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ABSTRACT 

PICOSECOND DYNAMICS 

OF TWIN-EMITTER 

COHERENT SEMICONDUCTOR LASER ARRAYS 

Geoffrey A. Wilson, Ph.D. 

Oregon Graduate Institute of Science and Technology, 1992 

Supervising Professor: Richard K. DeFreez 

This thesis is a study of the dynamics of coherent semiconductor laser arrays, 

particularly the dynamical effects stemming from the mutual coupling of the single- 

lateral-mode light-emit ting elements composing the array, as distinct from effects also 

present in single-emitter (stripe-geometry) semiconductor lasers. 

Rate equations describing multiple coupled emitters are derived from the semi- 

classical interaction of optical waves and carriers near the p-n junction of a diode. 

Single-emitter dynamical effects are catalogued so that they may be distinguished 

from those unique to arrays in an experimental setting. The simplest coherent array, 

consisting of two weakly-coupled, identical emitters, is examined in depth. The two 

lateral modes of the twin-emitter are each associated with an equilibrium point of the 

twin-emitter rate equations, and the stability of equilibria is obtained as a function of 

device parameters, particularly the emitter coupling parameter. The stability 



analysis is corroborated by numerical integration of the rate equations. The depen- 

dence of the coupling parameter on emitter spacing is derived using a simple model. 

Techniques are given for measuring the relevant device parameters. The real 
- 

part of the coupling parameter is related to the beat frequency of the lateral modes 

of a twin-emitter array. The imaginary part is related to the relative gain of the 

lateral modes. Experimental verification of the foregoing theory met with limited 

success, because the available two-stripe arrays were strongly-coupled, compromising 

the applicability of the twin-emitter model. Possible solutions to the dearth of dev- 

ices suited to the experimental verification of the theory are proposed, including 

variable-coupling and diffraction-coupled twin-emitter arrays. 

Finally, high-frequency injection current modulation of coherent arrays is dis- 

cussed. Using the twin-emitter model, it is shown that modulation beyond the relax- 

ation oscillation frequency, the limiting frequency for single-emitters, is effective only 

when a 180" phase-shift is introduced between the emitter modulation currents. The 

response to out-of-phase modulation is greatest near the beat frequency of the lateral 

modes, typically 10-50 GHz. It is shown that a twin-emitter responsive and yet 

stable to such modulation can be designed by correctly choosing the coupling param- 

eter. 

xxiv 



It  is hoped that this thesis will contribute both to the theoretical understanding 

and the experimental techniques used to study the dynamics of coherent semiconduc- 

tor laser arrays, a subject that has remained virtually unexplored compared to other 

aspects of semiconductor lasers. 

Semiconductor lasers are of paramount technological importance. They are 

unique among lasers in that they are compact, rugged due to their monolithicity, 

extremely efficient and easily pumped using a low-voltage current source. Other 

advantages are that they generally do not require bulky cooling systems, have wide 

homogeneously-broadened photo-recombination linewidths, and can have long 

maintenance-free lifetimes. Potential disadvantages include poor spatial coherence, 

difficulty obtaining single-mode operation, temporal instabilities and linewidths that 

are large compared to those of other lasers. These are not all independent problems. 

The development of coherent arrays was driven by the need for large output 

power with good spatial coherence. The first semiconductor lasers1y2 were planar p-n 

junctions in bulk G A .  It was soon recognized that the large currents and cryogenic 

temperatures needed to reach threshold were a result of poor carrier and optical 

confinement in the direction perpendicular to the junction plane, or vertical direc- 

tion. This prompted the introduction of the double-heterostructure geometry, in 

which the junction is contained in a thin epitaxial layer sandwiched between layers of 



material with a larger bandgap. The larger bandgap helps confine carriers, while the 

associated lower index of refraction guides the optical wave by total internal 

reflection. Threshold current densities were drastically reduced using this design, a.nd 

continuous room-temperature operation was achieved3. 

Early semiconductor lasers had no provision for confining the optical wave or 

limiting the spread of current in the lateral direction, i.e. in the junction plane and 

perpendicular to the lasing axis. These broad-area devices were prone to filamenta- 

tion4, a self-focusing process causing poor lateral uniformity and coherence of the 

near field (see Chapter 7 of Reference [ 5 ] ) .  This problem was largely eliminated by 

confining the carriers and photons in a region along the lasing axis sufficiently narrow 

(< 10 pm) to control the lateral modes. Early stripe-geometry semiconductor lasers6 

used a narrow contact to the p-type cladding layer to localize the injection of holes. 

The gain is sufficient to support lasing directly under the contact only, resulting the 

so-called "gain-guidedn stripe laser. The superior lateral optical confinement of 

dielectric waveguides was soon appreciated and the rib-waveguide geometry was 

developed7. The buried-heterostructure geometry was then introduced8 to prevent 

current spreading as well as to provide index-guiding of the optical wave. Since the 

middle 1970's, dozens of variations on these basic designs have been used to fabricate 

stripe-geometry semiconductor lasers with good spatial coherence and stable, single- 

mode operation. 

The output power of stripe-geometry lasers is limited to the hundred-milliwatt 

range, beyond which the intensity of the circulating optical wave is large enough to 

initiate a runaway cycle of light absorption and heating a t  the facets, ending in 

catastrophic facet damage. The need for higher-power coherent beams lead to the 

development of coherent semiconductor laser arrays. 



Coherent arrays consist of two or more stripes placed side-by-side in the junc- 

tion plane, close enough so that the optical fields of adjacent stripes couple and hope- 

fully phase-lock, but not so close that carrier diffusion fills in the lossy areas between 

the stripes, causing the array to act like a broad-area device, i.e., exhibit filamenta- 

tion and poor spatial coherence. As long as coherence is maintained across the entire 

array, the output power can be increased indefinitely without risking catastrophic 

facet damage by simply adding more optical emitters. 

The coherent array is not without its problems, however. Although the lateral 

modes may be spatially stable and coherent, they all have nearly the same 

wavelengths and threshold gains, making them difficult to discriminate among if 

single-mode operation is desired. Another problem is that the large ratio between the 

lateral and vertical apertures is inconvenient for some applications, such as launching 

the beam into an optical fiber or end-pumping a solid-state laser rod. Because of the 

large aspect ratio and the fact that the light emerges from a cleaved facet, these dev- 

ices are referred to  in this thesis as linear or edge-emitting arrays. 

To have a large aperture in two directions, it is necessary to bring the light out 

of the surface of the wafer. Some such two-dimensional surface-emitting arrays have 

45" turning r n i r r o r ~ ~ l ~ ~  or diffraction gratings11 etched into the surface to deflect 

light propagating parallel to the epitaxial layers. Vertical-cavity surface-emitting 

lasers12 (VCSELs) obviate the need to deflect the light by orienting the lasing axis in 

the direction perpendicular to the surface. Emitters are typically less than 5 pm 

across and can be packed into two-dimensionally coherent arrays with interesting 

mode patterns13. For simplicity and availability of devices, this thesis is limited to 

consideration of linear coherent arrays. 



Early arrays consisted of equally-spaced identical emitters of some easily- 

fabricated geometry, such as oxide-stripe or ridge waveguide. Supermode theory14, 

was developed to describe the lateral modes of the array as linear combinations of the 

modes of the individual emitters. Supermode theory predicts that arrays will have as 

many lateral modes as there are emitters: a mode with adjacent emitters in phase, a 

mode with them 180" out of phase, and possibly other modes with inter-emitter rela.- 

tive phases intermediate to these extremes. In-phase operation is desirable for many 

applications because of the associated single-lobe far-field. Most arrays were found to 

lase in the 180" out-of-phase mode and other higher-order modes, because these 

modes have nodes in the lossy regions between the emitters, reducing absorptionl8. 

Several strategies have been used to force in-phase operation, most notably Y- 

coupling17 and index anti-guiding18 geometries. 

While a great deal of effort was going into designing high-power in-phase arrays, 

the dynamical properties of arrays received relatively little attention. Part of the 

reluctance may have been due to the complicated spatial structure of the array near- 

field, compared to that of a single-emitter, requiring study of the spatio-temporal 

behavior, rather than merely an intensity time series. A deeper reason may be 

founded in the conjugate relationship of spatio-spectral and spatio-temporal proper- 

ties: since single-lateral-mode operation was the goal, it may have been perceived 

that the target device would be quiescent, and thus dynamically uninteresting. 

Neglecting the study of array dynamics may be misguided on two counts. First, 

models used to justify proposed structures often assumed linear, identical or nearest- 

neighbor coupling, identical emitters, quiescence, the absence of noise, operation near 

threshold or a combination of the above; whereas the actual device may violate any 

or all of these idealizations. Therefore, the mode predicted to have the lowest 



threshold may be unstable or not robust to array inhomogeneities, or if stable could 

have a small basin of attraction (set of initial conditions from which the mode is the 

asymptotic solution) and thus rarely be observed experimentally, or may dominate as 

predicted, but only over an impractically small range near lasing threshold. Studying 

the dynamics of arrays may provide clues to improved designs. Secondly, single- 

mode quiescent operation is not always desirable. For effective high-frequency modu- 

lation of arrays, lateral mode competition may be advantageous, as discussed in 

Chapter 8. 

The spatio-temporal properties of coherent arrays can be studied with 

picosecond resolution using streak cameras19. The dynamics of two- and ten-stripe 

g a i n - g ~ i d e d ~ ~ i ~ l ,  ~ - c o u ~ l e d ~ ~ - ~ ~ ,  channeled-substrate planar (csP)~', grating 

surface-emitting ( G S E ) ~ ~  and GSE ringz7 arrays have been studied. Even with con- 

stant injection current, instabilities have been noted in all cases except for some 

recent work involving GSE arrays28i29 which exhibited quiescent CW operat,ion 

under some conditions. 

Semiconductor lasers fall into what is known as class B due to the relative mag- 

nitude of characteristic time constants (see Chapter 2 of Reference [30]), and class-B 

ring lasers, whose set of possible instabilities encompasses that of class-B Fabry-Perot 

lasers, are known to have instabilities with frequencies a t  or below the relaxation 

oscillation frequency31. In several cases2O7 21f26727, frequency components have been 

observed in the optical output of arrays that are distinct from and beyond the relax- 

ation oscillation frequency. Since the relaxation oscillation frequency is the upper 

bound of the frequency range of single-emitter dynamical effects, it is reasonable to 

conclude that these high-frequency components originate from interactions among the 

emitters. 



To explain these interactions, dynamical models based on weak coupling32~33 

and strong coupling34?35 among the emitters have been proposed. One of the goals 

of this thesis is to present a comprehensive theoretical framework from which dynam- 

ical models of coherent arrays can be derived. Knowledge of the approximations 

going into a particular model can help one to understand its limitations. 

Because of their large number of degrees of freedom, coherent arrays are capable 

of complicated spatio-temporal dynamics, reminiscent of turbulent fluid flow and 

other physical systems used to experimentally demonstrate and study deterministic 

chaos. This suggests that coherent arrays may be studied to advance the field of 

nonlinear dynamics, as well as using nonlinear dynamics as a tool to improve array 

design. Coherent arrays are not ideal subjects for study, however, because of the 

sub-nanosecond time scale of array dynamics. Moreover, their monolithicity makes it 

difficult to vary the coupling between emitters, which depends primarily on the fixed 

inter-emitter spacing. Varying the emitter coupling is necessary to access different 

dynamical behaviors with a single device. 

Chapter 2 derives the single-emitter rate equations from the time-varying fields 

describing the Iaser cavity. Although derived assuming a single emitter, these results 

hold for arbitrary waveguide structures and injection current boundary conditions, 

and are therefore easily extended to coherent arrays. 

Chapter 3 discusses dynamical effects inherent to single-emitter devices in typical 

experimental conditions, so that they can be recognized and separated from effects 

unique to  the coupling of emitters when observing the dynamics of coherent arrays. 

Chapter 4 presents three dynamical models of coherent arrays, in decreasing 

order of complexity and generality. The simplest model is used to obtain rate equa- 



tions for dynamical variables describing the twin-emitter coherent array, and the 

lateral modes and their stability properties are found. 

Chapter 5 discusses the numerical integration of the coupled, non1inea.r rate 

equations of the twin-emitter model, to verify the analytical results of Chapter 4 and 

explore the dynamics of the twin-emitter model. 

Chapter 6 presents the experimental techniques used to measure important 

parameters and otherwise characterize coherent arrays. 

Chapter 7 discusses an attempt to support the twin-emitter model through 

experiment. 

Chapter 8 proposes a novel technique for injection current modulation of 

coherent arrays beyond the frequency of relaxation oscillations, based on the twin- 

emitter model. 

Chapter 9 contains a summary and suggestions for future work. 



2. SINGLEEMITTER RATE EQUATIONS 

2.1 Chapter Overview 

Before embarking on the study of coherent array semiconductor laser dynamics, 

it is necessary to understand the dynamics of the building-blocks of coherent arrays, 

the single-emitter semiconductor lasers. A vast body of literature has been devoted 

to this topic, and an exhaustive review is beyond the scope of this dissertation. For 

our purposes it is sufficient to identify common mechanisms that influence the 

dynamics of single-emitter semiconductor lasers, particularly the characteristic fre- 

quencies associated with each mechanism. This is so that single-emitter and multi- 

emitter effects, which are both expected to be present in the dynamics of coherent 

arrays, can be distinguished in intensity time series, be they generated by modeling 

or experimentally observed. Single emitter lasers are discussed in Chapters 2 and 3. 

The basic rate equations are derived in this chapter, and dynamical effects are 

covered in the next. 

Two approachs are commonly taken in modeling semiconductor lasers: the con- 

tinuum model and the rate-equation model. In the continuum model, the state of the 

device is given by the optical electric field, the carrier density, the temperature, and 

possibly other variables as a function of position and time. Coupled partial 



differential equations are written to describe the evolution of these quantities. While 

this approach has the virtue of being founded on basic principles, the self-consistent 

solution of such equations requires numerical solution and often does not offer much 

physical insight. The continuum model is most useful in the static case, where self- 

consistent equilibrium solutions are sought. 

The rate equation approach is based on the notion of modes. A modal decompo- 

sition can be defined as an expansion of a continuum-model field 

where C, is the slowly-varying ( I dCm/dt I < <om), possibly complex amplitude, F, 

-iw,t 
is the spatial nprofileN and e is the optical-frequency phase factor of the mth 

mode. If the modal frequency om and profile Fm(f) are sufficiently independent of 

operating parameters capable of varying on the time scale of the dynamics of 

interest, e.g. injection current, the modal decomposition can be very useful. 

Optical modes are typically quantified by their time-dependent photon number 

and slowly-varying phase. A single-emitter device may have many modes with 

appreciable photon numbers running simultaneously. Because the waveguide under 

consideration is designed to support a single profile in the transverse plane, the 

profiles of its optical modes differ only in their longitudinal wave vectors, which are 

determined by the well-known round-trip self-consistent phase condition. For this 

reason, the modes of a single-emitter device are referred to as "longitudinal modesn. 

A separate rate equation is accorded each dynamical variable of each longitudinal 

mode, as well as a rate equation for the carrier density. 



This chapter gives a derivation of the rate equations from a self-consistent con- 

tinuum model. This is important for several reasons: first, it allows us to see how 

physical processes translate into the terms and factors composing the rate equations, 

and what approximations are made along the way. Second, it facilitates the estima- 

tion of the characteristic time constants associated with the processes, allowing us to 

identify those which respond too slowly, e.g. junction heating, or too ra.pidly, e.g. 

intra-band relaxation, to contribute to dynamics in the 500 MHz-50 GHz range of 

interest, in which coherent array emitter interactions are expected. Third, 

phenomena dependent on the lateral profile of modes, such as periodic pulsations due 

to self-focusing (Section 3.8) and the lateral coupling of emitters in coherent arrays 

(Chapter 4), are readily understood from the continuum model but are obscure if 

rate equations are used as the starting point. 

In Section 2.2, the index of refraction and net optical gain as functions of posi- 

tion and time are assumed to be known, and the evolution of the optical wave is 

obtained. Each optical mode is described by two rate equations, one for the photon 

number and one for the phase. In Section 2.3, the optical wave and injection current 

boundary conditions are assumed to be given, and the carrier number rate equation is 

derived. I t  is shown that the gain medium can be adequately described by the carrier 

number rate equation in the 500 MHz-50 GHz range. 

Section 2.4 establishes the link between the gain term appearing in the optical 

rate equations and the term accounting for stimulated recombination in the carrier 

rate equation. This is accomplished by relating the modal photon numbers and gains 

to the rate of photon generation, which is balanced by the rate of stimulated recom- 

bination. The next task is to express the induced material polarization in terms of 

modal susceptibilities, which are related phenomenologically to measurable 



parameters. 

Section 2.5 casts the photon number rate equation into its finished form by 

including spontaneous emission. 

The equilibrium values of the dynamical variables are found for the single-mode 

case in Section 2.6. Both spontaneous emission and gain compression are shown to 

be negligible for any reasonable operating point. 

2.2 Optical Rate Equations 

Throughout this thesis, the unit vector f represents the direction perpendicular 

to the plane of the epitaxial layers, also-called the vertical direction. 2 points in the 

direction of the propagation of coherent light in the cavity, also called the longitudi- 

nal or axial direction. 9 points in the lateral direction. The plane spanned by ji and 

4 is sometimes referred to as the transverse plane. 

Section 2.2.1 proceeds from Maxwell's equations to a scalar lateral-electric wave 

equation. Section 2.2.2 decomposes the wave equation into modes and derives 

spatio-temporal partial differential equations for the modal amplitudes. Section 2.2.3 

separates the spatial dependence of the modal amplitudes, and Section 2.2.4 derives 

ordinary differential equations in time (rate equations) for the photon number and 

phase of each mode. 



2.2.1 Scalar Transverse-Electric Wave Equation 

The semiclassical derivation of the optical rate equations begins with Ma.xwell's 

equations in Rationalized MKS units, given by Table 2 in the appendix of Reference 
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V-D = p (2.2.1.1) 

where E is the electric field, D is the electric displacement, H is the magnetic field, B 

is the magnetic induction, and p and J are the free charge and current densities, 

respectively. Taking the divergence of (2.2.1.4) and using (2.2.1.1) yields the con- 

tinuity equation 

The material is assumed to  be non-magnetic so that 

B = ,LOH 

where po is the vacuum permeability. The relationship between the free current and 

the electric field is assumed to  be 

where a is a real, frequency-independent scalar conductivity. This is justified over 

the anticipated narrow band of lasing modes, and will later be interpreted 



phenomenologically as linear damping of the optical field. The electric displacement 

is conveniently separated as 

where eo is the vacuum permittivity, P is the induced polarization, of which Pb is the 

nbackgroundn contribution associated with valence-electron resonances of the sem- 

iconductor lattice and Pa is the "activen contribution associated with free carriers, 

and Db is the background electric displacement. 

Semiconductor lasers have a marked tendency to operate in lateral-electric 

modes, i.e. those with the electric field polarized parallel to the epilayers. Thus, the 

optical wave is described by the scalar wave equation for the Q component of the 

electric field. Taking the curl of (2.2.1.2), substituting the vector identity 

V X V X  = VV. - v2 (2.2.1.9) 

and using (2.2.1.5) and (2.2.1.7) to rewrite VV-E, and using (2.2.1.6), (2.2.1.4), 

(2.2.1.8) and (2.2.1.7) on the right-hand side and rearranging gives 

Assuming charge neutrality, the last term is dropped. Moreover, E and the subsidi- 

ary fields Db and Pa are assumed to be polarized in the lateral direction 

E = QE (2.2.1.11) 

so that  the scalar wave equation 

is obtained. 



2.2.2 Modal Decomposition 

The goal is to  separate (2.2.1.12) into modal contributions and factor out the 

rapid (optical frequency) time dependence. The optical frequency electric field can he 

expressed as a sum over modes 

where 

where om are the modal frequencies and C, are complex amplitudes that vary slowly 

in time compared to the optical-frequency phase factors. The constant of propor- 

tionality, hereafter written as [...Ik, is chosen so that I C, I ' can be interpreted as the 

modal photon density. This can be seen by squaring (2.2.2.2) and multiplying by 

2 ~~p , , , ,  where pe,, is the effective phase index of the mth mode, to obtain the instan- 

taneous energy density, and then averaging over an optical cycle and dividing by the 

photon energy Ho,. The modal photon number is therefore 

where L is the cavity length. 

The modal contribution to the first term of (2.2.1.12) can immediately be writ- 

ten as 

V~E, = [. . . ] % e [ ( ~ ' ~ ~ ) e - ~ " " ~ ]  (2.2.2.4) 

The other terms of (2.2.1.12) involve time derivatives that can be handled by intro- 



ducing the Fourier transform of the modal electric field 

Differentiating (2.2.2.5) and (2.2.2.2) P times with respect to time and equating gives 

where the slowly-varying nature of C, was invoked to justify neglecting its higher- 

order derivatives. The modal contribution to the second term in (2.2.1.12) can be 

expressed as 

To obtain the modal contribution to the third term of (2.2.1.12), we expand the 

background electric displacement Db similarly to (2.2.2.1), and assume that 

where p is the (real) phase index of refraction. This is based on the notion that the 

valence-electron resonances responsible for the background polarization are distant 

from the lasing frequency coo, such that the real part of the associated susceptibility 

is substantial and frequency-dependent, while the imaginary part is small and 

frequency-independent. The latter represents loss which can be included in the term 

containing the phenomenological parameter o. A consequence of the slowly-varying 



nature of Cm is that Em(r',w) is sharply-peaked about om, justifying the use of 

where the subscript "mn denotes evaluation at  om. Differentiating (2.2.2.8) twice 

with respect to time, using (2.2.2.9) and (2.2.2.6) and multiplying by -pO allows the 

third term of (2.2.1.12) to be written as 

where the group index of refraction at  om 

and the speed of light in vacuum 

C = 
1 

[ ~ o ~ o l  

were introduced. 

The free-carrier polarization term of (2.2.1.12) can be formally separated by 

introducing an expansion similar t o  (2.2.2.1) for P, and defining a modal susceptibil- 

ity xm such that 

This modal susceptibility contains all the coupling between modes, and will be 

further discussed in Section 2.4. Differentiating (2.2.2.13) twice with respect to time 



and multiplying by -po gives the modal contribution to the fourth term of (2.2.1.12) 

where the second-derivatives and product-of-derivatives of the slowly-varying quanti- 

ties xm and C, have been neglected. 

Substituting (2.2.2.4), (2.2.2.7), (2.2.2.10) and (2.2.2.14) into (2.2.1.12), separat- 

ing modal contributions, cancelling the common [...I' factor, suppressing the "en 

operation and cancelling the common phase factor gives the desired result. Before 

doing this, we make some simplifying approximations. In Section 2.2.4, it will be 

shown that  

Also, the carrier-induced susceptibility is small ( I X ,  I < <I) ,  so that  the second 

terms in Re[ ...I of (2.2.2.7) and (2.2.2.14) can be neglected in favor of the second term 

in Re[ ...I of (2.2.2.10). Furthermore, in Section 2.4.2, the first term in Re[ ...I in 

(2.2.2.14) is shown to  be negligible compared to the third, and so is dropped. 

(2.2.1.12) becomes 



2.2.3 Modal Spatial Profiles 

We turn now to removing the spatial dependence. (2.2.2.16) has been written 

with the assumption that all quantities characterizing the waveguide are independent 

of the longitudinal coordinate. We also make the distributed mirror-loss approxima- 

tion, in which the abrupt loss of light due to transmission a t  the facets of Fabry- 

Perot or the edge of the grating in distributed-Bragg-reflecting semiconductor lasers 

is considered to be distributed along the length of the gain medium such that the 

round-trip loss is equivalent to that of the real device. The treatment remains exact 

for distributed-feedback devices. Thus the only z-dependence in (2.2.2.16) lies in v2 
and Cm, and is easily separated. 

It is consistent with the distributed-loss approximation to consider the facets as 

perfect reflectors. Therefore, the cavity modes are standing waves with nodes at  the 

facets (z=0 and z=L). The modal amplitudes can be factored as 

where the longitudinal propagation factor of the mth mode is 

where pe,m, the effective phase index of the mth mode, is defined by (2.2.3.2). 

Constraining the optical intensity to be independent of z limits the validity of 

the model to frequencies somewhat less than the frequency associated with the cavity 

round-trip time. Since the latter is typically greater than 100 GHz, this is not a 

problem in studying dynamics in the 500 MHz-50 GHz range of interest, but is obvi- 

ously incorrect for treating longitudinal mode-locking. 



To remove the remaining spatial dependence, we make the separation 

where F,, a complex function normalized so that 

is the nprofilen of the mode. This is tantamount to assuming that the modal profile 

is independent of amplitude and phase changes, which is a good assumption for 

index-guided devices since the guiding mechanism is passive. This assumption may 

not always be valid for gain-guides, and is obviously violated in the cases of lateral 

position instability and self-focusing, which are treated in Section 3.8. 

If we assume that there exists some equilibrium modal susceptibility XE) for 

which C,(t) is constant, then inserting (2.2.3.1) and (2.2.3.3) into (2.2.2.16) gives 

where V: is the Laplacian operator in the transverse plane. Given the longitudinal 

propagation factor k,, which is subject to the round-trip phase condition 

where m is the integer number of wavelengths in a cavity round trip (on the order of 

1000 for a typical device), (2.2.3.5) can be regarded as a characteristic equation for 

the unknowns om and F,, subject to the boundary condition that Fm vanishes 

sufficiently rapidly as ~ ~ + ~ ~ + m  so that (2.2.3.4) can be fulfilled. The effective-index 

method (see section 2.5.1 of Reference [37]) is commonly used to solve (2.2.3.5). Dur- 



ing the solution of the vertical portion of the transverse problem, it is permissible to 

neglect Re[x,] and the imaginary terms, because the graded and abrupt index varia- 

tions of the epitaxial layers dominate the waveguiding. For an index-guided device, 

this approximation can be made during the solution of the lateral portion of the 

problem as well, while for a gain-guided device these terms must be included to 

account for gain guiding and index anti-guiding. 

Multiplying (2.2.3.5) from the left by F:, subtracting the complex conjugate of 

the equation just obtained, and integrating over the transverse plane gives 

The term in parentheses can be eliminated by using the divergence theorem to write 

it as a surface integral, and invoking the rapid decay of Fm as x2+y2-m. This results 

in 

as a condition for modal equilibrium, where <...> represents averaging over the 

transverse plane weighted with IF, 1 2. This merely states that the modal gain bal- 

ances the losses in equilibrium. 



2.2.4 Modal Rate Equationa 

We now restore the dynamics by allowing 

(0) ~ m ( t )  = Xm + Xm (2.2.4.1) 

so that  substituting (2.2.3.1), (2.2.3.3), (2.2.3.5) and (2.2.4.1) into (2.2.2.16) gives 

Multiplying by F: and integrating over the transverse plane gives 

Next we simplify the multiplicative factor in (2.2.4.3) by approximating 

In the first step, the weighted average of the product of the position-dependent phase 

and group indices of the mth mode is replaced by the product of the weighted aver- 

ages, in the second step, the weighted averages are replaced by the effective indices of 

the mth mode, which are in turn replaced by the effective indices of the "main mode" 

in the third step. Also, the mth mode frequency is replaced by the frequency of the 

main mode 

and the complex amplitude Cm is separated into the product of a real amplitude and 

a phase factor 

c m  + Am(t>e 
ihdt)  (2.2.4.6) 

Substituting (2.2.4.4), (2.2.4.5), and (2.2.4.6) into (2.2.4.3) and separating real and 



imaginary parts gives 

and 

Note that  by (2.2.2.3), (2.2.3.1), (2.2.3.3), (2.2.3.4) and (2.2.4.6), that 

A: = S, (2.2.4.9) 

can be interpreted as the modal photon number. Differentiating (2.2.4.9) with 

respect to  time and using (2.2.4.7) and (2.2.4.1) gives 

where 

is the modal gain and 

where (2.2.3.8) was used, is the photon loss rate, assumed to  be the same for all the 

modes. The photon loss rate is typically =loL2 s-l, which is small compared to  opti- 

cal frequencies of = 2 x  loL6 s-', justifying (2.2.2.15). T o  proceed, i t  is necessary to 

have an  expression for <xm>, the derivation of which is postponed until Section 

2.4.3. 



2.3 Gain Medium Dynamics 

In Section 2.2 the state of the gain medium was assumed known to obtain the 

time evolution of the optical wave. In this section we assume the opposite. We con- 

tinue to assume that the waveguide has no longitudinal structure, and that mirror 

losses are distributed. Thus the static and dynamic spatial functions used to describe 

the gain medium are independent of the longitudinal coordinate z. 

Static spatial functions include the composition and crystalline orientation of the 

host material, the identity and concentration of dopants, the temperature and possi- 

bly the stress a t  every point in the transverse plane. The temperature is considered a 

static effect because its characteristic response time is slow compared to the 500 

MHz-50 GHz regime of interest, as shown in Appendix A. 

Dynamic spatial functions include the optical electric field and the density of 

carriers. Ideally, the occupancy of carrier states as a function of energy should be 

known, but since intra-band and polarization relaxations are quite rapid compared to 

the dynamics of interest, their effects can be simply included in the carrier-induced 

susceptibility, as discussed in Section 2.4.2 and Appendix B. Thus the gain medium 

can be adequately described by the carrier density summed over the band states. 

This overall carrier density can then be averaged over the cavity to give the cavit,y 

carrier number. 

2.3.1 Carrier-Number Rate Equation 

The active region is the only part of the structure at  which both electrons and 

holes exist in quantities sufficient for optical gain through stimulated recombination. 



It is usually intrinsic or lightly-doped and very thin, typically less than 0.2 pm. 

Since this is small compared to both the carrier diffusion length and the vertical spot 

size of the optical mode, the vertical dependence of the carrier concentrations can be 

neglected, reducing the problem to one dimension. During operation, the carrier den- 

sity is typically much larger than the concentration of dopants. Neglecting the latter 

and invoking detailed charge neutrality 

where n, and np are the concentrations of electrons and holes, respectively, makes it 

sufficient to keep track of the concentration of only one of the carrier species. A 

"stationary-electron, diffusing-holen model has been proposed38 for the dominant n- 

type substrate stripe-geometry semiconductor laser technology, in which it is 

appropriate to solve for the hole concentration, using the time-dependent diffusion 

equation 

where j(y,t) is the injected hole current density, q is the electronic charge, d is the 

thickness of the active layer, rdk is the rate of carrier loss due to spontaneous (radia- 

tive and non-radiative) decay, rSt is the rate of carrier loss due to stimulated recombi- 

nation and thus depends on the local photon density 

where xmt is the vertical coordinate of the active layer, and D, is an effective 

diffusion ~oe f f i c i en t~~ ,  given by 



where Dp and pp are the hole diffusion coefficient and mobility, respectively. Note 

the implicit assumption that the active layer is flat and of uniform thickness. 

We assume that longitudinal carrier diffusion is effective in washing out holes 

burned in the carrier density by the standing optical wave, so that the carrier density 

can be considered to be independent of z. It has been estimated39 that the amplitude 

of the longitudinal variation in the carrier density due to hole burning is more than 

three orders of magnitude smaller than the average carrier density. 

Given s(y,t), the hole-current boundary condition at the p-contact and the 

ground-plane boundary condition at  the n-contact, (2.3.1.2) and Laplace's equation 

for the voltage in the cladding layers are solved self-consistently40 for p and j. The 

procedure is arduous and beyond the scope of this thesis, which is concerned with 

dynamical effects. For this reason, we henceforth consider the profile of the carrier 

density to be known, preferably through experimental measurement. 

The form of rdk has been discussed in the literature41. To avoid the complica- 

tions of a power-series representation or more exotic analytical forms, rdk can be 

expanded to first order about n=nth, the spatially-averaged lasing threshold carrier 

density 

where T is the threshold carrier lifetime and T,  is the differential carrier lifetime at, 

threshold41 

The constant terms of (2.3.1.5) can be included in the pumping term of (2.3.1.2) by 



defining an effective current density 

Let the active region be bounded in the lateral dimension such that yIIy%y2.  

These bounds can be a t  infinity, as in a carrier-diffusion-limited gain-guide, or finite, 

as in the case of a buried heterostructure. In the former case, because of finite 

diffusion, the following boundary conditions hold 

In the latter case, yl and y2 represent the lateral positions of current-blocking junc- 

tions. At these junctions, the net lateral current is zero, that is, the diffusion and 

drift contributions cancel. Since it is actually the total current that is expressed as 

an effective diffusion current in the stationary-electron, diffusing-hole model3*, 

(2.3.1.8) holds for finite boundaries as well. 

We can integrate (2.3.1.2) over the lateral coordinate and multiplied by the cav- 

ity length L and the active layer thickness d to obtain the rate equation for the cav- 

ity carrier number 

where Je is the effective injection current and Rst is the stimulated recombination 

rate, to be discussed in Section 2.4.1. The diffusion term vanishes according to 

(2.3.1.8). We assume that Je can be replaced by the actual injection current J, since 

these differ by an additive constant, and only changes in current enter into the 

dynamics. Henceforth, we will ignore the distinction and drop the subscript "ee". 



2.4 Optical Mode and Carrier Interaction8 

The purpose of this section is to express the coupling of the optical mode rate 

equations (2.2.4.8) and (2-2.4.10) and the carrier-number rate equation (2.3.1.9) in a 

simple manner, keeping in mind our interest in dynamics in the 500 MHz-50 GHz fre- 

quency range. 

Section 2.4.1 uses the balance between the rate of stimulated recombination and 

the rate of stimulated emission into all the optical modes to link the carrier and pho- 

ton number rate equations. Section 2.4.2 models the gain medium as an ensemble of 

two-level systems. Each system consists of a conduction- and valence-band state pair 

with the same k-vector, so that they can interact radiatively. States in the same 

band are coupled to model intra-band relaxation. A transition frequency dependent 

two-level density matrix is used to write the driving term of the lateral-electric scalar 

wave equation (2.2.1.12), d2p,/at2, in terms of the carrier-induced susceptibility x,, 

and xm in terms of fundamental properties of the gain medium. In Section 2.4.3, the 

modal susceptibility < x,> is expressed in terms of measurable parameters. 

2.4.1 Stimulated Recombination and Emimaion Balance 

The first step is to relate RSt, the loss rate of the cavity carrier number due to 

stimulated emission, to the gain rate of the cavity photon number. The latter is 

given by the first term in (2.2.4.10), summed over the modes, and thus 

The rate equation for the carrier number is found by substituting (2.4.1.1) into 



Note that the stimulated recombination rate density is given by 

which can be verified by integrating over the cavity and using (2.2.4.11) a.nd (2.4.1.1). 

