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Abstract 
 
Contrast-enhanced computed tomography (CT) has found widespread use as a diagnostic imaging 

tool, with contrast used in approximately 60% of all CT scans. Dual-Energy CT (DECT) offers 

improvements to standard CT contrast imaging, particularly through material differentiation which 

improves diagnostic criteria and makes virtual non-contrast imaging possible. Photon-Counting 

CT (PCCT) improves upon DECT with the use of multiple adjustable energy-thresholds. This 

technology promises better material differentiation, multi-contrast imaging, increased CNR, 

reduced dose for maintained image quality, and material-specific K-edge imaging, but 

optimization of PCCT protocols is needed in order to maximize these benefits. 

 

Optimizing PCCT energy-threshold placement is a difficult problem because it is highly task-

dependent and the parameters are interrelated. There are many promising PCCT protocol 

optimization methods circulating in research today, primarily based on the inherent tradeoff 

between energy-resolution and SNR or CNR. Both theoretical and empirical optimization models 

exist, and both have benefits and drawbacks. A discrepancy exists between research and practice 

for K-edge protocol optimization. Theoretical optimization research commonly concludes that 

optimal placement of an energy-threshold is at the K-edge, while a popular method in practice 

involves placing thresholds a few keV off of the K-edge energy.  

 

This research presents an empirical method for protocol optimization based on analyzing the 

material-basis linear system. An automated analysis GUI in MATLAB was created, which allows 

energy-images to be loaded, viewed, and processed, and produces a report summarizing the results. 

The analysis metrics were designed to measure accuracy and precision of the material-basis linear 



 xiii 

system. Linear system accuracy, Δ, was calculated as the distance in material-concentration space 

between the known and calculated concentration (equivalently, the residual sum of squares). 

Energy-bin accuracy, Δ⊥(E-bin 𝑒𝑒), was calculated as the distance in material-concentration space 

between the known concentration and energy-bin-line 𝑒𝑒. And the linear system precision, 68% and 

95% confidence interval areas, were calculated using a Monte Carlo error propagation. 

 

Five protocols for scanning mixtures of iodine and gadolinium were tested to determine the 

optimal placement of the energy-thresholds. The statistical analysis showed that only the 

confidence interval areas had statistically significant differences for different protocols, with the 

“−2 𝑒𝑒𝑒𝑒𝑘𝑘” and “−4 𝑒𝑒𝑒𝑒𝑘𝑘” protocols resulting in larger average area than all other protocols. 

Additionally, differences in sample concentration produced statistically significant differences for 

all metrics (Δ, Δ⊥, and CI Areas). These results indicated that linear-system accuracy was relatively 

insensitive to energy-threshold adjustment of  ≤ 4keV, but system precision was slightly worse 

for protocols with the lowest minimum energy-bin photon count. This relative insensitivity is 

promising for clinical implementation as protocols need to be robust for intra-scan changes in X-

ray beam intensity. 

 

There are many methods of protocol optimization in PCCT, and this research presents a new way 

of directly analyzing the material-basis linear system. The use of empirical data and automation 

with a MATLAB GUI makes this a promising tool for future clinical use in PCCT QC, allowing 

users to verify theoretical optimization results, and adjust clinical protocols for different patient 

sizes or contrast materials. 
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1. Introduction 

1.1. Current Clinical Contrast CT 
 
Contrast-enhanced computed tomography (CT) has found widespread use as a diagnostic imaging 

tool, with contrast used in approximately 60% of all CT scans [1]. Dual-Energy CT (DECT) offers 

some improvements to standard CT contrast imaging, particularly through material differentiation, 

which improves diagnostic criteria and makes virtual non-contrast imaging possible. However, 

DECT captures data in only two energy-bins which limits material identification to, at most, three 

materials.  

 

Additionally, most DECT scanners use energy integrating detectors (EIDs), which cannot 

differentiate between photon energy. Because of this, DECT spectral separation is accomplished 

by varying the X-ray spectrum (fast kVp switching, dual beam), or by using dual-layer detectors. 

This constrains energy-binning to two stationary bins, which makes optimizing protocols for 

different materials impossible. Also, spectral overlap is inherent in all of these methods, and this 

introduces noise which degrades material differentiation accuracy.  

 

1.2. Photon-Counting CT Prospects 
 
Photon-Counting CT (PCCT) accomplishes detector-level spectral separation with photon-

counting detectors (PCDs) instead of EIDs. PCDs allow for better spectral separation and more 

energy-bins with adjustable energy-thresholds (2 - 4 are energy-bins typically used in literature). 

This creates the possibility for optimizing spectral imaging protocols for differentiating specific 

materials. Reported benefits of PCCT include: better material differentiation, increased contrast-



 2 

to-noise ratio (CNR), reduced dose for maintained image quality, and material-specific K-edge 

imaging. Background information about Photon Counting CT is discussed further in Chapter 2.3. 

 

1.3. Need for PCCT Optimization 
 
The possible advantages of PCCT over DECT will only be realized with appropriate energy-bin 

thresholds, and should be maximized with optimal energy-bin settings [2], [3]. PCCT will be 

available in the future for clinical imaging, therefore protocol optimization techniques are needed 

to optimize different imaging tasks. 

 

Optimizing energy-bin thresholds is a difficult problem because it is highly task-dependent and 

the parameters are interrelated. Bin-placement depends on many factors: the materials being 

imaged, the number of bins used, the subject thickness, the incident photon spectrum, and the 

detector response [4], [5]. Additionally, protocol optimization is further complicated by factors 

that degrade energy information (K-escape and charge sharing).  

 

1.4. Current State of PCCT Optimization 
 
There are many promising PCCT protocol optimization methods circulating in research today. 

Optimization methods are primarily based on the inherent tradeoff between energy-resolution and 

signal-to-noise ratio (SNR) or CNR, and most employ computer simulations or analytic models. 

There is a wide range in complexity of these models, and many seem oversimplified (two energy-

bins, fixed-width bins, disregard pulse pile-up, ideal detector system). In all cases, it would be 

beneficial to test any theoretical results with empirical data. 
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A few empirical methods have also been proposed. For example, a method by Panta et al. uses 

energy-images to compare the performance of different PCCT protocols by calculating K-factor 

( μ(E-bin after K-edge )
μ(E-bin before K-edge )

) and Relative X-ray Intensity ( Intensity(E-bin i)
Intensity(all E-bins)

) [6]. Another empirical method 

by Raja et al. directly tests the end effect of protocols on the material decomposition by calculating 

misidentification and misquantification in the material images [7]. Additionally, a popular method 

used in practice involves checking the linear-attenuation vs density, and linear attenuation vs 

energy-bin of calibration materials. Empirical methods like these are straightforward and produce 

good results. It would be beneficial to create a user-friendly program which heavily automates 

protocol analysis and gives the user information to guide the placement of energy-thresholds. 

 

An interesting K-edge-threshold discrepancy between research and practice exists that ought to be 

explored. The overwhelming majority of theoretical optimization routines conclude that, when 

optimizing a PCCT protocol for imaging a K-edge contrast material, the optimal placement of an 

energy-threshold is at the K-edge energy (e.g. K-edge of iodine is 33.2 keV, on-K-edge energy-

threshold = 33 keV). In practice however, thresholds are often placed a few keV off of the K-edge 

energy, with researchers reporting better results for these off-K-edge protocols in some cases [7].  

 

1.5. Specific Aims 
 
The primary objective of this study is to develop a user-friendly empirical method for multi-

contrast protocol optimization, based on analyzing the material-basis linear system. We aim to use 

the method developed in this research to find the optimal protocol, of those tested, for scanning 

iodine and gadolinium mixtures. 
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The following work was performed to meet this goal: 

 

1. Creation of calibration and test samples: Omnipaque (iodine contrast) and Omniscan 

(gadolinium contrast) were diluted with ultrapure water to make a series of calibration 

vials. Mixtures of these materials were also made to use as test samples. Oregon Health & 

Science University’s (OHSU) Elemental Analysis Core performed Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS) analysis of these vials for accurate concentration 

measurements. The materials were shipped to the University of Otago, Christchurch for 

PCCT imaging. 

 

2. Testing K-edge protocols: Five protocols were designed to test the K-edge threshold 

placement. The “on-K-edge” protocol (20 – 33 – 50 – 80 – 118 keV) was repeated five 

times for statistical analysis. For the other “off-K-edge” protocols, thresholds were adjusted 

by ± 2 and ± 4 keV: 

• Protocol 1: [20 – 33 – 50 – 80 – 118 keV]  
• Protocol 2: [18 – 31 – 48 – 78 – 118 keV] 
• Protocol 3: [22 – 35 – 52 – 82 – 118 keV] 
• Protocol 4: [16 – 29 – 46 – 76 – 118 keV]  
• Protocol 5: [24 – 37 – 54 – 84 – 118 keV] 

 

3. Analysis Graphical User Interface (GUI) created: MATLAB App Designer was used to 

create an analysis GUI that allows the user to load and view images, select cylindrical 

volumes of interest, enter materials and their respective concentrations, and generate a 

report and save report metrics. 

 

4. Linear system analysis: Metrics were designed to assess: 
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• Accuracy of linear system as a whole: Δ = distance between the known and 

calculated concentration, Δ =  �(Iknown − Icalc)2 + (Gdknown − Gdcalc)2 

• Accuracy of each energy-bin: Δ⊥(E-bin i) = distance from the known concentration 

point to Energy-bin i. 

• Precision of the linear system as a whole: Confidence Interval Areas = Area of the 

68% and 95% confidence ellipses. The 68% and 95% confidence ellipses were 

calculated with a Monte Carlo error calculation which accounted for error in the 

calibration and error in the sample measurement. 
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2. Background 

2.1. CT 
 
2.1.1. CT History 
 
The first computed tomography device was developed in 1967 by Godfrey Hounsfield. By 

mathematically combining 180 degrees of X-ray projections through the body, unobstructed axial 

slices of anatomy could be viewed which solved the problem of overlapping anatomy and poor 

depth information that is intrinsic to planar radiography. This new technology proved so 

revolutionary to diagnostic medicine that Hounsfield, and his colleague, A.M. Cormack were 

awarded the Nobel Prize in Medicine for its invention in 1979 [8]. 

 

Driven by goals of faster scan times and better image quality, CT technology progressed through 

four generations of scanner geometry from 1971 to 1976 [9]. Continuous helical CT acquisition 

became possible in 1987 with the development of slip-ring technology and Willi Kalender’s 

interpolation algorithms [9], [10]. Then in 1992, increasing the number of detector rows from one 

to two rows in the z-direction initiated modern multi-slice CT (MSCT), and by 2005 CT scanners 

were available with up to 320 detector rows [10]. Modern CT designs are based on the third-

generation detector geometry with a high-power X-ray tube rigidly attached to the gantry opposite 

a multi-slice detector array. A full history of the development of CT is beyond the scope of this 

dissertation, but aspects of CT imaging relevant to this research are discussed in the following 

sections. 
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2.1.2. CT Imaging 

Figure 1 and Figure 2 illustrate the concepts of CT X-ray attenuation and detection which are the 

foundation of image formation, and provide essential background for understanding the 

differences between CT, DECT and PCCT. 

 

A simplified model of a CT scan is shown in Figure 1. An X-ray beam (Figure 1A) travels through 

the study subject (Figure 1B) and the attenuated X-ray spectra (Figure 1C) is detected (Figure 1D). 

The beam and detectors rotate continuously around the subject with rotation time of <0.5 seconds 

(~0.2 seconds), and 1000 - 3000 projections are acquired per rotation. The signal for each 

projection is acquired over a projection time of 0.2 – 0.5 ms [11]. In this way, data are captured 

from many angles in a sinogram, then transformed into a brightness signal in each pixel 

representing the material X-ray attenuation from the corresponding volume of material in the study 

subject. 

 

Figure 2 represents the mathematical concepts behind each simplified CT stage shown in Figure 

1. The incident X-ray beam contains a range of X-ray energies depending on the peak X-ray tube 

energy (kVp), tube current (mA), target material, and filtration. Typical CT X-ray beams have 80 

- 140 kVp, tungsten targets, and filtration of 5 – 10 mm Al, resulting in X-ray spectra similar to 

that shown in Figure 2A. Figure 2B shows the energy dependence of attenuation of common 

materials in the body (water, fat, calcium). Contrast between materials in CT is formed due to 

differences in material X-ray attenuation, i.e., low-attenuating materials appear dark and highly 

attenuating materials appear bright. 
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Current clinical CT scanners use Energy Integrating Detectors (Figure 2D) which collect the total 

signal in each projection. All X-rays detected during each projection time contribute to the signal, 

resulting in a total attenuation signal that is made from a sampling of all X-ray energies in the X-

ray spectrum. As a consequence, integrating detectors average out the energy dependence of 

material attenuation, producing a final attenuation signal near the average energy.  
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Beer Lambert Law: 𝐼𝐼𝑇𝑇 = 𝐼𝐼0𝑒𝑒−𝜇𝜇𝜇𝜇 

 

Figure 1: CT Imaging Chain: A) Incident 
X-ray spectrum. B) CT beam and detector 
rotate around the subject. C) Transmitted 
X-ray spectrum. D) X-ray detection. 

  

 

 

Figure 2: CT imaging chain physics: A) 
Histogram of approximate X-ray spectra 
used in CT. B) The scanned subject is made 
of materials with different attenuating 
properties which are energy dependent, 
𝜇𝜇/𝜌𝜌 = 𝐹𝐹(𝐹𝐹).  C) The incident X-ray beam 
is attenuated based on the Beer Lambert Law 
D) Integrating detectors capture the 
transmitted X-ray signal. The total signal is 
captured, regardless of photon energy. 
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Effective energy is used to approximate average beam energy because it describes a monoenergetic 

beam with the similar attenuation behavior. Effective energy is defined as the energy of a 

monoenergetic X-ray beam with the same half-value layer as the polyenergetic beam. For 

diagnostic imaging, this is approximately 1/3 – 1/2 of the kVp [11].  Attenuation for a 

polyenergetic beam can be estimated as the attenuation for a monoenergetic beam with E = 

effective energy, assuming no beam hardening effects [12]. In reality, average energy changes with 

position in the gantry and subject thickness due to differences in filtration and beam hardening. 

 

The X-ray beam passing through the subject is attenuated based on the Beer-Lambert Law (Figure 

2C) , Equation 1, where I is the intensity of the attenuated beam, 𝐼𝐼𝑜𝑜 is the intensity of the incident 

beam, x is the thickness of the material through which the beam travels, and 𝜇𝜇 is the average linear 

attenuation of the material [11]. 

 By acquiring >180 degrees of data, each voxel’s attenuation can be computed. The attenuation 

measured in each voxel results from summing the attenuation of the materials in the voxel [13]: 

In a CT image, this information is displayed with voxel values of Hounsfield units (HU) which 

scales the displayed attenuation information so the HU of water is 0 and the HU of air is -1000, 

Equation [3]. 

