t o  take too much decompression time as well as logic. 

3.5. Rendering Calculations 
The requirements of Figure 1 include the need to  render textures with 

ambient and self-lit diffuse elements plus transparent elements in fog. Thus a 
texture cell's color number usually specifies one of 15 opaque surfaces or a clear 
(Color 0) area. Shadows and tinted car windows would add t o  the reality and 
depth perception of moving vehicles. Since there are few transparent types 
needed, each can be assigned a specific color number and a type enable bit. 
Problems could arise if transparencies overlap from different flats, since there is 
no easy way t o  sum their effects on a digital bus. A shift register connection of 
the chips or an  analog current sum portion of the bus would have solved the 
problem, but a t  the cost of a larger chip for the extra pins or D/A converters. 
Fortunately car shadows are placed just over the surface a car rides on, leaving 
little chance for two shadows t o  overlap. Windows can overlap, so only one 
wired-or bit is used for them, for the effect of sum and clip. Interactions 
between these two kinds of tints are avoided by combining each on separate 
lines of the bus. 

I The basic rendering equation(61, with self-lit, shading and 
environmental[lO] affects, is shown first in Figure 9. Distance from the 
viewpoint for calculating fog effects is approximated by proximity, which is 
related t o  the model Z dimension rather than true distance. Because of the 
limited dynamic range of light from CRT monitors, self-lit surfaces representing 
signal lights can not have their true relative brightness without fading the rest 
of the scene t o  insignificance. To  make maximum use of the monitor's available 
range, the basic equation is modified as shown in the second equation so tha t  
self-lit surfaces attenuated by fog can still drive the monitor t o  a true color 
maximum output. To allow color changes in realtime (e.g. turning a signal light 
surface on and off), the equation is implemented as two lookup tables (LUTs) 
with analog and digital connection as shown in Figure 3 and the last equation 
of Figure 9. Global values such as ambient and visual range are written into 
the Environment LUT. 



Figure 9. Rendering Math and Its Look-Up Table Approximation 
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are the cast ray's analog RGB intensities 
A is the ambient's fraction of a monitor's maximum output 
p is the proximity of closest opaque flat, scaled t o  % a t  visual range 
n is the closest flat's number [0+31] 
c is the closest opaque color's number [1-.*15] 
s [n][c] is the closest opaque pixel's self-lit flag (from Color LUT) 
t is tint (color numbers 0--+7 when tints enabled) 
g is glass (color number 14 when glass enabled) 
KRjGJB [n] [c ] are ambient-lit opaque paint's reflection coefficients 

or self-lit paint's intensity (from Color LUT) 
D,L make up the Environment LUT 

3.0. Hardware btimates 

A casting system able t o  render a maximum of 32 flats on a simulated 
window in realtime is expected t o  require approximately 60 CMOS VLSI chips, 
and thus would fit on a single printed circuit board. Half of the chips, the 
caster chip/memory pairs, can be tightly packed such as on a memory card. In 
fact, the chip pair might be mounted in a single inline package with a pinout of 
the 22 bit interchip bus and a few power and support pins. The caster chip's 
size depends on the functions described and their accuracy. The array index 
numerators, denominators and division were found t o  require 20 bit precision, 
while the index interpolation required 16 bits. Based on an  estimate of the 
number of logic components and an  estimate of the number of gates in each, 
the caster chip is expected t o  require 5,000 t o  7,000 gates and 48 pins. Thus it 
is a small t o  medium ASIC gate array. 

