
Policies for Tool Integration in Integrated
Programming Environments'

Ehsan J. !lias
B.S., University of Gorakhpur, India, 1975
M.S., University of Gorakhpur, India, 1977

A dissertation submitted to the faculty
of the Oregon Graduate Institute

in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science and Engineering

March, 1990

The dissertation ''policies for Tool Integration in Integrated Programming

Environments" by Ehsan Jahan Ilias has been examined and approved by the

followingExamination Committee:

DavidCarlan: ThesisAdvi;;;:--
AdjunctAssistantProfessor

. .
Robert G. Babb II
Associate Professor

, ,,~

Michael Wolfe -
Associate Professor

v

Norman Delisle
Adjunct Assistant Professor

ii

Acknowledgements

I would like to thank my thesis advisor David Carlan for his attention,

his guidance, and his confidence in me, and for the time he took out of his

busy schedule at Tektronix Inc. to work with me. My committee members

provided valuable advice in the final stages of my thesis and made a special

effort to help me meet my deadline. Special thanks and gratitude to Norm

Delisle, who introduced me to David and served as one of the committee

mem bers during the course of my thesis.

In addition, I want to thank Tektronix, particularly Ray Kazlauskas for

the encouragement, and his willingness to assist in this study.

Hi

ABSTRACT

It has been widely recognized that an integrated software development

environment increases a programmer's productivity. Environments are

integrated through various mechanisms. However, regardless of the integra-

tion mechanism, policies are needed to say how. and when tools are invoked.

Policies are hard-wired in most of today's existing environments. This causes

these environments to be somewhat inflexibile because changes in policies

require one to change and rebuild the environments. Several mechanisms

have been proposed to deal with this problem, but all are relatively complex

and expensive to implement. In this thesis I develop a low-cost mechanism

that achieves many of the goals of the other proposed mechanisms. This

work extends FIELD, a software development environment that already

achieves some of the goals of such a mechanism, but ha'5 no policy detection

mechanism, per se.

IV

TABLE OF CONTENTS

Chapter 1: Introduction 1

Chapt~r 2: FOREST Environment 6

2.1 Basis of FOREST Environment 6

2.2 Overview of Policies in the FOREST enviroiunent 15

2.3 !$ues raisedby this approach 16
2.4 Policies in the FOREST Environemnt 17

2.4.1 Notations for Policies 17

2.4.2 Conflict Resolution within the Same User's Policies 19

2.4.3 Storage of a policy 20
2.4.4 Default Policies 20

2.4.5 Use of a Policy : 21
2.4.6 Available States 21

2.5 Support for Multiple Users in the FOREST Environemnt 22

2.6 Extended Exampies 26
2.7 Conciusion 36

Chapter3: Design and Implementation of FOREST 38

3.1 General description of FOREST's design 38

3.1.1 Communication Architecture of FOREST 39

3.1.2 General description of FOREST's message server
(MSG) ... 40

3.2 Detailed Design and Implementation description of MSG. 41

3.2.1 Support of Various types of Users in MSG 42

3.2.2 Support of System States in MSG 43

3.2.3 Communication architecture of MSG 43

3.2.4 User's Interface Commands in MSG 44

3.2.5 Top Level Algorithm of MSG 44

3.2.5.1 Internal Representation of Policy Information 46

3.2.5.2 Message Processing in MSG. 46

v

3.2.5.3

3.2.5.4

3.2.5.5

Me$age patterns 4g

System State Values 50

Syntax Used in Defining Policies 51

3.3 Executionof FOREST 52

Chapter 4: Evaluationof FOREST 54

4.1 Comparison of FOREST with other existingsystems that
deal with I><>licies :
4.1.1

4.1.2
Comparison of Darwin with FOREST

Comparison of Kaiser's Marvel system versus
FOREST.

54

54

60

4.1.3 Comparison between FIELD and FOREST
environments 65

664.2 LimitatioIlS
4.2.1

4.2.2
Engineering Limitations 67
Intrinsiclimitation 68

4.3 Directions for Future Research 69

References 71

Appendix A Backus-Naur Form 73

vi

.

1

Chapter 1

Introduction

Integrated programming environments are usually described as a set of

cooperating tools that support program creation, modification, execution and

debugging. It has been widely recognized that these environments increase a

programmer's productivity by providing a controlled and understandable

environment. A wide range of integrated programming environments have

been developed over the past twenty years[1,4,5,6,7]. The tools in these

environments have been integrated by using various integration mechanisms

such as files, pipes, shared databases and message broadcast facilities.

UNIX is an example where tools are integrated at the file level with

pipes. Interlisp [7], Smalltalk [6], the Cornell Program Synthesizer[S], and the

PECAN system [2] are examples of a single-language environment where tools

usually share a common intermediate representation and present a consistent

user interface. DIANA [3] is an example of a program database where

integration is provided by having the various tools share a common data

structure that represents the different aspects of the program and its execu-

tion. FIELD [1] is an example of message broadcast facility where tools com-

municate by broadcasting and receiving messages to coordinate tool integra-

tion.

However, regardless of the integration mechanism, policies are needed to

say how and when tools are invoked. Policies are the rules that govern the

2

invocation of tools during software development. For example, in a software

development environment it is often the case that the system developers want

to set up some rules regarding when to invoke the compiler. These environ-

ments invoke the compiler after a certain policy is satisfied.

In most of today's existing integrated software development environ-

ments, policies are "hard-wired" into the environment by both the mechanism

and the structure of the environment. ''Hard-wired'' means that the policies

exist as code inside a tool's interface. For example, in Smalltalk, after a

method is edited in a code browser, the compiler is automatically invoked

because the "accept" command has compiler invocation coded into the rou-

tine.

Hard-wired policies represent a problem for software development

environments and result in an inflexible system because a. change in policy

typically requires one to modify and rebuiJd the system. For instance, con-

sider the above Smalltalk example. If users want to change this policy so that

it should either not invoke the compiler or else invoke the compiJer with dif-

ferent options, they would have to change Smalltalk's editing method and

build a new framework. In many systems this is expensive and tedious

because in general, rebuilding a system requires time and resources to compile

and link each module. It also may require the user to have intimate

knowledge of the tool's implementation. The result is typically that users

simply learn to live with less than adequate control over their tools.

. .-.0 .0"" __0 ---

3

Several researchers have looked at various ways of solving this problem.

For instance, the Arcadia environment [11] uses "process programming"

[10,11] to provide the ability to program the desired policies with respect to

various mechanisms and structures. Darwin's law-governed system [1.2]solves

the problem by explicitly declaring and enforcing a pre-defined set of rules

restricting the interaction of programmers and tools. Kaiser's Marvel system

[13] solves the problem by providing a set of tool-invocation rules as a

knowledge base and by accessing these rules through opportunistic processing

(i.e. carrying out an activity based on these rules whenever the opportunity

arises).

However, such mechanisms are relatively complex and expensive to

implement. They often involve large, special-purpose languages, parsers,

databases, or reasoning mechanisms. For example, the Arcadia environment

uses a "process programming" language, specifically tailored to managing tool

policies. The Marvel system and Darwin's law-governed system, both require

a database and a special purpose parser for rules. Further, in the Marvel sys-

tem, rules are handled by a special purpose interpreter.

In addition, these mechanisms are not easily adaptable to new environ-

ments. For example, such systems typically make specific assumptions about

the name of the tools, the programming language in which they are written,

etc.

Ideally, a simple, low-cost policy mechanism is needed that would

achieve many of the goals provided by the other mechanisms and would have

4

the following properties:

1. Ability to use existing tools.

2. Achievement of a high degree of integration while being easily extensi-

ble.

3. Support for policiesthat are not coded inside the tool's interface.

4. Provision for user-modifiable and definable policy support.

This thesis demonstrates that such a mechanism is in fact achievable. As

described in the next chapter, FIELD provides a suitable tool integration

model on which to base the research because it supports properties 1 and 2

just outlined. In this thesis, I show how to extend the FIELD integration

mechanism, the selective broadcast message facility, to include properties 3

and 4. These extensions are implemented in an environment named

FOREST.

FOREST is an experimental software development environment which

was developed on top of UNIX. It supports the third property by allowing

end users to define their policies independently from the tools in the environ-

ment. It supports the fourth property by allowing users to select different

policy actions dynamically. These two properties are in turn supported by a

mechanism which allows tool communication through a selective broadcast

message facility. This facility receives messages from various tools and then

broadcasts to interested tools.

5

In addition to demonstrating the feasibility of such a simple policy

m-echanism, a number of important questions will also be dealt with, such as

policy conflict resolution, types of users and their priority ranking, notations

for policies, policy storage, and default policies.

Chapter 2 provides a detailed description of the FOREST environment

and its approach to tool integration. Chapter 3 describes the design and

implementation of the experimental model of FOREST. Chapter 4 evaluates

the FOREST environment by comparing it with other existing environments

which have attempted to solve the hard-wired policy problems. FOREST's

limitations, weaknesses, and strengths are also described and directions for

future research are suggested.

6

Chapter 2

FOREST Environment

This chapter gives a detailed description of the FOREST environment,

including the basis of its development, its goals, and how these goals are

achieved. Extended examples are used to illustrate how a policy works. The

first section of this chapter describes the main goals of FOREST and how it

evolved from the FIELD environment. The section also gives a description of

FIELD and its underlying integration mechanism, demonstrating that

although FIELD possesses some of the properties of an ideal low-cost mechan-

ism, it lacks others. The second section describes the basic idea for adding

the other properties of the desired mechanism to FIELD. It then discusses the

issues that are raised regarding the support of policies that are external to the

system. It also demonstrates how the rest of the goals are accomplished by

this environment.

2.1 Basis of FOREST Environment

As described in the Introduction, the primary goal of this thesis is to

develop a low-cost tool integration mechanism that

1. makes it easy to reuse the existing tools.

2. achieves a high degree of integration while being easily extensible.

7

3. supports policies that are external to the system (Le. are not hard-wired

into the tools).

4. provides user modifiable and definable policysupport.

Figure 2.1 The FIELD Software Development Environment

FIELD is a software development environment developed by Steven P.

Reiss[1] that consists of a rich set of tools (Figure 2.1) and was specifically

designed to possess the first and second of the above properties. The

"'-

8

integration mechanism used in FIELD is a selective broadcast message facility

(MSG).

