
NDL
A NetworkDescription Language

Mark Alan Johnson

B.S.E.E Oregon State University, 1980

A thesis submitted to the faculty
of the Oregon Graduate Institute

of Science and Technology
in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science & Engineering

June, 1990

The thesis "NDL: A Network Description Language" by Mark Alan Johnson
has been examined and approved by the following Examination Committee:

Daniel Hammerstrom, Thesis Research Advisor
Associate Professor

Department of Computer Science and Engineering
Oregon Graduate Institute

Ron Cole

. Associate Professor
Department of Computer Science and Engineering

Oregon Graduate Institute

William Bain Jr.

Adjunct Assistant Professor
Intel Scientific Computers, Inc.

ii

TABLE OF CONTENTS

1. Introduction ..
Mot iva t ion ..

Goals ...
Neural Networks

The CAP Simulation Environment ..

Overview of the Thesis

2. Re lated Work

P3 and its Plan Language ..

Hycon
GRADSIM ..

ANSpec
The Rochester Connectionist Simulator

3. The NDL Model
The Connection Node

The Pictorial Network Graph ..

Representing and Labeling the Network Graph
The Network Graph Components ..

The Ensemble

The CN

The Site ...

The Link

Aggregates
The Attribute Base

The Attribute Reference
The Attribute Access List ..

Generaliza tions

Scopes

4. Creating A Network Graph ..

Init iali zing NDL ...

Creating the Network Components ...

Creating the Ensemble
Creating the CN

Creating the Site

...

..

...

.. ...

.............

...

... ...

... ...

..

iii

1

1

2

3

4

7

8

8

10

11

12

12

14

15

16

16

19

20

21

21

22
- .

23

24

26

26

28

29

30

31

31

32

32

34

Creating Links
Network Component Example

The Aggregate
The At tri bute Base

At tri bute Groups
Attribute Lists
Attri bute Record :

Attribute Access List

Assigning Attributes to the Network Components

Creating the Generalization

Scopes

Outputting Network Graph Information ...
5. The NDL Environment

The NDL Include File

The NDL User Interface Library...

Application Specific Libraries

The User Program
Output Fil te rs ..

6. Layered Networks

The Layer Model
Interconnection Schemes
Layer Example ...

7. A Pyriform Cortex Model
The NDL Model

The LOT

The Patch

Using the NDL Model
Environment Initialization

Setting the LOT Parameters ..

Setting the Patch Parameters ..

Cre ating the Patches ..

Outputting A Pyriform Network ..

Comp Bing The Program
The Pyriform Model Implementation ...

8. Future Work

Gra ph-Grammars ...

.
..

...

.....................................

... ...

.

.

.. o..o.o.o.o...o..o.o.o

o..o.........

... o o...o...o.o o o...

o...o...o.o.o.o...o o o..o..o..o.o.o o.o.o.o o.o..o.o.o.o.o

.o.o....o...o o o.o o.o.o.o..o...o o...o...............

Recognizersvs. Generators. .o...o

.

35

36

38

38

40

40

41

41

42

43

44

46

49

50

51

51

52

52

53

53

56

58

61

62

62

65

65

66

66

67

68

68

69

70

73

74

74

~-.--

A Typical Graph Grammar Paradigm : 75

A Graph Editor Using Graph Grammars 76

Graph Grammars and NDL 77
9. Summary and Conclusions 79

v

LIST OF FIGURES

1.1 Generic Neural Network CN Model..

1.2 The CAP Simulation Environment ...

3.1 The Connection Node

3.2 The Network Component Tree ...

3.3 Network Component Tree vs. Network Graph
3.4 The At tribute Base

3.5 The Attribute Base Data Structures ..

4.1 Example: Network Components ..

4.2 Creating Network Components ...

4.3 Creating Network Components Using Aggregates
4.4 Creating Network Components Using Generalizations

4.5 Creating Network Components Using Scopes
4.6 Network Graph for Scope Example ..
5.1 The NDL Program Development Environment

6.1 Types of layers in the Layer Environment

6.2 Interconnection Schemes between Layers

6.3 A Layer Environment Program Example ..

6.4 A Layer Network Example ...
7.1 A Olfactory Pyriform Cortex Model...

7.2 The Pyriform Cortex Model CNs ..

7.3 An Example Pyriform Model Program ..

7.4 The Pyriform Model Data Structure Diagram
8.1 A Binary Tree Graph-Grammar ...

vi

4

5

15

17

19

25

27

36

37

39

44

45

47

50

55

57

59

60

63

64

69

71 ~.

76

Appendix A

Appendix B
Appendix C

APPENDICES

BIF'File Format
BIF'Environment

Pyriform Environment

vii

82
85
92

ABSTRACT

NDL
A Network Description Language

Mark Alan Johnson, M.S.
Oregon Graduate Institute, 1990

Supervising Professor: Dan Hammerstrom

NDL is an environment which supports the development of network graphs

for massively parallel computer architectures. Formally NDL generates

attributed undirected multigraphs. Data, procedural, and control

abstractions above those provided by the implementation language C++

are utilized. Aggregates, generalizations, and scopes are used for applying

operations on and in the graph. Attributes are used for augmenting the

graph components. The attributes are also used as a mechanism for

referencing the network components. NDL output is flexible allowing graph
/..

structure, attributes, and graph construction data to be output. This

flexibility permits users to tailor the output into formats acceptable by

other environments.

viii

1

Chapter 1

Introd uction

A new direction in computer research is the study of massively paral-

leI computer architectures. This research is commonly referred to as con-

nectionist or neural network research. As with most research today, com-

puter simulation is essential for the development, test, and demonstration of

new ideas. The research involving neural networks is no exception. Part of

the process of designing a neural network simulation is the specification of

the network's topology. For small regular networks, this is not a problem.

However, as the networks get larger with more complex structure, the

specification of the topology using conventional programming languages like

C and Pascal becomes very tedious. This thesis describes an environment

for describing these complex topologies.

Motivation

The Cognitive Architecture Project (CAP) at the Oregon Graduate

Institute (OGI) is building a neural network simulation environment. The

first step taken in generating a simulation is to create a network description

file defining the network's topology. This file is referred to as a BIF

2

(Beaverton Intermediate Form) file. The other tools in the simulation

environment read the BIF file. Currently the BIF files are constructed by

hand or by a program specifically written for a particular network topology.

These primitive methods precipitated the need for a tool to automatically

generate the BIF files from some sort of specification.

Goals

This thesis has four goals. The first and most obvious goal is to pro-

duce BIF files. Associated with this goal is the desire to have a tool which

allows the user to construct large complex network topologies with relative

ease. The mechanisms should be easy to use, but powerful. Control, data,

and procedural abstractions should be utilized to abstract away the tedious

underlying details. The abstractions should be consistent with the model

presented.

A second goal is to allow for extensibility. Many new neural algo-

rithms and models are being developed every day, so the NDL environment

should easily support extensions and improvements.

The third goal is to create a network generating tool which is flexible

enough so as to not just create BIF files. Some other simulation environ-

ment might have different requirements. Flexibility in this dimension also

makes NDL easier to maintain as changes occur in the BIF format.

3

A fourth goal is to investigate graph grammars as a means for gen-

erating network graphs.

Neural Networks

A typical neural network model consists of a large number of com-

puting elements called connection nodes (CNs) interconnected to each other

with links. The CNs compute some simple arithmetic or logic function on

the inputs they receive from their input links. The result of the computa-

tion is communicated to other nodes in the network via output links. The

output links of one CN are input links to another. In most, neural network

models today, all the CNs perform the same simple function. This is, how-

ever, not a requirement. A network could consist of a heterogeneous mix-

ture of CN types, each type performing a different function. The

function(s) performed by the CNs determine in part the overall behavior of

the network.
..-

Each link in the network has a weight associated with it. The values

of these weights and the connectivity given by the links add to the behavior

of the network. It is often stated that the weights comprise the knowledge

of the system.

The generic CN model is shown in figure 1.1. The inputs, Xl - xn'

are multiplied by their respective weights wI - Wn. The summed value is

4

inputs
y = x Gt) . output

Figure 1.1 - Generic Neural Network CN Model

presented to the CNs function x"(t), and the result is transmitted to otherJ

CNs in the network.

The CAP Simulation Environment

At the Oregon Graduate Institute (OGI), the Cognitive Architecture

Project (CAP) group is studying a"nd evaluating several different neural net- ","

work models. To aid in this endeavor, a neural network simulation environ-

ment has been created using the Intel iPSC parallel system as the hardware

platform. The purpose of this simulation environment is to provide a short

idea-simulation cycle for neural network experiments, where it takes little

time to go from an idea to a working simulation model. Another purpose of

the environment is to provide feedback on the feasibility of the model in

VLSI.

5

A typical simulation using the tools is divided into four steps. The

first step requires the user to define the network graph. NDL performs this

function. The user writes a NDL program which is compiled and made into

an executable program. By running the program, the desired BIF file is pro-

duced.

<"
. -~..

IPse Simulators

Figure 1.2 - The CAP Simulation Environment

6

The second step involves a program called the MAPPER [Bai88].

The MAPPER reads the BIF file describing the network's connectivity and

another file called the PAD. The PAD file contains architectural

configuration information describing the multi-processor hardware being

used. The goal of the MAPPER is to efficiently map the CNs of the neural

network model being simulated to the hardware nodes of the hypercube.

The output file created by MAPPER is called MIF (Mapped Intermediate

Form).

The third step introduces errors into the network graph simulating

possible VLSI manufacturing faults. The program, which performs this

function, is called FLTSIM [May88]. FLTSIM reads the MIF file, a silicon

technology file, and a file containing fault parameters. The output file pro-

duced by FL TSIM is called a fWF file.

The last step supplies the network with functions and control, allow-

ing the model to be simulated and analyzed. Two programs perform this .-

function, ANNE (Another Neural Network Emulator)[Bah88], and HAS

(Hardware Architecture Simulator)(Jag89]. Al'JNE is a general purpose

simulator which can execute a wide range of neural network models. HAS is

a more special purpose simulator which emulates how a model will behave

on wafer-scale hardware. Figure 1.2 outlines the CAP simulation environ-

ment.

7

Overview of the Thesis

Chapter two describes some of the related work being done in neural

network simulation environments, concentrating on the NDL counterparts

within those environments. Chapter three introduces the formal concepts

used by NDL. Chapter four describes the NDL functions and how to use

them to create a network graph using the concepts introduced in chapter

three. Chapter five describes the NDL environment. Compiling a program

and application libraries are discussed. Chapter six describes an NDL

application environment which generates layer topologies. Chapter seven

describes another NDL application environment which generates networks

based on a pyriform cortex neural network model. An example is given of

how NDL can produce complex connectivity patterns in a network graph.

Chapter eight discusses future work. Chapter nine summarizes and con-

eludes the thesis.

8

Chapter 2

Related Work

There are many neural network simulation environments in existence

today. Most have a NDL counterpart, but they have structured its role in

their respective environments differently. The method for specifying the

topology in each environment can be reduced to one of three approaches.

