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Abstract

Debugging VUW Code After Instroction Scheduling

by

Lyle Edward Cool

Supervising Professor: Michael Wolfe

There has been some work withinthe last ten years or so aimed at solvingthe

problemof debuggingoptimizedcode for scalararchitectures. Instructionschedulingfor
VLIWarchitecturescausesadditionaldebuggingproblemswhichhavenot beenaddressed
at all. These additionalproblemsincludehow to deal with the compactionof individual
operations into VLIW words, and the transformationsthat occur as part of software

pipeliningandloop-unrolling.Earlierworkon debuggingoptimi7.edcode is examinedand

modificationsare proposed to handle these problems. Also, a way of presentingthis
information to the user in source-levelterms is examined. The results indicatethat

effectivesource-leveldebuggingof VLIWcodeafterinstructionschedulingis feasible.
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CHAPTER 1.
Compiler Optimizations And Debugging

1.1. Introduction'

Non-trivial programs rarely work COITecdythe first time. The cause of the errant

behavior may be as simple as a misplaced semi-colon, or as fundamental as an incorrectly

applied algorithm, or anything in between the two. When programs don't work COITeCdy.

they are said to contain bugs. The process of finding these bugs is called debugging.

One of the more primitivekinds of debugging is to insert statements at key places

m the program to print out some portion of the state of the running program. State in this

sense means the value of one or more variables at a particular point in the program. This

kind of debugging is considered to be primitive for several reasons. FIrSt, the program

must be modified, re-compiled, and re-executed every time the user wants to know more

about the state of the running program. Second, the user cannot ordinarily control

execution; that is. unless the program was specifically written to do so, it may not be

possible to re-execute a specific portion with different data, or to skip a portion under

some conditions. Third, the insertion of this extra code effectively creates a different

program. In many cases. this does not cause a problem; in others, however, the presence

of the extra debugging code may cause the bug to manifest itself in a different manner or

not at all. Fortunately. there are software tools which are available to make the process of

debugging more effective. They are called debuggers.

Debuggers are designed to display whatever might be of interest to the
programmer.They alsoaredesignedto controlexecutionsuchthat a portionof a program

can be executed, followedby a displayor modificationof itemsof interest,followedby
more programexecution,and so on. Whatconstitutes"itemsof interest"willbe different

m different environments.An operating system, for example, manages the interface

1
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between high-level processes and low-levelhardware. A debugger for an operating system

should be able to start and stop processes; examine or modify the state of processes that

are running; and so on. A person debugging a YACC program might want to step through

the parsing of a language statement and to display the parse stack as it does so.

Perhaps surprisingly, not all programming language debuggers are necessarily

similar in what they do. For example, stepping through an imperative-languageprogram is

not hard to imagine; however, stepping through a functional-language program may not

make any sense. This thesis is aimed at programs written in imperative languages like C,
Pascal, and Fortran.

1.2. Debuggersfor Non-OptimizedImperative Programs.

Programs written in imperative languages consist of the steps that are required to

achieve the purpose of the programmer, whatever that might be. These steps are in the

form of a series of statements which do one of two things (broadly speaking). One class of

statements is that which is concerned with the flow of execution. It includes such things as

conditional and repetitive constructs like if or while statements. The other main class

includes the statements that do the actual computations in the program. These statements

do things like "get the value of a variable;multiplyit by some number; store the new value

into another variable". Bugs can creep into a program if the programmer inadvertently

specifies the wrong series of statements, or the wrong variable as the destination for a

computation. It could happen that the first nine statements do evetything exactly right, but

on the tenth, the result of a computation is stored into the wrong variable.

A debugger for an imperative language needs to be able to stop at any given place

in the program so that the user can examine its state to see if anything has gone wrong yet,

or to step through the program and watch as the state changes with each step. By allowing

the user to control the program as it executes step by step, the debugger enables the user

to fmd out at what point the computation goes awry.

The capabilities that are needed can be grouped into two broad categories that

correspond closely with the characteristics that distinguish imperative language programs:

the ability to get and set the current execution point, and the ability to get and set the

value of a variable. In order to achieve these capabilities, the debugger must get some help

from the architecture and from the compiler.
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The architecture needs to have the ability to stop execution at any given address.

Most often, this is accomplishedindirectlyby means of a special breakpoint opcode which

causes a trap to the debugger. It can also be accomplished directly; that is, by having the

ability to trap to the debugger when a previously specified address is reached during the

execution. (Some architectures support both methods). It is also helpful. (but theoretically

non-essential) to be able to trap to the debugger at the end of every instruction. This is

frequently how "stepping" is achieved.

The compiler needs to provide to the debugger information that only it can collect

during compilation. Only the compiler "knows", for example. which memory location

corresponds to which variable. This debug information is created during compilation and

typically consists of at least two maps: one contains the mapping from source statement to

the address of the beginningof the comsponding block of object code; the other contains

the mapping from each variable name to its location and type. These maps assume, of

course, that each source statement wiU map to a distinct block of object code, and that

each variable will map to a single location.

So, with some help from the architecture for controlling execution, and with some

help from the compiler to provide mappings between object code and source code,

effective debugging of non-optimi7,ed code can be readily achieved.

1.3. Someexamplesof debug information usage.

1.3.1. A Program Exception

Suppose that a program exception has occurred, and that the hardware (and/or the

OS) has left the address of the offending instruction where the debugger can get it In this

situation, the debugger would consult the code map, discover the block of code from

which the instruction came, and report back the coII'esponding statement as the source

statement that was responsible for the exception.

1.3.2. Setting a Breakpoint

In the event that the user wants executionto stop at a particularstatement,the

debugger would consult the code map, find the address of the block of object code

coII'espondingto the source statement, save the original opcode, and then place a
breakpointinstructionat that location.Executionwouldthen resumeuntilthe breakpoint
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was hit (or the program exited). In the event that the breakpoint was hit, an exception

would be raised, causing the logic of the previous example to be followed.

1.3.3. Starting Execution Under User Control

Sometimes, a user might want to start (or resume) execution at a particular

statement In this situation, the debugger would consult the code map, find the address of

the block of object which corresponds to that statement, and then set the instruction

pointer to that location. This can be a very useful feature of a debugger, since it allows the

user to skip some source lines, or repeat others, for example.

What if a user believes that the cause of a bug is that a source line increments a

variable one too many times? To test that thesis without having to rebuild the program

from scratch, the user can direct the debugger to skip that line, and then let the rest of the

program run its course. If the output is correct when that line is skipped and incorrect

otherwise, then the mystery is solved and can easily be fixed. If not, then the user can
continue the seaICh.

It should be noted that altering the flow of control of the program can easily have

unintended consequences since assumptions made by the compiler when the code was

generated may be violated.

1.3.4. Reporting the Value of a Program Variable

Assume that execution is momentarilystopped (perhaps due to a program

exceptionlikedivisionby zero), and that the user wants to findout the valueof variable
"x". In this situation, the debugger would consult the data map, find the locationof

variable"x",retrieveits value,andthenprintit accordingto its type.

1.3.5. Changing the Value of a Program Variable

What if the user wants to change'the value of variable "x" before execution
resumes?In this situation,the debuggerwouldconsultthe data map, find the locationof
variable"x",andchangeit to thedesiredvalue.

Suppose that the user believes that a variable somehow receives the wrong value,

and that this incorrect value causes subsequent problems in the program. To test that
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thesis, the user could directlyalter the value of the variableand then let the program
continue,andthen test theresults.

Since the flow of control in a program can be dependent upon the value of certain

variables, the same warning issued earlier (in the section "Starting Execution Under User

Control) is relevant here as well. By altering such a variable, the program may very well

take an unintended path.

1.4. How optimizationscan cause problems for debuggers.

Optimizations can cause problems for debuggers because many optimizations

violate assumptions made when the debug information was created. If a code motion

optimization moves the evaluation of an expression to a different location, the

conventional debug information may no longer be valid for that portion of the code. If the

register allocation portion of a compiler decides to keep a variable in a register for the

equivalent of several source statements, the debug information which indicates that the

variable lives at a particular location in memory will be incorrect over those regions of the

program. A debugger trying to use this invalid debug information would at best confuse

the user and at worst give misleading or incorrect responses.

Followingare some examples of optimizationswhich can cause problemsfor
debuggerswhichrelyon conventionaldebuginformation.

1.4.1. Constant Folding

The evaluation of a constant expression at compile-time (called constant folding)

may be performed even when only the minimum optimization has been specified. For
example, in

i = 2 * 3
i = i * 4

the compiler could easily determine that the value of "i" could safely be calculated

statically. In other words, the compiler in essence replaced the original two statements
with

i = 24
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The user who expectedto be able to "step" throughthe calculationat run time

mightbe surprisedthatthecalculationneverhappens.

1.4.2. Loop-invariant Code Motion

Loop-invariant code motion is an optimization in which an expression that is not a

function of the loop iteration is moved outside of a loop. For example, in

for (i = 0; i < 10; i++)

{

x = y * z;

a[i] = i * x;

}

the assignment to "x" could safely be moved before the loop (assuming that a[i]

was not a1iasedin some way to x, y, or z). By moving it out of the loop, the execution

time is reduced since the expression will only be evaluated once rather than ten times. In
effect, it is as if the user wrote

x = y * z;

for (i = 0; i < 10; i++)

{

a[i] = i * x;

}

Theuser trying to debug the original source might be surprised that the assignment

to x already happened upon entry to the loop.

1.4.3. RegisterVariables

Register promotion is another optimization that can cause problems. Consider the .

following source fragment:

int i;

for (i = 0; i < 10000; i++)

{

a[i] = i * 2;

}
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In the non-optimized version of this code, the value of i would have to be loaded

from memory, used in the expression, incremented and stored back into memory for every

iteration of the loop. If a debugger was used to query for the value of i half way through

the execution of the loop, there would be no problem. The debug information would

indicate the corresponding memory location from which the debugger would retrieve it.

During the optimizationphase, however, the compiler might discover that it was a

heavily used variable and therefore might decide to keep it in a register. Furthermore, if

the loop represented the last use of the variable i the memory location might never get

updated.

The problem is when the debugger uses the conventional debug information to

retrieve the variable's value from what it thinks is the current location; it would not be

aware that the memory location is temporarily non-current.

1.4.4. Instruction scheduling

Instruction scheduling creates problems because of the rearrangement of

operations even across statement boundaries. In this sense, the problems are similar to

those caused by other code motion optimizations. Since this thesis in fact concentrates on

instruction scheduling, the specific problems created for debugging will be covered in

detail subsequently.

1.5. Not all optimizationscause problems.

As long as an optimization does not violate the assumptions made when debug

information was produced, it should create no problems for debuggers. Strength

reduction, in which the compiler substitutes a "cheaper" set of instructions for the more

obvious one suggested by the source code would not ordinarily present problems. For

example, in

x = y * 2;

the compiler might substitute the presumably cheaper (but equivalent)

x = y « 1;

where "y « 1"meansthe value of y shifted left by onebit position.
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1.6. Why we want to be able to debug optimized code.

There have been two common ways of dealing with the problem of debugging

optimized code: turn off optimizations and re-compile if it is feasible to do so; or debug at

the assembly language level if it is not. However, these workarounds may not always be

acceptable. With regard to re-compiling with optimizations turned off: the bug may only

show up in the presence of optimizations. One situation in which this can occur is when

the compiler has an option to perform "unsafe" optimizations. For example:

At the end of this program, i1 and i2 shouldequal 2. However, a compiler
performing"unsafe"optimi7J1tions(underthe directionof the user who "knew"whathe

was doing)mightsave i 1 in a register at line 5 and then use this old value on line7.

Another situationin which an optimi7edprogrammightbehavedifferentlyfrom a non-
optimi7edone is when the compilerhas bugs. It is unfortunatelytrue that you cannot

always assume that the compiler generates correct code. (In fact, compiler writers

themselvesobviouslywould want to be able to debugoptimi7.edcode at the source-level
in order to fix compilerbugs). It is also possiblethat speedand/or spaceconsiderations

make debugginga non-optimizedversionimpossible.With regard to debuggingat the
assemblylanguagelevel:it couldeasilybe tortuous for all but the most trivialprograms.
Therefore, the ability to have full source-leveldebuggingof optimi7edcode is very
desirable.