With a selective broadcast integration mechanism, each tool defines a set

of events that may be of interest to other tools and then sends messages. about

these events as they occur. Each tool also registers a set of patterns with the

centralized message server (MSG). The patterns describe the messages that

each tool wishes to handle. The tool is then informed about those events

when they occur. For instance, Figure 2.2 shows a set of events associated

with a BREAK annotation and Figure 2.3 shows a message pattern registered

by the debugger. Figure 2.2 is discussed later in this section. Annotations are

the integration mechanism that FIELD uses to relate the program source to

all other aspects of the programming environment. When the user requests

an annotation, a message associated with the annotation is sent to MSG, and

then broadcast to all appropriate tools. For a BREAK annotation, the

debugger will be informed if the message sent by the annotation editor

matches the registered pattern of the debugger.

MSG-ADD = ''DDTREVENTADD* %F * %L * * 0 BREAK3"
MSG-REMOVE = ''DDTR EVENT REMOVE * %F * 0 * * 0 BREAK %V"
MSG...EET= ''EVENT ADD %s %V BREAK %F %L %T"
MSG_UNSET = ''EVENT REMOVE %s %V BREAK %F %L %T"

Figure 2.2: Messagesassociated with a BREAK annotation

V\'hen a tool registers a pattern for a message, it provides an entry-point

to a routine that will handle the message. Any tool in the environment can

9

Message Pattern
EVENT REMOVE %s %3d BREAK %ls %2d %4r

Routine Declaration:
static void

handle-remove-IDsg(file,line, value, text)
String file;
Integer line;
Integer value;
String text;

Sample Message: .

EVENT REMOVE test 10 BREAK ./test.c 24 [24] BREAK at line 24 of file ./test.c

Resultant Call:
handle remove-Insg("./test.c",24,10,"[24] BREAK at line 24 of file ./test.c'j

Figure 2.3: Exam pIe of a message pattern, routine declaration, message and call

send a message and the message will then be broadcast to all the tools that

have registered a pattern matching the message. MSG does the pattern

matching and message decoding. For all tools that have registered a pattern

matching a message, the associated entry-point routine is called, along with

the decoded arguments. Figure 2.3 shows a message pattern, associated rou-

tine declaration, sample message and the resultant call.

As described in Section 3.2.5.3, message patterns are composed of literal

characters and escape sequences. Literal characters must match the

.corresponding characters of the messages and escape sequences represent

either arguments or generic strings. Escape sequences representing arguments

10

have the form

% [argumenLnumber]type-character

In the message pattern of Figure 2.3, "EVENT", ''REMOVE'', and "BREAK"

I
. I h t ''07' " . . t . d ''07' 3d" ''07' " ''07'2d

"
dare Itera c arac ers, 705 15 a generIc 5 rmg, an 70 ,701s, 70 ,an

"%4r" are arguments where d represents an integer, s represents a string and r

represents remaining string of the message. By comparing the sample mes-

sage and message pattern of Figure 2.3, we can see that "test" matches with

''07' " "" h
. h ''% d" "

/
" h

. h "07' It"" h70S, 10 matc es wIt 03,. test.c matc es WIt /'ols, 24 matc es

with '%2d", and "[24] BREAK at line 24 of file ./test.c" matches with "%4r".

Therefore, the first argument of of resultant call is It./test.c", the second argu-

ment is "24", the third argument is "10" and the fourth argument is "[24]

BREAK at line 24 of file ./test.c".

MSG allows both asynchronous and synchronous broadcasting. Asyn-

chronous messages allow the sender to continue immediately while synchro-

nous messages generate a reply to the sender once all the eligible servers have

acknowledged the message.

The message broadcast facility (MSG) is designed to support the follow-

ing criteria:

. ToolInteraction- tools must be able to interact with each other directly.

. InformationSharing- Dynamic information must be shared among the

tools.

11

. SourceAccess-Programmers must be able to access source code through

a single editor.

. SharingStatic Information- Static and specialized information must be

available to all the tools that requjre it.

Tool interaction is supported by using the message facility as a command

interface to the tools of the environment. The command interface to the

debugger, "make," cross-referencer, etc., are examples in this category. This

allows the various view tools to interact appropriately with the execution of

the system. For example, when the editor sends messages to insert or remove

breakpoints, the "variable viewers" send messages to turn tracing on or off for

a given expression. The "make" facility command interface allows any of the

other tools of the system to send messages such as requesting a file to be com-

piled, etc.

MSG supports dynamic information sharing among the tools. For

instance, the debugger automatically sends out event messages whenever it

knows the current line of execution, either from a program stopping or from a

trace request. The "make" interface sends out messages for each error or

warning detected by the compiler. These messages allow the editor to associ-

ate the errors with the program source.

In FIELD, source access is provided through an annotation editor which

is closely tied to the message facility. The annotation editor is a powerful,

extensible editor that provides the full editing capabilities of the source pro-

gram. Each source line is augmented with a set of annotations that serve as a

--- -.. .-. ..- -.-

12

command or as a marker for the line. Each annotation has a set and an

unset pattern, and these patterns are monitored by the annotation editor

through the message facility. For example, a BREAK annotation monitors

"add" and "remove" event messages sent out by the debugger; an ERROR
.

annotation monitors error messages sent by the make interface. Figure 2.2

shows the messages associated with a BREAK annotation. The annotation

editor enables various annotations to behave appropriately by allowing each

unique annotation to have different properties. Annotations can be set by the

user, as with BREAK, or by outside messages as with ERROR.

Sharing of static information is handled by FIELD through an active

server. An active server is a FIELD component that receives requests for

information through the message server. The active server processes and

sends replies to these requests, either by dynamically computing the necessary

information or getting the information from a local database.

Having outlined the main features of FIELD, let us now consider how

FIELD satisfies the first two properties of a low-cost mechanism but fails to

satisfy the last two. First, FIELD makes it easy to reuse existing tools

because each tool can be integrated into the environment by providing a

graphical front end and an interface to the rest of the environment. To inter-

face to the rest of t.he environment each tool is required to do the following:

1. Define a set of events it deems might be of interest to other tools and

then send the messages about these events as they occur.

--- --- -- _.--

13

2. Register a set of patterns with MSG describing the messages it is

interested in from other tools.

3. Provide entry-point routines to handle these messages.

Second, FIELD achieves a high degree of integration while being easily

extensible. Since tools can communicate intermediate results by broadcasting

messages, several tools can cooperate in the same task. If every tool or the

environment has an interest in a particular message, it is possible to invoke all

the tools by sending this particular message. Thus, FIELD has fine enough

granularity to provide a high degree of integration. As described above, new

tools and messages are relatively easy to add into the environment because

one tool does not need to know about the other tools. This is in contrast with

a more integrated environment where an addition of new tools requires the

modification of all the old tools. (Note: the alternative of changing the sender

violates the independence of tools principle).

However, in FJELD, after receiving a decoded message, each individual

tool interface has the responsibility of deciding what to do. Since each tool

has an interface for handling messages, it has its own built-in policy. Because

the policies are coded into the tool's interface, a change in policy requires the

modification and rebuilding of the tools that are affected. Therefore, FIELD,

as such, is an inflexible and inextensible environment from the point of view

of changing policies. That is to say, it does not satisfy properties 3 and 4.

For example, in a software development environment it is often the case that

the system developers want to set up some policy regarding when to compile

~.-

14

or what compiler option to use. These kinds of policies are coded inside the

tool's interface and hence, a change in policy requires rebuilding of the tool's

interface.

It is important to understand that there is no intrinsic reason why poli-

cies have to be hard-wired within the tool interface of an environment, such

as FIELD. For instance, linkers or loaders generally require all externally

referenced names to be defined in the set of object modules that are to be

linked together. This requirement, together with the requirement that only

linked or loaded objects may be executed, induces a policy of always compil-

ing the modules before linking them. This policy itself may have several sub-

policies, such as defining when the compiler allows the user to do compiling

and linking together, or do only compiling. Since compiling and linking

depend upon the compiler and linker options, this policy determines the choice

of options. The choice of options might be different for different situations.

For example, when a software developer wants to debug a system, he or she

might like to compile and link with a debug option. This option should not

be turned on all the time because it creates a larger executable image. In

order to accommodate changing interactions between tools, it is desirable to

be able to change policies dynamically at low-cost. To do this, I claim policies

need to be extracted from the tool interface and, further, they must be modif-

iable and definable by the user.

Extracting such policies from the tools leads to the following advantages:

15

1. It becomes possible for a user to tailor the tools' interactions to his or

her needs without having to know the implementation of the tools' inter-

face or the tool.

2. A change in policy can be realized at low-cost because the. tools do not

have to be rebuilt.

In the remainder of this chapter I will demonstrate how it is possible to

extend the FIELD integration mechanism so that it can handle policies

separately from individual tool interfaces. By isolating policies and extracting

them from the environment we can provide the programmer with a more

flexible and extensible environment.

2.2 Overview of Policies in the FOREST environment

Policies are the rules, guidelines and strategies that determine how and

when tools are invoked during the software development process. The

software development process includes all the activities comprising the

software development cycle, programming-in-the-Iarge tasks such as confi-

guration management and programming-in-the-many tasks such as project

and team management.

At the very minimum, any policy definition must say what action will be

executed for a given condition. FOREST takes a simple view of this by defin-

ing a policy as a set of condition and action pairs and a policy-clause as one

condition and action pair:

16

condition 1 -> action 1
condition 2 -> action 2
condition 3 -> action3

condition n -> action n

Each condition is a boolean expressionthat must be true before the associated

action can be performed. Each action represents either an entry-point routine

or a SendMsg routine. The policy evaluation for a particular pattern and for

a particular tool is done starting from the top of the policy to the bottom.

This means that the policy-clauses are evaluated in order. During policy

evaluation when the condition of a policy-clause evaluates to true, the associ-

ated action of this policy-clause is applied. These policies can be defined in a

file that is independent of the tool interfaces, and hence policies are external

to the system. This supports the third property of the low-cost mechanism

because policies are not hard-coded into the tool's interface or the tool. It

also supports the fourth property (see Section 2.1) because users can modify

the files that determine the policies of the system. A detailed description of

how these two properties are supported is given in Chapter 3.