The graphical approach has the user construct the network interactively on

a graphical display terminal. The canned approach has the user specify the

architectural parameters of a known topology. The declarative approach

has the user specifying the topology with some type of language specifically

written for generating networks. This is the approach taken by NDL. The

rest of this chapter describes some of the NDL "counterparts" in other
, :.

neural network simulation environments.

P3 and its Plan Language

P3 is the Parallel Network Simulating System introduced in the book

Parallel Distributed Processing [RuM86]. Its major constituents are the

plan language, the method language, the constructor, and the simulation

environment. The plan language describes the underlying graph structure

9

in the network. The units are described and the connections between them

are specified. In P3, this description is called the "plan". It is the "counter-

part" to NDL. The method language describes the functions to be per-

formed by the units. The constructor links the plan and the methods

together and forms the program which simulates the network. The simula-

tor environment runs the program and provides feedback to the user for

observation and analysis.

The plan language provides three fundamental constructs which

enables the user to construct the underlying graph structure of the neural

network. The UNIT TYPE construct creates a unit type and describes it.

The UNIT construct instantiates either single or sets of UNIT TYPEs and

assigns them a name. The CONNECT construct makes the connections,

and is utilized within language provided control constructs.

Each unit has two classes of parameters. The unit parameters are

associated with the function of the unit, and the terminal parameters are

associated with the connections. The unit parameters are used only by the

function performed by the unit, which is described in the method language.

The unit parameters constitute the unit's local data accessible only by the

unit's function. The terminal parameters are values like the weights

assigned to the connections. These data are accessible to functions outside

the unit and are therefore considered global data. Both types of parame-

10

ters are defined when the UNIT TYPE is defined, and changed by the simu-

lator environment during the course of a simulation session.

A program written in the plan language consists of two segments.

The first segment defines the unit types using the UNIT TYPE construct.

The second segment instantiates and connects the units with the other two

programming constructs, UNIT and CONNECT. The CONNECT state-

ments are usually buried deep within nested loops of the implementation

language Lisp.

For debugging purposes, the user will want to know that the network

is connected in the manner desired. A display is provided by P3 in which

the user interacts with the P3 space, enabling him to trace out connections.

Hycon

Hycon is a general purpose. connectionist simulator that runs on the

Intel iPSC parallel processor system [Pla87]. The model uses a network of

,-;.

units connected together by links. The network is constructed by organizing

the units into groups. A group can consist of one to many units. The units

are given an index within a group by using consecutive integer numbers.

To specify the interconnection between two groups, three mechanisms are

used. Complete interconnect links all the units in one group to all the units

in another. Random interconnect links a certain percentage of units from

11

one group to a percentage of units in another group. Point to point inter-

connect links a specified unit from one group to a specified unit from

another (or same) group.

In fIycom, the simulation is run in phases. The temporal sequencing

of phases constitute a simulation. The units are referenced in these phases

by the group they belong to. A phase could specify that a group of units

are to compute their transfer function. The process of constructing the net-

work is therefore tied to the process of executing the network.

GRADSJM

The GRADSIM neural network simulation environment specializes in

iterative gradient optimization techniques [Wat88]. It is a collection of C

software modules which when compiled and linked together form a general

purpose connectionist network simulator. The structure of the network

used in GRADSIM is specified by an ASCII file. The file is called the net-

work descriptor file and specifies both connectivity and network characteris-

tics. The files are produced using text editors and Unix shell scripts. This

is probably the most primitive form of generating a neural network graph

description.

12

ANSpec

ANSpec provides a virtual processing environment where each ele-

ment of a neural network is allocated a virtual concurrent processor[Kra].

It is based on Hewitt's Actor Model of concurrent processes. The environ-

ment includes a high level simulation environment, and an operating system

which is uniquely tailored to implement the Actor Model. There is no

separate software module that generates a network structure describing the

connectivity. Instead, the structure is contained in the communication pat-

terns between the concurrent processes allocated to each of the processing

elements. This form of describing connectivity and network graphs is

unique from the other simulators, and requires the user to be familiar with

a new programming methodology.

The Rochester Connectionist Simulator

The simulator being used at the University of Rochester is probably

the most publicized [Fan86]. It is based on the BBN Butterfly Multiproces-

sor. The network is built in the simulator by a C program written by the

user. The primitive functions needed to construct the network are supplied

via a library. The basic components in the model are the link, the site, and

the unit. The site is a concentration point for connections on a unit. Assa-

ciated with each of these components is a data field. Space must be alIa-

13

cated for the units before network construction begins. A MakeUnit func-

tion creates a unit. The units are assigned integer indices as they are

created. A MakeSite function creates a site on a specified unit. A MakeL-

ink function creates a link between two specified units and their respective

sites. The network is constructed by first allocating space, creating the

units, creating the sites on the units, and then creating the links between

the sites on the units. Creating the links is usually done in tight loops.

The user can construct sets of units for display purposes. Set func-

tions are included allowing sets to be created from existing sets using set

theoretic operations.

14

Chapter 3

The NDL Model

This chapter presents the NDL model. Formal notation is introduced

for the fundamental mechanisms used in NDL. By having this notation,

formal descriptions can be made of the algorithms that generate network

graphs. The notation therefore eliminates potential ambiguity and allows

the study of the network generating algorithms as mathematical

objects[Dij76].

First the connection node (CN) will be introduced. It represents the

fundamental building block of the NDL model. It will be shown how NDL

uses a graph as a pictorial representation of a network and ordered rooted

trees as a mechanism for assigning labels to the elements in the network.

The components of the network graph represent the physical elements in

the network graph. The Attribute Base and the attribute access list provide

a mechanism for augmenting the network graph components with attri-

butes. The generalization is used to perform an operation on a set of com-

ponents by virtue of the attributes contained in a component. The aggre-

gate is used for performing an operation on a collection of components by

virtue of their membership in sets. The scope, which utilizes both the

15

aggregate and generalization, is discussed last. Most of the names used for

the concepts were borrowed from reports about hypertext [CaG88J[Gar88].

The Connection Node

The connection node, hereby denoted CN, is the fundamental ele-

ment in an NDL network graph. The body of the CN, shown in figure 3.1,

represents the processing part of the node. The sites on the body are con-

nection points for the links and allow the body to differentiate inputs and

outputs by virtue of their connection point on the CN. The links make up

the connectivity of the network graph. Associated with each link is a

:.::::::,"'..7 UNKS

Figure 3.1 - The Connection Node

16

weight [Fan86]. An ensemble is a disjoint set of CNs.

The Pictorial Network Graph

A- network graph is pictorially represented by drawing the CNs and

connecting them with links. This allows both the person drawing the graph

and the viewer to communicate such things as network topology and con-

nectivity. Phrases like "the CN in the second layer on the far right" and

"the site on the bottom of the third CN in the middle layer" would be a

way of describing the network components. It would not, however, lend

itself well for creating operations on a network graph programmatically or

algorithmically. Therefore, the motivation for a systematic method of label-

ing and representing the network graphs arises.

Representingand Labeling the Network Graph

If a picture of an arbitrary network graph was shown to two people, -.<

chances are they would each label the graph differently. Certainly a canon-

ical method could be employed which would get both people to label the

graph consistently. But what if another arbitrary network graph was

presented? Would the method be appropriate? For example, a method

which worked for graphs represented in two dimensions might not work for

graphs in three dimensions. Another problem is that slight changes pictori-

17

network

ensembles

CNs

sites

links

Figure 3.2 - The Network Component Tree

ally could change dramatically the labeling of the elements without chang-

ing at all the graph and its connectivity.

In NDL, this problem is addressed by labeling the graph elements in

the order they would be drawn. A description is required which details the /

algorithm for drawing the graph. For example, suppose a network graph

consists of two layers of nodes. The algorithm for drawing the graph might

be to draw the bottom layer first, then the top layer. In both cases, the

nodes are drawn left to right. Note that this is not the only algorithm for

drawing the example network. Somebody else might prefer to see the top

layer drawn first and done right to left. The important concept here is that

to relate the network description generated by NDL to a pictorial

18

representation, this drawing algorithm must be known.

As each element is added to the graph, it is given a unique label. In

addition, as each element is added to the network graph, it is entered into

an ordered rooted tree. The elements can therefore be uniqu.ely identified

by the labeling scheme shown in figure 3.2. This labeling scheme is referred

to as the universal address system. The ordered rooted tree in NDL is called

the Network Component Tree. To uniquely identify an ensemble, only one

index is required. To uniquely identify a CN in the component tree, two

index references would be required. At the bottom of the network com-

ponent tree are the links, which take four index references to uniquely iden-

tify. The four indices are simply the path elements encountered as the tree

is traversed from the root to th~ leaf (link). The network node is left out

since it can be implied for all references.

A one-to-one mapping does not not exist for a pictorial network

graph and its Network Component Tree. The mapping comes from the

order of construction of the pictorial network graph. By knowing the order

of construction of the pictorial network graph, leverage can be applied using

tree and graph transformations as operations on the network component

tree. In other words, it is much easier to write algorithms involving an

ordered rooted tree than an arbitrary graph. These operations are typically

the creation of the links in a network graph. Figure 3.3 shows a network

19

graph and its corresponding network component tree. The network node

represents the root in the component tree. Beneath the network node is the

ensemble node. The CNs were added to the graph left to right, bottom to

top. The sites were added to the CNs bottom to top. The links were added

from the bottom up, left to right.

The Network Graph Components

The physical structure of a neural network is given by its underlying

network graph. In NDL, the network graph consists of four types of objects.

They are the ensemble, the CN, the ~it~, and the link. They are, and have

previously been, referred to as the network components.

Network Graph

Network Component Tree

.-

Figure 3.3 - Network Component Tree vs. Network Graph

20

The Ensemble

In neural network models, groups of CNs representing related con-

cepts or performing similar functions typically have a high degree of connec-

tivity. The networ~ graph therefore has a direct correlation with the func-

tion of the different constituents making up the network [GhH88]. In NDL,

the ensemble was developed to capture these concepts.

An NDL network graph consists of an ordered and indexed set of

ensembles. The ensembles are assigned natural number indices starting

with zero and incrementing consecutively. Each ensemble is a subgraph of

the entire network graph. Each ensemble is also disjoint from the other

ensembles. That is, any CN existing in an ensemble will not exist in any

other ensemble. A special situation exists when there is only one ensemble,

in which case the ensemble contains all the CNs in the network graph. An

ensemble is denoted and referenced by

ens[i]

where i is the index of the ensemble in the network graph. Associated with

each ensemble is an attribute list and a set of CNs. In the network com-

ponent tree, the ensembles are represented by the the direct children of the

root network node (second layer nodes), and are numbered from left to

right. A set of n ensembles is denoted by

ENS = {ens[O), ens(I),...,ens[n-l]}

21

In NDL, the network is a set of ensembles.

The CN

Each ensemble in the network graph consists of an ordered and

indexed set of CNs. The CNs are assigned natural number indices starting

with zero and incrementing consecutively. A CN is denoted and referenced

by

cn[i,j]

where i is the index of the ensemble the CN belongs to in the network

graph and j.is the index of the CN in the ensemble. Associated with each

CN is an attribute list and a set of sites. In the network component tree,

the CNs are represented by the direct children of the ensemble nodes, and

are numbered from left to right.