2.4.2 Carrier-Induced Susceptibility 

The carrier-induced susceptibility x,, introduced in (2.2.2.13), drives the time 

evolution of the photon number S, and the phase 4, of each mode. This section 

discusses the dependence of xm on the carrier and photon densities. The mechanisms 

contributing to xm can be separated into those involving stimulated transitions 

between a conduction band state and a valence band state, and those involving tran- 

sitions between states in the same band. Inter-band effects will be discussed in this 

section, while intra-band effects will be touched upon a t  the end of Section 2.4.3. 

Two major approaches have k e n  taken to model the induced polarization asso- 

ciated with inter-band transitions in bulk semiconductor material, one based on band 

tails42 and the other based on relaxation broadening43. The band-tail model is 

appropriate to heavily-doped semiconductors, in which ntails"extending from the 

conduction and valence bands into the gap between the bands can explain the 

absorption of photons with less than the bandgap energy. The band-tail states are 

partially localized and are thus not exact momentum eigenstates, in contrast with the 



conduction and valence states of a flawless intrinsic semiconductor. This causes the 

momentum-selection rule, which governs the allowed radiative transitions in the pure 

material, to be relaxed. This model is not applicable to semiconductor lasers with 

lightly-doped active regions, or those lasing with photon energy sufficiently greater 

than the bandgap such that band-tail states are not significantly involved. 

The relaxation-broadening approach assumes that the momentum-selection rule 

limits radiative transitions from a given conduction band state to the state with the 

same vector momentum in the valence band. This model is almost equivalent to the  

two-level atom paradigm that has been a cornerstone in the theory of gas and solid- 

state lasers, with injection and intra-band scattering of carriers serving as pump 

mechanisms for the band states. Thus the semiconductor medium can be considered 

to be a large number of pairs of states, such that each state interacts radiatively with 

its partner in the other band and non-radiatively with the other states in its band. 

The non-radiative interactions are described simply by the decay of non-equilibrium 

state populations a t  rates proportional to the deviations of the state populations from 

their equilibrium values. 

A complication is that while a two-level atom is localized (at least on the time 

scale associated with absorption and stimulated emission), the band states exist 

throughout the bulk material and interact with spatially extended optical modes. 

Fortunately, it has been pointed out43 that band states can be considered localized 

on a length scale large compared to the carrier mean free path in the active region, 

and if this scale is small compared to the wavelength of light in the material, a mean- 

ingful localized macroscopic polarization can be defined. The carrier mean free path 

is given in Section 5.1 of Reference [44] 



where v is the thermal velocity, T, is the mean free time between collisions, kBT is 

the thermal energy, rn* is the effective mass of the carrier, p is the carrier mobility 

and q is the electronic charge. Table 13.1 of Reference [44] gives m:/m=0.065, 

2 -1 -1 m;/m=0.5, p,=0.89 m V s and pp=0.04 m 2 ~ - l s - l  for GaAs a t  300 kelvin, 

where m is the mass of an electron. Using these along with m=9.11 x kg, 

q=1.6X lo-'' C and kBT=4.14X J a t  300 kelvin gives the geometrical mean of 

the carrier mean free paths [L,L,]'= 53 nm, which is somewhat smaller than the 

wavelength of light in the material, given by h/p,= 248 nm using h=818 nm and 

pe=3.3, typical of GaAs/AlGaAs lasers. Thus there is some sense in considering 

pairs of carrier states as localized dipoles in a spatially-uniform electric field. 

The induced polarization due to the carriers is given by45 

where w~ is the inter-band transition frequency, p is the transition dipole moment 

and D is the joint density-of-states of the conduction and valence bands between all 

momentum-conserving transitions of energy EmT. The off-diagonal matrix elements 

of the two-level density matrix for the transitions with frequency w~ are denoted by 

p12 and pzl, which are a complex conjugate pair. The integration over all frequencies 

is permitted by requiring that D ( W ~ < W ~ , ~ ) = O  and D ( W ~ > O , , , ~ ~ ) = ~ ,  where Kwgap is 

the band-gap energy and lio,, is the energy of the maximum-energy k-conserving 

transition between the conduction and valence bands. 



It is necessary to obtain an expression for plz. The following equations describe 

the time evolution of the two-level matrix elements46 

where ye(,) is the intra-band energy relaxation rate for the conduction (valence) 

band, y is the polarization relaxation rate and p11(22) is the occupation probability for 

electrons in state 11> (holes in state 12>) in thermal equilibrium and is determined 

by the quasi-Fermi level of the conduction (valence) band. 

Substituting multi-mode expansions for the electric field and the density matrix 

elements yields a coupled set of modal equations that are in practice difficult to solve. 

A perturbative solution to third order in the electric field has been d e s ~ r i b e d ~ ~ . ~ ' ,  in 

which three contributions to the third-order non-linear susceptibility were identified 

and associated with spectral hole burning, population pulsations and four-wave mix- 

ing. The effects of these mechanisms on the stability of the main mode is discussed 

in Section 3.4, and the neglect of population pulsations and four-wave mixing in the 

dynamics is discussed in Appendix B. 

Each lasing mode burns a hole in the gain curve, centered a t  the modal fre- 

quency and wide compared to the emission spectrum of a reasonably good semicon- 

ductor laser. In view of this, all the modes suffer about the same reduction of gain 

due to the unresolved hole burnt by all of them. Therefore, it is plausible to assume 

a monochromatic or single-mode approximation of the optical field to obtain the gain 



reduction, or ncompressionn) due to the optical field. This approach has appeared in 

the literatureA5 and is outlined below. 

We assume that the slowly-varying amplitude of all the modes except the lasing 

mode (m=O) are small in (2.2.2.1), so that the following solutions to (2.4.2.3)- 

(2.4.2.5) are found 

where 

is the normalized optical intensity, 

is the normalized detuning of the transition from the lasing mode frequency and 

 om-("^ 
5 = (2.4.2.1 1) 

Y 

is the normalized detuning of the mth modal frequency from the lasing mode fre- 

quency. Eo(t) is assumed to be slowly-varying on the Y;', y;l-lOO fs time scale48, 

and so I(t) can be considered constant with respect to the time derivatives of 



(2.4.2.3)-(2.4.2.5). Note that (2.4.2.6) and (2.4.2.7) are slowly-varying and that, 

(2.4.2.8) contains no inter-modal amplitude cross-products, so that neither popula.tion 

pulsations nor four-wave mixing are accounted for. 

The second time derivative of the carrier-induced polarization, given by 

(2.4.2.2), is 

Differentiating (2.4.2.5) with respect to time and taking the real part gives 

Substituting (2.4.2.6)-(2.4.2.8) into (2.4.2.13) gives 

If I + ( A - ~ ) ~  is neglected in favor of o:ly2 in (2.4.2.14) (as will be justified below), 

and (2.4.2.14) is substituted into (2.4.2.12), reversing the order of integration and 

summation results in 

where 



is the susceptibility for the mth mode associated with stimulated generation and 

recombination of carrier pairs, and 

is the population inversion weighted by the square of the dipole moment. For A 

corresponding to @<agap, f=O because no states exist. For A <0, but above the 

band gap, f increases with A because of an increasing density of states. For O<A, f 

decreases with A because of diminishing occupancy. From (2.4.2.10) it can be seen 

that f is maximum a t  A=O for Fabry-Perot devices, since they lase near the gain 

peak. As A increases further, the population inversion becomes negative, f < O  and 

light is absorbed. Finally, for A corresponding to o>o,,, there are no states and 

f=O. 

The dependence of X, on the modal index m enters through the detuning 

parameter E. The time dependence of X, has two sources: the normalized optical 

intensity I and the gain spectrum f,  whose time dependence enters through the popu- 

lation inversion, which is in turn dependent on the local carrier density n(t). It has 

been assumed that n(t) is also slowly-varying on the time-scale associated with intra- 

band and polarization relaxations. Since X, is slowly-varying on the optical- 

frequency time scale, the neglect of the first term in favor of the third term in Re[ ...] 

in (2.2.2.14) is justified, an approximation used to obtain (2.2.2.16). 

The approximation made to obtain (2.4.2.15) can now be justified: since the 

gain spectrum width is of the same order as the intra-band and polarization relaxa- 

tion rates, f(A) is substantial only for I A l of the order of 1, so that by the time 

1+(~-{)' is comparable to o: /y2z4~ lo4, f is so small that the integrand is negligi- 



ble. Thus the I+(A-[)~ contribution to (2.4.2.14) is negligible along the entire range 

of integration. 

Note that the right-hand side of (2.4.2.15) contains no time derivatives of X ,  or 

Em, a direct consequence of requiring only the real part of a"p12/dt2. This is a 

significant simplification compared to other  formulation^^^ which are complicated by 

such time derivatives. 

2.4.3 Phenomenological Modal Susceptibility 

The next step is to express <x,> in measurable quantities. This quantity is 

the susceptibility a t  om, weighted by the absolute square of the modal profile and 

averaged over the transverse plane (hence the angle brackets). 

First, by continuing the analysis of Section 2.4.2, it can be shown45 that 

<Im[xm] > is subject to gain compression of the form 

due to spectral hole burning, where < I ~ [ x ~ , ~ ] >  is the imaginary part of the modal 

susceptibility in the absence of light (the linear contribution) and Sshb is a parameter 

that can be fit to experiment4g. A comparison of the effects of [ I + s / s ~ ~ ~ ] - ~ - ~ ~ ~ ~  and 

[ I + S / S ~ ~ ~ ] - ' - ~ ~ ~ ~  gain compression on the relaxation oscillation frequency and damp- 

ing rate of single-mode semiconductor lasers50 implies that the former type more 

accurately predicts observed dynamical behavior, and so [ I + S / S , ~ ~ ] - * - ~ ~ ~ ~  gain 

compression is assumed in this thesis. 



Next, the position-dependent gain is defined as 

of which the linear contribution can be phenomenologically expressed as 

where l / ~ ~  is the threshold gain of the main mode, Am is the gain roll-off a t  w, and 

[dgo/an]th is the differential gain evaluated at  oo at threshold. Performing a 

weighted average over the transverse plane gives the linear contribution to the modal 

gain 

This can be combined with (2.4.3.1) to give the modal gain 

which is related to <Irn[xm] > by (2.2.4.11). 

Finally, we relate < ~ e [ ~ i ) ]  >, the deviation of the real part of the modal sus- 

ceptibility from its equilibrium value, to < ~ r n [ ~ L ) ] >  to further develop the phase 

rate equation (2.2.4.8). It has been argued in Section 6.5.1 of Reference [37] that the 

nonlinear contribution to <Relxm]> can be neglected compared to the linear contri- 

bution, so we allow 



< ~ e l x r ' l >  + <Re[x~,rn(l)l> 

The linewidth-enhancement factor can be defined for each mode as 

Note that evaluation a t  threshold implies measurement of the linear contribution. 

By separating XL,, into an equilibrium component X& and a carrier-number depen- 

dent contribution x e l ,  as in (2.2.4.1), we can make the linear approximation 

Combining (2.2.4.8), (2.4.3.6), (2.4.3.8), (2.2.4.11) and the last term of (2.4.3.4) ( G L ; ~  
contribution) gives the rate equation for the modal phase 

This section concludes with a discussion of intra-band optical transition contri- 

butions to the susceptibility. The detuning between the optical wave and the much 

lower-frequency intra-band transitions is large enough so that the associated suscepti- 

bility is almost completely reactive, and has been modeled51 by considering the car- 

riers as a free gss with a plasma frequency op<<wo. This effect is linear and is 

automatically included when a is measured. The reduction of gain by carrier heating 

due to intra-band absorption of photons has been recently discussed52, and may con- 

tribute to gain compression. 



neglected in favor of the spontaneous photon contribution, given by (2.5.2), to the 

total noise. 

The ensemble-average of the right-hand side of (2.5.2) can be written as 

where the first factor is the total rate of spontaneous radiative decay of carriers and 

the second factor is the fraction entering the mth mode. Precise evaluation of R, is 

not as critical as with G,, because in the latter case the net gain Gm-I/?, is a small 

difference that is highly sensitive to changes in N. Therefore we can make the 

approximation 

We can also make the approximation 

where ~ ~ ~ d ( , )  is the radiative (non-radiative) spontaneous decay lifetime of carriers at  

lasing threshold, not differential lifetimes at  threshold. The first approximation is 

justified since ?rad <<T, for high-quality GaAs/AlGaAs lasers (see Section 2.3.3. of 

Reference (531). The second approximation can be absorbed into the phenomenologi- 

cal parameter f3, as discussed below. 

Of all spontaneous photons, only a fraction are emitted in a direction and polar- 

ization consistent with the guided modes. Of these, few will be in the correct fre- 

quency range to enter the mth mode. Both the geometrical and spectral effects are 

included in P,. Because the longitudinal modes have very similar spatial properties, 

only spectral effects enter into the m dependence. For equally-spaced Fabry-Perot 



modes, p, should be linear in G,, which is nearly constant over the lasing modes 

near the center of the gain peak. Therefore we replace 

Pm + P (2.5.7) 

which is independent of m. Combining (2.5.4)-(2.5.7) gives 

Nth R, = P- 
7 8  

Assuming that Nth and 7, are known, p can be determined from experiment and 

absorbs all the approximations made in deriving (2.5.8). 

2.6 Single-Mode Equilibrium 

Before discussing dynamical effects (Chapter 3), it is interesting to solve the 

single-mode steady-state problem, particularly to estimate the effect of spontaneous 

emission and gain compression on the continuous-wave light/current characteristic. 

The equilibrium photon number is related to the power output from one facet Pout 

according to 

where R is the facet power reflectivity. The first factor is the cavity round-trip time, 

the second is the reciprocal of the probability of transmission of a given photon at 

the output facet and the third is the rate at  which photons are transmitted. Substi- 

tuting 
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Iiw = ~
A (2.6.2)

and

A.2

/-lg,e = 2LLlA.
(2.6.3)

where LlA.is the longitudinal mode spacing, into (2.6.1) gives

S(O) = -L 1 A3
hc2 1-R LlA Pout

(2.6.4)

Setting the left-hand side of (2.5.1) equal to zero gives

G(O) = -L - r3Nth
Tp T S(O)s

(2.6.5)

where (2.5.2) and (2.5.8) were used, neglecting the stochastic term. (2.4.3.5) gives

N(O) = Nth -

-L-G(O)
[
1+ S(O)

]

%

Tp Sshb

[

aGo

]aN th

(2.6.6)

and setting the right-hand side of (2.4.1.2) equal to zero gives

[

N(O)

]J = q ~+G(O)S(O)
(2.6.7)

so that (2.6.4)-(2.6.7) give the injection current necessary to support a prescribed opt-

ical output.

Using typical parameter values for semiconductor lasers (collected in Tables

2.6.1 and 2.6.2), the effect of gain compression and spontaneous emission on the

single-mode equilibrium point can be estimated. The saturation photon number was



Table 2.6.1 Semiconductor Laser Parametera I 
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Table 4.2 of 
Reference [20] 

Symbol 

L 

w 

V 

r 

d 

OL 

h 

ng 

7~ 

7 ,  

Nth 

d g / d ~  

Table 4.2 of 
Reference [20] 

Value 

240 pm 

4 Pm 

4.5 x 10-lo cm3 

0.15 

0.14 pm 

7.5 

818 nm 

4.1 

1.5 ps 

2.4 ns 

3 . 8 X  lo1* ~ r n - ~  

3.8 10-lB cm2 

Parameter 

Cavity length 

Stripe width 

Mode volume 

Vertical 
Confinement 

Factor 

Active 
Layer 

Thickness 

Linewidth- 
Enhancement 

Factor 

Wavelength 

Effective 
Group Index 

Photon Lifetime 

Carrier Lifetime 

Threshold 
Carrier 
Density 

Differential 
Material 

Gain 

Symbol 

L 

W 

V 

r 

d 

(Y 

h 

pg,e 

7~ 

7,  

Nth - 
v 

-- 'P,, BGL90 

rc aN 



Table 2.6.2 Semiconductor Laser Parametera I1 
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t 

Origin 

typical value 

n 

see text 

derived 
from 

Table 2.6.1 

n 

Reference (491 

derived 
from K 

POut=lO mW 

Value 

3.3 

0.32 

1.6 X 

1 . 4 ~  log 

9~ lo2 s-I 

1.2 W-' 

1.7X lo7 

4 x 10' 

Parameter 

Effective 
Phase Index 

Facet 
Reflectivity 

Spontaneous 
Emission 
Factor 

Threshold 
Carrier 
Number 

Differential 
Modal 
Gain 

Gain 
Compression 

Factor 

Spectral Hole-Burning 
Photon Number 

Typical 
Photon 
Number 

Symbol 

P e  

R 

I3 

Nth 

~ G L , o  
I ~ N  

K 

Sshb 

~ ( 0 )  



calculated by equating the threshold limits of [ I + S ( O ) / S ~ ~ ~ ] - "  and I-KP,~, a gain- 

compression factor popular in the l i t e r a t ~ r e ~ ~ ,  to obtain 

where (2.6.4) was used. 

The value of f3 cited in Table 2.6.2 was obtained by the author and Nu Yu for a 

single longitudinal mode of one emitter of a gain-guided twin-emitter device, by using 

POut(J) data taken below lasing threshold to fit P to (2.6.4)-(2.6.7) (neglecting gain 

compression). The single-mode output of a single emitter was isolated by dispersing 

the light in a spectrometer and using the exit slit to mask all but the desired mode. 

The near field was masked in the vertical direction using the entrance slit of the 

spectrometer, and in the lateral direction using a slit placed after the spectrometer 

exit slit. The absolute output power of the remaining light was then measured using 

a detector that had been calibrated by measuring its response to the unmasked out- 

put and comaring to the known light-versus-current characteristic of the twin- 

emitter. We can get a rough idea of the steady-state light levels a t  which the 

ensemble-average of spontaneous emission contributes significantly to the equilibrium 

photon number by finding the photon number that corresponds to G(')=o (tran- 

sparency) from (2.6.5), and finding the corresponding output power from (2.6.4). 

Using Tables 2.6.1 and 2.6.2 gives Pout=4 pW, which is much smaller than typical 

output powers. Spontaneous emission is important only at  low light levels, and can 

be neglected in calculating the equilibrium point under normal operating conditions. 

I t  is responsible for rounding of the "knee-f the light/current characteristic near 

threshold in the static case and for "seeding"the recovery of the photon population 

after a large optical pulse has depleted the gain in dynamical operation. 



To estimate the effect of gain compression on the linearity of J(POut), we use 

(2.6.4) and Tables 2.6.1 and 2.6.2 to calculate the output power corresponding to 

s ( ~ ) = s ~ ~ ~ ,  which gives POut'400 mW, several times the catastrophic facet damage 

limit of typical single-emitter devices. Therefore, gain compression can also be 

neglected in calculating the equilibrium point under normal operating conditions. It 

acts primarily to limit large optical pulses and reduce the peak responsivity of the 

device to injection current modulation (Section 3.3). 

Neglecting spontaneous emission and gain compression, (2.6.5)-(2.6.7) simplify to 

give 

where 



3. THEORY OF SINGLEEMITTER DYNAMICS 

3.1 Chapter Overview 

Some of the dynamical mechanisms a t  work in single-emitter semiconductor 

lasers are discussed in this chapter. The list is not meant to be exhaustive, only 

those mechanisms likely to influence the dynamics of coherent arrays under normal 

experimental conditions are included. Many interesting phenomena, e.g. passive 

mode-locking in a multi-section device, are beyond the scope of this chapter. 

The most important aspect of a dynamical effect is its characteristic frequency. 

Several effects will be found to occur at  frequencies far below the 500 MHz-50 GHz 

regime of interest, while others will be near the relaxation oscillation frequency, typi- 

cally a few gigahertz. These can often be distinguished by their effects on various 

other characteristics, such as the light-versus-current curve, the emission spectrum, 

the near-field and the far-field. 

Section 3.2 examines the simplest case, that of a noiseless and undriven single- 

mode device. The phase of the optical field is found to be subsidiary, and the 

dynamics are contained in the photon-number, carrier-number phase plane, preclud- 

ing optical chaos. The stability of the equilibria found in Section 2.6 is discussed, 

and the relaxation oscillation and characteristic damping frequencies are introduced. 



Section 3.3 discusses small-signal sinusoidal injection current modulation of a 

single-mode device. The responsivity transfer function is found, and some aspects of 

bandwidth optimization are touched upon. 

Section 3.4 looks into the self-stabilization of the lasing mode in the quiescent 

single-mode case, and the suppression of side modes during transient multi-mode 

operation. 

Section 3.5 discusses dynamical noise in single- and multi-mode devices, and 

uncovers a possible complication in measuring the imaginary part of the coupling 

coefficient of coherent arrays (Section 6.6), related to mode-hopping. 

Section 3.6 assesses the effects of optical feedback, present in any experiment, on 

the stability of a single-mode device. It is estimated that optical feedback will not be 

troublesome during ordinary experimental conditions. 

Section 3.7 examines the effect of homogeneously-distributed saturable absorbers, 

presumably defects due to aging. Instabilities leading to self-sustained pulsations at 

the relaxation oscillation frequency are shown to arise if certain conditions on 

absorber satuiability and density are met. 

Section 3.8 discusses mode profile dynamics, in which the shape of the optical 

mode and carrier distribution change with time, rendering the number rate equations 

invalid. 



3.2 Autonomous, Deterministic Single-Mode Dynamics 

This section deals with the simplest case, in which optical field and carrier 

profiles are constant so that modal rate equations can be used, and only one mode is 

lasing and is not subject to noise, feedback, saturable absorbers or modulation. Each 

of these issues will be touched upon in subsequent sections of this chapter. 

The single-mode versions of (2.5.1) and (2.4.1.2) are 

Nth 

and 

where the functional form of G has been left unspecified for the moment. 

Note that the phase equation (2.4.3.9) has not been included. This is because 

the phase does not appear in the right-hand side of either the photon number or the 

carrier number equation, and so is a subsidiary dynamical variable. Because there 

are only two coupled dynamical variables, the Poincare-Bendixson Theorem informs 

us that an asymptotic solution of (3.2.1) and (3.2.2) must be a fixed point or a limit 

cycle54, and that chaos is impossible55. This has been discussed in a different context 

by Arecchi (see Chapter 2 of Reference [30]), by whose classification scheme semicon- 

ductor lasers fall into class B, for which chaos is ruled out. The semiconductor laser 

is designated class B because its material depolarization rate is rapid compared to its 

photon and carrier decay rates, allowing the material polarization to be adiabatically 

eliminated, leaving only two degrees of freedom. 



The procedure for finding the equilibrium points of (3.2.1) and (3.2.2) was given 

in Section 2.6. The linear stability of an equilibrium point is assessed by investigat- 

ing the evolution of small perturbations about the equilibrium point (see Chapter 5 

of Reference [56]). To this end we set 

S + + ~ e [ S ( l ) e ~ ~ ]  (3.2.3) 

with a similar expression for N, and 

We then linearize (3.2.1) and (3.2.2) using the procedure described in Appendix C, 

obtaining the matrix equation 

where 

where (2.4.3.5) and s(')< <SBhb was used, and 



are various rates that have been evaluated using Tables 2.6.1 and 2.6.2 and collected 

in Table 3.2.1 for convenient reference. As is negative because gain compression has 

been assumed, but if a photonlgain positive feedback mechanism were present, As 

could be positive. AN is positive, since gain must increase with carrier number, and 

%, a, and ap are positive by definition. Note that a,, AN and ap are of similar mag- 

nitude. 

Setting the determinant of (3.2.5) to zero gives the characteristic equation 

The roots of (3.2.11) will both have negative real parts, i.e. the equilibrium point will 

be stable, if and only if both bracketed coefficients are positive. The only way to 

violate either condition is if As>AN+a,+aP=l.Ox lo9 s-I or 

As>apAN/as+ap=570~ lo9 s-l. Because of this disparity, only the stability boun- 

dary corresponding to the linear term will be considered. Two of the cases in which 

the stability condition 

can be violated are when saturable absorption (Section 3.7) or self-focusing (Section 

3.8) mechanisms are present. 

The roots of (3.2.11) are approximately 

where 



Table 3.2.1 Typical Dynamical Process Ratea 

parameter value 

% 

As 

8 s  

AN 

"P 

(" r 
y r 3  - 

2 n  

W d  
Vd=  - 

2 n  

("d 
Vd=  - 

2 -rr 

670X 10' s-' 

9 -1 -7.8X 10 s 

0.42 X lo9 s-' 

0.36 X lo9  s-' 

0.23X lo9 s-' 

2.5 GHz 

4.3 GHz for As=-7.8x 10 Q s -1 

38 GHz for As=O s-' 



is the relaxation oscillation frequency (where (3.2.6) and (3.2.8) were used), and 

is the "damping frequency", a parameter related to the rate of damping of relaxation 

oscillations. These have previously been introduced in Chapter 4 of Reference [53]. 

Because of the dependence of the damping rate (real part of (3.2.13)) on aG/aS, it 

has been proposed that the measured damping rate could be used to evaluate rival 

models of gain compression57. 

Note that ap is much larger than I As I , aB, AN and ap. This causes Im[h], which 

gives the angular frequency of small oscillations about the equilibrium point, to be 

nearly independent of As, so that the instability frequency is fixed at  the relaxation 

oscillation frequency, irrespective of the destabilizing mechanism. 

3.3 Injection Current Modulation 

Although the primary focus of this thesis is on autonomous dynamics, injection 

current modulation of semiconductor lasers is an important burgeoning technology. 

This section reviews modulation of single-emitter lasers as a prelude to Chapter 8, 

which discusses the modulation of coherent arrays. Here, consideration is limited to 

the case of small-signal, sinusoidal modulation of a single-mode semiconductor laser. 



To obtain the response of the optical output to injection current modulation, we 

write the injection current as 

where fl is the modulation frequency, with similar expressions for S and N. G is 

written in a form analogous to (3.2.4)) and the rate equations are linearized to give a 

matrix equation analogous to (3,2.5), with 

and an inhomogeneous right-hand side given by 

By inverting the matrix equation we obtain the ratio of the amplitudes of the small- 

signal optical and injection current modulation 

where 

is the transfer f ~ n c t i o n ~ ~ ~ ~ * ,  and w, and ad were defined by (3.2.14) and (3.2.15), 

respectively. It is interesting to note in passing the similarities between the stability 

analysis of Section 3.2 and the small-signal analysis of this section: if we find the 

roots iR of the denominator of H, which represents a finite optical modulation for no 

injection current modulation (incipient instability), we recover both the stability 



boundary (3.2.12) and the angular frequency of incipient instability. 

Figure 3.3.1 plots 1 H(Q) I for the values of v, and vd given in Table 3.2.1. Both 

curves have flat low-frequency responses, rising to a peak at  the relaxation oscillation 

frequency and rolling off a t  -40 dB/decade for fi>>o,. Figure 3.3.1 shows the 

importance of including gain compression (vd=4.3 GHz) in a realistic calculation. 

The modulation bandwidth can be defined by the -3 dB point of the transfer 

function, 

where the common convention5*~ 59 

X (in dB) = 2O.loglOX 

is used. Substituting (3.3.6) into (3.3.5) gives 

where 

We shall now find the maximum bandwidth ~ - ~ ~ ~ ( r n a x ) .  If the laser is driven 

hard, s(O) is large and -As+AN > > as+ag, so that (3.2.15) gives 

lim 
~ ~ O ~ ~ r n  

m a 1  = T~ 

This limit is not a t  all difficult to approach under typical semiconductor laser 



0.3 3 30 

modulation frequency in GHz 

Figure 3.3.1 Single-Emitter Modulation Transfer Functions 

Note that the relaxation oscillation resonance at 2.5 GHz is drastically dampened by 
including gain compression (vd=4.3 GHz). 



operating conditions. Since wd is constant under hard-driving conditions, we can 

maximize W - 3 d ~  with respect to or by differentiating (3.3.8) with respect to V and 

setting the derivative to zero. This gives 

% w,(max) = 2 o d  = ~ - ~ ~ ~ ( m a x )  (3.3.11) 

This condition also yields the flattest response over the bandwidth (see Fig. 4.5 of 

Reference [53J), an important consideration in communications applications. Using 

the values given in Tables 2.6.1 and 2.6.2, (3.3.10) and (3.3.11) give vd=4.6 GHz and 

~ - ~ ~ ~ ( m a x ) = 6 . 6  GHz. It is apparent that the bandwidth is limited by gain compres- 

sion. 

If we could eliminate gain compression by setting Sshb=m, (3.3.10) would give 

vd=106 GHz. Unfortunately, it then becomes impossible to fulfill (3.3.11), and in 

fact or << od. It is then appropriate to expand (3.3.8) to first order in < < 1, to 

get 

This justifies the simple and widely-used strategy of seeking to increase the relaxation 

oscillation frequency, by reducing the photon lifetime, increasing the photon number 

or increasing the modal differential gain (see (3.2.14)). Standard tactics include shor- 

tening the cavity and operating far above thresholdeo. Catastrophic facet damage is 

often avoided by using a window structuree1. The differential gain can be increased 

by operating at  low temperatures, which shortens the tail of the Fermi-Dirac distri- 

bution of the carriers, putting a greater fraction of added carriers near the gain peak 

where they can contribute to lasing. This approach is not practical for remote 

transmitters in communications systems. It has been suggestedB2 that quantum well 



lasers might have larger modulation bandwidths than double-heterostructure devices 

because of their larger differential gain dg/dn. The present room-temperature o - 3 d ~  

record is 24 GHz, held by a double-heterostructure InGaAsP deviceB3. 

Another factor limiting the injection-current modulation bandwidth of semicon- 

ductor lasers is electrical parasitics. The total device response is the product of the 

intrinsic and electrical transfer functions, so it does no good to increase w - ~ ~ B  if the 

bandwidth is parasitic-limited. AC equivalent-circuit models of semiconductor lasers 

have been f o r m ~ l a t e d ~ ~ ~ ~ ~ ,  which typically treat the active region as a series resis- 

tance and a shunt capacitance, insulating layers as capacitances and buried- 

heterostructure blocking layers as distributed RC-networks. Much progress has been 

achieved in optimizing these parameters, notably the elimination of distributed capa- 

citance by using a constricted-mesa geometry65. 

Measurement of the intrinsic transfer function by injection current modulation is 

complicated by the presence of electrical-parasitic roll-off. The intrinsic transfer 

function can be obtained directly from the spectrum of the intensity noise (Section 

3.5) of the device, biased at  the intended operating point but not modulated. An 

alternate technique is active-layer photo-mixing66. 

Finally, several techniques have been proposed for modulation above the limit 

imposed by the relaxation oscillation frequency. Since, physically, or is related to the 

rate a t  which the gain medium can recover after being depleted by an optical pulse, 

all such techniques are founded on minimizing reliance on gain modulation. Active 

and passive longitudinal m o d e - l o ~ k i n ~ ~ ~ , ~ *  have been used to obtain a narrow-band 

response a t  the inter-modal frequency of the longitudinal modes of a Fabry-Perot 

semiconductor laser, which is typically above 100 GHz. Active mode-locking of the 



lateral modes of a coherent twin-emitter array has been proposed89-71, and is dis- 

cussed in detail in Chapter 8. Active mode locking requires modulation of the gain 

medium with a depth on the order of the difference of the gains of the main and side 

modes, which can be quite small. Polarization self-modulation72 is a technique that 

is completely independent of gain modulation. 

3.4 Longitudinal Mode Self-Stabilization 

For quasi-single-mode devices, it is commonly observed that side modes are 

suppressed to a greater degree than is expected from the roll-off of the gain curve at  

threshold. This self-stabilization of the dominant mode is the subject of this section. 

In Chapter 4, the coherent array lateral modes belonging to a longitudinal mode 

are treated as a closed system, in that interactions with the lateral modes of other 

longitudinal modes are not considered. This is partially justified because the fre- 

quency spread of a group of lateral modes is typically small compared to the longitu- 

dinal mode spacing, so that intra-group and inter-group beat frequencies are easily 

isolated. Further justification arises from longitudinal mode self-stabilization. 

The multi-mode rate equations are given by (2.5.1) and (2.4.1.2). As in the 

single-mode dynamics case discussed in Section 3.2, the phases +, are subsidiary. 

Equilibrium points are given by 

I- 

s!) = 7, 
1 - -G,(S(~),N(~)) 
?P 



where s(O) refers to all the equilibrium modal photon numbers collectively. Under 

some conditions more than one equilibrium point may exist. A means of measuring 

the equilibrium modal gains G!)(J) is afforded by fitting (3.4.1) to s%)(J), provided 

there is an equilibrium point sufficiently impervious to noise-driven mode hops (Sec- 

tion 3.5) to allow tirne-averaged measurement of s:). 

When the injection current is below threshold, gain compression is negligible and 

G$) is a function of N(O) alone. Since B G ~ ) / B N ( ~ ) > o ,  s:), G:) and N(') rnonotoni- 

cally increase with J such that (3.4.1) and (3.4.2) are fulfilled. If we momentarily 

assume that the gain medium is homogeneously broadened, i.e. that GP) continues to 

be independent of the modal photon numbers even above threshold, then the photon 

numbers s t )  will continue to monotonically increase as J-m. It is commonly 

observed, however, that the power of side modes decreases with increasing injection 

current over some range above threshold73. The lasing mode often persists after a 

shift in temperature or some other parameter has reduced its linear gain below that 

of another mode. Such self-stabilization makes possible a set of equilibrium points, 

each of which is associated with a different lasing mode. A lasing mode lasts until 

noise of sufficient strength disrupts it, a t  which time another mode begins lasing. To 

the extent that only one longitudinal mode lases a t  a time, only one group of lateral 

modes need be considered in studying coherent array dynamics. 

Modal gain can be approximated by46,74 



where 

and S represents modal photon numbers collectively. Go(N) is the linear 

(homogeneously-broadened) gain of the central mode and A, is the suppression of the 

mth mode due to gain roll-off. The final term takes gain suppression of the mth 

mode due to all the other modes into account. Here, K is a strength factor that can 

in principle be obtained by expanding the material polarization to third-order in the 

electric field, or by fitting (3.4.1) to experimental data. a' and 7' have been tenta- 

tively identified as the linewidth-enhancement factor and the intra-band relaxation 

time74, an identification that has been c o n t e ~ t e d ~ ~ .  These quantities have been 

primed to reflect the uncertainty of this identification. 