The image generation computer needed to  drive a caster card should be in 
the single board category because the computer will transform three corners of 
perhaps 100 potentially visible flats in a typical portion of a driver's training 
model a t  30 or 60 frames/second, or 400 thousand floating point operations per 
second. Image generation storage will depend on the total amount of 



imfomation stored. Assuming 4 kbyes for an  average flat plus its control 
information and fifty flats per 200 feet of city street allows over 100 miles of 
street in a driver's education model that  fits on an  optical disk. This modeled 
distance would support a square mile city plus 50 miles of surrounding rural 
roads and freeway. If data  for each 200 feet of street were contained in a 200k 
byte file, a Mbyte of memory might be needed to  store potentially active files. 
At 60 mph, a new file would be loaded t o  memory every couple of seconds and 
a new flat t o  texture memory on the average every couple of frames. Because it 
would take about half a second t o  access and load a 200k byte file from optical 
disk, each file's need would have t o  be anticipated in software, perhaps by 
projecting the vehicle position forward several seconds. 



4. Synchronized Texture Casting Software Simulation 
Most opaque flats will be based on photographs of the sides of real objects 

for realism and t o  avoid manually entering impossible amounts of data. The 
exceptions are textual objects such as traffic signs, where the desired text may 
not be available as a picture. The texture arrays built by either technique are 
then placed in a model and a simulated image of the model created as  the 
Synchronized Texture Casting hardware would. Only a sign editor t o  build flat 
files and a model editor/software simulator have been built; a photograph 
editor and realtime hardware were not built. The picture type flats built with 
the sign editor are not as  varied or detailed as they might be because detail 
was manually entered. For driver's training, for instance, a flat of a child on a 
skateboard would be a n  appropriate problem but very difficult t o  build with the 
sign editor. 

4.1. Software Simulation Hardware 
To support this work, a Motorola VMEsystem 1121 workstation with 

5 megabytes of memory running Unix System V.2.2 was used. A Matrox VIP- 
1024 image card with eight bit planes was added for the simulated vehicle 
window. For the animation, a Panasonic AG-1960 VCR recorded the Matrox 
card's signal with a Futurevideo EClOOO controller, Sony GBM-2000 monitor 
and Truevision Vidi/o S-Video converter. 

4.2. The Sign Editor: signed 
Texture maps of signs are built using an interactive graphics editor that  

operates on text files describing lines, arcs, outlines and text strings. The 
program displays the objects and reads the display t o  build a binary flat. In 
addition t o  the functions of a two dimensional image editor, the editor provides 

.aspect ratio correction, flat compression and color definition tailored t o  the 
rendering system. A simple paint system a t  the flat resolution level was used to  
touchup errors in the flats due t o  aspect ratio correction and the character 
bitmaps used. To  put as  little strain on the realtime antialiasing system as 
possible where detail is important (e.g. signs), characters should use three color 
levels instead of just foreground and background. This was manually 
accomplished with the touchup system. Appendix 1 contains manual pages and 
an example object description file for the sign editor. 

4.3; The Model Editor: moded 
The model editor supports the creation of display scripts and shows the 

resulting images. All of the casting, day-to-dusk rendering and antialiasing 



Figure 10. Caster Chip Registers 
struct CREG { 

unsigned char top-line; /* top of rendered part of screen */ 
unsigned char fpscale ;  /* block floating point exponent; 

bit 7 = load flat's texture memory */ 
unsigned char bottom-line; /t bottom of rendered part of screen */ 
enum flatflags { inlce_world=128, inReflected_world=64, 

selfJit=32, opaque=16, ice=8, mirror=4, glass=2, t int=l ); 
/* flat coordinate and proximity coefficients; bases divided by 16 */ 

short cp, cut cv, cpx, cux, cvx, cpy, cuy, cvy; 
unsigned short prginitialize, jitter-u, jitter-v; 

) creg[2]; /* two flats per chip */ 

techniques described for the caster chip are included. The program is broken 
into ChipDriver, Chip and LUTDriver functions as they might be in practice. 
The C structure tha t  forms the interface between the ChipDriver and Chip 
functions is shown in Figure 10, which could well represent the caster chip 
register definition. Because of the limitations of the eight bit planes of the 
display hardware used, a maximum of 16 unique flats without tints or 8 unique 
flats with only one level of tint are simulated. Appendix 2 contains manual 
pages and example ASCII files for the model editor. 