 𝐻𝐻𝐻𝐻 = 1000 ⋅
𝜇𝜇 − 𝜇𝜇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜇𝜇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝜇𝜇𝑤𝑤𝑎𝑎𝑤𝑤

 (3) 

 

 𝐼𝐼 = 𝐼𝐼0𝑒𝑒−𝜇𝜇𝜇𝜇 (1) 

 𝜇𝜇 =
𝜇𝜇
𝜌𝜌1

 ⋅ 𝜌𝜌1 +
𝜇𝜇
𝜌𝜌2

 ⋅ 𝜌𝜌2 + ⋯+
𝜇𝜇
𝜌𝜌𝑁𝑁

 ⋅ 𝜌𝜌𝑁𝑁 (2) 
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2.1.3. CT Contrast Imaging 

Image contrast is defined as the percent difference in signal between an area (A) and the 

background (B), Equation 4 [11], and signal in CT is due to X-ray attenuation. The primary 

attenuation interactions in the diagnostic energy range are photoelectric absorption and Compton 

scattering, while Rayleigh scattering makes up approximately 5 – 10% of interactions in the 

diagnostic energy range [11], [14]. The total linear attenuation of a material is the sum of the 

attenuation due to these interactions, Equation 5.  In absence of a K-edge, the relationship between 

photon energy (𝐹𝐹), absorbing material density and atomic number (𝜌𝜌,𝑍𝑍), and the interaction cross 

sections of Rayleigh scattering (R), the photoelectric effect (𝜏𝜏) and Compton scattering (𝜎𝜎) are 

given by Equations 6, 7 and 8 [11], [14]. The probability of Compton scattering is proportional to 

electron density, which is proportional to density for materials in the body with the exception of 

hydrogen [11].  

 

Contrast: 𝐶𝐶 =
𝐴𝐴 − 𝐵𝐵
𝐴𝐴

 (4) 

 

Linear Attenuation: 𝜇𝜇 = 𝜇𝜇𝑅𝑅 +  𝜇𝜇𝜏𝜏 + 𝜇𝜇𝜎𝜎 (5) 

 

Rayleigh: 
𝜇𝜇𝑅𝑅 ∝

1
𝐹𝐹1.2 

(6) 

   

Photoelectric Effect: 𝜇𝜇𝜏𝜏 ∝
𝑍𝑍3

𝐹𝐹3
 (7) 
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Compton Scattering:  

 

𝜇𝜇𝜎𝜎 ∝ ρ,  in range 10 – 100 keV 

𝜇𝜇𝜎𝜎 ∝
𝜌𝜌
𝐹𝐹

, 𝐹𝐹𝛾𝛾 > 100keV  
(8) 

 

Contrast between soft tissues is poor because soft tissues – blood, fat, muscle, organs – have similar 

effective atomic number and density, thus their X-ray attenuation is similar. Equations 6 - 8 show 

that Rayleigh, photoelectric, and Compton effect from tissues of similar atomic number and 

density would be similar, thus the linear attenuation (Equation 5) would be similar, resulting in 

poor contrast (Equation 4) between such materials. 

 

Contrast agents containing higher Z elements can be added to structures of interest to increase their 

visibility. The most commonly used CT contrast elements are iodine and barium. Iodinated agents 

are usually used intravenously to increase the contrast of organs and vasculature, while barium-

containing agents are used to increase gastrointestinal contrast. Gadolinium-based agents are not 

typically used in CT, but can be used instead of iodine in cases where iodine is contraindicated, 

e.g., for those with iodine allergy or reduced kidney function [15]. However, the fact that 

gadolinium has a K-edge at 50.2 keV and is already used safely in patients for MRI contrast makes 

it a low-hanging fruit for translation to multi-contrast imaging in conjunction with iodine. 

 

Along with having properties that allow for safe human use, the K-edges of I, Ba, and Gd are well-

suited for diagnostic CT energies, shown in Figure 3. The K-edge is the sudden increase in 

attenuation at the K-shell electron binding energy. This discontinuous increase in attenuation is 

due to photoelectric absorption – absorption of a photon and emission of an electron – which can 



 13 

only occur at photon energies at or above the electron binding energy. As atomic number increases, 

so does the X-ray energy of the K-edge, shown in Table 1. 

Table 1: K-edge increases with 
atomic number 

Element Z K-edge 
[𝒌𝒌𝒌𝒌𝒌𝒌] 

Calcium (Ca) 20 4.0381 
Iodine (I) 53 33.1694 

Barium (Ba) 56 37.4406 
Gadolinium (Gd) 64 50.2391 

 

 

 

Figure 3: Mass attenuation of water, fat, calcium, iodine, barium, 
and gadolinium. Note the increase in attenuation in the range of 
diagnostic effective energies for I, Ba, and Gd. X-ray spectrum 
data from SpekCalc [16]. Attenuation data from NIST X-ray Form 
Factor, Attenuation, and Scattering Tables [17]. 

 

Materials with a K-edge near the average X-ray beam energy result in the most significant increase 

in attenuation, which is important for keeping the contrast agent dose low while still increasing 

target contrast. Contrast doses range based on body size and age group, with a typical iodinated 

contrast agent dose in the range of 45 – 150 mL of 320 mg/ml iodine solution [15], [18]. After 

injection, scans are timed for maximum target enhancement. Target iodine concentrations of 2-15 

mg/ml generally agreed upon in literature [1], [3], [18]. 

 

2.1.4. Clinical CT Imaging 

CT use has continued to rise since its introduction in 1973, reaching approximately 70 million 

annual scans in the United States in 2015 [19]. CT is used throughout healthcare for diagnosis, 
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treatment (e.g. CT fluoroscopy), triage in the emergency department, cancer treatment planning, 

etc. In 2017, it was reported that contrast enhancement was used in more than 60% of CT 

examinations [1].  

 

Due to the significant rise in CT radiation exposure to the population as a whole, dose reduction 

and monitoring campaigns have been launched to optimize the use of radiation in CT exams. These 

programs include: Image Wisely, Image Gently, and the American College of Radiology Dose 

Registry Index. The purpose of CT dose optimization is to use only the radiation necessary to 

achieve the appropriate image quality required for each study. 

 

2.1.5. CT Imaging Optimization 

Protocol optimization in CT is based on balancing the tradeoff between image quality and dose. 

Dose should be reduced as much as possible while still being sufficient enough to produce a 

diagnostic quality image for the given study. Protocol parameters affecting image quality and dose 

include: tube current-time product (mAs), kilo-voltage-peak (kVp), detector configuration, slice 

thickness, pitch, patient positioning, and reconstruction algorithm [20]. Of these, dose is directly 

affected by all except reconstruction algorithm.  

 

SNR and CNR are parameters used to discuss image quality because image quality is highly 

dependent on the appearance of noise in the image. Noise arises in a CT image from many sources: 

electronic, structural, anatomical, and quantum. Of these sources, quantum noise is affected by 

kVp, mAs, slice thickness, and pitch. Quantum noise arises due to the stochastic nature of X-ray 

counting statistics, therefore obeys Poisson statistics, i.e., for 𝑁𝑁 recorded counts in a pixel the noise 
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is given by √𝑁𝑁. Signal-to-noise ratio (SNR = 𝑁𝑁
√𝑁𝑁

) is used to describe the appearance of noise in an 

image, and contrast-to-noise ratio (CNR = 𝐶𝐶
√𝑁𝑁

) is used to describe the ability to resolve areas 

through noise. 

 

X-ray techniques refer to the tube potential (kVp) and the current-time product (mAs). The X-ray 

tube output (∝ N) is linearly related to the mA, ms, and mAs, and is related to the kVp2 [21]. 

Although both kVp and mAs affect N, in practice, the kVp is set to provide appropriate penetration 

and contrast, then the mAs is adjusted to provide appropriate SNR [22], [23]. Since N is linearly 

related to mAs, doubling the mAs would double the dose and would increase the SNR by a factor 

of √2. In modern clinical CT, automatic tube current modulation is used to equalize noise 

throughout the image and reduce patient dose for the overall study [23]. 

 

Protocol Optimization for iodine contrast scans: 

Low-kVp protocols have been shown to be beneficial for lowering dose in contrast scans of thin 

patients [23]. Iodine contrast is improved with lower kVp spectra due to the increased spectral 

overlap of the iodine K-edge. X-ray beam output (and therefore dose) changes rapidly with kVp, 

so a reduction in kVp must also be accompanied by an increase in mAs to maintain the same noise 

level in an image. For small patients, lower kVp scans can lower the dose while maintaining 

contrast enhancement (CNR) or have equivalent dose while increasing contrast enhancement. 

However, for larger patients, lower-energy beams may not provide enough penetration and result 

in noisier images.  
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2.2. Dual Energy CT 
 
2.2.1. DECT Summary 

Dual-energy CT systems collect information at low and high X-ray energies, then use the energy 

dependence of attenuation to add information to CT images. Both DECT and PCCT are called 

“Spectral CT” because they make use of the energy information from the incident X-ray spectrum. 

The concept of DECT was first described by Hounsfield in 1973; later, a technique for energy-

selective reconstructions was proposed by Alvarez and Macovski in 1976 [24], [25]. There are a 

handful of different methods for achieving dual-energy scans, including slow kVp switching, dual 

source, fast kVp switching, and layered detectors [2], [26]. These methods are discussed in Section 

2.2.3. 

 

2.2.2. Spectral CT:  Dual Energy CT or Photon-Counting CT? 

Both Dual Energy CT and Photon-Counting CT are called Spectral CT in literature because they 

use photon energy information. However, DECT measures attenuation for only two different 

average energies and current commercial DECT scanners primarily use energy integrating 

detectors. PCCT always uses photon-counting detectors, usually using more than two energy bins 

to sample attenuation at multiple average energy points. As a result, DECT CT is restricted to two 

stationary energy ranges, while PCCT can have >2 bins with bin placement set by the user. 

 

Photon-Counting CT is also commonly called: Spectral Imaging, Spectral Molecular Imaging, 

Spectral Photon-Counting CT, and Spectral CT. Throughout this paper, the naming convention 

“Photon-Counting CT, PCCT” will be used to prevent confusion between Spectral Photon-

Counting CT and Spectral Dual-Energy CT. 
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2.2.3. Types of DECT 
 
2.2.3.1. Slow kVp Switching 
 
In slow kVp switching DECT, low and high kVp scans of the entire volume or slice are acquired 

consecutively, shown in Figure 4. The disadvantages of this include patient movement between 

energies which can result in artifacts, and use of the same tube (with the same amount of filtration) 

which results in spectral overlap. Movement artifacts can be reduced, though not eliminated, by 

switching source energy after acquiring data for 180°+ fan angle.  

 

 
Figure 4: Slow kVp switching DECT: low-energy and high-energy slices are acquired consecutively. Low- and 
high- energy data sets are used to make material images (water and iodine shown). [27] 

 

2.2.3.2. Dual Source DECT 

Dual-source CT was introduced in 2005 for ultrafast cardiac scans and has the added benefit of 

being operated as a dual energy CT [28]. In dual-source DECT, two X-ray tubes and their detectors 

are attached to the same gantry at 90 degrees from each other, shown in Figure 5. The tubes are 

typically operated at 80 and 140 kVp. Benefits of dual-source DECT include reduced artifacts due 
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to patient motion, fast acquisition time, and increased spectral separation resulting from a more 

heavily filtered high-energy beam. A disadvantage is noise due to scatter; scatter origination from 

one tube can be detected by the other detector, which reduces spectral separation.  

 
Figure 5: Dual-source DECT: a low-energy and a high-energy X-ray tube at 90 degrees from each other 
acquire images at the same time. [27]  

2.2.3.3. Fast kVp Switching 

In fast kVp switching DECT, a single source alternates between low and high energies for 

consecutive projections. Because kVp is modulated at sub-millisecond times, asymmetric 

sampling – shorter ms for high kVp, longer ms for low kVp – is used to compensate for tube output 

difference between the low and high energy exposures. Fast kVp switching allows for near-

simultaneous acquisition to further reduce motion misregistration artifacts. However, spectral 

overlap resulting from using one tube (i.e. one filter) at two potentials is still a source of noise. 

 

2.2.3.4. Detector-based DECT 

In detector-based DECT, layered detectors are used to separate low-energy and high-energy 

photons originating from a single high kVp X-ray source. Low-energy photons are preferentially 

absorbed in the first detector layer, and higher-energy photons are detected in the second layer. 

Benefits of dual-layered DECT include simultaneous acquisition (no misregistration artifacts), 
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increased spectral separation, and clinical implementation as a single energy CT with the option 

to retrospectively reconstruct dual energy information [29].  

 

2.2.4. DECT Advantages and Disadvantages 

Clinical DECT scanners primarily use energy integrating detectors to collect CT information from 

two X-ray spectra [2], [26], [30]. The dual-energy information can be used to perform material 

decomposition, reconstruct effective-Z images or monoenergetic images, create virtual non-

contrast images (VNC), and increase diagnostic specificity.  

 

Advantages of DECT include fast scan times due to high flux operation of integrating detectors, 

more diagnostic information than CT, dose savings (particularly from VNC scans), and reduction 

of beam hardening artifacts from monoenergetic reconstructions.  

 

Issues encountered with DECT include spectral overlap (better spectral separation means better 

SNR), limitation to two relatively inflexible energy-bins, increased computation times and data 

storage compared to conventional CT, increased dose as a result of some vendor’s DECT 

protocols, and difficulty with introducing a new modality into the radiologist workflow.  

 

2.2.5. DECT Material Decomposition 

DECT can produce material-specific images of two or three materials through a process called 

material decomposition. Material decomposition involves solving a system of two equations 

(attenuation at low and high energies) and two unknowns (concentration of two materials). Solving 
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for three materials is an under-solved system, but three-material decomposition can be achieved 

by adding an additional volume constraint (material volume fractions must sum to 1) [31]. 

 

There are two standard methods for material decomposition: “basis set” decomposition (also called 

𝜌𝜌𝑍𝑍 decomposition), and “basis material” decomposition. Both types of material decomposition 

can be done pre-reconstruction or post-reconstruction (image domain) and these methods are based 

on the energy dependence of attenuation (μ). The basis material metric can be derived from the ρ𝑍𝑍 

metric, although the reverse is not true [13]. The basis material method models μ as a sum of linear 

attenuations from each material component contribution (refer to Figure 6). The basis set method 

models μ as the sum of attenuation due to particle interaction cross-sections (Compton scattering 

and photoelectric effect); refer to Figure 7 and Figure 8.  

 

 
Figure 6: This figure shows 𝜇𝜇/𝜌𝜌 of various materials. In the basis-
material method, 𝜇𝜇 in each voxel is modeled as the density-
averaged of 𝜇𝜇 from all material in the voxel. Data from NIST X-
ray Form Factor, Attenuation, and Scattering Tables [17]. 
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Figure 7: This figure shows total attenuation coefficient 
of muscle as sum of attenuation due to different 
interactions. [27] 

 

 
Figure 8: This figure shows total attenuation coefficient 
of cortical bone as sum of attenuation due to different 
interactions. [27] 

 
Basis-set material decomposition models attenuation based on particle interaction probabilities vs 

energy. This version of material decomposition was not used in this research. Assuming (1) there 

is no K-edge present, and (2) an energy range where photoelectric absorption and Compton 

scattering are the dominant interactions, the linear attenuation along the beam path can be 

described using Equation 9. [32] 

 

 𝜇𝜇 = 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐 + 𝐶𝐶𝑒𝑒𝐶𝐶𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 

�𝜇𝜇(𝑒𝑒,  𝐹𝐹)𝑑𝑑𝑑𝑑 = 𝛼𝛼�𝜌𝜌𝑤𝑤𝑒𝑒𝑒𝑒
𝑍𝑍𝑤𝑤𝑒𝑒𝑒𝑒𝑘𝑘

𝐹𝐹𝑛𝑛
𝑑𝑑𝑑𝑑 + 𝛽𝛽�𝜌𝜌𝑤𝑤𝑒𝑒𝑒𝑒𝑓𝑓𝐾𝐾𝑁𝑁(𝐹𝐹)𝑑𝑑𝑑𝑑 

(9) 

Where 𝑒𝑒 ≈  3 –  4, 𝑒𝑒 ≈  3 − 3.5, 𝛼𝛼 and 𝛽𝛽 are constants and 𝑓𝑓𝐾𝐾𝑁𝑁(𝐹𝐹) is the Klein-Nishina formula. 