The Site
-

Each CN in the network graph consists of an ordered and indexed set

of sites. The sites are assigned natural number indices starting with zero

and incrementing consecutively. A site is denoted by

site[i,j,k]

where i is the index of an ensemble in the network graph, j is the index of a

CN in the ensemble, and k is the index of the site in the CN. Associated

22

with each site is an attribute list and a set of links. In the network com-

ponent tree, the sites are represented by the direct children of the CN

nodes, and are numbered from left to right.

The Link

Each site in the network graph consists of an ordered and indexed

set of links. The links are assigned natural number indices starting with

zero and incrementing consecutively. A link is denoted by

link[i,j,k,l]

where i is the index of an ensemble in the network graph, j is the index of a

CN in the ensemble, k is the index of a site in the CN, and 1 is the index of

the link on the site. Associated with each link is an attribute list, weight,

and connection information. The connection information references the

other end of the link. A link can be either single-ended or double-ended. A

single-ended link is an edge in the network graph with one endpoint /

undefined. There would be no connection information in this case. A

double-ended link is an edge in a graph with both endpoints defined. The

connection information is the other endpoint in this case. The double ended

link is actually two links in the network component tree, each pointing to

the other. In the network component tree, the links are represented by the

the direct children of the site nodes, and are numbered from left to right.

23

Aggregates

An aggregate is an mechanism and abstraction by which a collection

of objects can be referenced by a single identifier. Once the aggregate is

defined, an operation can be applied to all elements of .the aggregate. An

aggregate in NDL is a set of network component indices. A network com-

ponent index is its index under its parent node in the network component

tree. It should not be confused with a component's reference. A

component's reference uniquely identifies it from the other components.

The index does not. An example should make this concept a .little easier to

grasp. A site is referenced by an ensemble index, a CN index, and a site

index. The reference uniquely identifies one site in the tree. Now consider

that the site is referenced by an ensemble index, an aggregate of CN

indices, and a site index. Suppose that the aggregate of CNs was defined as

the set

{O,2,4,6}.

The site reference now identi.fies 4 sites. Each site is on a different CN, the

CNs specified in the set, but in the same ensemble. This concept can be

taken even further by making the ensemble constituent of the site reference

an aggregate. In fact all three constituents of the site reference can be

made an aggregate. It is also valid to use an aggregate previously used as

the CN constituent in a reference as the ensemble constituent of a refer-

~
f .

24

ence. The aggregate is simply a list of integer indices. These concepts can

also be applied to link, CN, and ensemble references.

The Attribute Base

The Attribute Base is a hierarchically organized system for storing

attributes which are to be assigned to the network components. To create

a BIF file, a specific attribute base is constructed containing the attributes

used by the BlF model. The hierarchy consists of groups, lists, and records.

Figure 3.4 shows the attribute hierarchy. The attribute base is constructed

_. top to bottom. The reason for having the attributes is that they can give a

. component some semantic meaning, allowing each to take on a set of unique

properties. The attributes also provide a mechanism and abstraction above

a component's reference identity by which to reference it. This means that

a component can be referenced by virtue of its attribute content.

NDL's attribute base was implemented using a three level hierarchy.

A n-Ievel hierarchy would have been better and less restrictive, but much

harder to implement.

The attribute record is the fundamental unit in the Attribute Base.

It is the information carrying entity. In figure 3.4, the attribute records are

the terminal nodes in the Attribute Base tree. An attribute record consists

of its name and a value. The value can be either a character string,

25

I reC~rd21 I reC~rd21 I reC~rd21 I reCOrd21

I reC~rd31

Figure 3.4 - The Attribute Base

integer, or floating point number.

The attribute list is a collection of attribute records. It provides a .

way of organizing attribute records. An attribute list consists of its name

and the records it contains.

The attribute group is a collection of attribute lists. It provides a

way of organizing the attribute lists. An attribute group consists of its

name and the lists it contains.

26

The Attribute Reference

The purpose of the attribute reference is to provide a mechanism for

which to reference the records. An attribute reference is a 3-tuple, and is

denoted as

ref = (group,list,record)

Attribute references can point to an attribute group, an attribute list, or an

attribute record. If the record element is omitted, then the records refer-

enced are all those contained in the list specified by the group and list ele-

ments. If both the record and list components are omitted, then the records

referenced are all those contained in all the lists contained in the group

specified. If all three elements are omitted from the reference, then it is

assumed that all the records in the attribute base are referenced.

The Attribute Access List

The Attribute Access List (AAL) is a list of attribute references. It -

provides a mechanism for specifying an arbitrary collection of attributes

from the Attribute Base. It should not be confused with the attribute list,

which is a collection of attribute records. The attribute access list can be

denoted as

27

attribute base

",,",p

lists

list

next

next

-
-

attribute access list

value

-

Pointers to above attribute

base. Can point to a group,
list, or a specific record.

Figure 3.5 - The Attribute Base Data Structures

The attribute access lists are assigned to the network components as

they are created.

28

Generalizations

A generalization is a mechanism and an abstraction by which a col-

lection of objects with. a similarity in attribute content can be referenced by

a single identifier. A generalization in NDL is an attribute. access list used

for referencing the network components. A component is said to satisfy a

generalization if it contains all the attribute records the generalization

specifies. For example, all the CNs in a graph with a particular set of attri-

bute records can be referred to with a special identifier assigned to them.

Whenever the identifier is used in an operation, only those components

which satisfy the generalizations predicate are included in the operation.

The generalization can be denoted as

The generalization is used in much the same manner as the aggre-

gate was used in the network component reference. As in the aggregate, an
~

example should make this concept a little easier to grasp. A site is refer-

enced by an ensemble index, a CN index, and a site index. The reference

uniquely identifies one site in the tree. Now consider that the site is refer-

enced by an ensemble index, a CN generalization, and a site index. The site

reference now identifies a site on each CN in the ensemble specified which

satisfies the CN generalization.

29

Scopes

A scope is a mechanism for combining the functionality provided by

both the aggregate and the generalization. It takes an aggregate, specifying

a set of component indices, and performs an opera,tion on only those indices

which satisfy a generalization. It is a way of saying "connect a CN to all

the CNs in aggregate A which satisfy the generalization B." A scope can be

denoted as a 2-tuple.

scope = (aggregate,generalization)

Again the same example is used as in the aggregate and the generalization.

This time the site reference consists of an ensemble index, a scope specify-

ing which CNs to use, and a site index. The reference now identifies a site

on each CN in the ensemble specified which both belongs to the aggregate

specified in the scope and satisfies the generalization specified in the scope.

-

30

Chapter 4

CreatingA Network Graph

In the previous chapter, the NDL model was presented. The purpose

of presenting such a model was to formalize the concepts used in NDL. A

major goal in developing NDL was to create a programming environment

composed of abstractions consistent with the model. Terry Winograd

stated that the fundamental use of a programming language should not be

in creating sequences of instructions for accomplishing tasks, but in express-

ing and manipulating descriptions of operations and the objects which they

are carried out [Win79]. In keeping with the spirit of that statement, the

abstractions should help support a declarative environment.

To generate a network graph in NDL, a C++ program is written

using functions from the NDL primitive function library. These functions

provide the level of abstraction described above consistent with the NDL

model. C++ was particularly useful since function overloading could be util-

ized, allowing same name functions with different types of argument lists.

In high-level programming languages, three types of abstraction mechanisms

are most often recognized: control, data, and procedural [Isn82]. All three

are utilized by the NDL primitive function library and features supported

31

by C++.

The rest of this chapter describes the functions which create the net-

work graph. An attempt was made to present them in a sequence as they

might bE;found in a program.

Initializing ND L

Before any other NDL function is called, the NDL environment must

first be initialized. The NDL function iniLndl performs this initialization.

It creates the internal NDL data structures needed to support all other

NDL functions.

As links are created in the network, weights are assigned to them.

Control can be exercised over what values these weights assume. In most.

cases, random weights are desired. The function seLweighLlimits sets the

limits on the range of random weights generated. The function is over-

loaded allowing either integer or floating point values. Another function,

seLweighLseed, sets the random seed used. Different sequences of random

weights can therefore be generated for a given network graph.

Creating the Network Components

After NDL is initialized, the network components can be created.

The components are created in the order they would appear in the network

32

component tree, starting with the ensemble nodes. The network can be

constructed in any order, it is only necessary that for any component

created, there must already exist a path to it in the component tree. For

example, before a site can be created, the CN it belongs to and the ensem-

ble the CN belongs to must have previously been created.

Creating the Ensemble

Ensembles are created and added to the network by the following

function:

create_ensemble(n)

Multiple ensembles can be created with the option"al n argument to the

function. The default is one. The index of the ensemble created is returned

by the function. If multiple ensembles are created, the index of the first is

returned. Subsequent operations regarding the ensemble reference it by its

index. The first ensemble created is assigned an index of o. Subsequently
-

created ensembles receive consecutive integer indices.

Creating the CN

CNs are created and added to an ensemble by the following function:

create_cn(ens,n)

The ens argument specifies in what ensembles to create the CNs. Multiple

33

CNs are created in each ensemble specified with the optional n argument.

The default is one. This ensemble specification can be one of the following:

If the ensemble specification is an index, then the CN is created in

the ensemble referenced by the index. If the ensemble specification is an

aggregate, then a CN is created in each of the ensembles referenced in the

aggregate. If the ensemble specification is a generalization, then a CN is

created in each ensemble that satisfies the generalization. This applies to

all existing ensembles in the current network graph. If the ensemble

specification is a scope, a CN is created in each ensemble which both

belongs to the aggregate specified in the scope and satisfies the generaliza-

tion specified in the scope. If the ensemble specification is null (zero

address), a CN is created in all ensembles in the network graph.

The first CN created in an ensemble is assigned a o. All subsequent

CNs are assigned consecutive integer indices. Each ensemble in the net-

work has CNs indexed from 0 to however many CNs belong to it. The

eill)emble index and the CNs index are used in subsequent operations

r"
i~

fr~
>~~

34

regarding the CN.

Creating the Site

Sites are created and added to a CN by the follo:wing function:

create--site(ens, en,n)

The ens argument specifies in what ensembles to create the sites. The en

argument specifies in what CNs to create the sites. Multiple sites can be

created with the optional n argument. The ensemble and CN specifications

work like the ensemble specification in the create_cn function. The

difference is that a site is created on each CN specified in the CN

specification for each ensemble specified in the ensemble specification. For

programmers, this might be best thought of as two nested loops. The out-

side loop consists of the ensemble specification, and the inside loop the CN

specification. If the n argument is specified, then n sites will be created on

each CN specified.

The first site created in a CN is assigned a o. All subsequent sites

are assigned consecutive integer indices. Each CN in each ensemble has

sites indexed from 0 to however many sites belong to it. The ensemble

index, the CN index, and the sites index are used in subsequent operations

regarding the site.

.
t

-

35

Creating Links

Links are created and added to a site by the following two functions:

create-site(ens, en, n)

create-site(ens), enl,site1, ens2,en2,site2)

The first creates a single-ended link, and the second a double-ended link.