If we assume that only the-domingnt mode contributes significantly to the gain 

compression, the sum in (3.4.3) collapses to k=d, where the dominant mode is not 

necessarily a t  the gain peak. The nonlinear gain then has components symmetric and 

anti-symmetric in om,+ with the anti-symmetric component enhancing longer- 

wavelength and suppressing shorter-wavelength side modes7*. 

Several mechanisms contributing to gain compression can be identified. Spectral 

hole burning, shown to be Lorentzian in shape45, has a hole-width that is large com- 

pared to a typical longitudinal mode spacing, and so contributes weakly to side-mode 

enhancement. Population pulsations and four-wave mixing help suppress side 

 mode^^^?^^, the latter mechanism contributing to the anti-symmetric term. Longitu- 

dinal hole burning of the gain is expected to enhance the side ~ n o d e s ~ ~ , ~ ~ ,  while long- 

itudinal hole burning of saturable absorbers in the n-cladding layer has been pro- 

posed as a side-mode suppression r n e c h a n i ~ m ~ ~ .  



It is interesting to note which of these mechanisms come into play for lateral 

modes. Since lateral mode spacing is typically smaller than longitudinal mode spac- 

ing, spectral hole burning is expected to be even less important in discriminating 

among lateral modes than among longitudinal modes (Section 2.4.2), although it con- 

tributes an overall gain compression which is important to take into account (Section 

3.3). Population pulsations and four-wave mixing can still contribute, but longitudi- 

nal spatial hole burning of either gain or absorbers is irrelevant because all the lateral 

modes of a group have the same longitudinal structure. Lateral spatial hole burning 

may be important, and is most naturally accounted for in the coupled-array-mode 

model of Section 4.2. 

For a device with sufficiently stable modes, the asymptotic dynamics are 

described by the single-mode model given in Section 3.2. The transient dynamics of 

the side modes can be obtained in terms of the lasing mode photon number, assum- 

ing that (3.4.3) is accurate over the period of interest and spontaneous emission can 

be ignored. (2.5.1) can be rewritten as 

which can be integrated to give 

where 

A similar expression for the linear gain case has appeared in Section 4.5.1 of 



Reference [53]. This can be used to estimate dynamic side-mode suppression, which 

is more difficult to achieve than quiescent side-mode suppression. 

3.5 Dynamical Noise 

So far we have dealt with noiseless semiconductor lasers, which can be described 

by deterministic rate equations. In this section we discuss the effects of spontaneous 

emission, the dominant noise source in semiconductor lasers, on single-emitter 

dynamics. The discussions of single-mode intensity noise and mode-partition noise 

have been drawn from Chapter 7 of Reference (531, in which they are covered in 

greater depth. 

The relative intensity noise (RIN) over a bandwidth Av is given by Equation 

(7.12) of Reference [53] 

where Ws is the spectral density of the intensity noise. Here, S may represent either 

the total photon number or the photon number of a particular mode. For single- 

mode operation, the expression analogous to Equation (7.41) of Reference [53] in our 

notation is 

where H is the small-signal modulation transfer function defined by (3.3.5) and or 

and wd are the relaxation oscillation and damping frequencies defined by (3.2.14) and 



(3.2.15). Because 1 H 1 '  appears in (3.5.2), RIN(w,) can be much larger than RIN(0). 

Using Tables 2.6.1, 2.6.2 and 3.2.1, the low-frequency limit of (3.5.2) gives 

RIN(O)=1.3x 10-l2 HZ-'. With the 200 MHz resolution bandwidth associated with a 

streak camera window of 5 ns, the relative intensity noise is 2.5X 

The observed noise is typically much greater than this, due to three factors. 

The first is measurement noise. The second %oise"contribution is actually deter- 

ministic chaos, which may be caused by optical feedback, saturable absorbers or self- 

focusing, treated in Sections 3.6, 3.7 and 3.8, respectively. The third source is mode- 

partition and mode-hopping noise, found in multi-mode lasers. 

Mode-partition noise is the intensity noise of a particular mode of a multi-mode 

laser, and can be orders of magnitude larger than the noise observed for the 

spectrally-unresolved output. This reduction in the intensity noise of the total out- 

put compared to that of a particular mode can be traced to the near-homogeneo~~s 

interaction between the modes and the gain medium, which fixes the total output at  

the level supported by the injection current without constraining the fluctuations of 

any particular mode. The quasi-single-mode case, in which a lasing mode and a weak 

side mode are present, has been analyzed. 

The equilibrium number of the side mode is given by (2.5.1), with the net modal 

gain - 1 / ~ ~ , ~ ,  where T ~ , ~  is the time constant associated with the transient suppression 

of the side mode, given by (3.4.7) with m=l  and d=O. One obtains 

where (2.5.2) and (2.5.8) were used, neglecting the stochastic term. Neglecting the 

nonlinear gain and inserting some reasonable values gives 



where A h  is the spacing of the longitudinal modes and AARO is half the distance 

between the G=O (transparency) points on the modal gain curve a t  threshold. The 

mean photon number of the side mode is then <S1>=3.8x lo4, which when corn- 

pared to a typical (see Table 2.6.2) mean photon number of the main mode 

<So> =4 x 10' implies that 9 % of the output power is in the side mode. 

The mode-partition noise of the main mode can be found by using (3.5.3) to 

rewrite Equation (7.58) of Reference [53] 

The low-frequency limit of (3.5.5) gives RIN(O)=l.Gx lo-'' HZ-', over an order of 

magnitude larger than the low-frequency limit of the single-mode RIN, giving a 200 

MHz streak camera resolution bandwidth relative intensity noise of 0.3 %. 

Mode hopping involves the extinction of the lasing mode in a quasi-single-mode 

device, simultaneous with the commencement of lasing in another mode, which then 

becomes the metastable lasing mode. This contrasts with mode-partition fluctua- 

tions, in which the dip in main mode power is transient. The hops are instigated by 

spontaneous emission noise. Assuming that no long-term drift or the deliberate 

change of a parameter shifts the linear net gain curve, the existence of more than one 

metastable mode implies that some self-stabilization mechanism is a t  work, as dis- 

cussed in Section 3.4. 



Hopping between two metastable modes has been studied experimentally and 

theoretically for both I ~ G ~ A S P ~ ~  and ~1GaAs" semiconductor lasers. In both cases, 

each mode had a rectangle-wave power output, with transitions between the %nu 

and "offn states occurring after random dwell times, and rapidly compared to the 

mean dwell time. It is intuitively clear that hopping will occur more.frequently with 

increasing spontaneous emission noise, and that the mean dwell time of a mode 

will increase with increasing suppression of the other mode. The outputs of the 

modes are roughly complementary, and the deviation of the total output from its 

mean value is called mode-hopping noise78. 

The InGaAsP device of Reference [76] was run such that each mode had approx- 

imately a 50 % duty cycle and the same average power output, and their intensity 

time series were found to be statistically similar. The power spectra of these time 

series were found to be Lorentzian with a corner frequency (frequency a t  which the 

lines asymptotic to the low- and high-frequency limits of a log-log plot of the power 

spectrum intersect) of v,=1.4 MHz, corresponding to a mean dwell time of 

l/.rrv,=230 ns. The dwell times reported for the AlGaAs device of Reference [77] are 

in the 10 ps regime. 

These cutoff frequencies are far lower than the 500 MHz-50 GHz range of 

interest, alternately, since the dwell times are much longer than the 5 ns window 

accessible to the streak camera, it is unlikely a mode hop will occur during a given - 

frame. Nevertheless, unequal dwell times cause the ratio of the average power of the 

modes, which is easy to measure, to differ from the ratio of the power of the 

modes, which will be of importance in determining the imaginary part of the cou- 

pling coefficient of the twin-emitter device, as described in Section 6.6. The relation- 

ship between these quantities is 



where and 02=1-01 are the duty cycles of the modes. If these are unknown, it is 

necessary to measure Pl(on) and P2(on) directly, using a spectrally-resolved streak 

camera setup. 

3.6 Optical Feedback 

So far we have examined dynamical effects present in isolated semiconductor 

lasers. In real life there is always some optical feedback. Feedback is often inten- 

tionally introduced by coupling the semiconductor laser to an external cavity, for the 

purpose of side-mode suppression, linewidth reduction, or tuning. Here we are con- 

cerned with unwanted feedback caused by reflections from the surfaces of optical 

components in a characterization setup. 

Regardless of its source, optical feedback can be modeled as an external cavity 

with a round-trip time delay T,,~, an effective power reflectivity ReZt and a 

frequency-dependent phase shift. Since this phase shift is unknown and may be 

time-dependent due to mechanical vibrations, it will be ignored in the following dis- 

cussion, which is intended only to estimate the magnitude of unwanted feedback. 

The feedback strength is commonly expressed (e.g. Chapter 9, Reference [53]) as 

7txt  [l+a2]' 

TL 

This expression has been grouped into three factors. The first is the ratio of the 



fields of the external cavity reflection to the facet reflection. Multiple external cavity 

reflections are negligible for the low feedback levels expected. The second factor is 

the ratio of the external cavity to the laser cavity round-trip times, which can be 

quite large. The third factor includes the destabilizing effect of the amplitude-phase 

coupling described by the linewidth-enhancement factor. 

Five feedback regimes have been identified79 and are discussed below in order of 

increasing feedback strength. Regime I is defined by C<1, which allows only one 

external cavity mode per laser longitudinal mode to satisfy the overall round-trip 

phase condition. Thus the feedback is too weak to destabilize the laser. Regime I1 

occurs for C somewhat greater than 1, where two or more external cavity modes exist 

and have comparable gains, causing mode hopping. As feedback increases, the exter- 

nal cavity mode with the smallest linewidth becomes favored and relatively stable 

emission is obtained. This has been designated Regime 111. At still higher feedback, 

the coherence collapseao Regime IV is encountered, in which the output is wildly 

erratic. Finally, a t  very high feedback levels the laser and external reflector must be 

considered a single composite cavity and stable operation is obtained once more. 

This is Regime V. 

In Appendix D it is shown that the power reflectivity of the optical components 

in a typical setup for the characterization of coherent semiconductor laser arrays is in 

the Rezt =5X lo-' to Red =2X lo-' range. Assuming a round-trip time ratio of 

Text Lext ---- - - 50 cm z 500 (3.6.2) 
TL F ~ , ~ L  4.1.240 pm 

and using 01=7.5 from Table 2.6.1 gives C=3.2 to C=20, and we expect Regime I1 

behavior. 



The power spectrum of the intensity of a nominally single-mode laser operating 

in an unstable feedback regime is greatly enhanced compared to the intensity noise 

spectrum of the isolated device. The following features have been noted81: peaks a.t 

multiples of T,:, under an envelop with peaks a t  multiples of the relaxation oscilla- 

tion frequency, with a bandwidth approximately equal to the spectral linewidth, 

which is given by 

where C ( T ~ ~ )  is the autocorrelation of the electric field with a delay of one external- 

cavity round trip. Assuming the worst case of C(T,,)=~ and ReZt =2x lo-', the 

linewidth is Av=7.5 GHz, which is a frequency range somewhat lower than that asso- 

ciated with the dynamics of the lateral modes of coherent arrays, the main topic of 

this thesis. Moreover, any feedback effects should be recognizable by their charac- 

teristic frequency T,:, which can be detected using a spectrum analyzer. For these 

reasons, as well as the expected feedback levels being too small to cause coherence 

collapse (Regime IV), optical feedback is not expected to  be troublesome in the exper- 

imental work to follow. 

3.7 Dynamics Associated with Saturable Abaorbers 

Photon loss mechanisms can be divided into two classes: unsaturable and satur- 

able. The former include facet transmission and absorption, and waveguide scatter- 

ing, all of which can be combined into a linear loss term s / ~ ~ .  



Saturable absorbers have a finite recovery time after disposing of a photon, dur- 

ing which they cannot absorb another photon. A sufficiently large photon density 

can "1eachVhe absorbers, reducing the cavity loss. As discussed in Section 3.2, 

positive feedback between the photon number and the net gain can destabilize the 

dynamics. Saturable absorbers can cause two fundamentally different types of insta- 

bility. 

The first type is passive longitudinal mode-locking caused by an inhomogeneous 

spatial distribution of saturable absorbers. This is typically accomplished using a 

two-section device, where one section is reverse-biased to form the saturable 

absorber68. Although of considerable interest in its own right, this topic is beyond 

the scope of this chapter. 

In the second case, microscale defects are invoked to explain the self-sustained 

pulsations that are often observed as semiconductor lasers age or are otherwise dam- 

aged82. These defects are envisioned as local traps which can absorb a photon and 

make a transition to an excited state, which persists for a characteristic time 7, 

before decaying. The excited state is unavailable for further absorption, making the 

absorber saturable. 

It is assumed that the defects are uniformly distributed throughout the mode 

volume. This prevents saturable-absorber coupling of the longitudinal modes (see 

Section 27.6 of Reference [83]), and allows the use of the single-mode rate equations. 

The rate equation for the absorber number is 

where Qo is the cold-cavity absorber number and 



where oa is the absorber cross-section and V is the mode volume, is the rate at  which 

a single photon is absorbed by a single absorber, normalized to the absorber recovery 

time. The other rate equations are 

and 

where Nth is the threshold carrier number in the absence of saturable absorbers, and 

the gain has been assumed to be independent of S for simplicity. Note that since 

there are now three dynamical variables, optical chaos is possible. 

The steady-state absorber number is 

which can be substituted into the steady-state version of (3.7.3) to eliminate N(') in 

favor of do), which in turn can be substituted into the steady-state version of (3.7.4) 

to obtain the injection current as a function of the photon number 

where Jth, the threshold current in the absence of saturable absorbers, was defined in 

(2.6.12). The increase in threshold current due to saturable absorbers is found by 

setting s(')=o in (3.7.6) 



A Jth B Qo 

The stability of the equilibrium given by (3.7.6) can be evaluated by noting 

whether the injection current increases or decreases with increasing photon number 

to maintain equilibrium. Normally, an increase is required to support the increased 

rate of stimulated emission. If a decrease is required, positive feedback exists 

between the photon number and the modal gain, and the equilibrium is unstable. In 

the s(O1-m limit, J(O) clearly increases with do), so that the equilibrium is always 

stable for large enough photon numbers. To find the stability boundary, we 

differentiate (3.7.6) with respect to s(O) and set the result equal to zero to get an 

expression for the photon number Sbnd, above which the equilibrium point is stable 

For a real, positive root to exist, the term independent of Sbnd must be negative. 

This can happen only if 

The left-hand side of (3.7.9) can be interpreted as the ratio of the excitation to the 

relaxation rates of an absorber due to each photon, while the right-hand side is the 

ratio of the stimulated to the spontaneous recombination rates of a carrier pair due 

to each photon. Thus, a necessary requirement for saturable-absorption instability is 

that the absorbers must be bleached more easily than the gain is saturated, a well- 

known result84. Table 3.7.1 shows that this condition is fulfilled, using some pub- 

lished parameter values. Given (3.7.9), minimum absorber number is 



Table 3.7.1 saturable Absorption Parameters 

parameter 

t J 

value reference 
-- 

1821 

n 

(3.7.2) 

Tables 2.6.1 and 2.6.2 

(3.7.10) 

(3.7.7) 

7, 

(J a 

B 

B 

7s [%Ith 
Q0,min 

A Jth 

100 ps 

10-l4 crn2 

1.6 X lo-' 

7.5 

6.3 x lo6 

7.6 mA 



Assuming that Qo is only slightly larger than QO,min gives 

The increase in lasing threshold corresponding to Qo,min is found to be 7.6 mA, 

which is easily noticeable. Thus, if a device with a threshold that has increased over 

its lifetime begins to exhibit sustained self-pulsations, saturable absorber defect for- 

mation might be suspected. As discussed in Section 3.2, the frequency of pulsations 

is expected to be the relaxation oscillation frequency, in the small-signal limit. 

3.8 Mode Profile Dynamics 

This section considers cases in which the lateral profile of the optical mode is 

time-dependent. This renders invalid the separation of lateral and time dependencies 

of the fields, used in Section 2.2.3 to derive the rate equations. The coupled problem 

is very difficult. ~ m a l l - s i ~ n a l ~ ~  and f ~ l l ~ - n u m e r i c a l ~ ~  spatio-temporal models have 

been published. 

The most conspicuous sign of mode-profile instability is a "kink", or discon- 

tinuity of the slope of the light-versus-current curve. Kinks are typically accom- 

panied by the lateral shift or narrowing of the fundamental mode, or the onset of las- 

ing of a higher-order mode86. Dynamic instabilities at a fixed injection current have 



been theoretically predicted86, which involve periodic variations of the lateral posi- 

tion and width of the fundamental mode. All of these problems can be avoided by 

using an index-guided or even a narrow-stripe gain-guided design, as do nearly all 

modern single-emitter devices. Gain-guided arrays continue to be popular due to 

their relative fabrication simplicity, however, providing a motivation to study mode 

profile dynamics. We assume that no lateral index-guiding structures have been built 

into the devices discussed in the remainder of this section. 

Even in a device with no intentional lateral index-guiding, inhomogeneities, inev- 

itable during growth, can cause variations in the effective index along the lateral 

direction. Small flaws can have surprisingly large consequences, particularly for 

lateral position stability. It has been estimated that an active layer thickness taper 

of one lattice constant over the stripe width can induce noticeable lateral mode 

shiftss6. 

Thermal lensing is an important waveguiding mechanism. The dominant heat 

source in semiconductor laser appears to be the non-radiative decay of  carrier^^^?^', 

which induces a temperature difference of a few kelvin between the center and edges 

of the stripe. Since the index of refraction for an GaAs/AlGaAs increases with tem- 

perature, positive thermal lensing is weakly guiding. Index differences between stripe 

center and edge of 1 x to 3x are typically a ~ s u m e d ~ ~ , ~ ~ .  It has been pro- 

posed that thermal lensing may be responsible for giving the Hermite-Gaussian-like 

higher-order modes observed for wide-stripe devices, which cannot be explained by 

purely carrier-induced guiding87. Both index-inhomogeneities and thermal lensing 

can be considered static in the 500 MHz-50 GHz dynamical regime. Inhomogeneities 

are of course strictly static, while thermal effects react too slowly to enter into sub- 

nanosecond dynamics, as discussed in Appendix A. 



The carriers, however, can respond rapidly enough. Carriers have two effects: a 

higher-density region will contribute both gain guiding and index anti-guiding rela- 

tive to an adjacent lower-density region. These effects always oppose each other, and 

either can dominate depending on the situation. Since thermal lensing and carrier 

anti-guiding are both proportional to the carrier density, they partially cancel. It has 

been noted that carrier anti-guiding is the stronger e f f e ~ t ~ ' ? ~ ~ .  The net guiding due 

to  carriers and thermal lensing must be strong enough to overcome diffraction for 

effective lateral waveguiding. 

Two types of lateral modes, "well-behaved" and "filamentaryn, have been 

identified8'. Well-behaved modes rely on gain-guiding, while filaments are essentially 

index-guided, due either to i n h ~ m o ~ e n e i t i e s ~ ~  or carrier density dips caused by 

spatial-hole burningg0. Well-behaved modes typically occupy the en tire stripe width, 

while filaments are narrow and occur a t  random lateral positions. The most impor- 

tant prognosticator of mode behavior is W/2Ld, where W is the stripe width and Ld 

is the carrier diffusion length, typically about 3 Frn in GaAs/AlGaAs d e v i ~ e s ~ ~ ~ ~ ~ .  

For W/2Ld<l, spatial hole burning is difficult to achieve and the modes are well- 

behaved. For W/2Ld>2, dips in the carrier density at  the filament have been 

observed by viewing the lateral spontaneous emission profile during filamentary l aa- 

inggO. These modes were probably self-focused, but it can be argued that the carrier 

dip was an effect rather than a stable self-consistent solution to the interaction of 

photons and carriers, and the filament was stabilized by an i n h o ~ n o ~ e n e i t ~ ~ ~ .  

Inhomogeneities are obviously necessary to explain lateral shifts in otherwise 

symmetric devices. Models that include an asymmetric index perturbation are able 

to predict the sharper, lower-threshold kinks caused by lateral shifts, while symmetric 



models can predict only the softer, higher-threshold kinks caused by self-focusing and 

higher-order lateral modess6. An increase in the linewidth-enhancement factor has 

been associated with a greater tendency toward lateral shiftings8. 

Self-focusing self-sustained pulsations have been studied for wide-stripe gain- 

guided GaAsIAlGaAs laserssg. The optical mode was observed to narrow from a 

full-width of 9 pm at the beginning to 7.2 pm at the end of the =1 ns pulses, with 

no lateral shifting. The pulse repetition frequency (150-300 MHz) was substantially 

less than the relaxation oscillation frequency and had a different dependence on the 

injection current, contrary to predictions of small-signal theorys5. To account for the 

unexpectedly long period between pulses, it was proposed that the gain had to build 

to considerably beyond the quiescent threshold before emission of a pulse. 

Differential efficiencies >I00 % were noted at the threshold of self-sustained pulsa- 

tions, which indicated that the self-sustained pulsation state used gain more 

efficiently than the quiescent state, probably because the time-averaged carrier 

number was lower, allowing less loss due to spontaneous carrier decay. 

The process of pulse emission can be considered as an interaction of carrier gain 

guiding and index anti-guiding, and static thermal lensing. As the pulse builds in 

intensity, carriers are depleted and gain guiding is reduced, but anti-guiding, in 

which the effect of the carriers is partially offset by thermal lensing, is reduced more 

rapidly so that there is a net focusing effect. This causes the modal gain to increase 

despite the partial depletion of carriers, and the pulse grows until the carriers are 

fully depleted. The thermal lensing effect is crucial to this process8g. 

Existing models seem to indicate that self-focusing alone is insufficient to 

account for self-sustained pulsations. In one case85, failure of the model to predict 



self-focusing instabilities may have been due to the use of a small value (a=1.5) of 

the linewidth-enhancement factor. Saturable absorbers are often invoked as a 

further destabilizing mechanism. That self-pulsations in index-guides are less com- 

mon but by no means unheard-of argues that self-focusing is only partially responsi- 

ble for instabilities. On the other hand, chirps of "0.5A toward longer wavelengths 

during pulsing have been observed89, indicating an increase in the effective index con- 

sistent with self-focusing. Finally, index perturbations along with large values of ol 

have predicted self-sustained pulsations in both the lateral position and width of the 

lasing mode86. 



4. DYNAMICAL MODELS OF COHERENT ARRAYS 

4.1 Chapter Overview 

This chapter extends the analyses of Chapter 2 to coherent arrays. Three 

models of array dynamics are presented. In order of decreasing complexity and gen- 

erality, they are the continuum, the coupled-lateral-mode and the coupled-emitter 

models. In all cases, a distributed-loss, standing-wave approach is used to separate 

the longitudinal modes, and it is assumed that longitudinal mode interactions can be 

neglected, for the reasons discussed in Section 3.4. A single vertical mode is assumed 

and accounted for by the use of the effective index and a vertical confinement factor, 

reducing the problem to one spatial dimension. 

Section 4.2 describes the continuum and coupled-lateral-mode models. The con- 

tinuum model is generally applicable and requires the self-consistent solution of the 

optical and carrier diffusion equations, along with Laplace's equation in the p-type 

cladding layer. The coupled-lateral-mode model assumes that the optical wave can 

be separated into modes with distinct and constant frequencies of oscillation and nor- 

malized lateral profiles, and characterized by time-dependent complex amplitudes. 

By replacing the optical eigenvalue equation of the continuum model with a set of 

modal rate equations, the volume of computations is radically reduced. It remains 



necessary to solve the carrier diffusion equation and Laplace's equation at every time 

increment, however. 

Section 4.3 describes the coupled-emitter model, in which all spatial dependence 

is eliminated and coupling between emitters is described by complex constants. This 

model forms the basis for all subsequent work in this thesis. The connection with the 

coupled-lateral-mode model is discussed. 

Section 4.4 discusses twin-emitters, the simplest of coherent arrays. The 

coupled-emitter model is applied to weakly-coupled twin-emitters, to obtain the 

twin-emitter rate equations. The equilibrium points of the rate equations are shown 

to correspond to the lateral modes of the array. This allows the coupling coefficient, 

a key parameter in the rate equations, to be related to the frequency and gain 

differences between the lateral modes, which can be measured spectroscopically. 

Lastly, the dependence of the stability of the lateral modes on the coupling coefficient 

is found. 

Section 4.5 uses a simple model of a twin-emitter to obtain the coupling 

coefficient as a function of emitter spacing. The utility of the coupled-emitter 

approach becomes apparent when the coupling coefficient has been related to spec- 

troscopic properties (Section 4.4) and the design (Section 4.5) of the twin-emitter 

array. 

4.2 Continuum and Coupled-Lateral-Mode Modela 

The continuum model is obtained by substituting 



into (2.2.2.16) and cancelling the common x and z dependence, where the vertical 

profile +(x) is normalized analogously with (2.2.3.4). The longitudinal mode index 

"mmn is then dropped in accordance with the neglect of longitudinal mode interactions 

to get 

where K encompasses the longitudinal and vertical propagation constants and r is 

the vertical confinement factor. The carrier diffusion equation (2.3.1.2) is used, with 

the spontaneous decay rdk given by (2.3.1.5) and the stimulated recombination given 

by 

The presence of j(y,t) in (2.3.1.2) requires the solution of Laplace's equation in the p- 

type cladding layer, as discussed in Section 2.3.1, subject to the boundary conditions 

given by current injection from each of the emitter contacts. While being founded 

the most directly on basic principles, the continuum approach is unwieldy for numer- 

ical implementation and offers little physical insight. The partial differential equation 

for the optical field typically requires several orders of magnitude more computations 

than the diffusion equation8$, therefore the volume of computations can be drastically 

reduced by a modal decomposition of the optical wave equation to yield rate equa- 



tions. This gives the coupled-lateral-mode model, to be discussed for the remainder 

of this section. 

The coupled-lateral-mode model is obtained from the continuum model by sub- 

stituting 

where the index "mn now refers to lateral modes. It is assumed that the modes are 

close enough in frequency to all see the same local carrier-induced susceptibility ~ ( y ) .  

Discrimination between the lateral modes will be dominated by their relative overlap 

with the gain regions, rather than the roll-off due to their position on the gain curve. 

We now assume, as in Chapter 2, that some X(0) exists such that all the lateral 

modes and the carrier density co-exist in equilibrium. Substituting (4.2.4) into (4.2.2) 

gives 

In practice, rather than solve (4.2.5) for each mode, om can be measured spectroscop- 

ically, I f, I can be obtained from the spectrally-resolved near-field intensity, and the 

phase of f, can be determined using interference techniquesg1. Once the lateral 

profiles are known, the dynamics of the complex modal amplitudes are given by 

where is defined similarly to (2.2.4.1), and <...>, represents integration over 

the lateral coordinate, weighted with I fm 1 2. 



The carrier diffusion equation (2.3.1.2) is used, with the spontaneous decay rdk 

given by (2.3.1.5), but the stimulated recombination term 

must be used, because the beat frequencies between lateral modes can be on the order 

of the relaxation oscillation frequency, typically a few gigahertz, allowing the carriers 

to respond to modal interference. This contrasts with the situation for longitudinal 

modes, whose beat frequencies are far larger than the carriers can respond to. 

Despite the vast simplification of eiiminating the optical eigenvalue equation of 

the continuum model, the coupled-lateral-mode model remains cumbersome to imple- 

ment because of the carrier diffusion equation and Laplace's equation. Furthermore, 

the complexity of the model obscures the qualitative dynamical behavior. For these 

reasons, a simpler, more intuitive model is sought. 

4.3 Coupled-Emitter Model 

To achieve the desired simplicity, we must eliminate all spatial dependence from 

the model, leaving only ordinary differential equations in time (rate equations) for the 

dynamical variables. We can extend the single-emitter rate equation approach to 

arrays by allowing linear coupling between the emitters. This approach has its origin 

in coupled-mode theoryg2. The first task is to show how the coupled-emitter model 

develops from the coupled-lateral-mode model. Next, the real part of the coupling 

matrix is experssed in terms of the frequencies and overlap integrals of the profiles of 



the lateral array and emitter modes. Finally, the coupled-emitter rate equations are 

derived, assuming nearest-neighbor-only coupling described by a complex constant. 

The coupled-emitter model is derived from the coupled-lateral-mode model by 

expanding the optical field in the lateral eigenmodes of the array 

and also in the set of single-emitter TE, modes for an array of P emitters 

where fo is the unperturbed single-emitter profile and yp is the lateral displacement of 

the center of the pth emitter. Since the single-emitter modes are not eigenfunctions 

of (4.2.5), the set of profiles fo(y-yp) are neither complete nor orthogonal, so that @' 

is only an approximation to the optical field 9. 

The goal is to express the emitter coupling dynamics in a set of linear, homo- 

geneous, first-order differential equations with constant coefficients, i.e. 

= irl-C1 (4.3.3) 
coupling 

where C '  is a P x 1 column vector of the emitter amplitudes and q is a P x P constant 

matrix of complex coupling coefficients. To proceed, we require that C '  be such that . 

the best fit of 9' to 9 be maintained at  all times. Defining 

a best-fit criterion can be expressed as 



which insures a minimum for each p and all t.  Substituting (4.3.1), (4.3.2) and 

(4.3.4) into (4.3.5) gives 

A-C' = B-T 

where A is the P x P matrix 

B is the P x M matrix 

and T is the M x 1 column vecto; 

Solving (4.3.6) for C' and differentiating with respect to time normalized to the pho- 

ton lifetime gives 

Since the coupling matrix q must be independent of Cm(t), we are free to make 

the simplest choice, that the modal amplitudes are given by their timeindependent 

equilibrium values 

Cm(t) = c!) (4.3.11) 

The coupling matrix obtained by this procedure is constrained to be real. This is 

because the imaginary part of the coupling matrix is related to the differences in the 



gains of the lateral modes. When spontaneous emission is neglected, as it has been in 

this section, different modal gains prevent any two modes from simultaneously being 

in equilibrium, since the stronger mode will clamp its gain at  threshold, causing the 

weaker mode to die off exponentially. Spontaneous emission acts as a source of pho- 

tons to sustain the weaker mode a t  some finite equilibrium photon number. 

The twin-emitter coupling matrix is calculated using (4.3.16) in Section 4.4, and 

is explicitly shown to be real. The imaginary part of the twin-emitter coupling 

matrix is introduced ad hoc in Section 4.5. An experimental method for measuring 

the imaginary part of the twin-emitter coupling matrix is given in Section 6.6. 

Using (4.3.11), the time derivative of T can then be expressed as 

where A is the M x  M diagonal matrix 

- 
Am,m = ~p(@o-@,) (4.3.13) 

Inserting (4.3.12) into (4.3.10) and using (4.3.6) to eliminate T gives 

where B-' is the M x  P left inverse of B 

B - ~ . B  = I 

where I is the MXM identity matrix. Comparing (4.3.14) with (4.3.3) gives 

- A-~.B.A.B-~.A 9~ - (4.3.16) 

This is an important general result. It says that the real part of the coupling matrix 

is completely determined by the frequencies and profiles of the single-emitter mode 



and array modes. Appendix E demonstrates the application of (4.3.16) to the case of 

the array lateral modes being given by sinusoidal supermodes14, which results in a 

bi-diagonal coupling matrix (nearest-neighbor-only coupling) with equal elements. 

We turn now to deriving the coupled-emitter rate equations. From this point on 

we assume uniform nearest-neighbor-only coupling 

Separating the dynamical variables into products of real amplitudes and unit- 

modulus phase factors as in (2.2.4.6), defining 

eP = Op+l -- <bp (4.3.18) 

as the difference in phase of successive emitters and separating the real and ima- 

ginary parts of (4.3.3) gives 

and 

[ * d 0 ]  
= -  Ap-1 C O S ~ ~ ~ - ~  - TI- 4-1 s i n ~ , - ~  

dt coupling AP 

AP Ap+l A, Ap+l + .R [G-T] cosOp TI [G+T] sine, 



In addition to coupling, the dynamical equations contain terms corresponding to 

gain and spontaneous emission. These are assumed to be given by the single-emitter 

expressions. Substituting (2.5.2) and (2.5.8) into (2.5.1) and using (2.2.4.9) and 

(2.4.3.5) gives 

- 1 - - 
uncoupled 2 

where omzoo has been used to neglect gain roll-off and it has been assumed that 

only the pth emitter amplitude contributes to the gain compression of the pth 

emitter. Differentiating (4.3.18) with respect to time and using (2.4.3.9) gives 

The dynamics of A, are given by adding (4.3.19) and (4.3.21), and the dynamics of 

Op are given by adding (4.3.20) and (4.3.22). 

The carrier number dynamics are given by 

which is a generalization of (2.4.1.2) such that each emitter has an independently- 

adjustable current Jp and it has been assumed that diffusion of carriers between 



emitters is negligible. The special case of real coupling and no spontaneous emission 

or gain compression has previously been reported32. This completes the coupled- 

emitter formalism. 

4.4 Twin-Emitter Arrays 

The twin-emitter is the simplest coherent semiconductor laser array, consisting 

of two identical emitters placed side-by-side in the junction plane. The epilayers pro- 

vide index-guiding in the vertical direction, and lateral waveguiding is provided by 

the same mechanisms as in single-emitter devices. The emitter widths are 2-4 pm, 

which typically yields single TEoo-mode operation for an isolated emitter. The 

emitter center-to-center spacing is typically 6-12 pm, which is small enough to allow 

mutual coupling, but not so small that the array succumbs to the instabilities associ- 

ated with broad-area devices. 

The approach taken in this thesis is to assume that the dynamics of the twin- 

emitter array are representative of array dynamics, so that the direct modeling of 

larger arrays can be avoided. 

The emitters are often electrically isolated from each other by etching the epi- 

layer metallization and cap layer between the emitters. If the resistance between the 

emitter contacts is large compared to the effective resistance of the diodes, then the 

diode currents can be independently controlled. This makes possible a number of 

interesting applications, including beam-scanningg3, optically-g4 and electronically-95 

triggered bistable optical logic elements, picosecond optical pulsing95 and high- 



frequency m o d u l a t i ~ n ~ ~ - ~ ~ ,  which is discussed in Chapter 8. 