(Equation 10) [14].  

 𝐹𝐹𝑠𝑠
𝐹𝐹0

=
1

1 + 𝐹𝐹0
511 𝑒𝑒𝑒𝑒𝑘𝑘 (1 − cos (𝜃𝜃))

 (10) 
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Basis material decomposition for DECT models all materials as a combination of two or three 

materials [33]. The attenuation along each projection for a two-material decomposition can be 

described using Equation 11. [32] 

 

 �𝜇𝜇(𝑒𝑒,  𝐹𝐹)𝑑𝑑𝑑𝑑 =  �𝜌𝜌𝑤𝑤𝑒𝑒𝑒𝑒 𝐶𝐶1𝜇𝜇𝑚𝑚1(𝑒𝑒,  𝐹𝐹)𝑑𝑑𝑑𝑑 + �𝜌𝜌𝑤𝑤𝑒𝑒𝑒𝑒 𝐶𝐶2𝜇𝜇𝑚𝑚2(𝑒𝑒,  𝐹𝐹)𝑑𝑑𝑑𝑑 (11) 

 

For reference to these material decomposition techniques, the following papers are recommended: 

Pre-reconstruction: (Liu [32], Lehmann [33], Kalender [34], Williamson [13])  

Post-reconstruction: (Liu [32], Heismann [35], Macovski [25], Williamson [13], Mendonça [31]) 

 

Post-reconstruction basis material decomposition is relevant to this research therefore outlined in 

greater detail below. Equation 12 writes the linear attenuation of each energy-image as a density 

weighted sum of its constituent parts. Equation 13 shows the application of Equation 12 to two 

energies. Equation 14 rewrites Equation 13 as a linear system.  

 

 
𝜇𝜇�𝐹𝐹𝛾𝛾� = �

𝜇𝜇
𝜌𝜌
�𝐹𝐹𝛾𝛾�

𝑎𝑎
⋅ 𝜌𝜌𝑎𝑎

𝑁𝑁𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑤𝑤𝑁𝑁𝑠𝑠

𝑎𝑎=1

 (12) 

2 materials, 

 2 energies: 

 

𝜇𝜇(𝐹𝐹𝐿𝐿𝑜𝑜𝑤𝑤) =
𝜇𝜇
𝜌𝜌

(𝐹𝐹𝐿𝐿𝑜𝑜𝑤𝑤)1 ⋅ 𝜌𝜌1 +
𝜇𝜇
𝜌𝜌

(𝐹𝐹𝐿𝐿𝑜𝑜𝑤𝑤)2 ⋅ 𝜌𝜌2 

𝜇𝜇�𝐹𝐹𝐻𝐻𝑎𝑎𝐻𝐻ℎ� =
𝜇𝜇
𝜌𝜌
�𝐹𝐹𝐻𝐻𝑎𝑎𝐻𝐻ℎ�

1
⋅ 𝜌𝜌1 +

𝜇𝜇
𝜌𝜌
�𝐹𝐹𝐻𝐻𝑎𝑎𝐻𝐻ℎ�

2
⋅ 𝜌𝜌2 

 

 

(13) 

Linear system:  (14) 
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𝐴𝐴𝐴𝐴 = 𝑏𝑏 

 

�

𝜇𝜇
𝜌𝜌

(𝐹𝐹𝐿𝐿𝑜𝑜𝑤𝑤)1
𝜇𝜇
𝜌𝜌

(𝐹𝐹𝐿𝐿𝑜𝑜𝑤𝑤)2
𝜇𝜇
𝜌𝜌
�𝐹𝐹𝐻𝐻𝑎𝑎𝐻𝐻ℎ�1

𝜇𝜇
𝜌𝜌
�𝐹𝐹𝐻𝐻𝑎𝑎𝐻𝐻ℎ�2

� ⋅ �
𝜌𝜌1
𝜌𝜌2� =  �

𝜇𝜇1
𝜇𝜇2� 

 

2.2.6. Clinical DECT Applications 

DECT can be used to identify materials, remove highly attenuating structures, and reprocess 

images for more optimal viewing as a virtual monoenergetic image. Examples of material 

identification use include iodine identification in perfusion blood pool imaging, uric acid 

identification for urinary stone characterization and gout diagnosis, and detecting silicone leaks in 

breast implants [2]. Uses of removing high attenuating structures include automatic bone removal 

in CT angiography, virtual non contrast images, atherosclerotic plaque removal, and virtual non-

calcium images [2].  

 

2.2.7. DECT Contrast Imaging 

Contrast imaging in DECT is improved over standard contrast CT. Material-only images improve 

CNR because the background signal is processed out, and better CNR improves the detectability 

of small or low-uptake lesions in iodine contrast scans. Additionally, material identification can 

help discriminate between contrast enhanced and non-contrast enhanced lesions that would 

normally have similar CT attenuation. 
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DECT can also create VNC images which are single acquisitions in which the signal from iodine 

is subtracted out, creating an anatomy-only image. In standard CT, multiple acquisitions are 

needed to acquire non-contrast and contrast scans. VNC images reduce the number of phases 

required for some contrast studies, providing significant dose savings. [2] 

 

Intrinsic contrast can also be exploited to aid in diagnosis. For example, identification of uric acid 

through the dual-energy index (𝐷𝐷𝐹𝐹𝐼𝐼 = 𝐻𝐻𝐻𝐻(𝑁𝑁𝑜𝑜𝑤𝑤 𝐸𝐸)−𝐻𝐻𝐻𝐻(ℎ𝑎𝑎𝐻𝐻ℎ 𝐸𝐸)
𝐻𝐻𝐻𝐻(𝑁𝑁𝑜𝑜𝑤𝑤 𝐸𝐸)+𝐻𝐻𝐻𝐻(ℎ𝑎𝑎𝐻𝐻ℎ 𝐸𝐸)+2000

) provides a non-invasive gout 

diagnosis. Kidney stones can also be detected and categorized by their material makeup [36], [37].  

 

 

 

Figure 9: DECT angiogram can separate 
bone and vasculature from the rest of the 
anatomy. [27] 

 

 
Figure 10: DECT images show uric acid 
crystals, which indicate gout. [27] 
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Improved CNR and material differentiation with DECT has increased interest in creating new 

contrast agents. Iodine and barium work best at low energies, providing a 70-90% greater CT 

number at 80 kVp than at 140 kVp [3]. However, iodine (Z = 53) and barium (Z = 56) cannot be 

separated from each other with DECT material differentiation because they have nearly the same 

atomic number, providing similar attenuation signals. Higher Z materials could compliment the 

use of iodine and barium in DECT scans by providing a greater high-energy attenuation signal and 

allowing material differentiation of two contrast agents at once. New contrast agents could add 

diagnostic information without impacting patient dose, although the any new contrast material 

must be extremely well-studied to ensure its safety [3]. 

2.2.8. DECT Optimization 

DECT optimization focuses on improving spectral-imaging abilities. For example, increasing 

spectral separation between low-energy and high-energy spectra has been shown to increase SNR 

in VNC images [38]. Spectral separation can be improved by using greater filtration and a higher 

kVp for the high-energy X-ray beam and a lower kVp for the low-energy beam. Figure 11 shows 

how spectral overlap could be decreased with changes to filtration. Using a lower low-kVp 

spectrum could also increase spectral separation. However, penetrability issues in the low-kVp 

beam may be an issue for larger patients and high currents would wear out tubes quickly [39].  

 

Optimizing the contrast agent used with DECT has also been proposed, although significant 

research into safety is an obstacle for any new contrast agent. Because DECT has two relatively 

stationary energy-spectra,  having one contrast agent with a K-edge in the lower-energy range and 

a second with a K-edge in the higher-energy range would be optimal for material decomposition 

[3].  
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Figure 11: 80 kVp and 140 kVp X-ray spectra with 
varying filters for the high-energy spectrum. Illustrates 
spectral overlap in typical DECT spectra [27].  

2.3. Photon Counting CT 
 
2.3.1. Photon Counting Detectors 
 
Photon-counting CT pairs one X-ray tube with photon-counting detectors to expand and improve 

the use of photon energy information. The significant differentiating factor between CT, DECT, 

and PCCT is the use of PCDs instead of EIDs. PCDs are direct-conversion semiconductor 

detectors, usually made of CZT, CdTe, or Si, that are combined with a fast-counting ASIC rather 

than a signal-integrating ASIC. This enables pulse height discrimination of single-photon events 

[40], [41]. The user sets energy thresholds above which photons are counted, then the number of 
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photons in each energy-bin are computed by subtraction. More than two energy-bins can be used 

due to the energy discriminating capabilities of PCDs, opening up the possibility for multi-contrast 

imaging in the future. 

 
2.3.2. PCCT History 
 
PCDs were developed for particle tracking in high energy physics experiments at CERN. 

Development started in the 1980’s and the first “hybrid pixel detectors” were installed in 1995 

[42]. Pixel hybridization describes combining a sensor and readout chip for on-chip signal 

amplification, discrimination, and digitization [43]. By 2006, multiple LHC experiments included 

early PCDs including ATLAS, CMS, and ALICE. 

 

Different groups have worked in collaboration with CERN and individually to develop PCDs for 

specialized uses. Versions of PCDs include MEDIPIX, XPAD, PILATUS, and PIXIE. Some 

targeted uses for these pixels are synchrotron experiments, measuring X-ray polarization in space, 

diffraction imaging, and biomedical imaging. Both Medipix and Xpad were designed for 

biomedical imaging applications, and Medipix detectors are installed in the PCCT scanner used 

for this research. [40, 41] 

 

The PCCT scanner used in this research was produced by Mars Bioimaging Ltd.; Mars Bioimaging 

was founded in 2007 and they collaborate with CERN, the Universities of Otago and Canterbury, 

and others for research and development of PCCT for medical imaging [44]. Currently they sell 

the MARS Small Bore Spectral Scanner, pictured in Figure 12, for small-animal imaging and pre-

clinical PCCT research. They are currently developing a human scanner, and the first human scans 

of the wrist and ankle of Dr. Phil Butler, CEO of Mars Bioimaging Ltd., were published in 2018 
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(Figure 13 and Figure 14) [45]. The MARS Small Bore Scanner was used in this research, and 

details about this scanner can be found in Chapter 3. 

 

 
Figure 13: 3D Material image of Dr. 
Phil Butler's wrist and watch. 
(Figure reproduced with permission 
from 
https://www.marsbioimaging.com) 

 

 
Figure 14: 3D material image of Dr. Phil Butler's Ankle. 
(Figure reproduced with permission from 
https://www.marsbioimaging.com)  

 

2.3.3. PCCT Benefits and Current Limitations 

There are many benefits of PCCT. The use of more energy-bins makes material differentiation of 

more materials possible, and user-set energy thresholds allow for optimization of the imaging task. 

Better spectral separation due to discrete energy bins (energy resolution reported to be 1 - 3.7 keV) 

 
Figure 12: The MARS Small Bore Scanner, 
produced and sold by MARS Bioimaging Ltd. 
for photon-counting CT research.  
(Figure reproduced with permission from 
https://www.marsbioimaging.com) 
 

https://www.marsbioimaging.com/


 29 

can provide better image quality and material differentiation than DECT [46], [47]. Photon-

counting detectors can reject electronic noise by setting a low-energy threshold, below which 

pulses from electronic noise are not counted, and they have approximately 30% higher geometric 

efficiency than energy integrating detectors [2]. Photon-counting detectors also have straight 

response to energy rather than an energy-weighted response, which can be used to optimally 

weight CT images [48], [49]. 

 

Current limitations of PCCT will need to be overcome before all proposed clinical uses are 

possible. Energy detection can be degraded by charge sharing and K-escape, and counts can be 

lost due to pulse pile-up. K-escape results in the partial loss of photon energy due to a characteristic 

X-ray escaping detection. Charge sharing results when one photon is counted as multiple lower-

energy photons, although these effects can be improved with charge-summing mode, where 

simultaneous events detected in neighboring pixels are summed and assigned to the pixel with the 

largest signal [2].  

 

The largest barrier to clinical use is pulse pile-up, which causes loss of counts as mA is increased 

above what the detector dead-time can handle [2]. This results in scan speeds that are longer than 

what is currently possible with integrating detectors due to necessary low mA. However, pileup 

has been shown to be controlled for  ≤550 mA at 140 kVp for 0.5 second rotation time (~2.5 ×

1011 photons per 𝑐𝑐𝐶𝐶2 per second) with the use of small sub-pixels (255 𝜇𝜇𝐶𝐶 pitch), the idea being 

that increasing the number of pixels per mm decreases the chance of coincident photon detection 

in the same pixel [49]. In 2016, the first human scans comparing two-energy-bin PCCT and dual-

layer DECT of the abdomen with iodine contrast showed good performance of PCCT [47]. 
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2.3.4. Proposed Clinical Applications of PCCT 

Improved spectral separation translates easily into use as an improved DECT, e.g., the 2016 human 

trial. In the future, PCCT should be able to do anything DECT can do, but with better noise 

statistics due to better spectral separation. Applications of PCCT will also go beyond DECT 

because multiple energy bins can be set according to the imaging task. Some proposed applications 

are contrast imaging, bone imaging, cancer imaging, and atherosclerotic plaque imaging. 

 

Contrast imaging in PCCT focuses on K-edge imaging. Specific imaging of high-Z contrast 

elements with PCCT is most often called K-edge imaging because an element’s unique K-edge 

can be identified by placing energy bins around the K-edge [50]. Multiple and mixed contrast 

agents can also be identified and quantified because PCCT has multiple energy bins. This presents 

opportunities for new future contrast agents.  

 

Quantitative bone imaging has already been proven useful for monitoring bone health with Dual-

Energy X-ray Absorptiometry (DXA) and Quantitative Computed Tomography (QCT). Both of 

these modalities compute bone mineral density (BMD) in an area or volume – a task easily 

accomplished by PCCT. It is possible that PCCT could add to the bone imaging toolkit in the 

future with improved image quality and more accurate 3D BMD measurement.  

 

PCCT could play a role in early detection or treatment monitoring of cancer; early detection of 

could be accomplished with PCCT by visualizing biomarkers of cancer while it is still at a treatable 
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stage. Monitoring treatment with PCCT could also be beneficial for treatment-resistant tumors 

(e.g. regions of hypoxia).  

 

Atherosclerotic plaque imaging may help prevent stroke and heart attack in the future. Biomarkers 

of plaque in danger of rupturing and causing a stroke or heart attack could be identified and used 

for initiating treatment. PCCT could also be used to simultaneously monitor drug delivery and the 

response of both the plaque and the patient to treatment.  

 

2.3.5. PCCT Material Decomposition 

PCCT material decomposition is based on the same principle as DECT material decomposition: 

attenuation is related to material and energy. Unlike DECT, which is limited to sampling the 

photon spectrum at two energies, and therefor can only differentiate two or three materials, PCCT 

often employs more than two energy bins, and therefore should be able to differentiate at least as 

many materials as the number of energy-bins. 

