
REALTIME IMAGE GENERATION

BY SYNCHRONIZED TEXTURE CASTING

Raymond V. Sutton
B.S., University of Portland, 1964

M.S., Air Force Institute of Technology, 1966

A thesis submitted to the faculty
of the Oregon Graduate Institute

in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science and Engineering

September, 1990

1.
2.

2.1.
2.2.
2.3.

3.
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

4.
4.1.
4.2.
4.3.
4.4.
4.5.

5.
6.

Appendix 1
Appendix 2

TABLE OF CONTENTS

Introduction 1
Related Work 3
Driver's Simulators 3
Texture Maps 3
Parallel Rendering 4
Synchronized Texture Casting Architecture 5
Ray Casting 6
Antialiasing 8
Proximity Arbitration 10
The Texture Map 12
Rendering Calculations 14
Hardware Estimates 15
Synchronized Texture Casting Software Simulation 17
Software Simulation Hardware 17
Sign Editor: signed 17
The Model Editor: moded 17
Simulation Results 19
Conclusions 19
Future Work 25
References 26
SIGN EDITOR MANUAL
MODEL EDITOR MANUAL

ABSTRACT

REALTIME IMAGE GENERATION
BY SYNCHRONIZED RAY CASTING THROUGH TEXTURES

Raymond V. Sutton, M.S.
Oregon Graduate Institute, 1990

Supervising Professor: Robert G . Babb I1

Realtime computer generated imagery is based on filling polygons using

highly pipelined processors; thousands of polygon/triangle processors operating

in parallel have been considered when more detail is desired. For some

applications such as automobile simulators, it may be possible t o reduce the

hardware and cost while providing realistic detail by changing the displayed

primitive from a polygon to a flat, full scale texture map; This paper describes

a system for rendering texture maps in parallel and in synchronization with a

raster scan. Ray casting is done by chips dedicated to textures in their own

memory, the closest opaque is chosen via arbitration on a bus, and the closest

opaque and closer shadows are rendered via the bus. The results of a software

simulation and hardware analysis of the system are presented, with emphasis

on the design choices necessary to make the scheme practical.

Aircraft simulators based on computer generated imagery have proven to
be a cost effective way to teach flying t o military and commercial
pilots[9, chapter 111, especially in dangerous conditions. Similar devices might
supplement current driver's education courses by demonstrating driving in

\

dangerous situations and weather, and by allowing practice without the cost of
an instructor. However aircraft type simulators are unsuitable for simulating
cars due t o their high cost relative t o cars. The major hardware component of

i

an automobile simulator will be its image generators. This paper describes a
low cost, realtime image generator suitable for driver's education.

The principal requirement of an image generator for driver's education is a
realtime view of roads, signs and other vehicles through a car window with one
rearview mirror. A range of simulated environmental conditions is desired so

Figure 1. Image Requirements for Driver's Education

Required Feature Design Implication
Essential object surfaces

Diffuse (rather than specular) Ray casting (rather than ray tracing)
Signal lights Selflit and switchable surface types
Signs readable while moving Antialiased texture maps
Textured roads to judge speed Antialiased texture maps

Essential object shapes
Buildings, cars, roads Objects have nearly flat sides

with irregular edges
Environment

Fog (instead of rain, snow) Objects obscured with distance
Number of visible objects can be limited

Diffuse overhead ambient Most shadows built into surface colors
Moving vehicles need attached shadows

Extra views
A rearview mirror per window Mirror surface type, virtual eyepoint
Ice reflection An inverted world as seen

through ice holes in the street
Speed

Relative speed of cars 120 mph Rendering rate = monitor refresh rate

the training can include the problems of dusk and bad weather tha t are so
hard t o teach without a simulator. The detailed requirements for such an image
system are outlined in Figure 1, along with their implications for the image
generator design. Two implications have a major impact on the design. The
first is the appropriateness of planar texture maps with clear elements for
modeling the essential objects in the training model. It is so approriate t o the
model tha t all objects are modeled as texture arrays. The second major
implication is the speed a t which objects must be modeled. If the model must
be rendered every time it is written t o the monitor screen, there is little use for
a refresh buffer and pixel color generation must occur on the average a t the
pixel clock rate. Since the pixel clock rate of monitors is approximately the
clock rate of Very Large Scale Integration (VLSI) CMOS logic, the textures
must be rendered in parallel. The requirements review suggests tha t the model
world for automobile simulation might be closer t o the theater, with its painted
flats and controlled lighting, than the shaded polygons of common graphics
systems. In such a 'theatrical' model, image generation would be accomplished
by ray casting in parallel through a model constructed with planar, full scale
texture arrays with transparent elements. The analogy t o theatrical scenery
suggested the common name for the texture arrays -flats.

In the Synchronized Texture Casting architecture, each flat array is stored
in the texture memory of an "application specific" integrated circuit (ASIC)
responsible for its display. For each pixel in the raster scan, each chip selects
the element cast t o in its texture. The independent images for each texture are
then composited by a pipeline distributed across the chips. In the pipeline, the
closest opaque element is chosen by a proximity arbitration between chips, then
the chosen chip renders its element while closer shading pixels modify the
image. Such a n architecture provides an inherently realtime display of a
number of surfaces. The number of surfaces is limited by the hardware, but it
may be increased by the addition of ~ ~ I C / m e r n o r ~ chip pairs t o the hardware.
The surfaces can be as detailed as the texture and color resolution allow. The
scheme's disadvantages include ray casting's limitations, the preprocessing
required t o convert graphic objects into texture arrays, and those objects that
can't be reduced t o a few planes. Ray casting was chosen as adequate for
automobile simulation, tha t is general reflection, refraction, point light sources
and their shadows are not required. The simplest and most accurate way t o
model the everyday world is t o digitize photographs of its surfaces, so
preprocessing is not a problem. The number of surfaces needed can be
controlled with some 'theatrical' license in the choice of objects modeled.

The following sections describe the Synchronized Texture Casting scheme,
a software simulation of its operation, the simulation results and the planned
hardware implementation. The description is organized around the system
integration techniques used and the design choices made. The conclusion
discusses each of the design choices in turn.

2. Related Work

2.1. Driver's Simulators
Driver's education usually ends in sessions with one car plus one instructor

per student, but this is too expensive for more of the course. Mechanical aids
that allow one instructor t o teach a whole class simultaneously come in several
varieties[l3].

(1) Cockpit per driver and a shared jilm. The feedback t o control input is
not from the scene but from the instructor if the input is sufficiently
wrong.

(2) Cockpit per driver with shadows of a miniture model cast to a screen. The
feedback t o control input is immediate but the model is static and not
clear.

(3) One of several cars on a test track with radio contact to an instructor.
The test track and need for visual contact with the instructor limit this
aid t o intersections and parking.

Despite their limitations, these teaching aids are effective, less expensive
than one instructor and car per student, and liked by the students. They can
be considered as part task teaching aids rather than complete simulators; they
teach such skills as survelliance, braking or parking. None of them, nor even
the usual one instructor and car session, cover hazardous conditions and
weather. No complete, aircraft type simulators are in common use for driver's
education.

