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ABSTRACT

Feature-based approaches [6] to speech recognition tasks focus attention on regions of the

signal we as humans rec~gnize as containing the important information. Explicit segmenta-

tion allows us to select features that are most important to recognition.

In this thesis we investigate the problem of segmentation and classification of speech into

one of the four broad phonetic categories Sonorants, Fricatives, Closures and Stop con-

sonants using neural networks as classifiers.

We first limit this task to spoken letters of the English alphabet. We use a back propaga-

tion neural network with conjugent gradient optimization. We choose a set of speech

parameters best suited for the task. We then experimentally determine the configuration

which best segments a section of speech and classifies it. The parameters we vary are the

neural net characteristics, the set of features extracted from the speech parameters, and the

methods of normalization of these features. We compare this system to speech hand-labeled

by two experts in the field. We then compare the performance with that of a well tuned

rule-based system on a letter recognition task.
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CHAPTER 1

Introduction

1.1. The Problem

In this thesis, we attempt to segment speech into broad phonetic categories correspond-

ing to the major articulatory behaviours that underly production. The research will

apply a novel approach to the problem that combines application of knowledge-based

features and neural networks. The algorithm will be evaluated in terms of human

labeling performance and within working speech recognition systems.

Based on an analysis of the task described below, we have chosen the broad phonetic

categories to be Sonorants, Fricatives, Stops and Closures. Figure 1.1 shows a

waveform and a spectogram of the utterance "beer' which has been segmented and

labeled by hand. The acoustic features describing the corresponding broad phonetic

categories can be seen in this figure. Closures represent intervals of relative silence

produced by a closure of the vocal tract preceding a stop consonant, a pause, or back-

ground noise. Stops are formed by a sudden release of pressure built up during the

closure preceding the stop. If the airflow is not completely blocked, a high frequency

hissing sound is produced. This is called a Fricative. If there is no restriction of the

airflow, a fairly steady sound is produced. Such sounds are called Sonorants.

Stops are relatively short, often 9 to 12 msecs long, and therefore need to be detected

with high accuracy. Moreover, they often occur before sonorants, the onset boundaries

of which are also important to us. The sonorant, when preceded by a stop, contains a

lot of information in the first few frames after its onset about the place of articulation
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of the stop and it is crucial to detect these boundaries accurately. As an example, the

rising pattern of the formants in the spectrum of the sonorant in the region immedi-

ately following the stop /b/ (figure 1.1) is a very important cue for discriminating /b/

from / d/ and / g/. Sonorant offsets, on the other hand, taper off gently till they disap-

pear into a closure or a fricative. The drop off is sharper into a fricative. This boun-

dary is often hard to place, even for experienced labelers. A fricative can be very long

(j 8/) or relatively short (jjh/). Fricatives are often distinguished by their length and

their spectrum which gives clues as to the place of articulation. Often, voiceless (j sf)

and voiced (j z/) are distinguished by their lengths. Though accuracy in determining

the bounds of such segments is important, very high accuracy is not a necessity as the

lengths differ by a fair number of frames.

In evaluating this system we distinguish the regions of the signal that are more impor-

tant to recognition from those that are not as important, and we place more impor-

tance in the accuracy in r~cognition of the former.

1.2. Why segment speech?

The speech input is a digitized acoustic signal containing a very large number of data

points. In order to find out what was said in that fragment of speech, we need to

analyze the numbers that represent the signal. The problem is made more tractable

when the signal is converted into a smaller number of basic units which preserves those

characteristics of the signal from which meanings can be derived. This helps an

automatic system to focus attention on regions of the signal we as humans recognize as

containing the important information. It allows us to select features [1] [2] that are

most important to recognition. For example, for stop consonants before vowels, we can

select features at the burst release and just after the sonorant onset.
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An example of a feature-based recognition system is EAR [3] , a neural network based

English alphabet recognition system. Given the digitized representation of an utter-

ance, the system classifies it as one of the 26 letters of the English alphabet. EAR uses

a feature-based approach to classification. It selects important features from specific

regions. It uses a segmenter to identify these specific regions. . A comparison of EAR

with other systems using Hidden Markov Models (HMM) to model speech is reproduced

here from [3] in table 1.1. The success of the EAR system demonstrates the feasibility

of using explicit segmentation, feature selection and neural network classification in

computer speech recognition.

Recent letter classification results

Table 1.1

Studv Conditions Speakers ADDroach Letters Results

Brown (1987) 20 kHz Sam- 100 speakers HMM E-set 92.0%

pIing 16.4 dB (multi-
SNR speaker)

Euler et al. 6.67 kHz 100 speakers HMM 26 letters + 93.0%

(1990) Sampling (multi- 10 digits + 3
(telephone speaker) control
bandwidth) words

Lang et al. Brown's data 100 speakers Neural net- B,D,E,V 93.0%

(1990) (multi- works
speaker)

120 training
Knowledge- 26 letters 96.0%

16 kHz Sam- based E-set 95.0%
Cole, Fanty

pIing 31 dB
30 test features and B,D,E,V 94.2%

(1990) SNR (speaker- neural net-
independent) works
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1.3. Approach

Our approach to segmentation is to use a neural-network classifier to classify each

time frame of the signal into one of the four broad phonetic categories and then fix

segment boundaries where the category changes from one frame to the next. Once seg-

mentation and broad classification has been done, further processing of speech is much

easier.

1.4. Choice of Task Domain

The goal of this thesis research is to help extend spoken letter recognition to continu-

ous speech. A step in this direction is a system that can locate and classify letter

strings spoken with pauses between the letters. In order to locate the letters it is

necessary to segment speech, and it is sufficient if we do so into four broad phonetic

categories: stop, sonorant, fricative and closure. In fact, with this approach we

can perform context sensitive classification. To illustrate this let us take an exa"!-ple

from continuous speech. The realizations of the Stop /k/ in cot, scot, six, pick and risk

are all different as seen in table 1.2 and figure 1.2. With segmentation into broad

categories, we can treat the realizations as different kinds of events and thereby make

letter classification more reliable. We shall develop a neural network based segmenta-

tion and broad classification algorithm for this purpose. From later discussions it is

seen that the rule-based segmenter used in the EAR system does not extend well to

more complex domains. Hence, our choice of neural networks as the tool Corsegmenta-

tion and classification. The broad phonetic categories produced by the segmenter are

intended to locate the phonetic events listed in table 1.3. (G/ot is a glottal stop, the

stop-like event that is typically observed beCore vowels). Preliminary results showed

that voiceless stops were classified more easily as FRICs. From further research it was
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Allophones of /k/

* C - Closure, V - (vowel like) Sonorant, F -Fricative, S - Stop.

Table 1.2

Phonetic events represented by Broad Phonetic Categories

Table 1.3

found that, in spoken letters, such stops are always seen in word initial position and

therefore have high frication, almost equivalent to that in fricatives. Further, the

main difference betwen stops and fricatives is that the former are characterized as

having a clear closure before them. In spoken letters, due to the pauses between

letters, there is a clear closure before fricatives in word initial position too. Hence, in

this task domain, unvoiced stops and fricatives look alike and are treated alike. The

category of sonorants is left as it is.

1.5. Previous Work

Word Characterisation Broad CatelTorv Renresentation *

cot aspirated C-8-V-C-8

scot unaspirated F-O-S-V-O-S

six affricated F-V-S-F

pick unreleased 0-8-V-0-8
risk released V-F-C-S-O

Broad Oatelrorv Phonetic event it represents
STOP b d and Glot

FRIO P. t kih ch. s. z f v
CLOS closures before stops, back-

Irround noise pauses. silence

SON vowels 1. r w y. m n
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1.5.1. Review of Early Work in Speech Recognition Systems

There have been a number of early attempts at word and continuous speech recogni-

tion using rules and statistical pattern classifiers with different representations of the

signal. These were largely exploratory methods aimed at solving such problems as

finding good representations of the signal, looking for basic elements of the spoken

language, and finding ways to detect them in the signal using the constraints of the

language.

The first ARPA project (1971 - 76) produced systems mainly based on statistical

classification methods or AI techniques with rules built from spectral data or other

features. Some examples of these systems are the Harpy system [4] , and HEARSAY n

[5] both from CMU, and HWIM [6] from BBN. These systems were all medium vocabu-

lary (about 1000 words), low perplexity (branching factor 33 except for HWIM where it

was 196) and multi speaker (1 to 5 speakers) systems working on very specific tasks

domains. Performances were in the range of 90% for the CMU systems and 44% for

HWIM. The phoneme recognition accuracies were much lower at around 40% - 50%.

Such a high utterance accuracy from the mediocre phoneme accuracies leads us to

believe that we could build bigger and more versatile systems which can still have a

high recognition rate by greatly improving the segmentation accuracies.