2.3 Issues raised by this approach

Supporting policies as outlined above raises several other major ques-

tions, which are listed below:

1. How are conflicts to be resolved within a list of policies for same user,

i.e. when two conditions are true at the same time?

17

2. How many types of users exist in an integrated software development

environment and who should be allowed to change and/or define a pol-

icy?

3. How are conflicts to be resolved between the policies that different types

of users have defined? Can one user overrule the policy of another user?

4. How are the policies are stored?

5. Are there default policies?If so, what are they?

6. What are the constituents of the policies and how can they be presented

to the system?

7. What kinds of states are available for condition evaluation?

In the following two sections I will further elaborate on the basic design and

show how these questions have been resolved in the FOREST environment.

2.4 Policies in the FOREST Environemnt

Since an overview of policies in FOREST environment is already

described in section 2.2, this section contains a detailed description of nota-

tion, storage, and usage of the policies.

2.4.1 Notations for Policies

The notation for policy definition basically depends upon the kind of

information allowed in defining the condition of the policy-clause(see section

3.4). An example of a policy-definitionfile and its format is given Figure 2.4.

This figure contains policiesfor two tools, tooll, and too12. Tooll defines two

!8

patterns, pattern! and pattern2, while 00012defines only one pattern. Pat-

tern! of tooll contains two policy-clauses, while pattern2 of 00011has defined

only one policy-clause. Pattern! of 00012also contains only one policy-clause.

A formal description of the syntax of policy definition is given in Appendix A.

~'¥¥¥¥//7//
TOOL: 00011

MSG PATTERN: pattern!
POLICIES:

condition -> action
condition - > action

MSG PATTERN: pattern2
POLICIES:

condition-> action
~' ~' r ~' yI I / I I

TOOL: tool2
MSG PATTERN: pattern!
POLICIES:

condition -> action

Figure 2.4. Policy Definition file format.

The condition is a boolean expression constrained using the boolean

operators (A, 1/,-'), constants (TRUE, FALSE), and state variables. State vari-

ables are either values, variables, or function variables. If a user who defines

a policy-clause does not want another user to change it, he will define the

policy-clause as follows:

NOV: condition -> action

where NOV means that this policy-clause is not overridable. The condition of

the policy-clause is evaluated depending upon the state of the system, auxili-

-- ._- .. --- .._-

r-

19

ary routines, or values of the variables. This is set either by the system or by

the user. Several auxiliary routines such as loacL.average,file-size, etc., are

provided by the system for user's convenience. The action part of the policy-

clauses may be an existing entry-point routine, or a SendMsg routine. T.he

following are examples of policy-clauses:

debug -> SendMsg(COMPILE -c -g %ls)
many Jiles - > no-com pile(% Is)
TRUE -> compile('~c',%ls)

In the above example, debug, manyJiles, and TRUE are the policy-clause

conditions and SendMsg, no-compile, and compile are the policy-clause

actions (Le. entry-point routines). The policy-clause which has ''TRUE'' as a

condition means that if none of the other policy-clauses are true for a particu-

lar pattern, it executes the associated action of this policy-clause (TRUE =

otherwise). If none of the policy-clause is true for a particular pattern, by

default the system will not report an error. 'FOREST provides an error rou-

tine for reporting errors. This routine can be used in an "otherwise," policy-

clause if required. For example, one can define the following policy-clause for

reporting errors.

TRUE -> error("Couldn't compile- none of the policy holds",%ls)

where %ls represents the filename.

2.4.2 Conflict Resolution within the Same User's Policies

Even if more than one policy-clause is true for a particular pattern, the

FOREST environment executes only one action in order to be consistent with

FIELD, which calls only one entry-point routine per pattern. The action that

-
20

will be executed is the action of the policy-clause whose condition is true first

and it is not a default policy-clause. There are two reasons for choosing the

first one. First, it gives some control to the users because they can order their

policy-clauses so that the most important one would ~e evaluated first.

Second, it provides some optimization to the system because MSG does not

have to evaluate all the policy-clauses in a particular pattern.

2.4.3 Storage of a policy

Policies are defined in the same place where the patterns and entry-point

routines are defined because they need to be external to the system and thus,

modifiable. In FOREST, as we will see, this is a file where each pattern has

associated policies defined in condition and action pairs. Every user defines

their policies in a separate file.

2.4.4 Default Policies

The system needs to provide a default action for each recognized pattern

so that casual users are not required to define an action for each pattern.

Therefore, the existing entry-point routines and patterns will be used as

default policies for the system and the system integrator will be the one who

will use them in defining policies. In addition, if the system integrator wants

to set some additional policies for the end user's convenience, he can define

them by providing condition-action pairs.

r
I
i.

21

2.4.5 Use of a Policy

A user gives an instruction to a system about what policies to use by pro-

viding his/her own policy definitions and by setting up the condition of the

policy so it can be evaluated to be .true. An action can only be performed

when the condition of the policy-clause is true. A user can set the condition

of a policy-clause to be true either by providing values during startup of the

system or by setting up values through the command interface during run-

time. For example, consider a policy debug -> no_compile(%ls). A user

could set the condition debug to true by giving the command "set debug true"

or settinl,?;the value of debug in the startup file "debug true."

2.4.6 Available States

A state is a mapping function between a variable and its value. For

instance, suppose "debug" is one of the system states. When "debug" is set to

true by giving the interface command set debug TR VE, the system would be

set to the debug state. The value of a variable can be an integer, a string, or

a function. SinceFOREST provides some of the states to the users by default

for their convenience, these states need to be defined by those users who are

involved at the system level. The other users who use the system can change

the state of the system by providing the values through the command inter-

face, through a startup file, or by setting them inside their own policy-

definition file. The latter method is not as useful because, in general, policies

are not modified as often as states are reset.

r
22

~

I

2.5 Support for Multiple Users in the FOREST Environemnt

An integrated software development environment is composed of one or

more users. If it consists of a single user, all questions regarding policies are

trivial because the same person is responsiblefor every task. But if it consists

of multiple users, then it is necessary to evaluate who should be allowed to

change and/or define policies. In general, at least five principle types of user

exist in an environment:!

1. Tool Developers-those users who develop the stand-alone tools without

any knowledge of the environment where it will be used.

2. Tool Interface Developers-those users who develop an interface for

each tool in order to communicate with the environment. They must

have the knowledgeof both tools and the environment.

3. System Integrators-those users who integrate new tools into the rest of

the system. Integrating a new tool into the environment might require

some modification to the system and the tool interface. They are

responsible for making sure that the new tool is working properly. They

also must have the knowledge about a new tool and the environment.

4. System Administrators-those users who administer systems. The

responsibility of this person is to keep the system running as efficiently

as possible.

5. End Users-those users who make use of tools. They need to know how

to use the system, what tools are available etc.

lOne person may participate in several activities.

~
(.

23

FOREST supports unlimited types of users but for concreteness,only the

above defined types of users are considered here. In order to integrate a new

tool into the environment, FOREST needs to define default policies for this

particular tool. With respect to policy definition, it is reasonable to assign dif-

ferent responsibilities to different types of users. Since the system integrator's

responsibility is to integrate the new tool in the system, he/she is the primary

candidate to define such policies. Therefore, the system integrator in

FOREST has the responsibility of providing default policies for every tool.

Tool developers and tool interface developers should not be allowed to

make policy decisions because of the nature of their job. Policy making deci-

sions by them can result in a decision being hard-coded inside the tools or the

tool interfaces. Since hard-coded policies represent a problem for software

development environments and result in an inflexible system, policy decisions

made by tool developers and tool interface developers should be avoided,

where possible.

System integrators, system administrators and end users should be the

ones allowed to determine what policies to use because their decisions do not

impact the tools or tool interfaces. Since their policy decisions are not hard-

coded into the system, a change in policies does not require the modification

or rebuilding of the tools and results in a more flexible system. These users

are also allowed to determine what action to perform for a given policy.

As indicated above, FOREST supports unlimited types of users. These

types of users are defined in two separate files, which can be altered. Both

t
F

24

files have a list of usernames and their filenames where policies are defined.

One file contains those types of users who are allowed to define system-wide

default policies. This file can only be updated by system-level users. The

other file contains those types of users who are allowed to define application.-

level policies. This file exists in end-user's home directory and can be modi-

fied by the end-user.

As described previously, in general, an environment consists of at least

five principal types of users in which only three types of users are allowed to

change or define a policy. In prototype version of FOREST, only these three

types are considered. Since multiple types of users are allowed to change or

define a policy, there can exist conflicts between policies that they might

define. These conflicts are resolved by associating priorities with the policies

defined by different users. Priorities are assigned in decreasing order to:

1. System Integrator

2. System Administrator

3. End Users

For example, suppose non-default policy-clause A is defined by the system

integrator as well as by the system administrator. The policy-clause chosen is

the one set by the system integrator because the system integrator's policy-

clause has higher priority. The priority order depends upon the order in

which these users are involved with the system. The order of involvement is

important here because it is possible that users who have high priority might

have set some policies which may be required by the system in order to

25

function properly. For instance, suppose a system integrator sets a policy for

the use of a user's defined library,

(lib != .-') -> compile_with.Jib(%ls,%2s,lib)

for message pattern

CO!\1PILE %ls %2s

In this example, if '~ib" variable is set to some value, then compilation will be

done by passing the library as an argument and this library will be used in

linking. This policy-clause should not be overridable by any lower priority

users because the passed filesneed to be linked with the passed library.

Consider another example in which a system administrator has defined a

policy-clause for compile process which will be invoked when the compiler

receives a message that it .has finished an edit of a file. If the load-average of

the system is greater than 6.0 then this policy will not compile the module

and will notify the user as well as the system administrator. We might write

the condition-action pair

(loacLaverageO> 6.0) -> notify_withouLcompile(%ls)

for the pattern

FINISHED EDITING %ls

This policy-clause should also not be overridable by any lower priority users

because the system administrator needs to extent control over how the system

is used.

26

The functionality of over-ruling a policy-clause is needed because it

allows the users to override default policy-clauses,which are set by the system

for user's convenience. A low priority user is also allowed to overrule the

higher priority user's policy-clauses if J>9licy-clausesare default policy-clauses.