1: /* Source file a.c */

2: int i1, i2;

3: int *iptr = &i1;

1: /* Source file b.c */

2: extern int i1, i2, *iptr;
3: main ()

4: {

5: i1 = 1;

6: *iptr = 2;

7: i2 = i1;

8: }



CHAPTER 2.
Previous Work

2.1. "Debugging System Compatible With Optimizing Compiler" by
Warren and Schlaeppi

This is what is called a "Technical Disclosure Bulletin" that was only a sununary of

the document I was really looking for [20]. That full document was called "Design of the

FDS interactive debugging system" [26]. As far as I know, it is no longer available.

This is the earliest work I am aware of and yet surprisinglythorough. They

recognizedthat the traditionaldebuginformationmaps were not sufficientfor debugging
optimizedcode. They proposed a total of seven maps to handle the various situations
whichmightarisein a debuggingsession:

· SLOC is a map from module, procedure, and statement to the corresponding
object code.

· STYP is a map from module, procedure, and statement to the statement type (e.g.,

call, assignment, conditional, etc.), and variable. "Variable"meansvariable name in

the case of an assignment statement; or the target in the case of a call statement,

for example.

· VLOC is a map from module, procedure, statement,and variableto a list of
locations.(A list is needed in the case where a variablelivesat more than one
location).

· VOPT is a map from module,procedure, statement,and variableto a table of

"optimizationinformation"which consists of the following:uses deleted, uses
added,assignmentsdeleted,assignmentsadded.andliveness.

· AITR is a map from module, procedure, and variable to the corresponding

attributes. What they mean by attributes are whatever is neededto neededto

9
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address the variable.The example they give is a "based"variablewhichcan be

accessedonlywhentheaddressof whatit is "basedon"is known.

· SDEL is a map from module and procedure to a list of deleted statements

· SUCC is a map from module, procedure,and statement to a list of possible
successors to be used for single stepping.

Apparently, this project never got past the design stage, so there is no information

on how practical it could be. It is clear, though, that a vast amount of debug information

would have to be generated by the compiler and processed by the debugger for real-world

programs.

2.2. "Symbolic Debugging of Optimized Code" by Hennessy

This paper presents an approach to detect when variables in the original source

program are not current with respect to what is "really"happening in the optimi7ed code.

Dead-store elimination is an example: if the final store to a variable is deleted by the

compiler because it is not needed later in the program, that variable is non-current from

that point on.

This paper goes on to outline techniques by which the values of non-current

variables can often be recovered. The recovery can be accomplished when other variables
are available which can be used to calculate what the value of the non-current variable

should be. The benefit to this approach is that the effect of the optimization can be bidden

from the user. In other words, if the user queries the debugger for the value of a variable

which happens to be non-current and recoverable, the debugger can perform the necessary

calculations and repon the result to the user as if the variable were current.

2.3. "Interactive Source-Level Debugging for Optimized Programs"
by Zellweger

In the first four chapters of her Ph. D. dissertation, Zellweger gives a very nice

overview of the issues surrounding the problems of debugging optimi7ed code. She covers

why optimizations cause problems; what we should expect in a debugger, specific

optimizations and their effects on debugging; previous attempts to solve some of the

problems; and many possible solution strategies. After this, in the main portion of her

dissertation, she uses some of these possible strategies to enable a real-world debugger to
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handle two specific control-flow optimizations: procedure in-liningand tail merging (or

cross jumping) which is shown below. Procedure in-lining is an optimization in which the

body of a procedure is grafted into the source at each location where a call to the

procedure originallyexisted. The primary benefit to this optimization is that it saves all the

overhead of calling and returning from the procedure. (The down-side, of course, is that

the program will be larger). Tail merging is an optimization in which several branches of

code may contain identical "tails"; all of these except one are replaced by a jump to. the

one remaining tail. The benefit to this optimization is that it may save space, possibly

allowing more of a program to fit into a cache.

Zellweger's solution for handling tail merging plays heavily in my work, so I will

go into some detail about it. First, consider the following code fragment:

1: if (a)

2: do "a" specific routine

3: do generic routine

4: else if (b)

5: do "b" specific routine

6: do generic routine

7: else if (c)

8: do "c" specific routine

9: do generic routine

10: endif

After the tail merging optimization, the object code would resemble the following:

if (a)

do "a" specific routine

goto x

else if (b)

do "b" specific routine

goto x
else if (c)

do "c" specific routine

x:

do generic routine

endif
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The problem that z.ellweger attacked was to somehow maintain the illusion that

lines 3. 6. and 9 map to distinct blocks of object code when in fact they all map to the

same code. At the level of the original source. that should not present a problem. At the

level of the actual object code. however. it is a big problem. since there is literally nothing

in that block of code which would enable the debugger to determine if the code is

executing on behalfof line 3. 6. or 9. In other words. if execution is temporarily halted in

that block of code. the debugger would be unable to report which of the three lines was

the cWTentline. Zellweger's solution to this problem is path determination.

By examiningthe source above. it should be clear that if the current location is line

3. then control must have passed through line 2; if the CWTentlocation is line 6. then

control must have passed through line 5; and if the cWTentlocation is line 9. then control

must have passed through line 8. Therefore. it can be said that the code for lines 2. S. and

8 is path-determiningcode for the (identical) object code executing on behalf of lines 3. 6.

and 9. When we know which of the path determining lines executed most recently. then

we know which of the several merged lines apparently executed next.

If the user asks the debugger to break in a region of code that has been

transformed by the tail-merging optimi7.ation.then the debugger does some extra activity

transparently. Hidden breakpoints are set at each instruction which is a path determiner for

the merged region. Each time a hidden breakpoint is hit. a time stamp (a global debugger

variable which is incremented before each use) is copied to a variable associated with that

particular hidden breakpoint; then execution continues. When the user's breakpoint in the

merged region is hit. the time stamp values of all the hidden breakpoints are examined. If

the highest time stamp value was recorded for the line requested by the user (which

indicates that it executed last). then execution halts. and the debugger reports that the

user's breakpoint has been hit; otherwise. execution continues.

To illustrate. consider again the original source code above. Assume that the user

requests a breakpoint at line 6 (which will cause a breakpoint instruction to be placed at

label "x:" below. Here is the object code again. but this time with the potential background

activity indicated withinbrackets:
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x:

[

break due to user-requested breakpoint;

if line_5_val has highest value

hand control to user;

else

ignore breakpoint; continue;

]

do generic routine
endif

In Zellweger's solution, this activity is triggered only in response to a user's

request. This brings up a major weakness in her solution (which she acknowledges):if the

debugger gains control due to an unplanned activity such as an exception, then path

determination will not ordinarily be active, meaning that the debugger will be unable to

report which of several source lines is responsiblefor the problem.

Calling thispath determination is somethingof a misnomer. Mter all, the debugger

is not telling the user which path was taken through the code; it is only obtaining and using

this information over a very limited region of the source in order to solve the problem

caused by one particular optimization. A significant part of this work in fact advocates

using essentially the same technique over the entire range of the program (or some smaller

portion, if the user desires) for the purpose of reporting to the user whichpath was taken

through the code. I will go into more detail in a later chapter.
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2.4. "Recovery of Noncurrent Variables in Source-levelDebugging of
Optimized Code" by Srivastava

This work presents a corrected and improved version of the ~hniques presented

in Hennessy's paper. In addition, techniques are presented to recover non-current variables

from partial results available in temporaries and registers.

2.5. "DOC: A Practical Approach to Source-Level Debugging of
Globally Optimized Code" by Coutant, Meloy,Ruscetta

This contains a succinct explanation of the core problems in debugging optimi7~

code: namely the code location problem, and the data value problem. The authors claim
that

"most of the problemsturn out to be data valueproblems.Even when code is
moved or eliminated,the main effect is that data valuesmay not be as the user

expectsat everypointduringexecutionof theprogram."

Funher on, they say that

"Only those instructions that modify user data are troublesome, and only when

they are moved across a statement boundary. Thus, many code motion problems

can be solved by the same techniques as for data value problems."

The optimizations which were their primary targets were global register allocation,

induction variable elimination, and instruction scheduling.The first two optimizations are

fairly standard; the instruction scheduling that they dealt with was very specific to the

target architecture. It had two purposes: to fill the branch-delay slots with useful

instructions, and to avoid processor stalls on memory accesses.

Their solution to the problems created by these optimizations depended primarily

on an extension to the conventional data map which they encapsulated in a "range" data

structure. 1bis structure has four fields in it: the first two fields give a low and a high value

forming a "range" of instruction pointer values in which the next two fields apply. These

specify in which memory location or register the variable lives, or its actua1 value if the

variable bas no location. (This last case might occur in the case of constant propagation,

for example). By maintaining a table which maps a variable name to its location as a

function of the instruction pointer, they are able to track the location of a variable as it
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changesthrough the program.Equallyimportantis that they are able to detect whena
variablehas 1U)location,and informthe user who is ttyingto get or set the valueof that
variable. .

Insuuction scheduling has the potential of re-ordering instructions without regard

to the statement boundaries in the original source. In this case, the "range" data structure

has a slightly different interpretation: it is to be viewed as the range of source lines in

which the user needs to be warned that the variablein question had either an early or late

update. For example. assume that a user requests a breakpoint on a statement containinga

variable assignment, and that instruction schedulinghas moved that assignment into the

block of code for the previous statement. In this situation, the debugger would be able to

consult the "range" information and warn the user that the variable had been assigned to

earlier than the original source indicated.

Their "range" idea is another important part of my thesis and will be covered in a

later chapter.

2.6. "Source-Level Debugging of Optimized Code: Detecting
Unexpected Data Values" by Copperman

This master's thesis describes a method which had been suggested as a possibility

by Zellweger to determine the currency status of variablesby using reaching definitions.I

did not use this portion of his work. I did find, however, that his coverage of other work

in the field of debugging optimi7edcode was excellent.

2.7. Summary

To my knowledge, all previous work has either sought to hide the effects of

oprimi7J1tionsfrom the user, or else was designed to issue warnings to the user when a

request with respect to the original source might not correspond to the running program.

None have attempted what Zellweger briefly mentioned as a possibility: namely, the

presentation to the user of a modified version of the source program which accurately

reflected the underlying oprimi7ed program. Even Zellweger didn't seem to consider the

possibility of showing both the original and oprimi7ed view on the screen at the same

time. All current approaches with which I am familiar assume that the user will only

interact with the original source program.



CHAPTER 3.
Justification Of The Present Work

3.1. Introduction

In this chapter I will present an overviewof VLIW architecturesand the code

schedulingtechniquesusedbyVLIWcompilers.I willalsocoverthe specialproblemsthis
creates for debuggingand why earlier work on the debuggingof oprimi7edcode is
inadequateto handlethesespecialproblems.

3.2. VLIW Architecture

The most succinct definitionof VLIW that I have come across is from the paper

on the Multiflow architecture [3].

"VLIW computers are a fundamentally new class of machine characterized by

· A single stream of execution (one program counter, and one control unit).

· A very long instructionformat, providing enough control bits to directly and

independently controlthe action of every functional unit in every cycle.

· Large numbers of data paths and functional units, the control of which is

planned at compiletime.

There are no bus arbiters,queues, or other hardware synchronizationmechanisms
in the CPU:'

3.2.1. Howit is different from otber architectures

VLIW processors are distinct from scalar processors in that their instruction words

are actually composed of severaloperations, each targeted for a functionalunit capable of

executing in parallel with other functional units. In addition to the more conventional code

generation and optimization techniques, instruction scheduling is performed in an attempt

16
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to keep as many of the functionalunits as busy as possiblewhile still preservingthe
original source semantics.

VLIW processors are distinct from super-scalarprocessors (which also have
multiplefunctionalunits) in that all of the schedulingof resourcesis handledstatically.

Super-scalarprocessors,on the other hand,managethe resourcesat ron-timebymeansof

extra control logic. (Of course, super-scalarprocessors can also benefit from static
schedulingin additionto run-timeschedul,ing.)

3.2.2. Advantages

One advantage that VUW architectures have over super-scalar architectures is

that there is no hardware devoted to synchronization issues. While this puts an extra

burden on the compiler to handle all the synchronization,it also frees up real estate on the

chip for more and/or faster functional units.

3.2.3. Disadvantages

One disadvantage is the flip side of an advantage listed above. Since the

synchronization falls to the compiler to handle, it means that the compiler has a more

complicated job than it ordinarily would. This would tend to make the perfonnance of the

program more dependent upOn the compiler; if the compiler happens to contain bugs

(which is more likely given the increased complexity) then the solution of turning off

optimizations would be especially costly in terms of execution speed.