2.2. Texture Maps

Current aircraft simulators are based on points and polygons, and usually
use high speed, highly pipelined scan line techniques[g, chapter 41. To achieve
the detail required for signs in a driver training model, many small but complex
polygons are required, which strains the processor speed. Texture mapping has
been used as a way t o simply render detailed objects since the early days of
graphics[8]. To render a texture map, a raster position is mapped in perspective
t o an object position and then to a texture map location, where the location's
color and often other characteristics are found. The object surfaces are often
curved. The approach has not been converted t o hardware, apparently because
of the perspective divides needed a t each pixel, but single
numerator/denominator calculations have been implemented as chips[ll].

Texture maps are not applicable t o realtime scan line techniques. Scan line
techniques gain their advantage by calculating groups of pixels a t a time. With

textures, each pixel must be separately accessed from the texture arry; if it is
clear, the next deeper texture must be tried. Thus a t least one and often more
clock cycles are necessary per pixel, so the average is greater than one clock per
pixel. As a result, textures must be rendered in parallel when using dense forms
of logic such as CMOS.

2.3. Parallel Rendering
There are two basic parallel image generation techniques. In the first,

objects are assigned to processors and pixels are passed by the processors. Each
processor is responsible for coloring pixels with its object's color if it is visible.
Object parallel rendering has been implemented for the cases where the objects
are polygons and triangles[l] [4]. In the second parallel technique, pixels are
assigned t o processors and objects are passed by the processors[5]. In the pixel
processor case, a quarter million processors are needed for a driver's education
scene; in the triangle processor case, about a thousand processors are needed
for active triangles. In both cases, the processors are simple, and the authors in
the pixel and triangle cases suggest that a hundred and ten processors
respectively can be accommodated per VLSI chip. In the best (triangle) case,
this still requires a hundred chips per window of a simulator. Since both
approaches use polygons as their priinitive object, they also require a
preprocessor capable of locating tens of thousands of polygons per raster frame,
or tens of millions of floating point operations per second. These approaches are
to6 expensive for automobile simulation.

3. Synchronized Texture Casting Architecture
The caster card planned for driver's education draws raster displays in

real time by ray casting t o flats in parallel and in synchronization with a raster
scan. In the first major integration technique applied, a caster chip and its
associated texture memory are responsible for rendering a flat. The display
procedure is outlined in Figure 2 and the card block diagram of Figure 3. The
interchip bus identified in the figures forms a 22 bit digital wired-or bus, which
is the second major integration technique. During the horizontal and vertical
synchronization portions of a raster scan, it is used t o load 16 bit words t o the
caster chips and through them the Texture SRAM. During the active portion of
the scan, it provides both proximity arbitration and output composition.
Priority encode/decode hardware controls which chip on the bus uses it for
input data during syncs and its output portion when active. The data transfer
t o the caster chip's control registers and texture memory is directed by the
loader state machine of Figure 3 and occurs between main memory and a FIFO

Figure 2. Image Generation for One Raster Field
Procedure

FGr each flat/viewpoint combination in the world model
Transform flat t o viewer/window frame
If flat in window and within visible range (through fog)

If flat not loaded in a caster I

Select an available caster
Prepare display list t o expand flat into memory

If new or modified, write color lookup table
Prepare display list for the flat in its section

At start of vertical sync, load each caster's display list
During remaining syncs, load and expand any new flat
For each piqel in the raster scan, cast a ray t o all flats

If the ray misses the flat, skip pixel
If mirror color and enabled, drive mirror line

Else if flat has wrong visibility, skip pixel
If color number is not an enabled tint/glass,

Participate in depth arbitration for closest opaque
with final selection by priority encode/decode

If closest opaque, drive flat-in-caster and color number
If enabled tint/ glass closer than opaque, drive outputs

For each pixel, combine color and environment values

Unit /Bus Lines

Main program
Caster driver

Loader + casters
Loader + casters
Parallel Casters

mirror line

proximity lines

fEat/color lines
tint, glass lines

Environment LUT + Color LUT

, 22 Interchip Bus

Bus :

; - - - - - @ To Monitor
53

Priority

$ 16 Addr 2 4 i/o @ffset, ~eferGnce

.......... ,
.......... Encode i 8 15 R,G,B

0
0 /i3 Clock, etc
0 Decode i

0

..............................

.....
..........

J..................................
& :

9 Flat, Color
Loader State Machine

\

7 2 4 address 7332 data

System Bus

Figure 3. Synchronized Texture Casting Card Block Diagram

queue in each caster chip.

In the first major design choice, an image is limited t o approximately 24
flats. In the second major design choice, each of sixteen chips handles up t o two
flats whose bounding boxes don't overlap horizontally. The nonoverlap
requirement means tha t all chips can't be assigned two flats. The horizontal
resolution is set by the caster chip a t 640 pixels per line (512 pixels in the
software simulation). The pixel rate and number of lines are set by the card as
appropriate for NTSC or VGA monitors. The pixel periods of 80 and 40ns for
these monitors are major factors in both the caster chip design and the cost of
their texture memory. However, the basic caster functions can be heavily
pipelined. Basically eight additions and a texture memory access per pixel by

each casting engine are needed t o orient and display a window's view of a
world of flats. Details of the ray casting, distance arbitration and pixel
rendering calculations are described below in turn.

3.1. Ray Casting

The third major design choice is ray casting t o full-scale, planar texture
maps, in which case the texture t o object transformation is unity and only the
object t o screen transform is needed. Considering tha t most objects important
to the training model can be based on flat surfaces, the planar design choice
seems reasonable. Assume the simulation program provides the positions of a
flat's corners in an eye coordinate system (XYZ) oriented t o the window's
surface, which is a t a distance (D) from the eye as shown in Figure 4. As each
pixel occurs in the raster scan of the window, a ray is cast through the pixel t o
the flat. To calculate the texture cell indexes (u and v) and the flat depth (2)
hit by the ray as a function of X and Y, they are fit t o planar equations based
on their values a t three of the flat's corners. The coefficients of the plane
equations are selected by assigning indexes of 0 and 1 t o opposite flat edges, so
that a flat is present when both indexes are between these values and clear
otherwise.

\

X and Y can then be replaced by the window's pixel coordinates (x, y) using the
perspective equation[6].

The resulting equation for Z can be solved to find Z as a function of x and y,
and the result substituted in the u,v equations. In the caster chip, the flat
coordinates for the texture cell and the flat proximity (71 can then be calculated

+Y

U ,--? ----- .*.+---
ray I

I f) 1
r--------; - - Y " i ' Flat

i
y,

\# , ,.----
_.-.

;-- --------.-.- - ---.----.--.*..,... *-- , ,.-.-I
._--

z ,----
~ ~ e ~ d i n t D

Monitor Screen

' i x

Figure 4. Ray Casting Coordinate Systems .

with the equations:

Since the raster scan uses these calculations in sequences of x and then y, the
multiplications can be replaced with repeated addition, and only the additions
that depend on x are required for every pixel.

Most three dimensional graphics systems use floating point arithmetic for
accuracy over a large range of values. The fourth major design choice is t o use
a form of block floating point in the calculations. The coefficients are all shifted
as a group so tha t integer overflow is just avoided when the numerator and
denominator are calculated a t the bounding box extremes. The quotients are
unaffected by the group shift. The only place the block exponent is used
explicitly is when proximity p is shifted in hardware before proximity
arbitration.