In the period following the first ARPA project, HMMs emerged as the leading technol-

ogy. A notable exception in this regard was the Feature System [7] from CMU. HMM

based systems use no explicit segmentation or speech knowledge to guide their search.
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1.5.2. Review of Early work in Explicit Segmentation

There were a number of early systems for explicit segmentation. Some of these studies

are shown in table 1.3. Most of these systems were designed to segment and classify

speech into voiced and unvoiced [8] regions, and sometimes silence [9] too. Some of the

efforts were hardware based [10] [9], while others were ba~ed on rules or pattern

classification. Some systems used hierarchial decision making strategies [11] [12] to

aid classification. Some [13] performed broad classification as a step before phonemic

classification. They used features mostly based on LPC and sometimes on DFT. Zero

crossing count was also used as a feature by some. Some [9] came up with ingenuous

features that work fairly well with hardware. However, most of the systems used very

few speakers with very few utterances except for one system by Wilcox and Lowerre in

1986 [12] , which dealt only with continuous digits.

In 1978, Victor Zue [141showed that

. phonetic structure is recoverable from the spectogram,

. explicit segmentation is a viable alternative in speech recognition,
and,

. knowledge can be used effectively in speech recognition.

These results gave a big boost to research in feature based approaches [7] [15] to

speech recognition problems, and explicit segmentation. With the development of

neural networks and other better strategies for classification, the performance of seg-

mentation and classification sub-systems at more complex tasks and in truly speaker

independent environments began improving.



Author IY ear
Kasuya, H.,
Wakita, H.
(1979)

Knorr,
(1979)

Task

Voiced and
Unvoiced

S.G.I Voiced
Unvoiced

Un,
Lee,
(1980)

C.K.,
I

Voiced,
H.H. voiced

Silence

Siegel,
Bessey,
(1982)

Regel,
(1982)

Wilcox,
Lowerre,
(1986)

L.J.,
A.C.

Voiced, Un-
voiced &
Mixed exci-
tation

Data
10 utter-
ances of con-
tinuous
speech; 2
male, 2 fe-
male s krs

& 12 sentences
of continu-
ous speech; 5
male, 3 fe-
male, 4 child
spkrs
25 seconds of
continuous
speech

Features

LPC based
features

10

Decision Method Performance

rule-based deci- 93.3% overall
Slon

filtered spec- hardware I97%
trum switching based
features decision

bit-stream
from linear
delta modu-
lation and
zero crossmg
as features

continuous LPC and
speech; 8 DFT based
sentences features with
each from 4 zero crossing
spkrs train,
2 spkrs test

Un-
&

continuous
speech with
4 male & 2
female spkrs
for 40 sen-

tences (60%
train, 40%
test)

hardware
switching based
decision

linear percep-
tron based deci-
sion at every
node of a deci-
sion tree

LPC based
I

Bayesian
features classification

continuous LPC based
digit data- features and
base of TI zero crossing

Table 1.4

1.5.3. Rule-based Segmentation

P. 11) classify
into Silence,
Unvoiced,
Voiced Fri-
cative, Un-
voiced Frica-

tive; 2) clas-
sify

~ onemes

L., Silence,
B. Vowels,

Nasals,
Strong Fri-
catives,
Weak Frica-
tives. Others

Gaussian
classification at
every node of a
decision tree

Early work in Explicit Segmentation

94%

94%

92% broad
category,
60% phonetic

87.4%
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A fairly robust segmentation and broad classification system based on rules formed

around different representations was built by Cole and Hou [15] at CMU in 1988. This

system showed the advantages of a knowledge-based approach. Further, the broad

classes are more or less distinct and fairly easily recognizable from the signal. They

help constrain the search for phonemes and to some extent for word boundaries. The

work on Cole and Hou's rule-based segmenter was extended to spoken letters in 1989

at OGI and a system to recognize letters of the English alphabet spoken in isolation [3]

was developed. However, the disadvantage of rules was quickly apparent. As the

number of speakers in the system increased, more variations of the signal were found,

and though minor, they affected the rules. The rules had to be continuously tuned,

and more rules had to be added as the domain grew. As is seen from results later in

this thesis, rule-based segmentation performs well in smaller and more limited domains

like isolated letter utterances. But, when we tried to extend it to connected letters -

sequences of letters of the English alphabet spoken with distinct pauses in between the

letters, the accuracy fell. The rules could be tuned to improve performance, but the

effort required is far too much as the complexity of the domain increases.

1.5.4. Dendrograms

Another approach to segmentation is the use of a dendrogram [16] to represent mul-

tilevel hierarchies of segments. The basis of segmentation in this approach is the use

of difference measures applied to some spectral representation of the signal. The

difference in the spectrum across adjacent frames is computed using this difference

measure, and similar frames are clustered together. This clustering is done repeatedly

at higher and higher levels until the entire utterance forms one segment. An advan-

tage here is that clustering is based on spectral differences in the actual signal. This

results in segments smaller than phonemes. Therefore, few segments are lost due to
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deletion. However, finding a good difference measure for speaker independent speech is

difficult. Any general difference measure at this low level is prone to weighing unim-

portant differences equally with the important ones. The characteristic feature distin-

guishing one segment from another could get swamped by other insignificant but strong

differences. This can happen when discriminating among some vowels. Another, more

important, problem arises when trying to match the regions for likenesses to phonemes

and finding a path through the network. The classification into phonemes is done by

matching the spectrum within the segment with each of a set of prototype spectra for

the phonemes. As in HM.M based systems, here too it could fail because the charac-

teristic similarities could be offset by insignificant differences like across speaker

differences.

1.5.5. Neural network based systems

Neural networks, being powerful classifiers, have been recently used [17] [18] [19] to

build segmentation and classification systems. The idea is to compute features from

the signal at various time frames and input to a trained neural network. The net

classifies the time frame as one of the categories specified. Identical adjacent frames

are then grouped into segments of the category to which the net assigned them. One

problem with neural network based systems is that they classify frames independent of

each other. They do not provide a natural model of time and duration. Some methods

have been developed by which time can be represented in the spatial organization of

the network. The architectures either have the delay units and context represented in

space [18] , or have recurrent links through delay units [20] into the input layer. A sys-

tern [19] using the latter approach to segment and classify speech into seven broad

categories: silence, unvoiced plosive, unvoiced fricative, voiced plosive, nasal like,

50norant like, and vocalic. Cepstral representation of the speech signal was used. The
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classification was performed frame by frame with the cepstra of left and right context

used along with the cepstrum of the frame in question. At the segment level, the

errors were 7.9% insertions, 5.4% substitutions, and 11% deletions. The overall frame

classification accuracy was 85.2%. Our approach is to provide a wide window of infor-

mation at different resolutions and let the neural net capture the variations over time

as represented in space.

1.6. Our approach and overview

We have seen on the one hand systems which make use of speech knowledge but which.

have no general procedure to learn the important characteristics that differentiate

phonemes. On the other hand, there are systems which use procedures to learn charac-

teristics automatically but do not use knowledge to highlight those characteristics and

restrict the search. As we have mentioned earlier, neural networks are powerful

classifiers that make no assumptions about the underlying probability distribution of

the pattern space. Further, they can learn similarities and differences by correlating

different kinds of features. They hence have the potential for using knowledge of

speech if given in some acceptable format to discriminate different kinds of speech seg-

ments.

Our approach is to design good features for the neural network that capture the

knowledge required to perform the discriminations, and to use those features to build

(and train) a network to perform the classification. An idealized output of the seg-

menter is shown in figure 1.3. The ultimate goal is to build a segmenter that extends

to continuous speech. In this thesis we start with spoken isolated letters and show how

our approach easily extends to connected letters. The results have been sufficiently

encouraging that work is now underway to extend this approach to continuous speech.
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The organization of the thesis follows. In chapter 2, a detailed description of the algo-

rithm that resulted from the research is presented. Chapter 3 discusses the design of

the features and the research using neural networks to segment letters of the English

alphabet spoken in isolation. In chapter 4, the system is extended to names and words

spelled with pauses between letters. We also describe' a method which helped us

immensely - training on errora. The performance of the system is measured and the

results are discussed in chapter 5. Chapter 6 discusses the approach and indicates

future work in this area.
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CHAPTER 2

Description ofthe

Segmentation and Broad ClassificationSystem

2.1. Overview

System modules that transform an input utterance into a contiguous sequence of broad

phonetic category labels are shown in Figure 2.1. The sound input from the micro-

phone is first digitized and stored as a waveform representation. Some useful represen-

tations of the signal are then computed. A set of features is computed on these

representations within a 10 msec time frame every 3 msecs in the utterance, in a region

around that frame. The feature vectors are input to a neural network that classifies

the frame as one of four segment labels. The output activations from the network are

then processed to determine the segment boundaries.

