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CHAPTER 1. INTRODUCTION 

Plasma cell neoplasms are a spectrum of disorders caused by the proliferation of monoclonal 
plasma cells in the bone marrow leading to the production of monoclonal immunoglobulin. 
Included in this spectrum, from least severe to most severe, are monoclonal gammopathy of 
undetermined significance, smoldering multiple myeloma, and plasma cell myeloma. Each 
diagnosis carries a different prognosis and requires different clinical management. For example, 
the median overall survival of patients with Stage I, II, and III PCM has been shown to be 62, 44, 
and 29 months, respectively, while the median overall survival of patients with monoclonal 
gammopathy of undetermined significance is expected to be only slightly shorter than that of 
age-matched controls.1-4 Thus, making the correct diagnosis amongst this spectrum of disorders 
is paramount for the prognostication and proper clinical management of plasma cell neoplasms.  

Monoclonal gammopathy of undetermined significance (MGUS) is a precancerous proliferation 
of plasma cells, while smoldering multiple myeloma (SMM) is a malignant form of plasma cell 
neoplasms. Both MGUS and SMM lack all signs of end-organ or tissue impairment such as 
hypercalcemia, renal insufficiency, anemia, or bony lesions (referred to as CRAB features).5 The 
difference between the two lies on the percentage of monoclonal plasma cells in a bone marrow 
biopsy (BMBx). For MGUS, this percentage is required to be <10%, while that is between 10% 
and 60% for SMM.6 Finally, the diagnosis of plasma cell myeloma (PCM) requires either ≥10% 
plasma cells on a BMBx and at least one end-organ damage or ≥60% plasma cells on a BMBx 
with or without end-organ damages (Table 1). 6  

Chronically, plasma cell percentage (PC%) was first achieved by performing differential counts 
on a Wright-Giemsa-stained bone marrow aspirate smear. This practice was followed by using a 
CD138 stain, a plasma cell immunohistochemical biomarker in hematology, on a bone marrow 
trephine biopsy or related blood clot as an additional measurement to improve accuracy. This is 
because many factors reportedly can affect the quality of the aspirate smears7, leading to the fact 
that PC% in aspirate smears tend to be lower than that in trephine bone marrow biopsies.7-10 
Adding CD138 staining to the routine practice has provided a more accurate PC% when 
pathologists are expected to report the higher PC% estimate amongst the two approaches 
according to the most current practice standard from the International Myeloma Working 
Group6.   

However, PC% obtained from visual estimation of a BMBx at a lower power field under a 
microscope can create potential inter- and intraobserver variability and inaccuracy. The 
contributing factors for these issues are the inherently uneven distribution of fat cells, normal 
nucleated bone marrow cells, and infiltrating, neoplastic plasma cells in a trephine BMBx. In 
addition, the contamination of peripheral non-nucleated red blood cells in the BMBx sections or 
especially blood clot from the aspirate is another challenge for pathologists to accurately 
estimate PC% (Figure 1). Of note, PC% is calculated by dividing the number of plasma cells 
present in the BMBx or clot by the number of total nucleated cells in the bone marrow that do 
not include contaminated peripheral non-nucleated red blood cells. The ability to quantify 
CD138 marker expression using computer-aided image analysis could provide a promising 



solution to improve these issues.11 As seen in Table 1 and the above mentioned information, we 
can appreciate how crucial the accurate and consistent PC% in a BMBx is to the diagnosis, 
treatment, and outcome of a patient with a plasma cell neoplasm.  

 

Table 1. Plasma cell neoplasms in relation to end-organ damage and monoclonal plasma cell 
percentage 

Plasma cell neoplasm Classification End-organ damage Monoclonal plasma cell 
% 

MGUS Precancerous Absent <10% 

SMM Cancer Absent 10% ≤ PC% ≤ 60% 

PCM Cancer 
Present 10% ≤ PC% ≤ 60% 

Absent or Present ≥ 60% 

MGUS: Monoclonal gammopathy of undetermined significance; SMM: Smoldering multiple myeloma; 
PCM: Plasma cell myeloma   

CHAPTER 2. BACKGROUND 

Literature shows that there are many studies that applied image analysis techniques toward 
quantifying biomarkers such as HER2 (associated with breast, esophageal, and gastric cancers)12 
and Ki-67 (associated with cell proliferation in many cancers)13, but only a few were conducted 
on CD138 marker9-11, 14. All of these studies recommended image analysis as a good tool to 
obtain objective PC% from BMBx.  