The single-ended links are created in the same manner that CNs and sites

were created. In the argument list is an ensemble, a CN, and a site

specification. A link is created for each site specified for' each CN specified

for each ensemble specified. For programmers, this might be thought of as

three nested loops. The outside loop represents the ensemble specification,

the middle loop represents the CN specification, and the inside loop

represents the site specification.

The double-ended loop is created using two sets of specifications, six

arguments in all. The first three s.pecify a site to create a link on, and the
-

second three specify another site to create a link on. A double-ended link is

created between each pair of sites specified. This is probably best thought

of again in programmer's terms. It is simply the single-ended links case

with another three nested loops placed inside its inside loop for a total of

six nested loops.

36

output
layer

input
layer

Figure 4.1 - Example: Network Components

~"

Network Component Example

An example will demonstrate the generation of a simple network

graph. The network graph to be generated is shown in figure 4.1. The pro-

gram generating the graph is shown in figure 4.2. The example is generated

using only single index specifications in the create functions. The graph

consists of an input layer and an output layer. The input layer has three

CNs and the output layer has four. Each CN in the graph has two sites.

f The site on the bottom will be assigned the index of a (created first) and

the one on top the index of 1 (created second). The links connecting the

input layer and the output layer are double-ended links. The links going

into the input layer and comingout of the output layer are single-ended

iiIi

"

.
pc
"

r
I

37

links.

create_componentsO
{
// create the ensemble

int ens = create_ensembleOj

// create the CNs

create_cn(ens,7)j

// create 2 sites on each CN

for(cn=Oj cn<7j cn++)
create site(ens,cn,2)j

// create input to output links

for(int cnl=Ojcnl <3jcnl ++)
for(int cn2=3j cn2<7j cn2++)

create-link(ens,cnl,1 ,ens,cn2,O)j

// create input links

for(cn=Oj cn<2j cn++)
create-link(ens,en,O)j

-

// create output links

for(en=3j en<7j en++)
crea te-link(ens,en, l)j

}

Figure 4.2 - Creating Network Components

38

The Aggregate

Aggregates are created by the following functions:

createJange_aggregate(start,finish)

createJist_aggregateO

A handle to the new aggregate is returned by the functions. The range

aggregate consists of a contiguous set of component indices ranging from

start to finish. The list aggregate consists of a list of non-contiguous com-

ponent indices. Aggregates are removed from NDL with the

remove_aggregate function. The result of a set operation on two aggregates

can be appended to a third aggregate with the and_aggregate and

ocaggregate functions.

The network graph shown in figure 4.1 is generated using aggregates

by the program shown in figure 4.3. Note the difference between the pro-

gram generating the network graph using single index specifications versus

the program in figure 4.3 using aggregate specifications. The single most

important difference is the absence of loops. The AGGR in the program

specifies the aggregate data type.

The Attribute Base

The Attribute Base contains the attributes that are assigned to the

network components. The attributes are arranged in a hierarchy consisting

--
i.

39

create_componentsO
{
/ / create the ensemble

int ens = create_ensembleO;

/ / create the CNs
t.

create_cn(ens, 7);

/ / create the layer aggregates

AGGR* input = createJange_aggregate(O,2);
AGGR* output = createJange_aggregate(3,6);
AGGR* all = createJange_aggregate(O,6);

/1 create 2 sites on each CN

create-site(ens,all,2);

/ / create double-ended links between input and output layers

create-link(ens,input,l ,ens,out put,O);

/ / create input and output single.:.ended links

create-link(ens,input,O);
create-link(ens,out put,!);

}

Figure 4.3 - Creating Network Components Using Aggregates

or groups, lists, and records. Reference lists into the attribute base are then

constructed. These reference lists are called Attribute Access Lists. A typi-

cal program will build the Attribute Base before the network components

I

f

L

40

are created. Then as the components are created, their associated attri-

butes can be assigned to them.

Attribute Groups

The attribute base is divided into attribute groups. They allow the

user to create a set of attributes particular to some domain. For example,

the attributes for links might be grouped into a class of attributes particu-

lar to links. The same for the sites, CNs, and the ensembles. Attribute

groups are created and added to the Attribute Base by the function

create_attribute~roup(group)

The group character string argument is .assigned to the group is used to

reference the group and all the lists and records it contains.

Attribute Lists

An attribute group can be further divided into attribute lists. The

lists allow the user to create sub-domains within a domain. For example,

there might exist an attribute group for link attributes. This group can then

be divided into lists which could contain the attributes for input links and

output links. Attribute lists are created and added to the Attribute Base

by the function

create_attribute.Jist(grou p,list)

41

The group argument specifies which group to add the list to. The list argu-

ment specifies the name assigned to the list. To reference the list in subse-

quent operations, both the group and list names must be provided.

f!
I
..
1
..
.

t
t
f.

Attribute Record

Each attribute list contains a set of attribute records. The record

contains the actual information contained in a single attribute. A record

can be either a floating point number, integer number, or a character

string. Attribute records are created and added to the Attribute Base by

the function

create_attributeJecord(group,list, record, value)

The group and list arguments specify where to add the record. The record

argument specifies the name assigned to the record. The value argument

can be one of three types: integer, float, or character string. To reference

the record in subsequent operations, the group, the list, and the record

name must be specified.

Attribute Access List

An Attribute Access List (AAL) is created by the function

create.-AAL. The handle to the AAL is returned. An AAI can be created

by specifying either another AAL or an attribute reference as an argument.

I

l

42

If another AAL is specified, then the new AAL contains the attribute refer-

ences of the one it was created with. If an attribute reference is specified,

then the new AAL contains the attribute reference specified. For example,

create-AAL(II links")

creates an attribute access list starting with the reference to the attribute

group links. An AAL with no references can be created by not specifying

either an AAL or an attribute reference on function invocation.

Once an AAL has been created, additional attributes can be

appended to it by the add_to-AAL function. Another AAL can be

appended, resulting in a new list consisting of the original plus the refer-

ences from the appended list. In addition, single attribute references can be

appended to an AAL. The remove-AAL function removes the AAL from

NDL.

Assigning Attributes to the Network Components
-

Attributes are assigned to the network components when the com-

ponents are created. There is a global variable designated for ensembles,

CNs, sites, and links. As each component is created, it is assigned its

respective AAL. The global variables may be changed so as to assign the

same type of component a different set of attributes. For example, input

sites might have a different set of attributes than the output sites. The

43

functions seLlink-AALs, seLsite-AAL, seLcn-AAL, and seLens-4AL set

their respective global variables.

Creating the Generalization

A generalization is created by the function

create~eneralization(ar)

The ar argument specifies either an attribute reference or an attribute

access list for which to assign the generalization. The handle to the gen-

eralization is returned. The generalization is much like the AAL, only it is

used in specifying which network components to include in an operation.

The functions regarding the generalization are all like those concerning the

AAL's, but with syntax indica~ing a generalization is involved. In figure

4.4, an example program is shown. It creates the same network graph the

previous examples did. In the example program, it is assumed that the

attribute base has been built. In that attribute base, there is an attribute
..

group named "input" and an attribute group named "output". Notice that

the generalizations are created first. Next notice that the input and output

CNs are created with the input and output attributes respectively. Finally,

notice that the create_link functions utilize the generalizations in creating

the links.

44

create_componentsO

{
// create the generalizations

GEN *input = create~eneralizationCinput");
GEN *output = create~eneralization("output");

// create the ensemble

int ens = create_ensembleO;

// create the Input and Output CNs

set_cD-aal(input);
create_cn(ens,3);
set_cD-aal(out put);
create_cn(ens,4);

// create 2 sites on each CN

create.-Si te(ens,NULL,2);

// create double-ended links between input and output layers

crea te-link(ens,input,l ,ens,out put,O);

// create input and output single-ended links

,

create-link(ens,input,O);
create-link(ens,output,l);

}

Figure 4.4 - Creating Network Components Using Generalizations

Scopes

45

A scope is created by the function

create.-Scope(aggr, gen)

The aggr argument specifies an aggregate to assign to the scope and the gen

argument specifies a generalization to assign to the scope. The handle to

the new scope is returned. The function seLscope sets the appropriate con-

stituent. The function remove_scope removes the specified scope from NDL.

create_com ponentsO
{
/ / create aggregates - generalizations - scopes

AGGR* inputs = createJange_aggregate(O,l);
AGGR* outputs = createJange_aggregate(2,5);
GEN* left = create~eneralization(leftOutCN);
GEN* right = create~eneralization(rightOutCN);
SCOPE* Lout = create~cope(outputs,left);
SCOPE* r_out = create~cope(outputs,right);

// create double-ended links between input and output layers

create-link(ens,inputs, 1,ens,Lout,O);
create-link(ens,inputs,2,ens,r _ou t,O);

..

// create input and output single-ended links

create-link(ens,inputs,O);
create-link(ens,outputs,l);

}

Figure 4.5 - Creating Network Components Using Scopes

46

An example program is shown in figure 4.6 which generates the network

graph shown in figure 4.7. The example is a bit contrived, but illustrates

the use of a scope. The example program assumes that the attribute base

has already been built. Three types of CNs were created with different

attribute access lists. Those CN types are associated with the three attri-

bute access lists inputCN, leftOutCN, and rightOutCN. The first create_link

function call utilizes an aggregate specifying the input CNs and a scope

specifying the left output CNs. The second create_link function call utilizes

an aggregate specifying the input CNs and a scope specifying the right out-

put CNs. The scopes specify the left and right output CNs by combining

the fact that they belong to the aggregate outputs and contain their respec-

tive attributes specified by the generalizations leftOutCN and rightOutCN.

The final two "create link function" calls create the input and output

single-ended links by using their respective aggregates.

-

Outputting Network Graph Information

Outputting the network graph is the user's responsibility once the

graph has been created. The information which can be output is the graph

structure information, Attribute Base information, aggregates, generaliza-

tions, and scopes.

47

out.put

layer

input

I,.ye<

Figure 4.6 - Network Graph for Scope Example

The prinLnetwork function outputs the entire network graph. It

starts at the top of the network component tree and performs a pre-order

traversal of the tree, outputting each component and its attributes as they

are encountered. The prinLensemble function outputs the information for

just the designated ensemble. It starts at a designated ensemble node in the

network component tree and performs a pre-order traversal from that node

down. Each component and its attributes are output as they are encoun-

teredo The prinLcn and prinLsite functions operate in the same manner as

the ensemble and CN print functions do. The prinLlink function simply

48

outputs the information about a specified link. That output consists of its

connection data, weight data, and any attributes assigned to it.

The attribute base can be output using three functions. The
i
t..

prinLrecord function prints the name and the value for the specified attri-

".
.
I

buteo The prinLlist function prints the name and value of each record it

contains. The prinLgroup function prints the name and value of each

record it contains. This includes all the records in each list the group con-

tains.

The prinLaggregate function simply outputs the indices it contains.

The prinLgeneralization outputs the records it contains by virtue of the

attribute base references it contains. The prinLscope function outputs

both the aggregate information and the generalization information it con-

tains. The prinLAAL function outputs the records it contains by virtue of

the attribute base references it con.tains.

.

..
~

~
"
i'

i.