2.2. Data capture

Speech is recorded using a Sennheiser HMD 224 noise-canceling microphone. It is

lowpass filtered at 7.6 KHz and sampled at 16 KHz per second with 16 bits used to

represent each sample. Data capture is performed using the AT&T DSP32 board

installed in a Sun4jllO. The digitized utterance is stored in a buffer (2 sec long for

isolated letters and 6 sec for connected letters) using the WAVES+ software distri-

buted by Entropic systems. In order to speed processing time, the utterance is located

within the buffer based on values observed in two waveform parameters, the zero cross-

ing rate and peak-to-peak amplitude. The remaining representations, such as the

DFT, are then computed in the region of the utterance only. In [3] a more detailed
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description of the recording environment and the data capture process for isolated

letters can be found. The data capture process for connected letters differs from that

for isolated letters only in the size of the storage buffer.

. 2.3. Signal Representations

The representations are shown in Figure 2.2. We can broadly divide the parameters

into waveform parameters computed from the digitized waveform and spectral param-

eters computed from a 128 point discrete Fourier transform computed every 3 msecs

with a 10 msec Hanning window.

2.3.1. Waveform Parameters

. peak-to-peak amplitude 0 - 8 KHz (ptp 0 - 8000)- The peak-to-peakamplitude

is the difference between the maximum positive and maximum negative peaks of the

original waveform in a 10 msec (160 adc points) wide window. As seen in figure 2.2

this parameter gives a measure of the waveform envelope and is a very good indica-

tor of silence in clean (high SIN ratio) speech.

. peak-to-peak amplitude 0 - 700 Hz (ptp 0 - 700)- This parameter is computed

from the waveform low-pass filtered below 700 Hz, which is the range in which the

first formant (the lowest resonant frequency of the vocal tract), is located. Since

formants are more salient during periodic signals, this parameter gives a fairly good

estimate of sonorant intervals; most disrup~ive noise and other aperiodic signals

have energy at higher frequencies. Periodic signals are comprised largely of

sonorants but also include voicing in fricatives (fvl and I zf) and prevoicing - which

we classify as closure.
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. zero crossing count (Zc) - The zero crossing count is the number of times the

waveform crosses the zero line in a 10 msec window. A high zero crossing implies

high frequency and therefore frication. Zero crossing is largely independent of the

power or amplitude of the signal.

.pitch - Pitch is computed using a neural network pitch classifier [21] to locate

peaks in the filtered waveform that begin pitch periods. It is a good indicator of

periodic signals.

2.3.2. Spectral Parameters

. spectrum - The spectrum is obtained from a 64 point DFT computed every 3

msecs with a 10 msec Hanning window.

.spectral difference 0 -8 KHz (SD 0 - 8000) - The spectral difference is computed

as the mean squared difference of the spectrum averaged N frames before. and N

frames after the frame under consideration. In this project N is set to 8. This

number was chosen after performing some experiments to determine the efficiency

with which various widths accentuated stops and sharp spectral changes while

smoothing out the effects of smaller changes. The spectral difference indicates

changes in spectral energy from region to region. Sharp spectral changes indicate

the presence of a stop burst in that region. Significant, but not very sharp, spectral

changes also indicate changes in the signal patterns and are therefore useful in

locating boundaries in speech.

. spectral difference 0 - 700 Hz (SD 0 - 700) - The spectral difference computed

from the DFT coefficients below 700 Hz is used to help determine the onsets of voic-

ing, e5pecially Sonorant on5et5. The Sonorant on5et ha5 been found to be m05t
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fundamental in the interpretation of the speech signal and it is very important to

locate it with high accuracy.

2.4. Feature Measurement

Feature measurements are derived from the above parameters to provide pattern

descriptors sufficient to classify each time frame as one of four broad phonetic

categories. Figure 2.3 shows how the peak-to-peak 0 - 8000 Hz features are extracted

from the corresponding representation. Feature measurements are taken from a win-

dow of 330 msec centered on the frame to be classified. Within this window, feature

measurements are computed at two levels of resolution:

. immediate context - In the 30 msec surrounding the frame, features are sampled

at every 3 msec frame. This produces 10 feature values for each parameter in the

immediate context of the frame.

. surrounding context - In the rest of the region within the window, information is

taken at a lower resolution of 5 frames (15 msec) per sample. The way the infor-

mation is chosen in this low resolution region depends on the parameter from which

the sampling is done. For the features extracted from waveform parameters except

pitch the average of the parameter values in the 15 msec region is taken as the

sample value. For pitch, the sample at every fifth frame is taken to be the

representative sample of the region covered by the five frames. Since spectral

difference is used only to determine whether or not there is a large spectral change

in a region, the maximum value over 15 msec is taken as the sample value. This

produces 20 feature values for each parameter - 10 for each 150 msec on either

side of the immediate context of the frame.
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In this way we get 30 samples from each of ptp 0-8000Hz, ptp 0-700Hz, zc, pitch, SD

0-8000Hz and SD 0-700Hz which totals up to 180 features. The spectrum at the frame

to be classified adds 64 more features totaling 244 features in all.

2.5. Normalization

Normalization of feature values is necessary to train the neural network and to accen-

tuate differences among the categories. Normalization is performed by examining his-

tograms of the normalized feature values and adjusting the normalization to optimize

discrimination among categories. At this stage, knowledge of acoustic phonetics guides

the research. For example, we know that zc should discriminate Fricatives from

Sonorants and Closures, SD 0-8000Hz should discriminate Stops from the rest, and ptp

0-8000Hz should discriminate Closure from the rest, while ptp 0-700Hz should discrim-

inate Sonorants from the rest. This knowledge engineering is an essential feature of .

the approach.

Each feature is normalized differently. In order to generalize the procedure so as to

easily extend to natural continuous speech, a window is defined for normalization. The

window is 250 msec (83 frames) ahead of (after) the frame to be classified and 300 msec

(100 frames) behind the frame to be classified. The numbers were chosen based on

psychological observations [22] on human short term memory. The methods used to

normalize each feature are described below. Note, pitch is not normalized as it is

either 0 (absence of pitch) or 1 (presence of pitch).

· peak-to-peak (both frequency ranges) - The maximum and minimum in the win-

dow are determined. The values are then normalized according to the formula

(value -min) / (max - min). Here, normalization helps to remove differencesdue to

loudness of speech. To protect against improper accentuation of silence when the
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whole window is inside silence and the max & min values are almost the same, a

threshold is used. If (max - min) is less than the threshold, the threshold is used as

the divisor. The threshold was chosen after performing some statistical studies on

the values from the utterances in the training data. The threshold is different

depending on the variation of ptp used.

zero crossing count - The minimum in the window is determined. The values are

then normalized according to the formula (value -min) / DIVISOR. DIVISORwas

chosen after studying the statistical variations of the values from the utterances in

the training data. The zc is the same irrespective of loudness as mentioned in sec-

tion 2.3.1. Therefore, it is not normalized with respect to the maximum value in

the window.

. spectral difference (both frequency ranges) - The values are normalized according

to the formula: value / DIVISOR. DIVISOR was chosen after studying the statist-

ical variations of the values from the utterances in the training data.

. spectrum - The mean and standard deviation of all the coefficientswithin the

window are determined. The maximum value for the window is set at (mean + 2 *

standard deviation) and the minimum value for the window is set at (mean - 2 *

standard deviation). The values are then normalized according to the formula

(value - min) / (max - min). Though normalizing within the frame helps accentuate

frequency bands better, it is found to cause problems in weak signal areas and in

areas where the signal is absent (silence). To protect against improper accentua-

tion of silence when the whole window is inside silence and the max & min values

are almost the same, a threshold is used. If (max - min) is less than the threshold,

the threshold is used as the divisor. The threshold was chosen after performing
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some statistical studies on the values from the utterances in the training data.

2.6. Neural Network Classifier

A fully connected feed forward network was trained using the error back propagation

[231 with conjugent gradient [241 optimization. The network has three layers including

the input and output layers. The output layer has four neurons, one for each class.

The number of neurons in the hidden layer was empirically determined to be 16. The

number of neurons in the input layer is equal to the number of features in the input

space.

For each frame in the utterance, feature vectors were computed with that frame con-

sidered as the center frame in the window, and the output activations of the output

layer neurons were recorded in memory. Figure 2.3 shows the computation of one of

the features and figure 2.4 shows how the features are input to the neural net.

2.7. Output Processing, Boundary Placement & Labeling

Figure 2.5 shows the output responses of the network at each time frame. A 5-point

median smoothing is done separately on the activations of each output neuron. Then,

for each frame, the label corresponding to the neuron with the highest activation is

chosen as the label for that frame. Finally, a pass is made over all the frame labels

and segment boundaries are placed wherever there is a change in the label from one

frame to the next.

2.8. Post Processing

Sometimes, especially near the boundaries, certain frames get misclassified. In all these

cases it has been noticed that the activation from the neuron representing the correct

label is close to the maximum. This aberration is therefore due to transients in the
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signal, and the simplicity of the rule used to choose a single class for the frame.