However, each of these CD138 studies solely used an area-based rather than a cell count-based 
approach for calculating PC%, and therefore none of those compared the image analysis-
calculated PC% to a manually labeled ground truth8, 9, 11, except a study by Lee et al. that had 
manual counts of selected bone marrow areas but no reported detail about the image analysis tool 
and how it measured PC%10.  

Our aims in this study are 1/ to evaluate the accuracy, interobserver variability of pathologist-
estimated PC% and 2/ to validate an image analysis membrane algorithm of PC% both by 
comparing these PC% to those obtained from ground truth. This study also introduces the use of 
a cell count-based approach on our current image analysis tool for PC% calculation, which to the 
best of our knowledge has never been shown in the literature.  

 



  

Figure 1. Section of bone marrow clot (40X) with CD138-negative nucleated cells, CD138-positive 
plasma cells (brown), and contaminated non-nucleated peripheral blood cells (smaller size, pale 
cytoplasm, some with crescent shape). The blue stars are fat vacuoles that are empty after tissue 
processing in which alcohol was used.  

CHAPTER 3. MATERIAL AND METHODS 
3.1 CASE SELECTION  
The study was reviewed and approved by the Institutional Review Board. A third-party business 
intelligence software (SAP America, Inc., Newtown Square, PA, USA) that was integrated into 
the OHSU EHR (EPIC, Verona, WI, USA) and laboratory information system (BEAKER, EPIC, 
Verona, WI, USA) was queried to retrospectively identify patients with plasma cell neoplasms. 
Only adult patients (> 18 years of age) were included from a period from 2009 to 2019. These 
cases were cross-referenced with bone marrow biopsy reports to include only those samples for 
which there is also a bone marrow specimen from the same patient. A total of 53 cases were 
selected from the data set, not based on plasma cell percentages. Case numbers from these slides 
were deidentified.  

3.2 IMMUNOHISTOCHEMISTRY 
Three to three and a half micron sections of neutral buffered formalin fixed paraffin embedded 
bone marrow core biopsy or clot from bone marrow biopsy procedure when a core biopsy cannot 
be obtained were stained with immunohistochemical technique using CD138, a plasma cell 
biomarker in bone marrow specimens. This CD138 marker or syndecan-1 (B-A38, predilute; 
Cell MarqueTM, Rocklin, CA, USA) is a membranous, mouse monoclonal antibody. Benchmark 

Normal bone marrow 
nucleated cell 

CD138-positive plasma 
cells (brown color) 

Peripheral red blood cell 



® Ultra automated stainer (Ventana Medical System, Tucson, AZ, USA) was used. The CD138 
staining protocol has a pretreatment with CC1, pH 8.0, protease III (Ventana Medical System), 
the antigen retrieval with high pH for 36 minutes, followed by incubation with the CD138 
antibody in 16 minutes at 420C degree. The antigen-antibody complexes are detected by 
ULTRAVIEW (UVIEW) DAB detection kit (Ventana Medical System). This CD138 protocol 
has been the same during the period that the biopsy samples were collected for this study. 

3.3 INFORMATION ABOUT INSTRUMENT AND ITS RELATED SOFTWARE 
Slide scanner 

OHSU laboratory uses a commercial slide scanner, model Aperio ScanScope AT2 (Leica 
biosystems, Vista, CA, USA), to scan tissue on glass slides and convert the image of the tissue to 
a digital format (.svs) for multiple purposes including education, tumor board presentation, 
frozen section diagnosis, and research. These digital files are stored on the laboratory database 
with regulated access.  

This Aperio ScanScope AT2 slide scanner (Figure 2) provides high volume, digital whole slide 
scanning function with up to 400 slide capacity. The objective lenses are capable of 40x scanning 
with 2x optical magnifying changer. The scanner has dimensions of 23.5 inches (H) x 16 inches 
(W) x 25.5 inches (D) and weight of 129 pounds. 