This functionality provides more flexibility to the system because users can

select their own policy-clause actions. The policy originator prohibits other

users from changing a policy-clause by indicating that the policy-clause is not

a default policy-clause.
if,

As an example, suppose policy-clause B is defined by the system integra-

tor as well as by' the system administrator. The system integrator defines an

action, AI, to be performed and makes it as default policy-clause. The sys-

tern administrator defines another action, A2. Then the action, A2, is the one

chosen to be performed because the system integrator policy-clause is a

default policy-clause.

2.6 Extended Examples

In this section, I will present a detailed description of how policies work

in a system where several different users have defined their own policies. A

detailed explanation of the file where policies are defined and the policy syn-

tax is provided in Chapter 3.

Suppose a system has three different types of users; system integrator,

system administrator, and end user. For the users convenience, the system

integrator wants to define policies for both available tools "cc" and "vi". The

".

27

patterns which he/she would use in defining policies are:

1 "FINISHEDEDITING %ls"

2 "COMPILE %ls %2s"

3 'EDIT %ls"

Suppose he/she would define three default policy-clauses for pattern 1, two

policy-clauses for pattern 2, and one default policy-clause for pattern 3. One

of the policy-clauses for pattern 2 would be a non-default policy-clause and

the other would be a default policy-clause. The first policy-clause for pattern

1 would prohibit the compilation process when users want to edit many files.

The second policy-clause would compile the file with the debug option when

users set the debug state. The third always compiles the file with the "-c"

option. The non-default policy-clause for pattern 2 would allow the users to

link their files with different libraries. This policy-clause should not be over-

ridable because linking the passed files with other libraries might not work.

The default policy-clause for pattern 2 compiles the file with the user's speci-

fied options. The policy-clause for pattern 3 would invoke the editor "vi" with

no option.

Since the system administrator wants to extent his/her control over how

the system is used, he would define only one policy for tool "cc" and for pat-

tern "FINISHED EDITING %ls". He/She does not compile the passed file if

the load-average of the system is greater than 6.0 and would notify the user

and the system administrator.

28

Since the end user does not want to use the default policies provided by

the system integrator as well as the system administrator, he/she would

define his/her own policies. Four policy-clauses for pattern 1 and one policy-

clause for pattern 3. If the first policy-clause of pattern 1 is true, it would

always compile the passed files with the debug option. If the second policy-

clause of pattern 1 is true; it means when users want to edit many files,

always compile these files with the debug option. In the third policy-clause of

pattern 1, the end user wants to compile the file in the background if the
t

I load-average of the system exceeds a certain value. This is useful because

users will not have to wait for a process to finish. In the fourth policy-clause

of pattern 1, the end user wants to receive an error message if none of the

policy-clausesis true for pattern 1. The policy-clauseof pattern 3 allows the

end user to make a backup copy of the file first and then invoke the editor.

Figure 2.5 shows an example of user types in a system and their priori-

ties. For instance, Fred is a system integrator and has highest priority while

Bill and Susan are system administrators and have the next lower priority.

r
'"
t

t
,
.

29

Users:

Priority 1: System Integrator

Fred

Priority 2: System Administrator

Bill
Susan

Priority 3: End User

Peter
Debra
Steve

Figure 2.5: Types of Users in a System

As illustrated, the system integrator's policies have "the highest priority,

the system administrator's policies have the next lower priority, and the end

user's policies have the lowest priority. These users will be listed in a file in a

decreasing order of their priority. A detailed description of how FOREST

supports this functionality is given in section 3.2.1. Let us consider examples

of policies set by each of these users:

30

I

¥g~/V¥7 I I I I
TOOL: CC

MSG PATTERN: FINISHED EDITING %1s
POLICIES:

many..1iles-> no-compile(%1s)
debug -> compile_witlwlebug(%1s)
TRUE -> compile("-c",%1s) .

MSG PATTERN: COMPILE %1s %2s
POLICIES:

NOV: (lib != " I')-> compile_with.Jib(%1s,%2s,lib)
TRUE-> r actcomp(%1s,%2s)j

V ~' ~' ~' ~'I I I I I

TOOL: VI
MSG PATTERN: EDIT %1s
POLICIES:

TRUE -> editCW',%1s)

Figure 2.6. Examples of policiesdefined by the System Integrator

Figure 2.6 has examples of policies defined by the system integrator for

tool "cc" and "V!." Tool "CC." has policies for message patterns ''FINISHED

FT' .~TNG %1s" and "COMPILE %1s %2s" and tool "VI'"has policies for mes-

sac l,attern "EDIT %1s." As shown in this figure, the lower priority users

cannot override one of the policy-ela\1'5es.

The message pattern "FINISHED EDITING %1s" has three

policy-elauses. The first policy-elause,

many..1iles -> no-eompile(%1s)

prohibits the automatic compilation of an edited file if users want to edit

several files once because these files are used in making one executable binary

and the user does not want invoke the compiler each time. The second

31

policy-clause,

t ,<;. debug -> compile_witLdebug(%ls)

automatically compiles the passed file with compiler debug option. This pol-

icy is useful in developing a new module because the code needs to be

debugged. The third policy-clause,

TRUE - > compile("-c",%ls)

is an otherwise policy-clause. The meaning of this policy-clause is that if none

of the above policy-clauses are true, compile the passed file with "-c" option.

Two policy-clauses are associated with message pattern, "CO!v1PILE %ls

%2s", in which the first argument is an option and other one is a file or files.

The first policy-clause is not overridable by lower priority users. The effect of

this policy-clause is that it allows linking of one or more modules with dif-

ferent libraries. This is possible when users want to compile with "-c" option.

The second policy-clause is the "otherwise" policy-clause which compiles the

passed files with the passed options.

Only one policy-clause is associated with message pattern "EDIT %ls",

where "%ls" represents the filenames. This policy-clause is also an "other-

wise" policy-clause which edits the passed file/files by invoking the editor "vi"

with no option.

r
t
f

32

¥yyy~'I I 7 I I

TOOL:ee
MSG PATTERN: FINISHED EDITING %18
POLICIES:

NOV: (loacL.averageO> 6.0) -> notify_withouLcompile(%ls)

Figure 2.7. Example of policiesdefined by the System Administrator

Figure 2.7 shows a part of policy description for the system administra-

tor. The system administrator has defined only one policy-clause for a mes-

sage pattern "FINISHED EDITING %ls" and for the tool "ce" where '%ls"

represents a file. Since this policy-clause contains an additional field whose

value is "NOV:," it is not overridable by lower priority users. The effect of

this policy-clause is to notify the system administrator and the user when the

load-average of the system is higher than 6.0 and not to compile the passed

file.

..----

33

f¥¥~¥I I I I I
TOOL: CC

MSG PATTERN: FINISHED EDITING %ls
POLICIES:

always -> compile_with debug(%ls)
manyJiles -> compile("-c",%ls)
(loacLaverageO > 2.0) - > compile-1I1-..background("-c",%ls)
TRUE -> error("Coufdn'tcompile- none of the policy holds",%ls)

.~..
MSG PATTERN: COMPILE %ls
POLICIES:

TRUE -> compile('~c",%ls)
~' ~' ~' f ~'I I I I I

TOOL: VI
MSG PATTERN: EDIT %ls
POLICIES: -

make_backup -> backup-ancLedit(%ls)

Figure 2.8. Examples of policiesdefined by the end user

Figure 2.8 depicts examples of policies defined by the end user for the

tool "CC" and 'VI." The "CC" tool has defined policies for message p.atterns

''FINISHED EDITING %ls" and "COMPILE %15." The ''VI'' tool has

defined only one policy-clausefor the message pattern "EDIT %15."

The message pattern ''FINISHED EDITING %ls" contains four

policy clause. The first policy-clause,

always -> compile_with debug(%ls)

always compiles the passed file with the debug option of the compiler. The

second policy-clause,

manyJiles -> compile(%ls)

"

34

automatically compiles the passed file with "-c" option. The third policy-

clause

(load..averageO -> 2.0) -> compile~D-.background("-c",%ls)

compiles the passed file in background if the loacL..average of the system is

more than 2.0. The fourth policy-clause

TRUE -> error("Couldn'tcompile- none of the policy holds",%ls)

is an "otherwise" policy-clause which gives an error message to the user, if

none of the above defined policy-clauses are true.

Only one policy-clause is associated with message pattern "EDIT %ls",

where "%15" represents the filenames. The effect of this policy-clause is that

it makes a backup copy of the passed file first and then edits the file by

invoking the editor "vi".

Now, let us see how these policies work for this system by way of a few

examples. The following example shows how a default action is performed for

a message if there is no policy for it. Suppose the end user invokes FOREST

and sets the "ib" state variable to some C library, e.g., -1m. Now suppose the

user gives the command ''EDIT foo.c," where foo.c is a filename. By inspect-

ing the above policies, it is clear that only the 'VI" tool has an interest in this

message, since only this tool has listed a message pattern of the form ''EDIT

%ls." The system will check for the action, starting from highest priority user

i 35

to the lowest priority user. Since the system integrator has highest priority,

his policy will be evaluated first. Since the policy condition for this message is

automatically true, the action that needs to be performed will be an "edit"

function call. The system administrator has not defined any policy-clauses for

'EDIT roo.c" message and the end user's defined policy does not hold even

though he/she has one. Therefore, the system will conclude that the function

that needs to be performed for this message is "edit."

Another example shows how a non-default policy-clause works in deter-

mining the action of a message. Suppose the system receives a message ''FIN-

ISHED EDITING foo.c," either from the user or from the system. The sys-

tern will again evaluate the policy-clauses in decreasing order of priority.

Since all of the system integrator's policy-clauses, other than TRUE, do not

hold, the action that needs to be performed will be a "compile" function call.

The system administrator also has defined policies for this message pattern

and they need to be evaluated as well. Suppose that at the time the condition

of the policy-clause was evaluated, it was true because the loacLaverage of the

system was higher than 6. Since this policy-clause is not overridable by low-

priority users, any further evaluation of policy-clause will be stopped and the

chosen action that needs to be executed will be "notify_without-com pile.' , In

the same way, for messages which satisfy the pattern "COMPILE %ls %2s,"

the chosen action will be "compile_witlLJib" because the condition of this pol-

icy is true.