 

As discussed in Section 2.2.5, material decomposition can be accomplished with either the basis 

set or basis material method in the pre-reconstruction or post-reconstruction domain. However, the 

basis set material decomposition must be modified in the presence of K-edge materials because 

the K-edge introduces a discontinuity in attenuation which is not described by Compton and 

photoelectric components alone.  The next section (Section 2.3.6) explains this and its relation to 

basis material decomposition.  
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There are many different mathematical methods for accomplishing material differentiation with 

more than two energy-bins. Some methods include maximum likelihood estimator (MLE) [4], 

[12], [51], least squares [52], maximum a posteriori MAP estimator [53], primary component 

analysis (PCA)[54], and deep learning [55]. Issues in PCCT material decomposition include 

computation time, beam hardening through different sized subjects, energy signal deterioration 

through k-escape and cross talk, and energy-bin threshold optimization.  

 

2.3.6. PCCT Contrast Imaging 

Contrast imaging will likely be improved and expanded with the use of PCCT. Increased spectral 

separation will improve CNR, which will improve detection in contrast-enhanced scans. 

Increased number of bins will make multi-contrast imaging possible [3], [47], and having more 

flexible energy bins creates opportunities for new higher-Z contrast elements. Multi-contrast 

imaging could be used in the future to image physiological processes, for example, the body’s 

response to drug delivery. The full potential of this technological advance in contrast imaging is 

not yet known.  

 

K-edge imaging is heavily researched for PCCT. This technique identifies contrast materials by 

placing energy thresholds around their unique K-edge, and is best accomplished with energy bins 

both before and after the K-edge discontinuity [50]. Iodine, with a relatively low K-edge at 33.2 

keV, is therefore not an ideal candidate for K-edge imaging in humans because X-rays below this 

energy are filtered or attenuated out [51].  
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Material decomposition of K-edge imaging is usually described by extending the 𝜌𝜌𝑍𝑍 method. 

Above the K-edge, attenuation can be described as a linear combination of photoelectric and 

Compton cross sections [33], [56]. 

 
𝜇𝜇(𝐹𝐹,�⃗�𝐴) = 𝑎𝑎𝑝𝑝ℎ(�⃗�𝐴)

1
𝐹𝐹3

+ 𝑎𝑎𝐶𝐶𝑜𝑜(�⃗�𝐴)𝑓𝑓ΚΝ(𝐹𝐹/𝐹𝐹𝑤𝑤) 

 

(15) 

Here �⃗�𝐴 describes the dependence on position, 𝑓𝑓ΚΝ is the Klein-Nishina formula, and 𝐹𝐹𝑤𝑤 ≈ 511 𝑒𝑒𝑒𝑒𝑘𝑘 

(electron rest-mass energy).  

 

In the presence of K-edges, one term for each K-edge present is added to Equation 15. Iodine and 

gadolinium are used as examples below (Equation 16), but any number of K-edge elements could 

be included.  

 
𝜇𝜇(𝐹𝐹,�⃗�𝐴) = 𝑎𝑎𝑝𝑝ℎ(�⃗�𝐴)

1
𝐹𝐹3

+ 𝑎𝑎𝐶𝐶𝑜𝑜(�⃗�𝐴)𝑓𝑓ΚΝ(𝐹𝐹/𝐹𝐹𝑤𝑤) + 𝑎𝑎𝐺𝐺𝐺𝐺(�⃗�𝐴)𝑓𝑓𝐺𝐺𝐺𝐺(𝐹𝐹) + 𝑎𝑎𝐼𝐼(�⃗�𝐴)𝑓𝑓𝐼𝐼(𝐹𝐹) 

 

(16) 

The terms 𝑎𝑎𝛼𝛼(�⃗�𝐴) and 𝑓𝑓𝛼𝛼(𝐹𝐹) (for K-edge material 𝛼𝛼) are the local density and the mass attenuation 

coefficient, respectively. The mass attenuation coefficient encompasses all attenuation 

contributions: photoelectric, Compton, and K-edge.  

 

Equation 15 and 16 can be transformed from the basis-set (𝜌𝜌𝑍𝑍) decomposition method to the basis-

material decomposition. Lehmann et al. explains how the basis-set method and the basis-material 

method are related [33]: 

1) Any non-K-edge material can be described as a linear combination of 𝑎𝑎𝑝𝑝ℎ and 𝑎𝑎𝑐𝑐𝑜𝑜 in 

Equation 16.  
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2) Any two linearly independent sums of two basis functions span the space and can therefore 

be used as basis functions.  

 

This also explains why having energy-bins below and above the K-edge is needed for K-edge 

material decomposition. The jump in attenuation from the K-edge distinguishes it from being 

identified as a combination of other materials. For example, bones (calcium) can be identified as 

a mixture of iodine and water when an iodine-water-gold material basis is used. Calcium (no K-

edge) can be described as a linear combination of iodine and water [50]. Cormode et al. also 

reported that images were noisy when a material basis of iodine-water-calcium-gold was used [48]. 

Without having a bin before the iodine K-edge, the water-iodine-calcium material basis is a 

linearly dependent set, and material misregistration/noise arises from this collinearity. This 

highlights the importance of developing higher Z contrast elements for clinical PCCT K-edge 

imaging.  

 

2.3.7. PCCT Optimization 

Optimizing PCCT energy-threshold placement is important for PCCT imaging because threshold 

placement impacts contrast and noise in PCCT images [57]. Most PCCT protocol optimization 

techniques are based on the tradeoff between energy resolution and SNR in energy-bins, illustrated 

in Figure 15 and Figure 16. Large energy-bins (Figure 15) capture large amount of photons, 

resulting in and high SNR at the cost of averaging the attenuation signal over wider portions of the 

energy spectrum, i.e., poor energy resolution. Conversely, small energy-bins (Figure 16) allow for 

better energy resolution at the cost of SNR. 
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There is also a relationship between protocol robustness and number of energy-bins; a study with 

photon-counting projection imaging showed that ten optimized bins had the same material 

differentiation noise level as an un-optimized protocol with sixty-four energy-bins [58]. This 

observation that a greater number of energy bins result in more robust protocols may be due to the 

fact that more energy thresholds result in more constraints on the material differentiation results. 

Additionally, greater bin density reduces freedom of threshold placement which may also limit 

variation in material differentiation results. If the opposite is true for fewer bins, then protocol 

optimization is especially important for protocols with few energy-bins.  

 

 

Figure 15: Model of a 3-bin PCCT protocol for 
scanning iodine, gadolinium, and calcium with a 120 
kVp X-ray spectrum. [16], [17] 

 

 

Figure 16: Model of a 10-bin PCCT protocol for 
scanning iodine, gadolinium, and calcium with a 120 
kVp X-ray spectrum. [16], [17] 

 

In a protocol with four energy-bins the user must place four thresholds. In absence of a K-edge, it 

might make sense to place the thresholds so an approximately equal number of photons are in each 

bin. But with the addition of K-edge materials, maximizing K-edge signal also becomes a concern; 

for example, in Figure 15, both the gadolinium and iodine K-edges are in Energy-bin 1. This 

doesn’t make sense from a K-edge imaging perspective because having an energy-bin before the 
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K-edge is valuable. Additionally, the K-edge of Gadolinium is approximately halfway along the 

photon-weighted spectrum, which would effectively average out the entire K-edge signal.  

 

Lack of photons in the low-energy and high-energy range are also a concern. The shape of the X-

ray spectra shown in Figures 25 and 26 were modeled using a program called SpekCalc. In reality, 

the spectrum pre- and post-attenuation vary with X-ray tube, position in scanner, and attenuator 

thickness. Because of this, placing bins too close to the tail ends of the spectrum could result in 

adverse effects due to lack of signal. An example of this is given in Figure 17; here, two energy-

bin schemes were tested to distinguish Calcium, Fat, and Water, shown in Figure 17 A: Protocol 

1: 30, 45, 60, 75, 118 keV, and Protocol 2: 26, 38, 50, 62, 118 keV. The attenuation signal for 

calcium, graphed in Figure 17 B, did not behave as expected in Protocol 2, Bin 1. Attenuation for 

calcium should decrease with energy, but the attenuation in Bin 1 was lower than the attenuation 

in Bin 2. This is likely due to the low energy-bin being too low or too small, and therefore having 

poor SNR. Based on this result, we selected Protocol 1 to scan bones.  

 

 

A 



 37 

 

 

 
 

Figure 17: Two calcium scanning protocols compared. (A) Model of the two PCCT protocols, [16], 
[17] (B) The mas attenuation vs energy bin was graphed – results for protocol 1 behaved as 
expected. Energy-bin 1 and 2 in protocol 2 did not present the decreasing attenuation signal that 
was expected. (C) All bins showed good linearity with density, but bin 2 of protocol 2 had higher 
slope (i.e. attenuation vs concentration) than bin 1.  

2.3.8. PCCT Protocol Optimization Techniques 

Many protocol optimization techniques exist for PCCT imaging, and this section provides a review 

of the existing literature. However, PCCT protocol optimization is an active area of research so it 

is likely that this does not cover all existing techniques.  

 

For the most part, optimization methods define a Figure-of-Merit (FOM), usually based on the bin 

size tradeoff between energy resolution and noise, then maximize or minimize the FOM to find 

the ideal energy-bin configuration. Most methods model the attenuation which can be arbitrarily 

complex in an effort to represent the physical system. The benefit of a computer models is that, 

B 

C 
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given enough time, they can test all possible bin configurations. However, as number of bins 

increases, so does computation time. Another limitation of computer models is that the results may 

only be as good as the model. 

 

Methods 5 and 7 covered in this section are based on empirical data rather than models. Benefits 

of these methods include feedback on performance of the system as a whole, ability to be done on-

the-fly with as many measurements as is practical, and less requirements of computing power or 

models. Testing all possible energy-bin configurations would be extremely time intensive, but it 

is possible that not all energy-bin configurations need to be tested. 

 

Technique covered in this section include: 

1) Cramér Rao lower bound 

2) CNR vs bin width 

3) Signal-difference-to-signal-noise ratio (SDNR) 

4) SDNR2 and SNR2 

5) K-factor ranking method 

6) Confidence interval minimization 

7) On-demand protocol testing (based on experience, not published) 

 

2.3.8.1. Cramér Rao Lower Bound (CRLB):  

Cramer Rao lower bound (CRLB) is a mathematical technique used to find the lower bound of the 

variance. In PCCT protocol optimization it has been used to compute the minimum theoretical 

noise in the basis images as a function of the energy-bin width. The CRLB  
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technique defines a minimization problem that can be used to find the energy-bin thresholds that 

would produce the least noise in the basis images (photoelectric, Compton, K-edge). 

 

This method of PCCT bin optimization was first used by Roessl and Proska  (2006), who applied 

the CRLB method to two basis functions: photoelectric and Compton [59]. They used 

SNR2/exposure as a FOM and ran simulations with up to four E-bins, looked at variation of CRLB 

with changing energy thresholds for different filtration thicknesses and compared the FOM result 

with equidistant energy thresholding (evenly spaced bins). 

 

The 2009 paper by Roessl and Herrmann, “Cramér-Rao Lower Bound of Basis Image Noise in 

Multiple-Energy X-Ray Imaging,” expands the application of the CRLB method to an arbitrary 

number of basis functions [4]. This paper also describes the analytic computation of the CRLB 

basis noise. The result is that the basis noise is bounded with a minimum possible value computed 

by the inverse of the Fischer information matrix. This paper maximized SNR as a FOM, but states 

that there is nothing special about using SNR, rather, this technique is applicable to any FOM that 

is based on noise (i.e. variance). The authors also note that the detector model can be made as 

simple or complex as wanted, with an “ideal” situation giving the lower limit of noise. The example 

problem in this paper uses three basis functions (photoelectric, Compton, and K-edge of 

gadolinium), and five comparators defining four energy-bins, with only the middle comparator 

adjusted (10, 30, X, 70, 90). The result showed that SNR in the gadolinium basis image is 

optimized when threshold three is at the gadolinium K-edge.  
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More examples of use include Wang and Pelc “Sufficient Statistics as a Generalization of Binning 

in Spectral X-Ray Imaging” (2011) and Roessl et al. “Sensitivity of Photon-Counting Cased K-

Edge Imaging in X-Ray Computed Tomography” (2011). 

 

2.3.8.2. CNR as a Function of Bin-width 

He et al. “Material Discrimination Based on K-edge Characteristics” (2013) defines CNR as a 

function of energy bin width, and in this way, finds the optimal bin width to maximize CNR for 

contrast material decomposition. Their model calculates Expected Image and variance as a 

function of bin width from a model of the photon spectrum and Filtered Back Projection. This 

model only deals with one energy bin starting at the K-edge and extending for a width w. 

Limitations of this model include the following: only one bin-width modeled, models can rarely 

take all effects into account, and CNR of a contrast element relies on concentration.  

 

2.3.8.3. SDNR 

The signal difference to noise ratio (SDNR) was used by He et al. in the 2012 paper “Optimization 

of K-edge Imaging with Spectral CT” [60]. In the simulation study, two energy-bins were placed 

on either side of the gadolinium K-edge and energy-bin width was optimized using SDNR as a 

FOM.   

 

SDNR is defined as: 

𝑆𝑆𝐷𝐷𝑁𝑁𝑆𝑆 =  
𝜇𝜇𝑅𝑅 −  𝜇𝜇𝐿𝐿
�𝜎𝜎𝑅𝑅2 +  𝜎𝜎𝐿𝐿2
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Here �̅�𝜇 is the average attenuation, 𝜎𝜎 is the standard deviation of the attenuation, the subscripts 𝑆𝑆 

and 𝐿𝐿 indicate the right and left side of the K-edge – i.e. the attenuation after and before the K-

edge. SDNR as a FOM was introduced due to the tradeoff between precise attenuation signal with 

a narrow energy window, and low noise with a wide energy window (energy resolution and SNR). 

 

He et al. developed an equation for SDNR as a function of bin width based on a Filtered Back 

Projection numerical simulation, then maximized SDNR with respect to the bin width. Limitations 

of this method include its assumption of same energy-bin width on either side of the K-edge 

and10,000 photons count per 1 keV, and results are w = ~4 keV, which is approximately the energy 

resolution of photon counting detectors. 

 

2.3.8.4. SDNR2 and SNR2 

A paper by Zheng et al. (2018) [5], “Robustness of Optimal Energy Thresholds in Photon-counting 

Spectral CT,” uses signal-difference-to-noise ratio squared (SDNR2) and signal-to-noise ratio 

squared (SNR2) as a FOM to optimize energy-bins for two different detector models (silicon strip 

and CZT PCCT). SDNR2 is used for optimizing the thresholds of an optimally weighted image 

(not material decomposed image). 

 

𝑆𝑆𝐷𝐷𝑁𝑁𝑆𝑆2 =
(𝑒𝑒Δg)2

(𝐾𝐾𝑏𝑏 + 𝐾𝐾𝑤𝑤)𝑒𝑒𝑇𝑇 

 

Where Δ𝑎𝑎 = 𝑎𝑎𝑏𝑏 − 𝑎𝑎𝑤𝑤 is the difference between background counts and target counts (𝑎𝑎 =

(𝐼𝐼1, … , 𝐼𝐼𝑁𝑁)𝑇𝑇 where 𝐼𝐼𝑁𝑁 is the expected number of counts in bin N calculated from this model. 𝐾𝐾𝑏𝑏 
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and 𝐾𝐾𝑤𝑤 are the covariance matrices of 𝑎𝑎, and 𝑒𝑒 is the optimal weighting factor (Barrette & Meyers 

2013). In their detector model, pulse pile-up and charge sharing are considered.  