Slide viewing software and image analysis 

The slide viewing software, ImageScope – version 12.4.3.7001 (Leica biosystems, Vista, CA, 
USA), provided by the vendor, with no additional cost, helps users open, view, and navigate the 
digital tissue images. This software has a set of optionally purchased algorithms (membranous, 
nuclear, and cytoplasmic staining patterns) integrated into the image analysis tool to calculate the 
percentage of a certain cell type of interest. Since the algorithms are originally developed for 
research use only, coupled with their generic use purpose, we need to modify and validate when 
testing on a specific immunohistochemical biomarker before using for routine practice similar to 
the College of American Pathologists guideline15 for HER2 immunohistochemistry on breast 
cancer.  

Since CD138 antibody-antigen complexes express on plasma cell membrane, the membranous 
algorithm was chosen for this project. The algorithm has multiple parameters for users to modify. 
It had been tested on a training image set. Every version of the modified algorithm was saved, 
and these versions were compared across the training set in order to select the best algorithm that 
was used on the testing image set.  

 

 



 

Figure 2. Slide scanner, model Aperio AT2 from Leica, used to scan slides for this project (from 
https://www.leicabiosystems.com/digital-pathology/scan/aperio-at2/) 

 

3.4 DESIGN 
Scanning and preparing digital slides 

The 53 deidentified, selected slides described in the case selection were scanned by the Aperio 
ScanScope AT2 after being cleaned to remove dust by alcohol pads. These digital files were 
stored in the laboratory IT server managed by a laboratory IT specialist.   

Generating testing images and obtaining ground truth 

One of this study aims is to validate the accuracy of the membranous algorithm in quantifying 
CD138-positive cell (plasma cells) in a bone marrow biopsy. This can be achieved by comparing 
results from gold standard or manual counting method, which is ground truth, to the results 
generated by the algorithm or hematopathologists. The barrier to obtaining ground truth is that 
one entire core bone marrow biopsy (0.2 cm in width by 1.5 – 2.0 cm in length) or clot contains 
thousands of cells, making it time-consuming for manual counting to obtain ground truth on all 
53 biopsies. Therefore, the study approach was extracting a 1000 x 4000-pixel image from an 
area that represents highest PC% on that slide. Ground truth was obtained by manually counting 
CD138 positive and negative cells on each image by using another open-source slide viewing 
software named QuPath.16  

Testing phase with Aperio image analysis 

These images were uploaded to the vendor-provided EslideManager website in order for these 
files to be saved and analyzed by Aperio’s server. The website requires user authorization to 
login when users need to run its algorithms. The workflow of image analysis is seamless with all 

https://www.leicabiosystems.com/digital-pathology/scan/aperio-at2/


cases being selected by the “select all” button and analyzed by clicking “analyze” button. The 
server processed and returned the number and percentage of CD138 positive cells with tiered 
positive intensity (i.e. 0+, 1+, 2+, 3+) (Figure 3-A &B). This study defined that the reported 
PC% was the total percentages of 3+ and 2+. These results were downloaded under a .csv 
format.  

Testing phase with hematopathologists 

A PowerPoint slide was created with each slide having one image along with its newly assigned 
number for the de-identification purpose. Each slide or image was set to automatically advance 
every 30 seconds. Four OHSU hematopathologists with different number of years of practice 
independently viewed the PowerPoint slide and documented their estimate for each case in an 
Excel file with the provided image names in the same order seen in the PowerPoint slide to 
facilitate the documentation and potentially prevent skipping case.  

3.5 STATISTICS 
All the raw data obtained from the study was checked for normality by using a Shapiro-Wilk 
test. Results from the algorithm and estimates from each hematopathologist were compared to 
ground truth using concordance coefficient correlation (CCC), Spearman, and Pearson tests. 
Since the cutoff 10% and 60% are crucial criteria in diagnosing MGUS, SMM, and PCM, the 
classification of the impact of each image’s PC% among four pathologists based on these cutoffs 
was expressed as a nominal variable (with and without impact on classification) and compared 
by a Kappa test. A focus sample of only misclassified images present at any pathologist’s 
estimation was divided into 3 ordinal categories: underestimated, expected, and overestimated 
(Table 4) and compared by a Kappa test. The total number of misclassifications based on these 
cutoffs from the algorithm or pathologists were compared using Chi-square test. Statistical 
significance was defined as two-sided P-value less than 0.05. Statistical analysis was performed 
using Stata 14.2 (StataCorp, College Station, TX, USA).  