Depending on the lateral guiding mechanism and the emitter spacing, several 

coupling regimes can be identified. For our purposes, a strongly-coupled device is 

one which must be modeled using a continuum approach, and is really just a wide 

single-emitter, although some control of the lateral carrier profile may be afforded by 

separate contacts. Lateral modes may be structurally unstable (sensitive to the varia- 

tion of parameters, i.e. injection currents), or even spatio-temporally unstable at  a 

fixed operating point, limiting their usefulness as a concept. The gain-guided twin- 

emitter described in Reference 195) had 3 pm stripes with a 6 pm center-to-center 

spacing, and was clearly a strongly-coupled device. Self-consistent continuum models 

for twin-emitters have been publishedg6~ 97. 

A moderately-coupled device is characterized by the existence of well-defined 

lateral modes, but the deviation of these modes and the carrier profile from linear 

combinations of the isolated-emitter modes and carrier profiles are sufficiently severe 

as to require retention of the carrier diffusion equation and Laplace's equation in the 

p-type cladding layer. Thus the coupled-lateral-mode model is the simplest applica- 

ble formalism. 

A weakly-coupled device is one in which the lateral modes and the carrier profile 

sufficiently resemble linear combinations of the isolated-emitter profiles, so that the 

coupled-emitter model may be used. In a gain-guided device, this requires that the - 

width of the region between emitters be greater than about two carrier diffusion 

lengths (Ldz3 prn in The weakly-coupled cme is the focus of the 

remainder of this thesis. 

The TEoo modes of the emitters combine to give a pair of lateral array modes, 



one symmetric and the other anti-symmetric about the lateral symmetry plane, as 

shown in Figure 4.4.1. Such a pair exists for each longitudinal mode of the array. 

They are also called the "in-phase"and "out-of-phase"modes, respectively, because 

of the relative phase of their lobes. In general, the array modes have different oscilla- 

tion frequencies and threshold gains than each other or the single-emitter mode. The 

longitudinal propagation constant and the vertical profile being the same for both 

modes, the oscillation frequency increases with the lateral curvature (the absolute 

ratio of the second derivative of the profile to the profile itself) of the lateral profile. 

The out-of-phase mode must change sign in the symmetry plane, forcing greater cur- 

vature and a higher oscillation frequency than the in-phase mode. This is both 

experimentally observed and predicted by coupled-mode theoryg8. The gain of each 

lateral mode is given by the overlap integral of its intensity profile with the position- 

dependent gain. Depending on -the geometry of the array, either array mode may 

have a lower threshold gain than the other, and thus dominate the emission spec- 

trum. 

The frequency splitting of the array modes gives rise to mode beating, which can 

also be viewed as "energy s1oshing"between the emitters. This is shown in Figure 

4.4.2, where it has been assumed that both modes are present with equal amplitudes. 

At t=O, the modes add constructively a t  emitter #1 and destructively at  emitter #2. 

At t=.rr/(o--o+), the out-of-phase mode has advanced by a half-cycle relative to 

the in-phase mode, and the situation has reversed. 

The next task is to obtain the coupling matrix. In the twin-emitter case, it 

turns out that q, given by (4.3.16), is independent of the modal profiles, being com- 

pletely determined by the frequencies of the lateral array and emitter modes. This 

result will now be proven. 



in-phase lateral array mode 

twin-emitter structure 

out-of-phase lateral array mode 

Figure 4.4.1 Twin-Emitter Geometry and Lateral Modes 

Linear combinations of the single-emitter modes yield non-degenerate, orthogonal 
array modes in the limit of weak coupling. 



in-phase mode 
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~ut-of-phase mode 

emitter 1 emitter 2 

Figure 4.4.2 Mode Beating and Energy "Sloshing" 

The slight detuning of the in-phase and out-of-phase array modes causes their 
constructive interference to shift back and forth between the emitters. 



Referring to (4.3.7), the diagonal elements of A are real and equal, since they are 

the overlap integrals of identical emitter modes with themselves. Therefore 

It is also clear that the off-diagonal elements are complex conjugates of each other, 

where emitter #1 (#2) is centered a t  -yo (yo). If we make the reasonable assump- 

tion that the emitter modes are laterally symmetric 

for an emitter centered at  y=O, then the off-diagonal elements are real, and therefore 

equal. This is because (4.4.2) is invariant under the combined operations of complex 

conjugation and reflection in the array lateral symmetry plane (y--y), upon use of 

(4.4.3). Therefore 

By the symmetry properties of the array modes, it is apparent that 

and 

Using (4.4.1) and (4.4.4)-(4.4.6) and the general property 

gives 



Note that r ) ~  is real. This results from the equilibrium assumption (4.3.11), as dis- 

cussed in Section 4.3. Because coo-o+zo--oo, the diagonal elements can be 

neglected, and we henceforth drop the row and column indices and understand 17 to 

refer specifically to cross-coupling, and no longer to self-coupling. 

The next step is to write the twin-emitter rate equations. It is convenient to 

renormalize the optical field amplitude, gain and injection current as in Reference 

I331 

- S [E] 
2 aN th 

(N- Nth) 

and renormalize the spontaneous emission 

and gain compression 

Substituting (4.4.9)-(4.4.13) into (4.3.19)-(4.3.23) gives 



Note that 0 is an integral part of the dynamics, as opposed to its single-emitter coun- 

terpart +. The role of the linewidth-enhancement factor a is now apparent, large 

values magnify fluctuations in 0 and destabilize the array. Chaos is possible in the 

five-dimensional phase space that contains the dynamics. 

The remaining analyses in this thesis are small-signal linearizations about equili- 

bria, so for simplicity and to emphasize emitter coupling effects, spontaneous emission 

and gain compression are neglected by setting B=O and Khb=w. The general equa- 

tions (4.4.14)-(4.4.18) are retained for numerical integration in Chapter 5. Except 



during the discussion of injection current modulation (Chapter 8), the injection 

currents will be assumed to be constant and equal 

We next solve for the steady-state solutions of (4.4.14)-(4.4.18) by setting the 

time derivatives equal to zero. 

The 0(')=0 and 0(O)=n equilibrium points correspond to the in-phase and out-of- 

phase array modes, respectively. We can interpret (4.4.21) and (4.4.22) by noting 

that if 0, z(')(T) < z(')(o) and s(O)(n) > s(')(o), so that the out-of-phase mode has 

a lower threshold and a larger photon number than the in-phase mode, and thus 

dominates the emission spectrum. The opposite argument holds for qI < 0. 

We will now determine the stability of the equilibrium points to small perturba- 

tions. Linear stability theory is summarized in Appendix C. For the system given 

by (4.4.14)-(4.4.18) and (4.4.20)-(4.4.22), (C.7) becomes 



where 

By alternately adding and subtracting the first and second rows and the fourth and 

fifth rows, (4.4.23) can be separated into a 2x2 subsystem 

and a 3x 3 subsystem 



Note that a linear transformation to new variables cannot affect the stability of the 

equilibrium point. 

Taking the determinant of (4.4.25) gives 

where 

and 

Note that since the renormalized equilibrium photon number x(O)' is always positive 

and z(O)>-1/2 by (4.4.21) and (4.4.22), condition ( C . l l )  is fulfilled and the 2 x 2  sub- 

system is always stable. 

Taking the determinant of (4.4.26) gives 

where 



and 

Setting A3=0 gives a quadratic equation in q~ as a function of y1 for the stability 

boundary corresponding to the third condition of (C.13). This boundary is easily 

plotted in the complex-q plane. 

The stability boundary corresponding to the second condition of (C.13) is found 

by setting AlA2-A3=0, where 

which can be plotted similarly to (4.4.33). 

We are now able to partition the complex-q plane into stability regions. Since 

rlR>O is always observed, it is not necessary to plot the other half plane. It is con- 

venient to use a logarithmic scale, so the horizontal axis of the standard stability plot 

is assigned the range - ~ S ~ O ~ ~ ~ ( ~ ~ ) I O .  Since both signs of q1 are observed, the 

upper vertical axis is assigned the range and the lower vertical axis is 



assigned the range - 5 ~ l o g ~ ~ ( - ~ ~ ) ,  and are joined a t  191 l =lo-', which is small 

enough to be considered zero for all practical purposes. Thus the horizontal axis can 

be considered the real-q axis. Figures 4.4.3-4.4.5 were generated using the FOR- 

TRAN program nstability.fn, listed in Appendix H, with a z 7 . 5 ,  T=1600 and 

p=0.66. 

Figure 4.4.3 shows the regions of stability and instability for the in-phase mode. 

The boundary is formed entirely by the A3=0 condition of (C.13). As discussed in 

Appendix C, the frequency of incipient instability as this boundary is crossed is zero, 

so that dynamical variables diverge without oscillation from their unstable equili- 

brium values, as will be seen in Figure 5.3.4. 

Figure 4.4.4 shows the regions of stability and instability for the out-of-phase 

mode. The boundary is formed partially by the A3=0 condition and partially by the 

A1A2-A3 condition, which intersect at  the cusp whose position is given by A1=O. 

The A3=0 portion of the boundary of Figure 4.4.4 coincides with that of Figure 

4.4.3, so that the figures can be combined to give three disjoint regions in the portion 

of interest in the complex-q plane: two regions where one mode is stable and the 

other is unstable in turn, and the third region in which both modes are unstable. 

These stability boundaries have been verified by numerically integrating the rate 

equations for q on either side of a boundary, and checking for the loss of stability of 

the appropriate equilibrium point. They also conform to published resultss3 for 

ll1=0. 

Note the correlation between the stability of the equilibrium points and the 

threshold gains, given by (4.4.21), of the corresponding lateral modes. This can be 

interpreted as follows: when q I > O ,  the out-of-phase mode has a greater overlap with 
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Out-of-Phase Mode 
Stability Boundary 

The Hurwitz condition A,=O The Hurwitz conditions A,=O and 
partitions the complex-rl plane into A,&- A,= 0 form boundaries that 
regions of in-phase mode stability meet at A1=O and define the region 
and instability. of out-of-phase mode stability. 



the lateral gain distribution than does the in-phase mode. Thus, if the device is ias- 

ing in the purely in-phase mode, the out-of-phase mode has a higher-than-threshold 

gain available to it, and any perturbation will be quickly amplified so that the out- 

of-phase mode takes over lasing, clamps the gain at  its threshold, and suppresses the 

in-phase mode. We therefore conclude that the in-phase mode is unstable. For 

T ~ < O ,  the opposite argument holds. 

The frequency of incipient instability wbst along the A1A2-A3 portion of the 

out-of-phase mode stability boundary is plotted in Figure 4.4.5. Different behavior is 

encountered depending on the magnitude of the beat frequency 

compared to the relaxation oscillation frequency, given by (3.2.14). For 

0--0+ <<w,, 

where (4.4.11) and (4.4.24) were used. For 0--o+>>o,, 

In other words, in the limits of large disparity, the instability frequency is the larger 

of the mode beating and relaxation oscillation frequencies. Therefore, although the 

mechanism of instability is mode competition, on the small-qR end of the boundary 

the dynamics will resemble relaxation oscillations. This is supported by numerical 

simulations. This concludes the analysis of the dynamics of the unmodulated twin- 

emitter array. 



Figure 4.4.5 Frequency of the Onset of Instability 

The angular frequency, normalized to the photon lifetime, of small oscillations about 
the out-of-phase equilibrium point is plotted along the out-of-phase stability 
boundary. 



4.5 Dependence of q on Twin-Emitter Spacing 

In the previous section, it was shown that r ) ~  is proportional to the beat fre- 

quency and q~ is related to discrimination between the twin-emitter array modes. 

Since dynamical behavior depends sensitively on q, it is highly desirable to under- 

stand the dependence of q on design. In this section will be related to the spacing 

of the emitters using a simple model of a twin-emitter array. The goodness-of-fit of 

the single-emitter mode expansion of the array modes, upon which the validity of the 

coupled-emitter model depends, will also be examined. 

The twin-emitter is modeled as the five-layer slab waveguide shown in Figure 

4.5.1. The layers are fictitious in that they represent abruptly-changing effective 

indices of the vertical waveguide, rather than real epitaxial features. Layers 2 and 4 

have indices of refraction p1 and act as guides, while layers 1, 3 and 5 have indices of 

refraction p2<p1  and act as clads. The indices of refraction are taken as real, and 

for the moment the waveguide is assumed to be lossless. 

The lateral profile is obtained by solving (4.2.5), which in this case reduces to 

This is easily solved for constant p(y) within each layer, and solutions are matched at  

layer boundaries according to 

f,(left) = f,(right) 

and 

df, df, 
-(left) = -(right) 
dy dy 



layer 

-S-W -S+W S-W S+W 

lateral coordinate 

Figure 4.5.1 Five-Layer Dielectric Slab Waveguide 

Layers 2 and 4 act as waveguides, and 1, 3 and 5 act as cladding layers. The 
exact (array) and approximate (emitter) lateral modes of the structure are shown. 



which are obtained by integrating (4.5.1) over an infinitesimal interval straddling the 

boundary. To obtain the guided modes of the array we require that 

Assuming that each guiding layer by itself can support only the fundamental mode 

limits the number of guided array modes to two. Making use of the symmetry of the 

structure about the y=O plane, the guided array modes can be required to have the 

symmetry properties 

-cf,(-Y) = f,(y) (4.5.5) 

Unnormalized solutions of (4.5.1)-(4.5.5) are 

f+(O<y<s-w) = H+cosh[y+y] 

where 



where K +  is the lateral propagation factor in the guiding layers and y+ - is the lateral 

decay factor in the cladding layers of the lateral modes. They are related by 

and are solutions to 

l+tanh[y-(s-w)] 
tan[2~-w] = K-y- 

2 (4.5.18) K-tanh[y-(s-w)]-y- 

The modal eigenfrequencies are related to the propagation factor components by 

The eigenfrequencies and lateral profiles of the single-emitter (three layer) 

waveguide are also needed. These are conveniently obtained by letting s-ao in the 

foregoing. Both (4.5.17) and (4.5.18) reduce to 

which can be rewritten as 

where W  was defined in (4.5.16). Single lateral mode behavior of a single emitter can 

be assured by requiring that W 1 7 ~ / 2 .  The unnormalized profile for emitter 1 (2) 



centered at y=s (y=-s) is 

which are the well-known symmetric three-layer waveguide solutions (see Section 2.3 

of Reference [99]). 

Finally, we require various overlap integrals of these modes. 

$03 

A,,, = *ff = 
(KowI2 + W - s i n [ ~ ~ w ]  + w2 

-a: w Y ow 



sin [(KO+ K -)w] sin [ ( K ~ -  K -)w] + c-w [ + 
( K ~ + K - ) w  I (4.5.30) 

(K~-K- )w 

where A and B are the matrix elements described by (4.4.1)-(4.4.6). The orthogonal- 

ity of the array modes is expressed by (4.5.26). 

We are now in a position to determine the the real part of the coupling matrix 

as a function of emitter spacing. Making the approximation 

and using (4.5.19) in (4.4.8) gives 



Figures 4.5.2-4.5.4 were generated using the FORTRAN program "five.guide.f", listed 

in Appendix H. Figure 4.5.2 plots the self-coupling (diagonal elements) and cross- 

coupling (off-diagonal elements) of the emitters as a function of s/w for W=n/2, 

w=3.5 pm and the parameters given in Table 2.6.1. The emitters touch to form a 

single emitter of width 4w when s/w=l. It is apparent that the self-coupling effect is 

indeed negligible. Since the real part of the cross-coupling coefficient YR is always 

positive, the model predicts that the out-of-phase mode oscillates a t  a higher fre- 

quency than the in-phase mode regardless of emitter spacing, matching experiments. 

The next task is to calculate the error made in fitting the single-emitter modes 

to the array modes. In the s-+m limit, coupling is weak, and we expect the approxi- 

mation of the array modes as linear combinations of single-emitter modes to be good. 

As s decreases, coupling increases and the best fit to the array modes becomes 

increasingly poor. The fit error may be defined as 

where C14,1(2) are the best-fit coefficients defined by (4.3.5). We now assume that the 

in-phase array mode has unit amplitude and the out-of-phase array mode has zero 

amplitude, and use (4.3.6)-(4.3.9) to find the best fit a t  t=O, which is 

Making the opposite assumption gives 



Figure 4.5.2 Emitter Self- and Cross-Coupling 

The diagonal (self-coupling) and off-diagonal (cross-coupling) elements of the five- 
layer dielectric-slab coupling matrix are plotted against emitter spacing normalized 
to the emitter width. Self-coupling is found to be negligible. 



Substituting these into (4.5.33) and integrating gives 

and 

These are plotted against q~ in Figure 4.5.3, using s/w as an adjustable parameter. 

It can be seen that the fit grows worse xTi ,  such that Q> 10 % for qR=O.l, giving a 

qualitative indication of the validity range of the model. 

To obtain q ~ ,  we violate the passive waveguide assumption by allowing gain 

gl>O in the guiding layers and loss g2<0 in the cladding layers, but assume that the 

mode profiles and frequencies are unaffected by these perturbations. g1 and g2 are 

normalized to the photon lifetime T*. The net gain of a mode is given by 

where r is the lateral mode confinement factor 

a-w r = 
m 

We assume that the clads have uniform loss equal to the inverse of the photon life- 

time, independent of the injection current to the guides. Therefore 
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Figure 4.5.3 Fitting Error as a Function at Coupling

The error in fitting the emitter modes to the array modes grows as the square of the
coupling, showing that the twin-emitter model begins to break down as llR exceeds
0.1.
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g2 = -1 (4.5.40)

Next we assume that

f+>f- (4.5.41)

and that the in-phase mode is in equilibrium with a net gain of zero. Then

1-f +

gl = f +
(4.5.42)

The net gain of the out-of-phase mode is negative, thus it will die out as t_oo, leaving

the pure in-phase mode. In that case, we can identify the modal amplitude with the

amplitude of each emitter. The opposite argument can be made by reversing the

sense of (4.5.41). In either case we can identify Z(O) with the net gain experienced by

the single-emitter mode as

f
(0)

1 f 0- :!: = Z(O) = 11lcos8
2 f:!:

(4.5.43)

where (4.4.21) was invoked and the confinement factor of the dominant mode is

intended to be chosen. f:!: can be found from (4.5.25) by dividing the sum of the

ncn and ns" terms by the entire right-hand side. Similarly, fo can be found from

(4.5.27) by dividing the sum of the "W" terms by the entire right-hand side.

Figure 4.5.4 plots both 11R and 111as functions of s/w. At large spacing 111is

positive, which means that the out-of-phase mode is favored. This is physically rea-

sonable since the out-of-phase mode has a node at y=O, and consequently less over-

lap with the wide, lossy region between the guides than does the in-phase mode. For

closely-spaced emitters 111is negative, favoring the in-phase mode. Apparently the

severe curvature imposed on the out-of-phase mode by requiring it to change sign in



- 115 -

0.10

0.05

TJR

~ '-_.' " ' ' " ",-,-,,-...-..-.-....
0.00

TJI

-0.05

-0.10
1 2 3

slw

-
Figure4.5.4 Real and ImaginaryParts of the CouplingParameter

11R>Ocorresponds to the observation that the out-of-phase mode has a shorter
wavelength than the in-phase mode. 111changing sign implies that the in-phase
(out-of-phase) mode is favored by strong (weak)coupling.
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the narrow central region causes it to have large tails in the outer lossy regions which

reduce the net gain.

The values for 1)R and 1)1 obtained using this model are significantly smaller

than the value measured for the device21 whose parameters were used to generate the

numerical results of this section. The author believes that this discrepancy can be

attributed to the comparison of a gain-guided device, whose curved wavefronts

presumably cause more rapid" communication" between the emitters, to an index-

guided model with flat wavefronts. Nevertheless, the 1)(s/w) features discussed above

are probably general, and indicate that considerable control of the coupling

coefficient is available to the designer. In the actual design process, a numerical cal-

culation appropriate to the device geometry can be used15 to determine 1) as a func-

tion of the design parameters.

At least two other coupling constants, K and c, appear in the literature14, 15.

These are proportional to each other and to 1). It may be noted that there is a

difference in sign between the relations of 1) and c to the relative frequency and gain

of the array modes. A more serious conflict becomes apparent when comparing Fig-

ure 4.5.4 to Figure 4 of Reference [15], where it is the real part cr that changes sign

as the emitter separation is varied. This cannot be explained as a relative factor of i

between the definitions of 1) and c, because in both cases the real (imaginary) parts

are proportional to the frequency (gain) splitting of the array modes.



6. NUMERICAL INTEGRATION OF THE TWIN-EMITTER MODEL 

6.1 Chapter Overview 

The twin-emitter rate equations (4.4.14)-(4.4.18) cannot be integrated analyti- 

cally without simplification, which is a perilous undertaking with non-linear equations 

because seemingly minor modifications can yield results that are not even approxi- 

mately similar to the true solution. Numerical integration offers the only hope of 

exploring the dynamics of the model in any depth. The fundamental analytical 

result of Section 4.4, the stability boundaries, barely scratch the surface of the sub- 

ject. In fact, since their basin of attraction is not known, the probability of conver- 

gence to a stable equilibrium point starting from arbitrary initial conditions may be 

so small as to make that equilibrium point negligible. 

On the other hand, numerical integrations require a considerable amount of 

computer time, and must be done separately for each set of device parameters, 

operating point and initial conditions, whereas analytical results establish continuous 

regions of dynamical behavior in the parameter space with few computations. Thus, 

the techniques are complementary. 

Section 5.2 describes the FORTRAN program 9wostrip.for "used to  numerically 

integrate the twin-emitter rate equations. Section 5.3 discusses the results in a 



qualitative manner. The predictions of Section 4.4, summarized in Figures 4.4.3- 

4.4.5, are verified, and several interesting dynamical regimes within the unstable 

region are identified. 

5.2 Numerical Integration 

The twin-emitter rate equations (4.4.14)-(4.4.18) were numerically integrated 

using the FORTRAN program "twostrip.for", whose source code is listed in Appen- 

dix H. A variable-order, variable step Gear method (NAG library routine nd02ebfn) 

is used to integrate the equations, which are quite stiff because (4.4.14)-(4.4.16) vary 

on a time scale characterized by the photon lifetime T ~ ,  while the dynamics of 

(4.4.17) and (4.4.18) are characterized by the carrier lifetime T,, and T ~ < < T , .  The 

integration routine refers to the user-defined subroutines "fcn"and "pederv", which 

specify the differential equations and their Jacobian matrix, respectively, and writes 

the integrated dynamical variables to output files using the subroutine 'out". 

Twostrip reads the file "twostrip.prmn, which contains device parameters (except 

q), quantities specifying the injection current, the initial conditions and program con- 

trol parameters. The program is designed to scan over multiple q values, which are 

read sequentially from the file netatable.prm". Each q point is specified by a quadru- 

plet of integers (sigfigr,tenpwrr,sigfigi,tenpwri), from which q is determined using 

1 ~ [ 7 p  in ps] 
.lookup(sigfigr).lO- tenpwrr TR = 40 

where lookup(sigfigr) is given in the ntwostrip.forn source code. An analogous expres- 



sion is used to determine ql. This rather arcane scheme insures that the modulation 

frequency, given by 

for out-of-phase resonant modulation, is a multiple of 250 MHz and a divisor of 1 

THz. This simplifies interpretation of the power spectra used in injection current 

modulation studies, which are calculated at increments of 250 MHz from 4000 con- 

secutive data points spaced at  1 ps intervals. 

The final preliminary task is to synthesize the output file names. These are of 

the form xx.yyyy, where xx specifies the dynamical variable (xx = xl ,  x2, th, zl or 

22) and yyyy is the q-specifying quadruplet discussed above. Actually, it is the 

intensities (x2) and the phase shift normalized to n ( R / n )  that are recorded in the 

appropriate output files. 

If the injection current is modulated, the program searches for convergence of 

the dynamical variables to a limit cycle with a period equal to or a multiple of the 

modulation period. The multiple-modulation-period provision allows investigation of 

sub-harmonic response cycles. The search is accomplished by successive integration 

over the anticipated period of the response, and comparing the dynamical variables 

a t  the beginning and end of the period, according to a criterion with a preset toler- 

ance. If the system converges to a limit cycle or a preset number of iterations is 

exceeded, the program proceeds to the output stage. The convergence search can be 

bypassed in the case of unmodulated injection current by setting the iteration limit 

to zero. In the output stage, 80 ns of the dynamical variable time series are 

recorded, a t  every 1 ps. 



6.3 Qualitative Behavior 

In this section, the behavior of the numerically-integrated twin-emitter rate 

equations is studied as a function of device parameters. The asymptotic behavior is 

of particular interest, since the details of the transient dynamics are specific to the 

somewhat arbitrary choice of initial conditions. 

The device parameters a, 7p and and the normalized injection current p(0) are 

fixed, and the coupling parameter is allowed to vary as in Section 4.4. Spontaneous 

emission was included by using f3=1.6X loP4 from Table 2.6.2, but both gain 

compression and the stochastic contribution of spontaneous emission were neglected 

in the early version of "twostrip.forn used to generate the time series shown in this 

section. The initial values of the dynamical variables were set vanishingly close to 

the in-phase equilibrium point, presumably making convergence to the out-of-phase 

equilibrium point as unlikely as possible. This was done to find the basin of attrac- 

tion of the out-of-phase equilibrium point, which is of interest for high-frequency 

injection current modulation (Chapter 8). 

Although the following discussion is essentially qualitative, several quantitative 

tools were used to gain insight into the often complicated behavior of the modeled 

time series. The most useful is the power spectrum Ws(o), defined as the absolute 

square of the Fourier transform of the time series. Because of the finite length of the 

time series, a discrete Fourier transform (DFT) is used. 

A second characteristic of a time series is its autocorrelation function, defined as 



for the (real) intensity I, and related to the power spectrum by 

A third characteristic, not directly related to the others, is the set of all local 

maxima of the intensity time series, here referred to as the fibbifurcation set". FOR- 

TRAN programs for calculating the power spectrum, autocorrelation and bifurcation 

set of time series are listed in Appendix H. 

Four types of asymptotic behavior are encountered in the modeled time series: 

quiescent, periodic, quasi-periodic and erratic. Quiescence is the approach to a stable 

equilibrium point. Periodicity implies limiting behavior that repeats after some 

characteristic time, i.e. a limit cycle, while quasi-periodicity is characterized by two 

or more incommensurate frequencies. "Erraticn covers all the more complicated and 

disorderly dynamics not classified above. Erratic behavior may or may not be 

chaotic, depending on whether sensitivity to initial conditions exists. Since this thesis 

makes no attempt to rigorously demonstrate the presence of deterministic chaos, the 

neutral term "erraticn is used. It should be stressed, however, that the twin-emitter 

model used in this chapter is entirely deterministic, and it is quite probable that 

some of behavior called erratic is in fact chaotic. 

In principle, one can distinguish the four types of dynamics from their power . 

spectra. Quiescence has only a zero-frequency component, periodicity has a funda- 

mental and possibly its harmonics, quasi-periodicity has two or more fundamental 

and their harmonics and erraticity is characterized by a broad spectrum. In practice, 

if the time series is short, the frequency resolution of the DFT, which is the inverse of 

the time series length, may be so coarse as to prevent interpretation of a complica.ted 



quasi-periodic or erratic spectrum. For the modeled time series discussed here, the 

frequency resolution of 12.5 MHz is more than adequate, so that the autocorrelation 

and bifurcation set yield no additional information and will not be discussed further. 

The primary goal is to verify the stability boundaries found in Section 4.4. 

Other goals include comparing observed frequency components with those predicted 

in Figure 4.4.5, mapping behavioral regimes in the unstable region and investigating 

transient dynamics. For the remainder of this section, the coupling parameter is 

written (qR,qI). 

Figure 5.3.1 shows the quadrant of the complex-y plane containing the in-phase 

mode stability boundary. This analytically-predicted boundary was verified by 

integrating the twin-emitter rate equations for the coupling parameters (.01,-. I), 

(.02,-.l) and (.03,-.I), shown as crosses in Figure 5.3.1. The intensity of emitter 1 . 

for (.01,-.I), (.02,-.l) and (.03,-.l) are shown in Figures 5.3.2 and 5.3.3, 5.3.4 and 

5.3.5, and 5.3.6 and 5.3.7, respectively. Each pair of figures show the entire 0-80 ns 

time window and the final 4 ns, presumably the asymptotic dynamics. (.01,-.l) is in 

the in-phase stability region. This is supported by the rapid damping of the inten- 

sity, as seen in Figure 5.3.2, and the relative phase to 8=0. 

Figure 5.3.4 describes the behavior of (.02,-.I), just inside the unstable region. 

Intermittent bursts of erratic behavior continue throughout the 80 ns window. The 

non-oscillatory exponential divergence of the intensity from its nearly-stable equili- 

brium value, occurring from 44 ns to 47 ns, supports the Section 4.4 prediction that, 

the frequency of incipient instability is zero upon crossing the in-phase stability 

boundary. Figure 5.3.5 shows a jagged spike stimulated by mode competition, fol- 

lowed by ordinary relaxation oscillations and another jagged spike. The emitter 
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Figure 5.3.1 Stability Boundary Verification 

The in-phase mode stability boundary is verified by numerical integration of the 
twin-emitter rate equations for the complex-q points denoted by crosses in the 
figure. The intensity time series are shown in Figures 5.3.2-7. 
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intensities were synchronized. 

(.03,-.l) is farther inside the unstable region, so it is surprising that periodicity 

emerges a t  about 15 ns in Figure 5.3.6. Actually, although the emitter intensities 

and gains are periodic, 0 changes by 27r per period. This asymptotic behavior is 

referred to here as an nunbound"limit cycle and is analogous to orbits outside the 

separatrix of a simple pendulum. These are true limit cycles because 8 mod 2n, the 

quantity of physical significance, is periodic. The constant slippage of 8 can be inter- 

preted as indicating that one emitter is lasing a t  a higher average frequency than the 

other. The observed frequency of 24.2 GHz, shown in Figure 5.3.7, is not predicted 

in Section 4.4. The emitter intensities are synchronized. 

Figure 5.3.8 shows some interesting dynamical regimes in the unstable region of 

the complex-rl plane. Solid line segments contain at least two test points for which 

the twin-emitter rate equations were integrated numerically, but only the end p0int.s 

are shown for clarity. All the points tested along solid line segments, including the 

end points, were found to have the same qualitative behavior. Dotted segments indi- 

cate that the end points have the same behavior, which is presumed to exist along 

the dotted segment, although no intermediate points were investigated. 

(.0003,.001)-(.001,.001) lie within a "boundn limit cycle regime (B), in which 8 

oscillates about TT but never escapes, analogous to orbits inside the separatrix of a 

simple pendulum. Plots of the dynamical variables show many interesting patterns, 

but coupling is so small as to be of no practical importance, since phase-locking of 

the "twin"emitters is easily disrupted by slight emitter dissimilarities and spontane- 

ous emission noise in a real device. Thus, an extended discussion is omitted for brev- 

ity. This regime is assumed to extend along the stability boundary as shown in Fig- 
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Figure 5.3.8 Dynamical Regimes of the Twin-Emitter Model 

Bound limit cycle (B), erratic (E), unbound limit cycle (U) and quasi-periodic (Q) 
dynamical regimes were found in the unstable region by numerical integration of the 
twin-emitter rate equations. 



ure 5.3.8, although no yI=.Ol points with this behavior were observed. 

(.004,.01)-(.04,.01) and (.002,.001)-(.04,.001) lie within an erratic regime (E), 

characterized by broad (20 GHz) power spectra not foreseen in the analyses of Sec- 

tion 4.4. Their intensity time series are even more erratic than the latter half of Fig- 

ure 5.3.4. 

(.05--01)-(.06,.01) and (.05,.001)-(.1,.001) lie within an unbound limit cycle 

regime (U). The frequencies of oscillation match those predicted in Figure 4.4.5. 

The emitter intensities are anti-synchronized. 

(.07,.01) and (.2,.001)-(.7,.001) lie within a quasi-periodic regime (Q). The power 

spectra show five or more frequencies clustered in a narrow band about the modal 

beat frequency. The behavior of 0 is quite interesting and is shown for (.6,.001) in 

Figure 5.3.9. The large jumps occur from states in which 8 oscillates about 0 to 

states in which 0 oscillates about n. The 7~ state is unstable, and the initially small 

oscillations grow until 0 slips into one of the two neighboring 0 states. Here the oscil- 

lations dampen, giving the appearance of approach to equilibrium. Suddenly, 8 

jumps to a distant .rr state, and the process continues indefinitely. 
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Figure 5.3.9 Relative Phase Time Series, q = (.6,.001) 

uliar behavior of the emitter relative phase for a point in the quasi-periodic 
namical regime. 



6. CHARACTERIZATION OF COHERENT ARRAYS 

6.1 Chapter Overview 

This chapter introduces the techniques used in this work to characterize 

coherent semiconductor laser arrays. Characterization encompasses both qualitative 

behavior, observable in the spectrally- and temporally-resolved near-fields, and the 

measurement of the parameters appearing in the theory. The four-stripe device 

PGE4600B#lD4, hereafter referred to as n1D4", is used as an example throughout 

the chapter. 1D4 was studied because its lateral modes resembled those expected 

from weakly-coupled twin-emitter theory more than did the modes of any of the 

two-stripe devices tested, which proved to be strongly-coupled. Justification for using 

1D4 to test twin-emitter theory is provided in Section 7.2 and Appendix F. The ori- 

gin and preparation of ID4 and other devices is discussed in Section 7.1 

The parameters fall into three classes, depending on their importance in the 

model. The photon lifetime T ~ ,  the differential gain [t3G/dN],h, the linewidth- 

enhancement factor a and the coupling parameter q are crucial, and are each 

accorded a separate section in the chapter. The carrier lifetime 7, is needed to estab- 

lish some points of the theory, but is not necessary in obtaining the in-phase lateral 

mode stability boundary, given by (4.4.33). Since the stability of the in-phase mode 



is the only feature of the theory compared to experiment in this thesis, 7, was not 

measured. Finally, the spontaneous emission factor P and the gain compression fac- 

tor Sehb have been neglected in the analyses of Section 4.4, so their measurement was 

not attempted. 

The parameters listed above are derived quantities, and an effort was made to 

write them in terms of easily- and accurately-measurable nprimaryn quantities, rather 

than other derived quantities, to avoid compounding errors. Examples of primary 

quantities include the injection current J, the emission wavelength A, the longitudinal 

mode spacing AA and the device length L. Examples of quantities that were avoided 

include the effective group index pg,e, which can be written in terms of A, Ah and L, 

and the vertical mode confinement factor r, which is unnecessary when modal gains 

and indices both appear in the model and are measured. The use of carrier and pho- 

ton numbers rather than densities obviates the need to estimate the mode volume. 