 

SNR2 is used to optimize thresholds for a material decomposed image. The example material used 

in this equation is gadolinium. In their choice of FOM, Zheng et al. cites the Roessl 2011 paper on 

Cramer Rao lower bound, explaining that maximizing SNR2 is synonymous with minimizing the 

CRLB lower bound noise. 

 

𝑆𝑆𝑁𝑁𝑆𝑆2 =
𝐴𝐴𝐺𝐺𝐺𝐺2

𝜎𝜎𝐴𝐴𝐺𝐺𝐺𝐺
2 ≤

𝐴𝐴𝐺𝐺𝐺𝐺2

𝐶𝐶𝑆𝑆𝐿𝐿𝐵𝐵𝐺𝐺𝐺𝐺,𝐺𝐺𝐺𝐺
 

 

Here 𝐴𝐴𝐺𝐺𝐺𝐺is the line integral of the Gd basis material, and 𝜎𝜎 is the variance. 

 

Maximizing two FOM at once is solved using the Global Search method (Matlab) run twenty times 

to ensure stable maxima. Furthermore, to create FOM independent of photon flux, SDNR2 and 

SNR2 are normalized by ideal SDNR2 and SNR2, which are then defined as relative SDNR2 and 

relative SNR2, respectively. Ideal SDNR2 and SNR2 are calculated by covering the energy 

spectrum with 1 keV energy bins. The model consisted of 1 mg/ml iodine and 10 mg/ml iodine, 

bone, and tumor, and 2 – 8 energy bins were investigated with 15 cm, 30 cm, and 50 cm phantom 

sizes. 

 

Results indicated optimal threshold placement is highly related to the detected spectrum, which 

was influenced by the attenuator and the detector response. Bins for the 30 cm phantom had the 

least variable performance across all phantom ranges – though this could be because 10 cm – 60 
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cm were tested, and 30 cm is near the center of this range. Increasing the number of bins improved 

the FOM, but also increased the amount of data to process (tradeoff: number of bins vs. 

computation time). Near optimal SDNR2 and SNR2 were observed for 6 – 8 bins. More bins might 

have shown marginal increases in SDNR2 and SNR2 at the cost of computation time. 

2.3.8.5. K-factor 

The K-factor is a metric used to rank protocols for scanning multiple high-Z materials; this ranking 

method was introduced by Panta et al. in a 2018 paper “Element-Specific Spectral Imaging of 

Multiple Contrast Agents: a Phantom Study” [6].  

 

K-factor is the percent increase in attenuation caused by the K-edge.  

 

K-Factor =  
X-ray attenuation in K-edge containing range

X-ray attenuation in the preceding energy range
× 100% 

 

A large K-factor would indicate a better protocol for identifying the high-Z material. However, 

there is a tradeoff between K-factor and SNR, due to the tradeoff between SNR and energy 

resolution. Narrow energy-bins placed before and after the K-edge would give a large K-factor but 

would capture few photons. On the other hand, wide energy-bins would provide better SNR, but 

would average out the energy-dependent attenuation information, resulting in lower K-factor.  

 

Instead of directly using SNR, Panta uses “Relative X-ray Intensity” in the K-edge containing 

energy range, where relative X-ray intensity is defined as: 
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Relative X-ray intensity = 
X-ray intensity in a particular energy range

X-ray intensity in all energy ranges
× 100% 

 

Relative X-ray intensity and SNR are both directly related to the number of photons in a particular 

energy range. This method only takes into account relative X-ray intensity in the K-edge 

containing range for each high Z-element, which can be interpreted as “signal strength for the 

elements K-edge.” However, signal strength also depends on the energy-bin preceding the K-edge. 

In this paper, four bins are used and the first bin does not contain a K-edge and therefore is not 

taken into account in the relative intensity scoring. 

2.3.8.6. Mahalanobis Distance Mapping/ Confidence Interval 

Minimization  

Nik, Meyer, and Watts 2011 [61] “Optimal Material Discrimination Using Spectral X-Ray 

Imaging” presents a model to optimize energy-bins by minimizing the confidence region of 

thicknesses making up the material basis.  

 

Given Poisson statistics (mean 𝜆𝜆, and noise =  √𝜆𝜆 ) the 63% confidence interval for the null 

hypothesis that the measurement, 𝐴𝐴, is equal to the mean, 𝜆𝜆, is defined as: 

 

𝑧𝑧 =
𝐴𝐴 − 𝜆𝜆
𝜎𝜎

= 1 for 63% confidence interval 

 

This can be expanded into higher dimensions (more energy bins) with the Mahalanobis distance:  
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𝑧𝑧 =  ��[(𝐴𝐴𝑘𝑘 − 𝜆𝜆𝑘𝑘)]2 ×
1
𝑒𝑒

𝑛𝑛

𝑘𝑘=1

�

1
2

= ����𝐴𝐴𝑘𝑘 − 𝜆𝜆𝑘𝑘�𝑒𝑒��
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×
1

𝜆𝜆𝑘𝑘�𝑒𝑒�

𝑛𝑛
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� ×
1
𝑒𝑒
�

1
2

= 1 

 

where 𝑒𝑒 is the set of thicknesses, and the factor 1
𝑛𝑛
 is introduced to negate z-dependence on number 

of energy-bins. Mapping 𝑧𝑧 in thickness space represents a distribution of all thicknesses that could 

make up the signal. The thickness set for 𝑧𝑧 = 0 is the combination of material thicknesses that are 

most consistent with the measurement 𝐴𝐴. For two bins, thickness sets for 𝑧𝑧 ≤ 1 lie within the 63% 

confidence region. For three bins, z = 1 defines a confidence volume of 61%.  

 

The FOM introduced in this paper represents the size of the confidence interval. Instead of 

computing the area or volume of the confidence region, Nik et al. uses the size of a rectangular 

box circumscribing the confidence region. This method avoids computing the Fischer information 

matrix. 

𝐹𝐹𝐹𝐹𝑀𝑀 =  ��(𝜎𝜎𝑤𝑤𝑖𝑖/𝜏𝜏𝑎𝑎

𝑚𝑚

𝑎𝑎=1

)�
−12

 

 

Here 𝜎𝜎𝑤𝑤𝑖𝑖 is the standard deviation (SD) of the thicknesses 𝑒𝑒𝑎𝑎 inside the confidence region. 

Minimizing this FOM is used to optimize protocols; minimization is done by doing an exhaustive 

search through all possible protocols, which is feasible for low number or bins (𝑒𝑒 ≤ 3). For higher 

number of bins, Nik recommends a simulated annealing algorithm or other such optimization 

model. 
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Results for separating iodine and calcium with two energy-bins indicate that placing the bin border 

at the K-edge of iodine is optimal (also indicated by Roessl and Herrmann 2009 CRLB 

optimization).  Separation of iodine and water was best with the bin border at 60 keV – this 

achieves greater average attenuation ratios between energy-bins. It is also shown that in calcium-

water-fat discrimination, calcium can be resolved but water and fat have an elongated confidence 

region, suggesting that only their sum can be resolved. 

 
2.3.8.7. On-demand Protocol Testing 

Published protocol optimization techniques rely on calculating Figures-of-Merit then optimizing 

the protocol by minimizing or maximizing the FOM. Experience has shown the use of a graphical 

method to pick between a few protocols. The steps of the graphical method are outlined as follows:  

 

1) Choose a few protocols to test based on materials being scanned. 

2) Test the protocols 

a. Plot:  

i. HU vs. Energy (Figure 18) 

ii. HU vs. Concentration (Figure 19) 

b. Analyze: 

i. HU vs. Energy: should decrease if there is no K-edge, increase at K-edge 

ii. HU vs. Concentration: should be linear 

3) Choose a protocol based on the result. 

 

As written above, the analysis focuses on confirming that the protocol is behaving as expected. 

The K-edge should be apparent in the appropriate energy-bin, and the attenuation (HU) should 
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linearly increase with concentration. Figure 18 and Figure 19 show a protocol that is behaving as 

expected and could therefore be used in practice. Figure 20 shows a calcium protocol that is not 

behaving as expected; the attenuation should be monotonically decreasing with energy but the 

second energy-bin shows higher attenuation than the first. This protocol did not pass the protocol 

testing and was not used. 
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Figure 18: HU vs E-bin plotted for gadolinium (left) and iodine (right), shows the increase in attenuation 
due to the K-edge’s (50.2 keV and 33.2 keV,  respectively), appear in the expected energy-bin. Figures 

from personal research. 

 

 

Figure 19: HU vs concentration in each energy bin plotted for gadolinium (left) and iodine (right), shows 
the expected linear behavior of attenuation with concentration. Figures from personal research. 

 

Figure 20: A bad protocol for calcium hydroxyapatite. 
The mass attenuation is expected to decrease with 
energy but increases from bin 1 to bin 2. Figure from 
personal research. 
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2.3.9. Implications 

Similarities between FOMs used to optimize protocols indicate that both noise and K-edge signal 

are known to be important for protocol success. This is highlighted by the fact that both 

optimization research and practice use noise-based and K-edge-based tests. Noise-based FOMs 

used in research include CRLB (used to find the theoretical lower bound of noise for any FOM 

involving noise, e.g. SNR and SNR2/exposure), SNR2, size of confidence intervals, and relative 

X-ray intensity. K-edge signal metrics used in research include CNR as function of bin width, 

SDNR, and K-factor. In practice, both noise and K-edge signal factor into protocol acceptance in 

the “on-demand” empirical protocol testing method, where graphs of attenuation vs. energy and 

attenuation vs. density are analyzed for unexpected results. Protocols rejected with this test are 

usually thought behave unexpectedly due to noise. 

 

Although protocol optimization research and practice agree on the importance of noise and K-edge 

signal, there is still a disconnect regarding placement of K-edge thresholds. Excluding one result 

from Nik et al.’s two-bin iodine-water protocol, optimized with an energy-threshold of 60 keV, 

optimization research indicates that energy thresholds should be positioned on the K-edge when 

imaging K-edge contrast materials. However, in practice, Mars Bioimaging’s research group 

advises that K-edge thresholds should be skewed a few keV above or below the K-edge. The 

rationale behind this is that the system has imperfect energy resolution, so when a threshold is 

placed on the K-edge, there is some signal sharing between pre- and post-K-edge bins. It appears 

that skewing the threshold preserves the K-edge better than placing it directly on the K-edge. 

However, the magnitude and direction which the threshold should be moved away from the K-

edge are not known, and the impact of this decision on PCCT protocols needs to be quantified. 
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Out of seven protocol optimization methods discussed, five were based on models and two were 

based on empirical data. Again, this highlights a disconnect between research and practice; 

research trends toward models, which can be as complex as desired, but still may not cover 

machine-to-machine variation. In practice, the Mars Bioimaging researchers are using a simple 

empirical method to choose protocols. Although this “educated guess and check” method seems 

simplistic, Mars Bioimaging produces excellent results and their many publications are a testament 

to the validity of this method.  

 

The effectiveness of the empirical guess and check method also begs the question: how optimized 

does a protocol need to be? The fact that a protocol can still be effective even if it is imperfect is 

promising for clinical implementation, where varying patient thickness cause variations in beam 

hardening and would therefore make threshold optimization a moving target within a single scan. 

For future clinical implementation, it is still important to optimize protocols to obtain the best 

material decomposition for the least dose, and it is also important to understand how the protocol 

affects the accuracy of material measurement. 

 

This research presents an empirical protocol optimization routine that attempts to add information 

to bridge the gap between research and practice. Choice of using an empirical method is twofold: 

(1) it avoids many limitations of computer models and (2) this builds on the method used in 

practice. Unlike a computer model, empirical models take into account all complexities of the 

system they are testing without sacrificing computation time or being only relevant for one 

machine. The proposed method also goes beyond the currently employed empirical testing method 

by adding information based the true goal of PCCT protocols: accurate material quantification. 
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Furthermore, collecting empirical protocol data could eventually be used to investigate current 

unknowns, such as K-edge thresholds, impact of SNR vs. Energy Resolution, and thresholds 

adjustment for different-sized subjects. 
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3. Materials & Methods 

3.1. MARS System 
 
The PCCT scanner used in this study was the mars small-animal scanner (Mars Bioimaging Ltd., 

Christchurch, NZ). The detectors in this scanner are Medipix3RX detectors, made from Cadmium 

Zinc Telluride (CZT). The particular scanner we used was equipped with a 7-chip camera. Each 

chip has a 128 × 128 array of pixels with 110 um pixel pitch. Information about the scan 

parameters used in this research is provided in Section 3.3.2. 

 

Medipix3RX detectors have eight energy thresholds: one arbitration threshold used for noise 

elimination at 7 keV, three thresholds which can be used in single-pixel mode, and four thresholds 

which can be used in charge-summing mode. Charge-summing mode was developed to improve 

energy resolution; in events where a photon signal is split between multiple pixels (charge sharing), 

the energy signal is summed and assigned to the pixel with the highest signal. Single-pixel mode 

treats every pixel as a separate address, resulting in an increase in low-energy counts due to charge 

sharing events. Charge-summing mode was used in this study. 

 

3.2. Calibration and Test Materials 
 
The proposed optimization routine relies on having previous knowledge of calibration and test 

material concentrations. The analysis is set up to test two materials in water and must be calibrated 

with single-material concentration series. Materials in this research were iodine in the form of 

Omnipaque and gadolinium in the form of Onmiscan. Omipaque, chemical name Iohexol 

(C19H26I3N3O9), is a water-soluble iodine-based radiocontrast agent with an iodine concentration 

of 350mg/ml [62]. Omniscan, chemical name gadodiamide (C16H28GdN5O9), is an aqueous 
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gadolinium-based Magnetic Resonance (MR) contrast agent with a concentration of 287 mg/ml 

gadodiamide, equating to 76.28 mgGd/ml [63]. 

 

These contrast agents were diluted with Milli-Q® water (ultrapure water [64]) and mixed with the 

goal of making an iodine and a gadolinium calibration series of approximately 2.5, 5, 10, and 15 

[mg/ml], and test mixtures of 1/9, 2.5/7.5, 5/5, 7.5/7.5, 7.5/2.5, and 9/1 [𝑚𝑚𝐻𝐻𝐼𝐼
𝑚𝑚𝑁𝑁

/𝑚𝑚𝐻𝐻𝐺𝐺𝐺𝐺
𝑚𝑚𝑁𝑁

]. These 

dilutions and mixtures split into three sets: one set of samples was sent to the ICP-MS lab at OHSU 

to be tested for more accurate iodine and gadolinium concentrations, the second set of samples 

was shipped to the MARS Bioimaging group at the University of Otago, Christchurch, and the 

third was stored in case either of these steps needed to be repeated. 

 

ICP-MS measurements were performed in the OHSU Elemental Analysis Core with partial support 

from the NIH instrumentation grant S10RR025512. Table 2 provides the concentration results as 

reported by ICP-MS. Following the advice of the director of the Elemental Analysis Core, Dr. 

Martina Ralle, we used one significant figure for these concentrations in the analysis. 