A first major design choice of the Synchronized Texture Casting 
architecture is the limited number of flats in a particular hardware 
configuration. The following scene characteristics influence the severity of the 
limit. The techniques described for each characteristic are built into the model 
editor t o  reduce the number of flats where possible. 

(1) The  type of objects in the scene. Houses and office buildings can be made 
in a straightforward way. Trees might appear difficult but, with some 
theatrical license, they are considered cylindrically symmetric about the 
vertical, and the flat with their image is rotated t o  face the viewer. 
Trucks and vans are expected t o  take six t o  eight flats, but the rounded 
curves of most sports cars would require many more. Hence, there will 
,be only flat-sided sports cars in the model world and only a couple 
vehicles a t  any time. The training value of a simulator is not expected 
t o  be compromised by the use of flat-sided objects. 

(2) T h e  degree to which unnecessary Jla,ts are ignored. Unnecessary flats 
include those offscreen, backfacing parts of solid objects, and 
reflectedkce flats not behind mirrors/holes. In moded, flats are rendered 
only if they appear in the appropriate clip box - the screen for directly 
visible flats and the bounding box of mirrorkce flats for reflected views. 
Flats are also dropped if they are not visible through fog; flats with 



opaque colors are dropped a t  the visible range while flats with self-lit 
colors are dropped a t  1.5 times the visible range. Flats labeled as 
unnecessary when backfacing, such as either the normal or reverse 
component of traffic signs, are not rendered. 

(3) The degree to which groups oJ distant Pats  are combined into single f lats.  
Combining is a necessary tool to  avoid antialiasing as well as to  reduce 
the number of flats. It was not attempted with the tools available. 

4.4. Simulation Results 
Figures 11 and 12 show typical driver's training views of a local area with 

over thirty six flats. To approximate temporal averaging by the eye, each image 
is a multiple exposure of three identical images except for different 
pseudorandom generator initialization. Figure 13's overhead viewpoint makes 
the construction by flats obvious; flats beyond those that  could be handled by 
the software simulation are outlined. Figure 14 shows a scene with 
transparencies. Note that  the flat images reflected by ice has been tinted a t  the 
edge of the ice and jittered an extra amount. The software simulation 
unfortunately limits the tint levels t o  one and the number of flats t o  eight 
unique opaque flats. In Figure 15, the same combination of a sign and signal 
lights is rendered a t  various distances relative t o  the visual range to  show 
jitterltime averaging and rendering effects. In Figure 16, only one jittered 
frame is shown to  show the degree of jitter. Note the corona around signal 
lights deep in fog due to  strong antialiasing and extension of the monitor's 
dynamic range. Figure 17 shows the worst case example found of scalloping, on 
the far edge of the far roof. At that  point, the maximum error of serial 
division/interpolation is just' under one screen pixel. 

Several animations were produced by recording frame pairs on a video 
recorder as the eyepoint was moved in the model world. In the first, the 
eyepoint was moved out of the driveway of the near right driveway of Figure 
13, turned right and moved up to  the signal. Figures 11 and 12 are from the 
middle and end of this sequence, but without a rearview mirror because of the 
16 flat software simulation limit. The number of flats in this local area of 600 
feet of street was 43. The maximum number of flats visible in any frame was 20 
(some outlined), and these flats fit into a maximum of 12 chips when vertical 
overlap was considered. Note that  another vehicle was not attempted. The 
second animation was a drive down the model street with a ball flying out into 
the street. Appropriate cautions were inserted after the ball as an  instructor 
might do if the ball, and the child that  might follow it, was not responded to 
properly. 