CHAPTER 4. RESULTS 
Results obtained by Aperio algorithm on 53 images extracted from 53 cases show highest 
concordance coefficient correlation (0.991; 95% CI [0.987 - 0.996]) and highest Pearson 
correlation (0.992; 95% CI [0.986 – 0.995]) compared with these numbers from four 
pathologists. Spearman correlation test, which measures the monotone association, shows the 
highest correlation coefficient (0.948; 95% CI [0.91-0.97]) from pathologist 3 – whose PC% 



 

 

 

Figure 3. 3A – An illustrated bone marrow image (17X) of CD138 stain for plasma cells 
(brown) before being analyzed by the image analysis algorithm; 3B – The same image with 
markup after being analyzed by the image analysis algorithm (red color =3+; orange =2+; yellow 
=1+; black =nucleus) 

 

estimates have almost one pattern that has most of the values higher than ground truth (Table 4 
and Figure 6). Estimated PC% from pathologist 1 has two trends in terms of misclassification 
including under- and over-estimation. Thus, the Spearman coefficient (0.731; 95% CI [0.574 – 
0.836]) from pathologist 1 has the lowest value among all the pathologists (Table 4 and Figures 4 

A 

B 



and 9). Overall, Aperio algorithm and the pathologists provided good to excellent estimation of 
PC% with the algorithm having the best performance (Table 2). 

Since PC% playing as one of the main criteria in plasma cell neoplasm classification and 
diagnosis, values from the PC% estimation in this study were examined as groups based on the 
10% and 60% cutoffs (Table 4) to evaluate the impact of misquantification in changing this 
criterion (Table 1). Also based on Table 1, we can see that under- or over-estimating PC% 
surrounding the 10% and 60% cutoffs cause shifting in diagnostic criteria. Misquantified PC% 
between 10% and less than 60% do not have the same significant impact with regard to criteria 
but do have clinical impact if bone marrow biopsy is repeated after treatment for surveillance 
due to the need to assess treatment response by comparing pre- and post-treatment PC% in bone 
marrow. The pathologists were always aware of these cutoffs when making their estimation, 
similar to recognizing boundaries. In other words, although being able to pick a continuous 
number of PC% for an image with a wide range from 0 to 100%, they might simultaneously 
check their estimation with the cutoffs and then adjust the estimation to make it fit with the 
overall diagnostic impression for the image. This could explain why there is no estimated value 
of 8, 9 or 58, 59. Therefore, the values are not totally random.   

To assess inter-observer agreement on the estimation of PC%, the statistical analysis had two 
steps. The first one is classifying each pathologist’ estimate based on its relation to the cutoffs 
and ground truth as having a diagnostic impact or not. It was found that Kappa is 0.43 (p<0.001), 
which shows a moderate agreement among the pathologists across all 53 images. The second 
step is labeling or classifying discrepant estimated PC% with ground truth in terms of the 10% 
and 60% cutoffs as under-estimated, or within an accepted range, or over-estimated (Table 4). 
These labels were assigned as 1, 2, and 3, respectively. Kappa test was conducted, and a 
combined Kappa for these three outcomes is 0.162 (p=0.018), which means there is a slight 
agreement among the pathologists.  

The number of total significant misquantifications of each pathologist and the algorithm was 
compared using a one-way Chi-square test and shows no difference in these numbers among the 
pathologists and the algorithm (p=0.84) (Table 4). The total percent of absolute difference (a 
positive number) for each pathologist and the algorithm shows that two of four pathologists have 
these numbers close to the lowest number that is from the algorithm.  