Therefore, the segmentation is cleaned up using simple rules based on the statistics of

the data. Alternations or short Sonorants and Closures occuring mostly near the end

of a Sonorant segment are merged into that segment. Short Closures and Fricatives

occuring anywhere in the utterance, especially as insertions in other segments, are

removed. The minimum lengths of valid Sonorants, Closures and Fricatives are deter-

mined from the hand-segmented training data.
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CHAPTER 3

Isolated Letter Segmentation

This chapter describes the initial research, using isolated letters, that led to the seg-

mentation algorithm described in the previous chapter.

3.1. Database

The training data consists of spoken letters from the ISOLET database [251 , recorded

in the Speech Laboratory of the Department of Computer Science and Engineering at

the Oregon Graduate Institute. It consists of recordings of 150 speakers saying each

letter of the English alphabet twice. There are an equal number of male and female

speakers in the database. All the speakers are native speakers of English.

In order to train the neural network it is necessary to define two data sets, one for

training and another for testing to check for generalization. The utterances from the

training set are used to generate features to train the neural net using back-

propagation as the learning technique. The test, or cross-validation set is used to

determine the amount of training that provides the best generalization on new data.

Training set isoletl, consisting of 10 male and 10 female speakers, was used for train-

ing the network.

The following 20 letters (utterances) were chosen

for each of the following 20 speakers

femeO, femgO, fdefO, feeO, feW, fewsO,fjwO, fkaO, fkhO, fmbO, mjd, mifvO,



- ...- -. -.. -. - _..

30

mjpO, mjrsO, mnjhO, mnreO, mrmhl, mrsO, msaO, mtdwO.

from the isoletl database.

For the test set, we attempted to use the same list of letters as above from iso/etO and

iso/etf!. However, the isoletO database being incomplete, some utterances were missing

from some speakers. Following is the list of speakers with a list (if any) of missing

letters given in parenthesis after the speaker.

fbjtO (D), fbprO, feehO (Z), feml (K,N), ferO (a), fdeO, fdeeO, fdwO, mdfO,

mhhpO (M), mjhO (B), mjmsO (N), mlhtO (D), mmemO, mmrO.

Tn order to compensate for the missing letters and bring the test set to size, these

letters were taken from another speaker.

mpakO- B, D, a, K, L, M, N, P, V; z.

An the utterances in both the sets were hand-labeled by the author and verified by an

expert labeler. Table 3.1 shows the distributions of labels for the 400 utterances in the

training set. It can be seen that all the utterances contain SON and GLOS; STOP and

FRIG occur in less than half of the utterances.

Distribution of labels in the training set

Table 3.1

Label Sneaker Utterance Frames

SON 20 400 2101

FRIC 20 176 1050

CLOS 20 400 2562

STOP 20 180 685
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3.2. Preliminary Experiment

The goal of the first experiment was to investigate neural network configurations,

feature measurements and normalization procedures using a small subset of the data.

The goal in subsequent experiments was to determine features and related normaliza-

tion methods that produce the best results on isolated spoken letters. Figure 3.2 shows

the output of the neural network arrived at after all the experiments.

The network was trained with three parameters:

(a) Peak to peak 0 -8000Hz,

(b) Peak to peak 0 -700Hz, and

(c) Zero crossing rate 0 - 8000Hz.

Features were computed from these parameters on a 30 msec window centered around

the frame to be classified. Taking all the frames from each training utterance provides

too many feature vectors to train neural networks in a reasonable" amount of time.

Thus we sampled a subset of the frames in each utterance based on a hand segmented

and labeled version of it. Mter some statistical studies, the optimum number of sam-

pIes to be taken from segments of each class was determined and kept constant for all

future experiments. In order to take into consideration boundary conditions, for each

segment one sample was taken from near each of the two boundaries. One vector was

generated for each sample taken from the training or test data.

Statistical methods were used to determine how well the features discriminate among

the target classes. For each feature, histograms of feature values for each category

were generated as shown in tables 3.2 and 3.3. From these tables we can clearly see

how ptp 0-700Hz helps identify Sonorants while zc 0-8000Hz helps identify Fricatives.
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Stops too have some high zc values due to the frication immediately after the burst

and before the Sonorant, but they can be distinguished from Fricatives by their dura-

tion which is much smaller than that of Fricatives. Based on these histograms the

feature selection and normalization techniques for each feature were then modified to

help discrimination.

Histogram of ptp 0-700 taken from the center frame

Table 3.2

Histogram of IIC0-8000 taken from the center frame

Table 3.3

feat 15 SON FRIO OLOS STOP
= 0.0 0 7 79 0
< 0.1 22 726 1965 227
< 0.2 98 195 318 172
< 0.3 210 64 136 103
< 0.4 206 25 39 89
< 0.5 229 12 14 39
< 0.6 220 8 5 38
< 0.7 240 6 4 14
< 0.8 255 1 1 1
< 0.9 252 2 0 0
< 1.0 317 1 1 1
= 1.0 52 3 0 1

feat 75 SON FRIO OLOS STOP
= 0.0 11 2 208 0
< 0.1 393 18 1432 26
< 0.2 832 47 529 163
< 0.3 561 69 223 194
< 0.4 213 105 123 118
< 0.5 59 98 29 69
< 0.6 16 142 13 49
< 0.7 16 138 4 26
< 0.8 0 105 1 10
< 0.9 0 88 0 18
< 1.0 0 75 0 7
= 1.0 0 163 0 5
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Classifier

The neural network simulator was initialized with small random weights. The network

was run for N iterations, where N was determined from the experiments. After each

set of iterations the data was tested on both the training and test data to check for

convergence and generalization respectively. After the first training run, subsequent

runs were performed with the weights obtained from the previous run - i.e. the neural

net continues training from where it left off. The overall performance of the net when

tested on the training and test data after each training run were plotted. The curve

for the performance on the test data is expected to rise initially and then fall after

peaking at some point. This point is where the net generalizes best. In the runs after

this peak, the net begins to overlearn. The trained network obtained at the point of

maximum generalization was chosen as the best network from that experiment. After

each experiment, the network was studied using a visualization tool to check whether

it had indeed learned to make the discriminations expected from the feature(s) intro-

duced in that experiment. The tool was also used to make sure that each new feature

did not work at cross-purposes with the features introduced earlier. Figure 3.3 shows

the excitations and inhibitions of the activities of the different neurons in the hidden

layer that are needed in order to identify a sonorant. The activations from the input

that excite one of the neurons in the hidden layer which excites the sonorant neuron in

the output layer more than others is also seen in that figure. Since this neuron in the

hidden layer also activates closure to some extent, we can say that this neuron prob-

ably encodes information to recognize a sonorant near the offset of the sonorant. This

is vindicated by the fact that peak-to-peak 0 - 700 Hz is excited for the current frame

and for the past frames, but is inhibited for the frames that come later. Peak-to-peak

o - 8 KHz is inhibited strongly in the immediate context while it is excited in the far

context that is nearer to the frame being classified. Spectral difference is excited in the
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near context, and the spectrum values are excited in the formant regions, especially

the for first formant. Figure 3.4 shows only the activations from the input layer to

another neuron in the hidden layer that excites only sonorants. Peak-to-peak in the

low frequency and the full frequency ranges are excited in the near context, and so is

spectral difference in the low frequency range.

Results

The neural network thus obtained was evaluated on random utterances drawn from a

test set not previously seen. The preliminary experiment showed that the best network

was the one with 16 hidden units in one hidden layer. The simulator uses conjugent

gradient optimization, and the information needed to keep the gradients conjugent is

not stored at the end of the N iterations. This implies that on each restart, the search

in the simulator is at first identical to simple gradient descent and is therefore slow.

The speed of optimization is thus lost at every restart. Hence N needs to be large

enough for the number of restarts to be fewer before learning is complete. However,

we need to keep N sufficiently small to be able to detect more accurately the point at

which the net generalizes best. A cycle of 80 iterations between test check points was

found to be optimal. The normalization methods for the features are described in the

previous chapter.

Another important observation made at this point was that the percentage of correctly

classified frames was given out by the simulator could only be used as a rough indica-

tor of performance. The reason for this is that certain kinds of errors are more accept-

able than others. For example, if the offset boundary of a Sonorant is in error by 10

frames, the count of errors in frames immediately goes up. However, such an error can

be tolerated as almost always, this error occurs at the boundary with a Olosure. This
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Closure is also, most often, the pause between letters. The Sonorant offset extending

into the Closure does not really affect recognition, as most of the information is taken

from near the beginning of the Sonorant. Hence, an error in the onset is far more seri-

ous than one in the offset. Stops get misclassified too. But it is imperative that we

find a /b/ or a /d/ wherever there is one, whereas if we miss a glottal stop, the error is

hardly serious. Tbe letter can be identified in spite of such an error. For this reason,

in addition to the confusion matrix output by the simulator, the segmenter is run on a

separate set of test data and the output is analysed for the kinds of errors made. This

process is crucial in our evaluation of the success or usefulness of a strategy or a

feature that we may have used while building the system.