49

Chapter 5

The NDL Environment

This chapter describes the NDL environment and the process of

developing a NDL executable program. The development process and the

cooperating constituents are shown in figure 5.1. The NDL include file

defines the data abstractions used. The user interface library contains the

primitive NDL functions. The application specific library contains functions

specific to a particular neural network topology. The user program contains

the user's program with embedded NDL user interface and application

specific functions. The C++ compiler creates the executable user program

which in turn will generate an output file describing the network graph gen-

erated. Optional output filter programs will convert the output to a form

acceptable by some other program. The steps in generating a network graph

can therefore be outlined as follows:

(1) write user source program

(2) compile source user program into executable program

(3) run the executable program

(4) run output through desired output filter program

r
.

50

I::l
L::J

\ / .

80@0Ot+ Executable NDLIndude_ _ _ _
FIle O:mpiler f'ro&nun Output

r

[3

Applicatioo

Specific

Ubrary

1

Simulatiao

Input

FIle

Figure 5.1 - The NDL Program Development Environment

The NDL Include File

The NDL include file contains the data abstractions used by the

NDL user interface functions and the application. Although not in the

spirit of good C++ object oriented programming, a few global data struc-

tures are defined so as to relieve the user of having to include them in every

function call made.

..

51

The NDL User Interface Library

The NDL User Interface Library contains all the primitive NDL func-

tions. The functions provide a stable interface to the user. It is likely that

any future additions will be at a higher level consisting of lower level func-

tion calls from the library.

Application Specific Libraries

An application specific library contains functions specific to a class of

topologies. For example, layered network topologies are used extensively in

neural network research. The layered network application library consists of

functions built on top of the NDL User Interface Library functions and pro-

vide a level of abstraction above the details of constructing a layered net-

work using the primitive functions.

A very important application specific library to the users at OGI is
..

the BIFLIB library. It contains all the functions necessary to build a net-

work which can be output as a BIF file. The main functionality it provides

is the construction of the attribute base and the output capability. An

appendix is dedicated to describing the BIF environment.

- ...

r'
.
.
.

-
.

r:~:

52

The User Program

The user program is a C++ program utilizing the functions provided

by the User Interface and Application Specific libraries. It was intended

that the user would simply call NDL functions and not have to deal with

the C++ programming paradigm.

Output Filters

The only output filter to date is hifgen. It takes output from a NDL

program and converts it into a BIF file. Since this is the only form

currently desired, no others were written.

t 53

Chapter 6

Layered Networks

The majority of the neural networks being studied today consist of

multiple feed-forward layers. This motivated the need for an application

specific function library dedicated to constructing layered networks. This

application library is not part of the primitive NDL functions discussed in

chapter four. It is an example of the extensibility.of NDL and how higher

levels of abstractions can be achieved.

The Layer Model

Each layered network is created in a single ensemble. There are

three types of layers one can create in the layer model: the input layer, the

hidden layer, and the output layer. Each layer consists of an arbitrary

number of CNs. No constraint is placed on the number of layers created.

The only requirement is that network input data enter through an input

layer and network output data go through an output layer. Each CN in

the model consists of only two sites. This is not a restriction of NDL, which

allows an arbitrary number of sites, but a constraint imposed by the model.

One site is dedicated for input from either another layer or network input.

r

54

The second site is dedicated for output, either to another layer or network

output.

When an input layer is created, a specified number of CNs will be

created. Each CN created will have an input site with an index of zero and

an output site with an index of one. Each input site will have a single-

ended link assigned to it. These input links are the input into the network.

An input layer is created by the function creatcin_layer. A name argu-

ment specifies the name to assign the layer created. A size argument

specifies how many CNs to create in the layer.

When the hidden layer is created, a specified number of CNs will be

created. As with the input layer CNs, each CN in a hidden layer will have

an input site with an index of zer? and an output site with an index of one.

However, since this is an internal CN, no single-ended links are created.

The sites will normally be connected with double-ended links to other sites

in input, hidden, and output layer CNs. A hidden layer is created by the
-

function createJ,id_layer. A name argument specifies the name to assign

the layer created. A size argument specifies how many CNs to create in the

layer.

When the output layer is created, a specified number of CNs will be

created. As with the input and hidden layer CNs, each CN in an output

layer will have an input site with an index of zero and an output site with

55

an index of one. Each output site will have a single-ended link assigned to

it. These output links are the output of the network. An output layer is

created by the function create_ouLlayer. A name argument specifies the

name to assign the layer created. A size argument specifies how many CNs

to create in the layer. The network in figure 6.1 was generated by the fol-

lowing sequence

createjn-1ayer("input",4);
create-1lid-1ayer("hidden ",4);

1 (
" II

)create_out-1ayer output,4;

The network is incomplete in that it has no connections (double-ended

links) between the layers of CNs. To perform that function, four intercon-

eeee-..-
e e e e ~ddsl_

~ ~ ~ ~ --
Figure 6.1 - Types of layers in the Layer Environment

56

nection schemes have been included which to create the links.

Interconnection Schemes

Many network models consist of layers which are fully connected

between two consecutive layers. That is, all the CNs in one layer are con-

nected to all the CNs in the next layer. To accommodate this type of inter-

connection, full interconnect is provided which creates a link between each

output site in one layer to each input site in a second layer. The function

connectJull performs this connection operation. Two arguments to the

function specify the names of the layers to connect. Figure 6.2 shows an

example of two layers fully connected.

Because neural structures tend to be randomly connected, some net-

work models use random connections between layers. To facilitate this in

the layer model, random interconnect is used. The function

-random_connect performs this connection operation. Its arguments include
-

the names of the two layers and a number specifying the probability that a

link will be created which would normally be created using full intercon-

nect. In figure 6.2, the random network was created using a .50 probability

of connection.

Some neural network models use a concept known as receptive fields.

This is best described using a two dimensional image. A receptive field

rr
t

57

i

full

-

Figure 6.2 - Interconnection Schemes between Layers

would cover a small contiguous area of the image and maybe be tuned such

that it would be sensitive to a particular feature. Receptive fields can and

usually do overlap each other. This third type of connectivity is referred to

r
58

as the receptive field. Each CN in a layer is connected to a contiguous field

of CNs in the layer beneath it. The receptive field size is specified and the

function determines a balanced way to connect the two layers. The func-

tion connecLreceptive performs this connection operation. Its arguments

include the names of the layers and the size of the receptive field. Figures

6.2 shows an example of receptive interconnections between two layers.

Sometimes it is desirable to just connect two layers together in a

straight through fashion. That is, one CN in one layer is connected to one

CN in the next layer. This fourth type of connectivity is called one-lo-one.

The function connecLone_to_one performs this connection operation. The

output sites of the first layer are connected to the input sites of next layer.

Figures 6.2 shows an example of one-to-one interconnections between two

layers.

Layer Example

The program in figure 6.3 creates a network utilizing the full, one to

one, and receptive fields connection schemes. The network consists of five

layers which can be broken down into a two layer receptive field network

feeding a three layer fully connected network. The network graph created

by this program is shown in figure 6.4.

59

mainO
{

init-IldIO;
layer_environmentO;.- 1 (

"I "
)create-IJ..L1ayer ayerl,8;

create-1lid-Iayer(IIayer2",6);
create-1liUayer("Iayer3",6);
create-1liUayer(IIayer4",6);
create_out-Iayer(IIayer5",4);.

(
"I II II

I
II

3)connecLreceptlve ayerl, ayer2, ;
(

Il l 2" II
I 3

"
)connect_one_to_one ayer , ayer ;

J 11(
"
1

II II
I

"
)connect u ayer3, ayer4 ;

J 11(
"
1

II II
I

"
)connect u ayer4, ayer5 ;

}

Figure 6.3 - A Layer Environment Program Example

IW

ODe-~O-ODe cODDed

Figure 6.4 - A Layer Network Example

The first two function calls initialize both NDL and the layer model

environment respectively. Extra data structures were required to facilitate

referencing layers by name. The following five function calls create the

layers in a bottom up fashion. That is, the bottom (input) layer first, the

first hidden layer second, and so on. The last four function calls create the

connectivity between the layers. This is also done bottom up. Remember

that the input and output single-ended links were created when their

respective layers were created.

61

Chapter 7

A Pyriform Cortex Model

Gary Lynch, Richard Granger, and their colleagues at the University

of California at Irvine are developing a model simulating the olfactory pyri-

form cortex[GrL]. The olfactory cortex is the part of the brain which

preprocesses the information coming from the nasal receptors in the nose

via the olfactory bulb. The structure of the olfactory cortex is relatively

simple when compared to the other types of cortex. The nasal receptors are

directly connected to the neurons in the olfactory bulb, which is directly

connected to the layer II neurons in the pyriform cortex, which supply input

into the hippocampus and frontal cortex. These direct connections, called

monosynaptic connections, indicate that information flows in one direction.

There is a feedback loop involving a structure called the anterior olfactory

nucleus (AON), but it is ignored in this model. It also means that the cor-

tex is only two to three synapses from the sense organ. These features

make simulating the olfactory pyriform cortex particularly attractive to

neural researchers.

One of the long range goals of the CAP group at OGI is to develop

advanced neural hardware out of silicon. The neural hardware will be

62

implemented using wafer-scale integrated chip architecture. It is intended

.. that the architecture be based on biological neural networks. Because of

the relatively regular structure of pYriform cortex, it has been selected as

the most likely structure on which to base the design. The Lynch-Granger

model is one of many computer simulated models involving pyriform cortex.

It is however the most functional and has the most precise definition. For

these reasons, the Lynch-Granger model of the pyriform cortex has been

chosen for the research at OGI.

The NDL Model

As an extension to NDL, an application specific library was created

which builds a model of the pyriform cortex. It is based on the Lynch-

Granger model. The model consists of two basic components: The Lateral

Olfactory Tract (LOT) and the patch. A diagram of the model is shown in

figure 7.1. Information in the figure flows left to right.
..

The LOT

The LOT consists of outputs from the LOT CNs. The input patterns

seen on the LOT CN inputs would be those resulting from a smell presented

to the nasal receptors in the nose. In the real brain, the size of the LOT is

relatively constant from input to output. Although not evident from figure

63

La~eral OIrac~ory Trac~

LOT- u

NeuroDs

II II

, I ...
, III- ,'"- - - ' - !II_ __ IIi

t;\ ...;=:==:~!i\.:::/ --.:::::J

,
,
,
,
, ,
_ _ _ _ :: _' I iii"l- "'

8' - -_:-:-::::::~!!\
IH ,=:= J \!

L Flrs~ Pa~ch ~ L- Secood Pa~ch

- La~eral OIradory Trac~ (LOT)

RecurreD~ Cola~erals

n . Layer II Neuroos

m . IohibI~oryNeuroDs

Apical coooec~ioos

Basal coooedioos

Iohibi~ory iopu~ cODDec~ioD8

Figure 7.1 - A Olfactory Pyriform Cortex Model

7.1, the original outputs from the LOT CNs eventually disappear and are

replaced by the recurrent colateral outputs from the Layer II neurons.