A direct implementation of these equations would also require two divisions
per pixel per flat, which would require half of the chip's area. Instead, in the
fifth major design choice, serial divisions calculate u and v a t the end points of
short horizontal segments, and p, u and v are then linearly interpolated
between these points. Interpolation should be done in power of 2 segment
lengths because a division by the segment length is necessary in the conversion
from change per segment t o change per pixel. Because greater than eight bit
precision is required in the division (8 bits for u plus one bit of overrange test
and 6 fraction bits t o provide accurate interpolation) and each bit takes a
clock cycle in serial' division, interpolation segments of 16 pixels would be
convenient. Unfortunately, 16 pixel segments converted straight edges in flats
t o curves with cusps a t segment boundaries, which appear as scallops.
Therefore 8 pixel interpolation segments are required, and the divisions must be
done in two sections. Minor scalloped edges are still visible with 8 pixel
interpolation on a few tilted flats, as will be shown in Figure 17.

The Caster Chip Front End block diagram shown in Figure 5 summarizes
the calculation pipeline. Four groups of eight clocks make up the pipeline. The
first clock group uses one adder to do all multiplications by repeated addition
and transfer the results t o the remaining data path elements. The second and
third clock groups use four adders for the u,v serial division stages, while the
fourth group uses three adders for interpolation. Two additional adders in a
single clock stage handle antialiasing, as will now be described.

3.2. Antialiasing

The casting procedure so far makes no provision for spatial filtering of the
texture arrays, which can lead t o aliasing[8]. The problem occurs a t two levels,
in building the texture arrays and in casting them t o the screen. The first level

t restrictions due t o the fact that vehicles are limited t o roads.

Probably no more than one precombined set of flats will be required
because another antialiasing technique is available, although it has a limited
resolution range. In the sixth major design choice, filtering is included as an
average by the eye over several fields of a jittered regular sampling grid[3]. By
experiment with the software simulation, jitter was chosen to be the maximum
of f % of a texture element, f % of a screen element and the fourth power of the
ratio of the flat's average depth to the visual range. The first two terms cover
the cases where the texture element is larger or smaller than a screen pixel,
respectively. Since self-lit pixels are visible to 1.5 times the visible range, the

I
third term provides a maximum corona[lO] of f 5 screen pixels around lights.

The use of jitter for texture coordinates would ordinarily require
multiplication of jitter size by a weighted random number. Bessel weighting is
appropriate for corona[lO], where the jitter shape will be most obvious. Because
the multiplier is random, the product can be approximated by a bitwise and.
Other operations a t the line and pixel level vary the multiplicand to
approximate the Bessel shape; the first is done by the basic adders during line
setup calculations and the second uses a bitwise or a t every pixel t o weight the
multiplicand to a number between M and 94. The continued adjusting of the
multiplicand also masks any pattern in the jitter due t o the bitwise and
product. The operations are (C syntax):

float weight [4]={l, 15/16, 7/8, 3/41;

1

line-jitter = jitter-u * weight [prg-u ()& 31;

i

pixeljitter =(prg-u & 1) ? l inej i t ter : (l inej i t ter >>1 I l inej i t ter >>2);

pixel-delta =pixel-jitter & prg-u ;
*

u' =u + ((prg-u () & 2) ? pixel-delta : -pixel-delta);
I

i

1 3.3. Proximiby Arbitration
d The closest opaque texture cell is located by comparing p between those

caster chips tha t have cast t o an opaque color in their flat. As part of the
second major integration, this comparison is done on the interchip bus rather
than in separate hardware. The comparison also provides a measure of distance
from the viewpoint, which is needed to render fog. The arbitration is done
serially, most significant bit first, on the wired-or (precharged) bus. The
arbitration is effectively parallel because the color rendering is delayed in each
chip by the same amount.

A mirror signal is processed before the proximity arbitration; any flat with
an enabled mirror element in the ray discharges the mirror line and causes the

+ * f +
Prechnrge , j i , Drive 7 2 Prox Visible i Op.que

. , 8 .
0 . ,

7 4 color
a 8

. 8 . ,
4 , , .

Inter chip *--*-----------

Bus , , . , . ,
8 , , . , , # .

Pin 11 , , . . 0 9 , , , , , , . . , , , . . .
.-.-.--...L-.---..----.. ,;' , , . c '--------.-----.--..-----.---..--.-----*~-.~.--..-.-..~~~-~.~~.~>~.~~~~~..~~~. . a .

8 , # , 6 , , , . , * , , . ,
a a , .
0 , , , , , , . , a 8 , 0 .

a 8 . ,
8 . , . . , . .
4 ,
8
a 0
8 , a .

,---------..-- Q -------- i TI -1 , . .
0 .

, . . 0 ,

. . ,
, , , , , ,

a .
8 . a q . . 0 , . ,

8 .
3 , . , . , ,-..--.- d . - . - A - _ _ _ . . ~ ~ ~ ~ . ~ ~ ~ ~ . ~ ~ ~ . ~ . ~ ~ . . - I , . . , . , I ' ----..---.---.----..-------.-.----------.....---.--.----.-..-----&----..--; Pin12 . . . , , , . , ,

. , , .

, , , . , . . .
0 ,
a 4 , , , , , . 8 , s .

6 . 0 a . . . 3

& 6 & 6 *

Figure 6. Two Stages of the Caster Chip Arbitration Pipeline

arbitration t o be done between those flats flagged as visible in the reflected
space rather than in the direct space. This technique does not allow the mirror
to be hidden by closer opaques, but avoids the need for both a reflected and
direct view proximity arbitration and satisfies the automobile simulation need
for one close rearview mirror per window.

/
The 16 bit proximities in the caster chips could be compared directly using

16 bus pins, but this would be excessive since most of proximity's resolution is
concentrated a t high proximity/short distances. A more even distribution of
distance resolution can be achieved by switching t o a floating point format with
two exponent bits before comparison, which is an additional function of the
first two pipe stages. In this way the number of bus pins needed for proximity
comparison is reduced t o 12.

The proximity arbitration itself is done a bit a t a time, starting with the
most significant bit, searching for the largest proximity (closest distance).
Referring t o t h e logic of the last two arbitration stages in Figure 6, those
casters with an opaque, visible cell in the higher half of the proximity space
being processed by a particular bus line discharge the line, and any casters
with visible cells in the lower halfspace when the wired-or line is discharged are
identified as hidden and drop out of the arbitration. The two pipe stages
following proximity arbitration contain the priority encode/decode hardware
used for final caster selection.

An ice view is expected t o be necessary for training since ice is usually
detected visually by image motion in it relative t o the street. Ice reflections
could be handled as another mirror type, but the fact tha t ice can be hidden by
closer flats would necessitate parallel direct and ice proximity arbitration, and
then use of the ice flats if the closest direct surface was ice type. Fortunately a
hardware solution is not necessary since components of the direct and ice
reflected view are not superimposed in the model. Clear or t inted holes are left
in the ground surface of the model, so that a copy of the direct model inverted
about the ice plane can be seen when proximity arbitration doesn't indicate a
closer ground surface. To 'roughen' the ice, jitter is increased by 1 screen pixel
per 2.5 meters tha t ice reflected flats are behind the ice, with a minimum
increase of 1.6 screen pixels.