 

Table 2: ICP-MS Results 

ID I [MG/ML] I COV 
[MG/ML] 

GD [MG/ML]  GD COV 
[MG/ML] 

I/GD 7.5/7.5 7.389 0.297 7.639 0.054 
I/GD 7.5/2.5 7.512 0.302 2.596 0.019 
I/GD 9/1 8.925 0.359 1.107 0.008 
I/GD 1/9 1.270 0.051 9.302 0.066 
I/GD 2.5/7.5 2.676 0.108 7.386 0.053 
I/GD 5/5 4.884 0.197 5.285 0.038 
I 2.5 2.745 0.110 <0.003 N/A 
I 5 5.239 0.211 <0.002 N/A 
I 10 11.095 0.447 <0.002 N/A 
I 15 15.041 0.605 <0.002 N/A 
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GD 2.5 < 0.06 N/A 2.735 0.019 
GD 5 < 0.06 N/A 5.341 0.038 
GD 10 < 0.06 N/A 11.195 0.080 
GD 15 < 0.15 N/A 16.704 0.119 
BLANK < 0.04 N/A <0.006 N/A 

 

3.3. Optimization Routine 
 
The proposed optimization routine is an iterative procedure that allows protocols to be analyzed 

graphically and with figures-of-merit based on material quantification accuracy for each energy-

bin and for the system as a whole. Additionally, the routine is built into a GUI that progresses the 

user through each step in the analysis. Some benefits of this GUI include: 

- Calibration and test samples can be scanned either together or separately. Using in-scan 

calibration reduces the number of scans needed. 

- Images can be viewed inside the GUI; there is no need to open a separate program (ImageJ) 

to check images. 

- The analysis is split into tabs in the GUI, which makes the process forgiving to user error. 

If an error is made, the user can start again from the last correct tab to re-analyze instead 

of starting over completely. 

 

3.3.1. GUI 

The Protocol Optimization GUI was built using MATLAB App Designer. It is built in two modules 

which are separated onto two main tabs on the GUI window. Figure 21 shows module 1, “New 

Scan,” which allows the user to input the DICOM energy-image reconstructions and results in a 

saved calibration file and sample data file. Figure 22 shows module 2, “Load Data & Make 

Report,” which allows the user to load calibration and sample files, then generates a report PDF 
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and saves the data from the report into a report data file. Details of the data collection and 

processing are discussed in the following sections: 3.3.1.1 and 3.3.1.2. 

 

 
Figure 21: GUI module 1,” New Scan.” 

 
Figure 22: GUI module 2, “Load Data & Make Report.” 

 

3.3.1.1. “New Scan” Module 

The “New Scan” module has multiple tabs which the user is automatically progressed through 

after the completion of each stage; sections 0 - 0 describe the function of each tab. All figures are 

placed at the end of Section 3.3.1.1 and would ideally be viewed alongside the sections as they are 

mentioned. The MATLAB App is published for download with a supplementary image folder (10 

slices) at https://github.com/celesteleary/PCCT_Analysis_GUI. 

 

Select Slices Tab 

On the Select Slices tab, the user first selects the folder containing the DICOM energy-image 

reconstructions, then loads the images. The Load button loads the images and DICOM information 

into Matlab while displaying a progress bar (Figure 23). The image files are organized as a 4-

https://github.com/celesteleary/PCCT_Analysis_GUI


 56 

dimensional matrix (pixel rows × pixel columns × number of slices × number of energy-bins) and 

are rescaled by the appropriate values stored in the DICOM information: 

images = images*info.RescaleSlope + info.RescaleIntercept.  

 

The stack of images from the first energy-bin are displayed on the UIAxes, and the user can scroll 

through the images to pick the set of slices that are appropriate for analysis. Slices used for the 

analysis in this research were 235 – 275, as shown in Figure 24.  

 

Pressing the Set Slices button first disables buttons on this tab, then loads the selected slices onto 

the next tab figure, and finally sets the next tab as active (user is moved automatically to the next 

tab). The center slice from the selected slices is displayed on the next tab’s figure axes, sliders are 

made available for window/leveling and scrolling through slices, and an invisible green pixel mask 

is initialized on top of the figure for later use in displaying sample selections. 

 

Select Vials Tab 

On the Select Vials tab, shown in Figure 25, the user enters the number of samples to analyze and 

the radius (in pixels) of the circular sample areas, then presses Start. In all of the scans in this 

research, fifteen vials were selected with a sample radius of 17 pixels. 

 

Pressing Start opens a new window displaying the center slice of the selected image series. Again, 

an invisible green pixel mask is initialized over this image. When the user clicks on the centers of 

the samples, green circles showing the sample boundary and sample number appear. MATLAB’s 

ginput function is used to identify and store the pixel coordinates that are clicked, and circles are 
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drawn by turning the opacity of the green mask from 0 to 1 in a pixel range from radius − 2 to 

𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒𝑟𝑟𝑑𝑑 from the selected center pixel coordinate (e.g., pixels that are 15-17 pixels away from the 

center coordinate are made opaque green). Text indicating the sample number is also displayed on 

the selected pixel. Figure 26 shows the image during sample selection. MATLAB displays 

crosshairs for pixel selection, but they become inactive during a screen capture so are not shown 

here.  

 

After the last sample is selected, the figure automatically closes, and the green circles are displayed 

using the green mask over the figure on the GUI. The user can then scroll through the images and 

window/level to check the efficacy of their sample selection (Figure 27).  

 

After vials are selected and checked, the user inputs a list of materials (other than air and water) in 

the scan and presses Enter. The Enter button displays a progress bar while data for the next page 

is initialized. At this point the pixel means and standard deviations in each sample volume are 

calculated, saved, and displayed on the next tab, and tables are initialized for the user to input the 

sample concentrations. The next tab is activated when this process is complete.  

 

Input Concentrations Tab 

The plot on the Input Concentrations tab shows linear attenuation vs. energy-bin for each sample 

volume (Figure 28 and Figure 29). Pixel values in the images represent the linear attenuation of 

each voxel, so the mean and standard deviation of the linear attenuation if measured by taking the 

mean and standard deviation of the pixel values in each sample volume. The sample numbers from 

the previous tab correspond to the line numbers, and the lines can be toggled on and off with the 
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“plot on/off” check boxes for better visualization of sample subsets. To illustrate this use, Figure 

28 shows the linear attenuation for the series of iodine concentration vials, and Figure 29 shows 

the linear attenuation for the series of gadolinium concentration vials. 

 

The user inputs the known concentration in each sample into the “Materials” table, and checks 

boxes indicating water and air vials. A few shortcut options are given for inputting the same 

concentrations for multiple analyses: “Save new file concentrations.mat,” “Load from file 

concentrations.mat,” and “Load coded concentrations.” The “Save new file” button will save the 

table contents to a file named “concentrations.mat” in the parent directory of the DICOM image 

folder. The “Load from file” button will open a file selection dialog box, from which one selects a 

previously saved “concentrations.mat” file. The “Load” button is useful for repeatedly entering 

the same concentrations quickly, but in order to use it the user must type a properly formatted table 

of concentration into the “Loadcodedconcentrations” function in the App code. 

 

When the concentration table is finalized, the Enter button initializes the tables on the next tab, 

then automatically moves the user to the Save Data tab. 

 

Save Data Tab 

The Save Data tab is pictured in Figure 30 and has two sections which are numbered and written 

in bold. In Section 1, the user checks boxes indicating which samples to use in the calibration 

matrix (A) and sample vector (b). The buttons at the top are shortcuts for auto-selecting all 

calibration or sample checkboxes. In Section 2, options for the saved data must be specified, then 

the data can be saved, and the calibration plots can be displayed if desired. Option 1 adds the water 



 59 

sample as the y-intercept of the calibration curve. If there is more than one water sample, the 

pooled average and error are used. Option 2 allows the user to select energy-bins. This study used 

the water-intercept for both I and Gd and did not use the lowest energy-bin (bin 7-X 𝑒𝑒𝑒𝑒𝑘𝑘). 

 

The Save Data button processes the data based on the selections and saves information for the 

calibration matrix (A) and sample measurement vector (b). This information is saved as 

“calibration.mat” and “samples.mat” files in the directory containing the DICOM image folder. 

Descriptions of the file contents are in Table 3 and Table 4. Details of the calculations of A, SD(A), 

b, and SD(b) are provided in Section 3.4.  

 

The Calibration Plots button opens and saves figures that show the saved calibration information.  

Examples of these are given in Figure 31, Figure 32, and Figure 33. For each material and energy-

bin, the mean linear attenuation vs. concentration data is plotted with error bars showing the 

standard deviation of the linear attenuation, and the average linear fit and the standard deviation 

of the linear fit. For water and air, the mean and standard error of the linear attenuation is plotted 

for each energy-bin. 

 

Table 3: The file calibration.mat contains a structure, “Cal,” with fields: m, m_SD, concentration, and EbinString. 

Cal.m: a table of mean slope for each material and energy-bin, used to create the 
calibration matrix, A. 

Cal.m_SD: a table of slope SDs for each material and energy-bin, used in the error 
propagation, discussed in Section 3.4.3. 

Cal.concentration: a table storing material concentrations that were used to create the calibration 
curve, used for reference in the “Load Data & Make Report” module. 

Cal.EbinString: a cell array containing which energy bins were used in the calibration. This is 
used to check that the calibration and sample are compatible in the “Load Data 
& Make Report” module. 
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Table 4: The file samples.mat contains a structure, “Samples,” with fields: averages: SDs, concentrations, info, EbinString, 
calculated_concentrations. 

Samples.averages: a matrix of mean linear attenuation, Samples  ×  Energy-bin. 
Samples.SDs: a matrix of linear attenuation SD, Samples  ×  Energy-bin. 

Samples.concentrations: a table of known material concentrations that are in each 
sample, organized as Samples × Material. 

Samples.info: the DICOM info from the sample scan. 
Samples.EbinString: a cell array containing which energy-bins were used in the 

calibration. 
Samples.calculated_concentrations: a table of calculated material concentrations that are in each 

sample, organized as Samples × Material. 
 

Info Tab 

The Info tab has information about the resulting files, “calibration.mat” and “samples.mat,” see 

Figure 34. 

 

 

 
Figure 23: Select DICOM energy-image file & load images 
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Figure 24: Scroll through the images and select the series of slices to analyze. 

 

 

 
Figure 25: Input the number of samples in the scan and the sample radius (in pixels). 
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Figure 26: A new window will open, allowing you to resize the image and select the 
center of each sample. Click on the centers of each sample vial (crosshairs in the 
program, not apparent in screen capture). 

 

 

 
Figure 27: Scroll through the images and use Window/Level to ensure the selections are valid. 
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Figure 28: Enter the known concentrations into the table. Linear attenuation vs Energy-bin is displayed in the figure 
axis. 

 

 

 
Figure 29: Linear attenuation vs E-bin for each sample can be toggled on/off. 
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Figure 30: Numbered directions: (1) select the samples to use in the calibration and the optimization test. (2) Data 
options, Save Data, Show/Save Calibration plots. 
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Figure 31: Iodine calibration plots. 

 
Figure 32: Gadolinium calibration plots. 
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Figure 33: Linear attenuation for water in each energy- bin. 

 

 

 
Figure 34: Info tab displays details of results of the "New Scan" module. 
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3.3.1.2. “Load Data & Make Report” Module 

The Load Data & Make Report module allows the user to load the saved calibration.mat and 

sample.mat files, select the material basis, and generate the protocol report. This module is pictured 

in Figure 35, and an example of a report is shown in Figure 36. 

 

When the user selects the calibration.mat file after pressing the Calibration Data button, the Sample 

Data field is automatically filled with a path to a sample.mat file in the same directory as the 

calibration.mat file. This is useful for loading data made from the same scan. If data from a 

different scan is needed, the Sample Data button can be pressed to select any sample.mat file. 

 

The Load button initializes the Sample Contents and Calibration Contents tables. The Sample 

Contents table lists the materials concentrations in each sample. The Calibration Contents table 

lists each material saved in calibration.mat and shows the concentrations that were used to make 

the calibration curves.  

 

The options on the right side of the panel are used to select the material basis. This GUI is set up 

to display 2D graphs of a three-material system of water plus two materials. This is accomplished 

by subtracting the water linear attenuation from the sample mixture attenuation. The assumption 

behind this subtraction and the effect on noise are discussed in Section 3.4.2. 

 

The Generate Report function performs all calculations and makes the figures that are in the report, 

then saves and opens the generated report. There are multiple steps to this process: making and 
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saving figures, calculating metrics (Δ, Δ⊥, confidence interval area), saving the report data, and 

generating and saving the report (ProtocolReport.pdf). 

 

When the Generate Report button is pressed, the fields Cal.EbinString and Samples.EbinString are 

first checked to make sure the calibration is correct for the sample scan. If they do not have the 

same energy-bins, the process does not run. Instead, a warning message pops up telling the user 

that the calibration and sample scan energy-bins do not match, and the energy bins stored in each 

file are printed to the warning message. If the energy-bins of the calibration and sample files match, 

a progress bar is displayed while the data is processed, and the report is generated. A folder named 

“Report” is created in the parent directory of the DICOM image folder, and it is used to store the 

report (ProtocolReport.pdf), the data calculated in the report (ReportMetrics.mat), and the figures 

generated for the report (saved in a folder called “Figs”). 

 

The materials in the X and Y dropdowns are used to make the calibration matrix and initialize the 

X and Y axes. For each sample, a figure is made that shows the basis-material linear system, Ax=b, 

and report metrics. Each plot shows a line for each energy-bin, a red X for the known concentration 

of the sample, a red point for the least squares solution to the linear system, and ellipses defining 

the 68% and 95% confidence intervals. The calculation of the energy-bin lines and the confidence 

intervals are given in Section 3.4. 

 

Metrics are calculated for each plot: Δ(known, calculated), Δ⊥(E-bin), and the confidence interval 

areas. Δ(known, calculated) is the Euclidean distance between the known and calculated 

concentration, equivalently, the residual sum of squares. Δ⊥(E-bin 𝑒𝑒) is the Euclidean distance 
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between Energy-bin line i and the known concentration. The confidence interval areas are the area 

of each confidence ellipse. Two figures are made to compare Δ and Δ⊥ across samples. These 

figures are explained in the Results (Section 4). 

 

The report, ProtocolReport.pdf, is made using MATLAB’s Publish function [65]. Formatting and 

adding figures using Publish is accomplished through Publishing Markup, specifically formatted 

MATLAB comments [66]. For example, including a saved picture in a report is done by typing 

the comment: 

% 
% <<FILENAME.PNG>> 
% 
 

, where FILENAME includes the full path of the image file. In order to create a PDF report that has 

comments that change to pull the correct images into the report, a function was written that uses 

sprintf() to print a Markup file specific to the calibration and sample files that are being analyzed. 

The customized Markup file is Published, then deleted. The resulting PDF is saved in the Report 

folder and opened for the user to view. 
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Figure 35: “Load Data & Make Report tab.” The files calibration.mat and samples.mat are loaded, the material 
basis is selected, and the report is generated and opened. 
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Figure 36: ProtocolOptimization.pdf, report generated with MATLSB's Publish function. 

 

3.3.2. Scans 

The empirical protocol optimization routine proposed in this research was set up as an iterative 

procedure. The initial plan was to complete three series of scans: the first series would test the K-

edge thresholds and quantify the scan-to-scan variability, pictured in Figure 37, then, the second 

and third series of scans would find the low-energy threshold and the high-energy threshold. 

 

 

 
Figure 37: Scan used to test the on-K-edge thresholds and scan repeatability. 
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However, in the analysis of the first series of scans it was discovered that protocols were relatively 

insensitive to moving the K-edge thresholds by a few 𝑒𝑒𝑒𝑒𝑘𝑘. These results were explored for this 

research. The scans that were completed are given in Table 5, and the “Future Studies” section 

proposes how this research could be continued given our discoveries. 