Another disadvantage is that there is the potential for large code size. (Larger code

size means more fetches from memory and more difficulty fitting into the cache, which

possibly negates some of the benefits to the VUW architecture). This can result from

some sections of code with little available parallelism in which some fields in the

instruction word are NOPS (though it should be said that some architectures work around

this by allowing compact versions of the instructions in which NOPS take virtually no

space until actually being fetched). The added code size can also come about since some

scheduling techniques result in code duplication and/or creation. Trace Scheduling, for

example, relies on loop unrolling as the primary loop optimi7.avon. It also relies on the

creation of new code to compensate for when an expected trace is not followed at run
time.
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3.2.4. The Reasonlor VLIW Architectures

Even in programs which show no parallelism at the source program level, there

may in fact be some degree of parallelism at the machine leveLFor example, the statement

a[i] = w*x;

seems to involve only the calculation of the expression w*x, but at the level of

fairly typical microcode it mightrequire:

· An instruction fetch

· An instructiondecode

· 0 or moreoperandfetches

· Updating the instructionpointer

· Theactualmultiplication

· Thecalculationof theaddressof a[i]

· The storeof theresultof themultiplicationat thataddress

Dependingupon the actual machineinvolved, many of the above steps could

conceivablyhappen in paralleLSimilarly,if fetch, decode, and executionphasescan be

overlappedwitheachother,muchof thefollowingcouldhappeninparallel:

a[i] = w*x;

b[i] = x*y;

e[i] = y*z;

and so on ...

The main purpose behind VUW architectures is to exploit this fine-grained

parallelism that exists in ordinary code to the greatest possible extent.

3.2.5. A Brief History

In 1979, Josh Fischer published a Ph.D. dissertation concerning the optimization of

horizontal microcode. In 1981, he published a paper introducing what he called Trace
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Schedulingwhich was targeted at global microcodecompaction.Finally, in 1983,he

proposed a new architecturewhichwouldbe specificallydesignedwith Trace Scheduling
in mind[9].This architecturewascalledVUW.

The name VUW implies that there must be a LIW classification from which it

should be distinguished. In fact, the first and last machines below would more accurately

be described as LIW. However, as is the case with so much terminology, there is no clear

distinction. Therefore, for the purposes of this paper, I will not distinguish between the

two since the basic idea is the same: namely, that the instruction word explicitly controls
each of several functional units.

Rooting Point"Systemsintroduced the FPS-I64 in 1981 (before the term "VUW"

was even created) as an may processor attached to a host machine. The machine had a

64-bit instruction word able to control seven functional units at once. During a single

cycle, it could perform an addition, a multiplication, two data fetches, one code fetch, the

computation of the address of the next data or code word, and a branch instruction. It was

designed to be programmed by hand However, in 1984 Touzeau [23] published a paper

concerning the design of a compiler for the FPS-I64 computer that was able to perform

many classical optimizations as well as software pipelining of many loops (those that

contained only straight-line blocks of code). The paper mentions that the compiler had

already been in use for 2 years.

The ELI project (Ell stands for EnormouslyLong Instruction)[7] at Yale was

started by Josh FISCherand was meant as a project to designthe compilerand hardware

together to fully explore VUW concepts. The proposed architecture had a Sl2-bit
instructionword thoughno actualhardwarecameout of this effort.

In 1987, Multi.t1owComputer, Inc. announced the first commercially available

machine described as "VUW". They called it the Trace. At the same time they announced

the Trace Scheduling compacting compiler [3]. This was a direct outcome from the ELI

project at Yale. The Trace architecture could be configured with several different

instruction widths (corresponding to different hardware configurations) from a 2S6-bit

word (able to initiate 7 operations per clock cycle) up to a 1024-bit word (able to initiate

28 operations per clock cycle). Interestingly, Multi.t1owdesigned the machine to be a

general purpose computer rather than a co-processor for scientific applications. In fact,

the paper makes prominent mention that Unix was ported to the machine.
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The Warp systolic may came out of a research effort at CarnegieMenon in

collaborationwith GE and Honeywell.It has a 272-bit instructionword with about the

samedegreeof parallelismas the smallestTraceconfiguration.The compilerfor the Warp
relies on software pipelining and hierarchicalreduction as the primary scheduling

techniques.Lam'sdissertationmentionsversionsof thehardwarein 1985,86,and87 [16].

The iWarp was a collaborationbetweenCarnegie Menon and Intel in part to

producea singlechip implementationof the architecture.The architecturewas outlinedin
1988. This has about the same degree of parallelismas the Warp machine,but has a
significantlysmallerinstruction word of 96 bits. It also allowed a second instruction

format of 32 bits for initiating a single operation.

The Cydra 5 (from Cydrome) was introduced in 1988. It is essentially a VLIW

machine with additional hardware support for overlapping loop iterations [S]. It relies on

software pipeliningtechniques in the compiler to take advantage of the specialoverlapped

loop support. The Cydra 5 has a 256 bit instruction word capable of controlling seven
functional units.

The i860 [13] from Intel was introduced in 1989. It has two features which

warrant inclusion in the list. FU'St, it has a "dual-instruction" mode in which two

instructions are executed at the same time. Second, it has some special "dual-operation"

instructions which manipulate both the adder and multiplier pipelines simultaneouslyand

which can be issued while the processor is in "dual-instruction"mode.

3.3. Instruction Scheduling

Instruction scheduling is a means by which architectures capable of overlapped

execution, whether because of pipelined and/or multiple functional units, are kept as busy

as possible. It is dmi1ar in many respects to the problems inherent in operating system

design; namely, it attempts to find the most efficient utilization of the resources at hand.

Instruction scheduling for scalar machines involves only instruction re-ordering.

(Recall that the scheduling for the machine mentioned in the DOC paper [4] was intended

to fill branch-delay slots and to avoid processor stalls on memory accesses.) Instruction

scheduling for VLIW machines, on the other hand, is much more complicated. A compiler

for a VLIW machine will not only re-order operations; it will also pack several operations

into single instructions since the hardware contains more than one functionalunit capable

of executing in paralleL For example, depending upon the source code and available



-- --- - -- --.

21

haIdware resources, the instruction scheduler may create single machine instructions

which contain code colTCSpOndingto portions of several source lines and different loop
iterations. .

3.3.1. Compaction and Re-ordering

Code compaction and re-ordering is the simplest kind of instruction scheduling for

VLIW architectures. It does not involve the duplication or creation of additional code as

the following techniques do. It effectively takes a list of operations comprising a basic

block and manges them subject to two constraints: first, the original program semantics

must be preserved; second, the machine resources must be kept as busy as possible.

3.3.2. Trace Scheduling

Conditional branches ordinarily cause problems becauseprocessors cannot "know"

ahead of time which path will be taken, and therefore cannot continue fetching and

executing until the path is known. Many processors get around this by rearranging code to

put an instruction in the branch-delay slot which is safe to execute no matter which branch

is taken. This is limited, though, by the fact that it may not be possible to find a suitable

instruction. Also, since the branch still exists, the schedulingof resources cannot continue

until the new branch is started. Trace Scheduling takes a different approach: based on

some heuristic, it chooses the most likely path (up to the next backwards branch, if

possible), treats the entire path as one long basic block, and packs operations along this

path into instruction words. The compiler also inserts compensation code into the off-

trace branches to compensate for when the expected trace is not taken at run-time. Since

branches are effectively removed yielding much larger basic blocks, the fine-grained

parallelismcan be exploited over much greater extent [7]. In other words, because of the

compensation code, the scheduler is free to move operations beyond the boundary of the
basic block.

Trace scheduling is based on the assumption that there is a much higher probability

of a branch going one direction rather than the other. Fortunately, this is often the case.

The assumption is certainly true for loops, in which the branch back to the beginning of

the loop is taken every time except for the last iteration. It is also true for error-checking

code in which the error condition rarely occurs. On the other hand, programs containing

mostly branches that go either direction with about equal probabilityare not going to see

much, if any, benefit from the Trace Scheduling technique.
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One of the biggest disadvantagesto Trace Schedulingis that if the program
executiondoesnot followthe trace that wasoriginallypredicted- that is, if the heuristic

is poorly chosen- then the compactedcode may performpoorly [6]. To guardagainst

this, the programmermust add another stage to the program developmentcycle. The
program mustbe run withrealisticinput to check the executionpath taken at ron-time.
This data canthenbe fed to thecompilerto fme-tuneits branchpredictions.

Another disadvantage is that there can be significant code expansion. One reason

for this is because of the compensation code that is necessary to preserve program

correctness. It can also be a problem because the primary technique used on loops is

unrolling followed by scheduling. This effectively duplicates the source lines of loop

bodies in order to achieve longer loop bodies, and hence, longer basic blocks.

3.3.3. Softwarepipelining

Software pipelining is an instruction scheduling technique that is applied only to

loops. It is based on the observation that a "next" iteration of a loop may stan before

previous ones have finishedif all of the needed data from previous iterations are available,

and if it does not require resources that are already in use. The goal is to find the best

combination of the schedule for a single iteration, and the initiation interval for starting
successive iterations.

There are ordinarily 3 distinct portions of a software pipelined loop. rU'St,there is

the prolog in which more and more iterations start. This is essentially for the purpose of

"filling" the software pipeline. Second, there is the steady-state in which iterations stan

and finish on a ~gular schedule. The loop will spend most of the time in this portion.
~ there is the epilog in which the pipeline is "drained".

One advantage to software pipelining is that it results in relatively compact code

size. Another is that it frequently results in the optimal schedule [16]. There are at least

two disadvantages: it may only be suitable for loops having a small body and may not be

all that suitable for nested loops.

3.3.4. Hierarchical Reduction

Ordinarily,a simple if statementcould prevent a loop from being software

pipelined.Thiswas certainlytrue for softwarepipeliningas implementedin the compiler

for the FPS-l64 [23]. HierarchicalReductionis a schedulingtechniqueimplementedby



23

Lam as a companion to software pipelining[16]. The motivation of it was to enable loops

with conditional constrUcts to be software pipelined. The basic idea is to schedule the

program from the innermost constrUcts out, replacing the constrUct with a single node

which is then scheduled with its sunoundings. This process is continued until the entire

program is reduced to a single node.

3.4. Why Scheduling for VLIW Architectures Is a Problem for
Debugging

Debugging. non-optimized code is simple because it has the following

characteristics: the code is generated (and executes) statement-by-statement;and variables

generally live at only one location during their entire existence. Debuggingoprimi7,edcode

can be a big problem because the code no longer has those characteristics. Debugging

VUW code after instrUction scheduling is an even larger problem. FIrSt, there is the

instrUctionre-ordering. At the very least, this causes the code from different statements to

be interleaved in some fashion. In this regard. VUW code is no worse than typical

optimi7ed code (which is bad enough). However, in addition to instrUCtionre-ordering,

there is typicallya compaction phase in which several operations are packed together into

a single instrUCtionword. Thus a single instruction word can contain code from portions

of several source lines. Fmally, there are also some transformationsperformed on the code

in order to achieve higher performance. To take one example, software pipelining can

transform the code in such a way that individual instructions can contain code from

different loop iterations. That is, there can be several copies of a particular source line in

various stages of execution at the same time. If there can be several copies of a line in

execution at the same time, that means that there can be several copies of a variable in

existence at the same tUne,each with a potentially different yet valid value.

3.5. Why we want to be able to debug this code

All of the reasons for wanting to debug optimi7-edcode are valid for VLIW code

after instrUctionscheduling. Among those reasons are:

· The performance of these kinds of machines is their main reason for existence.

Therefore, if a math library, for example, exhibits some bugs after instrUction

scheduling, it is not feasible to ship unoprimi7-edand/or unscheduledcode since the

performance may be orders of magnitude slower.
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· The programmershouldbe able to debugthe samecode that will be in the final

prodUCl

· Since the code generation for VUW machines is more complicated than for

conventional machines, the likelihood of compiler bugs is increased. Compiler

writers would like to be able to debug at the source-level; and programmers who

encounter compiler bugs would like to be able to locate the problem and work
around il

· Debugging at the assembly language level is tedious for conventional machines; for
VLIW machinesit is even worse.



CHAPTER 4.
An Approach To Debugging VLIW Code After Instruction

Scheduling

4.1. Introduction

I will show that effective debugging of VUW code after instruction schedulingcan

be achieved by a combination of:

· enhancements to the conventional code and data debug information maps to allow

the user to make expression-oriented (rather then line- or statement-oriented)

queries.