3.4. The Texture Map

In the seventh major design choice, flats are texture arrays of four bit
color numbers with dimensions of 256 by 128, so tha t two arrays will fit in a
64k by 4 static RAM paired with each casting chip. This design choice sets
limits on the texture array aspect ratio, element resolution and color resolution.
The physical aspect ratios of the example flats in Figure 7 support the choice of
texture element aspect ratio; the mean aspect ratio is 2.5:1, with 2:l the closest
binary ratio. Note that streets can have higher aspect ratios which are really
limited only by surface topology. The suitability of the 32 thousand element
arrays will be shown by example later. A lookup table t o convert color number
to RGB intensities is necessary so that signal lights can be switched on or off
without modifying the texture array, but it also means only small color
numbers need be stored in the texture array. In the example flats in Figure 7,
all fifteen assignable ,colors per flat were used only t o add detail inside houses
as seen through the windows.

Image data can be very large; the fifty flats tha t might be used in a local
area would require two thirds of a megabyte uncompressed. A training model
consisting of several hundred areas would exceed optical disk capacity. Existing
image compression chips could improve this situation dramatically. However,
another problem occurs when texture maps are moved from processor memory
to a caster chip'$ texture memory. For minimum chip pinout, several new flats
would be loaded to the caster chip over the interconnect bus and then to the
texture map during one scan synchronization period, which is too much with
uncompressed flats. Therefore, flats are compressed by an algorithm for which
decompression requires little logic for expansion on the caster chip.

Several compression schemes were considered t o take advantage of the
high spacial coherence of flats. The first scheme attempted encoded single color
runs as a color number and a short length or a long extension of the last color.
This scheme was counterproductive when halftone techniques from printing
technology were used t o modulate between colors (i.e. trade element resolution

Figure 7.

Flat
File

bal1.F
bush.F
car.right .F
car.shad0w.F
h0od.F
front l.F
front2.F
garage01 .F
lawn12.F
mirr0r.F
roof 1 .F
roof2 .F
sign.185.F
signa1.F
sig.shadow .F
street.1ight.F
steps.F
street .e.F
street .F
street.ne.F
tree .F
tween12.F

-
Compressed Byte Code Decompression Algorithm (C Syntax)

Characteristics of

Flat Comp
Bytes Ratio

969 18.18
3527 4.74
2589 6.50
3861 4.12
1580 10.84
3377 4.95
3592 4.65
3617 4.62
3759 4.44
806 22.20

3757 4.44
1744 9.77
2040 8.31
2232 7.34
1675 10.20
2088 8.11
1296 13.34
2993 5.60
3283 5.10
3826 4.36
3265 5.12
3052 5.49

for(i-O;i<7;i++) *pixelptr++ = Reg[R[i]]; 0

Binary Flats in Software Simulations

Physical Aspect
Size(cm) Ratio

30*24 1.25
300*200 1.50
396*128 3.09
520*300 1.73
140*114 1.23

1000*350 2.86
1000*350 2.86
1000*304 3.29

2690* 1383 1.95
18*6 3 .OO

1OOO*400 2.50
1000*400 2.50
400* 150 2.67
600*145 4.13
600* 145 4.13
570*50 11.40

140*200 1.43
2700*1358 2.45
3300* 1250 2.64
2690* 1383 1.95

550*400 1.37
2500* 1120 2.23

R [o] R [I] R [2] & [a] R [4] k [5] :R [6] , . .

Colors
Used

3
4

13
7
3

15
15
12
12
3
3
5
4

11
7
4
2
7

14
6
5
9

Reg[R] = Color; 1 R i cklor ; ;
for(i==O;i<Count;i++) *pixelptr++ = Regp];

count

1
N Count = (EC0~nt&12)?EC0~nt:EVal[ECount];

for(i=o;i<Count;i++) *pixelptr++ = Reg[R];

Figure 8. Two Color Flat Compression Coding

constant int EVal[4]={ 32, 49, 66, 115); R : ~ c d u n t 8

for color resolution). In the two color compression used in the simulations,
horizontally repeated colors or sequences of color pairs are encoded into bytes
with the help of two registers[2] as shown in Figure 8. The scheme also allows
signs t o be created on the fly because a compressed flat consisting essentially of
codes with seven register indexes can be considered a bitmap and can be
modified with character bitmaps. The compression ratio of the flats used in the
examples is between 4 and 6%, as shown in Figure 7, with simple flats going
higher. Further compression could make use of vertical coherence, but would
sometimes require both a read and a write t o the texture memory for one pixel,
and was judged t o take too much decompression time as well as logic.

3.5. Rendering Calculations
The requirements of Figure 1 include the need to render textures with

ambient and self-lit diffuse elements plus transparent elements in fog. Thus a
texture cell's color number usually specifies one of 15 opaque surfaces or a clear
(Color 0) area. Shadows and tinted car windows would add t o the reality and
depth perception of moving vehicles. Since there are few transparent types
needed, each can be assigned a specific color number and a type enable bit.
Problems could arise if transparencies overlap from different flats, since there is
no easy way t o sum their effects on a digital bus. A shift register connection of
the chips or an analog current sum portion of the bus would have solved the
problem, but a t the cost of a larger chip for the extra pins or D/A converters.
Fortunately car shadows are placed just over the surface a car rides on, leaving
little chance for two shadows t o overlap. Windows can overlap, so only one
wired-or bit is used for them, for the effect of sum and clip. Interactions
between these two kinds of tints are avoided by combining each on separate
lines of the bus.

I The basic rendering equation(61, with self-lit, shading and
environmental[lO] affects, is shown first in Figure 9. Distance from the
viewpoint for calculating fog effects is approximated by proximity, which is
related t o the model Z dimension rather than true distance. Because of the
limited dynamic range of light from CRT monitors, self-lit surfaces representing
signal lights can not have their true relative brightness without fading the rest
of the scene t o insignificance. To make maximum use of the monitor's available
range, the basic equation is modified as shown in the second equation so tha t
self-lit surfaces attenuated by fog can still drive the monitor t o a true color
maximum output. To allow color changes in realtime (e.g. turning a signal light
surface on and off), the equation is implemented as two lookup tables (LUTs)
with analog and digital connection as shown in Figure 3 and the last equation
of Figure 9. Global values such as ambient and visual range are written into
the Environment LUT.

Figure 9. Rendering Math and Its Look-Up Table Approximation

a 2-9
R l G J (s) ? 1 : A e-lip

10

With dynamic range extension, let: F = A

i R , G , B - 10 e-lip, 1-F): A y j - lo--" e -llp] lKRIG,B '-'
= D[PI + L [sI[pI[tI[gI K R , G , B

where:
i
RlGlB

are the cast ray's analog RGB intensities
A is the ambient's fraction of a monitor's maximum output
p is the proximity of closest opaque flat, scaled t o % a t visual range
n is the closest flat's number [0+31]
c is the closest opaque color's number [1-.*15]
s [n][c] is the closest opaque pixel's self-lit flag (from Color LUT)
t is tint (color numbers 0--+7 when tints enabled)
g is glass (color number 14 when glass enabled)
KRjGJB [n] [c] are ambient-lit opaque paint's reflection coefficients

or self-lit paint's intensity (from Color LUT)
D,L make up the Environment LUT

3.0. Hardware btimates

A casting system able t o render a maximum of 32 flats on a simulated
window in realtime is expected t o require approximately 60 CMOS VLSI chips,
and thus would fit on a single printed circuit board. Half of the chips, the
caster chip/memory pairs, can be tightly packed such as on a memory card. In
fact, the chip pair might be mounted in a single inline package with a pinout of
the 22 bit interchip bus and a few power and support pins. The caster chip's
size depends on the functions described and their accuracy. The array index
numerators, denominators and division were found t o require 20 bit precision,
while the index interpolation required 16 bits. Based on an estimate of the
number of logic components and an estimate of the number of gates in each,
the caster chip is expected t o require 5,000 t o 7,000 gates and 48 pins. Thus it
is a small t o medium ASIC gate array.