Wherever possible, absolute optical power measurements are avoided, since they are 

notoriously difficult to perform accurately. Two parameters, the effective index pe 

and the facet power reflectivity R ,  are difficult to  measure but fairly typical for 

GaAs/AIGaAs devices, so values of p,=3.3 and R =0.32 are assumed. 

Section 6.2 discusses the measurement of the photon lifetime T ~ .  Section 6.3 

describes spectrally-resolved near-fields, which are important for qualitative charac- 

terization, as well as measuring the differential gain, the linewidth-enhancement fac- 

tor and the coupling parameter, discussed in Sections 6.4, 6.5 and 6.6, respectively. 

Section 6.7 describes temporally-resolved near-fields, which allow comparison of the 

actual dynamics with those obtained from theory. 



6.2 Photon Lifetime Measurement 

The photon lifetime rp is a ubiquitous and easily-measured parameter. It is the 

mean time that a photon exists in a cavity pumped to transparency (G=O) before 

being absorbed or scattered by waveguide inhomogeneities, or absorbed or transmit- 

ted a t  one of the facets. The photon lifetime is assumed to be independent of 

wavelength and injection current. 

In a multi-mode device operating above threshold, any modes with appreciable 

intensity will have gains 

and the carrier number is clamped near the threshold value 

Therefore, the steady-state version of (2.4.1.2) gives 

J Nth S --- - +- 
9 7s 7p 

where 

1 1 h3 s G xsm = --- 
hc2 l-R Ah Pout 

m 

by (2.6.4), where Pout is the output power from one facet of all the modes, assuming 

the other facet to be identical. Differentiating (6.2.3) with respect to J and using 

(6.2.4) gives 



The single-facet external differential efficiency dPout/dJ can be found from the slope 

of a linear fit of Pout to J for J>  Jth. 

While it is the instantaneous power Pout that is desired, it is the average power 

<Pout> which is actually measured. In the CW case these are identical, but con- 

tinuous operation causes the temperature of the cavity to be greater than that of 

short-pulse, low-duty-cycle operation, which may affect the measured photon lifetime. 

Since short-pulse, low-duty-cycle operation is used for the rest of the characteriza- 

tion, the device should be pulsed to measure 7p as well. However, the current pulse 

must be long enough to be sufficiently rectangular, that is, its rise and ring time 

should be short compared to the pulse width. For a rectangular pulse 

pulse repetition time 
pout = pulsp width <pout > 

The experimental setup is shown in Figure 6.2.1. The current pulse was chosen to 

compromise between rectangularity and heating. The average power was linear in 

pulse width over the range available to the Avtech AVO-5-B pulser, indicating that 

the device lased uniformly for the duration of the pulse. The detector aperture was 

large enough to subtend virtually the entire far-field of the device at  the working dis- 

tance. Uncaptured light was probably the dominant source of error in this measure- 

ment, and would tend to underestimate the photon lifetime. A linear fit to the data. 

appears in Figure 6.2.2, giving Jth=86 rnA and dPOut/dJ=.326 W/A. Using 

A=8150 A and AA=4.27 A (Section 6.3), (6.2.5) gives ~ ~ = 1 . 6 5  ps. 
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Figure 6.2.1 Photon Lifetime Measurement Setup 
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Figure 6.2.2 Light vs. Current Characteristic of 1 D4 

Measured points are denoted by asterisks, the best linear fit by a solid line. 



6.3 Spectrally-Resolved Near-Fields 

Knowledge of the spectrally-resolved near-field is indispensable in characterizing 

coherent semiconductor laser arrays. The shape of the observed lateral modes tells 

much about the quality of the array and the strength of coupling between the 

emitters. The wavelength spacing and relative intensities of the lateral modes deter- 

mines the coupling parameter, and the peak position and depth-of-modulation of the 

sub-threshold spectrum allows the differential gain and the linewidth-enhancement 

factor to be calculated. 

The setup used to obtain spectrally-resolved near-fields is shown in Figure 6.3.1. 

Short current pulses are necessary to minimize chirping due to heating during the 

pulse, while pulse rectangularity is not particularly important. Thus a Tektronix 

PG-502 pulser, with a minimum pulse width of 8 ns at  the base, was used to drive 

the array. The PG-502 pulser had the advantage of a longer duty cycle than the 

AVO-5-B pulser, giving six times the average power for the same operating point, 

but had the disadvantage of being able to supply only 180 rnA of peak current. The 

array was mounted with its epilayers parallel to the entrance slit of the spectrometer 

so that the lateral near-field could be observed while dispersing the spectrum in the 

orthogonal direction. A CCD camera was used to obtain a video image of the 

spectrally-resolved near-field, with wavelength and lateral coordinate displayed in the 

horizontal and vertical directions, respectively. The image was horizontally cali- 

brated by changing the wavelength setting of the spectrometer grating and dividing 

by the shift in pixel number of a prominent spectral feature, and vertically calibrated 

by raising the microscope objective a known amount using a translation stage, and 

dividing by the pixel number shift. The video image was frame-grabbed using a 
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Tektronix PEP-301 computer. Horizontal windowing allowed spatially-resolved spec- 

tra, while vertical windowing allowed spectrally-resolved near-fields. Raw data files 

were transferred to a MicroVax computer for analysis. For each set of data files 

sharing a common window, a background file was taken using the same window with 

the laser off, to obtain the net signal by subtraction. 

Figure 6.3.2 shows the spectra of the four emitters of 1D4 a t  J=1.65.Jth. The 

longitudinal mode spacing is 4.27 A. Emitters 2-4 appear to be phase-locked, while 

emitter 1 seems to operate independently. Thus emitters 2-4 form a three-stripe 

nsub-arrayn. The sub-array modes begin to lase at  Jth, while emitter 1 begins to lase 

a t  about 1.3'Jth. The two dominant longitudinal modes have been designated n C n  

and "Sn,  for central and next-shortest, and the next-longest mode has been named 

'Ln. The +++ lateral mode (see Appendix F) is responsible for the output a t  C and 

S, while both the +++ and +-+ modes can be seen at  L. 

Figures 6.3.3 and 6.3.4 show the spectrally-resolved near-fields of the lateral 

modes of longitudinal mode n C n ,  somewhat below threshold where the modes have 

comparable intensities. Other longitudinal modes had a similar lateral mode pattern. 

The mode spacings have been given in frequency, which is related to the spacing in 

wavelength by 

in anticipation of the search for mode beating in the time series presented in Section 

6.7. 

The modes designated n+++n and n+-+n,  shown in Figure 6.3.3, are 

apparently the in-phase and out-of-phase modes of the three-stripe sub-array. A 
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Figure 6.3.3 Three-Emitter Sub-Array Lateral Modes of 1 D4 

These spectrally-resolved near-fields were observed slightly below threshold, where 
the modal intensities are comparable. Above threshold, + + + dominates and both 
modes have greater relative emitter 4 intensities. The +O- mode is not observed, 
as predicted in Appendix F. 



-49.4GHz i 

i weakly-locked 

i mode 

-76.9 GHz i 

1 2 3 4 

nominal emitter position 

Figure 6.3.4 Other Lateral Modes of 1 D4 

Two other ID4 lateral modes are observed, with spectral displacements given 
relative to the + + + mode Emitter 1 modes lase for J> 1.3-J,+,, but in longitudinal 
modes ap roximately 60 A Ion er wavelength than 'C" (see Figure 6.3.2). The R % weakly-loc ed modes were not o sewed to lase. 



spectrally-resolved far-field of +-+ would be necessary to show conclusively that the 

near-field lobes are out-of-phase, but the node between the lobes strongly suggests 

that this is the case. Supermode theory predicts a third mode, +0-, but this mode is 

not expected to exist because it does not use the gain in the central emitter, an ener- 

getically unfavorable situation, as discussed in Appendix F. As the current is 

increased beyond threshold, +++ dominates and is responsible for the peaks a t  S 

and C in Figure 6.3.2. Both +++ and +-+ have comparable intensity a t  L. Note 

that the shape of +++ is different below (Figure 6.3.3) and above (Figure 6.3.2) 

threshold, with emitter 4 responsible for a much greater share of the output above 

threshold. This is not predicted by coupled-emitter theory, in which the lateral 

profiles must be independent of injection current, and probably indicates deviation 

from the assumption of equal emitter gains of Appendix F. 

As mentioned above, the "emitter ln  lateral mode, shown in Figure 6.3.4, begins 

to lase a t  about 1.3-Jth, but a t  about 60 A to the long wavelength side of the sub- 

array modes. The lateral mode designated nweakly-lockedn in Figure 6.3.4 never 

lases, apparently locking of the entire array is energetically unfavorable. 

6.4 Differential Gain Measurement 

In this section, the depth-of-modulation of the sub-threshold emission spectrum 

is used to calculate the differential gain, a method similar to that given in Reference 

[loo]. Because the sub-threshold spectra tended to be noisy due to the low light lev- 

els, and the characterization of may devices was anticipated, the FORTRAN pro- 

gram "fabry.perot.f"was written to automate this procedure. The source code 



appears in Appendix H. A derivation of the algorithm appears below. 

The cavity is considered a Fabry-Perot resonator with a slight round-trip loss, 

where the field is maintained by a small spontaneous emission contribution. For sim- 

plicity, consider the spontaneous emission to be supplied from a monochromat.ic, uni- 

directional point source within the cavity. The total field a t  that point is found by 

summing the infinite series of contributions from previous round trips, and is given 

by 

where ESP is the source strength, 0 is the round-trip phase shift, 

is the round-trip field gain and TL  is the round-trip cavity transit time. Taking the 

absolute square of (6.4.1), the observed intensity can be written 

where I. is an undetermined constant. Fabry-Perot resonances and anti-resonances 

occur a t  0=2m1~ and 0=(2m+l).rr, respectively, where m is an integer. 

Note that the ratio of the reciprocal intensity a t  the peak to the reciprocal 

intensity averaged from 0=-.rr to 0=.rr allows I. to be cancelled 

Substituting (6.4.3) into (6.4.4) and solving for IYI gives 



IYI  = 
1 - ( 2 ~ - u 2 ] %  

1-u 

where the root given was chosen because both U and IYI exist in the domain (0 , l ) .  

The round-trip transit time is given by 

by (2.6.3). Substituting (6.2.5) and (6.4.6) into (6.4.2) gives 

for the net modal gain normalized to the photon lifetime. The peak intensity I(0) 

can be found by fitting a parabola to the data points in the neighborhood of the 

peak. The advantage of this technique over taking the ratio of single-point maxima 

and minima is that more of the data is used, which should reduce the error due to 

noise. 

Spectra are acquired using the setup shown in Figure 6.3.1, with horizontal win- 

dowing. The window was placed between the emitters 2 and 3 of 1D4, to capture 

only the light from the dominant lateral mode, to avoid multiple peaks in a longitu- 

dinal mode spacing. The normalized net modal gain for the dominant lateral mode is 

plotted against the injection current in Figure 6.4.1. The three data points at  each 

current setting correspond to modes "", nCn  and "I," of Figure 6.3.2, in no particu- 

lar order. Since the modes have slightly different gains (C>S>L), separate linear 

fits for each mode will give vertically displaced lines with nearly the same slope. 

Since displacements do not affect the slope d(G.rp-l)/dJ, the data of all three modes 

is combined and fit to a line. Note that extrapolating the linear fit gives Jth"112 
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Figure 6.4.1 Differential Gain Measurement 

Crosses represent measurements for modes "S", "C" and "L" of 1 D4 in no particular 
order, at each current setting. The best linear fit is shown as a solid line. 



mA, which seems to be at  odds with the value Jth=86 mA reported in Section 6.2. 

This is because the pulse currents were measured at  the peak, which is larger than 

the average current during the pulse for the non-rectangular PG-502 pulse. Since 

only derivatives with respect to current are of interest, it is assumed that this offset 

can be overlooked. 

The measured quantity ~(GT~-l) /dJ=.0285 l /mA can be related to [dG/dN]th 

by 

Evaluation requires T,, but for the purpose of verifying the in-phase stability boun- 

dary knowledge of d(G.rp-l)/dJ is sufficient. 

6.5 Linewidth-Enhancement Factor Meesurement 

The linewidth-enhancement factor was defined by (2.4.3.7). Because a func- 

tional relationship exists between N and J below threshold, (2.4.3.7) can be rewritten 

To  proceed, note that the effective index pe is related to its cold-cavity value and the 

spatially-averaged real part of the carrier-induced susceptibility by 



so that  

The effective index is related to the wavelength of a particular longitudinal mode by 

where m is the integer number of wavelengths in a cavity round trip. Differentiating 

(6.5.4) for constant m gives 

The spatially-averaged imaginary part of the carrier-induced susceptibility is related 

to the modal gain by (2.2.4.11). Therefore 

where dh /h<<dG/G was used to neglect the dh/dJ contribution. Substituting 

(6.5.3), (6.5.5), (6.5.6), (6.2.5) and (2.6.4) gives 

The only parameter remaining to be measured is dh/dJ, the modal wavelength 

shift. The FORTRAN program "fabry.perot.f", used in Section 6.4 to calculate 

d(Gtp-l)/dJ, also finds the wavelength of the longitudinal modes from a parabolic fit 

to the peaks of the spectrum. The wavelengths of modes "Sn, "Cn and "Lff of ID4 

(see Figure 6.3.2) are plotted against injection current in Figure 6.5.1, over a wide 



pulse current in mA 

Figure 6.5.1 Linewidth-Enhancement Factor Measurement 

Crosses represent the relative wavelengths of modes "S", "C" and "L" as they shift 
with injection current. At 84 mA, 106 mA and 11 4 mA, data sets overlap and six 
data points are displayed. Best linear fits to the 56-84 mA (far below threshold) 
and the 1 14- 138 mA (above threshold) data sets are shown as solid lines. 



range below and above Jthz112 mA. Because of the great variation in light level 

over the range, four data sets (J=56-84, 84-106, 106-114 and 114-138 mA) were 

taken using different neutral density filters and entrance slit widths to attenuate the 

light, and joined together a t  their common injection currents. This data was taken 

using the same setup as used in Section 6.4. The scatter in the 56-84 rnA data is due 

to low light levels. 

As the injection current increases, two competing effects act to shift the 

wavelength of the longitudinal mode. Increasing carrier density decreases the 

effective index, and thus the wavelength according to (6.5.5), while rising temperature 

increases the effective index and wavelength. Far below threshold, both effects are 

apparently linear in the injection current, with the wavelength decrease associated 

with the carriers dominant. As threshold is approached, the carrier number becomes 

a sublinear function of injection current, due to a superlinear spontaneous recombi- 

nation rate. Stimulated recombination nclampsn the carrier number above threshold. 

The junction temperature continues to increase, however, causing the wavelength 

shift to  reverse. Since temperature changes are too slow to enter into the dynamics 

that  we wish to  study, the quantity of interest is the wavelength shift due to the car- 

riers: 

[ I  r e  = ['I measured 
(6.5.8) 

heating 

Unfortunately, it is 

which is readily measured. To proceed, we must know the relationship between 



[dh/dJJheathg below and above lasing threshold. 

It is commonly assumed (see Section 4.4.1 of Reference 1201) that these are equal. 

The following considerations call this assumption into question. The wavelength shift 

due to heating is proportional to the change in the effective index, which is in turn 

proportional to  AT, the average temperature increase over the optical mode. There- 

fore, 

dAT 
-(J< Jth) d J ['I heating (6.5.10) 

We assume that 

where Pdis is the power dissipated in the cavity (p-type cladding, active and n-type 

cladding layers), V,,, is the voltage dropped across the cavity, and 2POut is the opti- 

cal output power, which does not contribute to heating. As defined in (2.6.1), Pout is 

the output of one facet, and so is doubled in (6.5.11), assuming identical facets. Note 

that the equality in (6.5.11) simply expresses conservation of power. There are three 

contributions to Pdis: ohmic heating in the cladding layers, spontaneous recombina- 

tion in the active layer and photon absorption by the waveguide. 

We further assume that the voltage drop VsUB across the high-conductivity sub- 

strate is negligible, so that 

Veav = Vtot - VSUB Vtot (6.5.12) 

where VtOt is the measured voltage drop across the device. This can be linearized 

about its value Vth at  lasing threshold 



J 
Vtot = V~ + (Vth-V~j- 

Jth 

where Vo is given by the intersection of the tangent to the J(V) characteristic at  Jth, 

and the V-axis. This phenomenological treatment takes both ohmic and junction 

heating into account. 

Substituting (6.5.12) and (6.5.13) into (6.5.11), differentiating with respect to J 

and evaluating at  Jth, and substituting into (6.5.10) gives 

2-dPout/d J ['I heating 
(J, Jth) = [I- I-' [$)I J J (6.5.14) 

2vth-v~ heating 

The CW J(V) characteristic of ID4 was used to obtain Vth=2.5 volts and Vo=2.0 

volts. Using dPout/dJ=.326 W/A (Section 6.2) gives 1.28 as the correction factor. 

Linear fits to the 56-84 mA and 114-138 mA data in Figure 6.5.1 can be used in 

conjunction with (6.5.14) and (6.5.8) to obtain [dh/dJ],arriers(~< ~ ~ ~ ) = - . 0 2 7 5 A / r n ~ .  

The device length of 1D4 was found to be 211 pm. Inserting these into (6.5.7) gives 

a=0.8. This value is quite low, but falls within the range given in Reference [loll, 

a=0.5 to  a=8 for various devices. A possible explanation is that 1D4 lased a t  a 

somewhat shorter wavelength than other devices from wafer PGE4600B (hlD4=8150 

A, A36D2=8180 A and h36DJ=8200 A), which has been shown to reduce ol (see Figure 

6 of Reference [loll) by moving the gain peak toward the spontaneous emission peak. 

6.6 Coupling Parameter Measurement 

The setup used for this measurement has been described in Section 6.3. A hor- 



izontal window containing the inner emitters is used to capture light from both of 

the three-emitter sub-array lateral modes, and exclude the others. The real part of 

the coupling parameter is related to the beat frequency of the lateral modes +++ 
and +-+ by (F.20). For 1D4, the beat frequency was found to be virtually indepen- 

dent of the injection current, and was Av=34.3, 35.6 and 35.0 GHz for the longitudi- 

nal modes "", n C n  and RLn of Figure 6.3.2, respectively. Therefore, rlR=.126, .129, 

and .I28 for modes S, C and L. 

Note that the beat frequencies of the +++ and +-+ lateral modes of the longi- 

tudinal modes S, C and L of device 1D4 are approximately 2' larger than the beat 

frequency measured for the two-stripe device PGE4600B#36D3, whose spectrally- 

resolved near-field is shown in Figure 7.2.1. This is expected from three-emitter 

theory (Appendix F), assuming that ID4 and 36D3 have the same coupling parame- 

ter. 

The imaginary part of the coupling parameter is more difficult to measure. It is 

related to the degree of suppression of one lateral mode by the other. In steady 

state, and neglecting gain compression and the stochastic contribution of spontaneous 

emission, either (4.4.14) or (4.4.15) give 

where + (-) is used for the out-of-phase (in-phase) mode. This relationship gives the , 

optical power from either emitter with the array running purely in one mode or the 

other, and now we assume that the ratio of the average intensities of the 

concurrently-running modes is the same as the ratio of the intensities of the pure 

modes in steady-state, so that 



where I(0) and I(T) are the intensities of the in-phase and out-of-phase lateral modes, 

in arbitrary units. This quantity is different than that defined by (6.4.4). The 

definition of Z is given by (4.4.10), and can be used to obtain 

where Uo is an unknown constant. A fit of (6.6.3) to experiment is shown in Figure 

6.6.1. As shown in Appendix F ,  ql  obtained from (6.6.3) should be divided by 2" for 

a three-emitter, which yields qI=-.128, -.I15 and -.I04 for modes S, C and L. 

6.7 Temporally-Resolved Near-Fields 

Temporally-resolved near-fields are plots of intensity as a function of the lateral 

coordinate and time, in contrast with spectrally-resolved near-fields, in which the 

lateral coordinate and wavelength are the independent variables. These characteriza- 

tions give supplemental information. For instance, a pair of lateral modes of com- 

parable intensity may be observed in the emission spectrum, but whether the modes 

run simultaneously or one a t  a time in a bistable manner cannot be determined from 

the spectrum alone. Furthermore, if the modes run concurrently, are they locked or 

free-running? The temporally-resolved near-field may reveal rapid switching between 

modes with quiescent interludes, indicating bistability, or simultaneously running 

modes. A deterministic relationship may be inferred from the time series, indicating 

some degree of mode-locking, and a lack thereof may be interpreted w evidence of 

independence. 
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Figure 6.6.1 Measurement of q, 

The U parameter is plotted as a function of current for modes L (asterisk), C 
(diamond) and S (triangle) of 104. Best linear fits are shown as solid lines and 
yield estimates of q,. 



The setup used to record temporally-resolved near-fields is shown in Figure 

6.7.1. The AVO-5-B pulser was used to provide a 60 ns current pulse. Only about 1 

ns of the optical output was observed, taken about 30 ns after the beginning of the 

current pulse to allow the transient response to die. This simulates the CW dynam- 

ics addressed by the theory, while retaining the low duty cycle found to be necessary 

to  achieve lasing with these devices. Both the pulser and the high-speed streak unit 

were triggered by the start of a video frame, with the appropriate relative delay pro- 

vided by the timing block. Video frames were grabbed by the temporal analyzer, 

and the background was subtracted. The frame was then re-grabbed using the 

PEP-301 computer, and vertical windows were defined to allow the time series of 

individual emitters to be digitized. Time series data files were then transferred to the 

MicroVax computer for analysis. 

Figure 6.7.2 shows a time series of emitter 3 at  J=200 mA, or about 2.3.Jth. No 

consistent structure is apparent, which suggests that quiescent behavior with some 

dynamical and measurement noise is being observed. 

Figures 6.7.3 and 6.7.4 show the power spectra of 1D4 a t  J=200 mA and J=150 

mA (J=1.7-Jth), respectively. Noise was reduced by averaging the absolute values of 

the discrete Fourier transforms of 20 time series, taken under identical conditions, 

using the FORTRAN program "exp.pwr.sp.f", listed in Appendix H. The frequency 

components are normalized by the program to give their mean-square power relative 

to the square of the average signal. Thus, 100 % sinusoidal modulation of a DC level 

would have DC and AC spectral components of 1.0 and 0.5, respectively. The small 

non-zero-frequency components seen in Figures 6.7.3 and 6.7.4 are indicative of quies- 

cent behavior, in particular, note that no peaks appear near 35 GHz, which if present 

would indicate lateral mode beating. Note that because of the normalization of the 
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Figure 6.7.1 Temporally-Resolved Near-Field Measurement Setup 
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Figure 6.7.2 Intensity Time Series at J=2.3.~, 

The intensity range shown corresponds to the range of the streak camera vidicon. 
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Figure 6.7.3 Average Power Spectrum at J = 2.3.Jth 
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Figure 6.7.4 Average Power Spectrum at J= 1 .7.Jth 



average signal to unity, the non-zero-frequency components are apparently larger for 

J=1.7.Jth than for J=2.3-Jth, when in fact they are about the same magnitude. 

The observed quiescent behavior of 1D4 is consistent with the prediction of 

stable in-phase operation of 1D4, discussed in Section 7.2. This agreement is the 

strongest evidence in support of twin-emitter theory presented in this thesis. 



7. EXPERIMENTAL SUPPORT OF TWIN-EMITTER THEORY 

7.1 Chapter Overview 

Experimental support for the foregoing theory is presented in this chapter. Only 

the simplest verification was attempted, that of matching the predicted and observed 

stability properties. At the time of this writing, evidence for the twin-emitter theory 

is quite weak, due to the lack of devices to which the theory applies. 

All of the devices tested (except M9292223#3, discussed in Section 7.2) were 

cleaved from the wafer PGE4600B, obtained from Dr. Gary Evans of David Sarnoff 

Research Center. This wafer consisted of gain sections alternated with surface- 

emitting gratings, which were cleaved away to yield edge-emitters. The gain sections 

were 200 v m  long and consisted of either two or four ridge waveguides. A scanning- 

electron micrograph of the facet of a four-stripe device is shown in Figure 7.1.1. A 

ridge width of 2.5 pm, center-to-center spacing of 4 pm, ridge height of 1 pm and 

active layer depth of 1.5 pm were measured. Bars with five devices were cleaved and 

mounted substrate-down with conductive epoxy onto small copper heat sinks, which 

served as the common electrical contact. The epilayer contacts were wire-bonded to 

gold-coated macor blocks built into the heat sink. 
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Figure 7.1.1 Four-Stripe Device Facet

A scanning-electron micrograph of the cleaved facet of a piece of wafer PGE4600B
reveals the active layer (arrow) at a depth of about 1.5 v-m from the tops of the
ridges. Ridge depth, width and center-to-center spacing are about 0.5, 2.5 and 4
V-m,respectively.



Section 7.2 discusses the characterization of pristine, or unmodified, two- and 

four-stripe arrays. The drawback of a fixed coupling parameter is discussed, and the 

predicted and observed stability properties of 1D4 are compared. Two types of 

modified four-stripe devices are described in Section 7.3, and results of preliminary 

fabrication attempts are given. 

7.2 Pristine Devices 

The most natural approach to experimental verification of twin-emitter theory is 

to study two-stripe devices. This is a three-step process. First, the spectrally- 

resolved near-field is examined to see if the device has the quality and amenability to 

twin-emitter theory to merit further attention. Next, the temporally-resolved near 

field is analyzed to determine the stability properties of the device. Finally, the pro- 

cess of measuring the parameters is undertaken, resulting in a diagram containing the 

stability boundaries and a point corresponding to the measured value of the coupling 

parameter. The predicted and observed stability are then compared, to support or 

refute the theory. 

The problem is that each two-stripe device has a fixed coupling, so that at  least 

two, and preferably many, with coupling parameters placing them in different stabil- 

ity regions, must be examined to convincingly affirm the theory. Aside from the 

enormous amount of characterization involved, some way of obtaining devices with a 

variety of coupling coefficients is needed. Assuming that random variation among 

devices will provide adequate diversity is questionable, and at  best commits the 

experimenter to screening a large number of devices. Fabricating a family of devices 



by varying one or more parameters, such as the emitter spacing, is more likely to 

succeed, but was beyond the resources available for this project. 

A solution is to have a single device whose coupling can be continuously varied 

across one or more stability boundaries. The observation of predicted behavior upon 

both sides of a boundary, such as that seen in the numerical simulations of Chapter 

5, would be compelling confirmation of the theory. Attempts to fabricate such a dev- 

ice are described in Section 7.3. 

Despite their fixed coupling, several two-stripe devices were studied. Each of 

these was strongly-coupled, and thus twin-emitter theory was inapplicable. Figure 

7.2.1 shows the spectrally-resolved near-field of device PGE4600B#36D3, taken below 

threshold where the modes have comparable intensities. The in-phase mode dom- 

inates above threshold. The out-of-phase mode resembles a linear combination of 

emitter modes, although with a rather large outward displacement of the lobes from 

stripe center. The single-lobed in-phase mode, however, cannot even approximately 

be expressed as a linear combination of emitter modes. Apparently, index guiding 

due to the ridge waveguides is overpowered by effects related to the carrier or tem- 

perature distributions in the lateral direction. Therefore, this should be considered a 

broad-area device, and either the continuum or coupled-lateral-mode model (Section 

4.2) should be used. The lateral asymmetries of the modes also call the assumption 

of "twin"emitters into question. Device 36D2 was also strongly-coupled, but with 

more symmetric modes. 

To contrast with the 4 pm on-center index-guided arrays discussed above, device 

M9292223#3, a two-stripe gain-guided array with 4 pm stripes spaced 12 pm on- 

center, was examined. Despite the large center-to-center spacing, a relatively narrow 
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Figure 7.2.1 Spectrally-Resolved Near-Field of 36D3 

The single-lobe in-phase mode indicates strong emitter coupling, which invalidates 
the twin-emitter model. Also, considerable lateral asymmetry is present. 



(3 pm full-width half-maximum) single-lobe in-phase mode was found to dominate, 

indicating a great deal of current spreading in the p-type cladding and active layers. 

Finally, among the PGE4600B four-stripe devices, ID4 failed to exhibit locking 

of all four stripes, but consisted of a locked sub-array of emitters 2, 3 and 4 and the 

free-running emitter 1. It has been shown that the +++ lateral mode of the subar- 

ray is dominant (Section 6.3) and stable (Section 6.7) above threshold. In Appendix 

F it is shown that the three-emitter rate equations can be reduced to a form similar 

to those of the twin-emitter, and it is conjectured that the stability properties of the 

devices are similar. The twin-emitter in-phase stability boundary, given by (4.4.33), 

is plotted in Figure 7.2.2 using the parameters measured for 1D4 in Chapter 6. The 

effective coupling parameter q', given by (F.28), is also plotted. It can be seen that 

T' lies well within the in-phase stable region for both J=2.3.Jth and J=1.7.Jth, which 

agrees with observed stability properties. 

7.3 Modified Devices 

To increase the variety of the coupling parameter, two schemes were devised for 

turning four-stripe devices into twin-emitters with altered or variable coupling. Both 

ideas involve device modification using focused ion-beam micromachininglo2. 

Q-spoiled devices are ones in which the inner emitters are prevented from lasing 

by micromachining a scattering center in their optical paths, as shown in Figure 

7.3.1. The shape of the scattering center is not important, as long as it does not 

extend into the optical fields of the outer emitters, hampering their operation. It was 
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Figure 7.2.2 Predicted Stability of 1 D4 

The measured coupling parameter is found to be well within the in-phase mode 
stability region, which agrees with the quiescent behavior observed in Section 6.7. 
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Figure 7.3.1 Micromachined Q-Spoiled Device

A scanning-electron micrograph top view of a pit micromachined between the outer
emitters of the four-stripe device 3683, to prevent lasing of the inner emitters. In
this instance, only the left outer emitter lased after micromachining.



felt that after such a modification, the outer stripes could be considered a twin- 

emitter, and that the out-of-phase mode would be favored since its field is smaller in 

the low-Q central region. Such a device would thus have qI>O, in contrast with the 

in-phase qI<O behavior observed for the unmodified two-stripe arrays. No working 

Q-spoiled devices were made. Extinction of the inner stripes, and unfortunately the 

right outer stripe, was achieved for device PGE4600B#36B3, shown in Figure 7.3.1. 

The other idea was to create a variable-coupling device by electrically isolating 

the inner stripes from the outer stripes, and running the outer stripes as lasers but 

holding the inner stripes below threshold, so that their carrier density could be con- 

trolled via the injection current. It was felt that at  low inner-stripe currents, the 

low-gain central region would favor the out-of-phase mode, while at  currents 

approaching threshold, the in-phase mode would become dominant. 

Ideally, this design could be implemented by micromachining electrical isolation 

grooves the length of the device, one between emitters 1 and 2 and the other between 

emitters 3 and 4. The grooves must be thin and shallow to minimize optical loss. 

Penetrating the metallization and cap layer are probably sufficient. The problem is 

making electrical contact to the central region, which is only 8 pm wide in this case. 

For this reason, the S-curve isolation groove design shown in Figure 7.3.2 was 

adopted. The ends of the four ridge waveguides can be seen near the rear facet (top 

edge of photo) for reference. The inner stripes (right outer stripe) lie mostly in the 

left (right) half of the S-curve, with the left outer stripe lying entirely to the left. 

Therefore, the left (right) contact pumps the outer (inner) stripes. There are penal- 

ties that come with simplifying electrical contact to the device. Note that the isola- 

tion groove is required to cross three of the stripes, which causes a trade-off between 

depth for good electrical isolation and shallowness to minimize damage to the 
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Figure 7.3.2 Micromachined Variable-Coupling Device

A scanning-electron micrograph top view of the four-stripe device 3684 after
micromachining electrical isolation grooves. The crack running along the rear facet
(between arrows) may have prevented lasing.



waveguide. Even if both requirements could be simultaneously fulfilled, the crossed 

stripes lie partially in each electrically-isolated region, somewhat spoiling the original 

simplicity of the concept. Note that micromachining wide, shallow grooves in the 

lateral direction and narrow, deeper grooves in the longitudinal direction may give 

better results, should this technique be attempted in the future. 

As it turned out, the device PGE4600B#36B4, shown in Figure 7.3.2, did not 

lase but had good electrical isolation (310 a) between sections. Both observations are 

consistent with excessive depth of the grooves. Another possible cause for device 

failure is the crack along the left side of the rear facet, which runs through all four 

stripes. Repeated attempts to place a third wire-bond in the left-rear corner of the 

device resulted in the torn metallization and the crack. Difficulty in wire-bonding 

due to poor metallization was a driving force in minimizing the number of contacts 

needed in modified-device designs. The author felt that the prospects for fabricating 

a working Q-spoiled or variable-coupling device with the present techniques and 

materials were not good enough to justify continued efforts. 



8. MODULATION OF COHERENT ARRAYS 

8.1 Chapter Overview 

This chapter proposes a novel technique for high-frequency modulation of 

coherent semiconductor laser arrays6g-71. Semiconductor lasers are important as 

transmitters in high-speed optical communications, largely because their optical out- 

put can be modulated directly by varying the injection current. InGaAsP lasers that 

emit in the fiber optic transmission window at 1.55 pm are an indispensable part of 

long-haul fiber optics communications technologylo3. Because they are rugged, com- 

pact and require no high-voltage power supplies, AlGaAs lasers are promising as 

transmitters for free-space satellite communications104. Their small size makes them 

good candidates for optical interconnects between integrated circuits, a technique 

that might increase the speed of supercomputers105. Finally, because they can be 

grown with other components on the same wafer, they are the natural light sources 

for integrated optoelectronic circuitslo6. 

The optical output of a single-mode semiconductor laser cannot be effectively 

modulated beyond its relaxation oscillation frequency, usually less than 10 GHz. On 

the other hand, a multi-longitudinal-mode device can be modulated near the fre- 

quency associated with the mode spacinglo7. This is usually greater than 100 GHz. 



Because of high-frequency parasitics, principally stray capacitance, this frequency is 

beyond the range of present semiconductor laser driver technology. Furthermore, the 

bandwidth useful for communications is actually much smaller than this, as discussed 

in Section 8.2. A semiconductor laser that could be modulated a t  frequencies inter- 

mediate to the relaxation oscillation and longitudinal mode spacing frequencies would 

be highly desirable. 