Because the recurrent colateral outputs eventually dominate the LOT, it

i

64

would appear that the LOT must represent some higher order information

downstream than what was presented at the LOT CNs. The LOT CN con-

sists of an input site and an output site. Refer to figure 7.2.

from
olfactory bulb

LOT
INPUT

NEURON

to
LOT

output site

INHIBITORY
INTERNEURON

input site

basal site

Figure 7.2 - The Pyriform Cortex Model CNs

65

The Patch

A patch consists of two types of CNs, the Layer II CNs and the inhi-

bitory CNs. The Layer II CNs are the most complex CNs in the model.

They receive inputs from the LOT (called apical connections), from the

recurrent colateral output of the other Layer II CNs in its patch, and the

inhibitory CN within the patch. The output from the layer II CN, called

the recurrent colateral, is sent to other layer II CNs within the patch, and

are called basal connections. The recurrent colaterals also join the LOT.

The inhibitory CN receives input from all the layer II neurons within its

patch and outputs to all of them. The inhibitory and Layer II CNs are

shown in figure 7.2.

Using the NDL Model

To generate a olfactory pyriform cortex network, a NDL program

with the functions specific to the model needs to be compiled with the

Lynch-Granger application library. There are six functions in this library.

These coupled with the normal NDL initialization function are all that is

required to generate the network. These functions are described next.

66
-.
i-

Environment Initialization

There are some house keeping duties to be performed before the pyri-

form network is generated. They are performed by the following function:

pyriform_environmentO

It must be called before any other pyriform function and after the NDL

primitive function iniLndl. The house keeping involves creating an instance

of the PYRIFORM class data structure from which to build the network.

Setting the LOT Parameters

There are two parameters which describe the structure of the LOT.

Both are specified in the following function :

setJot(size,die)

The size argument specifies the constant width of the LOT. The die argu-

ment specifies what percentage of the LOT is replaced by recurrent cola-

terals. For example, suppose the size or a LOT is 100 and its die rate is 10.
-

What this means is that after every patch, 10 percent of the LOT is

replaced by recurrent colateral outputs from the patch. In this example,

that means 10 LOT lines would be replaced by 10 recurrent colateral out-

puts.

67

Setting the Patch Parameters

To keep the model as faithful as possible to the real biological

hardware, random variables are introduced so an irregular network is pro-

duced. There are three parameters which can be specified describing the

structure of the patch: number of layer II CNs, number of LOT connections,

and the interconnection of the layer II CNs to each other. All three are

specified by the following function :

set_patch(patchlo,patchhi, lotconprob, basalprob)

The patchlo and patchhi arguments specify the range of how many Layer II

CNs will be generated per patch. For example, if a range qf 5.9 were

specified, then an integer number would be randomly selected between 5

and 9 each time a patch is created, and that number would be how many

layer II neurons would be created for the patch. The endpoints 5 and 9 are

included.

The lotconprob specifies the probability that each LOT line has of

being connected to a Layer II CN. For example, if the probability parame-

ter is 10, then each LOT line has a 10 percent chance of being connected to

a Layer II CN. Put another way, if the lot size is 20, then there would be

on the average two connections to the LOT per Layer II CN.

The basalprob argument specifies the probability that a downstream

layer II CN will be connected to the recurrent collateral of an upstream

68

layer II CN within a patch. The layer II CNs in the patches go from top to

bottom (upstream to downstream). An upstream CN is a CN to the left. A

downstream CN is a CN to the right. A value of 65 would mean that a

downstream CN would have a 65 percent chance of being connected to any

one of the upstream CNs within its patch.

Creating the Patches

Once the LOT and patch parameters have been set, the network can

be constructed. The following function creates a specified number of

patches using the LOT and patch parameters:

create_patches(n)

The argument n specifies how many patches to add to the network. The

patch parameters can be changed between patches. This gives the ability

to alter patch characteristics between patches.

Outputting A Pyriform Network

The output of the pyriform model consists of three parts. The first

part describes the connectivity of the LOT neurons. The second the con-

nectivity of the patches. The third part describes the final form of the

LOT. The following function outputs the pyriform network:

output_pyriformO

69

mainO
{
// initialize the NDL environment

init.JldIO;

// initialize the Pyriform Model environment

pyriform_environmen t();

// set the LOT parameters

set.Jot(lOO,5);

// set the network patch parameters

set_patch(5,lO,20, 75);

// create the Lynch-Granger network

create_patches(15);

// output the Lynch-Granger network

output_pyriformO;
} -

Figure 7.3 - An Example Pyriform Model Program

Compiling The Program

The following command will compile the example shown in figure 7.3.

CC -0 Ig main.c -INDL -ILG

The executable program 19will output to standard out the final pyriform

network.

70

(The Pyriform Model Implementation

The pyriform model is implemented by introducing three new data
i

structures not part of NDL proper. The PYRIFORM data structure stores

the pyriform model parameters and pointers to the other two new data

structures. The LOT data structure stores the site reference for each LOT

axon. This includes the ensemble, the CN, and the site. The PATCH data

structure stores the ensemble references representing the patches. Each

new patch is dedicated a new ensemble and added to the linked list of

PATCH's in the PYRIFORM data structure. Each patch ensemble contains

the Layer II neurons for the patch and the inhibitory neuron for the patch.

r
Figure 7.4 shows the relationships of the data structures. Each PYRIFORM

data structure consists of one LOT data structure and n PATCH data

structures, n being the number of patches in the model being built.

The function pyriform_environment() creates the PYRIFORM data

structure and initializes it. A global variable pyriform is assigned the

address of the new PYRIFORM structure.

The seLlot function sets the LOT size and LOT die model parame-

ters in the PYRIFORM data structure for the other pyriform functions to

use. In addition, it creates the input lot CNs in a dedicated ensemble.

Each input LOT CN is created with two sites, site 0 for input from the

olfactory bulb, and site 1 for output to the LOT. Finally the set~ot func-

71

PYRIFORM

Figure 7.4 - The Pyriform Model Data Structure Diagram

tion creates the LOT data structure. Each input lot CN is entered into the

LOT data structure. Eventually the recurrent colateral outputs from the

Layer II CNs in the patches will replace these input LOT CNs in the LOT

pa tch 1
patches ensemble

- lot

next

LOT
--1 ens cn site

12

data structure.

The create_patch function is the workhorse function of the model.

First it creates a new PATCH data structure and creates its ensemble. To

keep referencing simple, it was decided that an ensemble would be dedi-

r
cated for each patch. For example, ensemble 4 would correspond to patch 4.

The function then creates a random number of Layer II CNs for the patch,

keeping within the patch parameters. Each of these CNs is created with 4

sites. Site 0 is the apical input site, site 1 the inhibitory input site, site 2

I

the basal input site, and site 3 the recurrent colateral output site. Once the

Layer II Cns are created, they are connected to the LOT according to the

lot connection probability. Then the recurrent colaterals are added to the

LOT according to the model die parameter. The basal connections are

created next, connecting the patch Layer II CNs together. Finally the inhi-

bitory CN is created for the patch, creating the inhibitory input and output

1
connections to the Layer II CNs recurrent colateral and inhibitory input ---

sites, respectively.

o.r

I~

73

Chapter 8

Future Wark

As neural network research advances, it will become more and more

important to be able to generate the underlying network structures quickly

and easily. NDL is a step in the right direction for three reasons. The first

is that it provides the fundamental building blocks needed to specify an

arbitrary network. The second is that application specific libraries exist on

top of the fundamental building blocks providing a level of abstraction

which relieves the user from having to deal with tedious details of con-

structing networks component by component. The third is that it is built

on an existing language, so it can be used via that language and extended

easily.
,.

Where NDL falls short is that it still requires a textual description of

a network, the program. The author believes that the fundamental con-

structs provided by NDL will always be required, but a front end graphical

interface will be necessary to relieve the neural network researcher the tedi-

ous task of programming.

One of the goals of this thesis was to investigate the use of graph-

grammars as a way of generating network graphs. Unfortunately graph-

74

grammars are hard to realize textually, so they were not included as part of

NDL. Graph-grammars however do provide an elegant solution assuming

they can be utilized in a graphical fashion. To incorporate the graph-

grammar research into this thesis, they are included in this chapter on

future work, since they would be so useful in an interactive graphical inter-

face, which is where the future of network graph generators lie.

Graph-Grammars

Simply stated, graph-grammars are a means of specifying sets of

graphs. They are to graphs as formal string theory is to strings. They are

very useful in specifying families of graphs and recursive structures. Appli-

cations include pattern recognition, software specification and development,

VLSI layout, incremental compilers, databases, computer animation, com-

plexity theory, developmental biology, parallel computer architectures, and

many others. Graph-Grammar theory is still a long way from the theory of

formal string languages, but steady progress is being made. The mathemat-

ical mechanisms used to deal with 3-dimensional structures like graphs are

intrinsically more difficult than that of l-dimensional strings.

Recognizers vs. Generators

There are two basic models in graph-grammar theory. A graph

grammar recogmzer is an analysis program which would determine if a

75

certain graph belonged to a given grammar. In other words it determines if

a graph could be generated from the productions of a grammar. The coun-

terpart in string theory would be the parser in the front end of a program-

ming language compiler. The parser checks to make sure t?at the program

can be generated by the set of grammar rules which describe the language.

A graph grammer generator is a synthesis program which generates

graphs from a given grammar. A desired graph can be generated by speci-

fying a sequence of productions. The synthesis of graphs from a grammar is

what would be useful in generating neural network graphs.

A Typical Graph Grammar Paradigm

Much of the current work in graph-grammars involves changing an

existing host graph through some transformation. This transformation is

usually a production which consists of two subgraphs, a host graph, and an .'.

embedding transformation. When the production is executed, all occu-

ranees of an old subgraph in the host graph are replaced by a new sub-

graph. The new subgraph is inserted into the host graph by following the

interconnect specification of the embedding transformation. A classical

graph grammar is shown in figure 8.1. It shows how a binary tree can be

derived from one simple graph production. In the top half of the figure, the

production is shown. In the production, it is shown that the application of

.
76

Production "
/

- ,- ...

i

L ;"

o

,.. R

~
L L

Deriva.tions

L
o

R

L L

L L L L

Figure 8.1 - A Binary Tree Graph-Grammar

it replaces each node labeled L with the sub-graph shown on the right side.

In the bottom half of the figure, it is shown how applying .the production

two times to a single node graph results in the binary tree on the right.

Each application of the production is called a derivation step.

A Graph Editor Using Graph Grammars

In a paper by Cuny and Bailey [BaC87], they describe a graph editor

which allows the user to specify communication structures graphically. In

that environment, the graph operations are based on aggregate rewriting

77

graph grammars. Using this type of graph grammar allows them to per-

form, in parallel, graph rewrite operations on aggregates of nodes whose

labels are logically related. Biases are supported which grew from the

identification of common characteristics of statically programmed communi-

cation structures.

There are four elements to an aggregate rewriting production. The

mother graph is a sub-graph in the current host graph. The daughter graph

is the replacement sub-graph. The daughter sub-graph replaces all

instances of the mother sub-graphs. The inheritance function maps the

edges, which were incident on the mother graph, to the daughter graph. A

final function defines the domain of the inheritance function such that for

each replacement performed, there is a surjective mapping of the edges.

The production is applied to a host graph and yields an image graph. The

production is performed in two steps. The first is to remove all instances of

the mother graph from the host graph leaving the rest graph. The second

step is to insert the daughter graph into the vacancies left from the first

step by using the inheritance function.