The third example shows how the system allows an action from a user

..- - -. --- . .-- -

36

defined policy. Consider that a user set the variable, "many..1iles,"to TRUE

and the system receives the message, ''FINISHED EDITING junk.c." The

system integrator's policies will be evaluated first and the action that needs to

be executed is set to "no-compile." Since system integrator's policy-clause is a

default policy-clause, the system will continue to evaluate the other user's pol-

icies. None of the system administrator's policies hold, but one of the end

user's policy-clause holds because "many..1iles" is set to TRUE Le. an user is

editing many related files that need to be linked together. Eventually, the

chosen action will be the "compile" function.

2.7 Conclusion

In this chapter we have seen how FOREST supports possible policy

determination by allowing the users to define their policies independently

from the tools in the environment. It also provides user modifiable and defin-

able policy support by allowing the user to select dynamically different policy

actions. We have also seen that in order to define a policy, the following

information is needed:

1. The tool's name, with which a set of tool invocation policies are associ-

ated.

2. A set of message patterns.

3. The policies for each message pattern defined as condition-action pairs.

Finally, I have illustrated by examples that this architecture allows various

types of users to customize a system of tools and dynamically change their

f
~

l
,

~
t'

i .

37

behavior. Chapter 3 has a detailed description of design and implementation

of the polices in the FOREST environment.

38
;1,'

Chapter 3

Design and Implementation of FOREST

This chapter contains a general description of the FOREST design and

its implementation. This is followed by a detailed description of the imple-

mentation of MSG and the policies in the FOREST environment.

3.1 General description of FOREST's design

Like FIELD,2 the FOREST design consists of two parts; the message

server, MSG and a set of tool interfaces-one for each tool in the system (see

Figure 3.1). The tool interface is a program which connects a tool to the

message server. The message server (MSG) is a selective broadcast message

facility, which is used a'3 the underlying integration mechanism in the

FOREST environment. This facility selectively broadcasts messages to the

other tools that have expressed an interest in these types of messages. The

experimental FOREST environment is illustrated in Figure 3.1.

In Figure 3.1, each circle represents a process of the system. The

processes which are boldfaced, are the ones implemented by FOREST. As

described previously, FOREST allows the addition of new tools into the

environment without the necessity of modifying them. In this diagram, these

tools are represented by the nonboldfaced circles. The addition of a new tool

into the environment requires only the development of an interface to the tool

2 See Section 4.2 for discussion of the rationale for building a separate implementation
from scratch.

39

terminal
input

User

terminal
output

Figure 3.1: Experimental FOREST Environment

and an updating of the system-level policies. The tools that are underneath

the tool's interfaces, standard "off-the-shelf"tools such as VI, ec, etc. (see

Section 3.3 of this chapter for problems), never get changed in the FOREST

environment.

3.1.1 Communication Architecture of FOREST

A user's terminal input and output is directly connected to MSG except

in the case of an invoked interactive tool. In this latter case, users directly

40

talk to the tool without going through MSG. A user directly talks to the mes-

sage server through the command language interface. The dashed line con-

nection between MSG and the tool interface indicates that the connection is

not a continuous one; meaning that whenever a tool wants to send a message,

it must first establish a connection to the MSG before sending the message.

The main reason for choosing this type of connection is that to keep FOREST

implementation as simple as possible. This also allows the FOREST environ-

ment to have several tools running at the same time. The same is true if

MSG wants to send a message to the tool interface. The solid line between

tool interface and the tool shows that the tool process is a child process of the

tool interface.

Users are not allowed to invoke tools directly. Rather, they send mes-

sages to MSG which invokes the tools. For example, suppose a user wants to

edit a file "xxxx". He/She can't invoke the "vi" editor directly; instead, he/she

needs to send an "EDIT xxxx" message to MSG which then will invoke it.

3.1.2 General description of FOREST's message server (MSG)

The MSG server is the main program that receives messages either from

the tools or the users and performs different actions, depending upon the poli-

cies that are in effect. MSG also accepts the user's interface commands, some

of which are required and others of which are provided as a convenience. For

instance, the "quit" command is required because this is the only way that a

user can terminate FOREST and a "set" command is provided as a conveni-

ence because it allows users to set the system states without restarting

41

FOREST. Users may also reset the system state by updating the file which

contains the system states and restarting the system. This means that MSG

either accepts messages which have a registered pattern or the user's interface

commands. For example, suppose FOREST defines "EDIT %ls" as a mes-

sage pattern and "debug" as a system state. It will then accept either the

message ''EDIT xxxx" where xxxx is a file name or the message "set debug

TRUE".

All messages are received as strings to simplify the pattern matching and

message decoding. MSG does the pattern matching, message decoding, and

evaluation of policies. As we have seen, if a pattern matches a message, then

all the tools that have a registered pattern matching that message will have

their policies evaluated. If a policy is true, the entry-point routine determined

in the action portion of the policy will be queued for execution along with the

tool's name and the decoded arguments. The scheduler will then schedule the

execution of the entry-point either by passing it to the appropriate tool's

interface for the appropriate action, or by resolving it inside MSG.

3.2 Detailed Design and Implementation description of MSG.

Since MSG determines the policy-action that needs to be performed, the

information associated with policies needs to be available to the system. The

system reads this information and keeps it in an efficient internal data struc-

ture for further processing.

42

3.2.1 Support or Various types or Users in MSG

In FOREST implementation various types of users are listed in two

fiI " " d "..J . " Th t' I
.

separate I es sys-usrs an enu...usrs. e reason lor se ectmg two separate

files is that th~ "sys-usrs"file can only be modified by those users who are

allowed to modify the system and "encLusrs"file can be modified by the end-

user. "sys-usrs" have the user's usernames who are allowed to define system-

wide default policies (e.g. Fred, Bill, and Mark as illustrated in Figure 2.5).

"end-usrs" have the user's usernames whose policies need to be considered dur-

ing policy evaluation. Both the "syS-usrs" and "encLusrs" files also have the

filenames where users' policies are defined. In both files users are listed in

decreasing order of their priorities. A user listed in the "sys-usrs" file will

have a higher priority than those users who are listed in the "encLusrs" file.

The "encLusrs" file resides in the user's home directory. An example of

sys-usrs and encLusrs files is given below:

Syslnt

SysAdm

/u/u3/Syslntjpolicy

/u/u3/SysAdm/policy

end-usrs

ehsani /u/u3/ ehsani/TH/policy

43

3.2.2 Support of System States in MSG

As described in Section 2.4.6, a state is a mapping function between a

variable and its value. The values of these states can be set/reset either by

providing their values through the command interface or through a startup

file. MSG preserves these states from one session to another for the user's

convenience so that they do not have to set these states each time. It accom-

plishes this by writing the current values of states out to a file which resides

in the user's home directory. This file is an ASCII file and can be edited by

the users. If this file exists in the user's home directory, the system will read

and restore the stored state of the system; if it's missing, the system will be

reset to the default state. A detailed description of "state" is given later in

this chapter (see Section 3.2.5.4).

3.2.3 Communication architecture of MSG

In addition to pattern matching, message decoding,. and policy evalua-

tion, MSG also has the responsibility of communicating with the tool's inter-

face. If a user types a message that matches the pattern of one of the tools

and an action needs to be performed, MSG will communicate with the tool's

interface in order to execute this action. This communication is done via a

socket. MSG creates a tool interface process and, once this is accomplished,

the connection between the tool's interface and MSG will be eliminated.

When a tool interface wants to communicate with MSG, it creates a local

socket and connects to the socket that was created by MSG for this purpose.

The tool's interface then sends the message to MSG, which handles the

44

message.

3.2.4 User's Interface Commands in MSG

As described in the previous section, MSG also handles the user's com-

mand interface along with messages. The provided user-interface commands

are:

quit -This allows the user to exit the FOREST environment.

set - Set commands are used to set the values of the variables, which may be

"state" variables. The format used to set a variable is:

set variable-Ilame value

For example, if a user wants to set the system to "debug" state, they will give

the following command:

set debug TRuE

3.2.5 Top Level Algorithm of MSG

The top level pseudocode for MSG is given Figure 3.2. As shown in this

figure, MSG performs three different actions during startup. First, it sets up

the system states by reading the startup file which contains the values of

these states. Second, it builds one internal data structure (a linked list) by

reading different user's policy files. Third, it creates one socket connection for

communicating with tools. A user enters the FOREST environment after

startup and stays in this environment unless he/she types the command "quit"

or some other fatal error occurs. Once a user enters the environment,

45

MSGO

setup the system states.
build the policy linked list
create socket connectionfor tool's communication
do {

if (character availableon terminal input stream) {
read a line .
if (interface command) {

do interface command action
} else {

assume it is message and process it
}

}

if (no current job) {
schedule a new job from a queue

}

if (a tool needs communication) {
establish a communication channel
receive the message from the too'
process the message

} und, (user wants to quit or some fatal error)

Figure 3.2. Top level pseudocode for the FOREST message server.

FOREST waits for the user's input. After giving input, a line is read by

MSG. If it represents an interface command, MSG executes the interface

command action. If it is not an interface command, MSG assumes that the

given input is a message and it is then processed by the message processor.

The message processor does the pattern matching and message decoding. If

the pattern matches the message, the entry-point routine determined in the

action of a policy-clause is queued for execution. If MSG is idle, the scheduler

46

schedules a new job from the queue. MSG then checks for tool's communica-

tions. If a tool wants to communicate, it establishes communication through

the previously opened socket channels and then receives messages sent by the

tool interfaces. If the communicating tool is an interactive tool, it keeps the

communication link open until the tool is finished. For example, in the case

of "vi", communication between MSG and "vi" is open through terminal input

and output channel until "vi" is finished.

3.2.5.1 Internal Representation of Policy Information

A single linked list is created by FOREST from all the policies that are

defined by different users. As described earlier, these users are listed in two

different files, "sys...usrs"and "encLusrs." FOREST builds the list by reading

the policies of those users who are listed in this file. Four structures, namely

tool, usr, pattern, and policy are used in creating the linked list. The struc-

ture that results after building the linked list is illustrated In Figure 3.3.

This figure summarizes part of data structure for a hypothetical system

which consists of only four tools. These tools are Tool 1, Tool 2, Tool 3, and

Tool 4. Three users, usr 1, usr 2, and usr 3, have defined policiesfor Tool l.

The policies defined by usr 1, contain three patterns and pattern 1 contains

two policy-clauses.