4.5. Conclusions 
The application of system integration techniques to the problem of ray 

casting through textures in realtime has resulted in the design of a single card 
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Figure 11. Driver's view 1 ( visual range 100m, ambient 84% max)

Figure 12. Driver's view 2 ( visual range 100m, ambient 84% max)
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Figure 13. A distant view of a local area showing its construction.
Flats beyond the software simulation limit are yellow outlines.
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Figure 14. A driver's training model scene with tints and glass.
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Figure 15. Jitter affects on a sign with signal lights at 0.05, 0.25,
0.50, 0.75, 0.90, 1.00, 1.10, 1.25 and 1.50 times the visual range.
f".--~..,

Figure 16. A repeat of Figure 15 without fog or time averaging.
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Figure 17. Scallops on the far roof due to 8 pixel interpolation.

for realtime image generation. The basic approach assigned each texture to a
chip with private texture memory and connected the chips with a wired-or bus
for distance arbitration and compositing. Other than requiring that all
rendering be by ray casts to textures, the basic approach requires no
performance compromises.

Many performance compromises occur in the implementation to make
image generation cost effective for automobile simulation. The results of each of
these design choices are described below in turn. The parameters used in the
software simulation would make a good starting point for driver's education.

(1) The animations used a maximum of 20 flats/window in 12 chip pairs.
This resulted in a satisfactory training model as shown in the animation,
though it was without other vehicles. Twenty caster chips are
recommended for a real implementation, which by extrapolation will
display over 32 flats.

(2) The assignment of two flats that didn't overlap horizontally to each
caster chip resulted in both sets of logic being used on average two
thirds of the time. This result was not very satisfactory, but two

flats/chip was required considering the size of flats relative to available
static RAMs.

Planar, full scale textures didn't appear to compromise the training
model. Vehicle models have not been tested; not all vehicle types are

expected to be easily modeled with planes.

(3)
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(4) Block floating point operation was satisfactory when used with 20 bit 
indexing arithmetic. 

(5) Serial division and interpolation were satisfactory when the length of the 
interpolation was limited t o  8 pixels and 16 bits were used in the 
interpolation arithmetic. 

(6) Temporal antialiasing via jittering of the sampling grid was 
accomplished with a small amount of additional hardware. As a n  added 
bonus, jittering provided corona around signal lights deep in fog. The 
animation was not accurate t o  a frame and so was not used t o  judge 
temporal antialiasing perpormance. 

(7) The size of the private texture array memories of 256*128*4bits was 
satisfactory. Fifteen colors plus clear was not a constraint in the 
construction of the sample flats. If there are a few cases where more 
element and/or color resolution are needed, several flats could be used 
for the  same surface. 

The hardware design described and its software simulation demonstrate a n  
effective approach t o  a n  inexpensive realtime image generator for driver's 
training. With available system integration techniques, realtime ray casting t o  
texture arrays can be integrated on a chip and compositing can be done on a 
wired-or bus t h a t  connects them. The rendering can include the signs, signal 
lights, rearview mirrors, ice and fog essential t o  the training. The software load 
t o  drive the visual system is based on tens of textures rather than  tens of 
thousands of polygons, which should allow display operation by single board 
computers. A complete driving day t o  night driving simulator would also need 
the point source lights discussed next. Thus Synchronized Texture Casting can 
be the basis of a n  affordable realtime display system for driver's training. 

Additional applications include those where realistic flat surfaces are a 
major part  of the model t o  be rendered. Because Synchronized Texture Casting 
can be combined with conventional scan line systems following the latter's 
frame buffer, flat surfaces do not have t o  be all of the model. Possible 
applications include architectural CAD and presentations, three dimensional 
cartoon backgrounds, ship and  aircraft simulators and arcade games. 



6. Future Work 

The primary future work is t o  design the caster chip, have it built and 
modify the existing software t o  support it. Several enhancements t o  the design 
might also be considered. 

(1) The number of caster chips, and hence the number of flats rendered, is 
limited by loading of the interchip bus. Multistage arbitration networks 
are possible but would double the pinout. A better alternative would be 
t o  place several  caster/^^^^ blocks on the same chip. 