Figure 9 with Bland – Altman plots demonstrates the bias or difference between estimated values 
and ground truth in relation to the mean of these two values. The plot from the algorithm shows 
the smallest differences with a consistent trend throughout the 53 images, while it seems like the 
bias in pathologists’ plots are bigger when the PC% is higher.  

  

 

 

 



Table 2. Summary statistics of Leica image analysis algorithm’ and pathologists’ estimation compared 
with ground truth 

 Algorithm Pathologist 1 Pathologist 2 Pathologist 3 Pathologist 4 
Mean ± SD 13.2 ± 20.3 13.00 ± 23.88 11.79 ± 21.48 18.67 ± 26.04 14.24 ± 24.50 
Bias ± SD -0.27 ± 2.64 -0.06 ± 7.55 1.15 ± 5.67 -5.72 ± 8.42 -1.31 ± 6.72 

CCC 
(95% CI) 

0.991 
(0.987 - 0.996) 

0.940 
(0.914 – 0.966) 

0.960 
(0.940 – 0.980) 

0.904 
(0.869 – 0.940) 

0.952 
(0.935 – 0.970) 

Spearman 
Correlation 

(95% CI) 

0.944 
(0.905 – 0.968) 

0.731 
(0.574 – 0.836) 

0.937 
(0.893 – 0.963) 

0.948 
(0.910 – 0.970) 

0.923 
(0.870 – 0.955) 

Pearson 
Correlation 

(95% CI) 

0.992 
(0.986 – 0.995) 

0.959 
(0.930 – 0.976) 

0.967 
(0.942 – 0.980) 

0.973 
(0.953 – 0.984) 

0.979 
(0.964 – 0.988) 

 

 

Table 3. Misquantified PC% present at least at one column based on cutoffs of 10% and 60%  

Image 
Name 

Pathologist 
1 

Pathologist 
2 

Pathologist 
3 

Pathologist 
4 Algorithm Ground 

truth 
4 10 0 1 1 0 1 

28 1 2 10 5 4 4 
30 1 4 15 5 3 4 
31 5 5 10 5 7 5 
33 5 5 15 7 13 8 
34 5 5 10 5 5 8 
35 10 10 25 10 11 9 
36 1 20 15 2 5 10 
37 15 5 20 10 11 10 
38 1 5 15 7 8 11 
39 0 10 20 7 7 11 
40 1 5 15 7 8 12 
45 5 5 20 15 21 24 
46 20 15 60 30 30 29 
48 60 60 70 60 57 56 
49 80 50 70 65 56 57 
50 90 80 90 90 69 64 
51 60 70 80 80 69 65 
52 80 80 90 80 68 65 
53 70 70 80 90 65 66 

 

 

 



 

Table 4. Details of cases with misclassified PC% based on cutoff 10% and 60% 

Cutoff Image Name Pathologist 1 Pathologist 2 Pathologist 3 Pathologist 4 Algorithm 

<10% 

4 O (+9)     

28   O (+6)   

30   O (+11)   

31   O (+5)   

33   O (+7)  O (+5) 

34   O (+2)   

≥10% 

36 U (-9)   U (-8) U (-5) 

37  U (-5)    

38 U (-10) U (-6)  U (-4) U (-3) 

39 U (-10)   U (-4) U (-4) 

40 U (-11) U (-7)  U (-5) U (-4) 

45 U (-19) U (-19)    

<60% 
46   O (+30)   

48 O (+4) O (+4) O (+14) O (+4)  

49 O (+23)  O (+13) O (+8)  

 Total mistakes based  
on cutoffs  
(p = 0.84; χ²)  

8 5 8 6 5 

  
Total absolute 
difference (%) 
 from ground truth 

95 41 87 33 21 

“O”: overestimated compared to ground truth; “U”: underestimated compared to ground truth; empty 
cells have the estimates falling within the ranges defined by the cutoffs. 

 

 



 

Figure 4. Estimates from pathologist 1 versus ground truth 

 

 

Figure 5. Estimates from pathologist 2 versus ground truth 



 

Figure 6. Estimates from pathologist 3 versus ground truth 

 

 

Figure 7. Estimates from pathologist 4 versus ground truth 



 

Figure 8. Algorithm’s estimates versus ground truth 
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Figure 9. Bland – Altman plots demonstrating bias and variability of the pathologists’ estimates of PC%. 
The algorithm has the lowest bias and variability, while these seem larger with higher PC%. 