 

Table 5: Completed Scans 

# SCAN ID E1 [KEV] E2 [KEV] E3 [KEV] E4 [KEV] 
1 CL1 20 33 50 80 
2 CL2 20 33 50 80 
3 CL3 20 33 50 80 
4 CL3_2 20 33 50 80 
5 CL3_3 20 33 50 80 
6 CL4 18 31 48 78 
7 CL5 16 29 46 76 
8 CL6 22 35 52 82 
9 CL7 24 37 54 84 

 

Scan parameters were kept consistent across scans while energy-thresholds were varied. Table 6 

shows the scan parameters used. 

Table 6: Scan Parameters 

kVp 120 
𝜇𝜇𝐴𝐴 22 
ms 21 

FOV [mm2] 150 × 38 
Slices 401 

Slice Thickness [mm] 0.09 
Projections/Rotation 720 

Filter Al 
Source-Detector Distance 271.9 

Source-Patient Distance 211.9 
 

3.4. Linear System Plots and Error Analysis 
 
The main idea of this research was to obtain information about the effect of energy-threshold 

placement on accuracy and precision of mixed-contrast PCCT scans by analyzing the linear 
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system, 𝐴𝐴𝐴𝐴 =  𝑏𝑏, of a water plus two contrast-material basis. Each energy-bin was visualized as a 

line in material concentration space, and metrics quantifying the material decomposition accuracy 

of each line and the system as a whole were calculated. This is explained in the following section, 

3.4.1. 

 

To assess the precision of the final material concentration calculation, the error from the calibration 

matrix (A) and the measurement vector (b) was first calculated, then a Monte Carlo method was 

used to propagate the error through to the solution vector (x). Sections 3.4.3, 3.4.2, and 3.4.4 

explain how error in each component, A, b, and x was calculated. 

 

3.4.1. Linear System Plots 

In this research, a three-material basis of water, iodine, and gadolinium was used. This linear 

system can be written as: 

 

To visualize the linear system and confidence intervals in the iodine-gadolinium concentration 

plane, the attenuation contribution of water was subtracted from both sides of Equation 17 to 

reduce the three-material basis to a two-material basis (Equation 18). This assumes that the 

concentration of water in each voxel does not change with contrast concentration, which is a good 

 𝐴𝐴𝐴𝐴 = 𝑏𝑏  
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approximation for small concentrations of iodine and gadolinium. The effect of subtraction on 

standard deviation was accounted for (see Section 3.4.2). 

 

Equation 18 can be plotted as N energy-bin lines. To illustrate this, the expanded equation for 

Energy-bin n is given in Equation 19. This is an equation of a line in the form 𝑎𝑎𝐴𝐴 + 𝑏𝑏𝑏𝑏 = 𝑐𝑐. Where 

a and b are from the calibration, and c is (sample linear attenuation − water linear attenuation). 

Each line in the system is plotted as shown in Figure 38. 
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Figure 38: Linear system plot shows energy-bin lines, known solution, calculated solution, confidence intervals, and 

plot metrics. 

 

 

The linear system plots also include known sample concentration; red X, calculated sample 

concentration; red dot, Δ(known, calculated); in title, Δ⊥(E-bin i); in legend, and 68% and 95% 

confidence intervals; blue and orange ellipses. 

 

The calculated sample concentration is computed using MATLAB’s mldivide function, which 

solves the linear equation 𝐴𝐴𝐴𝐴 = 𝑏𝑏, coded as x = A\b. This function is appropriate for solving 

overdetermined systems, like one in this research. For an overdetermined system, it returns the 

least-squares solution to the linear system [67]–[69]. 

 

Δ(known, calculated) is defined as the Euclidean distance between the known and calculated 

sample concentration. The coordinates, (𝐴𝐴𝑘𝑘𝑛𝑛𝑜𝑜𝑤𝑤𝑛𝑛,𝑏𝑏𝑘𝑘𝑛𝑛𝑜𝑜𝑤𝑤𝑛𝑛) and (𝐴𝐴𝑐𝑐𝑤𝑤𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝐺𝐺, 𝑏𝑏𝑐𝑐𝑤𝑤𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝐺𝐺), are 

known, so the distance can be calculated with Equation 20. 



 76 

 

Δ⊥(E-bin i) is defined as the perpendicular distance from Energy-bin line i to the known sample 

concentration. This is calculated using the Hessian normal form of a plane and computing the 

point-plane distance (in this case, point-line distance). With a plane in the form 𝑎𝑎𝐴𝐴 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑧𝑧 +

𝑑𝑑 = 0, and a point (𝐴𝐴0,𝑏𝑏0, 𝑧𝑧0), the plane can be described in Hessian normal form as 𝒏𝒏� ⋅ 𝒙𝒙 = −𝑝𝑝. 

The point-plane distance is computed as 𝐷𝐷 = 𝒏𝒏� ⋅ 𝒙𝒙𝟎𝟎 + 𝑝𝑝, where 𝒏𝒏� is the unit normal vector of the 

plane and 𝑝𝑝 is the distance from the origin to the plane. In this research Δ⊥(E-bin i) = |𝐷𝐷|.  

𝑎𝑎 =  𝜇𝜇
𝜌𝜌
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(𝐹𝐹𝑛𝑛)𝐼𝐼, 𝑐𝑐 = 0, 𝑑𝑑 =  −(𝜇𝜇(𝐹𝐹𝑛𝑛) − 𝜇𝜇𝐻𝐻2𝑂𝑂(𝐹𝐹𝑛𝑛)), and (𝐴𝐴0,𝑏𝑏0, 𝑧𝑧0) =

(𝐼𝐼 𝑚𝑚𝐻𝐻
𝑚𝑚𝑁𝑁 𝑘𝑘𝑛𝑛𝑜𝑜𝑤𝑤𝑛𝑛

, 𝐺𝐺𝐺𝐺 𝑚𝑚𝐻𝐻
𝑚𝑚𝑁𝑁 𝑘𝑘𝑛𝑛𝑜𝑜𝑤𝑤𝑛𝑛

, 0). Equations 21, 22, and 23 are used to calculate 𝒏𝒏� and 𝑝𝑝 [70], [71].  

 

This calculation was performed by writing the function: 

        function D = dist_from_line(app, A, b, x0) 
            % perpendicular distance to hyperplane (hessian normal distance) 
            % e.g. 3D plane: 
            % Ax + By + Cz = b 
            % A = [A B C] %calibration coefficients 
            % b = signal measured in bin 
            % point x0 = [two vectors] % known concentration 
            n = A./rssq(A); 
            p = -b/rssq(A); 
            D = n(1)*x0(:,1)+n(2)*x0(:,2)+p; 
        end 
 

 Δ(known, calculated) = �(𝐴𝐴𝑘𝑘𝑛𝑛𝑜𝑜𝑤𝑤𝑛𝑛 − 𝐴𝐴𝑐𝑐𝑤𝑤𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝐺𝐺)2 +  (𝑏𝑏𝑘𝑘𝑛𝑛𝑜𝑜𝑤𝑤𝑛𝑛 − 𝑏𝑏𝑐𝑐𝑤𝑤𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝐺𝐺)2 (20) 

 𝑒𝑒𝜇𝜇 =
𝑎𝑎

√𝑎𝑎2 + 𝑏𝑏2
 (21) 

 
𝑒𝑒𝑦𝑦 =

𝑏𝑏
√𝑎𝑎2 + 𝑏𝑏2

 (22) 

 
𝑝𝑝 =  

𝑑𝑑
√𝑎𝑎2 + 𝑏𝑏2

 (23) 
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The 68% and 95% confidence intervals (1 SD and 2 SD) for the calculated solution were plotted 

by calculating error in A and b separately, then using a Monte Carlo method to simulate 500 

possible concentration solutions. The distribution of solutions was used to calculate the confidence 

regions. This is further explained in the following sections, 3.4.2, 3.4.3, and 3.4.4. 

 

3.4.2. Error Part 1: b, Measurement Vector 

The measurement vector, b, is calculated as the average linear attenuation of the sample minus the 

average linear attenuation of water (Equation 24). The pixel value mean and standard deviation 

were stored as the linear attenuation mean and standard deviation, and error propagation for 

subtraction was used to calculate error in b (Equation 25).  

 

𝑏𝑏�⃑ = �

𝜇𝜇(𝐹𝐹1) − 𝜇𝜇𝐻𝐻2𝑂𝑂(𝐹𝐹1)
𝜇𝜇(𝐹𝐹2) − 𝜇𝜇𝐻𝐻2𝑂𝑂(𝐹𝐹2)

⋮
𝜇𝜇(𝐹𝐹𝑁𝑁) − 𝜇𝜇𝐻𝐻2𝑂𝑂(𝐹𝐹𝑁𝑁)

� (24) 

 𝑏𝑏𝑛𝑛 = 𝜇𝜇(𝐹𝐹𝑛𝑛) − 𝜇𝜇𝐻𝐻2𝑂𝑂(𝐹𝐹𝑛𝑛) 

𝜎𝜎𝑏𝑏𝑛𝑛 = �𝜎𝜎𝜇𝜇𝑛𝑛2 + 𝜎𝜎𝜇𝜇𝑛𝑛,𝐻𝐻2𝑂𝑂
2  

(25) 

In the Equations 24 and 25, 𝜇𝜇 and 𝜎𝜎𝜇𝜇 are the mean and standard deviation of pixel values in the 

test sample, and 𝜇𝜇 and 𝜎𝜎𝜇𝜇,𝐻𝐻2𝑂𝑂 are the mean and standard deviation of pixel values in the water 

sample. Normality of the pixel value distributions was verified against the expected shape of a 

gaussian with mean and standard deviation equal to the pixel mean and standard deviation (Figure 

39).  
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Figure 39: Histograms of pixel values in samples (blue) were checked against Normal distribution (red) to 
confirm gaussian distribution. 

 

 

3.4.3. Error Part 2: A, Calibration Matrix 

Recall the calibration matrix, A: 

 

𝐴𝐴 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜇𝜇
𝜌𝜌

(𝐹𝐹1)𝐺𝐺𝐺𝐺
𝜇𝜇
𝜌𝜌

(𝐹𝐹1)𝐼𝐼
𝜇𝜇
𝜌𝜌

(𝐹𝐹1)𝐻𝐻2𝑂𝑂
𝜇𝜇
𝜌𝜌

(𝐹𝐹2)𝐺𝐺𝐺𝐺
𝜇𝜇
𝜌𝜌

(𝐹𝐹2)𝐼𝐼
𝜇𝜇
𝜌𝜌

(𝐹𝐹2)𝐻𝐻2𝑂𝑂
⋮ ⋮ ⋮

𝜇𝜇
𝜌𝜌

(𝐹𝐹𝑁𝑁)𝐺𝐺𝐺𝐺
𝜇𝜇
𝜌𝜌

(𝐹𝐹𝑁𝑁)𝐼𝐼
𝜇𝜇
𝜌𝜌

(𝐹𝐹𝑁𝑁)𝐻𝐻2𝑂𝑂⎦
⎥
⎥
⎥
⎥
⎥
⎤

  

Using the linear relationship between 𝜇𝜇 and 𝜌𝜌 (Equation 2), each entry in A can be calculated by 

plotting the calibration series, 𝜇𝜇 vs. 𝜌𝜌, and taking the slope of the line fitted to the points (Equation 

26). 

 

 𝜇𝜇 =
𝜇𝜇
𝜌𝜌
⋅ 𝜌𝜌 + 𝜇𝜇0 

𝑏𝑏 = 𝐶𝐶𝐴𝐴 + 𝑏𝑏 
(26) 

 

However, the average linear attenuation measured in the calibration vials,  �̅�𝜇, has associated error, 

𝜎𝜎𝜇𝜇� ,  which must be propagated through to error in each calibration entry, 𝜇𝜇
𝜌𝜌
, 𝜎𝜎𝜇𝜇/𝜌𝜌. The standard 

error of the mean linear attenuation was calculated using Equation 27.   

 𝜎𝜎𝜇𝜇� =
𝜎𝜎

�𝑒𝑒𝑝𝑝𝑎𝑎𝜇𝜇𝑤𝑤𝑁𝑁𝑠𝑠
 

𝑒𝑒𝑝𝑝𝑎𝑎𝜇𝜇𝑤𝑤𝑁𝑁𝑠𝑠 = 𝑓𝑓𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒(𝜋𝜋 ⋅ 𝑒𝑒𝑠𝑠𝑤𝑤𝑁𝑁𝑤𝑤𝑐𝑐𝑤𝑤𝑎𝑎𝑜𝑜𝑛𝑛2 × 𝑒𝑒𝑠𝑠𝑁𝑁𝑎𝑎𝑐𝑐𝑤𝑤𝑠𝑠) 
(27) 
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In this research, 𝑒𝑒𝑠𝑠𝑤𝑤𝑁𝑁𝑤𝑤𝑐𝑐𝑤𝑤𝑎𝑎𝑜𝑜𝑛𝑛= 17, and 𝑒𝑒𝑠𝑠𝑁𝑁𝑎𝑎𝑐𝑐𝑤𝑤𝑠𝑠 = 275 − 235 =  40. A Monte Carlo method was used 

to calculate both 𝜇𝜇
𝜌𝜌
 and 𝜎𝜎𝜇𝜇/𝜌𝜌. Linear attenuation for each sample density was randomly sampled 

from the appropriate gaussian distribution using the function normrnd( �̅�𝜇,𝜎𝜎𝜇𝜇�). Then, the polyfit 

function was used to calculate the slope and the intercept of the least-squares fitted line to the 

points (used as: polyfit(�⃑�𝜌, normrnd(�̅�𝜇,𝜎𝜎𝜇𝜇�), 1) [72]. This was repeated 500 times, storing the slope and 

the intercept for each run. The average slope and standard deviation of the slopes were calculated 

and used as the estimate of   𝜇𝜇/𝜌𝜌 and 𝜎𝜎𝜇𝜇/𝜌𝜌. Figure 41 displays the distribution of lines used in an 

example of this Monte Carlo solution, and Figure 41 shows one plot that is generated by the 

Calibration Plots button. 

 

 
Figure 40: 500 lines were simulated to find the mean 
and standard deviation of the slope, used for the 
calibration matrix. 

 

 
Figure 41: Sample averages and standard deviations are shown 
with red X’s and error bars, average linear fit shown in black, 
and red dotted lines show the ± 1 SD of the 500 simulated lines. 

 

3.4.4. Error Part 3: x, Concentration Solution Vector 

A Monte Carlo method was again used to calculate the confidence intervals of the final calculated 

solution. At this point, 𝐴𝐴,𝜎𝜎𝐴𝐴, 𝑏𝑏, and 𝜎𝜎𝑏𝑏 have been calculated, and by randomly sampling each entry 

from its respective gaussian distribution, a distribution of solutions can be computed and stored. 
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This is accomplished by using the command x = normrnd(A,SD_A)\normrnd(b,SD_b). Figure 42 shows 

the distribution of solutions stored with this method. 

 

Confidence intervals can be plotted by approximating the distribution as a multivariate gaussian, 

and using the mean, covariance, and cumulative chi-squared distribution [73]. Figure 43 shows 

confidence intervals drawn over the solution distribution. The implementation of this given below 

for p = [.68, .95] (1 SD and 2 SD). In this code, confidence intervals are plotted, and the area of each 

confidence ellipse is calculated and stored as well. 