The beat frequencies of coherent array lateral modes are typically intermediate 

to the relaxation oscillation frequency and the longitudinal mode spacing. This sug- 

gests the possibility of actively mode-locking the lateral modes of the array by injec- 

tion current modulation, analogous with active longitudinal mode-locking, but a t  

more moderate frequencies. 

A semiconductor laser acting as a transmitter in an optical communication sys- 

tem must be both responsive and stable. Responsivity is especially important a.t high 

frequencies, where modulation electronics may be able to supply only small signals. 

The transfer function (Section 3.3) should be flat over the bandwidth of the commun- 

ication system. The transmitter must also lock to the modulating signal, so that the 

signal is faithfully reproduced. The rapidity of locking is related to the degree of sta- 

bility of the response to small perturbations. 

The electrical parasitics that plague high-frequency single-emitters are expected 

to be a problem with coherent arrays, with the added complications of separate con- 

tacts and phase-shifted signals. These design issues are beyond the scope of this 

chapter. 

The twin-emitter semiconductor laser has been studied extensivelylo8. In partic- 

ular, it has been suggested that multi-gigahertz instabilities associated with cycling 



among a continuum of non-stable near-field distributions might be effectively 

exploited in twin-emitter arrayslog, although no modulation scheme was proposed110. 

In Section 8.2, the twin-emitter rate equations of Section 4.4 are driven by 

small-signal sinusoidal injection current modulation, and the transfer functions for 

both in-phase and out-of-phase modulation are derived. Out-of-phase modulation of 

the emitters is shown to  be essential for effective modulation beyond the relaxation 

oscillation frequency. It is found that both q~ and TI, defined in Section 4.4, are 

important design parameters. TR sets the frequency of peak response to out-of-phase 

modulation, while q1 must be chosen carefully to fulfill the requirements of respon- 

sivity and stability. 

8.2 Small-Signal Sinusoidal Modulation 

The goal of this section is to model the response of a twin-emitter array to  

small-signal sinusoidal injection current modulation as a function of the frequency 

and the relative phase of modulation of the emitters. Before deriving the small-signal 

transfer function, the stability of periodic solutions to the modulated rate equations 

should be addressed. Periodic solutions predicted by the model are of little interest if 

they are unstable and thus never observed. For infinitesimal modulation, it is easy to 

show that the periodic solutions should possess the same stability property as the 

equilibrium point of the autonomous system that they orbit. Therefore, the linear 

stability analysis of Section 4.4 can be directly applied in this section. 

To obtain the transfer function, we use the twin-emitter rate equations (4.4.14)- 



(4.4.18), neglecting spontaneous emission and gain compression for simplicity. Use of 

the rate equations becomes invalid as the modulation frequency approaches the polar- 

ization relaxation ratelll. Since the latter is typically about 1013 s-', rate equations 

are appropriate in the 10-100 GHz frequency range. 

Sinusoidal modulation is introduced by setting 

pl(t) = p(O) + ~ e [ p ( ~ ) e ' " ~ ]  

and 

where the + (-) sign is to be used for in-phase (out-of-phase) modulation. For 

infinitesimal modulation, the rate equations can be linearized about an equilibrium 

point, and it suffices to discuss only the extremes of in-phase and out-of-phase modu- 

lation, since any intermediate case is a linear combination thereof. 

To obtain the response of the array to small-signal current modulation, let p(l) 

be infinitesimal, so that the time-dependent perturbations of the dynamical variable3 

are infinitesimal sinusoids. (4.4.14)-(4.4.18) can then be linearized by replacing their 

right-hand sides by the left-hand side of (4.4.23) with A-iR, plus the column vector 

of driving terms. The common eim time dependence is then dropped, and the matrix 

equation is solved for the dynamical variable perturbations. 

For in-phase modulation, this procedure gives 



while for out-of-phase modulation 

where 

0 '  = ~+2iz (O)  (8.2.9) 

A = 2 ~ ~ ( ~ ) + 1 + 2 ~ ( ~ ) ~  (8.2.10) 

B = 4 ~ ~ ~ + 2 ~ ( ~ ) ~ ( 1 + 2 Z ( O ) )  (8.2.11) 

C 4 r 1 $ ( 2 ~ ~ ( 0 ) +  1 + 2 ~ ( ~ ) ~ ) - 4 a ~ ~ ~ ( ~ ) ~ ( 1  +~Z(~))C*SO(~)  (8.2.12) 

The transfer function can be defined as in (3.3.4) 

using (4.4.9) and (4.4.11). 



Figure 8.2.1 shows IHI as a function of the modulation frequency, for both in- 

phase and out-of-phase modulation, for a twin-emitter array characterized by 

q R = O . l ,  qI=O and the parameters given in Table 2.6.1. These parameters were 

measured for a gain-guided twin-emitterz0 biased a t  J=1.7.Jth,, corresponding to 

p(0)=0.66. For qI=O, the response of a twin-emitter to in-phase modulation is ident- 

ical to that of a single-emitter, with the peak response occurring at  the relaxation 

oscillation frequency, 3.0 GHz in this example. This can be understood by noting 

that r ) ~  has dropped out of (8.2.3). Since q~ is proportional to the rate at  which 

photons are exchanged between the emitters, its failure to appear indicates that in- 

phase modulation is unable to drive the periodic energy transfer needed for a strong 

high-frequency response. This is reasonable on physical grounds because identical 

modulation to the emitters does nothing to drive energy transfer preferentially in 

either direction. Alternately, the goal can be considered to be the locking of the in- 

phase and out-of-phase lateral modes to produce a periodic response a t  the modula- 

tion frequency. It has been observed that spatially-homogeneous modulation is in 

general not effective for m o d e - l o ~ k i n ~ ~ ~ ? ~ ~ .  The peak of IHI for in-phase modulation 

is much larger than actually observed because gain compression was neglected for 

simplicity. Nevertheless, semiconductor lasers tend to spike at  the relaxation oscilla- 

tion frequency when deeply modulated a t  a lower frequency112, if the resonance 

response is sufficiently large. Such behavior would clearly be detrimental for com- 

munications applications. 

The response to out-of-phase modulation is quite different. The peak response 

occurs a t  the beat frequency between modes, 21 GHz in this example. For qI=O, the 

peak reaches 0 dB, as it does in the case of longitudinal mode lockings8. The 3 dB 

band half-width about the modal beat frequency is the effective bandwidth for 



modulation frequency in GHz 

Figure 8.2.1 Twin-Emitter Modulation Transfer Functions for yl=O 

Note the drastically different responses of the twin-emitter to in-phase and out-of- 
phase modulation. The in-phase modulation response peaks at the relaxation 
oscillation frequency (3 GHz). The out-of-phase resonant response at the lateral 
mode beat frequency (21 GHz) has a relatively wide 3 dB half-bandwidth of 1.6 
GHz. 



communications applications. It is interesting to compare them for longitudinal and 

lateral mode-locking. For longitudinal mode -locking6*, 

where Ah=3 is the inter-modal spacing and AhRo=50 A is the gain curve half- 

width, while for lateral mode-locking 

For out-of-phase modulation, the lack of a peak at  the relaxation oscillation fre- 

quency can be understood by noting that by (8.2.8), the average gain of the emitters 

is identically zero. Since both lateral modes respond to the average emitter gain, 

their amplitudes are constant and any modulation must be due to interference, which 

is driven efficiently only near the beat frequency. It should be emphasized that 

energy is transported back and forth between the emitters, not the lateral modes. 

As found in Section 4.4, most of the qR axis is in the region where both lateral 

modes are unstable, so the response of the hypothetical device with qI=O is of lim- 

ited interest. Figure 8.2.2 shows IHI for out-of-phase modulation as a function of 

vmod and q1 for qR=O.l, with q1 plotted in the same way as in Figures 4.4.3 and 

4.4.4. The bold lines indicate the sections plotted in Figures 8.2.1 and 8.2.3. The 

most striking feature is the peak that occurs at  



Figure 8.2.2 Out-of-Phase Modulation Transfer Function 

The bold line along the modulation fre uency axis represents the planar section 9 plotted in Figure 8.2.1, while the other bod line is plotted in Figure 8.2.3. 



to first order in rP/rs< <l. This is an exact resonance, in that I H l a ,  corresponding 

to the physically-meaningful root of the denominator of (8.2.6). For a device obeying 

(8.2.17), self-sustained oscillations are predicted by the theory. In reality, of course, 

physical mechanisms will dampen the resonant response. In contrast, the dependence 

of IHI on TI is very weak for in-phase modulation. 

In the present case, the beat frequency of the modes is large compared to the 

relaxation oscillation frequency, and the boundary between the T-stable and unstable 

regions of the q-plane is given by 

as can be verified by expanding (4.4.34) to first order in ~ ~ / 7 , <  < l .  Comparison 

with (8.2.17) shows that the resonance lies on the out-of-phase stability boundary. 

Figure 8.2.3 shows IHI for out-of-phase modulation at the resonance frequency 

v , , ~ = ~ ~ / T T ~  of a twin-emitter with rlR=O.l, as a function of q p  Because of the 

stability properties of the equilibrium points, oscillation about the in-phase equili- 

brium point for q I < O ,  and the out-of-phase equilibrium point for qI>O was assumed. 

Note that a large but stable response may be had by choosing qI,bnd<r\I<2r\I,bnd. 

These values are quite small, so that the lateral modes have nearly equal gains and 

amplitudes. This is necessary for appreciable depth-of-modulation, and explains why 

IHI falls off rapidly as lrl1l increases. Modulation about the out-of-phase equilibrium 

point is preferred to  modulation about the in-phase equilibrium point, because the 

small positive value of q1 needed to stabilize the former yields a response superior to 

that given by the large negative value of needed to stabilize the latter. 
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Figure 8.2.3 Out-of-Phase Transfer Function for Resonant Modulation 

Stability and responsivity are simultaneously achieved if q, is chosen somewhat 
inside the T-stable region. 



Figure 8.2.4 contains the out-of-phase mode stability boundary shown in Figure 

4.4.4. The "optimum design regionn is bounded on the left ( ~ ~ ~ 0 . 0 3 ,  vreS=6 GHz) 

by a desire for the mode-beating frequency to comfortably exceed the relaxation 

oscillation frequency, bounded on the right (qR=0.3, v,,,=60 GHz) by the limits of 

physical realizability of design and model validity, as well as the present state of sem- 

iconductor laser driver technology, and bounded from below and above by and 

2rlI,bndr respectively. Finally, -q from Figure 4.5.4 is plotted with the emitter center- 

to-center spacing as the parameter, showing that the optimum design region is acces- 

sible by choosing the correct spacing. 



Figure 8.2.4 Twin-Emitter Optimum-7 Region 

Stability, responsivity and a 6-60 GHz resonant modulation frequency can be had 
within the optimum-q region. The q curve obtained from the five-layer model of 
Section 4.5 passes through the optimum-q region, raising hopes that twin-emitters 
with good modulation properties can be realized. 



9. SUMMARY AND SUGGESTIONS FOR FUTURE WORK 

A theoretical and experimental study of the picosecond dynamics of coherent 

semiconductor laser arrays has been presented. Single-emitter devices were discussed 

in Chapters 2 and 3. No dynamical effects with characteristic frequencies beyond the 

relaxation oscillation frequency are expected for single-emitters operating under ordi- 

nary experimental conditions. Since such frequencies have been observed in the 

intensity time series of arrays, they must, be due to interactions among the emitters. 

Coherent array rate equations were derived in Chapter 4, and the simplest case 

of a twin-emitter array was explored in detail. The stability of the lateral modes of 

the twin-emitter was determined as a function of the emitter coupling parameter, 

and the qualitative dependence of the coupling parameter on the spacing between the 

emitters was found. 

The twin-emitter rate equations were numerically integrated in Chapter 5, to 

verify the foregoing analytical results and to more fully investigate the modeled 

dynamics. 

Experimental results were presented in Chapters 6 and 7. No conclusive support 

for the twin-emitter model was obtained, largely because the available two-stripe dev- 

ices had strongly-coupled emitters, undermining the validity of the model. Several 

results were consistent with predictions from coupled-emitter mode theory, however: 



the 2% ratio between the difference frequencies of the lateral modes of the three- 

emitter and the twin-emitter, the expected relationship between mode suppression 

and injection current, given by (6.6.3), and the matching of the predicted and 

observed asymptotic in-phase quiescence of device PGE4600B#lD4. 

Injection current modulation of twin-emitters was discussed .in Chapter 8. It 

was found that out-of-phase modulation of the emitters is essential to effective modu- 

lation beyond the relaxation oscillation frequency, and that both responsivity and 

stability can be achieved if the coupling parameter is chosen correctly. 

The next step is a more thorough experimental evaluation of the twin-emitter 

model, using suitable devices. This may involve the fabrication of variable-coupling 

devices, as discussed in Chapter 7. If the model proves to be valid, research may 

proceed along two fronts: the study of the dynamics of free-running arrays, and the 

design of coherent arrays for high-frequency injection current modulation. 

Future dynamical studies will require improved characterization techniques. 

The utility of the intensity power spectrum in distinguishing between various dynam- 

ical behaviors was mentioned in Chapter 5. The use of a fast photodiode and a spec- 

trum analyzer to obtain real-time intensity power spectra would be vastly superior to 

Fourier-transforming intensity time series obtained from a streak camera. Auto- and 

cross-correlations of the fields or intensities from regions of the spatially-resolved near 

field may also be a useful experimental technique. 

If dynamical chaos is to be identified and studied, more sophisticated characteri- 

zations113 become necessary, such as the correlation dimension and the Lyapunov 

exponents of the intensity time series in reconstruction space. These characteriza- 

tions typically require many more data points than available in a single streak cam- 



era sweep ( ~ 5 0 0  data points). This can be surmounted in the case of the correlation 

dimension, in which the predecessor-successor relationship among data points neither 

enters its definition nor is used in algorithms for its calculation (see Chapter 7 of 

-- Reference [113]), by combining points from different video frames, as long as operat- 

ing conditions are stable over the data-collection period. The predecessor-successor 

relationship is crucial in obtaining the Lyapunov exponents, however. Another prob- 

lem is dynamical and measurement noise. Smoothing techniques114 may be helpful 

in reducing noise and reconstructing local dynamics. 

High-frequency optical communications systems are perhaps of greater techno- 

logical interest. Engineering such a system around a coherent array will be a cross- 

disciplinary endevour; beside designing the array to fulfill the requirements of respon- 

sivity and stability, it must have good electrical characteristics, which may be 

difficult considering the frequencies and dimensions to be dealt with. To implement 

out-of-phase modulation, the upper electrical contact must consist of interleaved 

microwave strip lines, requiring a multi-step metallization process. Since the total 

optical output remains constant during out-of-phase modulation, the light-collection 

optics must spatially discriminate to effectively transfer the signal. Appropriate 

modulation (eig ., AM, FM) and transmission (e.g . , line-of-sight, short-haul optical 

fiber) schemes must be identified. Finally, note that high-frequency modulation of 

2-D VCSEL arrays may have applications in image processing, and that out-of-phase 

modulation of adjacent emitters can be effected by horizontally interleaving the 

upper-surface contacts, rat her than the vertical-interleaving necessary for edge- 

emitting arrays. This may decrease parasitic capacitance, improving high-frequency 

electrical characteristics. 
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A. DYNAMICAL EFFECTS OF HEATING 

Local heat generation during operation causes a temperature distribution in the 

transverse plane. An increase in temperature has various effects: in the active 

region, the band gap shrinks, shifting the gain peak to a longer wavelength, and the 

Fermi distribution of carrier state occupancy is broadened, reducing the peak gain. 

Also, the effective index of the waveguide increases, shifting the modes to longer 

wavelengths. 

The time-dependent heat diffusion equation for the temperature T(x,y,t) can be 

written as 

a 
C-T - K V ~ T  = rq(x,y,t) 

at  
(A. 1.) 

where C is the heat capacity per unit volume, rq is the rate of generation of heat 

energy per unit volume and K is the thermal conductivity. This equation holds for 

devices with abrupt boundaries between regions, so that both C and K are piecewise- 

constant. The appropriate boundary condition is the conservation of the normal 

component of heat flow per unit area, -~V~Tsf i .  As is the case with the carrier dis- 

tribution, it is not our goal to solve for the static temperature distribution, but 

rather to determine whether temperature fluctuations can enter into the 500 MHz-50 

GHz dynamical regime of interest. We turn now to this question. 



It has been argued that the dominant source of heat generation is the non- 

radiative decay of carriersao. Accepting this argument yields 

where Hoo is the energy released by decay, T,, is the time constant for non-radiative 

decay of carriers and 8 is the Dirac 8-function, representing a thin active layer at  

x=xaCt. For simplicity we neglect lateral dependence and reduce the problem to 

one-dimensional heat diffusion in the vertical direction, and assume that C and K are 

piecewise-constant and independent of T. Lasers mounted epilayer-up have more 

severe heating problems than those mounted epilayer-down, so we will model the 

worst case by assuming that a heat sink of constant temperature Ths is at  XSO and 

that K=O for x>xact, SO that heat is forced to flow toward the heat sink. This con- 

verts (A. 1) into homogeneous form subject to the boundary condition 

Assume that the carrier density is given by 

n(t) = n(O) + n(')cos[nt] 

to obtain the temperature response a t  the frequency 0. The temperature distribution 

when n(')=0 is 

The temperature distribution due to n(')#0 is 



where the characteristic length 

has been used. 

The dynamic temperature distribution T(') induces a periodic fluctuation in the 

gain and index of refraction near the active layer. Temperature waves should be 

unable to affect the optical mode if their characteristic length is much shorter than 

the vertical spot size. Setting LT=w, to get the high-frequency cutoff, we note that 

~ ~ < < x ~ , ~ = " 1 0 0  p m  for an epilayer-up device. This justifies neglecting the other 

damped-traveling-wave solution in matching the T(')(x=o)=o boundary condition in 

(A.6). The high-frequency cutoff for temperature waves is therefore 

For GaAs, pages 17 and 52 of Reference (115) give ~ = 0 . 4 5  W/cm/kelvin and 

C=1.7 ~ /cm~/ke lv in ,  respectively. If we set LT=0.5 pm, a typical vertical spot size, 

then vmax=34 MHz. This is much lower than the 500 MHz-50 GHz range of concern 

in this thesis, and strongly indicates that temperature is negligible as a dynamical 

effect. 

To further justify the neglect of temperature fluctuations, we can calculate the 

maximum temperature fluctuation corresponding to this frequency, given by 

Assuming that n(')=nth and T,=T., and using values from Table 4.2 of Reference 

[20] nth=3x 10" ~ m - ~ ,  ~wo=1.52 eV, r,=2.4 ns and d=0.14 prn, then ~:2:!,=0.35 



kelvin for v,,,=34 MHz, which is negligible. 



B. POPULATION PULSATIONS AND FOUR-WAVE MIXING 

The goal of this appendix is to justify the neglect of population pulsations and 

four-wave mixing in the dynamical regime of interest. The major difference between 

these effects is that four wave mixing involves three modes which need to be fairly 

evenly-spaced in frequency for phase-matching, while population pulsation involves 

two modes and is thus automatically phase-matched. Population pulsations contri- 

bute to the suppression of side modes. Because of the automatic phase-matching, 

this contribution is static, so that the population pulsation mechanism can be left out 

of the dynamics. 

Four wave mixing, however, can have a non-zero beat frequency that can drive 

dynamics. The contribution to the susceptibility of the mth mode involves interac- 

tions of the mth, kth and (2k-m)th modes46, where k is summed over all the modes 

such that k#m. The beat frequency of the four wave mixing interaction and the 

mth mode is 

A V , , ~  = 2vk - urn - v ~ k - ~  (B.l) 

In a Fabry-Perot cavity, the longitudinal modes are nearly evenly-spaced, and A I ~ ~ , ~  

is small but non-zero. If we interpret the mode index j as the number of wavelengths 

of light in a cavity round trip, then 



where j can be considered continuous and Fabry-Perot modes exist at  integer values 

of j. Expanding vk in a Taylor Series about v, 

Substituting (B.3) into (B.l) gives 

Av,,. = - [$I (k-m)' 
m 

A simple model for the effective phase index frequency dependence is 

which by construction satisfies (2.2.2:ll). Substituting (B.5) into (B.2) and rearrang- 

ing gives 

Differentiating twice and evaluating at j=m, using (B.2) evaluated a t  j=m to elim- 

inate m and using 

transforms (B.4) into 

chm 
Avm,k = 

2Pe,mpg,e,m L~ 

10 Using c=3x 10 cm/s, Am=818 nm, L=240 pm, p,,,=3.3 and ~ ~ , ~ , , = 4 . 1  give3 



AvmL = 31 ~ ~ z . ( k - m ) ~  (B-9) 

which requires I k-m l >4 to push Av into the 500 MHz-50 GHz realm of interest. 

Since the ratio of the four-wave mixing to the spectral hole-burning contributions to 

the susceptibility of the main mode is third-order in the ratio of side-mode to main- 

mode amplitudes (see Equations (17) and (19) of Reference [46]), the four-wave mix- 

ing contribution is either too weak (for distant sidemodes) or too low in frequency 

(for neighboring sidemodes) to be significant. 



C. LINEAR STABILITY THEORY 

Assume we have a set of N autonomous, ordinary nonlinear differential equa- 

tions 

that has a t  least one equilibrium solution 

fk(y~',.-.,y#') = 0 

for each k. To study the evolution of small perturbations about the equilibrium 

point, let 

(0) Yk=Yk +Yk w3) 
Using the chain rule on (C.l) and substituting (C.2) and (C.3) gives 

or in matrix notation, 

j(l) = ~ ( 0 )  y ( l )  (C.5) 

where J(') is the Nx N Jacobian matrix evaluated at  the equilibrium point. 

The system has been linearized for a small neighborhood about the equilibrium 

point. It is well-known that linear ordinary differential equations with constant 



coefficients have solutions of the form 

= y f ) ( t = ~ )  e ht Yk 

where A is a complex constant, often called a Lyapunov exponent in this context. 

Substituting (C.6) into (C.5) gives 

[AI-J(O)I y ( l ) ( t=~)  = o (C.7) 

where I is the NXN identity matrix. Since y ( L ) ( t = ~ )  can be arbitrarily chosen, it is 

required that 

det [AI-J(')] = 0 (c -8)  

This gives an Nth degree polynomial equation in A ,  with in general N complex roots. 

The condition for stability of the equilibrium point to small perturbations is 

Re [Ak] < 0 

for all k. 

The Hurwitz criterion (see Chapter 5 of Reference [56]) gives the necessary and 

sufficient conditions that the roots of a real polynomial all have negative rea.1 parts. 

The specific cases N=2 and N=3 are applicable to the twin-emitter model of Section 

4.4. 

For N=2, the characteristic equation is 

and the Hurwitz criterion is 

A 1 > O  n A 2 > 0  

For N=3, the characteristic equation is 

(C. 10) 



and the Hurwitz criterion is 

Stability boundaries are found by changing one of the inequalities of (C. l l )  or (C.13) 

to an equality to obtain a relationship among the parameters making up the 

coefficients of the characteristic equation. That boundary can then be associated 

with the condition being violated. Note that A1=O cannot be imposed on (C.13) 

without simultaneously violating one of the other conditions, so that no new stability 

boundaries are found by doing that. 

The imaginary part of a root crossing into the Re[h]>O half-plane gives the 

angular frequency of the incipient instability a t  the stability boundary. If we set 

A2=0 in (C.l l)  or A3=0 in (C.13), the critical root passes through the origin so that 

this frequency is zero, and the trajectories in the neighborhood of the equilibrium 

point are radial. If we set A1=O in (C.11), then 

Finally, if we set AlA2-A3=0 in (C.13), (C.12) factors into 

It is clear that the first factor contributes the roots of interest, which are given by 

(C.14). 



D. OPTICAL FEEDBACK ESTIMATION 

An important parameter in calculating the optical feedback to a semic~nduct~or 

laser in an external cavity is 

* 
Text [+] ( 1 4 ,  . - [l+a2]" 
7 L 

given in Chapter 9 of Reference [53]. Here, R and ReZt are the power reflectivities of 

the facet and the external cavity, respectively, and T,,~ and TL are the round-trip 

times of the external cavity and the laser, respectively. In the experiments described 

in this thesis, ReZt represents undesired reflections from optical components in a 

setup for characterizing coherent semiconductor laser arrays, rather than an actual 

external cavity. The goal of this appendix is to estimate ReZt . 

A typical optical setup is shown in Figure D.1. The semiconductor laser is 

imaged onto the entrance slit of either a streak camera or a spectrometer using a 

microscope objective. Typically, a large image-to-object conjugate ratio is used. 

Optical feedback comes from two sources: direct reflections from the surfaces of the 

microscope objective, and the imaging of the partially-reflecting slit blades back onto 

the semiconductor laser facet. We assume that the optical output of the semiconduc- 

tor laser is an elliptical gaussian beam, a convenient approximation that is adequate 

for the purpose a t  hand. 



_ - - - - - - - - - -  - - - - - - - - - - . -  
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Figure D.l Characterization Experiment Input Optics 

The large conjugate-ratio imaging optics typical of a characterization experiment 
subject the semiconductor laser to optical feedback from two sources: specular 
reflection from the front surface of the microscope objective and re-imaged partial 
reflection from the physical object in the image plane. 



To estimate the first contribution, we note that the object distance is typically 

much greater than either of the confocal parameters of the beam, so that the beam is 

in the far-field regime by the time it reflects from the microscope objective and 

returns to the facet. The intensity of an elliptical gaussian beam in the far-field, nor- 

malized to unit power crossing the any transverse plane, is 

2Irw,wy n2w; 2 2 
I(x,Y) = exp -2- 

h2z2 [ A2z2 x 2 ] e x p [ - 2 ~ y 2 ]  

Multiplying the axial value at z=2s0 by the area of the guided mode 

area = TW,W~ (D-3) 

and multiplying by the power reflectivity of the microscope objective front surface 

R,, gives the overlap of the returning beam with the guided mode, approximately 

equal to Red 

which gives Red =3x lo-', using Rmo =.04 and the values given in Figure D.1. This 

is far too small to be of any practical importance. 

The problem of light returning from the slit is much more serious. We envision 

this process as follows: some fraction q of the beam from the semiconductor laser 

passes through the aperture of the microscope objective and is imaged onto the par- 

tial reflector. Usually the spot size in the lateral direction at  the microscope objec- 

tive is small compared to the +,,, the diameter of the microscope objective, but the 

vertical spot size is somewhat greater than +,,. Therefore 
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The partial reflector is for our purposes is characterized by

H = axial reflected power per steradian
incident power

(D.6)

Therefore

Rext = TlH 7T<!>~O
4s.1

(D.7)

The parameter H was measured using the setup shown in Figure D.2. A lens

internal to the microscope objective formed a real image of the filament in the object

plane. This was imaged through the neutral density filter by the 50 mm lens onto

the image plane, at which either a power meter or a partial reflector could be placed.

In the latter case, the reflected light was imaged by the 50 mm lens onto the re-image

plane, using the neutral density filter as a beam-splitter. It was observed that the

reflected light was uniform over the area subtended by the 50 mm lens. By measur-

ing the ratio of the power at the re-image plane to the power at the image plane,

corrected for loss at the neutral density filter, and knowing the solid angle subtended

by the 50 mm lens as seen from the image plane, H could be calculated.

H=3.5/steradian was measured for a shiny end-milled aluminum block similar in

roughness to the stainless-steel entrance slit blades of the SPEX 1.26 meter grating

spectrometer. H=.12/steradian was measured for a black-anodized aluminum block.

The uncertainty of these values was estimated to be about 5 %.

Using TI=.3, H=3.5/steradian and the values given in Figure D.l, (D.7) gives

Rext =2x to-6, which may be large enough to destabilize the semiconductor laser.

Actually, there is another effect that will reduce this somewhat, that of phase disrup-

tion of the reflected beam by roughness of the surface of the slit. This effect was not
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accounted for by the experiment illustrated in Figure D.2 because an incoherent 

source was used. This effect can be estimated by calculating the overlap of the ideal 

and actual reflected modes at the image plane, given by 

where G is the field of the fundamental elliptical gaussian mode at  the image plane 

where 

and + is a random variable such that 

(D. 10) 

(D. 11) 

and 

(D.ll) embodies the assumption that the surface roughness is much larger than a 

wavelength of light, effectively randomizing the phase of the reflected light a t  any 

point. (D.12) holds if dl the characteristic length of the surface features, is small . 

compared to wXli and wyYi. The expectation value for the reduction due to pha,se 

disruption is 

The end-milled aluminum block was found to have a characteristic roughness length 



of d=3 pm, giving < 101 2>W=.025. This must be regarded as a very crude esti- 

2 U mate. Using < 10 1 > R ,zt and ReZt as estimates of the range of the external 

reflectivity gives Rezt =5x to Rezt =2x lo-'. 



E. SUPERMODES AND EMITTER COUPLING 

This appendix demonstrates the application of the dynamical theory of emitter 

coupling developed in Section 4.3, assuming that the array lateral modes are given by 

the well-known supermodes that result from a coupled-mode description of coherent 

semiconductor laser arrays. 

In supermode theory14?98, the array modes are assumed to be linear combina- 

tions of the P single-emitter modes 

where there are P supermodes, since no more can be linearly independent. Multiply- 

ing (E.l) by fi(y-yq) and integrating over the lateral coordinate gives the matrix 

equation 

where A and B are defined by (4.3.7) and (4.3.8), respectively, and S is the PX P 

matrix whose elements are Sp+. This allows the simplification of (4.3.16) to 

where A is defined by (4.3.13). One particular case that has been discussed in the 

literature14 is 



Sp,- = sin 1 . ~ 1  

where A is the angular frequency difference between the lowest- and highest-order 

supermodes in the P-oo limit, normalized to T ~ .  

The inverse of S is given by 

which we digress to prove before proceeding: 

2 
[S -~ .S ]~ , ,  = [ s - s - ~ ] ~ , ~  = - sin n- sin n pr 

p+1  q,, [ P + l  ] [ P + l  ] 03.7) 

Using a trigonometric identity this becomes 

which can be evaluated using 

to obtain 

[S.S-'lp,r = ap,r 

where ap,, is the Kronecker symbol, verifying (E.6). 

(E. 10) 

(E-9) ~ c o s [ n ~ ] =  
q=l 

r - 
0 

#Oandeven 

# O  and odd .. - 

.- - 
P 

1 

0 - - 

f o r  



Substituting (E.4) and (E.6) into (E.3) gives 

-- 
TPT - A 5 sin n a  cos n Q sin n 

9' 
p+1 q,, [ .+I] [ .+I] [ P + l ]  

Using trigonometric identities this becomes 

(E. 11) 

which can be simplified using (E.9) to get 

In other words, the coupling matrix is bi-diagonal so that each emitter is coupled 

only to its nearest neighbors. Moreover, the coupling is the same for any pair of 

adjacent emitters. We have just worked backward from the conclusions to the 

assumptions of Reference (141, which demonstrates the relationship of the dynamical 

theory developed in Section 4.3 to an accepted static theory. 



F. THREEEMITTER THEORY 

The three-emitter analogs of the twin-emitter rate equations (4.4.14)-(4.4.18), 

without spontaneous emission and gain compression, are 



Assuming constant pumping pi for i=l to 3, and setting d/dt=O gives the auto- 

nomous equilibrium conditions. 

For simplicity, we impose the symmetry conditions 

8, = -82 

and define 

Using (F.9)-(F. 13), (F.l) and (F.3) become identical and yield 

Z1 = u[qRsinOl+qIcosO1] 

and (F.2) yields 

2 Z2 = - [-~RsinOl+~cos81] 
u 

Either (F.4) or (F.5) can be used with (F.14) and (F.15) to get 

(F.9) 

(F. 10) 

(F.11) 

(F.12) 



For simplicity, assume that since the emitters have a common p-contact, the 

injection current distributes itself so that the carrier number and thus the gain in 

each emitter is the same. This is equivalent to neglecting the resistance of the clad- 

ding layers, so that the (constant) voltage drop across the device terminals equals the 

potential difference between the quasi-Fermi-levels of the electrons and holes in the 

active layer. Obviously this is a questionable approximation, but is implicit in super- 

mode theory. A different approximation is to assume that the differential resistance 

of the p-n junction is zero, so that it is an ideal voltage sink. This fixes the voltage 

dropped by the cladding layers, and thus the injection current, assuming a constant 

terminal voltage. Thus the emitter currents, but not necessarily their gains, would 

be equal. This leads to a more complicated situation that will not be further dis- 

cussed. 

Using Z1=Z2 to equate (F.14) and (F.15), and using (F.16) gives 

as the only real, non-negative root. Substituting (F.17) into (F.16) gives 

corresponding to an in-phase mode +++ and an out-of-phase mode +-+, respec- 

tively. 

Note that a third mode +0-, predicted from supermode theory, requires that 

X2=0. This renders Z2 undeterminable from the steady-state version of (F.2), and 

requires Z1=Z3=0, by (F.l) and (F.3), and thus Z2=0 by the equal-gain assumption. 



What this means is that the +0- mode can exist only in passive coupled waveguides, 

where the net gains are identically zero. A physical interpretation is that the +0- 

mode is energetically unfavorable since it wastes the gain in the center emitter. 

The shift in oscillation frequency of the lateral modes from the isolated emitter 

mode is given by14 

21R cos n- AoN = -- 
?P [ ] 

where P=3 is the number of emitters and N=O (2) is the number of nodes of the 

+++ (+-+) mode. Thus 

The relationship between the imaginary part of the coupling parameter and the 

equilibrium gain is found by substituting (F.17) and (F.18) into either (F.14) or 

(F.15) to get 

where + (-) is used for the +++ (+-+) mode. Therefore, for the three-emitter, -q 

is a factor of 2' smaller than the value calculated using the twin-emitter theory, a.s 

accounted for in Section 6.6. 

Since the allowed modes are both symmetrical with respect to reflection in the 

y=O plane, given (F.9), lateral asymmetry is forbidden and (F.lO)-(F.12) hold at  all 

times, not only a t  equilibrium. This allows (F.3), (F.5) and (F.8) to be dropped as 

redundant, and the remaining equations to be rewritten as 



where 

and 

Note that (F.22)-(F.26) are identical in form to the twin-emitter equations (4.4.14)- 

(4.4.18), but for the factor of 2 in the last term of (F.26). Thus, it is reasonable to 

suppose that the stability properties are similar. Note that q' would be the value 

measured if twin-emitter theory were applied directly to the three-emitter 1D4 in 

Section 6.6. 