(2) The rendering approach described only covers daylight t o  dusk because 
it doesn't include light sources such as headlights and streetlights. The 
interchip bus, however, might also drive point source lighting chips. The 
lighting chip would use a mathematical description of a light cone plus 
raster position and proximity t o  calculate and add light t o  any closest 
opaque surface and fog that  are in the light cone's volume. Combining 
the illumination and fog outputs of the multiple point source chips 
needed for night scenes is expected t o  require analog current sums on a 
bus connecting the point source chips. These sums would add to  the 
environment D/A converter outputs. 

(3) Slightly curved texture surfaces (e.g. car sides and lawns) would make 
the training model more realistic. Using quadratic equations for the flat 
index's numerator and denominator might add two adders and nine 
coefficient registers t o  the caster logic. The texture map coordinates 
could in general be mapped to  a curved surface, but the mapping can't 
be inverted t o  provide texture coordinates as a function of screen 
position. This can be demonstrated by noting tha t  a ray could strike a 
curved flat a t  two points, providing two sets of texture map coordinates. 
Partial. solutions can be found to  the inversion problem. When 
necessary, the surface could be cut a t  ray tangent lines and rendered as 
two partial surfaces fit t o  quadratic equations. 
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SIGN EDITOR MANUAL 

Synopsis: signed flat 
Signed draws the objects described on each line of the ascii file flat.f (if 

it exists), allows interactive editing of file lines and/or its drawing, and 
finally stores the revised f1at.f and the corresponding binary file flat.F. Up t o  
127 objects are drawn on a 512 horizontal by less t h a n  498 vertical pixel 
screen. Binary flats have a fixed size of 256 by 128 pixels, so pixels are reused 
or  combined as  needed t o  adjust the arbitrary input aspect ratio t o  the fixed 
flat ratio. Each object entered has independent on and  off colors but only 15 
arbitrary color pairs and clear are allowed in the binary file. Object colors 
may  include a density (probability of coloring each pixel) t o  give randomized 
textures t o  objects. 

The objects drawn principally support highway sign construction, and so 
consist of lines, arcs, text strings and outlines (the rectangular frames with 
rounded corners around such signs). Arcs and outlines may be filled t o  pro- 
duce circles and rectangles with rounded corners. Object descriptions are pro- 
vided in the first section of Table 1; an example of their use is attached. The 
descriptions are those used in flat.f files and may also be entered from the 
keyboard t o  create new objects. Objects may be modified by entering a 
replacement object description or object modification command (second table 
section) while the object to  be modified is selected (flashing). Selection is 
accomplished by depressing the left mouse key with the cursor on the object; 
current cursor position and the selected object's description are printed when 
selecting. If the on and off colors are different, flashing due t o  selection alter- 
nates between the colors, otherwise between the given and a contrasting 
color. Selecting the left mouse key over background removes selection. The 
middle mouse key is used t o  place construction marks, which can be used in 
place of a coordinate pair in braces in the table descriptions. The right 
mouse key is used t o  move or copy objects or t o  copy color; its function is 
selected by the commands in the last table section. For each function, press- 
ing the right key picks an  object/color, and releasing the liey places the 
object/color. 

Definitions of Object Description Parameters: 
\ 

(1) Screen positions and widths are entered manually in displayed pixel 
units referenced t o  the upper left corner of the screen with the x (hor- 
izont al) coordinate first. 