The image generation computer needed to drive a caster card should be in
the single board category because the computer will transform three corners of
perhaps 100 potentially visible flats in a typical portion of a driver's training
model a t 30 or 60 frames/second, or 400 thousand floating point operations per
second. Image generation storage will depend on the total amount of

imfomation stored. Assuming 4 kbyes for an average flat plus its control
information and fifty flats per 200 feet of city street allows over 100 miles of
street in a driver's education model that fits on an optical disk. This modeled
distance would support a square mile city plus 50 miles of surrounding rural
roads and freeway. If data for each 200 feet of street were contained in a 200k
byte file, a Mbyte of memory might be needed to store potentially active files.
At 60 mph, a new file would be loaded t o memory every couple of seconds and
a new flat t o texture memory on the average every couple of frames. Because it
would take about half a second t o access and load a 200k byte file from optical
disk, each file's need would have t o be anticipated in software, perhaps by
projecting the vehicle position forward several seconds.

4. Synchronized Texture Casting Software Simulation
Most opaque flats will be based on photographs of the sides of real objects

for realism and t o avoid manually entering impossible amounts of data. The
exceptions are textual objects such as traffic signs, where the desired text may
not be available as a picture. The texture arrays built by either technique are
then placed in a model and a simulated image of the model created as the
Synchronized Texture Casting hardware would. Only a sign editor t o build flat
files and a model editor/software simulator have been built; a photograph
editor and realtime hardware were not built. The picture type flats built with
the sign editor are not as varied or detailed as they might be because detail
was manually entered. For driver's training, for instance, a flat of a child on a
skateboard would be a n appropriate problem but very difficult t o build with the
sign editor.

4.1. Software Simulation Hardware
To support this work, a Motorola VMEsystem 1121 workstation with

5 megabytes of memory running Unix System V.2.2 was used. A Matrox VIP-
1024 image card with eight bit planes was added for the simulated vehicle
window. For the animation, a Panasonic AG-1960 VCR recorded the Matrox
card's signal with a Futurevideo EClOOO controller, Sony GBM-2000 monitor
and Truevision Vidi/o S-Video converter.

4.2. The Sign Editor: signed
Texture maps of signs are built using an interactive graphics editor that

operates on text files describing lines, arcs, outlines and text strings. The
program displays the objects and reads the display t o build a binary flat. In
addition t o the functions of a two dimensional image editor, the editor provides

.aspect ratio correction, flat compression and color definition tailored t o the
rendering system. A simple paint system a t the flat resolution level was used to
touchup errors in the flats due t o aspect ratio correction and the character
bitmaps used. To put as little strain on the realtime antialiasing system as
possible where detail is important (e.g. signs), characters should use three color
levels instead of just foreground and background. This was manually
accomplished with the touchup system. Appendix 1 contains manual pages and
an example object description file for the sign editor.

4.3; The Model Editor: moded
The model editor supports the creation of display scripts and shows the

resulting images. All of the casting, day-to-dusk rendering and antialiasing

Figure 10. Caster Chip Registers
struct CREG {

unsigned char top-line; /* top of rendered part of screen */
unsigned char fpscale ; /* block floating point exponent;

bit 7 = load flat's texture memory */
unsigned char bottom-line; /t bottom of rendered part of screen */
enum flatflags { inlce_world=128, inReflected_world=64,

selfJit=32, opaque=16, ice=8, mirror=4, glass=2, t int=l);
/* flat coordinate and proximity coefficients; bases divided by 16 */

short cp, cut cv, cpx, cux, cvx, cpy, cuy, cvy;
unsigned short prginitialize, jitter-u, jitter-v;

) creg[2]; /* two flats per chip */

techniques described for the caster chip are included. The program is broken
into ChipDriver, Chip and LUTDriver functions as they might be in practice.
The C structure tha t forms the interface between the ChipDriver and Chip
functions is shown in Figure 10, which could well represent the caster chip
register definition. Because of the limitations of the eight bit planes of the
display hardware used, a maximum of 16 unique flats without tints or 8 unique
flats with only one level of tint are simulated. Appendix 2 contains manual
pages and example ASCII files for the model editor.

A first major design choice of the Synchronized Texture Casting
architecture is the limited number of flats in a particular hardware
configuration. The following scene characteristics influence the severity of the
limit. The techniques described for each characteristic are built into the model
editor t o reduce the number of flats where possible.

(1) The type of objects in the scene. Houses and office buildings can be made
in a straightforward way. Trees might appear difficult but, with some
theatrical license, they are considered cylindrically symmetric about the
vertical, and the flat with their image is rotated t o face the viewer.
Trucks and vans are expected t o take six t o eight flats, but the rounded
curves of most sports cars would require many more. Hence, there will
,be only flat-sided sports cars in the model world and only a couple
vehicles a t any time. The training value of a simulator is not expected
t o be compromised by the use of flat-sided objects.

(2) T h e degree to which unnecessary Jla,ts are ignored. Unnecessary flats
include those offscreen, backfacing parts of solid objects, and
reflectedkce flats not behind mirrors/holes. In moded, flats are rendered
only if they appear in the appropriate clip box - the screen for directly
visible flats and the bounding box of mirrorkce flats for reflected views.
Flats are also dropped if they are not visible through fog; flats with

opaque colors are dropped a t the visible range while flats with self-lit
colors are dropped a t 1.5 times the visible range. Flats labeled as
unnecessary when backfacing, such as either the normal or reverse
component of traffic signs, are not rendered.

(3) The degree to which groups oJ distant Pats are combined into single f lats.
Combining is a necessary tool to avoid antialiasing as well as to reduce
the number of flats. It was not attempted with the tools available.

4.4. Simulation Results
Figures 11 and 12 show typical driver's training views of a local area with

over thirty six flats. To approximate temporal averaging by the eye, each image
is a multiple exposure of three identical images except for different
pseudorandom generator initialization. Figure 13's overhead viewpoint makes
the construction by flats obvious; flats beyond those that could be handled by
the software simulation are outlined. Figure 14 shows a scene with
transparencies. Note that the flat images reflected by ice has been tinted a t the
edge of the ice and jittered an extra amount. The software simulation
unfortunately limits the tint levels t o one and the number of flats t o eight
unique opaque flats. In Figure 15, the same combination of a sign and signal
lights is rendered a t various distances relative t o the visual range to show
jitterltime averaging and rendering effects. In Figure 16, only one jittered
frame is shown to show the degree of jitter. Note the corona around signal
lights deep in fog due to strong antialiasing and extension of the monitor's
dynamic range. Figure 17 shows the worst case example found of scalloping, on
the far edge of the far roof. At that point, the maximum error of serial
division/interpolation is just' under one screen pixel.

Several animations were produced by recording frame pairs on a video
recorder as the eyepoint was moved in the model world. In the first, the
eyepoint was moved out of the driveway of the near right driveway of Figure
13, turned right and moved up to the signal. Figures 11 and 12 are from the
middle and end of this sequence, but without a rearview mirror because of the
16 flat software simulation limit. The number of flats in this local area of 600
feet of street was 43. The maximum number of flats visible in any frame was 20
(some outlined), and these flats fit into a maximum of 12 chips when vertical
overlap was considered. Note that another vehicle was not attempted. The
second animation was a drive down the model street with a ball flying out into
the street. Appropriate cautions were inserted after the ball as an instructor
might do if the ball, and the child that might follow it, was not responded to
properly.