 



CHAPTER  5. DISCUSSION 
It would be ideal for this study to examine a whole BMBx core to simulate the real practice 
setting where pathologists give PC% based on the highest PC% between a core biopsy and a 
bone marrow aspirate6, with the latter obtained from manual counting and the former obtained 
from visual estimation. However, without ground truth obtained for the 53 biopsies due to 
limitation of time and personnel, it would be suboptimal to compare PC% by visual estimation 
given by pathologists to that by image analysis algorithm in order to decide which method 
provides more accurate and consistent results. Ultimately, this study aims to validate the 
membrane algorithm developed by Aperio in quantifying PC% for routine use. Therefore, 
establishing ground truth is paramount for the comparison and subsequent decision.  

Table 5. Summary of plasma cell neoplasm studies with their image analysis characteristics, scale of 
examination, testing method, and gold standard 

Plasma cell 
neoplasm 

studies 
Image analysis Scale of 

examination 

Testing method 
used by 

pathologists 

Gold standard or 
assessment method 

Stifter et al.9 Relative area of 
positive stain Whole BMBx core Visual estimation Survival 

Lee N et al.10 Not reported Whole BMBx core  Visual estimation Survival 

Went et al.11  Positive pixel 
count 

Whole core of 
BMBx Visual estimation None 

Smith et al.14 
Quantitative 

nuclear antigen 
algorithm 

Selected image area 
Manual counting 
under microscope 

using a cell counter 

Ground truth  
(from manual counting) 

This study Membrane cell 
count algorithm Selected image area Visual estimation Ground truth  

(from manual counting) 
 

As seen in Table 5, only a few studies9-11, 14 evaluated the use of image analysis on plasma cell 
quantification. When whole bone marrow core was examined, testing method had only one 
option that is visual estimation with using survival outcome as gold standard for the assessment 
of the image analysis algorithms. However, with a different approach by using selected image 
area from the core biopsy, ground truth could be achieved. Smith et al.14 designed their study 
similar to this present study in terms of using ground truth as a gold standard and choosing 
selected image area for testing. The difference was that the pathologists in their study used a cell 
counter under a microscope to quantify plasma cells and then compute PC%. This study aims to 
compare the accuracy of PC% given by pathologists’ estimates and by the algorithm when the 
ground truth is available as a gold standard. With this approach, this study shows that overall, 
both pathologists and the algorithm provided high concordance correlation coefficients (r>0.9) 
with the algorithm having the highest coefficient of 0.99. This result is promising for the 
application of this algorithm to routine practice in terms of accuracy; other factors must be 
considered such as laboratory personnel to help with slide scanning, ensured slide quality (stain 
consistency, cleanliness, tissue thickness), stabled image analysis software, software 
maintenance, pathologist buy-in, pathologist training to use the software, and creating a new 
workflow.  



The other advantage of having ground truth is that identification of the diagnostic impact on each 
image based on its PC% compared to ground truth gave us a detailed picture of the estimation 
characteristics of the pathologists and how much agreement they had in all the images and 
especially on misclassified ones based on the 10% and 60% cutoffs. Three of four pathologists 
had underestimated PC% that shifted the diagnostic impact on these images when true PC% is 
less than 10%, and overestimated PC% without diagnostic impact when PC% is close or higher 
than 60%. One pathologist had a consistent trend of overestimating PC% with diagnostic impact 
with true PC% of less than 10%, leading to upgrading the diagnostic criterion (Table 4). There 
were a moderate variability in the diagnostic impact of 53 images among four pathologists 
(Kappa = 0.42) and a wide variability in the subsample of only impacted images from at least 
one pathologist (Kappa = 0.16).  In general, the total numbers of misclassifications among the 
pathologists and the algorithm are not statistically different (Table 4).  