· a highlightingscheme (plus a modified source when needed) to show the current

state of the computation. In this way, the user is informed graphically what

portions of the program have executed.

· a re-definition of some of the traditional debugger commands, since the notion of

the "current" location can become fuzzy in the presence of instruction scheduling.

4.2. Scope Of This Proposal

I am targeting this proposal at instruction scheduling techniques which involve the

re-ordering of operations, combined with the compaction of operations into long

instruction words, combined with code duplication transformations such as loop unrolling

or software pipelining. I should also state that this proposal is not intended for other

optimizations, though I will consider them informally later.

Some instructionschedulingtechniquescan result in the creation of code that
correspondsto nothingin the originalsource.It is my understandingthat this is possible
withtheTraceSchedulingtechnique.

25
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For example, suppose that as a Trace Scheduling compilerproceeds, it has picked

a "most likely" trace and has begun to re-arrange and"compact the code along the trace. If

an operation is moved down the trace to a position past a conditional branch to an off-

trace target (called a split), or up the trace to a position prior to where an off-trace branch

joins the main trace (called a join), then the compensation code would consist of simply

copying that same operation to the off-trace branch so that it is executed no matter what

branch is taken at run time. Such code should not create any significant problems for

debugging beyond the fact that the debugger must deal with two object code sequences

mapping to the same source expression.

However, if the compiler moves an operation up the trace to a position before a

conditional branch, the compensation code is potentially much more complicated. It would

have to somehow undo the operation in the event that the off-trace branch is taken at run-

time. The problem this creates for debugging is that betweenthe time that the operation is

completed (which should not have happened) and the time that it is un-done (to restore

the semantics of the program), the program is not semanticallyequivalent to the original. I

am not proposing any solution for such techniques.

4.3. Enhancements To ConventionalDebugInformation

In this section, I want to demonstrate that effective debuggingof VUW code after

instruction schedulingrequires code and data maps that are sufficientlydetailed that they

are able to handle queries at the expression level as opposed to line or statement leveLTo

do that, I will work through a progression of scenarios showing increasingly complicated

instruction scheduling,each of which requires more detail in the debug information maps.

4.3.1. ConventionalDebug Information

The code map for non-optimi7.edcode has typicallyconsisted of a mapping from

statement numbezs to blocks of coITespondingobject code. This is largely sufficient for

such code because the code is typically generated on a source-statement by sowce-

statement basiS;that is, there really is, for the most part, a contiguous block of object code
for each source statement

Consider the following source code fragment (numbers in the left-hand column are

line numbers):
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1: int i1, i2, i3;

2: float f1, f2, f3;

3:

4: i1 = i2 + i3;

5: f1 = (f2 / f3) / i1;

6: return;

And now some possibleassembly language code (numbers in the left-hand column

arc offsets from the beginning of the code):

The conventionalcode map might appear as follows:

It woWd be interpreted to mean that the object code colTCspondingto line 5. for

example, starts at the instruction at offset 4 and continues through the end of the
instruction at offset 9.

0: load r1, i2

1: load r2, i3

2: add r1, r2

3: store r1, i1

4: load fr1, f2

5: load fr2, f3

6: fdiv fr1, fr2

7: load fr2, i1

8: fdiv fr1, fr2

9: store fr1, f1

10: ret

LineNumber Instruction On-set

4 0

S 4

6 10
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The conventional data map might appear as follows:

It would be interpreted to mean that the given variable is of the listed type and can
be found at the listed locationon statement boundaries.

Here is an example of how they might be used during a debugging session.

Suppose that the user wants to set a breakpoint at line S (typically, this is interpreted to

mean "break such that line S will be executed next"). In this event, the debugger consults

the code map and finds that the instrUctionat offset 4 is the beginningof the code for line

s. The debugger then saves the original instrUction, replaces it with a special breakpoint

opcode, and then starts execution. When the breakpoint is hit, the debugger returns the

original opcode to its location, and then updates the screen giving some indication that line

S is next. This "indication" typically consists of highlighting the source line in some

manner. At this point, the debugger will wait for user input. This input might consist of

queries for variable values, for example. In this case, the debugger consults the data map,

finds the corresponding memorylocation, retrieves the value, and then prints it according

to its type. In the event that the user wishes to modify a variable, the debugger finds the

location and places the desired value there.

Suppose that during a debugging session a division-by-zero exception occurs at

the instruction at offset 6. The debugger consults the code map and discovers that the

instrUctionat offset 6 in the object code belongs to the block of code corresponding to line

5 in the source, and reports that as the source line responsible for the error. In order to

determine the cause of the problem, the user can query the debugger for the values of any

program variable. To carry this out, the debugger consults the data map, retrieves

whatevervalues the user wants and then prints them.

Name Tyoe Location

it intee:Cf 100h

i2 intee:Cf l04h

i3 intee:Cf 108h

fl real lOch

f2 real 110h

f3 real 114h
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Even in thissimplescenario,theconventionaldebugmapsmay not be perfecLThis
can happen on those occasions when the user gets control at some point after a statement

has begun executing, but before it has completed. For example, assume that a source

statement consists of several operations. If an exception occurs after some operations have

been executed but before memory locations have been updated; and if the user then

queries the debugger for a variable in one of those locations, the debugger would retrieve

and print the value of the variable on the previous statement boundary. However, for the

most part, debugging of non-optimized code is very straightforward with these simple

maps.

4.3.2. Re-ordereclCode

Now assume that the target architecture has independent integer and floating point

units, and that instruction scheduling has been performed.Here is one possible result (refer

to the previous source fragment):

The code no longer executes on a statement-by-statement basis; therefore, the

debug information needs to be modified in order to avoid being inCOIIeCt.

One possible solution is described in the DOC paper [4]. They associateda
statementmarkerwiththe first instructionfor eachsourcestatemenLIn the event that an

optimizationphase moves such an instruction,the markerwould be moved to the next

instructionin thc block. For thc abovc codc, this would havc the effect of havingthe

0: load fr1, f2

1: load r1, i2

2: load fr2, f3

3: load r2, i3

4: fdiv fr1, fr2

5: add r1, r2

6: store r1, i1

7: load fr2, i1

8: fdiv fr1, fr2

9: store fr1, f1

10: ret
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statement marker for line 4 being associated with instruction 5, and the statement marker

for line 5 being associated with instruction 7. The instructions that come before the line 4

marker would be treated as if it belongs to the block of code for the previous line. It is not

perfect, but it is useful since it largely maintains the illusion that the code is executing on a

statement-by-statement basis. Here is a code map which incorporates such a modification.

Here is what the data map might look like. It is essentiallyan example of what was

described in the DOC paper [4] which shows the location of the variable as a function of

the instruction pointer. This modification is necessarybecause the re-ordering of the code

(as well as other optimizations) can take away an essential characteristic of non-optimi7-ed

code: that the memory locationsof all variableswill be up-to-date on all statement
boundaries.

There is still one more part to any solution for this kind of code. Typical debugger

commands need to be re-considered. For example,what does it mean to tell the debugger

to "break at line 5"1 In non-optimi7ed code it is unambiguous. However, when

instructionshave been re-orderedacross statementboundariesit can be interpretedtwo

Line Number Instruction OfTset

4 5

5 7

6 10

Name Type Location IP Ran2e
it inte2er rl 6

fr2 8
i2 integer rl 2-5

i3 inteer r2 4-5

f1 real Crl 9

f2 . real Crl 1-4

t3 real fr2 3-4
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ways.It couldmeanto breakbeforeanyinsttuctionthat belongsto line5 (the instruction
at offset 0) or it could mean to break after the last instruction of the line before line 5 (the

instruction at offset 7). Note that for non-optimi7~ non-re-ordered code, the two will be

the same. Zellweger considered this problem, and inttoduced terminology that is used to

distinguish them. A breakpointplaced before the first instruction of the desired statement

is called a "semantic" breakpoint; one placed after the last instruction of the previous

statement is called a "syntactic"breakpoint. A debugger for this kind of code must either

implement both kinds of breakpoints, or treat all breakpoint requests as being all of one

kind (The DOC debugger in effect implemented all breakpoint requests as syntactic

breakpoints.) The solution is not bad since the debug information is not much more

complicated than for pon-optimized and yet is useful However, it is not perfect. The

unsuspecting user might be very confused to discover that setting a breakpoint on line 4

somehow resulted in a portion of line 5 being executed.

4.3.3. Code Map for Re-ordered and compacted code

Now assume a VLlW architecture with multiple integer and floating point units. In

this scenario, the above described debug information is again insufficient. In order to see

why, assume that we start with the above example of re-ordered code, and then pack

several operations into individualVLIW instructions. In this contrived example, I assume

that the VLlW word has four slots: the first two for the integer units and branch-type

instructions, and the second two for floating point units. Here is one possible result (the

number in the left column is an offset from the beginning of the code):

The code map in the previous section is insufficient because individual VLIW

instructionsmay containcodefromportionsof severalsourcelines.In a sense,this is the

inverse of conventionalcode in which source statements map to several machine

instructions.Therefore,it makes sense to map insU'Uctionsto a list of co1TCSpOnding

0: load r1,i2 load r2,i3 load fr1,f2 load fr2,f3

1: add r1,r2 nop fdiv fr1,fr2 nop
2: store r1,i1 nop nop nop
3: nop nop load fr2,i1 nop
4: nop nop fdiv fr1,fr2 nop
5: nop nop store fr1,f1 nop
6: ret
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source expressions.In an actual implementation,the coITeSpOndingsource mightmore

simplyberepresentedas a simpleoffsetfromthebeginningof the ~ file.

Here is one possible result:

Assuming a division-by-zero exception during the execution of the instruction at

offset 1, the above map would be used by the debugger to highlight two expressions rather

than two entire source lines. Any more detail would have to come from the architecture.

That is, if the architecture can make available to the exception handler which portion of

which instruction caused the exception, then the debugger could certainly pass the

information along to the user.

No additionalchanges need to be made to the data map for this level of insuuction

scheduling. This is because the previously presented data map can already handle cases

where variables can be found in registers on statement boundaries.

4.3.4. CodeMap for Duplicated, Re-ordered, and Compacted Code

Finally, consider the complication that arises when a scheduling technique which

uses code-duplication bas been performed. Software pipelining and loop-umolling

followed by code compaction are two examples.The following is a slightlymore complex

example derived from the Microarch paper [1S]. It was chosen because it lends itself to

software pipelining.Notice that each line in the body of the loop (except for the first line)

has a data dependence on the previous line, and that each loop iteration (because of the

Instruction Offset Corresooodio2 Source Exoression

0 4:load of i2; 4:load of i3; S:load of 12; S:load of f3

1 4:add; S:divisionof 12bv f3

2 4:assign

3 S:loadof it

4 S:divisionby it

S S:assign

6 6:retum
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first line in the loop body) has a dependence on the previous iteration.Most other

examples I have used are in C, but thisone is in Fortran.

1

2

3

4

5

6

7

8

9

10

subroutine micro2(a,b,c,d,n)

real a(n),b(n),c(n),d(n)

integer i

do 10 i = 1, n

a(i+1) = a(i) + 1

b(i) = a(i+1) / 2

c(i) = b(i) + 3

d(i) = c(i)

10 continue

end

The following isa possible schedule for one iterationof the loop body. I have

taken some libertieswith the pseudo-assembly language code in an attempt to keep the

example clear.For example, I am allowing array references in the assembly language

instructions. (Again, the nmnber in the left-hand column is an instruction offset from the

beginning of the code.)

0 load r1, a(i)

1 inc r1

2 store r1, a(i+1)

3 load r2, a(i+1)

4 div r2, 2

5 store r2, b (i)

6 load r3, b (i)

7 add r3, 3

8 store r3, c(i)

9 load r4, c(i)

10 store r4 (i)



---- -- -- .-- -----

34

After softwarepipelining,the followingpseudo-assemblycode is obtained.As in
the previousexample,I am takingquitea fewlibertieswiththe code in an attemptto keep
it clear:

· it containsarrayreferenccs.

· a real compilerwouldpresumablyperformmany additionaloptimizations

on the code. One exampleis that no attempt has been made to take
advantageof valueswhichmayalreadybe availablein registers.

· I assumethat loop control registersare inida1i7edupon entry. Thus, the

machine"knows"that thebodyof theloopruns fromoffset9 through11.