4.5. Conclusions
The application of system integration techniques to the problem of ray

casting through textures in realtime has resulted in the design of a single card

-

Figure 11. Driver's view 1 (visual range 100m, ambient 84% max)

Figure 12. Driver's view 2 (visual range 100m, ambient 84% max)

I
~~,- """ ,~"'"~<~-"">

.

. "

.
'"'I,

.

"""''"',,,11

--- ~

20

,'i'
"',

,
II:
I,
"
I::'..,~I
I':II,

~,
.~I.~
'r
,.:~'
,~

1{

-

Figure 13. A distant view of a local area showing its construction.
Flats beyond the software simulation limit are yellow outlines.

-- ..

ii\
1illl

-~

Figure 14. A driver's training model scene with tints and glass.

21

,"
r
~,

t
~I.
e,
~...
1:I

.-

Figure 15. Jitter affects on a sign with signal lights at 0.05, 0.25,
0.50, 0.75, 0.90, 1.00, 1.10, 1.25 and 1.50 times the visual range.
f".--~..,

Figure 16. A repeat of Figure 15 without fog or time averaging.

"1'""""""~ ::
J;.c.('..Jto.:.. (r.

!"'~!: . 'III"'!~!i"i,,,,1

- II

22

':,
I:,I"'1',
L,,~II,,~il',":f
,i:I
ili

-

Figure 17. Scallops on the far roof due to 8 pixel interpolation.

for realtime image generation. The basic approach assigned each texture to a
chip with private texture memory and connected the chips with a wired-or bus
for distance arbitration and compositing. Other than requiring that all
rendering be by ray casts to textures, the basic approach requires no
performance compromises.

Many performance compromises occur in the implementation to make
image generation cost effective for automobile simulation. The results of each of
these design choices are described below in turn. The parameters used in the
software simulation would make a good starting point for driver's education.

(1) The animations used a maximum of 20 flats/window in 12 chip pairs.
This resulted in a satisfactory training model as shown in the animation,
though it was without other vehicles. Twenty caster chips are
recommended for a real implementation, which by extrapolation will
display over 32 flats.

(2) The assignment of two flats that didn't overlap horizontally to each
caster chip resulted in both sets of logic being used on average two
thirds of the time. This result was not very satisfactory, but two

flats/chip was required considering the size of flats relative to available
static RAMs.

Planar, full scale textures didn't appear to compromise the training
model. Vehicle models have not been tested; not all vehicle types are

expected to be easily modeled with planes.

(3)

-I
23

'I

::

I,

l~
,~
:.1
I'
!
I I

(4) Block floating point operation was satisfactory when used with 20 bit
indexing arithmetic.

(5) Serial division and interpolation were satisfactory when the length of the
interpolation was limited t o 8 pixels and 16 bits were used in the
interpolation arithmetic.

(6) Temporal antialiasing via jittering of the sampling grid was
accomplished with a small amount of additional hardware. As a n added
bonus, jittering provided corona around signal lights deep in fog. The
animation was not accurate t o a frame and so was not used t o judge
temporal antialiasing perpormance.

(7) The size of the private texture array memories of 256*128*4bits was
satisfactory. Fifteen colors plus clear was not a constraint in the
construction of the sample flats. If there are a few cases where more
element and/or color resolution are needed, several flats could be used
for the same surface.

The hardware design described and its software simulation demonstrate a n
effective approach t o a n inexpensive realtime image generator for driver's
training. With available system integration techniques, realtime ray casting t o
texture arrays can be integrated on a chip and compositing can be done on a
wired-or bus t h a t connects them. The rendering can include the signs, signal
lights, rearview mirrors, ice and fog essential t o the training. The software load
t o drive the visual system is based on tens of textures rather than tens of
thousands of polygons, which should allow display operation by single board
computers. A complete driving day t o night driving simulator would also need
the point source lights discussed next. Thus Synchronized Texture Casting can
be the basis of a n affordable realtime display system for driver's training.

Additional applications include those where realistic flat surfaces are a
major part of the model t o be rendered. Because Synchronized Texture Casting
can be combined with conventional scan line systems following the latter's
frame buffer, flat surfaces do not have t o be all of the model. Possible
applications include architectural CAD and presentations, three dimensional
cartoon backgrounds, ship and aircraft simulators and arcade games.

6. Future Work

The primary future work is t o design the caster chip, have it built and
modify the existing software t o support it. Several enhancements t o the design
might also be considered.

(1) The number of caster chips, and hence the number of flats rendered, is
limited by loading of the interchip bus. Multistage arbitration networks
are possible but would double the pinout. A better alternative would be
t o place several caster/^^^^ blocks on the same chip.

(2) The rendering approach described only covers daylight t o dusk because
it doesn't include light sources such as headlights and streetlights. The
interchip bus, however, might also drive point source lighting chips. The
lighting chip would use a mathematical description of a light cone plus
raster position and proximity t o calculate and add light t o any closest
opaque surface and fog that are in the light cone's volume. Combining
the illumination and fog outputs of the multiple point source chips
needed for night scenes is expected t o require analog current sums on a
bus connecting the point source chips. These sums would add to the
environment D/A converter outputs.

(3) Slightly curved texture surfaces (e.g. car sides and lawns) would make
the training model more realistic. Using quadratic equations for the flat
index's numerator and denominator might add two adders and nine
coefficient registers t o the caster logic. The texture map coordinates
could in general be mapped to a curved surface, but the mapping can't
be inverted t o provide texture coordinates as a function of screen
position. This can be demonstrated by noting tha t a ray could strike a
curved flat a t two points, providing two sets of texture map coordinates.
Partial. solutions can be found to the inversion problem. When
necessary, the surface could be cut a t ray tangent lines and rendered as
two partial surfaces fit t o quadratic equations.

6. References

(1) Abram, G., Fuchs, H., ' ~ s I - ~ r c h i t e c t u r e s for Computer Graphics",
Advances in Computer Graphics I, pages 189-204 (1986
EUROGRAPHICS).

(2) Campbell, G., Two b i tp ixe l Full Color Encoding, Computer Graphics,
vol 20, No. 4, p 215, Aug 1986.

(3) Cook, R., "Stochastic Sampling in Computer Graphics", ACM
Transactions on Graphics, Vol 5, No 1, Jan 1086.

(4) Deering, M., Winner, S., Schediway, B., Duffy, C., Hunt, N., "The
Triangle Processor and Normal Vector Shader: A VLSI System for High
Performance Graphics", Proc. SIGGRAPH '88, Volume 22, No. 4,
August, 1988.

(5) Eyles, J., Austin, J., Fuchs, H., Greer, T., Poulton, J., Advanced
Computer Graphics Hardware 11, Record of Second Eurographics
Workshop, 1987.

(6) Foley, J., Van Dam, A., "Fundamentals of Computer Graphics",
Addison-Wesley Publishing Co, Reading, Mass, 1984.

(7) Grimsdale, R., "Techniques for Real-Time Image Generation", Parallel
Processing for Computer Vision and Display Conference, University of
Leeds, Jan 1988.

(8) Heckbert, P., Survey of Texture Mapping, Computer Graphics and
Applications, Nov 1986.