With other immunohistochemical biomarkers such as HER2 and Ki-6713, the value of 
quantifying these marker percentage aids to cancer prognostication and treatment, while CD138 
marker quantification plays not only in diagnosis but also in treatment. Lee et al.17 studied the 
prognostic impact of bone marrow PC% assessment before autologous stem cell transplant and 
found that patients with bone marrow PC% less than 5% coupled with negative serologic 
complete response had a significant progression-free survival. Therefore, achieving more 
accurate and consistent PC% in bone marrow biopsies from a patient is extremely important for 
oncologists to have the right treatment therapy for a multiple myeloma patient.  

Although this study shows the advantage of using an image analysis algorithm in quantifying 
bone marrow plasma cells, it does not imply that manual counting on bone marrow aspirate 
should be eliminated. The guideline from the International Myeloma Working Group in 20146 is 
continuously followed where the final PC% is the higher of the two values from a biopsy (core 
or clot) and an aspirate.  

The question for this study is that whether we should establish a range for the cutoffs 10% and 
60% rather than a discrete number because the reality is that when the results obtained by the 
algorithm are close to 10% or 60%, for instance, 8%, 9%, 58% or 59%, then whether we should 
consider they are 10% and 60% or not.  How wide these ranges can be accepted is an open 
question for pathologists who are considering applying this algorithm in practice. When 
classifying which case was significantly misquantified in Table 4, this study used the raw data. If 
a range of 8-12% were considered to meet the cutoff 10%, then the algorithm would have only 
one significantly misquantified/misclassified case rather than five cases out of the 53 cases.   

CHAPTER 6. CONCLUSIONS 

The Aperio membrane algorithm shows a promising approach to accurate and consistent 
quantification of CD138-positive plasma cell percentage in bone marrow biopsy specimen from 
patients with plasma cell neoplasms. Overall, pathologists’ visual estimation is as good as that by 
the algorithm. With the moderate variability in pathologists’ assessment of bone marrow PC%, 
consistency is not well achieved. Thus, applying a computer-assisted image analysis tool into 



routine practice for plasma cell neoplasms should be considered to increase diagnosis accuracy 
and consistency, which may improve patients’ treatments and outcomes. 

  



APPENDICES 

Appendix A. Raw data of plasma cell percentages obtained from four pathologists, the 
algorithm, and ground truth 
 

Image 
Name 

Pathologist 1 
(%) 

Pathologist 2 
(%) 

Pathologist 3 
(%) 

Pathologist 4 
(%) 

Algorithm 
(%) 

Ground 
truth (%) 

1 0 0 1 1 0 0 
2 0 0 1 1 0 0 
3 0 1 1 2 1 1 
4 10 0 1 1 0 1 
5 5 0 2 1 0 1 
6 1 1 1 1 1 1 
7 0 1 2 1 1 1 
8 0 0 2 1 1 1 
9 0 0 3 2 1 1 
10 1 1 3 1 2 1 
11 1 1 2 2 1 1 
12 1 0 3 2 1 1 
13 0 1 2 1 1 1 
14 0 2 2 1 1 1 
15 1 2 2 2 5 1 
16 1 1 3 2 2 1 
17 1 2 3 3 2 1 
18 1 1 2 2 2 2 
19 1 0 3 2 4 2 
20 1 2 2 1 1 2 
21 5 2 3 1 3 2 
22 1 1 3 2 3 2 
23 2 1 3 2 1 2 
24 1 2 2 2 1 2 
25 1 1 3 5 2 3 
26 1 2 3 3 2 3 
27 2 2 3 5 4 3 
28 1 2 10 5 4 4 
29 1 2 5 3 7 4 
30 1 4 15 5 3 4 
31 5 5 10 5 7 5 
32 0 5 3 2 2 6 



Image 
Name 

Pathologist 1 
(%) 

Pathologist 2 
(%) 

Pathologist 3 
(%) 

Pathologist 4 
(%) 

Algorithm 
(%) 

Ground 
truth (%) 