3.3. Experiment 1: Minimum features

The above experiment was then repeated on a larger scale with the full complement of

speakers and utterances as described earlier under section 3.1 of this chapter. The

best result is shown in table 3.4. Each row in table 3.4 represents the classification of

the network for vectors belonging to the class representing the label in the first

column.

Be8t overall re8ult on te8t data after convergence

Experiment 1

Table 3.4

overall % correct = 88.28
Label SON FRIO CLOS STOP % correct
SON 1483 22 46 24 94.2
FRIC 36 661 73 34 82.2
CLOS 167 18 1718 23 89.2
STOP 63 42 20 417 76.9
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The network converged aCter 720 iterations and had an overall percentage correct rate

oC 88.28% on the test data and 91.64% on the training data. On running the seg-

menter program on some randomly chosen test utterances it was found that Closures

were being introduced in the middle of Sonorants whenever there was an amplitude

dip. In addition, Stops had a very low classification percentage. Furthermore, there

were a large number of boundary errors. Examination oCvisual displays of the segmen-

tation errors revealed that the network did not have sufficient information about the

context to the leCt and to the right of the frame to be classified.

3.4. Experiment 2: Adding Context

The goal of segmentation is to locate boundaries between regions having different

characteristics. Most segments are long with very little change in signal characteris-

tics inside the segment. For example a Sonorant may have formant movement inside

of it, but will not contain a burst or high Crication anywhere inside it. A window as

small as 30 msec can thereCore not capture sufficient information about previous seg-

ments or later segments and can thereCore not use the contextual information in

classification unless it is near a boundary.

This prompted the use of broad context information in a 150 msec window on either

side of the 30 msec immediate context window as described in the previous chapter.

The number of samples per parameter was thus increased from 10 to 30. The same

network parameters were found to be sufficient.

Results

The best results are shown in table 3.5. On running the segmenter program over ran-

dom utterances using the new neural net, it was found that the problem of Stops
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But overall result on test data after convergence

Experiment 2

Table 3.5

persisted, but the number of spurious segments within long segments of Sonor ant or

Fricative had been substantially reduced.

3.5. Experiment 3: Adding Spectral Difference

As seen from the previous experiments stops are not being classified well. The reason is

tha.:t Stops are too short to be represented by steady state parameters in such a wide

~ndow. In order to detect Stops and Sonorant onsets better, a difference or derivative

like parameter is needed to indicate points of sharp change.

Two new features were added, spectral difference (or change) in the full range of fre-

quencies (0 - 8000Hz) in order to detect Stops as can be seen from table 3.6, and spec-

traldifference in the range 0 -700Hz in order to more precisely locate Sonorant onset

boundaries. The same set of utterances was used. As this feature was intended to

detect sharp changes in the signal, averaging in the low-resolution context regions may

ave.l'age out any sharp changes detected in that region. Therefore, the maximum value

is chosen as the representative sample.

Results

overall % correct = 89.75
Label SON FRIO CLOS STOP % correct
SON 1494 11 40 30 94.9
FRIC 37 685 45 37 85.2

CLOS 159 30 1717 20 89.1

STOP 61 12 15 454 83.8
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Histogram of avg. specdift' 0 -8000Hz

Table 3.6

The best results on the test set are shown in table 3.7. Stops were found to be better

classified, and insertion of spurious segments was substantially reduced. However, the

locations of the Sonorant onset and offset boundaries were underestimated. There are

two possible ways in which this problem may be fixed, and both introduce a new

feature.

Best overall result on test data after convergence

Experiment 3

Table 3.7

feat 105 SON FRIO CLOS STOP
< 0.0 0 0 0 0
= 0.0 0 0 0 0
< 0.1 1541 662 1943 39
< 0.2 214 146 214 43
< 0.3 98 79 116 53
< 0.4 79 41 101 66
< 0.5 47 17 64 71
< 0.6 19 19 44 77
< 0.7 27 18 29 59
< 0.8 14 17 18 61
< 0.9 13 12 10 38
< 1.0 15 8 6 29
= 1.0 34 31 17 149
> 1.0 0 0 0 0
> 2.0 0 0 0 0

overall % correct = 90.26
Label SON FRIO CLOS STOP % correct

SON 1503 18 31 23 95.4
FRIC 31 697 45 31 86.7
CLOS 145 29 1733 19 90.0
STOP 63 27 10 442 81.5
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3.6. Experiment 4: Adding Pitch

One approach to the problem found in the results of the previous section was to add

pitch. The bounds of consistent pitch defines and in some cases overestimates the lim-

its of the Sonorant in that region. When combined with the peak to peak 0 - 700 Hz

and spectral difference 0 -700 Hz, Sonorant boundaries could become fairly accurate.

A new feature was added, the presence or absence of consistent pitch in a particular

frame. This being an on-off feature, it doesn't require any normalization, and sampling

every fifth frame in the wide context region is a very good approximation to averaging

over every five frames.

Results

The best results on the test set are shown in table 3.8. The boundaries were found to

be fixed near the extremities of pitch. However, voiced Fricatives like /v/ and /z/

were affected by the insertion of Sonorants inside the Fricative. This also affected

Sonorant onsets whenever they were preceded by glottal Stops with a substantial

burst, as the boundaries were placed so as to include the glottal stops as part of the

Sonorant segment rather than separating the two as different segments.

Best overall result on test data after convergence

Experiment 4

Table 3.8

overall % correct = 90.06
Label SON FRIC CLOS STOP % correct
SON 1474 24 47 30 93.6
FRIC 19 709 40 36 88.2
CLOS 149 25 1725 27 89.6
STOP 55 14 16 457 84.3
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3.7. Experiment 5:Spectrum instead of Pitch

The alternative approach to the problem described under the results in section 3.5 was

to add spectrum to help the spectral difference feature to set the boundaries only

where there really was a change. This suppresses the importance of the amplitude and

enhances the recognition of frequency bands. This should help distinguish the voiced

non-sonorants from the sonorants.

Spectrum at the frame to be classified and in the near context was added after nor-

malizing with respect to some broad region around the frame. Though normalizing the

values in each frame with respect to the minimum and maximum values within that

frame helps accentuate frequency bands better, it was found to cause problems in weak

signal areas and in areas where the signal is absent (silence).

Results

The best results on the test set are shown in table 3.9: Improvements were seen for Ivl

and I zl as well as glottal Stops, but the Sonorant offsets were often way off the mark.

In addition, amplitude dips at nasal boundaries seemed to be getting encoded as spec-

tral changes too, and Closures were being inserted in those places.

Be8t overall re8ult on te8t data after convergence

Experiment 5

Table 3.9

overall % correct = 90.16
Label SON FRIC CLOS STOP % correct
SON 1487 14 46 28 94.4
FRIC 33 697 42 32 86.7
CLOS 145 30 1718 33 89.2
STOP 48 17 9 468 86.3
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3.8. Experiment 6: A net with all features trained on ISOLET

From the results of the previous experiments we conclude that spectrum as well as

pitch were required in order to have a better classification. The pitch helps by broadly

demarcating the Sonorant boundaries and improving the accuracy of the Sonorant

offset.

In the final experiment, the entire set of features were used to train a neural network

using the set of utterances described in section 3.1. The complete set of features and

normalization schemes used is described in chapter 2.

3.9. Results

The net was near convergence when it performed at above 95% correct on the training

data. Best generalization was achieved after convergence when it had been trained for

160 iterations as seen in figure 3.1. In the figure, the solid line represents the results on

test data while the dotted line represents the training data.
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Figure 3.1

Table 3.10 shows the individual confusions and percent correct for each of the labels.

Best overall result on test data after convergence

3.10. Discussion

Experiment 6

Table 3.10

Let us first analyze the results in this table. Sonorants were rarely confused with oth-

ers categories and it is easily understood when we look at how well ptp 0 - 700Hz

(table 3.2) and pitch discriminate the data. Closure should have a higher classification

accuracy, but when we look at the data and what we call Closure, it quickly becomes

100

98

96

94
% correct

92

90

88

86

overall % correct = 89.33

Label SON FRIC CLOS STOP % correct

SON 1482 19 43 31 94.1

FRIC 26 696 49 33 86.6

CLOS 165 29 1710 22 88.8

STOP 65 17 18 442 81.5
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apparent where the errors come from. Door slams, and other noise spikes make it look

like a Stop, and when extended make it look like a Fricative. Closure gets conCused

mostly with Sonorants because we have included prevoicing, and low-Crequency breath

noise and other such periodic signals with Closure whereas they actually have

Sonorant like characteristics. Unfortunately there are too few examples of these pat-

terns lor us to put them in a separate class. Stops are the most confused kind of seg-

ments. Furthermore, they are conCused most with Sonorants.