Graph Grammars and NDL

A graph in NDL consists of ensembles, CNs, sites, and links. A

graph in a typical graph grammar paradigm consists of nodes and edges. In

-
78

a graph grammar, there is no distinction between the nodes in the existing

graph. In a NDL graph, a distinction needs to be made between the

different types of nodes. Take for an example a replacement operation in

which it was desirable to replace all occurances of a particular instance of a

sub-graph with another sub...graph. For a graph grammar, it would simply

search the entire graph for all instances of the mother graph. For a NDL

operation, the type of nodes would also play an important aspect in the

searching algorithm. You would not want to replace a CN node in the

graph with a site node. These are just a few of the problems which will

have to be overcome to make a viable graph grammar neural network gen-

erator. It is probably more conceivable that a graphical network generator

would incorporate graph grammer functionality, but would be combined

with other techniques.

7g

Chapter 9

Summary and Conclusions

NDL's attributes provide a unique and powerful mechanism. Besides

the ability to create CNs with different characteristics, the attributes pro-

vide a powerful connection method. Coupled with NDL's concept of the

aggregate, complex connection schemes can be accomplished.

There were four goals set forth at the beginning of this thesis. The

first goal, to generate BIF files, has been accomplished. By using the BIF

attribute base and the BIFGEN output filter, BIF files are produced.

The second goal, to provide extensibility, is provided. The frame-

work for creating NDL application libraries was presented. Two application

libraries, the layer model and the Pyriform Cortex Model were discussed in

detail.

The fact that NDL generates BIF files is because of the BIF Attri-

bute Base constructed for it and the manner in which the network is out-

put. Other formats can be constructed by altering the Attribute Base and

the manner in which the network is output. These facts support the third

goal, which was to provide a tool which created not just BIF files, but a

general output which could be used by other simulation environments.

80

The final goal was to investigate Graph Grammars as a means of

generating neural network graphs. Although this work was not integrated

into the NDL environment, due to time constraints, directions for the future

were made. The work by Cuny and Bailey has made specifying families of

regularly structured graphs a straight forward operation using graph gram-

mar productions. A very attractive feature of their work is that very large

regular networks can be specified as easily as a very small network of the

same structure. The graphs generated by these graph-grammars create reg-

ular structures such a binary trees, cubes, and multistage permuting net-

works. Unfortunately, the structure of these regular networks are not those

typically used by neural networks.

An important contribution of NDL is that it is decoupled from the

simulation control philosophy. In other neural network simulation environ-

ments, the construction of the network is intimately tied to the way the

network is executed. In NDL, there are no explicit or implicit ties to the
-

control mechanisms of the network simulator. It does not mean, however,

that NDL cannot output information that could be utilized by the simula-

tor. Aggregates can be output which could group CNs into sets which could

be used in sequencing the simulator. In addition, NDL can output informa-

tion which could aid in the mapping of the neural network to a parallel

computer simulation environment. Again, this could be done using aggre-

81

gates.

Another advantage of having NDL decoupled from the control part

of the simulation is the ability to have overlapping sets of network com-

ponents. The fact that a CN could belong to different sets could be of some

value in a control philosophy. Suppose a layer of CNs were to be updated

at a particular time in a simulation sequence. Then at another time in the

sequence, only a subset of the CNs in the layer were to be updated. Only

with overlapping sets could this be achieved in a clean manner.

Creating the layer and pyriform model application specific libraries

turned out to be a fairly simple task. The pyriform model is one of the more

complex networks being studied today, and as can be seen in appendix C,

not that much code was required. It should be. noted that the data abstrac-

tions provided by NDL were more useful than the control abstractions.

The experience using C++ as the implementation language was the

author's first exposure to an object oriented language. Because of this inex-

perience, NDL's implementation was not as elegant as it could have been.

Data abstraction was used extensively, but type hierarchy was not utilized

as it should have been.

In summary, the main contribution that NDL has given in neural

network construction is the ability to abstract away complicated, nested

control constructs in generating the links in a network. These abstractions

82

may seem a bit trivial when constructing simple layered networks, but it is

hoped that they will be of some value in the future when complex neural

topologies are studied and simulated.

83

APPENDIX A

BIF File Format

-

84

BIF File Format

A BIF file consists of two parts: the group block and the CN block. The

group block defines types of CN's used in the network. The CN block

decribes the network in terms of CN's and connectivity. Delimiters are

used to describe the bounds on the group block, the CN block, and each CN

definition within the CN block. Reserved fields in bit vectors are used to

delimit the sites and links within the each CN definition. The sitevec for

the sites and the lnkvec for the links. Refer to [BahBB]for complete details

on this.

The BIF file format is best described by a grammar. The grammar

consists of three types of elements, the non-terminal, the field-terminal,

and the reserved word. The final BIF file consists of the field-terminals

and reserved words.

-

BIF GRAMMAR

bi/-file:
gbloek ebloek

gbloek:
sgbk grouplist egbk

grouplist:
grouplist group

group:
groupfields egrp

groupfields:
index name initpot initstate

ebloek:
scbk enlist ecbk

enlist:
enlist en

en:
enfields sites endc

enfi elds:
group index procid delay bitvee en-options

en-options: .

history restpot pot state output error sd
sites:

sites site
site:

sitefields links
sitefields:

value sitevee
links:

links link
link:

lnkvee history en site link weight

85

86

APPENDIX B

BIF Environment

87

BIF Environment

The BIF environment consists of two function calls and six global variables.

The function call

create_biLat tri butesO

creates the BIF attribute base. It consists of four groups.

The cngroup describes the types of CN and corresponds to the group block

in the BIF file. There are three types of CNs specified for the group block.

Each is declared as a list under the cngroup group. They are the input,

hidden, and output lists. These are the three types of CNs supported

currently by BIF.

The cn group describes in detail each type of CN. As in the cngroup group,

it is divided into three lists. Again, they are the input, hidden, and output

lists.
-

The site group describes the two types of sites available using the BIF

environment. The input site and the output site are each described in their

corresponding list under the site group.

The link group describes the one type of link available in the BIF environ-

ment.

88

Once the attribute base is constructed, the six global variables are assigned

to the attribute base. There are three CN attribute access lists, two site

attribute access lists, and one link attribute access list.

The function

print_bif(int ens)

prints out the group block followed by the definition of the network. Each

component of the network will contain the attributes as defined by the BIF

attribute base.

-

89

// declare the global attribute access lists

ATTRREF *ICN;
ATTRREF *HCN;
ATTRREF *OCN;
ATTRREF *ISITE;
ATTRREF *OSITE;
ATTRREF *ULINK;

// print the NDL version of BIF

void print_bif(int ens)
{

print_cn-.groupsO;
print_ensemble(ens);

}

// print the en group block

void print_cn.-,groupsO
{

printf("sgbk \n");
print.J.ist("engroup II,"input ");
printf("egrp \n");
print.J.ist(" engroup ","hidden");.

f(
" \ II

)prmt egrp n ;
print.J.ist(" engrou p","out put ");.

f(
" \ "

)prmt egrp n ;
printf("egbk\n");

}

-

/ / create the BIF Attribute Base

void create_biLattributesO
{

/ / create the cn groups

(
" "

)create_attr-.group cngroup ;
.J.

.
(
II II ,.. "

)create_attr 1st cngroup, mput ;
d(

" II II. II II.
d

II
0)create_attrJecor cngroup, mput , m ex, ;

90

d(
" " II. " II .. ft. "

)create_attrJecor cngroup, mput , name, mput ;
create_attrJecord("cngroup ","input ","initpot II,0);

d(
" II "" II "" " II

)create_attrJecor cngroup, mput , mltstate ,0 ;
.J

"
(

II II " h
"dd II

)create_attr 1St cngroup, 1 en ;

d(
" II "

h
"
dd

II "" d
II

)create_attrJecor cngroup, 1 en, m ex ,1 ;
d(

" II "
h

"
dd

II II II " h
"
dd

II

)create_attrJecor cngroup, 1 en, name, 1 en ;

d(
" II "

h
"dd II """ II

)create_attrJecor cngroup, 1 en, mltpot ,0 ;
create_attr Jecord(" cngroup II,"hidden", "initstate II,0);

.J
"

(
II II II II

)create_attr 1St cngroup, output ;
d(

" II II II ""
d

II
)create_attrJecor cngroup, output, m ex ,2 ;

d(
" II II II II II II II

)create_attrJecor cngroup, output, name, output ;
create_attr Jecord(" cngroup ","out put ","init pot II,0);
create_attr Jecord(" cngrou p","out Put ","initstate II,0);

// create the CN attribute lists

(
II II

)create_attr~roup cn ;
create_attr .Jist("cn", "input ");

d(
" II "" II II II

)create_attrJecor cn, mput , group ,0 ;
d(

" II "" II II "
d

"
)create_attrJecor cn, Input, procl ,-1;

d(
" II "" II lid 1

II
)create_attr.-recor cn, Input, e ay ,0 ;

d(
" II "" II li

b
" II

7)create_attrJecor cn, mput, Itvec, ;
create_attr Jecord("cn", "input", "history" ,0);

d(
" II "" II II II

0)create_attrJecor cn, mput , rest pot , ;
d(

" II "" II II II
0)create_attrJecor en, mput , pot, ;

d(
" II "" II II II

)ereate_attrJeeor en, Input, state ,0 ;
d(

" II "" II II II
)ereate_attr.-reeor en, mput , output ,0 ;

d(
" II "" II II II

)ereate_attrJeeor en, mput ,error ,0 ;
d(

" II "" II II
d

"
0)ereate_attrJeeor en, mput ,s , ;

.J
"

(
II II " h"

dd
II

)create_attr 1St en, 1 en ;

d(
" II "

h
"dd "" II

)createJttrJeeor en, 1 en, group ,1 ;
d(

" II "
h

"
dd

II II "
d

"
)ereate_attrJecor en, 1 en, procl ,-1;

d(
" II "

h
"
dd

II li d 1 II

0)ereate_attrJeeor en, 1 en, e ay, ;
d(

" II "
h

"
dd

II li

b
" II 7)createJttrJeeor en, 1 en, Itvee, ;

d(
" fI "

h
"
dd

fI fl
h

" fI

0)ereate_attrJecor en, 1 en, Istory, ;

d(
fI fI "

h
"
dd

II II II

0)ereate_attrJeeor en, 1 en, rest pot , ;
d(

" II "
h

"
dd

II II II

)ereate_attrJeeor en, 1 en, pot ,0 ;
d(

" II "
h

"
dd

II II II

0)create_attrJeeor en, 1 en, state, ;
d(

" II fl
h

"
dd

II II II

0)ereate_attrJeeor cn, 1 en, output, ;

d(
fI II "

h
"
dd

II II II

)create_attrJeeor en, 1 en, error ,0 ;
d(

" II "
h

"
dd

II II
d

"
0)ereate_attr Jeeor cn, 1 en, s , ;

.J
"

(
II II II II

)create_attr 1St en, output ;
d(

" II II II II II
2)ereate_attrJeeor en, output, group, ;

-

91

d(
" "" II II .d"