(9) Schachter, B., "computer Image ene era ti on", John Wiley and Sons,
New York, 1983.

(lo) R. Tricker, "Introduction t o Meteorological Opticsw, American Elsevier
Publishing Co., New York.

(11) TMC2302 Data Sheet, CMOS Advanced Image Manipulation Engine,
TRW LSI Products, La Jolla, CA Nov 30, 1989.

(12) Williams, L., Pyramidal Parametrics, Computer Graphics, Vol 17, No. 3,
July 1983.

(13) Marek, J., Sten, T., "Traffic Environment and the Driver", Charles C.
Thomas, Springfield Ill, 1977.

BIOGRAPHICAL NOTE

The author was born 14 April 1942 in Portland, OR. He attended

parochial schools and graduated from the University of Portland in May 1964

with a Bachelor of Science degree.

In August 1964, the author began service as a Second Lieutenant in the

United States Air Force a t the Air Force Institute of Technology, from which

he graduated in 1966 with a Master of Science in Space Physics. For the bulk

of the next 18 years, he served as an Electrical Engineer in various

communications and spacecraft programs. He retired from the Air Force in

1984 a s a Major.

The author's nieces and nephews have averaged the destruction of one

car each in the process of learning to drive. One was lucky enough to hit the

last two feet of guard rail in an uncontrolled skid rather than go over the cliff

behind it. This situation indicated a strong need for more realistic driver

training. The author completed the requirements for the Master of Science

degree in September 1990. He is continuing the simulator project with a view

to making it a commercial product.

Appendix 1, page 1

SIGN EDITOR MANUAL

Synopsis: signed flat
Signed draws the objects described on each line of the ascii file flat.f (if

it exists), allows interactive editing of file lines and/or its drawing, and
finally stores the revised f1at.f and the corresponding binary file flat.F. Up t o
127 objects are drawn on a 512 horizontal by less t h a n 498 vertical pixel
screen. Binary flats have a fixed size of 256 by 128 pixels, so pixels are reused
or combined as needed t o adjust the arbitrary input aspect ratio t o the fixed
flat ratio. Each object entered has independent on and off colors but only 15
arbitrary color pairs and clear are allowed in the binary file. Object colors
may include a density (probability of coloring each pixel) t o give randomized
textures t o objects.

The objects drawn principally support highway sign construction, and so
consist of lines, arcs, text strings and outlines (the rectangular frames with
rounded corners around such signs). Arcs and outlines may be filled t o pro-
duce circles and rectangles with rounded corners. Object descriptions are pro-
vided in the first section of Table 1; an example of their use is attached. The
descriptions are those used in flat.f files and may also be entered from the
keyboard t o create new objects. Objects may be modified by entering a
replacement object description or object modification command (second table
section) while the object to be modified is selected (flashing). Selection is
accomplished by depressing the left mouse key with the cursor on the object;
current cursor position and the selected object's description are printed when
selecting. If the on and off colors are different, flashing due t o selection alter-
nates between the colors, otherwise between the given and a contrasting
color. Selecting the left mouse key over background removes selection. The
middle mouse key is used t o place construction marks, which can be used in
place of a coordinate pair in braces in the table descriptions. The right
mouse key is used t o move or copy objects or t o copy color; its function is
selected by the commands in the last table section. For each function, press-
ing the right key picks an object/color, and releasing the liey places the
object/color.

Definitions of Object Description Parameters:
\

(1) Screen positions and widths are entered manually in displayed pixel
units referenced t o the upper left corner of the screen with the x (hor-
izont al) coordinate first.

(2) Color is one or more function character/value components as indi-
cated in Table 2, where each value is two decimal characters. The
normal color use is to enter a red, green and blue va.lue for a opaque
or self-lit surface with an optioilal density. The density placement

. \ pattern is a pseudorandom sequence initialized t o the object position.

Appendix 1, page 2

Table 1. SIGNED Commands
Command 1 syntax 1 comment

Object Description Commands
flat's physical size in cm;
for auto bottom calc, use 0
radius can be mark on arc;
quad is sum of 1

for upper right quadrant,
2 for lower left, etc.

width of 0 fills the outline

rectangle aligned with screen
default left/top are 0/0;
width of 0 fills the outline
text may include white space

backgrd

arc

line
hunk
outline

text

b s i z e 2 y bottom-line bckcolor

a {x y){radius) quad width color

1 { s t a r t 2 y){end-x y) width color
h (s t a r t 2 y){opposite_x y) color
o {right bottom){left top) w color

T { s t a r t s y) color font text
Object Modification Commands

if no object selected, a t
cursor with last font/color

text

font
width
paint

t textz t r ing

f font
w width
p color

General Commands
delete selected object
undo last change
rebuild if change leaves hole
call vi on current ascii flat.f
shift and reduce all objects
quit
write file flat.f & flat.F
test flat compression
print compression results

and quit

delete
undo
rebuild
edit flat
shift all
quit
write
make test
print test

d
u
r
v
s x s h i f t x-attn ydhif t y-attn
q
x
y
z

\ Right Mouse Key Function Selection
pick object a t button push,

place copy on release
remove object a t push,

place it on release
pick color a t button push,

change color a t release
Colors same as picked flash

copy object

move object

group color

c

m

g

Appendix 1, page 3

Table 2. Color Description Components
Component Syntax Comments
opaque oRRGGBB RR etc are colored reflect coef (0 t o 99)
self-lit sRRGGBB RR etc are colored intensities (0 t o 99)
density dDD Set density t o DD (0 t o 99%)
force fFF Force color number t o be FF (0 t o 15)
clear c Color 0 always transparent
tint tTT[RRGGBB] Colors 1 to 7 enabled as group

for tint (TT: 10 t o 70%)
ice iII [RRGGBB] Colors 1 t o 7 enabled as group

for ice (11: 10 t o 70%)
glass g [RRGGBB] Color 14 enabled as glass (tint of 40%)
mirror m Color 15 enabled as mirror

Switched lights are entered as both on and off colors in that order
plus the color number td be assigned (forced) for switching purposes.
Transparent colors (clear, mirror, ice or tint) may also be
entered, which envoke the corresponding forced values and enables.
To avoid some potential flat-explosion situations (e.g. mirrors in mir-
ror images), transparents other than clear may be replaced during
rendering by opaques simply by removing the enables. Thus these
transparents may also be assigned an opaque color - the defaults are
light blues.

(3) Font is a string of the form X.YZ where X is the font style letter
(Bold, Regular and Italic) and YZ is the numeric size, with the pixel
height of a capitalized font letter about twice the numeric size. Only
those in the library are available.

\ Unsightly pixel choices can result from the use of character bitmaps and
aspect ratio adjustment. Hence a touchup mode is available during the con-
struction of binary files. Touchup allows pixels in the final flat t o be changed
after aspect ratio adjustment and before compression. During touchup, the
left mouse key picks an existing flat color and the center mouse key places it
while down. The right mouse key cycles through several 'brush' shapes as
indicated by the cursor shape; the largest square brush is an 'airbrush' that
changes pixels randomly in the cursor area. When fixing text, it is useful t o
make a short line of a color intermediate between foreground and back-
ground t o use while touching up characters. Touchup mode is ended with a
9 ' 9 9 7 9 q , x , y or 'z' letter with the assigned general command meaning or an 'r' t o
return t o object manipulation.

Appendix 1, page 4

Files:
The C structure of binary files as attached.

Font files are stored in the directory "/u/ray/ed/font".