Now let us move on to a subjective evaluation by running the segmenter on random

utterances never seen before. We find that most of the errors are due to glottal Stops

beCore Sonorants. These Stops usually have a lot of the characteristics of the following

Sonorant, ego formants. The spectral difference of the energy below 700Hz - the

feature used to separate formant onsets from Stop bursts - cannot distinguish the

burst from the formant onsets which happen to be part of the burst for these Stops .

Except Cor the insertion of glottal Stops, most errors could be corrected by simple rules.

Therefore a general rule-based post processing stage is introduced to eliminate these

simple errors. Only two rules are required, one to remove or merge small spurious

Sonorant segments, and another to deal with insertions of other labels inside

Sonorants, Fricatives and Closures.

3.11. Evaluation in a system

The segmenter is tested in a system to recognize letters in the /iy/-set ( B, C, D, E, G,

P, T, V, Z ) taken from the English alphabet. It is contrasted with the best rule-based

segmenter built in-house which is an improved version of the segmenter built by Cole

and Rou [15] at CMU. The performance figures are given in table 3.11.
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In another test in a system to classify all 26 letters of the English alphabet [3] the ver-

sion with the neural net based segmenter showed a classification accuracy of 95.26%,

comparable to the accuracy of the version with the rule-based segmenter which was

95.89%.

Comparison of Rule-based and Neural net Segmenters
Classification of /ig/-8et

Rule-ba8ed segmenter

Neural network 8egmenter

Table:3.11

overall % correct = 93.33
Letter B C D E G P T V Z % correct
B 104 3 5 4 4 86.7
C 117 1 2 97.5
D 1 115 1 1 2 95.8
E 1 1 116 2 96.7
G 1 117 2 97.5
P 1 1 3 2 109 3 1 90.8
T 1 3 2 3 111 92.5
V 7 1 1 1 107 3 89.2
Z 3 1 4 112 93.3

overall % correct = 92.49
Letter B C D E G P T V Z % correct
B 105 5 4 2 3 1 87.5
C 117 3 97.5
D 1 112 3 3 1 93.3
E 1 111 2 3 1 2 92.5
G 116 1 3 96.7
P 3 1 2 105 6 2 88.2
T 5 2 4 109 90.8
V 3 1 2 1 110 3 91.7
Z 1 2 4 113 94.2
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CHAPTER 4

Multiple Letter Segmentation

Now that we have a Cull set oCCeatures and a network architecture, we can move on to

the problem we sought to solve at the start, ie. building a segmenter Cor multiple

letters. Multiple letters utterances are sequences or strings oCspoken letters separated

by clear pauses. We shall start out with a description of the method we used and Col-

l('w that with descriptions of the experiments. The performance oC the system 'will be

discussed in the next chapter.

4.1. Training on errors scheme

Since we wish to have the net perform on multiple letter sequences, we need to train it

on such utterances. However, there are no new Ceatures in these utterances except

letters Collowing one another. The assumption that there was only one letter per utter-

ance is invalid now. This affects - actually increases - only the possible leCtand right

contexts that can appear Cora given segment class, making the task a little more com-

plex. However, this change could be captured by the scheme with which we represent

context. ThereCore, there is no necessity to change anything in the training procedure.

In fact, the set oCvectors used Cor training the isolated letter segmenter can be reused.

Our strategy Cor this is to start with the network trained on isolated letters and work

forward. The success oCthis scheme can be seen Cromfigure 4.1.

The sets oCutterances are chosen as before. However, instead oCselecting Crames Crom

each segment in the utterance Cor extracting Ceature vectors, the best network

obtained from the previous stage is run on the training set and those frames not in
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agreement with the hand-labeling are selected for generating vectors for retraining.

These vectors are then added to the set used to train the isolated letter segmenter.

This modified procedure we call training on error8. This was done so as to give the

network instances it has not learned at the same time saving space consumed by the

training data due to want of memory, and time spent in generating data from frames

that are labeled correctly. To compensate for the multiple letter utterances in the

training set, some vectors are generated from the multiple letter utterances and added

to the cross validation test set. The training procedure from here on is the same in all

respects as the final one arrived at the end of the previous chapter for isolated letters.

4.2. Database

The training data consists of a database of speakers, called the mulet database,

recorded in the Speech Laboratory of the Department of Computer Science and

Engineering at the Oregon Graduate Institute and created in a way similar to the

i80let [25] database. It consists of recordings of speakers spelling some names and some

random sequences of letters of the English alphabet with pauses between the letters.

There are a total of 60 speakers in the database, 30 of them female and 30 male. All

the speakers are native speakers of English.

In order to train the neural network it is necessary to define two data sets, one for

training and another for testing to check for generalization. Each set of speakers is

chosen such that there is equal representation of male and female speakers. A set of

utterances is chosen from each speaker.

For this project mu/et1, a subset of the mu/et database was used for training the net-

work while mulet2, another subset was used to test multiple letter segmentation. For

each phase of training, 3 utterances from each of 10 speakers totaling 30 utterances
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were chosen. For the testing data, another such 30 utterances were chosen from

mulet2 and added to the test set from isolet. A table of the utterances used for the

test set is given in table 4.1.

Test Set Utterances

Table 4.1

Table 4.2 shows the distributions of labels among speakers, utterances and frames in

the test set.

Table 4.2

Male speakers Female speakers
Sokr. Utterance Sokr. Utterance

mdcdO CURRIE fcahO CAZIER
mdcdO RANDY fcahO ELDON
mdcdO SIMPSON fcahO VAROZ
mdlsO DAVIS fcebO DOBER
mdlsO RODGERS fcebO MARY
mdlsO STEVEN fcebO WALKER
mfesO HAZEL TINE fdmlO BAUMANN
mfesO RHONE fdmlO JOHN
mCesO STEVE fdmlO SANDERS
mgltO COHEN fgnO MICHAEL
mgltO MOORE fgnO ROBERTS
mgltO WENDY fgnO SWENSON
mrvsO GREENSTREET fkrmO LOLITA
mrvsO RON fkrmO MCMILLAN
mrvsO WOLDRICH fkrmO TISTADT

Label Soeaker Utterance Frames

SON 10 30 970

FRIC 10 24 294

CLOS 10 30 693
STOP 10 30 472
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The details of the training data sets are given in the respective discussions below.

4.3. Training on errors: Phase I

A table of the utterances used for training on errors is given in table 4.3. The isolated

letter segmenter is run on multiple letter utterances listed in taMe 4.3, and the errors

it made are noted by hand and categorized as insertions or deletions of, or substitu-

tions for certain segments, or errors at boundaries, etc. The largest number of errors

were found to be Fricative insertions in Closure. The reason for this is that the long

noisy Closures found between letters were not seen in isolated letter utterances and the

noise is picked up as frication. These errors add up to about 40% of the total errors

found. Approximately 30% of the errors were due to Stops and Closures affecting the

Sonorant onset while 15% were due to Sonorant offsets extending into the following

Set of 8peakers and utterances for training

Phase I

Table 4.3

Male speakers Female speakers
SDkr. Utterance SDkr. Utterance

mbvO BERENBERG fblsO CURTIS
mbvO CHARLES fblsO GOODMAN
mbvO MALMSTROM fblsO NEVILLE
mgwsO CUSHING fcmdO DALE
mgwsO GEORGE fcmdO SMITH
mgwsO STRUBLE fcmdO TATE
mjghO INGRID fdmO BRANT
mjghO OATES fdmO GORDON
mjghO WINANS fdmO PRICE
mjiO KAGAWA fdrO LAURA
mjiO KAWAMURA fdrO PAYTON
mjiO LEIALOHA fdrO SCOTT
mjjsO ROGER fglhO BRIAN
mjjsO SANGREY fglhO GINA
miisO SCROOGE fdhO YORK
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Closures. The rest were Stop insertions in Closures near the Sonorant onset boundary

and some other kinds of errors.

Since 70% of the errors were from the first two cases, it seems best to concentrate on

eliminating or at least substantially reducing them. Hence, most of the error vectors

for training are chosen from these errors. This results in 434 vectors from wrongly

classified frames for a total of 6833 vectors in the final training set.