G .  P R O P O S E D  DIFFRACTION-COUPLED TWIN-EMITTER 

Since both techniques discussed in Section 7.3 failed to produce working devices 

with altered or variable coupling, a different approach was sought for future work. 

In the interest of simplicity, a monolithic solution is preferred. In this appendix, the 

idea of including a diffractive coupling section by cleaving one of the facets beyond 

the end of the waveguides is explored. 

A schematic of the proposed device is shown in Figure G.1. Each of the twin 

emitters consists of a guided-wave gain section and an unpumped diffractive section. 

The complex round-trip propagation factor Y is defined as the ratio of the electric 

field to its value on the previous round-trip for an isolated emitter, and encompasses 

the following processes: round-trip propagation through both the amplifying and 

lossy regions, reflection from both facets, and mode-mismatch loss when the returning 

diffracted wave re-enters the waveguide. Partial reflection of the wave as it emerges 

from the guide into the diffractive section is neglected, and the unpumped diffractive 

section is considered unsaturable for simplicity. For an isolated stripe, Y=l is the 

familiar steady-state condition. 

For a twin-emitter, temporarily neglecting evanescent coupling, diffractive cou- 

pling can be incorporated by writing 

El = Y[EI+~E2] (G-1) 



Figure G. 1 Proposed Diffraction-Coupled Twin-Emitter 
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where El and E2 are the steady-state electric fields upon emergence from the guide 

into the diffractive section for emitters 1 and 2, and E is the ratio of the overlap 

integral of the diffracted wave from emitter 1 and the guided mode of emitter 2, to 

the overlap integral of the diffracted wave from emitter 1 and the guided mode of 

emitter 1. A relationship similar to (G.l) can be found by interchanging the sub- 

scripts, and combined with (G.l) to give 

to first order in the small quantity E, where the + (-) sign is to be chosen for the in- 

phase (out-of-phase) mode. IY I and arg(Y), and thus Re(€) and Im(e), are related to 

the threshold gain and oscillation frequency, respectively, of the mode. For the in- 

phase mode, Re(e)>O decreases the threshold by reducing IYI, and Im(r)>O 

decreases the oscillation frequency by reducing arg(Y), which is positive because of 

the phase-sign convention established by (2.2.2.2). The opposite statements hold for 

the out-of-phase mode. 

The foregoing result suggests that diffractive coupling can be viewed as- a linear 

perturbation in the same way as evanescent coupling, and that the two contributions 

are additive. The next step is to relate r to r)diff, the diffractive contribution. The 

magnitude of the round-trip field gain is given by (6.4.2), where the round-trip tran- 

sit time is given by (6.4.6) with L-L+L1. By using these with (2.4.3.5) (neglecting 

gain roll-off and compression), (4.4.10) and (6.2.5), we get 

Substituting (G.2), expanding the logarithm to first order in Re(€) and using (4.4.21) 



gives 

Assuming the other quadrature bears the same relationship gives 

Finally, f: must be related to the device parameters, particularly the diffractive 

section length L'. This can be done by assuming that the guided mode is gaussian 

with a plane phase-front, that begins to spread is the lateral direction upon entering 

the diffractive region, occupying O< z<L1. The electric field can be written 

E(Y,~)  = ?U(y,z)exp(ikz) (G.6)  

where 

and k is the longitudinal propagation factor in the diffractive section, wy is the beam 

waist size (e-' half-width of the field) and b is the confocal parameter. 



Propagation of the wave from z=0 to z=L1, reflection from the facet and return 

to z=0, and uni-directional propagation from z=0 to z=2L1 are equivalent for calcu- 

lating the overlap integrals of the guided modes of the two emitters and the 

diffracting wave. This allows e to be written 

(G. 10) 

where 

after the common z-dependent complex amplitude is cancelled. An analytic solution 

to C(S) is given by Equation 3.923 of Reference [116]. After some algebra, (G.lO) 

gives 

The dependence of e on L' is of interest. l e l monotonically increases with L' 

so that for an infinitely long diffractive section, each emitter injects as much light 

into its neighbor as it injects into itself. Of course, L' is limited in a real device by 

diffraction and absorption. Device PGE4600B#31A2 with Li>50 pm failed to lase, 

while PGE4600B#2E5 with Lf<20 pm had a threshold comparable to similar dev- 

ices without a diffractive section. arg(e) monotonically increases with L' to exactly 

one maximum 



and then monotonically decreases 

If the lateral spot size wy and the thus confocal parameter b are fixed by 

waveguide design considerations, then only L' and S are available for optimization. 

Assuming qm is given we can use the identity 

In(z) = In l z l + i.arg(z) + 2nm (G.16) 

where z is complex and m is an integer, to rewrite (G.5) as 

Equating (G.17) to the logarithm of (G.12) and taking the real part gives 

Since the left-hand side must be positive, the coupling parameter is constrained such 

that 

Using A=815 nm, R=0.32 and dPout/dJ=.326 W/A (Section 6.2) gives 

I qm1 C0.32, which is not a serious limitation. 

The ratio of the imaginary parts to real parts of (G.17) equated to the logarithm 



of (G.12) gives 

Suppose that we are designing a twin-emitter for high-frequency injection current 

modulation (Chapter 8), and have chosen qm=O.l+O.Ol.i, near the center of the 

noptimum-q region"0f Figure 8.2.4. The smallest value (m=O) given by (G.20) is 

Lt/b=1.46, and then (G.18) gives S/wy=2.68. Using wy=2 pm and p,=3.3 gives 

b=50 pm, so that Lt=73 pm and S=5.4 pm. Due to its great length, the 

diffractive section would probably have to be pumped for the device to lase, or at 

least to avoid saturable-absorption instability. Also, the emitter spacing is probably 

small enough so that the evanescent coupling contribution should be added to the 

diffractive coupling, and the total coupling calculated self-consistently. 



H. FORTRAN PROGRAM SOURCE CODES 

STABILITY finds the stability boundaries of the in-phase and out-of-phase 

equilibrium points of the twin-emitter array, and the characteristic frequency of the 

onset of instability along the out-of-phase stability boundary. It was used to gen- 

erate Figures 4.4.3-4.4.5, 5.3.1 and 8.2.4. 

FIVE.GUIDE calculates the real and imaginary parts of the coupling parameter 

as a function of emitter spacing using the five-layer dielectric-slab waveguide model 

described in Section 4.5. It also calculates the error in fitting the emitter modes to 

the array modes. It was used to generate Figures 4.5.2-4.5.4. 

TWOSTRIP integrates the twin-emitter rate equations as described in Section 

5.2. The parameter file TWOSTRIP.PRM is listed as well. TWOSTRIP was used to 

generate Figures 5.3.2-5.3.9. 

POWERSP, CRL and BIFPEP calculate the power spectrum, autocorrelation 

and bifurcation set of a model-generated intensity time series, respectively. 

FABRY.PEROT calculates the depth of modulation of the emission spectrum 

and the wavelengths of the Fabry-Perot peaks to aid in determining the differential 

gain and linewidth-enhancement factor, as described in Sections 6.4 and 6.5, respec- 

tively. It was used to generate Figures 6.4.1 and 6.5.1. 



EXP.PWR.SP calculates the average power spectrum of a user-specified number 

of experimentally-obtained intensity time series. It was used to generate Figures 

6.7.3 and 6.7.4. 
- 

STABILITY, FIVE.GUIDE and FABRY.PEROT were written by G. A. Wilson. 

POWERSP, CRL and BIFPEP were written by R. K. DeFreez. EXP.PWR.SP was 

adapted by Wilson from POWERSP. TWOSTRIP was written by R. K. DeFreez, G. 

A. Wilson and P. D. Carleson. Some programs use routines from the NAG library. 



Appendix H: STABILITY source code 

C STABILITY by Geoffrey Wilson, 11 March 1991 
C (Hodified version of geoffw/chaos/src/new.stability) 
C 
? This program finds the stability boundaries of the equilibrium 
C solutions to Winfulls generalized (includes complex coupling) 
C two-stripe equations. 
C 
C The two-stripe laser is described by the parameters f 
C (linewidth enhancement factor), t (carrier lifetime/ 
C photon lifetime). 
C 
C The operating point is specified by p (normalized pumping) 
C and the complex coupling coefficient eta is represented 
C by r (real part) and i (imaginary part). For a fixed p, 
C the stability boundaries are plotted in the r-i plane. 
C 
C Parameters for device PGE4600BllD4 
C 

integer ii 
double precision f,t,p,t2,p2,p3,p4,i 
double precision c,b,a,rp,rn,hi,b 
logical pflg,nflg 

C Laser parameters. 
f1.96 
t-6.6d2 

C I=2.3xIth. 
p-. 912d0 

C Set limit for Is*il. 
hi=.25dO*(dsqrt(~.d0+~2.dO+4.dO*p)/t)-l.d0) 
if (hi.gt.p) then 

hi=p 
end if 

C Constants. 
t2=t*t 
P ~ = P * P  
P ~ = P * P ~  
P ~ - P * P ~  

C Open output files. 
0pen(l,filc=~o2p') 
0pen(2,file-~o2n~) 
0pen(3,file=~e3p~) 
0pen(4,file-~e3n') 
0pen(7,file-~f2p~) 
open(8,file-'f2n1) 

C Start loop over range of i (imaginary part of eta). 
do 900 ii=-469,469 
if (ii.le.0) then 

i--(10.d0**(dfloat(-500-ii)/100.d0)) 
else 

i-10.d0**(dfloat(-50O+ii)/100.d0) 
end if 
if (i.lt.-hi) go to 200 

C 3 X 3 matrix second-order Hurwitz criterion. 
si2--2.dO*i 
x2=(p+i)/(l.d0+si2) 

C Calculate the coefficient of r**O. 
c=-((4.d0*si2-4.d0)*x2*x2+((2.d0*si2-6.d0*si2*si2)*t+6.d0* 

&si2-2.d0)*x2+2.d0*si2*si2*si2*t*t-4.dO*si2*si2*t+2.dO*si2)/t/t 
C Calculate the coefficient of r**l. 

b=(2.dO*f*si2+2.dO*f)*x2/t 
C Calculate the coefficient of r**2. 

a--2.dO*si2 
C Solve the quadratic equation for r, record roots. 

call quad(a,b,c,rp,pflg,rn,nflg) 
if (pflg) then 

if (rp.lt.O.dO) then 



Appendix H: STABILITY source code 

write(l,*)5.+logl0(sngl(-.5d0*rp)) ,float(ii)/lOO. 
c Instability angular frequency normalized to photon lifetime. 

b-dsqrt(rp*rp+si2*si2-2.dO*si2/t-(2.dO*si2-2.d0)*~2/t) 
write(7,*)5.+logl0(sngl(-.5d0*rp)),log10(~ngl~b~) 
end if 

end if 
if (nfla) then 

ii (rn.lt.0.do) then 
write(2,*)5.+logl0(sngl(-.5d0*rn)),float(ii)/lOO. 

c Instability angular frequency normalized to photon lifetime. 
b-dsqrt(rn*rn+si2*si2-2.dO*si2/t-(2.dO*si2-2.d0)*~2/t) 
write(8,*)5.+log10(sngl(-.5d0*rn)),log10(~ngl(b)) 
end if 

end if 
200 if (i.gt.hi) go to 900 
C 3 X 3 matrix third-order Hurwitz criterion. 

si2-2.dO*i 
x2-(p-i)/(l.dO+si2) 

C Calculate the coefficient of r**O. 
~--(2.dO*si2*~2-si2*si2)/t 

c Calculate the coefficient of r**l. 
b=-(2.dO*f*si2+2.dO*f)*x2/t 

C Calculate the coefficient of r**2. 
a=(2.dO*x2+l.dO)/t 

C Solve the quadratic equation for r, record roots. 
call quad(a,b,c,rp,pflg,rn,nflg) 
if (pflg) then 

if (rp.gt.O.dO) then 
write(3,*)5.+logl0(sngl(.5d0*rp)),float(ii)/lOO. 
end if 

end if 
if (nflg) then 

if (rn.gt.O.dO) then 
write(4,*)5.+logl0(sngl(.5d0*rn)),float(ii)/lOO. 
end if 

end if 
C Finished with loop. 
900 continue 

close ( 1 ) 
close (2 ) 
close ( 3 
close ( 4 
close( 7) 
close( 8 ) 
stop 
end 

C **************** Functions & Subroutines * * * * * * * * * * * * * * * a  

C Subroutine for solving quadratic equations a*x*x+b*x+c-0. 
subroutine quad(a,b,c,xp,pflg,xnfnflg) 
double precision a,b,c,xp,xn,dis 
logical pflg,nflg 

C Special case: a-0. 
if (a.ea.0.) then 

C Special sibcase: b-0. 
if (b.eq.0.) then 

pflg-.false. 
nflg-.false. 
return 
end if 

C Special subcase: b<>O. 
xp--c/b 
pflg=.true. 
nflg-.false. 
return 
end if 

C General case. 
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dis-b*b-4.*a*c 
c ~ e s t  for complex roots. 

if (dis.lt.0.) then 
pflg=.false. 
nflg=.false. 
return 
end if 

C Real roots. 
xp-.5*(-b+dsqrt(dis))/a 
pflg-.true. 
xn-.5*(-b-dsqrt(dis))/a 
nflg-.true. 
return 
end 



Appendix H: FIVE.GUIDE source code 

C 'five.guide.fr by Geoffrey Wilson 30 March 1990 
#. 
L 

C Used to test the validity of the stripe-field representation 
C of a two-stripe index-guided device as a function of center- 
C to-center spacing. 
E 
C Modified by Geoffrey Wilson 21 June 1990 to include gain in the 
C guiding regions and loss in the cladding regions to calculate 
c the imaginary part of the eta matrix. 
C 

integer iplim,ip,i,il,i2,ifail 
double precision pi,hpi,rt2,rt3,ex,plim~pstp,p,lo,hi,tnh~lhsrrhs 
double precision gam0,kap0,const,bnd,bnd21~OIsOIex2,snh,csh,g2,k2 
double precision dk,dk2,gamp,kapp,gamn,kapn,tnh~sum~dii,den,z(S) 
double' precision fp,cp,sp,thp,ap,bp,gp,fn,cn,sn,thn,an,bn,gn 
double precision amat(2,2),~mat(2,2)~1ambda(2,2),fmat(2,2) 
double precision ainv(2,2),bmat(2,2),binv(2,2),aa(2,2),bb(2,2) 
double precision temp(2,2),eta(2,2) 
double precision pp,nn,errp(1000),errn(1000),s1f(1000),crs(1000) 
double precision lambdai(2,2),etai(2,2),slfi(1000),crsi(lOOO~ 
double precision confO,confp,confn 

C Begin executables. 
ifail-0 
imat(l,l)=l.dO 
imat(l12)=0.d0 
imat(2,l)-0.d0 
imat(2,2)-1.d0 
pi-3.141592654 
hpi=pi/2. 
rt2=dsqrt(2.d0) 
rt3-dsqrt(3.dO) 
ill20 
i2-20 

C Get stripe spacing range "p" from the terminal. 
print*,"Supply the stripe spacing limit in units of stripe width" 
read*,plim 

C Get stripe spacing mesh size "pstp: from the terminal. 
print*,"Supply the stripe spacing mesh in units of stripe width" 
read*,pstp 
iplim-idint((p1im-l.)/pstp) 

C Constant of proportionality for converting transverse wavevectors 
C to angular frequency splitting6 normalized to the photon lifetime. 

const=.l95 
C Get "kapOW upper bound from the terminal. 

print*,"Supply kapO upper bound in units of pi/2 (0 to 1)" 
read*, bnd 
bnd-hpi*bnd 
bnd2-bnd*bnd 

C Find *kapOn and "gam0". 
10-0. 
himbnd 
kap0=.5*bnd 
gam0=.5*rt3*bnd 
do 50 i-1,i2 
lhs-dtan(kap0) 
rhs-gamO/kapO 
if (1hs.gt.rhs) then 

hi-kap0 
else 

lo-kapO 
end if 
kap0-.5*(lo+hi) 
gam0-drqrt(bnd2-kapO*kapO) 

50 continue 
C Useful constants. 

c0-dcos(kap0) 
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60-dsin(kap0) 
ex-dexp( gam0 
ex2-ex*ex 
snh-dsinh(gam0) 
csh-dcosh(gam0) 

c Diagonal elements of matrix "An. 
amat(l,l)-kap0*kap0/gam0+bnd*s0+bnd2 
amat(2,2)-amat(1,l) 

c Confinement factor for the isolated stripe mode. 
conf0-(bnd*sO+bnd2)/amat(l,l) 

C Start loop thru values for half-center-to-center spacing "p". 
do 1000 ip-1,iplim 
p-l.+dfloat(ip)*pstp 
dk-dexp(-gamO*p) 
dk2=dk*dk 

C Off-diagonal elements of matrix "An. 
amat(1,2)-kap0*kap0*dk2*(l./gam0+2.*(2.*gamO/bnd2+p-l.)*ex2~ 
amat(2,l)-amat(l,2) 

C Solve eigenvalue equation for "kapp". 
10-0. 
hi-kapO 
kapp=.5*(lo+hi) 
gamp-dsqrt(bnd2-kapp*kapp) 
do 200 i=l,i2 
tnh=dtanh(gamp*(p-1.)) 
k2=kapp*kapp 
g2=gamp*gamp 
lhs-dtan(kapp) 
rhs=bnd*dsqrt(k2+tnh*tnh*g2)-k2+tnh*gZ 
rhs-rhs/gamp/kapp/(l.+tnh) 
if (1hs.gt.rhs) then 

hi-kapp 
else 

lo-kapp 
end if 
kapp-.5*(lo+hi) 
gamp-dsqrt(bnd2-kapp*kapp) 

200 continue 
C Done finding even array mode eigenvalue "kapp". 
C Solve eigenvalue equation for "kapnn. 

lo-kap0 
hi-bnd 
kapn-.S*(lo+hi) 
gamn-dsqrt(bnd2-kapn*kapn) 
do 400 i=l,i2 
tnh-dtanh(gamn*(p-1.)) 
k2=kapn*kapn 
g2=gamn*gamn 
lhs-dtan(kapn1 
rh~-bnd*dsqrt(tnh*tnh*k2+g2)-tnh*k2+g2 
rhs-rhs/garnn/kapn/(l.+tnh) 
if (1hs.gt.rhs) then 

hi-kapn 
else 

lo-kapn 
end if 
kapn-.S*(lo+hi) 
gamn-dsqrt(bnd2-kapn*kapn) 

400 continue 
C Done finding odd array mode eigenvalue "kapn". 
C Calculate "lambda" matrix. 

lambda(1,l)-const*(kapO*kapO-kapp*kapp) 
lambda(l,2)-0. 
lambda(2,1)=0. 
lambda(2,2)-const*(kapO*kapO-kapn*kapn) 

C Calculate matrix "C". 
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C Constants for even array mode. 
fp-kapp/dcosh(gamp*(p-1.)) 
cp-dcos(kapp) 
sp-dsin(kapp) 
thp-dtanh(gamp*(p-1.)) 
ap=kapp*cp+gamp*thp*sp 
bp--kapp*sp+gamp*thp*cp 
gp=ap*cp+bp*sp 

C Calculate even array mode inner product. 
~(1)-gp*gp/gamp 
z(2)-2.*ap*ap*(cp*sp/kapp+l.) 
~(3)-2.*bp*bp*(l.-cp*op/kapp) 
~(4)-fp*fp*(.5*dsinh(2.*gamp*(p-l.))/gamp+(p-l.)) 
pp-z(l)+z(2)+z(3)+z(4) 

C Confinement factor for the even array mode. 
confp=(z(2)+~(3))/pp 

C Constants for odd array mode. 
fn=kapn/dcosh(gamn*(p-1.)) 
cn-dcos(kapn) 
sn-dsin(kapn) 
thn-dtanh(gamn*(p-1.)) 
an=gamn*sn+kapn*thn*cn 
bn-gamn*cn-kapn*thn*sn 
gn-an*cn+bn*sn 

C Calculate odd array mode inner product. 
~(1)-gn*gn/gamn 
z(2)=2.*an*an*(cn*sn/kapn+l.) 
~(3)-2.*bn*bn*(l.-cn*sn/kapn) 
~(4)=fn*fn*(.5*dsinh(2.*gamn*(p-l.))/gamn-(p-l.)) 
nn=z(l)+z(2)+~(3)+~(4) 

C Confinement factor for the odd array mode. 
confn-(z(2)+~(3))/nn 

C Calculate "lambdai" matrix. 
lambdai(l,l)=l.dO-confp/conf0 
lambdai(1,2)=0.d0 
lambdai(2,l)-0.d0 
lambdai(2,2)-1.d0-conin/confO 

C Even array mode matrix elements. 
sum-gamO+gamp 
di i -gamO-gamp 
~(1)-gp*kapO*(l.+dk2)/sum 
den-kapp*kapp+gamO*gamO 
z(2)-2.*ap*kap0*dk2*e~/den*(gam0*snh*cp+kapp*csh*sp~ 
z(3)-2.*bp*kap0*dk2*e~/den*(-kapp*~nh*cp+gamO*csh*sp) 
z(4)=fp*kap0*dk*ex*(dsinh(sum*(p-l.))/sum+dsinh(dif*(p-l.))/dii) 
~(5)-ap*bnd*(dsin(kapp-kapO)/(kapp-kap0) 

r+dsin( kapp+kapO ) / (  kapp+kapO ) ) 
cmat(l,l)=z(l)+z(2)+~(3)+~(4)+~(5) 
cmat(2,l)=cmat(l,l) 

C Odd array mode matrix elements. 
sum-gamO+gamn 
dif-gam0-gamn 
~(1)-gn*kapO*(l.-dk2)/sum 
den-kapn*kapn+gamO*gamO 
z(2)--2.*an*kapO*dk2*ex/den*(gar0*snh*cn+kapn*csh*sn) 
z(3)=-2.*bn*kapO*dk2*cx/dcn*(-kapn*snh*cn+gamO*csh*sn) 
z(4)-fn*kap0*dk*ex*(dsinh(sum*(p-l.))/sum-dsinh(di~*(p-l.))/di~~ 
~(5)-an*bnd*(dsin(kapn-kapO)/(kapn-kap0) 

c+dsin(kapn+kapO)/(kapn+kapO)) 
cmat(l,2)-z(l)+z(2)+~(3)+~(4)+~(5) 
cmat(2,2)--crat(1,2) 
print*,ip,sngl(confp),sngl(confO),sngl(conin) 

C Calculate the inverse of "A".  
call f04aef(amat,2,imat,2,2,2,ainv,2,z,aa,2,bb,2,iiail) 

C Calculate the product Ainv x C. 
call f0lckf(bmat,ainv,cmat,2,2,2,z,5,l,ifail) 
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C Calculate the inverse of "B". 
call f04aef(bmat,2,imat,2,2,2,binv,2,z,aa,2,bb12,ifai1) 

C Calculate the product B x lambda x Binv. 
call f01ckf(temp,bmat,lanbdaf2f212fz15,1,ifai~) 
call f01ckf(eta,temp,binv,2,2,2,z,5,1,ifai1) 
slf(ip)=eta(l,l) 
crs(ip)-eta(l,2) 

C Calculate the product B x lambdai x Binv. 
call f01ckf(temp,bmat,lambdaif2f2f21z1511fifail~ 
call f01ckf(etai,temp,binv,21212fz,5111ifail) 
slfi(ip)=etai(l,l) 
crsi(ip)=etai(l,Z) 

C Calculate normalized residuals "errp" and "errn". 
errp(ip)-l.-2.*cmat(l,l)*cmat(l,l)/pp/(amat(l,l)+amat(lf2)) 
errn(ip)-l.-2.*cmat(1I2)*~mat(l,2)/nn/(amat~lfl)-amat~lf2)~ 

1000 continue 
C Write output files. 

open(1,file-'self') 
0pen(2,file-~cross~) 
0pen(3,file=~errorp') 
open(4,file-'errornf) 
open(7,file='logpf) 
open(8,file='logn1) 
0pen(9,file=~selfi') 
~pen(lO,file=~crossi~) 
do 2000 ip=l,iplim 
p=l.+dfloat(ip)*pstp 
write(l,*)sngl(p),sngl(slf(ip)) 
write(2,*)sngl(p+,sngl(crs(ip)) 
write(3,*)sngl(p),sngl(errp(ip)) 
write(4,*)sngl(p),sngl(errn(ip)) 
write(7,*)sngl(dloglO(crs(ip))),sngl(dloglO~errp~ip~~~ 
write(8,*)sngl(dloglO(crs(ip))),sngl(dloglO(errn(ip))) 
write(9,*)sngl(p),sngl(slfi(ip)) 
write(lO,*)sngl(p),sngl(crsi(ip)) 

2000 continue 
close( 1) 
close(2) 
close( 3) 
close ( 4 ) 
close ( 7 
close ( 8  
close ( 9 ) 
close ( 10) 
Stop 
end 
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c Program twostrip.for 
C 
C This program integrates Winful's rate equations (including complex 
C coupling, spontaneous emission and injection current modulation) 
C for a two-stripe array to obtain the time series of the stripe 
C electric field amplitudes (XI and XZ), the inter-stripe phase 
C difference (theta) and the stripe net gains (21 and 22). 
C 
C A parameter file 'twostrip.prm' is read to get the necessary 
C information. Since generally the device is to be modulated, 
C the first part of the program looks for a limit cycle in the 
C response at a sub-multiple of the modulation cycle frequency. 
C The convetgence to the limit cycle is recorded in the output 
C file 'converget, which contains the RMS difference between the 
C beginning and end of each reponse cycle. The output file 'X.planet 
C contains data pairs (Xl,X2) for the beginning of each response cycle. 
C 
C After attempting to obtain a limit cycle, the program writes the 
C time series of the dynamical variables to output files XI.*, X2.*, 
C theta.*, Z1.* and 22.*, where * is a text string determined by the 
C complex coupling constant 'eta'. 
C 
c ................................................................... 
C Revisions: 
C 24 Jul 90 PDC Ported to Microsoft PC Fortran, Carleson 
C Appends .DAT to data files at synth. 
C 8 Aug 90 Modified to include automatic calculation of 
C modulation frequency based on value of etar, DeFreez 
C 8 Auf 90 Modified to write data output files on d:, DeFreez 
C 26 Sep 90 Modified to establish a modulation frequency 
C commensurate with the record length; Wilson 
C ................................................................... 
C 
C Quantities to be read from the parameter file 'twostripe-prm'. 

integer sigfigr, tenpwrr, sigfigi, tenpwri 
integer phase, eql, j, period, settle 
double precision alpha, taus, taup, beta, z0, PO, freq, depth 
double precision offset, outtol, mesh, record 
character*80 txtl 
character*8 txt2 

C Other quantities 
integer nout, n, iw, ir, mped, icyc, i2, i, ifail 
double precision pi, pp, radfreq, rhop, etar, etai, h, to1 
double precision aa, bb, cc, w(5,23), y(5), yold(5) 
double precision x, xend, sum, term 
character*16 fnl, fn2, fn3, fn4, in5 
character*23 fnnl, fnn2, fnn3, fnn4, fnn5 
character*7 destdir 

logical flag 
C Quantities added 26 Sep 90 by Wilson. 

integer lookup(9) 
C NAG routine dO2ebf is used 

external fcn, out, pederv 
C Common blocks 

common /params/ etar, etai, alpha, PO, pp, taus, taup, rhop, z0, 
&phase, radfreq 
common /outblk/ xend, h, i, flag 

C Lookup table values assure modulation frequency a multiple of 250 MHz, 
C and a divisor of 1 THz. This requires a record length of 8 ns and a 
C step size of 1 ps. 
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data lookup /16,20,25,32,40,50,80,100,125/ 
-C hraluate pi 

pim3.1415926535898 
C Integration routine constants 

nout = 6 
n = 5  
iw = 23 
ir = 0 
aped = 1 

C Read parameter files 
open(l,file==*d:\mod.dat\twostrip.prm') 
open(2,file='d:\mod.dat\etatable.prm') 

read (1,l) txtl 
read(1,l)txtl 

C Linewidth enhancement factor 
read(l,*) txt2,alpha 
read(1,l)txtl 

C Carrier lifetime in picoseconds 
read(l1*)txt2,taus 
read (1,l) txtl 

C Photon lifetime in picoseconds 
read (1, *) txt2, taup 
read(1,l) txtl 

C Spontaneous emission factor 
read(l,*) txt2, beta 
read(1,l) txtl 

C Cold-cavity normalized loss 
read (1, *) txt2, z0 

C Significant figure of the real part of the coupling coefficient 
read (2, *) sigf igr 

C (Neg.) power of ten of the real part of the coupling coefficient 
read (2, *) tenpwrr 

C Significant figure of the imaginary part of the coupling coefficient 
read (2, *) sigf igi 

C (Neg.) power of ten of the imaginary part of the coupling coefficient 
read (2, *) tenpwri 
read(1,l) txtl 
read(1,l) txtl 

C Average normalized above-threshold injection current 
read (1, *) txt2, p0 
read(1,l) txtl 

C Modulation frequency in GHz 
rcad(ll*)txt2,freq 
read (1,l) txtl 

C Depth of modulation (average-to-peak/ average above-threshold) 
read (1, *) txt2 ,depth 
read(1,l) txtl 

C Modulation phase (lzstripes modulated in-phase, -l=out-of-phase) 
read (1, *) txt2, phase 
read (1,l) txtl 
read(1,l) txtl 

C Equilibrium solution to start near (Osin-phase, 1-out-of-phase) 
read (1, *) txt2, eql 
read (1,l) txtl 

C Starting distance from equilibrium solution in units of pi radians 
read (1, *) txt2, off set 
read (1,l) txtl 
read (1,l) txtl 

C (Negative) power of ten of the tolerance for the integration routine 
read(l1*)txt2,j - 
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read(1,l) txtl 
C Modulation cycles per response cycle 

read(1, *)txt2 ,period 
read (1'1) txtl 

C Maximum number of response cycles before recording output files 
read(lI*)txt2,settle 
read (1,l) txtl 

C Tolerance for convergence to limit cycle 
read (1, *) txt2, outtol 
read(1,l) txtl 

C Number of response cycles to record in output files 
read ( 7 ,  *) txt2, record 
read(1,l) txtl 

C Step size between data points in output files in picoseconds 
read (1, *) txt2, mesh 
close (1) 
close (2 ) 

1 format (a) 
C Done reading parameter files 
C Evaluate auxilliary quantities 

pp=depth*pO 
radfreq=2.*pi*freq 
rhopo. SdO*beta 

C Synthesize output file names out of key parameters 
destdir='c:\tmp\' 
if((sigfigr.ge.O).and.(sigfigi.ge.O)) then 

fnl=1Xl'//char(sigfigr+48)//char(tenpwrr+48) 
$ //char(sigfigi+48)//char(tenpwri+48)//'.dat1 
fn2='X2'//char(sigfigr+48)//char(tenpwrr+48) 

$ //char(sigfigi+48)//char(tenpwri+48)//'.dat1 
fn3='tht//char(sigfigr+48)//char(tenpwrr+48) 

$ //char(sigfigi+48)//char(tenpwri+48)//'.dat1 
fn4='Zl'//char(sigfigr+48)//char(tenpwrr+48) 

$ //char (sigf igi+48) //char (tenpwri+48) / / '  .dat' 
fn5=1Z2'//char(sigfigr+48)//char(tenpwrr+48) 

$ //char(sigfigi+48)//char(tenpwri+48)//'.dat1 
C 

elseif ((sigfigr.ge.O).and.(sigfigi.lt.O)) then 
sigfigi=iabs(sigfigi) 

fnl='Xl'//char(sigfigr+48)//char(tenpwrr+48) 
$ //u-"//char(sigfigi+48)//char(tenpwri+48)//'.dat1 
fn2='X2'//char(sigfigr+48)//char(tenpwrr+48) 

$ //w-n//char(sigfigi+48)//char(tenpwri+48)//1.dat1 
fn3='th'//char(sigfigr+48)//char(tenpwrr+48) 

$ //a-w//char(sigfigi+48)//char(tenpwri+48)//'.dat1 
fnl='Zl'//char(sigfigr+48)//char(tenpwrr+48) 

$ //a-w//char(sigfigi+48)//char(tenpwri+48)//'.dat1 
fn5=1Z2'//char(sigfigr+48)//char(tenpwrr+48) 

$ //w-n//char(sigfigi+48)//char(tenpwri+48)//~.dat' 
sigfigil-l*oigfigi 

C 
elseif ((sigfigr.lt.O).and.(sigfigi.ge.O)) then 
sigfigr=iabs(sigfigr) 

fnl=1X11//a-m//char(sigfigr+48)//char(tenpwrr+48) 
$ //char(sigfigi+48)//char(tenpwri+48)//'.dat' 
fn2='X2'//m-u//char(sigfigr+48)//char(tenpwrr+48) 

$ //char(rrigfigi+48)//char(tenpwri+48)//'.dat' 
fn3='th'//w-a//char(sigfigr+48)//char(tenpwrr+48) 

$ //char(sigfigi+48)//~har(tenpwri+48)//~.dat~ 
fn4=1Zl~//w-w//char(sigfigr+48)//~har(tenpwrr+48) 
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$ //char(sigfigi+48)//char(tenpwri+48)//'.dat'
fn5='Z2'//"-"//char(sigfigr+48)//char(tenpwrr+48)
$ //char(sigfigi+48)//char(tenpwri+48)//'.dat'

sigfigr=-l*sigfigr
c

else
sigfigr=iabs(sigfigr)
sigfigi=iabs(sigfigi)

fnl='Xl'//"-"//char(sigfigr+48)//char(tenpwrr+48)
$ //"-"//char(sigfigi+48)//char(tenpwri+48)//'.dat'
fn2='X2'//"-"//char(sigfigr+48)//char(tenpwrr+48)

$ // ~'-"//char (sigfigi+48) //char (tenpwri+48) //' . dat'
fn3='th'//"-"//char(sigfigr+48)//char(tenpwrr+48)

$ //"-"//char(sigfigi+48)//char(tenpwri+48)//'.dat'
fn4='Zl'//"-"//char(sigfigr+48)//char(tenpwrr+48)
$ //"-"//char(sigfigi+48)//char(tenpwri+48)//'.dat'
fnS='Z2'//"-"//char(sigfigr+48)//char(tenpwrr+48)
$ //"-"//char(sigfigi+48)//char(tenpwri+48)//'.dat'

sigfigr=-l*sigfigr
sigfigi=-l*sigfigi
endif
fnnl=destdir//fnl
fnn2=destdir//fn2
fnn3=destdir//fn3
fnn4=destdir//fn4
fnnS=destdir//fnS

e Program segment before 26 Sep 90.
e etar=dfloat(sigfigr)*lO.dO**(-dfloat(tenpwrr»
e etai=dfloat(sigfigi)*lO.dO**(-dfloat(tenpwri»
e *********************
e freq=etar*lOOO./pi/taup
e radfreq=2.*pi*freq
e record=40.*freq
e *********************
e New program segment.

freq=2S.dO*10.dO**(-dfloat(tenpwrr»*dfloat(lookup(sigfigr»
radfreq=2.*pi*freq
mesh=l.dO

record=40.*freq
etar=pi*taup*freq/1000.dO
etai=pi*taup/40.dO*10.dO**(-dfloat(tenpwri»
&*dfloat(lookup(sigfigi»
print*,'etar = ',sngl(etar)
print*,'etai= ',sngl(etai)

e End of new segment.
e Done synthesizing output file names
e
e
e
Attempt to find limit cycle by integrating
Open file to record attempt at convergence

open(l,file='d:\mod.dat\converge')
c Open file to record successive start-cycle
c open(2,file='d:\mod.dat\X.plane')
e Set flag for limit cycle search mode

flag=.false.
e Set the data report interval h (ps) equal

h=1.d3*dfloat(period)/freq
e Set initial integration error tolerance
33 tol = lO.dO**(-j)

write (nout,99999) tol
write (nout,99998)

over complete cycles

points in the XI-X2 plane

to the response period
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C Initial conditions near equilibrium point 
aa=l.dO-2.dO*rhop 
bb=p0+dfloat(eql)*etai+(l.d0+2.d0*z0)*rhop 
cc=pO*dfloat(eql)*etai-zO*rhop 
y(4) = (bb-dsqrt(bb*bb-4.dO*aatcc))/2.dO/aa 
Y(5) = Y(4) 
y (1) = dsqrt ( (p0-y (4) +2 .do* (zO+y (4) ) *rhop) / 

& (l.dO+2.d0*dfloat(eql)*etai)) 
Y(2) = Y(1) 
y (3) = pi* (df loat (eql) +l.d-6) 

C Start loop to find limit cycle 
do-, 40 icyc=l, settle- 

C Record previous cycle finish-point as present cycle start-point 
do 38 i2=1,5 

38 yold(i2)=y (i2) 
C Set x and xend to report no intermediate points 

x = O.dO 
xend = h 
i s 0  
ifail = 1 

C Integrate over response cycle 
call d02ebf(x,xend,n,y,tol,ir,fcn,mped,pederv,out,w, 
iw, ifail) 

C write (nout, 99997) ifail 
C If ... then reset integration tolerance 

if (ifail.eq.3) then 
j=j-1 
got0 33 

endif 
if (tol. lt. 0. do) write (nout, 99995) 

C Write the finish-point (Xl,X2) to the file 'X.planet 
c =ite(2,*!sngl(y(l) 1 ,sngl(y(2) 1 *** 
C Calculate RMS difference between start-point and finish-point 

sum=O. d0 
do 39 i2=1,5 

c Skip troublesome 'theta' difference 
if (i2.eq.3) go to 39 
temty(i2) -yold(i2) 
sum=sum+tem*term 

39 continue 
sum=dsqrt(sum/4.d0) 

C Write the RMS difference to the file 'converge' 
write (1, *) icyc, sngl (sum) 

C If ... then limit cycle tolerance has been reached, exit loop 
if (sum.lt.outto1) go to 50 

4 0 continue 
print*,'Failed to converge.' 