Bugs:

Ends of lines are horizontal (line slope>63 ") or vertical (slopeC26 ") else
45" slopes. Widths are measured along the edge described. The simplest way
t o cleanup the ends of angled lines is t o place background lines over the
unwanted parts a t the desired angles.

Signed positions should be specified in physical units from the screen
center rather than pixels from the top left corner t o simplify interaction with
moded. Objects should be drawn to the flat with its fixed aspect ratio and
reflected t o the screen with the necessary aspect ratio adjustment, rather
than drawing to about the physical aspect ratio and fixing the aspect ratio
later, so tha t adjustment errors are visible immediately.

'

Characters are expanded vertically by 3 lines t o partially fix thin hor-
izontal strokes in the available font bitmaps. Robust outline fonts should be
used; they will be necessary if the aspect ratio must be variable as when
drawing t o flats.

Appendix 1, page 6

Flat description Ale example: signa1.f

b 600 125129 c
1 0 10 511 10 12 0181818
1 0 10 511 10 12 0242424d50
1 30 33 30 0 3 0303030
1 311 33 311 0 3 0303030
1 31 120 31 30 32 0181818
1 311 120 311 30 32 0181818
a 31 45 10 15 10 f02s930000o450000
a 311 45 10 15 10 f03s9300000450000
a 31 105 10 15 10 fO4s0093000004500
a 311 105 10 15 10 f05s009300o004500
a 31 75 10 15 10 fO6s9393000454500
a 311 75 9 15 9 f07s9393OOo454500
1 90 31 90 4 3 0303030
1 250 31 251 4 3 0303030
1 80 47 261 47 34 0006012
T 94 57 f100727272 B.10 COMPTON
o 262 6 4 , 81 30 3 f100727272
1 491 119 49 1 60 - 28 0181818
1 485 125 511. 125 4 0181818
1 485 54 511 54 4 0181818
1 491 128 491 49 6 0181818
a 492 105 10 15 10 fO8s6969690333333
a 492- 75 10 15 10 fOQs9360000453000

Binary Flat structure description file: flatoh

struct FLAT {
, short magic; /* magic: 0720 */

unsigned char s-type; /* color switch type */
enum stypes { self-lit=32,opaque=l6,ice=8,mirror=4,glass=2,tint=l };

unsigned short color [l G] 121; /* color lut entries: 0 on, 1 off */
/* color bits: 15 self-lit flag, 14-10 red, 0-5 green, 4-0 blue */

unsigned char ccolor[128*256]; /* max (uncompressed) color array */
/* fi1e.F files are only as long as needed when compressed */

1;
/** color[0][x] is always clear, so any opaque color values are unused;

they are used for default flat x and y sizes, in centimeters **/

Appendix 2, page 1

MODEL EDITOR MANUAL

Synopsis: moded [initdle]
Moded builds an image from the flats listed in model files and

interactively entered. It uses the flat name and position/orientation/size to
render the binary flat.F texture arrays with hidden surface removal plus
shadows/tints, one mirror and one ice surface.

Each flat in the model is potentially rendered three times, once in the
direct viewing pyramid, once in the mirror-reflected viewing pyramid and
once in the ice-reflected nether world. Mirrorhce reflected flats are only
rendered when behind a flat with mirrorhce color types in the direct view.
The mirror and ice flats should be the first in a scene so tha t the mirror and
ice reflected scenes will not take excessive rendering time. To avoid
additional viewing pyramids, mirrors and ice colors are only enabled in the
direct view, otherwise they appear as opaque.

Each screen pixel is represented by direct and mirror reflected colors as
well as direct and reflected distances for the closest opaque and shadow.
Only one shadow intensity is available in the software simulation, and it still
requires two shadow arrays and half of the color lut. The model file initfile

b

is called when the program is started t o initialize the screen, visual range,
lighting and viewpoints., To speed rendering, shadows are not checked on
every pixel write, but can be incorporated with the build command. Fog is
approximated by modifying pixel colors based on each color's average
distance from the viewpoint; thus it requires the screen t o be scanned for the
average by color. Again for speed, fog is not incorporated after every flat is
placed, but on the visual range command. Neither build or visual range is
destructive, qdditional rendering may then be done, and the commands
repeated. Build and visual range are updated automatically after a model
command, and so are not usually called explicitly. During rendering,
jittering of the array sample position is a function of a pixel's range and
current visual range; an exactly jittered image when visual range is modified
requires rerendering the entire model. Otherlvise visual range, ambient light
levels and the switch settings for each flat's internal lights may be varied
i~teractively a t any time.

Table l i l ists the commands used to render flats. An example of their use
in m.init and a model file are appended. Rightmost parameters not entered
are dlfaulted t o the values indicated. Parameter definitions are:

(1) X, y and z are integers specifying a flat center's position in
cenkimeters in the world model.

(2) Ax, ay and az are integers each specifyi~lg a rotation in degrees about
their axis; together they specify an orientation in the world model. Ax

/

and az follow the righthand rule, ay the left. For cylindrically
symmetric objects, '*' is used for az and the angle is automatically

Appendix 2, page 2

calculated to make the flat turn toward the direct viewpoint. To
avoid rendering a flat when it is backfacing, preceed its az with '*'.

(3) Sx and sy are floating point flat sizes. A flat's sizes are defaulted to
those in the binary flat file's header.

(4) Switches is an octal number where each bit position controls the
on/off state of that numbered color in (all) flats. On and off are not
required to be self-lit and opaque respectively, opaque and self-lit
colors may be attached independently to either state using signed.
The switch command with no settings toggles all switches.

Bugs:

Because of bitplane limitations, only 1 G flats can be rendered a t a time.
If tints are rendered, only one shadow tint level is rendered (glass and
tint>3) and only 8 flats with opaque elements are possible.

Fog affects are based on the average distance(proximity) of a color
rather than on each pixel's distance. This is apparent in flats with a large
range of distances, such as the street under the eyepoint.

The switch command simultaneously controls switches in all flats just to
simplify switch value entry.

MODED Commands
Name Syntax \ Comments
flat f F x y z az ax ay sx sy render texture array F.F;

positions and angles default t o 0
flat with ice i F x y z az ax ay sx sy render ice array F.F
direct VP. d x y z az ax ay render from this position/orientation
r e f l e ~ t ~ d VP r x y z az ax ay position/orientation relative t o direct
model m file use lines of the file as commands
build , b show directlreflected shadow affects
ambient a integer re build color lut with ambient [O-991
switches s settings(in octal) rebuild color lut with switches
visual range v y(in centimeters) rebuild lut with fog's visual range
clear c clear screens, arrays and luts
type t file type a file
Prg p prginit(in octal) default initialization is random
quit 9

Appendix 2, page 3

Initialization file example: m.init

C

d o 0 0 0 0 0
r 12 80 12 165 12 0
s 44
a 84
v 31000
inside car
f mirror 8 35 10 -10 -10 5 18 6

Model description file example: figure.14

foreground
i street 0 600 -120 0 90 0
f lawn2 0 1374 -77 0 85 0
f front2 -73 1743 115 0 0 0
f roof2 -73 1860 399 0 45 0
background
f 58th 325 -900 225 180 0 0
f signal -155 -750 210 180 0 0
f signa1.s -90 -870 180 180 0 0
car parts
f car.shadow 100 900 -115- 0 90 0
f car.r 100 820 .-56 0 . 2 0