)create_attrJecor cn, output, proci ,-1;
d(

" "" II li
d 1

II
0)create_attrJecor cn, output, e ay, ;

d(
" II II II li

b
. "

7)create_attrJecor cn, output, Itvec, ;
d(

" II II II "
h
. II

0)create_attrJecor cn, output, lStOry, ;
d(

" II II II II II
0)create.-attr Jecor cn, output , rest pot , ;

d(
" II II II II "

0)create_attrJecor cn, output, pot, ;
d(

" II II II II II
0)ereate_attrJeeor en, output, state, ;

d(
" II II II II "

0)create_attrJeeor en, output, output, ;
d(

" "" II II "
0)create_attrJeeor en, output, error, ;

d(
" "" II "

d
"

0)create_attrJeeor cn, output, s , ;

// create the site attribute lists

(
II. "

)create_attr~roup sIte ;
t tt ,. t(

" .t II II.
t
"
)crea e_a r-1IS SI e , mpu ;

d(
". II II. ""

1
"

0)create_attrJecor sIte, mput , va ue, ;
d(

". II II. " II . II
28)ereate_attrJeeor sIte, Input, sltevee,1 ;,. (

II. II II "
)create_attr-1Ist sIte , output ;

d(
". "" II II

1
"

)create_attrJeeor sIte, output, va ue ,0 ;
d(

". "" " II . "
)create_attrJeeor sIte, output, sltevee ,0 ;

// create the link attribute lists

(
Il

l
. k"

)create_attr~roup In ;,. (
Il l. k" II

11
"
)create_attr-1Ist In , a ;

d(
"I. k

" II
11

" II
I kv

II
28)create_attrJecor In, a , n ee,1 ;

d(
"I. k

" II
11

" "
h
. "

)create_attrJeeor In, a , Istory,O;

// create the CN attribute access lists -

ICN f(
" II II. "

)= ereate_attrJe en, Input ;
HCN = create_attrJef("en","hidden");
OCN f(

" II II "
). = ereate_attrJe en, output ;

// create the site attribute access lists

ISITE f(
". IIII. "

). = create_attrJe sIte, Input ;
OSITE f(

". II II "
)= create_attrJe sIte, output ;

// create the link attibute aeces list

ULINK = create_attrJef("link");
}

92

APPENDIX C

Pyriform Environment

-.<

Pyriform Environment

//***
//
// PYRIFORM - a base class for a pyriform network
//

class PYRIFORM {
int lotsizej //
int diej //
int patchloj //
int patchhij //
int lotconprobj //
int basalprobj //
int enSj //
LOTCON lotj
PATCH patchesj //

public:
PYRIFORMO {

lotsize = OJ
die = OJ
patchlo = OJ
patchhi = OJ
lotconlo = OJ
lotconhi = OJ
prob = OJ
ens = -lj
lot = NULLj
patches = NULLj

}
}j

LOT size

LOT diminish/replenish rate
minimum number of layer II / patch
maximum number of layer II / patch
probability of apical connection
probability of basal connection
ensemble index for LOT input neurons

// connection links for LOT
linked list of patches

// constructor

93

-

II ***
II
II PATCH - a class for containing the specific information concerning
II a patch

class PATCH {
int enSj
PATCH *nextj

II ensemble index

public:
PATCHO {

ens = OJ
next = NULL;

}
};

11***
II
1/LOTCON - a class for containing the LOT link ends

class LOTCON {
int ens[MAXLOTSIZE];
int cn[MAXLOTSIZE];
int site[MAXLOTSIZE];

public:
LOTCONO {

ens = OJ
cn = OJ
site = OJ

}
}j

94

PYRIFORM pyriform;

II ***

pyriforIILenvironmen t()
{

pyriform = new PYRIFORMO;
}

11***

set-Iot(int size,int die)
{

II set the lot parameters

pyriform- >lotsize = size;
pyriform- >die = die;

/I create the LOT input neurons
/ / dedicated ensemble
/I site 0 - input from olfactory bulb
II site 1 - output to LOT

pyriform- >ens = create_ensembleO;
create_cn(pyriform- >ens,size);
create-l'i te(pyriform- >ens,NULL,2);

/I create the LOT connection sites
II originally they will be the LOT neuron output sites,
II but later will become recurrent colateral output
II sites from the Layer II neurons

lot = new LOTCON(size);
for(int i = 0; i<Size; i++)

set.Jot_con(i,pyriform- >ens,i,l);
}

95

II ***

set_patch(int plo, int phi, int lprob, int bprob)
{

pyriform- >patchlo = plo;
pyriform->patchhi = phi;
pyriform->lotconprob = lprob;
pyriform->basalprob = bprob;

}

II ***

create_patch(int n)
{

for(i=n; i=O; i++)
create_patchO;

}

96

-

97

/1 ***

// create the patch class

PATCH patch = new PATCHO;
patch->ens = create_ensembleOj

// create the Layer II Pyriform Neurons
// site 0 - apical input sites
// site 1 - inhibitory input site
// site 2 - basal input site
// site 3 - recurrent colateral output site

int n = getJandom(pyriform->patchlo,pyriform->patchhi)j
create_cn(patch- >ens,n);
create3ite(patch- >ens,NULL,4);
AGGR *layerII = createJange_aggr(O,n-l)j

// create the LOT connections

int ens,cn,site;
/ / cycle thru patch CNs
for(int i=O; i<n; i++) {

/ / cycle thru LOT CNs
for(int j=Oj j<pyriform->lotsizej j++) {

if(true_or Jalse(pyriform- >lotconprob)) {
get--1ot_con(j ,&ens,&cn,&site)j
create-1ink(ens,cn,site,patch- >ens,i,O);

}
}

}
// add recurrent colaterals to LOT

en = 0;
for(j=O; j<pyriform->lotsizej j++) {

if(true_or Jalse(pyriform- >lotconprob)) {
set_con--1ot(j ,patch- >ens,cn++,3);

}
if(cn >= n) break;

}

98

// create the Basal connections

for(int i=O; i<n; i++) {
for(int j=i+l; j<n; j++) {

if(true_or Jalse(pyriform- >basalprob))
create-1ink(patch- >ens,i,3,patch- >ens,j,2);

}
}

/ / create the Inhibitory interneuron

int icn = create_cn(pyriform- >ens);

// create the inhibitory connections

create--site(patch- >ens,icn,2);
create-1ink(patch- >ens,icn,O,patch- >ens,layerIl,3);
cerate-1ink(patch- >ens,icn,l ,patch- >ens,layerIl,l)j

// add patch to end of linked list

if(pyriform- >patches = NULL) {
pyriform- >patches = patch;

}
else {

PATCH *p = pyriform->patches;
while(p->next) p = p->next;
p->next = patch;

}
}

-

/ / * * ***** * ** * ** *** ******** * * ** **** * ********* ** ** **** *.******* * **

pyriform_outputO
{

int i = 0;

// print the lot input neuron connections

printf("LOT INPUT NEURONS\n");
print_ensemble(pyriform- >ens);

// print each patch neuron connections

PATCH *p = pyriform->patches;
while(p) {

printf("P ATCH #%d NEURONS\n",i++);
print_ensemble(p- >ens)
p = p->next;

}

/ / print the finaloutput lot sites

printf("FINAL LOT OUTPUT\n");
int ens,cn,site;
for(i=O; i<pyriform->lotsize; i++) {

get-lot_con(&ens,&cn,&site);
printf("%5d %5d %5dO,ens,cn,site);

}
printf(''END \n");

}

99

-

100

REFERENCES

[Bah88] Bahr, c., "ANNE : Another Neural Network Emulator," Master
Thesis, Beaverton, Oregon, 1988.

[BaC87] Bailey, D. A. and Cuny, J. E., "Graph Grammar Based
Specification of Interconnection Structures for Massively Parallel
Computation," COINS Technical Report 87-23, Amherst,
Massachusetts, June 1987. University of Massachusetts, Computer
and Information Science.

[Bai88] Bailey, J., "A VLSI Interconnect Structure for Neural Networks,"
Ph.D. Dissertation, Beaverton, Oregon, 1988.

[CaG88] Campbell, B. and Goodman, J. M., "HAM: A General Purpose
Hypertext Abstract Machine," Communications of the ACM, July,
1988.

[Dij76]

[Fan86]

Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, 1976.

Fanty, M., A Connectionist Simulator for the BBN Butterfly
Multiprocessor, vol. TRIM, University of Rochester, January, 1986.

[Gar88] Garg, P. K., "Abstraction Mechanisms in Hypertext,"
Communications of the ACM, July, 1988.

[GhH88] Ghosh, J. and Hwang, K., "Critical Issues in Mapping Neural
Networks on Message-Passing Multicomputers/' IEEE
Transactions on Computers, Febuary, 1988.

Granger, R. and Lynch, G., "Derivation of encoding characteristics
of layer II cerebral cortex," Technical Report, Irvine, CA. Center
for the Neurobiology of Learning and Memory.

[Isn82] Isner, J. F., "A Fortran Programming Methodology Based on Data _.<

Abstraction," Communications of the ACM, vol. 25(Oct, 1982), .

[Jag89] Jagla, K., "HAS : Hierarchical Architecural Simulator," Master
Thesis, Beaverton, Oregon, June 1989.

Kraft, T., ANSpec Language Definition, Science Applications
International Corporation.

[May88] May, N., "Fault Simulation of a Wafer-Scale Neural Network,"
Master Thesis, Beaverton, Oregon, February 1988.

[Pla87] Plate, T., "A design for the simulation of connectionist models on
coarse grained parallel computers," MCCS-87-106, Las Cruces, NM,
November 22, 1987. New Mexico State University.

[RuM86] Rumelhart, D. E. and McClelland, J. L., Parallel Distributed
Processing, vol. Volume 1 - Foundations, Massachusetts Institute

[GrL]

[Kra]

101

Of Technology, 1986.

[Wat88] Watrous, R. L., "GRADSIM: A Connectionist Simulator using
Gradient Optimization Techniques," MS-CIS- -8-16, Philadelphia,
PA, March, 1988. University of Pennsylvania, Department of
Computer Science.

[Win79] Winograd, T., "Beyond Programming Languages," Communications
of the ACM, vol. 22(July, 1979), .

102

Biographical Note

The author was born 31 August 1955, in Eau Claire, Wisconsin. In

1956 he moved to Portland, Oregon where he attended public grammar

schools and graduated from Reynolds High School in 1973.

In September 1973 the author attended Southern Oregon State

College for one year. In September 1974 the author attended Oregon State

University studying Nuclear Engineering for one year. In August 1975 the

author entered the Navy studying Nuclear Engineering and electronics. In

March 1977 the author again attended Oregon State University and in May

1980 received a B.S. in Electrical and Computer Engineering.

The author designed industrial control systems, specializing in

Machine Vision and Factory Automation for the next six years. In the fall

of 1986, the author entered the Masters Degree Program at the Oregon

Graduate Institute. In the early summer of 1990, the author graduated -

with a M.S. in Computer Science and Engineering.

The author has been married two years to Deanna Rockwell and

they have one child, Christopher, age 18 months, and another on the way in

late July 1990.

The author is now working for the neural network start-up company

Adaptive Solutions in Beaverton, Oregon.