(2) Color is one or more function character/value components as indi- 
cated in Table 2, where each value is two decimal characters. The 
normal color use is to  enter a red, green and blue va.lue for a opaque 
or  self-lit surface with an optioilal density. The density placement 

. \ pattern is a pseudorandom sequence initialized t o  the object position. 
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Table 1. SIGNED Commands 
Command 1 syntax 1 comment 

Object Description Commands 
flat's physical size in cm; 
for auto bottom calc, use 0 
radius can be mark on arc; 
quad is sum of 1 

for upper right quadrant, 
2 for lower left, etc. 

width of 0 fills the outline 

rectangle aligned with screen 
default left/top are 0/0; 
width of 0 fills the outline 
text may include white space 

backgrd 

arc 

line 
hunk 
outline 

text 

b s i z e 2  y bottom-line bckcolor 

a {x y){radius) quad width color 

1 { s t a r t 2  y){end-x y) width color 
h ( s t a r t 2  y){opposite_x y) color 
o {right bottom){left top) w color 

T { s t a r t s  y) color font text 
Object Modification Commands 

if no object selected, a t  
cursor with last font/color 

text 

font 
width 
paint 

t textz t r ing 

f font 
w width 
p color 

General Commands 
delete selected object 
undo last change 
rebuild if change leaves hole 
call vi on current ascii flat.f 
shift and reduce all objects 
quit 
write file flat.f & flat.F 
test flat compression 
print compression results 

and quit 

delete 
undo 
rebuild 
edit flat 
shift all 
quit 
write 
make test 
print test 

d 
u 
r 
v 
s x s h i f t  x-attn ydhif t  y-attn 
q 
x 
y 
z 

\ Right Mouse Key Function Selection 
pick object a t  button push, 

place copy on release 
remove object a t  push, 

place it on release 
pick color a t  button push, 

change color a t  release 
Colors same as picked flash 

copy object 

move object 

group color 

c 

m 

g 



Appendix 1, page 3 

Table 2. Color Description Components 
Component Syntax Comments 
opaque oRRGGBB RR etc are colored reflect coef (0 t o  99) 
self-lit sRRGGBB RR etc are colored intensities (0 t o  99) 
density dDD Set density t o  DD (0 t o  99%) 
force fFF Force color number t o  be FF (0 t o  15) 
clear c Color 0 always transparent 
tint tTT[RRGGBB] Colors 1 to  7 enabled as group 

for tint (TT: 10 t o  70%) 
ice iII [RRGGBB] Colors 1 t o  7 enabled as group 

for ice (11: 10 t o  70%) 
glass g [RRGGBB] Color 14 enabled as  glass (tint of 40%) 
mirror m Color 15 enabled as mirror 

Switched lights are entered as both on and off colors in that  order 
plus the color number td be assigned (forced) for switching purposes. 
Transparent colors (clear, mirror, ice or tint) may also be 
entered, which envoke the corresponding forced values and enables. 
To avoid some potential flat-explosion situations (e.g. mirrors in mir- 
ror images), transparents other than clear may be replaced during 
rendering by opaques simply by removing the enables. Thus these 
transparents may also be assigned an  opaque color - the defaults are 
light blues. 

(3) Font is a string of the form X.YZ where X is the font style letter 
(Bold, Regular and Italic) and YZ is the numeric size, with the pixel 
height of a capitalized font letter about twice the numeric size. Only 
those in the library are available. 

\ Unsightly pixel choices can result from the use of character bitmaps and 
aspect ratio adjustment. Hence a touchup mode is available during the con- 
struction of binary files. Touchup allows pixels in the final flat t o  be changed 
after aspect ratio adjustment and before compression. During touchup, the 
left mouse key picks an  existing flat color and the center mouse key places it 
while down. The right mouse key cycles through several 'brush' shapes as 
indicated by the cursor shape; the largest square brush is an  'airbrush' that  
changes pixels randomly in the cursor area. When fixing text, it is useful t o  
make a short line of a color intermediate between foreground and back- 
ground t o  use while touching up characters. Touchup mode is ended with a 
9 ' 9  9 7  9 q , x , y or 'z' letter with the assigned general command meaning or an  'r' t o  
return t o  object manipulation. 
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Files: 
The C structure of binary files as attached. 

Font files are stored in the directory "/u/ray/ed/font". 