The network converged after 160 iterations and had an overall percentage correct rate

of 89.21% on the test data and 94.79% on the training data. On running the seg-

menter program on utterances in the training set for the next phase it was found that

25% of the errors were due to Fricatives inserted in Closures and only 15% from Stops

or Closures affecting Sonorant onsets, both numbers down from 40% and 30% prior to

training on errors. Though this seems encouraging, the errors of Stops inserted in Clo-

sures was up at 35% of the total and again up at 25% were Sonorant offsets extending

into the following Closures. However, overall the results were encouraging because the

number of errors were fewer with the greater percentage of them (about 60%) being

those which do not really affect both letter boundary determination and letter recogni-

tion. Examples of the improvement in segmentation and the errors may be seen in the

second labeling as compared to the first in figure 4.1a. The Closures being more or less

Best overall result on test data after convergence

Table 4.4

overall % correct = 89.21
Label SON FRIC CLOS STOP % correct

SON 1471 16 48 40 93.4
FRIO 28 678 63 35 84.3

CLOS 158 22 1725 21 89.6

STOP 51 17 24 450 83.0
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Effect of training on errors (contd.}
Removal of new error: CLOS at SON-FRIC boundary

Figure 4.1 b
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in the right place would cause little problems for letter boundary determination, and

the more or less accurate Sonorant onset boundaries, fewer misclassifications of

Sonorants and fewer errors in the Consonants would help letter classification to a fair

extent. However, 40% of the errors being serious, is still high. The number of correct

classifications of Sonorants is not sufficient and so also the accuracy of determination

of Sonorant onset boundaries. These two errors need to be especially low for good

letter classification percentages. After all, the segmenter is but one step in a larger

system. So further training on errors is necessary for greater improvement in the sys-

tern.

4.4. Training on errors: Phase n

A table of the utterances used for training on errors is given in table 4.5.

While it seems best to concentrate on the one or two errors making up the largest per-

centage of the total, it is prudent not to ignore the kinds of errors found in the previ-

ous stage when selecting error vectors for retraining. Hence, for this stage there are

697 vectors from misclassified frames for a total of 7530 vectors in the final training

set.

The network converged after 240 iterations and had an overall percentage correct rate

of 89.31% on the test data and 93.25% on the training data. On running the seg-

menter program on utterances in the training set for the next stage it was found that

the total number of errors was drastically reduced, even though only a small increase

in the overall percentage correct rate was observed. The reason was that qualita-

tively, there was vast improvement in segmentation while the number of frames

correctly classified increased by a very small amount. This difference may be observed
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Set of 8peakers and utterances for training

Phase IT

Table 4.6

Male speakers Female speakers
SDkr. Utterance SDkr. Utterance

mjwO BIGGAR fjbcO AIKIN
mjwO KffiTI fjbcO BAYARD
mjwO SHAH fjbcO JOHN
mmrO CAROL fjmrO BYRON
mmrO COLE fjmrO DAFOE
mmrO WEATHERILL fjmrO HOWARD

mnjhO CONSTANTINO fjmsO BRANDY
mnjhO HARRIS fjmsO LUTHER

mnjhO SERENITY fjmsO WELBORN

mpdnO ARMSTRONG fkmaO BILL

mpdnO CRAIG fkmaO COWAN

mpdnO JUSUS fkmaO MAT:-IER
mracO BISCHEL flkmO FASSNIDGE
mracO PEGGY flkmO JOANN
mracO WEINSTEIN flkmO RIES
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Best overall result on ted data after convergence

Table 4.6

in figure 4.1a when comparing the second and third labelings in that figure. Most of

these qualitatively determined errors were Stops inserted in Closures, and Sonorant

offsets extending into the following Closures. The other errors were very few except for

one. Small Closures were inserted between the Fricative and Sonorant in letters like

0, P, K, F and S as shown in the second and third labelings in figure 4.1b. It looked

like training on some of the previous errors had resulted in over correction. It is there-

fore necessary to train further on these errors.

4.5. Training on errors: Phase ill

A table of the utterances used for training on errors is given in table 4.7.

Though emphasis is necessary on the new errors found in the previous phase, it is

important not to underplay other errors and to remove as many errors as possible.

Furthermore, as the number of errors are far fewer, it is possible to sample more errors

and do so more Crequently. This results in 356 vectors Crom wrongly classified Crames

Cora total oC7886 vectors in the final training set.

The network converged after 240 iterations and had an overall percentage correct rate

of 89.33% on the test data and 92.00% on the training data. On running the seg-

menter program on some randomly chosen test utterances it was Cound that the errors

overall %correct = 89.31
Label SON FRIC CLOS STOP % correct
SON 1474 15 55 31 93.6
FRIC 19 677 76 32 84.2
CLOS 164 17 1725 20 89.6

STOP 54 13 22 453 83.6
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Effect of post processing rules
Rule to collapse short alternations of Sonorant

and Closure into one Sonorant

Figure 4.2 a

SOH C__ CLOS S,",' SON I CLOS

SON I CLOS srt' SON I CLOS

SOH I CLOS SrlP SON I CLOS
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Set o/lJpeakers and utterances/or training

Phase III

Table 4.7

Best overall result on test data after convergence

Table 4.8

introduced in the previous stage of training were removed and no new errors were

added as seen from the third and fourth labelings in figure 4.1b. The errors were few

and not serious enough to warrant more training. Most errors were Stops inserted in

Closures before the Sonorant onsets, and Sonorant offsets extending into the following

Closures. It is possible to remove the few wrinkles left using some simple rules as done

in the previous section, by incorporating knowledge of the possible segment class

sequences.

Male speakers Female speakers
Spkr. Utterance SDkr. Utterance

mrasO KOPELMAN ftviO CAMERON
mrasO RAYMOND ftvlO OSKIERKO
mrasO STAEHLI flvlO OVERGAARD
mrmhO KELLY' fmbdO DINAH
mrmhO MYRTLE fmbdO KELLER
mrmhO RALF fmbdO WOODWARD
mtgdO BENNETT fmlvO KOVARIK
mtgdO JAMES fmlvO NELSON
mtgdO RIVIN fmlvO VLASTA
mtklO BURTON fskeO ERICHSEN
mtklO FROST fskeO SMITH
mtklO RUSSELL fskeO TIANA
mtlrO LINUS ftljO DICKSON
mtlrO MODLICH ftljO GINA
mtlrO WOLFINGER ftHO HIPA

overall % correct = 89.33
Label SON FRIC CLOS STOP % correct

SON 1457 14 77 27 92.5

FRIC 24 678 70 32 84.3

CLOS 127 19 1756 24 91.2

STOP 72 11 20 439 81.0
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4.6. Rule-based post processing

This being a neural network based segmenter and not a rule- based one, only a Cew

simple rules which take advantage oC the structure oCbroad class segments in spoken

letters are used to augment the overall classification. The small Sonorant segments in

the Closure near the Sonorant offset boundary are cleaned up by relabeling them as

Closure and then merging them into one segment so as to get a more accurate

Sonorant offset boundary. Next, small Closures and Fricatives inserted in various

places are also removed. The range oC durations oC these classes oC Segments are

determined by constructing histograms Crom the hand labeled data used Cor training.

The rules seem to work Cairly well as seen in Figure 4.2. A more objective evaluation

oCthe performance oCthe segmenter is Cound in the next chapter.
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Effect of post processing rules {contd.}
Rule to remove short segments of certain types

Ii

Figure 4.2 b

SON I nlIc 'lAIp CLOS ISTOPI SON

5011 I DIC 'lAIp CLOS ISTOPI SON

CLOS 'STOPI SON I DIC I CLOS ISTOPI SON
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CHAPTER 5

Performance Evaluation

5.1. How to measure performance!

In the previous chapter we have seen some of the kinds of errors made by the seg-

menter. Examination of visual displays revealed that the errors were not serious con-

sidering the application of recognition of spoken English letters.

Thus far, we have measured performance in two ways; examination of confusion

matrices, and subjective evaluation of visual displays by experts. Subjective evalua-

tion by experts is a fairly useful method but, as with all subjective judgements, it is

limited by biases. This method has been used very effectively to build the segmenter

and bring it to its "final" form. It has been discussed in earlier chapters and shall not

be repeated here. Suffice it to mention that it is necessary to introduce some objec-

tivity into measuring performance. Hence, two other methods have been used: perfor-

mance as compared to independent human labelers, and performance within a more

complete system.

5.2. Comparison with experts

We turn to another method of performance measurement, comparison to expert

labelers. Humans are the best speech recognizers, and they provide the best measuring

standards. A previous study has shown that expert spectrogram readers can locate up

to 97% of phonetic segments in spectograms of unknown utterances. a set of random

utterances from different speakers is chosen. For this thesis, two experts were used.

They independently labeled a set of randomly selected utterances and the agreement
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between them was determined. The segmenter is then run on these utterances and the

output saved. One expert must be used as the standard and his labeling assumed to be

correct. The other expert's labeling was then compared with that of the first expert,

and so was the output of the neural network segmenter. The errors were determined

and tabulated for both comparisons. The number and kinds of errors made by the

neural network segmenter was compared with the disagreement in labeling between the

second labeler and the first. If the corresponding numbers are more or less the same,

then it can be argued that the neural network segmenter disagrees with experts to

approximately the same extent as the disagreement among the experts.