. the notation exemplified by n 1 ..n-3n in manyinstructionsin the bodyof
the loop is meantto indicatethat the instructionwillexecutefor allvalues
of i between1 and n-3.

Overlapped iterations begin at the instruction at offset 3 during which iteration 1

continues and iteration 2 starts. Overlap increases until the steady state of the loop is

reached at offset 9. While the code continues in the steady state, there are four iterations

of the loop in various stages of execution at oncc. (Again, the number in the left-hand

column is an instruction offset from the beginningof the code.):
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o loadrl,a(l) nop nop nop

1 Incrl nop nop nop

2 storerl,a(2) nop nop nop

3 load r2, a(2) load rl, a(2) nop nop

4 dlv r2. 2 Inc rl nop nop

5 store r2. bel) storerl, a(3) nop nop

6 load r3, bel) load r2, a(3) load rl, a(3) nop

7 add r3, 3 dlv r2, 2 Inc rl nop

8 storer3. c(l) storer2, b(2) storerl, a(4) nop

9 load r4, c(1..n-3) load r3, b(2..n-2) load r2, a(4..n) load rl, a(4..n)

10 store r4, d(1..n-3) add r3, 3 dlv r2, 2 Inc rl

11 nop storer3, c(2..n-2) storer2, b(3..n-l) store rl, a(S..n+l)

12 nop loadr4, c(n-2) load r3, ben-l) load r2, aen+l)

13 nop storer4, d(n-2) add r3, 3 div r2. 2

14 nop nop storer3, cen-l) store r2, bIn)

15 nop nop load r4, c(n-l) load r3, bIn)

16 nop nop storer4, d(n-l) add r3, 3

17 nop nop nop store r3, c(n)

18 nop nop nop load r4, c(n)

19 nop nop nop store r4, den)

20 nop nop nop nop

The modification I propose to the code map to handle this situation is for the

compiler to indicate in the debug information that multiple copies of a source linecan be in

execution at once. This can be achieved by an additional fieldin which the compiler could

indicate the telative iteration in addition to the source expression for each machine
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instruction. This information would then be used by the debugger to create and present to

the user the state of the program.

Here is one way the code map could be constructed:

Instruction offset Corresoondin2 source Iteration Comments
0 lineS read 1 overlao: 1; 1000orolo
1 lineS add 1
2 lineS assim 1
3 line6 read 1 overlap:2

lineS read 2
4 line6 diy 1

lineS add 2
S line6 assim 1

line S assign 2
6 line7 read 1 overlap:3

line6 read 2
lineS read 3

7 line7 add 1
line6 diy 2
lineS add 3

8 line7 assim 1
line 6 assign 2
lineS assim 3

9 line8 read 1 overlao:4; loopbody
line7 read 2
line6 read 3
lineS read 4

10 line 8 assim 1
line7 add 2
line6 diy 3
lineS add 4

11 line 7 assign 2
line 6 assim 3
line S assim 4

12 line8 read 2 overlap: 3; 1000 CDilo
line7 read 3
line6 read 4

13 line 8 assim 2
line7 add 3
line6 div 4

And so on ...
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Finally, we have a code map which is able to deal with much of the complexity

caused by VLIW architectures and instruction scheduling: namely,that the code may have

been reammged, compacted, and duplicated.

4.3.5. Data Map for Duplicated, Re-ordered, and Compacted Code

The DOC paper described a very useful approach to tracking a variable's location

as it changed during the course of a program's execution. Unfortunately, though, the

solution did not extend to may references [4]. In order to be useful in the event of

aggressive code scheduling, however, this needs to be implemented since so much of

instruction scheduling involves may referenceswithin loops.

Recall that in the case of code duplication, several iterations of a loop can be in

various stages of execution at once. If the user wants to know the value of a(i) when "i" is

equal to 2, for example, the debugger must somehow be able to determine that may

elements corresponding to different values of "i" may live in different places.

One possible solution is a straightforward extension to the original idea presented

by Coutant, et. at [4] such that references to individual may elements corresponding to

different values of the loop iteration variable would result in separate entries in the data

map as if they were scalar references. The data map is on the following page.
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4.4. Representing The State or The Computation

Interactive source-leveldebuggers for non-optimizedcode with which I am

f;nnHiarhave a similarlook about them.They typicallydisplayseveralwindowsat once

with a variety of information;however. the dominantfeature is usually a window
containinga copy of the user's source code with one particularsource line highlighted.
The highlightingis meant to indicate the source line correspondingto the current

instructionpointer. In other words. the highlightedstatementwillordinarilybe the next
one to execute.

Name Tyoe Location IP ran2e

i integer a function of one or all

more loop control

re,nsters

a(i). i = 1 real reJrlsterr1 1

a(i). i =2 real registerr1 4

a(i). i =3 real reJrlsterr1 7

a(i). i > 3 real reJrlsterr1 10

a(i+l). i =1 real resrlsterrl 2-3

re,nsterr2 4

a(i+1).i =2 real resrlsterr1 5-6

resrlsterr2 7

a(i+1).i =3 real reJrlsterr1 8

a(i+l). i > 2 andi < n real reJrlsterrl 11

registerr2 10

a(i+1).i =n real reJrlsterr2 13

b(i). i =1 real resrlsterr2 5-6

registerr3 7

b(i). i = 2 real resrlsterr2 8

b(i). i > 1 andi < n-l real registerr2 11

real registerr3 10

And soon ...
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Setting a breakpoint is usually handled in one of two ways: the user might type in

the command on the command line (e.g., break at line S); the other method would be to

move the cursor to the desired location and hitting a dedicated mouse or keyboard button.

Querying for the value of a particular variable is handled similarly:either by means

of an explicit command or by pointing the cursor at it and hitting a button.

Figure 4.1 might represent what the user would see during the debugging of a non-

optimizedprogram: .

Figure 4.1. Source Level Debugger Screen for Non-optimized Code

I I I I
Source

1 :main ()

2: {

3: i = func () ;

4:

5: if (i == 1)
6: j += 2;
7: else

8: j += 3;
9:

10: j += i + 3;

11: k = i + 3; I

12: 1 = k + 3;

13: }

Command
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The user would immMiately know that the highlighted statement corresponds to

the current instruction pointer. Due to the nature of non-optimized code, the user would

also be able to determine to a great extent the overall state of the computation; i.e., which

other state~nts have executed and which have noL This in turn gives the user the

necessary information to make intelligent queries about the values of program variables.

I had to qualify the previous statements somewhat because of the existence of

conditional branches. If the current location, i.e., the highlighted statement, is somewhere

past the end of an iC-elseor some other kind of branching statement, then it might be

difficult or impossible to determine which branch was taken when it was encountered.

''Difficult" means that the user must determine the value of the variable used at the place

where the condition was tested, and inferfrom that which branch was taken. "Impossible"

means that the value used in the conditionaltest is no longer available. (It may be that the

storage for that variable is in use by anothervariable, or it may be that the value returned

by a function was used directly in the conditional test). To sum up: when the user knows

the current location in a non-optimized program, the user also knows a lot about the

overall state of the computation.

Contrast that with what can be assumed about the state of a VLIW program.

Figure 4.2 represents what the user mightsee during a debugging session for VLIW code

which has undergone instruction scheduling.The debugger has highlighted the expressions

corresponding to the current VLIW instruction:
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Figure 4.2. Source Level Debugger Screen lor VLIW Code

As in the previous example, the user would immediatelyknow that the highlighted

expressions correspond to the current value of the instruction pointer. Unlike the previous

example, however, the user cannot make any easy guesses about which other statements

have executed and which have not (that is, unless the user can do data and control flow

analysis on the fly). To sum up: when the user knows the current location in a VLIW

program which has undergone instruction scheduling, that's about all that can be known

about iL The rest of my thesis is a proposal to remedy that situation.

I I I I
Source

1 :main ()

2: {

3: i = func () ;

4:

5: if (i == 1 )
6: j += 2;
7: else

8: j += 3;
9:

10: i += i + 3;

11: k = IIi + 3; I

12: 1 = k + 3;

13:}

Command
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Previousworkin the fieldof debuggingoptimizedcodeattemptedtoconveyto the
user the stateof thecomputationby twoapproaches:

· When possible,maintainthe illusionthat the code is not optimized,and in so
doing, allowthe user to infer from the current locationthe overall state of the

computation.(Zellwegermanaged to achieve this for procedure in-lining,even
goingsofar as to havethe in-linedprocedureappearon thecall stack[30].)

· When not possible, inform the user by some appropriate means how the actual

state of the program differs from the apparent (i.e., non-optimi7.ed)state. In the

literature I have seen, this means printing out a message to explain the situation.

(This is typified in the DOC debugger which allowed the re-ordering of

instructions across statement boundaries. If the instruction which updated a

variable was moved into the block of code for a previous statement, and if the user

requested a breakpoint on the original statement, the debugger might issue a

message to the effect that the variable had had an "early" update [4].)

I propose a different approach.

FU'St,when necessary, the debugger will use information described earlier in this

chapter and provided by the compiler to create a modified version of the source and

display that along side the original as an "explanation" of whatever transformed the

source. This actually was suggested as a possibilityby Zellweger; however, she appeared

to be against it as it might overwhelm the user. For purposes of this thesis, I am limiting

my consideration to software pipelining and loop unrolling as examplesof when this might

be necessary. I believe it unlikely that these would overwhelm anyone.

Second, I propose that this possibly modified source be highlightedappropriately

as the program runs to indicate what portions of the program have been executed. (I

would like to take credit for this idea but it was actually suggested to me in the course of

looking for a thesis topic. [18]) In this way, the user will have the same kind of

information about the current state of the running program as the person debugging non-
optimi7.edcode.

Figure 4.3 represents one possible implementation. The code in this example has

undergone loop unrolling followed by instruction scheduling. The unrolled loop body is

shown on the right half of the screen. The dark highlighting indicates that the

COITespondingexpressionhas completed;the light highlighting indicates that the
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correspondingexpressionis next; no highlightingindicatesthat the expressionhas not
beentouched.

Figure 4.3. Improved Source Level Debugger Screen for VLIW Code

This poses a big problem for the debugger, however. Ordinarily,the debugger will

only gain control at breakpoints and program exceptions. How, then, is it supposed to

determine which statements have executed? To phrase it another way: before the debugger

can indicate to the user the overall state of the program, the debugger must first determine

the state of the computation. I propose that that raw data, consistingof which portions of

I I
Original Source Modified Source

1: for(i =0; i<N; i++)

2: { i* 2;

3: x[i] = i * 2; [i] = i * 3;

4: y[i]= i * 3;

5: }

x[i+1] = li+1 * 2; I6:

7: y[i+1] = i+1 * 3;

8:

9:

10:

11:

12:

13:

Command I
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a program have executed and which have not, can be obtained while the program is
running by path determination.

Recall that for Zellweger,path determinationwas only a meansto an end. Her

main goal was not to show the user what path was taken throughthe code; rather, her

goal was to unravel the effects of the tail-merging optimization on debugging.

Determiningthe actualpath taken througha tail-mergedregionof code was her meansof
achieving it.

My proposal is to use the same basic technique as Zellweger, i.e., path determining

breakpoints and time stamps, but I would put them to a different use. My intent would be

to detennine what path was taken through the code and then to pass that information

along to the user by means of highlighting the (possibly modified) source appropriately.

I can think of severalways this could be accomplished.Here is one way that
requires nothingadditionalof the compilerexcept what has been covered already.The

extra workwouldbe handledduring thedebuggingsessionby thedebugger:

· Duringdebugging,the debuggermaintainsa globalvariablewhichis

initially zero, and which is incremented before each use. This is used as a

time stamp as discussed below.

· Thecodemapas receivedfromthecompileris usedto createa data

structure which will be used to collect path determiner information at run-

time. It will have two fields in addition to the ones provided by the

compiler. One is for holding the opcode of a path determining instruction.

The other is for holding the value of the time stamp.

· Thedebuggerscanstheentireprogramimagein memoryandbuildsa
control-flow graph representation of the basic blocks.

· Pathdetermininginstructionsarelocatedusingthecontrol-flowgraph.

These are all of the predecessors of target instructions which have more

than one predecessor (thus the need to determine through which

predecessor control passes at run time).

· Pathdetermininginstructionsarecopiedto theirslot in the codemap.

· Breakpointinstructionsarecopiedto allpathdetermininglocations.
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. Alltimestampentriesare initiali7.edto zero.