C Limit cycle found. Record in plottable output files 
5 0 close ( 1) 
c close (2) 
C Reset flag that toggles output subroutine rode 

flag-.true. 
open(11, f iletfnnl) 
open(l2,file=fnn2) 
open(l3,file=fnnn) 
open(14, f ile=fnn4) 
open(l5,file=fnn5) 

C Set time series limits 
x = O.dO 
xend = df loat (record) *h 
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C Set the data report interval h (ps) 
haesh 

53 to1 = lO.dO**(-j) 
C One less than the number of points in the time series 

i = idint(xend/h) -1 
ifail = 1 
call d02ebf(x,xend,n,y,tol,ir,fcn,mped,pederv,out,wl 

* iw, ifail) 
write (nout, 99997) ifail 
if (ifail.eq.3) then 

j=j -1 
got0 53 

endlf 
if (tol. lt. O.dO) write (nout, 99995) 

close (11) 
close (12) 
close (13) 
close(l4) 
close (15) 

99999 format (22hOcalculation with tol=, d9.2) 
99998 format (40h x and solution at equally spaced points) 
99997 format (8h ifail=, il) 
99995 format (24h range too short for tol) 

end 
subroutine fcn(t, y, f). 
integer phase - 
double precision radfreq, z0 
double precision t 
double precision f(5), y(5),temp3,tempr3,tempi3 
double precision etar,etai,alpha,taus,taup,rhop,pO,pp,pl,p2 
double precision temprl,tempil,tempr2,tempi2 
double precision cs, sn 

common /params/ etar, etai, alpha, PO, pp, taus, taup, rhop, 2 0 ,  
&phase, radfreq 

common /trigs/ cs, sn 
cs = dcos(y(3)) 
sn = dsin(y(3)) 

temprl = y (4) *y(l) -etar*y(2) *sn 
tempi1 = rhop* (y(4) +z0) /y(l) -etai*y (2) *cs 
f (1) = (temprl+tempil) /taup 
tempr2 = y (5) *y(2) +etar*y(l) *sn 
tempi2 = rhop* (y(5) fzO) /y(2) -etai*y(l) *cs 
f (2) = (tempr2+tempi2) /taup 
temp3 = -alpha* (y(5) -y (4) ) 
tempr3 = temp3+etar* (y(1) /y(2) -y(2) /y(1) ) *cs 
tempi3 = etai*(y (1) /y(2)+y (2) /y(l) ) *sn 
f (3) = (tempr3+tempi3) /taup 
pl = pO + pp*dsin(l.d-3*radfreq*t) 
p2 = pO + phase*pp*dsin(l.d-3*radfreq*t) 
f(4)= (pl-y(4)-(l.dO+2.d0*y(4))*y(l)*y(l))/taus 
f (5)= (p2-y (5)-(l.d0+2 .dO*y(5) ) *y(2) *y(2) )/taus 
return 
end 
subroutine pederv(x, y, pw) 
integer phase 
double precision radfreq, z0 
double precision x 
double precision pw (5,5) , y (5) 
double precision etar,etai,alpha,taus,taup,rhop,pO,pp 
double precision temp311, temp312, temp321, temp322 
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double precision temp331, temp332 
double precision cs, sn 

common /params/ star, etai, alpha, PO, pp, taus, taup, rhop, 20, 
&phase, radfreq 

common /trigs/ cs, sn 
prr(l,l) = (Y(4)-rhOP*(Y(4)+zo)/Y(l) /Y(l) )/taup 
pw(1,2) = (-etar*sn-etai*cs)/taup 
pw(1,3) = (-etar*y (2) *ca+etai*y (2) *sn) /taup 
PW(1,4) = (Y(l)+rho~/Y(l) )/taup 
pw(1,5) = O.dO 
pw(2,l) = (etar*sn-etai*cs)/taup 
PW(2,2) = (Y(~)-~~OP*(Y(~)+~O)/Y(~)/Y(~) )/taup 
pw(2,3) = (etar*y (1) *cs+etai*y (1) *sn) /taup 
pw(2,4) = O.dO 
PW(2,5) = (Y(2)+rhoP/Y(2) )/taup 
temp331 = ~(1)/~(2)-~(2)/~(1) 
temp332 = Y(l)/Y(2)+Y(2)/Y(l) 
temp311 = temp332/y(l) 
temp312 = temp331/y (1) 
temp321 = -temp332/y(2) 
temp322 = -temp331/y(2) 
pw(3,l) = (etar*cs*temp3ll+etai*sn*temp312)/taup 
pw(3,2) = (etar*temp321*cs+etai*temp322*sn)/taup 
pw(3,3) = (-etar*temp33l*sn+etai*temp332*cs)/taup 
pw(3,4) = alphaltaup 
pw(3,5) = -alpha/taup 
pw(4,l) = -2.dO*(l.d0+2.dO*y(4))*y(l)/taus 
pw(4,2) = O.dO 
pw(4,3) = O.dO 
pw(4,4) = -(l.dO+2.d0*y(l)*y(l))/taus 
pw(4,5) = O.dO 
pw(5,l) = O.dO 
pw(5,2) = -2 .do* (l.d0+2 .dO*y (5) ) *y (2) /taus 
pw(5,3) = O.dO 
pw(5,4) = O.dO 
pw(5,5) = -(l.d0+2.dO*y (2) *y (2) ) /taus 
return 
end 
subroutine out (x , y) 
integer i 
double precision x, y(5), xend, h, pi 
logical flag 
common /outblk/ xend, h, i, flag 
pi=3.1415926535898 

C If ... then report time series data points 
if (flag) then 
write (11,99999) 8ngl (y (1) *y (1) ) 
write (12,99999) sngl (y (2) *y !2) ) 
write (13,99999) sngl (y (3) /pi) 
write (14,99999) ongl (y (4) ) 
write (15,99999) 8ngl (y (5) ) 
end if 

C Decrement time and data point index 
x = xend - df loat (i) *h 
i - i - 1  
return 

99999 format (e13.6) 
end 
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'STRIPE PARAMETERS' 
. '  linewidth enhancement factor' 
' alpha-' 7.560 

carrier lifetime in picoseconds' 
taus-' 2400.60 

photon lifetime in picoseconds' 
' tauk-I' 1.5dO 
' spontaneous emission factor' 
' betar-' 1.6d-4 

cold-cavity normalized loss' 
' zO=======' .939dO 
' gain compression factor' 

capc=-' .7d0 
'OPERATING PAMETERS ' 
' average normalized above-threshold injection currentr 
' PO======' .66d0 
' modulation frequency in gigahertz' 

freq====' 1 .Od0 
' depth of modulation (average-to-peak/ average above-threshold)' 

depth===' 3.d-1 
' modulation phase (llstripes modulated in-phase, -1sout-of-phase)' 

phase===' -1 
INITIAL CONDITIONS 
' equilibrium solution to start near (O=in-phase, l=out-of-phase)' 

eql====' 0 
' starting distance from equilibrium solution in units of pi radians' 
' off set==' 1. d-6 
' PROGRAM PARAMETERS ' 
' (negative) power of ten of the tolerance for the integration routine' 
8 j===zl=' 12 
' modulation cycles per response cycle' 
' period==' 1 ' maximum number of response cycles before recording output files' 

settle=='O 
tolerance for convergence to limit cycle' 

' outtol-' 1. d-6 
number of response cycles to record in output files' 

' record=='BO.dO ' step size between data points in output files in picoseconds' 
' mesh===' 1.0d0 
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C******************************************************************  
C 
C Program powersp.for 
C 
C This program calculates the discrete fourier transform of 
C optical intensity from a single emitter. This corresponds to a 
C DFT in the time domain. The data is read a column at a time into 
c a real 1D array required by the NAG routine c06eaf. The original 
C sequence is a real sequence and consequently the DFT is a particular 
C type of complex sequence, a Hermitian sequence with the following 
C properties: 
C a (N-k) =a (k) 
C b(N-k)=-b(k) , b(0)=0 , b(N/2)=0 for N even 
C where DF'T{z(k)) = a(k) + ib(k) when z(k)=x(k) (z  real). 
C A Hermitian sequence of N complex values can then be uniquely 
C specified by N independent real values. The NAG routine c06eaf writes 
C the real parts a(k) for O<k<N/2 in the first (N/2 + 1) components of 
C array x. The non-zero imaginary components b(k) are written in reverse 
c order to the remaining (N/2 - 1) components of array x. The results 
C are normalized to one and read back into an array file. 
C 
C** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C 

integer ifail,j,jml,n2,nj,n,nnn 
integer sigfigr,tenpwrr,sigfigi,tenpwri 

double precision cjml,cmax,deltat 
double precision y(8000),xnull 
double precision r (4000) , im(4000) , ~(4000) 

character*7 destdirl 
character*ll destdir2 
character*l6 fnl,fn2 
character*23 fnnl 
character*27 fnn2 

C read the data points of time series 
c print *,'input data point number of time series...' 
c read *,n 

n=8000 
C read the unit length of the time series 
c print *,'input unit (ps/channel) of the time series...' 
c read *,deltat 

deltat=l.OdO 
deltat=deltat*l.Od-03 
destdirl=Ic:\tmp\' 
destdir2='d:\mod.dat\' 
open(unit=2,file='d:\mod.dat\etatable.prm*) 
read (2, *) sigf igr 
read (2, *) tenpwrr 
read (2, *) sigf igi 
read (2, *) tenpwri 

C Synthesize file names out of key parameters 
if((sigfigr.ge.O).and.(.igfigiigi.ge.O)) then 

fnl=~Xl'//char(sigfigr+48)//char(tenpwrr+48) 
$ //char(sigfigi+48)//~har(tenpwri+48)//~.dat' 
fn2='dft'//char(sigfigr+48)//char(tenpwrr+48) 

$ //char(sigfigi+48)//char(tenpwri+48)//'.dat~ 
C 

elseif ((sigfigr.ge.O).and.(sigfigi.lt.O)) then 
sigfigi=iabs(sigfigi) 

fnl=~Xl'//char(6igfigr+48)//char(tenpwrr+48) 
$ //w-m//char(sigfigi+48)//char(tenpwri+48)//'.dat' 
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fn2=1dft'//char(sigfigr+48)//char(tenpwrr+48) 
$ //u-m//char(sigfigi+48)//char(tenpwri+48)//1.dat' 

sigfigis-ltsigfigi 
C 

elseif ((sigfigr.lt.O).and.(sigfigi.ge.O)) then 
sigf i p i a b s  (sigf igr) 

fnl='X1~//u-m//char(sigfigr+48)//char(tenpwrr+48) 
$ //char(~igfigi+48)//char(tenpwri+48)//~.dat~ 
fn2='dft1//"-w//char(sigfigr+48)//char(tenpwrr+48) 

$ //char(sigfigi+48)//char(tenpwri+48)//'.dat1 
sigfigr-l*sigfigr 

C 
else 
sigf igriabs (sigf igr) 
sigfigi=iabs(sigfigi) 

fnl=rX1'//u-u//char(sigfigr+48)//char(tenpwrr+48) 
$ //u-~//char(sigfigi+48)//char(tenpwri+48)//1.dat* 
fn2='dft1//"-n//char(sigfigr+48)//char(tenpwrr+48) 

$ //"-"//char (sigfigi+48) //char(tenpwri+48) / / I  .datl 
sigfigr=-l*sigfigr 
sigfigis-l*sigfigi 
endif 
close (2) 
fnnldestdirl//fnl 
fnn2=destdir2//fn2 

open (unit=l,file=fnnl) 
nnn=40000-n 
do 437 i-1,nnn 
read(l,*)xnull 

437 continue 
C read time series data into y 

do 40 j = 1, n 
read (I,*) ~ ( j )  

40 continue 
close (1) 
ifail = 0 

C call the NAG routine that calculates the DFT of a real array y of 
C length n 

call cObeaf(y,n,ifail) 
C real and imaginary components are returned to y(j) see the above 
C program description for the specific locations of the components 
C r(j), im(j) the first components are given by 

r(l) = Y(1) 
im(1) = O.Od0 
c(l)=r (1) *r (1) 

C now determine the remaining DFT components 
n2 = (n+l) 1 2  
do 60 j-2 ,n2 

nj = n - j  + 2  
r(j) = ~ ( j )  
b(j) = y(nj) 

C find the power spectrum of the complex value of the DFT 
c(j) = r(jIfr(j) + im(j)*im(j) 

if (j.ge.4) then 
if (c(j).gt.cmax) then 

cmax=c ( j ) 
end if 

end if 
60 continue 
C determine the last value if n is even 
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I 

if (mod(n,2) .ne. 0) go to 80 
r(n2 + 1) = y (n2 + 1) 
im(n2 + 1) = O.OdO 
c(n2 + 1) = r(n2 + 1)*r(n2 + 1) +im(n2 + l)*im(n2 + 1) 
if (c(j).gt.cmax) then 

cmax=c(n2+1) 
end if 

80 open (unitma, file = fnn2) 
do 700 j=4,n2 

jml = j - 1 
cjml=jml/ (df loat (n) *deltat) 

C normalize the DFT results 
c(j)=c(j) /-ax 
write(2,gOO) cjml, c(j) 

700 continue 
close (2) 

900 format (f7.3,f9.5) 
end 
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C 
C Program crl.for 
C 
C This program determines the auto-correlation of optical 
C intensity from a single emitter. Before this is calculated, the 
C mean of the each of the columns is determined and is subtracted 
C from each of the values. A copy of the original column vector 
C is needed since the NAG routine cO6ekf writes the result array 
C back into the first column vector. 
C 
C** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C 

integer ifail,j,jj,jml,n,index 
integer sigfigr,tenpwrr,sigfigi,tenpwri 

double precision crl(4000) 
double precision xa (4000) , xxa (4000) 
double precision ya(4000),yya(4000) 
double precision cjml,deltat,cmax 
double precision sum,avg 

character*ll destdir2 
character*16 fnl,fn2 
charactere27 fnnl,fnn2 

C read the data points of the time series 
c print *,#input data point number of the time series ...' 
c read , n 

n=4000 
C read the unit length of the time series...' 
c print *,'input unit (ps/channel) of the time series...' 
c read *, deltat 

deltat=l.OdO 
deltat==deltat*l.Od-03 
destdirl='c:\tmp\' 
destdir2='d:\mod.dat\' 
open(~nit=2,file=~d:\mod.dat\etatable.prm') 
read (2, *) sigf igr 
read(2,*)tenpwrr 
read (2, *) sigf igi 
read (2, *) tenpwri 

C Synthesize file names out of key parameters 
if((sigfigr.ge.o).and.(sigfigi.ge.O)) then 

fnl=1Xlt//char(sigfigr+48)//char(tenpwrr+48) 
$ //char (sigf igi+48) //char (tenpwri+48) / /  * .datl 
fn2=tcrlt//char(sigfigr+48)//char(tenpwrr+48) 

$ //char (sigf igi+48) //char (tenpwri+48) /It .datl 
C 

eleeif ((sigfigr.ge.O).and.(sigfigi.lt.O)) then 
sigfigi=iabs(sigfigi) 

fnl=tXl*//char(sigfigr+48)//char(tenpwrr+48) 
$ //n-n//char(sigfigi+48)//char(tenpwri+48)//t.datt 
fn2=1crl*//char(sigfigr+48)//char(tenpwrr+48) 

$ !/nTn//char(sigfigi+48)//char(tenpwri+48)//'.datt 
sigfigi=-lesigfigi 

C 
elseif ((sigfigr.lt.O).and.(sigfigi.ge.O)) then 
sigfigr=iabs(sigfigr) 

fnl=*X1'//n-n//char(sigfigr+48)//char(tenpwrr+48) 
$ //~har(migfigi+48)//char(tenpwri+48)//~.dat~ 
fn2=tcrl'//n-n//char(sigfigr+48)//char(tenpwrr+48) 
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$ //char(sigfigi+48)//char(tenpwri+48)//'.dat1 
sigfigr=-l*sigfigr 

C 
else 
sigfigr=iabs(sigfigr) 
sigfigi=iabs(sigfigi) 

fnl=1X18//m-w//char(sigfigr+48)//char(tenpwrr+48) 
$ //"-"//char (sigf igi+48) //char (tenpwri+48) / /  ' . dat ' 
fn2='~rl~//~-~//char(sigfigr+48)//char(tenp~r+48) 

$ //~-n//char(sigfigi+48)//char(tenpwri+48)//1.dat~ 
sigfigrm-l*sigfigr 
sigfigiz-l*sigfigi 
endif 
close (2) 
fnnl=destdir2//fnl 
fnn2=destdir2//fn2 

open (unit=l,file=fnnl) 
C read the time series data into xa 

do 40 j=lrn 
read (I,*) xa(j) 

40 continue 
close (1) 

C copy this array, xa, into xxa since c06ekf writes 
C the correlation results back into xa 

do 200 j=l,n 
~a(j!=xa(j) 
=a(]) = xa(j) 
na(j) = xa(j) 

200 continue 
c Find Average value of array xxa 

sum=O. d0 
do 201 j=l,n 
sum=sum+xxa ( j ) 

201 continue 
avg=sum/dfloat(n) 

c Hake array xxa have zero mean 
do 202 j=l,n 
xxa(j)==a(!)-avg 
na(j)=na(~)-avg 
xa(j)=xa(j)-avg 

202 continue 
ifail = 0 

C call the NAG program that does correlations by 
C giving the first argument of the call as 2 and 
C then giving the two vectors to be compared and their length 
C (the argument '2' directs the NAG routine cO6ekf to do a 
C correlation of the two vectors--a first argument of '1' 
C would result in a fourier transform of the correlation) 

call c06ekf(2,xa,ya,nIifail) 
cmax=O. OdO 
do 375 j=l,n 

crl(j) = xa(j) 
if (dabs(crl(j)).gt.cmax) then 

cmax=dabs(crl(j)) 
endif 

375 continue 
C normalize the results to one 

do 400 j=l,n 
crl(j)=crl (j) /anax 

400 continue 
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open (unit=2,file=fnn2) 
do 700 j=(n/2 + 2),n 

jml = j-1 
jj =(jml - n/2) 
index = j j - 1 
cjml=index*deltat 
write (2,900) c jml, crl (j j) 

700 continue 
close (2) 

900 format (f7.3,f9.5) 
end 
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c****************************************************************** 
' C 
C Program bifpep.for 
C with new and improved format 7/31/90, Carleson 
C******l**************************l******************************** 

real ~(4000) , y (4000) ,xa (4000), loogetar, loogetai 
integer n,k,kk,sigfigr,tenpwrr,sigfigi,tenpwri 
character*16 fnl, fn2 
character*ll destdir2 
characterr23 fnnl 
character*27 fnn2 
des$dir2='d:\mod.dat\' 
n-4000 
open(~nit=2,file-~d:\mod.dat\etatable.pr~) 
read(2, *) sigf igr 
read (2, *) tenpwrr 
read (2, *) sigf igi 
read (2, *) tenpwri 

C Synthesize file names out of key parameters 
if((sigfigr.ge.O).and.(sigfigi.ge.O)) then 

fnl=1Xl'//char(sigfigr+48)//char(tenpwrr+48) 
$ //char(sigfigi+48)//char(tenpwri+48)//'.dat* 
fn2=1b01//char(sigfigr+48)//char(tenpwrr+48) 

$ //~har(sigfigi+48)//char(tenpwri+48)//~.dat* 
C 

elseif ((sigfigr.ge.O).and.(oigfigfigi.lt.o)) then 
sigfigi=iabs(sigfigi) 

fnl='X11//char(sigfigr+48)//char(tenpwrr+48) 
$ //ll-w//char (sigf igi+48) //char (tenpwri+48) / /  .datl 
fn2='bo1//char(sigfigr+48)//char(tenpwrr+48) 

$ //m-m//char(sigfigi+48)//char(tenpwri+48)//'.dat1 
sigfigiz-l*sigfigi 

C 
elseif ( (sigf igr. lt. 0) .and. (sigf igi.ge. 0) ) then 
sigfigr=iabs(sigfigr) 

fnl='X1f//u-n//char(sigfigr+48)//char(tenpwrr+48) 
$ //char(sigfigi+48)//char(tenpwri+48)//'.dat1 
fn2==~b0~//~-~//char(sigfigr+48)//char(tenpwrr+48) 

$ //char(sigfigi+48)//char(tenpwri+48)//'.dat1 
sigfigr=-l*sigfigr 

C 
else 
sigfigr=iabs(sigfigr) 
sigfigi=iabs(sigfigi) 

fnl=1X1~//w-w//char(sigfigr+48)//char(tenpwrr+48) 
$ //w-w//char(sigfigi+48)//char(tenpwri+48)//~.dat1 
fn2=1bo1//w-~//char(sigfigr+48)//char(tenpvrr+48) 

$ //w-w//char(sigfigi+48)//char(tenpwri+48)//1.dat' 
sigfigrs-l*sigfigr 
sigfigi=-ltsigfigi 
endif 
loogetax--tenpwrr+(float(sigfigr-l))/lO.O 
if (sigfigi.lt.0) then 

loogetaiz-tenpwri+(float(sigfigi+l))/lO.O 
else 

loogetais tenpwri+(float(sigfigi-l))/l0.0 
endif 
close (2) 
fnnldestdir2//fnl 
fnn2=destdir2//fn2 
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open (unit=l,file=fnnl) 
C read the time series data into x 

do 40 j=l,n 
read (I,*) x(j) 

40 continue 
close ( 1) 

c Throw out all sequentially equal pts. 
kk=l 
do 45 j=l,n-1 
if (x(j) .eq.x(j+l)) then 
got0 45 
else 
xaOWax(j) 
kk=kk+l 
endif 

4 5 continue 
if (kk.eq.1) then 

k=2 
y(l)=x(l) 
goto 51 

end i f 
c Find local maxima of the array x 

k= 1 
do 50 j=2,kk-2 

if (xa(j) .gt.xa(j-1) .and.xa(j) .gt.xa(j+l)) then 
y(k)-xa(j) 
k=k+l 
endif 

5 0 continue 
c write local maxima to bif.out file 
51 open(unit=l5,file=fnn2) 

do 60 j=l,k-1 
write(l5,999)loogetar,y(j) 

6 0 continue 
c Write a rn rn at end of file so gr.new will know end of set 
c ~ r i t e ( l 5 , * ) ~ ~  "' 

close (15) 
999 format (F5.2, lX, 613.6) 

end 
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C "fabry.perot.fW, by Geoffrey Wilson 17 June 1991 
C 

-2 This program reads data files containing emission spectra and 
72 generates the pixel position of the peaks, and the normalized 
C net modal gain. 
C 
C Parameters currently set for device PGE4600BllD4 
r - 

integer pixelO,pixel, pixell,pixel2,npeaks,peak,i,j 
integer count,pkpix,window 
double precision pi,coeffrdelpix,satlevel,p,pO,pmax,y,ybar,margin 
double precision x0,x2,x4,x,y0,yl,y21albI~Ixcenrycen,ratiolxbar 
double precision dp(0:639) 
logical satflag 
character*2 prefix 
character*3 suffix 
character*6 fnl, fn2 
character*8 fn3,fn4 

C Begin main body. 
pi=3.1415926565898dO 

C Speed of light * photon lifetime / group index / device length. 
C Also: electronic charge / Planckrs constant / speed of light * 
C wavelength * two-facet differential efficiency / facet transmission. 

coeff-0.630d0 
C Number of peaks. 

npeaks-3 
C First pixel in the usable range. 

pixe10-55 
C Mean longitudinal mode spacing in pixels. 

delpix-l77.dO 
C Flag to warn of saturation possibility. 

satflag=.false. 
C Saturation level. 

satlevel-0.99d0 
C Hinimum signal to include a data point in the window about the peak. 

margin-0.9d0 
C Query user for file prefix. 

print*,rSupply the two-character file prefix:' 
read(5,l)prefix 

1 format(a2) 
C Query user for file suffix (drive current in mA) .  

print*,rSupply the three-digit file suffix:' 
read(5,3)suffix 

3 format(a3) 
C Create data file name. 

fnl-prcfix//'://suffix 
C Create background file name. 

fn2=prefi~//~.000~ 
C Create peak position output file name. 

fn3=fnl//'.pP 
C Create normalized net modal gain output file name. 

fn4-fnl//'.gr 
C Open data and background files. 

open(1,file-fnl) 
open(2,file=fn2) 

C Read the data and backgound files. 
do 200 pixel-0,639 
read(l,*)j,p 

C Test for saturation possibility. 
if (satflag) go to 100 
if (p.gt.satleve1) then 

satflag-.true. 
print*,'WARNING: possibility of saturation.' 
end if 

100 read(2,*)jIp0 
C Subtract background. 
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dp(pixe1)-p-p0 
200 continue 
C Close data and background files. 

close ( 1 ) 
close ( 2 

C Open output files. 
open(3,file=fn3) 
open(4,file=fn4) 

C Begin loop, one pass for each peak. 
do 1000 peak-1,npeaks 

C Set integration limits for this peak. 
pixell-pixelO+idint(dfloat(peak-l)*delpix) 
pixel2-pixel0-l+idint(dfloat(peak)*delpix) 

C Read the data for this peak, find the maximum of the net signal and 
C and the average of the net signal reciprocal. 

count-0 
pmax-0. d0 
ybar-0 .dO 
do 300 pixel-pixell,pixel2 

C Do not use the point if the signal is not positive. 
if (dp(pixel).le.O.dO) go to 300 

C Use point, increment counter. 
count=count+l 

C Test point against running maximum. 
if (dp(pixel).gt.pmax) then 

pmax-dp(pixe1) 
pkpix-pixel 

end if 
C Calculate the reciprocal signal. 

y=l.dO/dp(pixel) 
C Accumulate the sum of the reciprocal signal. 

ybar-ybar+y 
C Done searching peak range. 
300 continue 
C If count equals zero, no acceptable points were found. 

if (count.eq.0) then 
print*,'ERROR: count is equal to zero.' 
stop 
end if 

C Normalize the reciprocal sum to get the average. 
ybar-ybar/dfloat(count) 

C Get the range of contiguous points about the peak. 
window-0 

400 if (dp(pkpix-window-l).lt.margin*pmax) go to 500 
if (dp(pkpix+window+l).lt.margin*pmax) go to 500 
window-window+l 
go to 400 

500 continue 
C Pit a parabola to the contiguous set of points about the peak. 
C Calculate some necessary constants. 

xO-0. d0 
x2-0 .do 
x4-0 .dO 
do 600 i--window,window 
x=dfloat(i) 
xO-xO+l.dO 
x2-x2+x*x 
x4-X~+X*X*X*X 

600 continue 
C Calculate the weighted intensities. 

yo-0 .dO 
yl-0 .dO 
y2-0 .dO 
do 700 i--window,window 
x-dfloat(i) 
y-l.dO/dp(pkpix-i) 
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YO-Y O+Y 
yl=yl+x*y 
y2-y2+x*x*y 

700 continue 
C Calculate the best fit to a quadratic function. 
C If window is zero, warn the user and do not curve fit. 

if (window.eq.0) then 
print*,'WARNING: window is equal to zero.' 
xcen-0. d0 
ycen-y0 

else 
a-(x4*y0-x2*y2)/(x0*x4-x2*x2) 
b=yl/x2 
c-(x0*y2-x2*yo)/(xo*x4-x2*x2) 

C Find the center of the parabola. 
xcen--.5dO*b/c 

C Calculate the minimum in the reciprocal net signal. 
ycen-a-.25dO*b*b/c 

end if 
C Record the peak position. 

write(3,*)peak,sngl(dfloat(pkpix)+xcen) 
C Calculate the ratio of the minimum-to-average net signal. 

ratio-ycen/ybar 
C Stop if ratio is not between zero and one, exclusive. 

if (ratio.le.O.dO) then 
print*,'ERROR: ratio is less than or equal to zero.' 
stop 
end if 

if (ratio.ge.l.dO) then 
print*,'ERROR: ratio is greater than or equal to one.' 
stop 
end if 

C Calculate the gain at the peak. 
xbar-(l.d0-dsqrt(2.dO*ratio-ratio*ratio))/(l.dO-ratio~ 

C Record the normalized net modal gain. 
write(4,*)peak1sng1(cocff*d10g(xbar)) 

C Done with this peak. 
1000 continue 
C Close the output files. 

close ( 3 ) 
close ( 4 
stop 
end 
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c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C 
C Program exp.pwr.sp.f, by Geoffrey Wilson, 13 June 1991 
i? 
C Reads a data file containing k experimentally-obtained time series, 
C each 480 data points long (number of rows in the PEP 301 video 
C frame) and calculates the average power spectrum. Based on 
C "powersp.for", discussed below. 
C - 
c******************************************************************  
C 
C Program powersp.for 
C 
C This program calculates the discrete fourier transform of 
C optical ititensity from a single emitter. This corresponds to a 
C DPT in the time domain. The data is read a column at a time into 
C a real 1D array required by the NAG routine c06eaf. The original 
C sequence is a real sequence and consequently the DFT is a particular 
C type of complex sequence, a Hermitian sequence with the following 
C properties: 
C a(N-k)-a(k) 
C b(N-k)--b(k) , b(0)-0 , b(N/2)-0 for N even 
C where DFT{z(k)) = a(k) + ib(k) when z(k)-x(k) (z rCal). 
C A Hermitian sequence of N complex values can then be uniquely 
C specified by N independent real values. The NAG routine c06eaf writes 
C the real parts a(k) for O<k<N/2 in the first (N/2 + 1) components of 
C array x. The non-zero imaginary components b(k) are written in reverse 
C order to the remaining (N/2 - 1) components of array x. The results 
C are normalized to one and read back into an array file. 
C 
c******************************************************************  
C 

integer ifail,i,j,~ml,n2,nj,n,k,ik 
double precision cjml,cmax,deltat 
double precision y(480) 
double precision r(240),im(240),c(240),cc(240) 

character*8 fnl 
character*12 fn2 

C read the data points of time series 
c print *,*input data point number of time series...' 
c read *,n 

n-480 
C read the unit length of the tire series 
c print *,'input unit (ps/channel) of the time series...' 
c read *,deltat 
C ?or "10 ns" setting of samamatsu streak camera. 
C deltat-12.09d0 
C ?or '5 ns" setting of Hamamatsu streak camera. 
C deltat-5.78d0 
C For '2 ns" setting of Bamamatsu streak camera. 

deltat-2.14d0 
C ?or "1 nsm setting of ffamamatsu streak camera. 
C deltat-1.20d0 
C For "0.3 ns" setting of Xamamatsu streak camera. 
C deltat-.34dO 
C Convert from picoseconds to nanseconds to yield frequency in GHz 

deltat-deltat*l.Od-03 
C Acquire the number of tire series in the data file. 

print*,'Xow many time series are in the data file?' 
read*, k 

C Acquire the data file name from the user. 
print*,*Supply the data file name (8 characters):' 
read(5,l)fnl 

1 forrat(a8) 
C Create output file narc. 

fn2-fnl//*.epsP 
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