3.2.5.2 Message Processing in MSG.

In the FOREST environment, message processingis carried out for each

tool because FOREST allows several tools to have an interest in the same

47

pattern 1 -
policy 1

policy 2

- usr 1 - pattern 2

pattern 3

- NULL

- Tool 1--~- usr 2

- Tool 2 ~--usr 3

- Tool3

NULL

-- NULL
- Tool 4

- NULL

Figure 3.3. Linked list structure of policies.

message. Such a message also needs to be checked against each user's policies

unless the Policy-clause which holds true is not overridable by the low-priority

users. A search for an action is always accomplished starting from the highest

priority user to the lowest priority user. Since policies are defined for each

pattern of a tool, a message needs to be matched with a pattern before a pol-

icy can be evaluated. This is done by the pattern matcher, another major

component of MSG. Once a pattern match is encountered, the process of pat-

tern matching ends, because duplicate patterns are not allowed within a tool.

This allows some optimization withing MSG since it will not have to do the

pattern matching and evaluation of polices repeatedly. The same is true for

the policy evaluation process because only one policy-clause is allowed to be

true for a patt.ern as discussed in Section 2.4.2. Pseudocode for the algorithm

48

which processes the message is given in Figure 3.4.

Process msg(msg: message)
action: Action

For each tool, t1 ... to (ti)
action = dO-llothing .

For each user in decreasing order of priority Ut ... urp.,(Uj)
if Uj has pattern matching the msg for t.i, (Pat)

For each policy-clause for t. (POI)
if uj.Pat.Pol.cond is True for ti {

action= uj.Pat.Pol.action
tool = t.

} 1

If (uj.pat.Pol.kind = musLdo(NOV)) }
adcL.action(tool, action)
exit from each user loop

} }

(f (action != dO-llothing)
adcLaction(tool, action)

}
}

Figure 3.4. Pseudocode for the Process Message Algorithm.

In this figure, the Proce~sg routine takes a message as an input and

determines the action for each tool that needs to be performed for this mes-

sage. This contains n tools and m users. The current tool, user, pattern, and

policy are denoted on the right hand side inside the parentheses. The action

is determined by considering each user in decreasing order of priority and

matching the message against each pattern. If a pattern matches the mas-

sage, policies are evaluated starting from top to the bottom. If the condition

of the policy-clause is true and the policy-clause is not overridable by others,

49

it queues the action and tool name for execution and exits from the current

tool's processing. If a policy-clause is overridable, this process continues for

other users. At the end of each tool, if some action needs to be performed for

this tool, it adds the action and tool name into the queue.

3.2.5.3 Message patterns

Message patterns are composed of literal characters and escape

sequences. Literal characters must match the corresponding characters of the

messages and escape sequences represent either arguments or generic strings.

Escape sequences representing arguments have the form:

%[argument number] type character

The argument num ber allows the arguments to the routine to be given in any

order in the message. The type-characters which are allowed in the FOREST

implementation are the following:

d
s
r

decimal integer
string
string representing the remainder of the message

The following are the examples of patterns in which only the type-characters,

d, s, and r are used. The first example matches the message

FINISHED a.c

while the second matches

EVENT REMOVE test 10 BREAK ./test.c 24 [24] BREAK at line 24 of file ./test.c.

50

FINISHED %ls - where ''%ls'' matches with "a.c"

EVENT REMOVE %s %3d BREAK %ls %2d %4r - where
''% " h . h " "

oS matc es. Wit test

3.2.5.4 System State Values

Ai5 described earlier, a "state" is a mapping function between a variable

and its value. The value of these states is either a default value or a user-

defined value. Users are allowed to add a new state, or set the values of these

states either by providing values in a file which will be read during system

startup, or by setting values during run-time through the command interface.

Default values of these states are defined by the system. The acceptable

values of these states are either integers, boolean values, strings or functions.

Functions which are available to use must be linked with the system. For

example, the loa<i...averagefunction which gets the loa<i...averageof the system

and the time function which determines the time of the system are linked in

with the system. The rules which are used in determining these types are

given below and their syntax is provided in Appendix A:

''%3d''
" " "10"

"%ls"
"

" "I
". test.c

"%2d"
"

" "24"

"%4r"
"

" "[24]BREAK at line 24 of file ./test.c
"

51

. Strings must be delimited by double quotes.

. Integers may consist of any decimal number. The allowed range of

decimal numbers is dependent upon the machine hardware. The

machine which I used for my implementation allow 32 bits for integers.

Hence, the range is _231to (231- 1) = -2147483648 to 2147483647.

. Boolean values consist of the literal characters, ''TRUE'' or ''FALSE''.

. Functions consist of a function name which optionally followed by a

parameter.

. Variable names are made up of letters and digits, the first character of

which must be a letter.

3.2.5.5 Syntax Used in Defining Policies

Let us reconsider the examples shown in Section 2.4.1. The files which

define these policies can have an embedded blank line or a line starting with,

'#', anywhere in the file. These lines will be ignored. Policies must follow

the message pattern, otherwise, it will be considered an error. A tool name

and a message pattern must be preceded by literal characters, "TOOL: " and

''MSG PATTERN: ", respectively. A message pattern line must be given

after the tool and if a tool has a policy for a pattern, it must follow the ''MSG

PATTERN: " line. The condition of a policy consists of either TRUE, system

states, functions, or variables, and the action consists of an entry-point routine

which will be known to the system. The grammar for the policy condition is

also in Appendix A.

52

3.3 Execution of FOREST

The FOREST environment was developed as a prototype on a GOULD

machine (GOULD UTX-32) running under UNlX (4.3 BSD and system V.3).

The message server of the FOREST environment consists of about 2000 lines

of C code. It supports two tools; one is the "vi" editor and other one is the C

compiler "cc". FOREST allows the addition of standard "off-the-shelf"tools

without any modification of the tool. But if the new tool is interactive, MSG

requires a minor change because it should not communicate with the terminal

while this type of tool is in use.

FOREST is executed by giving the command "forest". By typing this

command, it prints the prompt ''FOREST: " on the terminal and waits for

input. After giving input, it processes the input by using the algorithm

described in Figure 3.2 of this chapter. A script session "isgiven below which

uses the policies defined in Figure 2.6, 2.7, and 2.8.

=> forest enter FOREST environment.

FOREST: prompt displaying that a user is in a FOREST env.

set always-compileTRUE
set command is used to set always-compile
state to TR UE.

EDIT a.c user sends this message to MSG.

Starting VI edit("",a.c) as job 0

displaying that "vt tool has been started by
calling the edit entry-point routine as job o.

FOREST: prompt displaying that a user is in a FOREST env.

53

< editingsession >

FINISHED EDITING ajile "a.c" editing has been finished.

Starting CC compile_with debug(a.c) as job 1

displaying that "cc" has been i1lvoked by calling
compile_witUebug entry-poin' routine as job 1.

FOREST: prompt displaying that a user is in a FOREST env.

Starting CC compile(-c -g,a.c) as job 0

compiler has been invoked by calling compile
entry-point routine as job O.

FOREST: prompt displaying that a user is in a FOREST env.
" "

,
.

a.c , me 4: syntax error

compiler "ee" is displaying the syntax error found in the
file.

COMPILING DONE message indicating that the compilation is
finished.

FOREST: prompt displaying that a user is in a FOREST env.

quit command used to get out of the FOREST env.
=>

54

Chapter 4

Evaluation of FOREST

This chapter provides an evaluation of the FOREST environment. The

evaluation is divided into three sections: the first section compares FOREST

with other existing systems that deal with policies, the second describes the

limitations of FOREST in terms of its strengths and weaknesses, and the

third indicates some directions for future research.

4.1 Comparison of FOREST with other existing systems that deal

with policies

FOREST was designed to support a low-cost mechanism for handling the

interweaving behavior of an integrated environment through the definition of

policies. Therefore, comparisons of FOREST to other systems, are done only

with those systems that deal with the same problems. Representative systems

in this category are the Darwin Environment for law-governed systems [12],

Kaiser's Marvel system [13], and the FIELD [1]environment. Each subsection.

of this section contains a brief description of the system that I am comparing

FOREST with, followed by the comparison.

4.1.1 Comparison of Darwin with FOREST

Darwin is a software development environment that is designed for law-

governed systems. Law-governed systems contain a component called the law

55

of the system, which is an explicit and strictly enforced set of rules about the

,operation and evolution of the system, and about the evolution of the law

itself. The system under Darwin consists of a collection of objects, which are

grouped into classes. These objects communicate by means of messages

which are controlled by the law of the system.

An example is given in Figure 4.1, which shows some of the Darwin ker-

nel objects as well as some user-defined objects. Classes are represented by

rectangles, ordinary instances are represented by circles, solid lines denote

subclass links, and dashed lines denote instance links.

I
I
I
I
I
Ie

Figure 4.1: Class hierarchy of the Darwin System

The kernel classes include class module, representing the program

modules of the system, class user, representing its users, and class rule,

representing the rules comprising the law. The user-defined classes can be

used to proyide additional attributes and functionality as shown by 1I1Module,"

56

d
" It

an programmer.

Both the operation and evolutionof the Darwin system is carried out by

means of messages. The operational activity is carried out by means of

private messages and evolutional activity is carried out by means of meta

messages. Darwin also provides several built-in methods (functions) for user

convenience. For example the class class provides method, new{...}, for creat-

ing new objects. The comparison of FOREST and Darwin is given below:

1. .As described above, Darwin is designed to support law-governed systems,

while FOREST is designed to support a low-cost mechanism for defining

policies. FOREST can be used for any project, regardless of whether a

project defines a policy or not, but Darwin can not. Darwin uses the

term, 'hw,1t where FOREST uses the term "policy.1t Both of these terms

define a set of rules for a system, but Darwin's law encapsulates more

information than FOREST's policies, which makes the law more com-

plex than a set of policies. An example of the law is presented below:

rl: send(S, Anew(Image),module) -->
isa(S, user) &
Image.owner=S &
deliver(Anew(Image), module).

r2: send(S, AM,T) - >
isa(T,module) &
T .owner=S &
deliver(AM,T).

r3: send(S, @M,T) -->
isa(S, module)&
isa(T, module) &
deliver(@M,T).