Now the debugger is ready for the debugging session to begin. Here is the
sequenceof eventsin a roughpseudo-code:

Repeat until the program exits or the user gets control

(

Execute until the program exits or the next exception occurs.

The debugger gets control due to an exception.

H the cause is somethingother than the execution of the breakpoint opcode,

Update the screen as described below, and hand control to the user.

Else (The exception is due to execution of a breakpoint instruction)

The debugger searches the code map for the address of the instruction.

The debugger checks to see what kind of breakpoint it is.

H it is somethingother than a path-determining breakpoint,

Update the screen as described below, and hand control to the user.

Else (It must have been a path-determining breakpoint)

Increment the time stamp and copy the new value to the code map.

Copy the real instruction to its location.

Single step it.

Put the breakpoint opcode back in.

Endif

Endif

}
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When the user gets control, it is time to update the screen. Here is how it could be

accomplished. It is somethingof a brute-force approach for the sake of simplicity.

Use the code map, the data map, and the control-flow graph to:

· find all expressions in the source corresponding to the current instruction and

highlight them appropriately.

· Work backwardsfrom the current instructionuntil an instructionwith multiple

predecessorsis encountered,highlightingall coITespondingsource expressions
alongtheway.

· Follow the path through the predecessor with the highest time stamp value. In the

event that this predecessor is actually the branch backwards at the end of a loop,

follow this path only if the body of the loop has not been touched yet.

· Continueas faras needed.

· Fmd all variables which are in expressions which have been executed and whose

range does not include the current instruction pointer and highlight them in some

other fashion. This will give a visible indication to the user that the variable is not
available.

· Optionally highlightall other expressions coITespondingto instructions which have

a time stamp greater than zero. This should catch all expressions which have

executed at some point: for example, during previous iterations of a loop.

The processing of the time stamps in the vicinity of a loop perhaps needs a little

more explanation. If it is not a software-pipelinedloop, then the result would be that only

those expressions which executed during the last iteration would be highlighted. This is
just what is needed.

What about the case of a software-pipelinedloop, for which there will be a copy of

the source lines on the screen for each iteration that can be overlapped? This is really not

much more complicated.If the starting place (for working backwards) is the loop prolog,

then the value of the loop counter would indicate which copy of the lines in the modified

source to highlight. If the starting place is in the body of the loop, then the .loop is in its

"steady state". This means (for our purposes) that it doesn't matter if this is the first time

into the body of the loop or the hundredth time around the loop: the loop has reached a
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steady state. Therefore, it can be treated as if it were the first time into the loop which

means that we can just work backwards through the loop entry, and backwards through

the loop prolog highlighting as appropriate.

A more efficient implementation would take into account the number of lines of

source which can be displayed at once. This would be used to find the corresponding

range of instructions which would give a limit to how far back in the control flow graph to

go.

At the end of this process, every expression on the screen will be highlighted in a

fashion to indicate one of several possible states:

· Neverexecuted

· Executedat somepointin thepast

· Executedduring the most recent iterationof a loop or the most recent time
througha conditionalbranch

Furthermore, every variable on the screen will have highlightingto indicate one of

several possible states:

· Nevertouched

· In an expressionwhich has executed, and the value can be determinedby the

debugger

· In an expressionwhichhas executed,but the valuecannot be determinedby the
debugger

To illustrate these ideas, consider figure 4.4. To simplify the example, the code

map will map the source code directly to the control-flow graph. Also, there are no may

references, code-duplication or even scheduling involved.
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F1gure 4.4. Source Fragment and Control.F1ow Graph

By. e"annning the control-flow graph, you can see that blocks 4 and 5 have

multiple predecessors. Therefore. path determining breakpoints would be placed at the end

of blocks 2. 3. 4. and 6. The time stamp entries for these path determiningbreakpoints are

all injria);7edto zero. The other entries can be injriati7edto some special value indicating

that time stamps are not applicable.The user has placed a breakpoint at line 8.

1: if (function() == TRUE)

2: i += 1;

else

3: i +- 2;

endif

4: i++;

5: while (i < 10) f
6: i++;

1: printf(fti - %d\nft, i);

8: And soon...
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Here is the simplified code map as it might appear just prior to execution:

During execution, either the path determiningbreakpoint at block 2 or 3 will be hit

a single time; the one at block six will be hit 0 or more times. These will all be processed

as described earlier without the user ever being made aware of it.

Finally,after some period of execution, the user's breakpoint will be hit leaving the

time stamp entries as shown below:

Source Time
Line Stamp
1 none

2 0

3 0

4 0

5 none

6 0

7 none

8 none

Source Time
Line StamD

1 none
2 1

3 0

4 2

5 none

6 S

7 none

8 none
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Here is the sequenceof actionson the part of the debuggerto highlightthe source

(referagainto Figure4.4):

· The expressionscorrespondingto line 8 will be highlightedto indicatethe
"current"location.

· Working backwards, line 7 will be highlighted. Continue backwards to block 5.

· Line 5 will be highlighted.

· Block 5 has 2 predecessors.The one with the highest time stamp is a
backwards branchat the end of the loop. Since we haven't been this way
before, followiL (Inthe eventthat the loop containsa conditionalbranch,this
will causethebranchtakenduringthe mostrecentiterationto be highlighted.)

· Line 6 is highlighted.Continue backwards to block 5.

· Line 5 has 2 predecessors. We already followed the backwards branch, so this

time, we will follow the one with the next highest time stamp to block 4.

· Line4 is highlighted

· Block 4 has 2 predecessors. The one with the highest time stamp is block 2.
Continue backwards to block 2.

· Line 2 is highlighted.Continue backwards to block 1.

· Line 1is highlighted.

Figure 4.5 shows the result of this activity (along with the control-flow graph for

clarity). This highlighted source fragment is what would be displayed in the source

window of the debugger.
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el::se

1: lif (function() =D TRUE)

2: Ii += 1;1

3: i += 2;

endif

4: li++;1

5: ~While (i < 10)1

6: G
7: I printf ("i ::I%d\n", i);

8 : I And so on.. .1

Figure 4.5.Source Fragment (with highlighting) and Control-Flow Graph

4.5. Implementation Of Typical DebuggerCommands

4.5.1. "Go tU"

Ordinary commands like "go tilline 5" need to be reconsidered. Frequently, what

the user actually wants is to "stop before computation x" or "stop after computation y"

which may very well be a single e~ion in the source. Unfonunately, insuuction
scheduling can cause the code for one source line to be intermixed with the code for its

neighbors.
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The best solution to this, I believe, is to have expression (rather than line) oriented

commands. In other words, "Go tit" kinds of commands would be implemented as "Go tit

expression z" where the expression is pointed at by some means. The debugger would

consult the code map and find the object code corresponding to the desired expression and

plant a breakpoint. When the breakpoint is hit, the screen is painted as indicated previously

to show the state of the program.

4.5.2. "Go from"

Even in non-optimi7ed code, this is a dangerous kind of command because it is

implemented essentially by a simple change of the instruction pointer. Oearly, this may

violate assumptions made when code was generated, like the contents of some critical

registers. If the user is careful, however, the command can yield useful results. It can be

used, for example, to skip a particular source line, or to re-execute a function with

different data, or to change the number of iterations of a loop.

After instruction scheduling, all of the above is still true, except that the user must

exercise even greater care. Since the smallest practical item which can be skipped or
repeated is an individual machine instruction, and since individual machine instructions

may contain code for several source lines and loop iterations, the ad4itional complexity

compared to non-optimhed code is possiblyvery great. The ability to highlight all of the

expressions in the source corresponding to a given instruction pointer would enable the

user to exercise an appropriate amount of care. Nonetheless, this is a good example of a

case in which the debugger hands the user enoughrope with which to hang himself.

4.5.3. "Get or Set the value of x"

Existing and proposed debuggers for oprimi7-edcode attempt to hide the fact that

the code is oprimi7-ed[4] [20]. They will try to give the impression that the code executes

on a statement-by-statement basis. For example, the user is led to believe that the source

lines preceding the current one have executed to completion and succeeding ones have not

been touched. If the user queries the debugger for a variable that apparently received a

value in the preceding statement but in fact did not, these debuggers tend to rely on a

possibly bewildering barrage of messages to indicate that fact. The "range" scheme [4]

plus the highlighting scheme proposed here achieves the same effect of telling the user
which variables are available, but in a much friendliermanner.

4.6. Advantages
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The main advantage is that the user gets an accurate indicationof exactly how the

program executes. but without getting buried in an avalancheof messages.

4.7. Disadvantages

If the debugging session happens in terms of a modified source. it may not be

apparent how to ttanslate that knowledge back into original source level terms to fix the

bug. In other words. suppose that the user spends a considerableamount of time looking

at the modified version of the source as presented by the debugger. When it comes time to

go back to the original source code to make whatever changes are necessary to fix the
bug. the originalsourcemaylookunfamiHar.



CHAPTER 5.
Examples

5.1. Extended example of code map usageand interpretation

Here is an extended example that is meant to illustratehow the ideas in the
previouschapterworkif appliedto real architectureand scheduledcode.

The target architecture is the Intel i860. This may seem to be a strange choice

since the instruction word is not very large. However, the architecture does embody the

idea of having multiple execution units controlled be single instructions which is an

essential element in VLIW architectures. It is also in fairly wide use. Perhaps most

iffiportantly, though, is that we were able to use the Portland Group C compiler which is

able to achieve software pipelining of many loops.

5.1.1. Architectural Overview

According to the i860 programmer's manual [13], instructions can be grouped into
two "classes". The first class consists of what are called "core instructions" which are

executed by the integer unit Core instructions include integer arithmetic, loads and stores

between memory and registers (including floating point registers), control transfer

instructions, and others. The second class of instructions are floating-point and graphics

instructions which are executed by the corresponding functional units. Many floating-point

instructions come in both scalar and pipelined versions. In addition, there are instructions

which manipulate both the floating-point adder and multiplier pipelines simultaneously

yielding two results per clock cycle. Finally, these can be executed in parallel with
instructions in the core unit

A few notes on reading the code in the followingexamples:
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. a"d." prefIXindicatesdual-instructionmode in which a floating point instructionis

issued in parallel with a core instruction. The second half of the dual instruction is
on the indented secondline.

· instructions that stan with "p" (like pfadd) are pipelined floating point instructions.

An actual instruction like "pfadd rl. r2. r3" would stan the calculation of rl and

r2. and would put the result of the third previous pipelined addition into r3.

· instructions followingthe "blattinstruction will execute in the branch delay slot If

the processor is in dual-instruction mode. the entire next dual-instruction-mode

instruction will execute in the delay slot

· the code includes instructions like "mI2tpa" which is an example of a dual-

operation instruction. That is. this instruction manipulates both the adder and

multiplier pipelinessimultaneously.

· it is possible to use the "d." prefix on dual-operation instructions resulting in dual

operation instructions in dual-instruction mode (i.e.. dual operation instructions in

parallel with core instructions.)

5.1.2. Code Listings

Here is the source code for this extended example. Notice that each line in the

body of the loop is dependent in some way upon the previous line. and each iteration of

the loop is dependent upon the previous iteration. I added the line numbers in the source

and the instruction offsets in the code listings so that I could construct the debug

information maps.