Errors can be classified as insertions, deletions or substitutions. In addition, we scored

inaccurate boundaries. The determination of the first three is done by counting the

numbers of such errors, which is used as the performance - the fewer the better. The

boundary errors are rather difficult to interpret. As mentioned before, while Sonorant

onsets need to be fairly accurate, it is not the case with Sonorant offsets. This can be

seen by the extent of disagreement among human labelers as regards these boundaries.

Further, Stops being fairly short, need to be accurately detected. Therefore, it was

decided to present the accuracy as a histogram of the number of 3 msec frames by

which the boundaries are in disagreement.

Two tables are presented, one with the first human labeler as the standard and the

other with the second labeler as the standard. The errors in the segmenter can thus be

compared with the agreement between the labelers giving us an indirect performance

measure for the segmenter.
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5.2.1. Database

The utterances used are from the mulet2 database, and have not been used or seen in

earlier experiments. Five speakers are chosen with three utterances from each. Table

5.1 lists the utterances used for performance testing.

Table 5.1

5.2.2. Insertions, Deletions and Substitutions

As mentioned earlier, for insertions, deletions and substitutions only the the count of

errors need to be compared. The number of these kinds of errors is presented for each

of the four labels. Apart from how good or bad the segmenter is overall, this tells us

which kinds of labels are more difficult to classify. These numbers are shown in tables

5.2a and 5.2b for evaluator 1 and evaluator 2 respectively as the standards.

5.2.3. Boundary misalignment errors

The histograms for t.he boundary errors are grouped by segment class (or label). This

gives us an idea of which segment boundaries deserve further work, and which to leave

because the disagreement amongst the human labelers is comparable to the error rates.

These histograms are cumulative histograms, and are shown in Figures 5.1 and 5.2 for

labelers 1 and 2 respectively as standards.

Male soeakers Female soeakers
SDkr. Utterance SDkr. Utterance

mdemO DEWITT fcchO EPSTEIN
mdemO DIDIER fcchO RUBY
mdemO MACKE fcchO SILLS
mmwpO ETOL fkwO BROWNLOW
mmwpO LILLARD fkwO BUKOJEMSKY
mmwpO TUEY fkwO MARLIN

fmerO DAVIS
fmerO DEBRA
fmerO WALSH



65

Reference cvaluator A

Table 5.2a

Rcfcrcnce cvaluator B

Table 5.2b

5.3. Performanceas a sub-system

It has been mentioned a number of times when discussing the errors that the perfor-

mance analysis of the segmenter is to a large extent determined by the application in

which it will be most used. The system in which this segmenter is used is a directory

assistance system which has as part of it a letter recognition module. The speakers

were required to pause between letters when spelling the name. One important perfor-

mance measure is the reliability of the Closures between letters so that their approxi-

mate boundaries may be correctly determined. Another equally important measure is

the reliability of those segment boundaries within the letter which are critical in the

generation of features for letter identification. In the in-house directory assistance sys-

tern the boundaries are the Sonorant onset and the Stop onset and offset. These two

need to be determined with maximum accuracy. The Fricative onset and offset boun-

Label evaluator B NN Segmenter

names insertions deletions insertions deletions
SON 0 0 3 0
FRIC 0 0 0 0
CLOS 2 2 3 3
STOP 6 15 11 5

Label
evaluator A NN Segmenter

names insertions deletions insertions deletions
SON 0 0 3 0
FRIC 0 0 0 0

CLOS 2 2 2 2
STOP 15 6 16 1
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daries may be allowed a little more room for error. The Sonorant offset before a Ole-

sure is allowed maximum lattitude with a single rigid constraint that it contain the

Sonorant.

The performance of the segmenter in the system is compared to that of a system 'Yith

the best rule-based segmenter developed in-house. The system was tested on 422 utter-

ances by speakers spelling names or random sequences of letters not used for training

the system. The output of the segmenter was used to segment the utterance into

letters for further classification. The number of errors in segmenting into letters with

the output of the neural network based segmenter was 16 ( 3.8% ) as compared with

48 ( 11.4% ) with the output of the rule-based segmenter.
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CHAPTER 6

Conclusions and Future work

Neural network. segmentation systems are a viable alternative to speech segmentation

and classification into broad phonetic categories. Neural network hardware will

greatly enhance the speed of such systems. The frame-by-frame classification method,

keeping only a window of information around, lends itself nicely to an on-line segmen-

tation system, making it more like the way humans process speech. Now that digital

signal processing (DSP) and neural network hardware with these capabilities are being

developed, such systems can actually be realized.

Knowledge does help segmentation and classification to a fair extent. We have seen

how peak-to-peak amplitude in the frequency range 0 - 8 kHz effectively differentiates

Closure from the other categories, while pitch and peak-to-peak amplitude low-pass

filtered to 700 Hz identify Sonorants. Zero-crossing count is useful for locating Frica-

tives while spectral difference is necessary for Stops. Finally, we also found that the

spectrum itself cannot be ignored as it contains valuable information about the distri-

bution of the energy in frequency. Though it doesn't perform as well on its own [18] ,

spectrum helps fine tune the classification and improve performance. Despite the good-

ness of the features one chooses, one cannot avoid the use of large amounts of data.

We do manage to improve the efficiency of training by training on errors as described

earlier. But, we cannot overlook the fact that more data does improve generalization.

Current techniques to train such large networks require fast processors and large

amounts of memory. We expect this problem to all but disappear once neural network

hardware is readily available at reasonable cost, but that is still a few years away.
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Until then, we are "caught between a rock and a hard place" so to speak. We need

more data, but we also need more resources and must allow for long training times.

We could also look for more efficient ways of training a back propagation neural net-

work.

Frame-by-Crame classification followed by median smoothing is fine but we need a more

advanced technique to clean-up and improve the segmentation. Rules will work only

in a. limited sense. Once we move on to more complex systems where the segmentation

is refined, rules will start breaking down. A time-dependent probabilistic network

could be a good start.

ABseen earlier, the segmenter works Cairly well even when taken from the problem of

spoken isolated letters to spelled words. The ease with which the system could be

extended has increased our confidence in the approach.

The success of a word recognition system where the word is spelled shows that segmen-

tation is helpful in identifying word boundaries. That the neural network segmenter

performs better than the best rule-based segmenter developed in-house further vindi-

cates our approach.

A p'roject to extend the system to connected letters, ie. spelled names or words without

pauses, is on going. One problem that is seen in this kind of speech is that Sonorants

of a.djacent letters, sometimes from three or four consecutive letters, are not separated

by any other segment, as seen in figure 6.1. The question is how to find the boundaries

between the Sonorants of consecutive letters. Sometimes, when making the transition

from one letter to the next, glottalization is introduced (figure 6.2), and if detected the

inter Sonorant boundaries could be detected. But what about the transitions at which
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/ogc/students/murali/Speech/Thesis/murali.adc Sat Aug 25 11:04:13 1990 (Page 2 of 3)

123'2 .av.fora12160~ 2512

260 210 300 320 340 360 310 400 420 440 460 no 500 520

12504 13464 14424 15314 16344 17304 11264 19224 20114 21144 22104 23064 24024 24914

aa
.!l.

.h

SON

260 210 300 320 340 360 310 400 420 440 460 no 500 520

12504 13464 14424 15314 16344 17304 11264 19224 20114 21144 22104 23064 24024 24914

Section of speech showing
no segment separating successive SONs

Figure 6.1
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glottalization is not perceived?

There are two possible approaches. The first is to build a larger neural network with

probably more features to recognize finer phonetic categories than Sonorant or Frica-

tive. The same methods as used for the current segmenter can be applied to search for

features to perform this finer classification. A problem that such a system could run

into is that some differences like those among Sonorants and among Fricatives are

much smaller than others like those between Fricatives and Sonorants. The larger

differences - across broad categories - could at some point squash the smaller ones -

within broad categories - and make them appear insignificant. This could cause con-

fusion in trying to distinguish among Sonorants, for example, brought about because of

competition. An alternative approach is to refine the segments determined from the

broad classification system. That means smaller networks performing the

subclassification need to be built, each with its own set of special features to best bring

out the differences amongst the classes in its set. This seems to be a good solution, but

it has a weakness in that if the segment given to a specialized network has been

misclassified at the previous stage, the error cannot be corrected, and the system could

go hay wire.

In either of these approaches, the possibility of confusions is such that it is necessary to

hypothesize alternate segmentations and classifications and connect them into a net-

work with probabilities. We then need to find the best path through this network, for

which we shall have to go back to basic speech research results and use knowledge to

constrain the search instead of multiplying probabilities together.

Further research must then be done to find ways to determine word boundaries, and to

use the constraints in the language to restrict the choice of letters to look for at every
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stage.

The next step is of course, natural continuous speech, which opens up a whole new set

of problems. We, however, are confident that neural network based systems with

knowledge will provide a good alternative to todays systems and probably the systems

of the near future.
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