57

The above law consistsof three rules. Rule rl allowsany user S to send

meta messages, Anew(...},to class module and thus create new modules;

these modules, however, must list S as their owner. Rule r2, in turn,

allows S to send arbitrary meta messages to any module he owns - e.g.,

changing their programs or destroying them. Rule r3 allows arbitrary

exchange of private messages between the modules in the system.

In FOREST, policies define only a set of rules for operation of the sys-

tem, but the system is capable of defining policies, regarding the evolu-

tion of the system, if the system provides the means of storing this infor-

mation. For example, in FOREST it is easy to add policies for specify-

ing who can do what to which part of the system.

2. The Darwin environment consists of a collection of objects, but the

FOREST environment consists of a collection of tools. This means that

Darwin provides object-module level integration only and can not be

used in conventional language programming, while FOREST can. Both

environments communicate by means of messages. These messages are

controlled by law in Darwin but they are broadcast by MSG in

FOREST.

3. The objects in Darwin's environment are grouped into classes,which are

in turn organized into a Smalltalk-like inheritance hierarchy. Because of

this, these objects inherit the properties of their superclasses. Such

grouping is unavailable in FOREST and therefore, every tool needs to

58

encapsulate all its properties within itself.

4. Two types or messages exist in Darwin's environment: one is "private"

messages, which represents an operational activity, and the second is

"meta" messages, which represent an evolutional activity.. FOREST

does not make any distinction between message types; instead they are

distinguished by the pattern. If a message does not match any of the

registered patterns, the message will not be recognized by the system.

Since Darwin supports two types of messages, the message handler in

Darwin is more complex than the one in FOREST.

5. The enforcement of the law by the Darwin system is very complex. It

provides two modes of law enforcement: dynamic and static. Dynamic

enforcement of the law is done by intercepting each message-sending act,

"send(s,m,t)," evaluating the ruling of the law with respect to it, and car-

rying out this ruling. Static enforcement of the law is done by analyzing

the programs of these modules to determine whether or not, when run-

ning, they will obey the law. FOREST enforces it3 policies by setting up

priorities for various levels of users and allowing them to define whether

a policy is overridable or not.

6. Darwin maintains both the state of the system anJ of the law. The law

controls the operation of the system, it's evolution, and the evolution of

the law itself. FOREST maintains only the stat e of the system and

enforces the policies over system operation only. Changing policies is

done outside FOREST and hence is controlled by the UNIX file protec-

59

tion mechanism. The question of whether FOREST could be extended

in this direction is discussedlater.

7. Both Darwin and FOREST, provide several built-in methods or entry-

point routines for user convenience.

8. Darwin's law is a function, which maps any given act, send(s,m,t}, either

to, deliver(ml,tl}, where ml and tl may be different from the original

m and t, or to, symbol fail.

law: send(s,m,t) -> { deliver(ml,tl), fail }

FOREST's policies are defined as condition-action pairs, as defined in

Chapter 2. In FOREST, if a policy-clausefails, the next policy-clause

will be evaluated unless there is no policy-clause is available. By default,

the system does not give an error message.

9. Darwin uses predicates in order to define a law. The law evaluates the

right hand side first and, if that is evaluated to be true, the predicate on

the left hand side will be set to true. The evaluation of policies in the

FOREST environment is in the opposite order. It evaluates the left

hand side, i.e., the condition first, before it can execute the action, i.e.,

the right hand side.

In summary, Darwin's environment for law-governed systems solves the

problem of hard-wired policy by explicitly declaring and enforcing a defined

set of laws restricting the interaction of programmers and the module. It is a

more powerful environment than FOREST because it regulates both the

60

operation and the evolution of the system, while FOREST regulates only the

operation. However, this power is achieved at the expense of greater com-

plexity and cost of implementation. It does not allow the integration of exist-

ing tools, as such, and allowsonly object level integration.

4.1.2 Comparison or Kaiser's Marvel system versus FOREST.

Marvel is an environment that supports two aspects of an intelligent

assistant: insight and opportunistic processing. Insight, means that the sys-

tern is aware of user's activities and can anticipate the consequences of these

activities, based on an understanding of the development process and the pro-

duced software. For example, insight informs individual programmers more

quickly about the structure and inter-relationships of the software product,

the consequences and side effects of their tasks, and guides them in the job of

making even major changes to a system and getting it back into a consistent

state. Insight also helps in coordinating the activities of multiple program-

mers so they can accomplish their tasks without interfering with each other,

knowing that the result of simultaneous work will be combined in a controlled

way. Opportunistic processing, means that the system undertakes simple.

development activities so programmers need not be bothered with them.

These activities are carried out when the opportunity arises. For example,

Marvel has the capability to determine that source code has changed, invoke

the compiler, and record the errors found during compilation.

Marvel consists of two key components: a database and a process model

(a model of the development process). The database stores data represented

61

as objects, as in object-oriented languages. The object base contains a set of

objects that represent both the system and its development history. It also

defines the object classes and relationships among objects. A proce~ model

imposes a structure on programming activities. This model is an extensible

collection of rules that specify the condition that must exist for specific tools

to be applied to particular objects. Some rules are relevant only when a user

invokes a tool, others apply when the environment invokes tool proce~ing,

and still others apply equally to both cases. Rather than add intelligence to

individual tools, the process model encapsulates all the intelligence in the

environment, making modification of the tools unnecessary. The comparison

of tviarvel with FOREST is given below:

1. Marvel stores all the information regarding the system in a database

while FOREST stores this information in separate files like the policy-

definition files. In FOREST each tool manipulates it's own data and

decides when to send a message. Hence data are distributed acr~ tools.

Due to the distributed nature of the tools' messages, FOREST performs

less automatic evaluation of all these states because each tool needs to

receive it's message explicitly.

2. The policiesof the FOREST environment are like proce~ models in the

Marvel environment in that both are an extensible collection of rules.

The condition of a rule must be satisfied for a particular tool and for a

particular pattern before it can invoke the specified action. Consider an

example of Marvel's process model:

62

Marvel's process model

not com piled(module) and
for all components c such that in(module,component c):

analyzed(component c)
{compile module}

compiled(module) I
error(module);

In this example, "notcompiled(module)" is a precondition for the

compile-module activity. The precondition requires all semantic analysis

to have completed successfully. This takes the form of "for all com-

ponents c such that in(module, component c): analyzed(component c)"

where "analyzed" did not find any error. "Compiled(module)" and

"error(moduler are two possible postconditions capturing the fact that

compilation may succeed or fail. The postcondition alternatives are

mutually exclusive; only one gets asserted based on the result of the

activity. The following is an example of FOREST's policy:

FOREST'sPolicy:

notcom piled(module) -> compile(module)

In this example, "notcompiled(module)" is a condition and "compile" is

an action of a policy which mayor may not contain embedded post con-

ditions. In both examples, although the method of satisfying the precon-

dition is different, once it is satisfied the compile action will be initiated.

63

3. As described above, the precondition of Marvel's process model is identi-

cal to the condition of the FOREST's policy because both need to be

satisfied before an activity can be performed. The postcondition of

Marvel's process model is also identical to the states used in actions of

FOREST's policies because FOREST allows the user to define a state as

an action.

4. Marvel's process model encapsulates all of the intelligence in the environ-

ment, making tool modification unnecessary, while in FOREST, this

intelligence is found in FOREST's policies as well as in the tool's inter-

face. FOREST's policies mayor may not contain all the intelligence

because the automatic invocation of tools depends upon the policies as

well as on the tool's interface. Due to this intelligence, the Marvel

environment makes available only those commands that are relevant to

the object under consideration, within the context of the user's recent

activities.

5. Marvel stores more information than FOREST because it provides both

insight and opportunistic processing and hence, it is more powerful but

more complex than FOREST. Marvel stores attributes, which define

the status of objects, and methods, which define the development activi-

ties applicable to the object. FOREST only stores the set of patterns

that each tool wants to handle and the policies for each tool and pattern.

Since FOREST stores less information, it is not capable of giving any

guidance (insight) to the user, and hence, is less powerful.

64

6. Objects in the Marvel environment inherit properties from their super-

class or superclasses. The tools in the FOREST environment do not

have this ability.

7. The object base of Marvel also maintains the proce~ model and acce~s

this through opportunistic proce~ing, Le., carrying out an activity based

on rules described in the proce~ model when the opportunity arises. In

FOREST, policies are acce~d only by sending me~ages to MSG. For

example, in Marvel, once a user requests an action, the system automati-

cally evaluates all the rules described in the proce~ model and then car-

ries out the activities, while in FOREST, only policies related with a par-

ticular pattern will be evaluated.

8. Marvel interprets the rules in two ways: forward chaining or baclnvard

ch~ining. Forward chaining lets Marvel invoke tools as soon as their

preconditions are satisfied; back-ward chaining lets it find the tools whose

postcondition satisfy the precondition of other tools that have been

activated. In FOREST, rules are interpreted in a limited form of for-

ward chaining, which means when a condition of a policy is true, the

action of the policy will be performed. However, there is an important

difference between Marvel and FOREST: Rule evaluation is not driven

by any automatic reevaluation. That is to say, tools are the active

agents and not the supplying object base, as in Marvel.

9. In Marvel, only system managers are allowed to write object-base

descriptions, rules, and strategies, while in FOREST, only system-level

65

users are allowed to define the system-level policies. In this respect,

these two systems are similar. However, end-users are allowed to change

certain system-level policiesin FOREST but not in Marvel. The policies

that they are allowed to change in FOREST, are the default policies

which are provided to users only for their convenience (see Section 2.4).

Both environments allow users to dynamically affect which rule is chosen

from rules defined either by system managers or by system-level users.

In FOREST this is done by setting state variables. They also allow users

to extend the set of rules if desired.

& discussed above, the Marvel system is a powerful system because it

provides both insight and opportunistic processing. However, this power is

achieved at the expense of increased complexity because of the need to main-

tain all knowledge about both the specific development effort and the general

development process in the object-base. This object-base needs to be created

by the system manager. Further, the Marvel system stores much information

in the object ba'5e, and allows forward and backward chaining for interpreting

the rules.