1: 'define N 50

2:

3: double a[N], b[N];

4:

5: main ()

6: {

7: int i;

8 :

9: a[O] = b[O] = 0;

10: i=l;
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11:

12:

13:

14:

15:

16 :

17:

while (i < N)

{

a[i]

b [i]

= a[i-1] + 3;

= a[i] * 5;

i++;

}

This abbreviatedcode listing was producedby the compiler when no optimization

was specified. The full listing is in appendix A

9: adds -50, r29, rO
10: bnc .B55

II lineno: 13

11: ld.l -4(r2S), r29

12: shl 3, r29, r30

13: orh h%_a+-S, rO, r31

14: or l%_a+-S, r31, r16

15: fld.d rI6(r30), f16

16: orh ha%.C0005S, rO, r31

17: fld.d 1%.C0005S(r31), f1S

18: orh h%_a, rO, r31

19: or l%_a, r31, r17

20: fadd.dd f16, f18, f20

II lineno: 9

2: orh ha%_b, rO, r31

3: fst.d fO, l%_b (r31)

4: orh ha%_a, rO, r31

5: fst.d fO, 1%_a(r31)

II lineno: 10

6: adds 1, rO, r29

7: st.I r29, -4(r2S)

II lineno: 11

.B54: II.BOOOO

S: ld.l -4(r2S), r29

.DB.B5454:
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21: fst.d f20, r30(r17)

II lineno: 14

22: ld.l -4(r28), r29

23: shl 3, r29, r30

24: orh h%_a, rO, r31

25: or l%_a, r31, r16

26: fld.d r16(r30), f16

27: orh ha%.C00059, rO, r31

28: fld.d 1%.C00059(r31), f18

29: orh h%_b, rO, r31

30: or l%_b, r31, r17

31: frnul.ddf16, f18, f20

32: fst.d f20, r30(r17)

II lineno: 15

33: ld.l -4(r28), r29

34: adds 1, r29, r30

35: st.l r30, -4(r28)

II lineno: 16

36: br .DB.B5454

37: ld.l -4(r28), r29

II lineno: 0

.B55: II.BOOOI

Each loop iteration runs from the instruction at offset 9 to the instruction at offset

37; in other words, for 29 clock cycles. Notice, as I described in the last chapter, that

there is a distinct block of object code for each (meaningful) source line (in the listing,

look for "II lineno: some_number" for examples). This means that the mapping from

source code to object code is very straightforward.
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Here is manually constructed code map:

Notice also that the lines involving calculations of some kind tend to follow the

same pattern. Look at the listingfor line 13 as an example. It starts with some loads (and

"ors" which are part of the mechanism for getting 32-bit addresses into registers), then

there is an "fadd" (for floating-point add), then a "fst" (for floating-point store). The

pattern is one of loading values into registers, performing the calculation, then storing

back to memory. On every statement boundary, the memory location corresponding to

every variable is up-to-date. This means that the mapping from variable names to their

locations is very simple.

Here is a manuallyconstructed data map:

Line Instruction
Number Offset

9 2

10 6

11 8

13 11
14 22

15 33

16 36

17 38

Name Location
i stackoffset.
a

b
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These two simple maps are all that is needed to debug the non-optimized code.

Setting a breakpoint on line 14 and running until the breakpoint was hit would result in a

display like Figure 5.1:

Figure 5.1. Breakpoint Hit at Line 14: Non-optimizedCode

I I I I

Source

1: 'define N 50

2:

3: double a[N], b[N];

4:

5: main ()

6: {

7: int i;

8:

9: a[O] = b[O] = 0;

10: i=l;

11: while (i < N)

12: {

13: a[i] = a[i-1] + 3;

1114: b[i] = a[i] * 5; I

15: i++;
16: }

17: }
"...

Command
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The user would immediatelyknow that line 14 is next; that all previous lines have

executed to completion; and that line 15 has not started. With regard to querying the

debuggerfor the valueof programvariables.it is immediatelyobvious that i and a [ i ]

are up-to-date since they were assigned to in previous statements while b [ i ] has a

spurious value since it has not been assigned to yet

Now consider the code produced by the same compiler at the highest optimization

level. This includes all optimizations performed by the compiler including software

pipelining. The following is an abbreviated listing; the full listing is in appendix A. I have

added comments where appropriate to clarify the code.

II lineno: 0

3: orh ha%.C00059, rO, r31

4: fld.d l%.C00059(r31), f10

5: orh ha%.C0005S, rO, r31

6: fld.d l%.C0005S(r31), f12

7: orh h%_a+-S, rO, r31

S: or l%_a+-S, r31, r21

9: orh h%_a, rO, r31

10: or l%_a, r31, r4

11: adds -1, rO, r16

II lineno: 9

12: orh h%_b, rO, r31

13: or l%_b, r31, r29

14: fst.d fO, O(r29)

15: fst.d fO, rO(r4)

16: adds 1, rO, r30

17: adds -50, r30, rO

1S: bnc .B55

19: adds 4S, rO, r17

20: fiadd.dd fO, fO, fS

21: mov r4, r19

22: mov r29, r20

23: bla r16, r17,.BS9

24: pfmul.dd fO, fO, fO

II lineno: 13

II f10 contains constant 5.0

II f12 contains constant 3.0

II r4 contains address of a[]

II r16 initialized to -1

II r29 contains address of b[]

II initializes b[O]

II initializes a[O]

II r17 initialized to 4S

II fS initialized to 0

II

II

II

r19 contains address of a[]

r20 contains address of b[]

loop control. manual A-3, 5-18
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.Ba9: I I .MOOOO

.align a
25: d.pfadd.dd fa, fa, fa II starts dual instr.mode

nop
.PLlOOl:

26: d.pfadd.dd fa, fI2, fa

nop

.DB.Ba9a9:

27: d.pfadd.dd fa, fa, fa

nop

2a: d.pfadd.dd fa, fa, fa

nop

d.m12tpa.dd

fst.d fa,

d.fnop

bla r16,

d.pfmul.dd

29 : flO, fa, fa

a(r19)++

30:

31:

r17, .PLl002

fa, fa, fa

32:

nop
.PLl002:

d.pfadd.dd fa, f12, fa

nop

33: d.mm12msm.dd fa, fa, f30

fst.d f30, a(r20)++

34: d.pfadd.dd fa, fa, fa

nop

d.m12tpa.dd

fst.d fa,

d.fnop

bla r16,

d.pfmul.dd

35: flO, fa, fa

a(r19)++

36:

37:
r17, .PLl002

fa, fa, fa

nop

.PLl003:

3a: d.pfmul.dd fa, fa, f30

fst.d f30, a(r20)++

39: d. fnop

bla r16, r17, .PLl003

II starts fa (=0) plus 3.0

II advances apipe

II advances apipe

II fa gets apipe;starts f10*f8

II stores fa in a[l]; rI9 inc.

II loop control

II advances mpipe

II Now entering body of loop

II starts fa plus 3.0

II f30 gets mpipe from m12tpa

II stores f30 in b[]

II advances apipe

II fa gets apipe;starts flO*f8

II stores fa in a[]; r19 inc.

II loop control

II advances mpipe; delay slot

II f30 gets mpipe from m12tpa

II stores f30 in b[]

II loop control. not needed?
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40: d. fnop

nop

41: fnop

nop

42: fnop

nop
II lineno: a
.B55: II.B0001

In this case, each loop iteration runs from the instruction at offset 32 through the

instruction at offset 37, or 6 clock cycles. The fully optimized version will therefore run

close to 5 times faster than the non-optimized one.

Here is a manually constructed code map:

The following is a manually constructed data map. Notice that the iteration

variable "i" is expressed in terms of an equation:

Offset Correspondine source Iteration Comments

14 line 9 asshmment to bfOl

15 line 9 assignment to arOl

26 start line 13 add 1 loop prolog

29 end line 13; start line 14mult 1

32 start line 13 add 2 loop start

33 end line 14 1

35 end line 13; start line 14mult 2

36 conditional branch to loop start

37 delav slot loop end

38 end line 14 2 loop epilog

44 end of main will return to caller
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The precedingtwo maps are all that the debugger gets from the compiler. Now it

is time for the debugger to go to work. The first thing to do is to build the control-flow

graph representation of the program. The source code and the resulting control-flow

graph are shownin figme 5.2.

Name T IP ran1!e I Iteration

5 constant 5-end

3 constant 7-end

i inte er 25-end

a I arrayofdouble 11-43

arrayelement re .sterf8 21-29

arrayelement re .sterf8 30-31 1

arrayelement re .sterf8 32-35 2

element re .sterf8 36-37 2

b arrayof double ree:ister r29 14-end
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0-19

20-31

41-42

Figure 5.2. Control-F1ow Graph

The numbers in the above boxes refer to the instruction offsets in the object code

listing. The apparent gaps in the sequence are due to instructions which execute in the

branch-delay slot.

Now the debugger finds all path determining instructions. In this example, the

instruction at offset 32 has predecessors at offsets 30 and 36; the instruction at offset 38

has predecessors at offsets 36 and 39; the instruction at offset 43 has predecessors at

offsets 39 and 18. The debugger takes this information and the code map as received from
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the compiler to create its own means of tracking the execution path. This involves in

essence adding two more columns to the code map for the purpose of handling

breakpoints. It also involves adding rows where necessary to handle path-determining

instructions which do not already have entries.

This is what the debugger would work with at run-time:

Figure 5.3 shows what might be presented to the user:

Offset Corresponding source Iteration T.S. Opcode Comment

s

14 line 9 assignmentto brOl none

15 line 9 assignmentto arOl none

18 conditionalbranch 0 bnc

26 start line 13add 1 none proloi!

29 end line 13; start line 14mult 1 none

30 conditional branch to 1000start 0 dfnop; bla
32 start line'i3 add 2 none 1000start

33 end line 14 1 none

35 end line 13; start line 14mult 2 none

36 conditional branch to 1000start 0 dfnop; bla
37 delay slot none 1000end

38 end line 14 2 none eoiloi!

39 conditional branch 0 dfnop; bla
44 end of main will return

to caller
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Figure 5.3. Source View Before Execution

Suppose that the user indicates the multiplicationin line 14 in the original source

for a breakpoint. The code map indicates that this corresponds to the instructions at offset

29 and 35. That is. the debugger interprets this as a request to break at the instructions

which stan the multiplication. A user breakpoint is installed at offset 29 and 35 and

execution begins. The path determining instruction at offset 18 is hit. Transparently to the

user. the debugger goes through all the steps outlined in the previous chapter. This

involves incrementing the time stamp value, copying it to the entry for the instruction at

offset 18, copying the original instruction to its location, single-stepping it, putting the

I I

Oriinal Source Modified Source

5 :main ()

6:{

7: int i; 13: a[i] = a[i-l]+3
8: 14: b[i] = a[i] * 5
9: a[O] = b[O] = 0;

10: i=l;

11:while (i < N) 13: a[i] = a[i-l]+3

12: { 14: b[i] = a[i] * 5
13: a[i] = a[i-l]+3

14: b [i] = a[i] * 5
15: i++

16: }

17:}

Command I
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breakpoint opcode back in, and continuing execution. Some time later, the breakpoint at

offset 29 is hiL Now it is time for the debugger to process all of its information in order to

update the screen and present it to the user. The debugger starts at the instruction at offset

29 and uses the control-flow graph to work backwards as described in the previous

chapter. It highlights each expression and variable in the source according its state, Le.,

not started, started, finished, or nexL Figure 5.4 shows what would be presented to the
user.

Figure 5.4. Source View: Breakpoint Hit At Line 14 Multiplication

I I

Original Source Modified Source

5 :main ()

6: {

[i] I a[i-l]+37: int i; 13: =

8: 14: b [i] = a[i] * 5

19 : a[O] 11= b[O] = 110; I

10: i=l;

II:while (i < N) 13: a[i] = a[i-l]+3
12: { 14: b [i] = a[i] * 5
13: a[i] = a[i-l]+3
14: b[i] = a[i] * 5

15: i++

16: }
".

17: }

Command T
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Now suppose that the user continues execution. In this case, the path determining

instruction at offset 30 will be hit Again, the debugger goes through all the steps outlined

in the previous chapter "behind the scenes". This involves incrementing the time stamp

value, copying it to the entry for the instruction at offset 30, copying the original

instruction to its location, single-stepping it, putting the breakpoint opcode back in, and

continuing execution.

Fmally, the user's breakpoint is hit at the instruction at offset 35. Now, updating

the source is a little more interesting because we will need to go backwards through the

code for two iterations instead of one. The debugger stans at the instruction at offset 35

and uses the control-flow graph to work backwardsuntil the instruction at offset 32 which

(thanks to the control-flow graph) is known to have multiplepredecessors. The debugger

examines the time stamps for the two path determining instructions and discovers that

execution passed through instruction 30 most recently. Therefore, the debugger continues

along this path, and highlights each expression and variable in the source according its

state, Le., not started, started, finished,or next Figure 5.5 shows what the user would see

at this point
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Figure 5.5. Source View: Breakpoint At Line 14 Multiplication Again

If the user continues execution until the breakpoint is hit again, the situation is only

slightly more complicated. This time, the instruction at offset 36 would have a higher

timestamp value than the one at offset 30. However, since the body of the loop has been

handled already, the path through the instruction at offset 36 would not be followed.

Instead, the debugger would proceed as the previous example explained.