Bugs: 

Ends of lines are horizontal (line slope>63 " ) or vertical (slopeC26 " ) else 
45" slopes. Widths are measured along the edge described. The simplest way 
t o  cleanup the ends of angled lines is t o  place background lines over the 
unwanted parts a t  the desired angles. 

Signed positions should be specified in physical units from the screen 
center rather than pixels from the top left corner t o  simplify interaction with 
moded. Objects should be drawn to  the flat with its fixed aspect ratio and 
reflected t o  the screen with the necessary aspect ratio adjustment, rather 
than drawing to  about the physical aspect ratio and fixing the aspect ratio 
later, so tha t  adjustment errors are visible immediately. 

' 

Characters are expanded vertically by 3 lines t o  partially fix thin hor- 
izontal strokes in the available font bitmaps. Robust outline fonts should be 
used; they will be necessary if the aspect ratio must be variable as when 
drawing t o  flats. 
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Flat description Ale example: signa1.f 

b 600 125129 c 
1 0 10 511 10 12 0181818 
1 0 10 511 10 12 0242424d50 
1 30 33 30 0 3 0303030 
1 311 33 311 0 3 0303030 
1 31 120 31 30 32 0181818 
1 311 120 311 30 32 0181818 
a 31 45 10 15 10 f02s930000o450000 
a 311 45 10 15 10 f03s9300000450000 
a 31 105 10 15 10 fO4s0093000004500 
a 311 105 10 15 10 f05s009300o004500 
a 31 75 10 15 10 fO6s9393000454500 
a 311 75 9 15 9 f07s9393OOo454500 
1 90 31 90 4 3 0303030 
1 250 31 251 4 3 0303030 
1 80 47 261 47 34 0006012 
T 94 57 f100727272 B.10 COMPTON 
o 262 6 4 ,  81 30 3 f100727272 
1 491 119 49 1 60 - 28 0181818 
1 485 125 511. 125 4 0181818 
1 485 54 511 54 4 0181818 
1 491 128 491 49 6 0181818 
a 492 105 10 15 10 fO8s6969690333333 
a 492- 75 10 15 10 fOQs9360000453000 

Binary Flat structure description file: flatoh 

struct FLAT { 
, short magic; /* magic: 0720 */ 

unsigned char s-type; /* color switch type */ 
enum stypes { self-lit=32,opaque=l6,ice=8,mirror=4,glass=2,tint=l }; 

unsigned short color [l G] 121; /* color lut entries: 0 on, 1 off */ 
/* color bits: 15 self-lit flag, 14-10 red, 0-5 green, 4-0 blue */ 

unsigned char ccolor[128*256]; /* max (uncompressed) color array */ 
/* fi1e.F files are only as long as needed when compressed */ 

1; 
/** color[0][x] is always clear, so any opaque color values are unused; 

they are used for default flat x and y sizes, in centimeters **/ 



Appendix 2, page 1 

MODEL EDITOR MANUAL 

Synopsis: moded [initdle] 
Moded builds an  image from the flats listed in model files and 

interactively entered. It uses the flat name and position/orientation/size to  
render the binary flat.F texture arrays with hidden surface removal plus 
shadows/tints, one mirror and one ice surface. 

Each flat in the model is potentially rendered three times, once in the 
direct viewing pyramid, once in the mirror-reflected viewing pyramid and 
once in the ice-reflected nether world. Mirrorhce reflected flats are only 
rendered when behind a flat with mirrorhce color types in the direct view. 
The mirror and ice flats should be the first in a scene so tha t  the mirror and 
ice reflected scenes will not take excessive rendering time. To  avoid 
additional viewing pyramids, mirrors and ice colors are only enabled in the 
direct view, otherwise they appear as opaque. 