4.1.3 Comparison between FIELD and FOREST environments

& described in previous chapters, the main goal of this thesis was to

design an integration mechanism which satisfies the properties of a low-cost

mechanism (Section 2.1). FOREST was developed on the basis of FIELD

because its underlying integration mechanism, selective broadcast, satisfied

some of those properties. FOREST satisfies the remainder. Therefore, as far

66

as an integration mechanism is concerned, we can conclude that FOREST is a

superset of FIELD. In terms of actual implementation, FIELD is much

further developed. It includes:

a) More tools

b) More matching patterns

c) A graph1c interface

d) A complex pattern matcher

4.2 Limitations

As described in the second chapter, I wished to extend the FIELD

integration mechanism to include the remaining properties of a low-cost

mechanism. However, due to an installation problem with FIELD3, I was

unable to do this and decided to build a separate implementation from

scratch. The implementation of this system was done on top of UNIX and is

based on the underlying integration mechanism of FIELD, which caused

several limitations within the FOREST environment.

The limitations are basically of two types; engineering limitations and

intrinsic limitations. Engineering limitations are those aspects of the system

limitations that could be implemented in a production environment but were

not done in the research for this thesis. Intrinsic limitations are those limita-

tions that exist within the environment and are difficult to eliminate.

3 FIELD requires lots of disk space, is complex, uses a time-consuming
build process that was buggy, and has minimal documentation.

67

4.2.1 Engineering Limitations

1. The number of tools used in FOREST was limited because of the diffi-

culty of including all the extant tools of FIELD, which is required in

building a tool's interface. Adding more tools would have made the

environment richer but would not have illustrated any new principles.

2. The pattern matcher used by FOREST supports only a subset of the

character-types used in the FIELD environment (%d, %s, %r). It is not

difficult to add other character-types, but only a few were included in

the FOREST prototype.

3. Only one action routine per condition-action pair is allowed by the

FOREST environment. The addition of the capability of handling mul-

tiple entry-point routines would not be difficult, except that it would

require more development time. For example, one might write

TRUE -> compile(module),SendMsg("setCOIvtPILEDTRUE")

This example allows two actions (entry-point routines); one compiles the

module and other sends a message to MSG for setting the system state

"COIv1PILED" to true.

4. Use of windows is lacking in the FOREST environment because the sys-

tern which was used for implementation (GOULD UTX-32) does not

support a window system. The use of windows would provide clearer

view of the environment since each tool could use its own window for

interacting with the user.

68

5. FOREST was developedon top of UNIX, making user-definable policies

more difficult to use because UNIX does not allow the user to define

functions or entry-point routines during run-time. These need to be

linked with the tool's interface before anyone can access them. This

task can be accomplished, but it requires the cooperation of end users

and system-level users and a new tool's interface build. For instance,

suppose a user wants to define an action for a policy which is unavail-

able in the existing system. He/She needs to convince the system-level

users to add this routine because the addition of an entry-point routine

requires a new tool's interface build. The system-level user would add

this routine into the tool's interface and would build a new tool's inter-

face. A dynamic linker/loader would solve this problem but such a tool

was unavailable to me.

4.2.2 Intrinsic limitation

1. FOREST contains a higher probability of combinatorial explosion

because the number of policies increases with the number of states in the

system. For example, if a system contains five different (boolean) states

and these states can be true independently, a policy might need to pro-

vide 32 different policy-clauses to account for all the possibilities. There

is also the difficulty of providing an entry-point routine for each option

of a tool, because a tool can have an enormous number of entry-point

routines.

69

2. The evaluation of policiesby MSG might be a bottleneck for FOREST

because its speed is dependent upon the number of policies that MSG

tries to evaluate. In general, a simple system containing about 100 poli-

cies, will not have any noticeable speed difference but in a system con-

taining about 1000complex policies,execution will be noticeably slower.

Message-passingoverload is also a problem in FOREST, if the number

of messages sent to FOREST exceeds more than 50 messages per

minute. The number of messages causing an overload depends upon the

how many policies are involved in handling the message, what the load-

average of the system is, etc.

3. Use of interactive, "off-the-shelf" tools is a problem in both FOREST

and FIELD because an interactive tool needs to filter out the messages

between MSG's messages and its own. FOREST solves this problem

inside the message server by not responding to any message while an

interactive tool is in use. This assumption makes it more difficult to add

a new interactive tool into the environment becau'5e it requires the addi-

tion of a new toolname to MSG and a new system build.

4.3 Directions for Future Research

As mentioned in the limitations section of this chapter, FOREST does

not allow users to add new entry-point routines into the environment at run-

time. This is because UNIX does not support dynamic linking of object

modules. Therefore, it is worthwhile to expand FOREST's integration

mechanism into an environment that supports dynamic linking. Dynamic

70

linking will solve the problem of adding new entry-point routines at run-time

because it makes possible the addition of new objects into the environment.

Another avenue for future research would be to modify an "off-the-shelf"

expert system so that. it could store the policy-related information of

FOREST. It would also require the modification of FOREST because it

needs to access this expert system in order to retrieve information. This

expert system would store all policy-related information, provide faster access,

and have the capability of storing more information.

A third promising avenue of research might be, like Darwin's system,

adding policies for policies inside the FOREST environment which would con-

trol the policies defined by the users. For example, one might devise policies

for controlling who should be a allowed to change a particular policy, and how

it might be changed, etc. Although the existing FOREST environment has

"hareL-wired" policies for polky evaluation, it deals with a single level of user's

policies. These policies are stored in files. Changing policies is done by editing

these policy-definition files outside the FOREST environment and hence, who

should be allowed to change policies is controlled by the Ul\TJXfile protection

system.

71

References

1. Reiss, Steven P., ''Integration Mechanism in the FIELD Environment,"
Technical Report No. C8-88-18(October 1988).

2. Reiss, Steven P., ''pECAN: Programming Development Systems that
Support Multiple Views," IEEE Trans. Soft. Eng. SE-ll pp. 276-284
(March 1985).

3. Goos, G., et aI., ''DIANA: An Intermediate Language for Ada," Lecture
Notes in Computer Science, Springer-Verlag, 1983.

4. Donzeau-Gouge,V., et aI., ''programming Environments Based on Struc-
ture Editors: the MENTOR Experience," Technical Report26, INRIA
(May 1980).

5. Gansner, Horgan, et aI., "SYNED: A Language-Based Editor for an
Interactive Programming Environment," in Intellectual Leverage for the
Information Society, page 406-410,COMPCON 83 (Spring 1983).

6. Goldberg, A., "Smalltalk-80: The Interactive Programming Environ-
ment," Addison-Wesley,Reading, Ma., 1984.

7. Teitelman, W. and Masinter, L., ''The Interlisp Programming Environ-
ment," IEEE Computer 14:4 pp. 25-34(April 1981).

8. Teitelbaum, T. and Reps, T., ''The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment," Communications of the
ACM, 24:9 pp. 563-573(September 1981).

72

9. Perry, Dewayne E. and Kaiser, Gail E., 'Models of Software Develop-
ment Environment," In Proceedings of the 10th International Conference
on Software Engineering, (April 1988).

10. Osterweil, L., "Software Processes Are Software Too," Proceedings of
the 9th I~ternational Conference on Software Engineering, Monterey,
CA pp. 2-13 (March 1987).

11. Taylor, Richard N., et aI., '~rcadia: A Software Development Environ-
ment Research Project," 2nd International Conference on Ada Applica-
tions and Environments, IEEE Computer Society, Miami Beach, FL
(April 1986).

12. Minsky, Naftaly H. and Rozenshtein, D., "A Software Development
Environment for Law-Governed Systems," Proceedings of the ACM SIG-
SOFT / SIGPLAN Software Engineering Symposium on Practical
Software Development Environments pp. 65-67 (November 1988).

13. Kaiser, Gail E., et al., '1ntelligent Assistance for Software Development
and Maintenance," IEEE Software pp. 40-49 (May 1988).

73

Appendix A

Backus-NaurForm for defining the policies in FOREST.

The context-free syntax of the language, which defines the policies, is

described below, using a simple variant of Backus-Naur Form. In particular,

a. Lower case words, some containing embedded underscores, denotes syn-

tactic categories, for example,

adding operator

b. Boldface words denote reserved words, for example,

TRUE

c. Square brackets enclose optional items, for example,

message_pattern [starLpolicy]

d. Braces enclose a repeated item. The item may appear zero or more

times. Thus an identifier-list is defined by,

identifier ..list ::= identifier {, identifier}

e. A vertical bar separates alternative items, unless it occurs immediately

after an opening brace, in which case, it stands for itself:

letter or-Cligit::= letter Idigit

component-association ::= [choice { phoice}=>]expression

73

Backus-Naur Form for defining the policiesin the FOREST environment

is given below:

policy..1ile ::= [policy-definition]

policy definition ::= toolS-pOlicy

{ toolS-pOlicy }

tools-policy ::= toolS-name

[message_patterns

{ message_patterns}]

tooIS-name ::= TOOL: tooLname

tooLname ::= CC IVI

message-patterns ::= message_pattern

[start_policy]

message_pattern ::= MSG PATTERN: pattern

start-policy ::= POLICIES:

[policy

{ policy}]

policy ::= policy...condition - > action

policy...condition::= state I condition I condition...var

74

condition ::= (policy condition {operand policy condition })

operand::= > I < I > = I < = I= I != I&&III

conditioILvar ::= identifier Idigits I TRUE I function call

state ::= character -'5tring I conditioILvar I FALSE

identifier ::= letter { [underscore] letter-Dr-digit }

letter or-digit ::= letter I digit

digits ::= digit { digit}

h . lI

{h }
II

C aracter -'5trmg ::= c aracter

function call ::= functioIWlame actuaLparameter-part I functioILl1ameO

actual-parameter_part ::= (parameter association {, parameter-association })

parameter-ASSOciation ::= actuaLparameter

actuaLparameter ::= expression

76

Biographical Note

The author was born February 1st, 1957, in Gorakhpur, India, and gra-

duated from the University of Gorakhpur in 1975. In 1977, she received a

Master of Science in physical chemistry from the same University. In 1978

and 1979 completed partial Ph.D work from the University of Gorakhpur and

Portland State University. In the meantime author changed her interest from

Chemistry to Computer Science. While working full time at Tektronix and

nursmg her first daughter, she registered as a part-time master student at

Oregon Graduate Center in winter of 1984. In March of 1990 the author

defended her Master's Thesis while working full time at Tektronix as a

Software Engineer, raising two daughters and expecting a third baby in July

of 1990.