33 5 5 15 7 13 8 
34 5 5 10 5 5 8 
35 10 10 25 10 11 9 
36 1 20 15 2 5 10 
37 15 5 20 10 11 10 
38 1 5 15 7 8 11 
39 0 10 20 7 7 11 
40 1 5 15 7 8 12 
41 20 20 40 30 17 17 
42 20 15 30 20 25 23 
43 30 15 50 20 33 23 
44 20 10 20 10 18 23 
45 5 5 20 15 21 24 
46 20 15 60 30 30 29 
47 50 25 50 40 38 32 
48 60 60 70 60 57 56 
49 80 50 70 65 56 57 
50 90 80 90 90 69 64 
51 60 70 80 80 69 65 
52 80 80 90 80 68 65 
53 70 70 80 90 65 66 

 

Appendix B. Two-tiered classification based on diagnostic impact of estimated plasma cell 
percentages (1=no impact; 2= with impact) 

For example, PC% from pathologist 1 on image #5 from Appendix A is 5%, while ground truth is 1%. This 
discrepancy does not change the diagnostic impact on this image. Therefore, this case was classified as 
no impact or 1. In contrast, PC% from pathologist 1 on image #4 is 10%, while ground truth is 1%. This 
misquantified 10% on this image has a diagnostic impact because it meets the cutoff 10%, which is the 
main criterion for diagnosis of plasma cell neoplasms. This image was classified as 2.  

Image 
Name 

Pathologist 
1 

Pathologist 
2 

Pathologist 
3 

Pathologist 
4 

Algorithm 

1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 1 
4 2 1 1 1 1 
5 1 1 1 1 1 



Image 
Name 

Pathologist 
1 

Pathologist 
2 

Pathologist 
3 

Pathologist 
4 

Algorithm 

6 1 1 1 1 1 
7 1 1 1 1 1 
8 1 1 1 1 1 
9 1 1 1 1 1 
10 1 1 1 1 1 
11 1 1 1 1 1 
12 1 1 1 1 1 
13 1 1 1 1 1 
14 1 1 1 1 1 
15 1 1 1 1 1 
16 1 1 1 1 1 
17 1 1 1 1 1 
18 1 1 1 1 1 
19 1 1 1 1 1 
20 1 1 1 1 1 
21 1 1 1 1 1 
22 1 1 1 1 1 
23 1 1 1 1 1 
24 1 1 1 1 1 
25 1 1 1 1 1 
26 1 1 1 1 1 
27 1 1 1 1 1 
28 1 1 2 1 1 
29 1 1 1 1 1 
30 1 1 2 1 1 
31 1 1 2 1 1 
32 1 1 1 1 1 
33 2 2 1 2 1 
34 2 2 1 2 2 
35 1 1 1 1 1 
36 2 1 1 2 2 
37 1 2 1 1 1 
38 2 2 1 2 1 
39 2 1 1 2 2 
40 2 2 1 2 1 
41 1 1 1 1 1 
42 1 1 1 1 1 
43 1 1 1 1 1 
44 1 1 1 1 1 



Image 
Name 

Pathologist 
1 

Pathologist 
2 

Pathologist 
3 

Pathologist 
4 

Algorithm 

45 2 2 1 1 1 
46 1 1 2 1 1 
47 1 1 1 1 1 
48 2 2 2 2 1 
49 2 1 2 2 1 
50 1 1 1 1 1 
51 1 1 1 1 1 
52 1 1 1 1 1 
53 1 1 1 1 1 

 

Appendix C. Three-tiered classification based on estimated plasma cell percentages.  

(1=underestimated; 2=within expected range; 3=overestimated)  

Cases with misquantified plasma cell percentages above 60% were not included due to not being clinical 
significance. The values in the below table are related to the 10% cutoff. 

Image 
Name 

Pathologist 1 Pathologist 2 Pathologist 3 Pathologist 4 

4 3 2 2 2 

28 2 2 3 2 

30 2 2 3 2 

31 2 2 3 2 

33 2 2 3 2 

36 1 2 1 1 

37 2 1 2 2 

38 1 1 2 1 

39 1 2 2 1 

40 1 1 2 1 

45 1 1 2 2 

 

  



GLOSSARY 

BMBx bone marrow biopsy 

CCC concordance coefficient correlation 

MGUS monoclonal gammopathy of undetermined significance  

SMM smoldering multiple myeloma  

PCM plasma cell myeloma 

PC% plasma cell percentage 

O overestimated compared to ground truth 

U underestimated compared to ground truth 
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