I

Oriinal Source Modified Source

5: main ()

6:{
7: int i; 13: a[i] = a[i-1]+3

8: 14: b[i] = a[i] * 5

19 : a[O] 11=b[od 0;

10: i=1;

lwJ I a[i-1]+311:while (i < N) 13: =

12: { 14: b[i] = a[i] * 5

13: a[i] = a[i-l]+3
14: b [i] = a[i] * 5

15: i++

16: }

17:}

Command I
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5.1.3. LessonsLearned

In my hypotheticalexamples of the previous chapters, I didn't take into account

that there might be a distinct instruction for starting a computation followed some cycles

later by an instructionwhichcompleted it. I was aware that this was an issue when trying

to maintain the ability to debug at the statement-level. I was surprised to see this same

issue arise at the expression-levelwith the 860 code. One solution would be to allow the

user to SPeCifya breakpoint"before"or "after" an expression is evaluated.

This example also showed me that not every machine instruction can be "charged"

to the calculation of something in the original source. I had originally envisioned that

"stepping" would occur at the instruction level rather than at the statement leveL

However, in the presence of many instructions which do not have an obvious relation to

the source, this would not be helpful Instead, "stepping" could be implemented as

executing until the nextexpressionboundary.

5.2. A Loop with a Conditional Branch

Ordinarily, software pipelining is limited to loops containing only straight-line

blocks of code. In other words, no function calls or conditional statements or other loops.

However, Lam devoted quite a bit of discussion to hierarchical reduction [16]. With this

technique, schedulingproceededfrom the innermost constructs out. When a construct was

scheduled, it could then be treated as if it were just a straight-line block of code with

respect to scheduling the surrounding construct. TIrls enabled her to achieve software

pipelining of loops containingconditional branches, for example. This raises the question

of how my proposal in the previou$chapter might deal with such a situation.

For sake of simplicity, the following code is expressed in high-level language

terms. The steady-stateof the loop runs from offset 15 through 18.



13: c[1]-b[1]-3

14:

a[3]=a[2]

b[2]-a[3]

16:

15: d[1..n-3]-c[1..n-3] if(i is even)

c[2..n-2]-b[2..n-2]+3

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

else

c[2..n-2]-b[2..n-2]-3

d[n-2]=c[n-2]

a[4]-a[3]
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b[3..n-l]-a[4..n] a[5..n+l]=a[4..n]

if (i is even)

c[n-l]=b[n-1]+3

else

c[n-1]-b[n-l]-3

d[n-1]-c[n-1]

b[n]=a[n+l]

if!i is even)

c[n]=b[n]+3

else

c[n]=b[n]-3

d[n]=c[n]

0: a[2]-a[1]

1:

2:

3:

4:

5: b[1]-a[2]

6:

7:

8:

9:

10: if!i is even)

11: c[1]=b[1]+3

12: else
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Recall that for the 860 example. the instructions for each iteration of the loop

would be identical. In this case, however. it is likely that during some iterations execution

will go down the if branch of the if-else statement while during other iterations it will go

down the else branch. This complicates the processing of path detennination, but doesn't

make it impossible.One solution would be to maintain a queue of the last "n" time stamps

for the code in the body of the loop (where "n" is the largest degree of overlap of

iterations). When it came time to update the screen. the debugger could work backwards

through the code map and control-flow graph as before, but this time would go through

the body of the loop once for each layer of execution as represented in the time stamps. In

this way, the multiple copies of the loop body on the screen would accurately reflect

which expressions had executed during which previous iteration. (The notion of keeping

track of the last layer(s) of execution was mentioned briefly by Zellweger but she seemed

to believe that it would require an immense amount of information.)



CHAPTER 6.

Concluding Remarks

6.1. Summary

In this paper, I have proposed that effective debugging of VLIW code after

instruction schedulingcan be achieved by using a combinationof expression-level debug

infonnation, path detennination, and highlighting in a source-level debugger to indicate

the state of the program.

6.2. Strengths

Based on my research, I believe this approach has the following strengths:

· Highlighting can be used to convey complex infonnation regarding the

state of the program to the user. Other solutions for debugging optimized

code rely on a baITageof messages to the user to indicate the state of the

program.

· The mechanics underlying the path determination and screen highlighting

should be straightforwanl (though certainly not trivial) to implement

Hidden breakpoints are already used in debuggers for such purposes as

conditional breakpoints. Screen highlightingis already used for source-level

debuggers, though only at a statement level.

· Though I focused on instruction scheduling,I believe that the approach has

broad applicabilityto other more conventionaloptimizations.For example,

code motion optimizations, common subexpression elimination, global

register allocation, and others would seem to fall right out

6.3. Weaknesses

It also has the following weaknesses:
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· A solutionalongthe linesof myproposalwouldrequiremuchmoredebug

informationthan for non-optimi7.edcode. As Chapter 4 showed, going
from simplenon-optimizedcode debuginfonnationto what was required

for VLIW code after software pipeliningrequired perhaps an order of
magnitude more

· There would be much more overhead in processing the debug infonnation.

Even on top of the greater amount, there is the matter of finding the right

entry in the code map every time a hidden breakpoint is hit I didn't
consider what means would be used for this.

· There would be much greater difficulty for the compiler to generate this

debug information. Ordinarily, compiler writers only have to worry about

producing and maintaining debug infonnation when the code is in very
simple terms.

· It might take some getting used to. In comparison with an optimi7.edcode

debugger that relied on informative messages to indicate the state of the

prog:ram, I think the highlighting scheme would fare well. On the other

hand, in comparison to a non-optimized code debugger, the user might be

overwhelmed at first when confronted with a sort of "advancing

checkerboard" pattern that would appear on the screen as the program
advanced.

· Variable modification might be tricky. The i860 example in Chapter 5

showed that there can be several machine cycles '-between the start of a

computation and the end. This makes the ability to modify program

variables (that users of non-optimized code debugger take for granted)
troublesome

· Instructionpointermodificationis also a problemfor the samereasonsas
in thepreviouspoint

6.4. Suggestions for future work

There are many unanswered questions that arose as part of this work:
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· How muchdebuginformationwouldbe requiredin comparisonto other

"debuggingoprimi7.edcode" solutionsas well as to non-optimizedcode?
Also,howmuchwouldbetoomuch?

· I mentioned that there are many possible ways to achieve path

determination. An investigation into the relative efficienciesof the various

techniqueswould be useful

· How difficultwould it be for the compiler to produce the information that

would be necessary?

· How mightdifferentoptimizationsand combinationsof optimizationsbe
handled?
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Appendix A

This is the full code listing for the extended example in chapter 5 which was

produced by the compiler at the lowest optimization level

. file "g.e"

II PGC ReI 2.0 -opt 0

.text

.globl main

.align 8

main:

.a1 = 0

.f1 = 32

0: rh h%.STACK+.fl-16, rO, r28

1 : or 1%.STACK+.fl-16, r28, r28

II lineno: 9

2: orh ha%_b, rO, r31

3: fst.d fO, l%_b (r31)

4: orh ha%_a, rO, r31

5: fst.d fO, 1%_a(r31)
II lineno: 10

6: adds 1, rO, r29

7: st.l r29, -4(r28)

II lineno: 11

.B54: II.BOOOO

8: ld.l -4(r28), r29

.DB.B5454:

9: adds -50, r29, rO

10: bne .B55

II lineno: 13

11: ld.l -4(r28), r29
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12: shl 3, r29, r30

13: orh h%_a+-8, rO, r31

14: or 1%_a+-8, r31, r16

15: fld.d r16(r30), f16

16: orh ha%.C00058, rO, r31

17: fld.d 1%.C00058(r31), f18

18: orh h%_a, rO, r31

19: or l%_a, r31, r17

20: fadd.dd f16, f18, f20

21: fst.d f20, r30(r17)

II lineno: 14

22: ld.l -4(r28), r29

23: shl 3, r29, r30

24: orh h%_a, rO, r31

25: or l%_a, r31, r16

26: fId.d r16(r30), f16

27: orh ha%.C00059, rO, r31

28: fId.d 1%.C00059(r31), f18

29: orh h%_b, rO, r31

30: or l%_b, r31, r17

31: fmul.dd f16, f18, f20

32: fst.d f20, r30(r17)

II lineno: 15

33: ld.l -4(r28), r29

34: adds 1, r29, r30

35: st.l r30, -4(r28)

II lineno: 16

36: br .DB.B5454

37: ld.l -4(r28), r29

II lineno: 0

.B55: 1/.B0001

II lineno: 17

38: bri r1

39: nop

.data

.align 8
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.C00058:

.long

.C00059:

.long

.lcorom

.data

.corom _a,400

.corom _b,400

II (0)

OxO, Ox40080000 II 3.00000000000000000E+00

I I (8)

OxO, Ox40140000 II 5.00000000000000000E+00

.STACK, 32

This is the full code listing for the extended example in chapter 5 which was

produced by the compiler at the highest optimization leveL

.a1 = 0

.f1 = 32

0: orh h%.STACK+.fl-16, rO, r28

1: or 1%.STACK+.fl-16, r28, r28

2: st. I r4, -8(r28)

II lineno: 0

3: orh ha%.C00059, rO, r31

4: fld.d 1%.C00059(r31), f10 II f10 contains constant 5.0

5: orh ha%.C00058, rO, r31

6: fld.d 1%.C00058(r31), f12 II f12 contains constant 3.0

7: orh h%_a+-8, rO, r31

8: or 1%_a+-8, r31, r21

9: orh h%_a, rO, r31

10: or l%_a, r31, r4 II r4 contains address of a[]

11: adds -1, rO, r16 II r16 initialized to -1

II lineno: 9

12: orh h%_b, rO, r31

13: or l%_b, r31, r29 II r29 contains address of b[]

. file "g.c"

II PGC ReI 2.0 -opt 4

.text

.globl main

.align 8

main:



14: fst.d fO, 0(r29)

15: fst.d fO, rO(r4)

16: adds 1, rO, r30

17: adds -50, r30, rO

18: bnc .B55

19: adds 48, rO, r17

20: fiadd.dd fO, fO, f8

21: mov r4, r19

22: mov r29, r20

23: bla r16, r17,.B89

24: pfmul.dd fO, fO, fO

II lineno: 13

.B89: II.MOOOO

.align 8

25: d.pfadd.dd fO, fO,
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II initializes b[O]

II initializes a[O]

II r17 initialized to 48

II f8 initialized to 0

II r19 contains address

II r20 contains address

II loop control. manual

of a [ ]

of b []

A-3, 5-18

fO II starts dual instr. mode

II starts f8 (=0) plus 3.0

II advances apipe

II advances apipe

nop

.PL1001:

26: d.pfadd.dd f8, f12, fO

nop

.DB.B8989:

27: d.pfadd.dd fO, fO, fO

nop

28: d.pfadd.dd fO, fO, fO

nop

29: d.m12tpa.dd f10, f8, f8 II f8 gets apipeistarts f10*f8

fst.d f8, 8(r19)++ II stores f8 in a[l]i r19 inc.

30: d.fnop

bla r16, r17, .PL1002 II loop control

31: d.pfmul.dd fO, fO, fO II advances mpipe

nop

.PL1002: II Now entering body of loop

32: d.pfadd.dd f8, f12, fO II starts f8 plus 3.0

nop

33: d.mm12msm.dd fO, fO, f30 II f30 gets mpipe from m12tpa

fst.d f30, 8(r20)++ II stores f30 in b[]

34: d.pfadd.dd fO, fO, fO II advances apipe



35:
nop

d.m12tpa.dd

fst.d f8,

d.fnop

bla rIG,

d.pfmul.dd

36:

37:

flO, f8, f8

8(r19)++

r17, .PLl002

fO, fO, fO

nop

.PLl003:

38: d.pfmul.dd fO, fO, f30

fst.d f30, 8(r20)++

39: d. fnop

bla rIG, r17, .PLl003

40: d.fnop

nop

41: fnop

nop

42: fnop

nop
II lineno: 0

.B55: II.B0001

II lineno: 16

43: ld.l -8(r28), r4

44: bri rl

45: nop
.data

.align

.C00059:

.long

.C00058:

.long

.lcomm

.data

.corom _a,400

.corom _b,400
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II f8 gets apipeistarts flO*f8

II stores f8 in a[]i r19 inc.

II loop control

II advances mpipei delay slot

II f30 gets mpipe from m12tpa

II stores f30 in b[]

II loop control. not needed?

8

II (0)

OxO, Ox40l40000 II 5.00000000000000000E+00

II (8)

OxO, Ox40080000 II 3.00000000000000000E+OO

.STACK, 32