Each screen pixel is represented by direct and mirror reflected colors as 
well as direct and reflected distances for the closest opaque and shadow. 
Only one shadow intensity is available in the software simulation, and it still 
requires two shadow arrays and half of the color lut. The model file initfile 

b 

is called when the program is started t o  initialize the screen, visual range, 
lighting and viewpoints., To speed rendering, shadows are not checked on 
every pixel write, but can be incorporated with the build command. Fog is 
approximated by modifying pixel colors based on each color's average 
distance from the viewpoint; thus it requires the screen t o  be scanned for the 
average by color. Again for speed, fog is not incorporated after every flat is 
placed, but on the visual range command. Neither build or visual range is 
destructive, qdditional rendering may then be done, and the commands 
repeated. Build and visual range are updated automatically after a model 
command, and so are not usually called explicitly. During rendering, 
jittering of the array sample position is a function of a pixel's range and 
current visual range; an  exactly jittered image when visual range is modified 
requires rerendering the entire model. Otherlvise visual range, ambient light 
levels and the switch settings for each flat's internal lights may be varied 
i~teractively a t  any time. 

Table l i l ists  the commands used to  render flats. An example of their use 
in m.init and a model file are appended. Rightmost parameters not entered 
are dlfaulted t o  the values indicated. Parameter definitions are: 

(1) X, y and z are integers specifying a flat center's position in 
cenkimeters in the world model. 

(2) Ax, ay and az are integers each specifyi~lg a rotation in degrees about 
their axis; together they specify an  orientation in the world model. Ax 

/ 

and az follow the righthand rule, ay the left. For cylindrically 
symmetric objects, '*' is used for az and the angle is automatically 
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calculated to  make the flat turn toward the direct viewpoint. To 
avoid rendering a flat when it is backfacing, preceed its az with '*'. 

(3) Sx and sy are floating point flat sizes. A flat's sizes are defaulted to  
those in the binary flat file's header. 

(4) Switches is an  octal number where each bit position controls the 
on/off state of that  numbered color in (all) flats. On and off are not 
required to  be self-lit and opaque respectively, opaque and self-lit 
colors may be attached independently to  either state using signed. 
The switch command with no settings toggles all switches. 

Bugs: 

Because of bitplane limitations, only 1 G  flats can be rendered a t  a time. 
If tints are rendered, only one shadow tint level is rendered (glass and 
tint>3) and only 8 flats with opaque elements are possible. 

Fog affects are based on the average distance(proximity) of a color 
rather than on each pixel's distance. This is apparent in flats with a large 
range of distances, such as the street under the eyepoint. 

The switch command simultaneously controls switches in all flats just to  
simplify switch value entry. 

MODED Commands 
Name Syntax \ Comments 
flat f F x y z az ax ay sx sy render texture array F.F; 

positions and angles default t o  0 
flat with ice i F x y z az ax ay sx sy render ice array F.F 
direct VP. d x y z az ax ay render from this position/orientation 
r e f l e ~ t ~ d  VP r x y z az ax ay position/orientation relative t o  direct 
model m file use lines of the file as commands 
build , b show directlreflected shadow affects 
ambient a integer re build color lut with ambient [O-991 
switches s settings(in octal) rebuild color lut with switches 
visual range v y(in centimeters) rebuild lut with fog's visual range 
clear c clear screens, arrays and luts 
type t file type a file 
Prg p prginit( in octal) default initialization is random 
quit 9 
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Initialization file example: m.init 

C 

d o 0 0  0 0 0  
r 12 80 12 165 12 0 
s 44 
a 84 
v 31000 
# inside car 
f mirror 8 35 10 -10 -10 5 18 6 

Model description file example: figure.14 

# foreground 
i street 0 600 -120 0 90 0 
f lawn2 0 1374 -77 0 85 0 
f front2 -73 1743 115 0 0 0 
f roof2 -73 1860 399 0 45 0 
# background 
f 58th 325 -900 225 180 0 0 
f signal -155 -750 210 180 0 0 
f signa1.s -90 -870 180 180 0 0 
# car parts 
f car.shadow 100 900 -115- 0 90 0 
f car.r 100 820 .-56 0 . 2 0 