%plot confidence intervals here 
Cov = cov(sim_x(:, 1),sim_x(:, 2)); 
mu = mean(sim_x); 
l_conf_int=cell(1, length(p)); %legend initialize 
for idx = 1:length(p) 

%source, explanation: https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/ 
s = -2 * log(1 - p(idx)); 
[V, D] = eig(Cov * s); %[eigenvalues, eigenvectors] 
t = linspace(0, 2 * pi); 
a = (V * sqrt(D)) * [cos(t(:))'; sin(t(:))']; %coordinates of ellipse 
c_int_area(samp_idx, idx) = pi*D(1, 1)*D(2, 2); %area of ellipse 
l_conf_int{:, idx} = sprintf('%i%% confidence interval (area = %.0f)', p(idx)*100, c_int_area(samp_idx, 
idx)); %legend entry 
hold on; 
h_conf_int(idx) = plot(ax1, a(1, :) + mu(1), a(2, :) + mu(2), 'LineWidth', 2); 

end 
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Figure 42: Black points show 500 material concentration solutions (x) to Ax=b, with 
pixel noise in A and b taken into account. 

 

 
 

 
Figure 43: Confidence intervals were plotted by fitting the solution point-cloud to a 

multivariate gaussian. Here the 68%, and 95% confidence intervals are shown. 
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4. Results 
 
Reports were generated for the nine different scans and the report metrics were analyzed. A  

reference table for scan names and their respective spectral protocols (energy-thresholds) are given 

in Table 7,  and a reference table for sample numbers and their respective material contents is 

given in Table 8. For aid in the discussion, Figure 44 shows a histogram comparing the number of 

photons in each energy-bin for each scan, raw data for which is given in Table 12. A sample report 

from scan CL1 is included in Section 4.2. Page 1 of the report shows the calibration and test scan 

information and a figure summarizing the Δ⊥ results. Pages 2 - 4 show the linear system graphs 

and report metrics for each sample. The last page includes a figure comparing Δ for each tested 

sample composition. 

 

The calculated report metrics are Δ, Δ⊥, and Confidence Interval Areas (CI Areas). Each metric 

was analyzed for statistically significant differences, and the GUI was run an additional 20 times 

for scan “CL1” to analyze the reproducibility of each measurement. Section 4.3 presents results 

for Δ, Section 4.4 presents results for CI Areas, and Section 4.5 presets results for Δ⊥. Implications 

of all results are discussed Section 5. 

 
Table 7: The nine scans used in this research, their reference names, and their spectral protocols (energy-thresholds). 

# SCAN ID E1 [KEV] E2 [KEV] E3 [KEV] E4 [KEV] 
 CL1 20 33 50 80 
 CL2 20 33 50 80 
 CL3 20 33 50 80 
 CL3_2 20 33 50 80 
 CL3_3 20 33 50 80 
2 CL4 18 31 48 78 
3 CL5 16 29 46 76 
4 CL6 22 35 52 82 
5 CL7 24 37 54 84 

R
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Table 8: Reference table for sample composition. 

SAMPLE COMPOSITION 
1 8.9 I + 1.1 Gd 
2 7.5 I + 2.6 Gd 
3 8.4 I + 7.0 Gd 
4 4.9 I + 5.3 Gd 
5 2.7 I + 7.4 Gd 
6 1.3 I + 9.3 Gd 

 
 
Table 9: Iodine concentration. Known concentration compared to calculated concentration from all scans. 

I (MG/ML) CALCULATED IODINE CONCENTRATION 
KNOWN CL1 CL2 CL3 CL3-2 CL3-3 CL4 CL5 CL6 CL7 Mean SD 

8.9 9.21 9.24 9.26 9.19 9.16 9.26 9.39 9.25 9.12 9.23 0.08 
7.5 7.70 7.74 7.64 7.69 7.65 7.54 7.75 7.77 7.74 7.69 0.07 
8.4 7.79 7.78 7.74 7.77 7.72 7.69 7.91 7.81 7.79 7.78 0.06 
4.9 5.21 5.27 5.16 5.14 5.08 5.12 5.33 5.17 5.18 5.18 0.08 
2.7 2.56 2.60 2.56 2.53 2.60 2.43 2.62 2.49 2.50 2.54 0.06 
1.3 1.09 0.97 1.03 1.01 1.00 0.93 1.11 1.08 1.06 1.03 0.06 

 
 
Table 10: Gadolinium concentration. Known concentration compared to calculated concentration from all scans. 

GD (MG/ML) CALCULATED GADOLINIUM CONCENTRATION 
KNOWN CL1 CL2 CL3 CL3-2 CL3-3 CL4 CL5 CL6 CL7 Mean SD 
1.1 1.21 1.13 1.13 1.35 1.03 1.07 1.08 1.19 1.19 1.15 0.10 
2.6 3.12 3.08 2.91 3.11 2.92 3.11 3.04 3.07 3.04 3.05 0.08 
7 8.40 8.62 8.33 8.60 8.52 8.40 8.58 8.47 8.39 8.48 0.10 

5.3 5.78 5.70 5.53 5.61 5.39 5.62 5.47 5.71 5.69 5.61 0.13 
7.4 8.40 8.45 8.56 8.51 8.34 8.68 8.41 8.39 8.51 8.47 0.10 
9.3 9.78 9.82 9.81 9.91 9.90 9.92 9.77 9.74 9.81 9.83 0.06 

 
 
 Table 11: Average error = |(known concentration) – (average calculated concentration)| ,              

% 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝐻𝐻𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑜𝑜𝑤𝑤
𝑘𝑘𝑜𝑜𝑛𝑛𝑤𝑤𝑛𝑛 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑤𝑤𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑜𝑜𝑛𝑛

 
 

Average error  
I Gd  

Average error [mg/ml] % error Average error [mg/ml] % error 
SAMPLE 1 0.33 4% 0.05 5% 
SAMPLE 2 0.19 3% 0.45 17% 
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SAMPLE 3 0.62 7% 1.48 21% 
SAMPLE 4 0.28 6% 0.31 6% 
SAMPLE 5 0.16 6% 1.07 14% 
SAMPLE 6 0.27 21% 0.53 6% 

 

 
 

 
Figure 44: Histogram showing the number of photons recorded in each energy-bin in 
each scan. 

 

 
 Table 12: Number of photons recorded in each energy-bin. 

 
E-BIN 1 E-BIN 2 E-BIN 3 E-BIN 4 

CL1 1050351390 1630068169 530500870 797136224 
CL2 1050061143 1624558556 527428713 791110282 
CL3 1053788249 1622506524 525352704 785633388 

CL3-2 1053671034 1617278365 522721514 780152697 
CL3-3 1054841565 1615150861 521315096 776882647 
CL4 1057706993 1680538433 472395907 771907551 
CL5 1044198950 1749501213 418959347 765364090 
CL6 1059453084 1523426648 557116434 766122350 
CL7 1059344356 1433319893 590612065 762655704 

 

 

 
 
4.1. Statistical Analysis 
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A similar approach was used to test each metric. This involved answering the questions: Is there a 

difference in measurements? If there is a difference, where do the differences occur? These 

questions are commonly answered with an analysis of variance (ANOVA) omnibus test, followed 

by a multi-comparison post hoc test for significant differences. 

 

An ANOVA tests the null hypothesis that the group means are equal, against the alternative 

hypothesis that there is a difference in at least one pair of group means: 

H0: 𝜇𝜇1 =  𝜇𝜇2 = ⋯ =  𝜇𝜇𝑛𝑛 

HA: 𝜇𝜇𝑎𝑎 ≠ 𝜇𝜇𝑗𝑗, for some 𝑒𝑒, 𝑗𝑗. 

 

Five assumptions need to be met in order to conduct a classic ANOVA [74]: 

1) Continuous dependent variable (Δ,Δ⊥, CI Area). 

2) Independent variables consisting of independent, categorical groups (Scans, Samples). 

3) Independent observations, e.g. data from Scan 1 is not included in Scan 4 data. 

4) No significant outliers. This was assumed to be true for all data due to the small sample 

size available to us; we could not justify excluding any measurements. 

5) Normality of the dependent variable for each combination of independent variables, 

tested using the Anderson-Darling test (null hypothesis: data comes from a population 

with a normal distribution). 

6) Homogeneity of variance for each combination of independent variables, tested with 

Bartlett’s test for homogeneity of variance. 
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If all assumptions are met, the data was tested with a classic ANOVA and statistically significant 

findings were followed up with a Tukey’s Honestly Significant Difference (Tukey’s HSD) post 

hoc test.  



 87 

4.2. Reports 
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4.3. 𝚫𝚫, known-calculated distance 
 
Δ is defined as the Euclidean distance between the known concentration and the least-squares 

concentration solution. Δ was calculated for each can protocol and sample, and the raw data is 

organized in Table 13. Each scan report also includes a figure showing Δ vs. Iodine and 

Gadolinium concentrations to compare Δ across all tested samples, and these figures are shown 

below (Figure 45 - Figure 53). The axes for these figures are represent distance on a material-

concentration plane, the units that would be most appropriate for the axes would be mg/ml of the 

basis materials. 

 

In this analysis we wanted to test: (1) whether Δ is affected by scan protocol, (2) whether sample 

composition has an effect on Δ, and (3) whether the effect of protocol is different depending on 

the sample composition. These tests were accomplished by a two-way ANOVA. Preliminary 

analyses of the ANOVA assumptions are presented in Section 4.3.1 and results of the two-way 

ANOVA are reported in Section 4.3.2. 

 

Table 13: 𝛥𝛥, for each scan and sample. 

SCAN: CL1 CL2 CL3 CL3-2 CL3-3 CL4 CL5 CL6 CL7 
SAMPLE 1 0.3235 0.3396 0.3614 0.3812 0.2701 0.3638 0.487 0.3596 0.2389 
SAMPLE 2 0.5563 0.5383 0.3434 0.5441 0.3493 0.5163 0.5022 0.5441 0.5031 
SAMPLE 3 1.5288 1.7323 1.4871 1.7172 1.6643 1.5744 1.6512 1.5856 1.5148 
SAMPLE 4 0.5712 0.5445 0.3458 0.3918 0.207 0.386 0.4602 0.4923 0.4831 
SAMPLE 5 1.0114 1.0565 1.1682 1.1262 0.9419 1.3053 1.0123 1.0107 1.1236 
SAMPLE 6 0.5268 0.6127 0.578 0.6764 0.6716 0.7265 0.5121 0.4969 0.5682 

 -------------- Repeat protocols --------------     
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Figure 45: 𝛥𝛥 vs I & Gd concentration for scan CL1, Axes units for these figures represent distance on a material-
concentration plane, the units that would be most appropriate for the axes would be mg/ml of the basis materials. 

 

 

 
Figure 46: 𝛥𝛥 vs. I & Gd concentration for scan CL2 

 
Figure 47: 𝛥𝛥 vs. I & Gd concentration for scan CL3 
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Figure 48: 𝛥𝛥 vs. I & Gd concentration for scan CL3-2 

 
Figure 49: 𝛥𝛥 vs. I & Gd concentration for scan CL3-3 

 

 
Figure 50: 𝛥𝛥 vs. I & Gd concentration for scan CL4 

 
Figure 51: 𝛥𝛥 vs. I & Gd concentration for scan CL5 

 

 
Figure 52: 𝛥𝛥 vs. I & Gd concentration for scan CL6 

 
Figure 53: 𝛥𝛥 vs. I & Gd concentration for scan CL7 
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4.3.1. Preliminary Analysis 

4.3.1.1. Normality 

The Anderson-Darling test was used to check for normality of Δ with respect to Scans, Samples 

and the intersection of the Repeat Protocol× Samples. Results for each are given in Table 14, Table 

15, and Table 16, respectively.  

 

Three distributions, Δ(Scan CL5), Δ(Sample 2), and Δ(Sample 2 × Repeat Protocol) have 

significant p-values of 0.0118, 0.0025, and 0.0283, respectively. Because most groups did not 

reject the null hypothesis, and the fact that an ANOVA is robust for violations of normality, we 

concluded that the assumption of normality is sufficient for executing a two-way ANOVA [75]. 

 
Table 14: Anderson-Darling test 
results for 𝛥𝛥 vs Scan.  
 

𝚫𝚫(SCAN,  
ALL SAMPLES) 

Scan p-value 
CL1 0.1237 
CL2 0.0956 
CL3 0.0604 
CL3-2 0.1741 
CL3-3 0.2504 
CL4 0.2013 
CL5 0.0118 
CL6 0.0568 
CL7 0.1997 

Table 15: Anderson-Darling test 
results for 𝛥𝛥 vs Sample. 
 

𝚫𝚫(SAMPLE,  
ALL SCANS) 

Sample p-value 
1 0.3217 
2 0.0025 
3 0.6833 
4 0.6816 
5 0.3851 
6 0.6515 

Table 16: Anderson-Darling test 
results for 𝛥𝛥 vs Repeat Protocol  × 
Sample. 
 

𝚫𝚫(SAMPLE,  
REPEAT PROTOCOL) 

Sample p-value 
1 0.7964 
2 0.0283 
3 0.319 
4 0.7047 
5 0.9623 
6 0.6609 

 
4.3.1.2. Homogeneity of Variance 

Bartlett’s test was used to verify the assumption of homogeneity of variance of Δ with respect to 

Scans, Samples, and the intersection of the Repeat Protocol × Samples. Results in Table 17 

indicate that this assumption was not violated for any group. 
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Table 17: Bartlett's test for homogeneity of variance: 𝛥𝛥(Protocol, all samples), 𝛥𝛥(Sample, all protocols), and 𝛥𝛥(Sample, Repeat 
Protocol). 

 
  

𝚫𝚫(SCAN) 𝚫𝚫(SAMPLE) 
𝚫𝚫(SAMPLE,  

REPEAT PROTOCOL) 
BARTLETT'S STATISTIC 0.34022 2.55446 6.22461 
DEGREES OF FREEDOM 8 5 5 
P-VALUE 0.99997 0.76827 0.28497 

 

 

 
 
4.3.2. ANOVA Results 

Table 18 reports results of the two-way ANOVA for protocol and sample effect on Δ. There was 

no statistically significant interaction found between Protocol and Sample for Δ (p = 0.7908), 

which indicates that the effect of sample composition is the same for each protocol in our study. 

The null hypothesis was also rejected for Δ vs Protocol (p = 0.7012). However, there was a 

statistically significant result for Δ vs Sample (p = 8.15 E-17). Therefore, a post hoc Tukey’s HSD 

test for Δ vs Sample was completed (Section 4.3.2.1). Box plots showing distributions of Δ for 

groupings of Scan and Sample are shown in Figure 54 and Figure 55. 

 
Table 18: Two-way ANOVA for the effects of scan protocol and sample on 𝛥𝛥. 

 

SOURCE SUM SQ. D.F. MEAN SQ. F PROB>F 
PROTOCOL 0.0223 4 0.00557 0.55 0.7012 
SAMPLE 6.922 5 1.38441 136.52 8.15E-17 
PROTOCOL*SAMPLE 0.1417 20 0.00708 0.7 0.7908 
ERROR 0.2434 24 0.01014   

TOTAL 11.2055 53       
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Figure 54: Box plots showing distribution of 𝛥𝛥 vs Scan. 

 
Figure 55: Box plots showing distribution of Δ vs Sample. 

 
 
4.3.2.1. Samples 

Tukey’s HSD post hoc test (Table 19) indicated that Samples 3 and 5 had statistically significant 

differences in Δ from all other samples, and the pairwise difference between Sample 1 vs Sample 

6 was also statistically significant. The multiple comparison graph (Figure 56) illustrates that 

Sample 1 has the smallest average Δ� value, and Samples 3 and 5 have statistically significantly 

larger Δ� than other samples, with Sample 3 having the largest Δ� measurement. 

 
 Table 19: Tukey HSD results for the 

main effect of sample on 𝛥𝛥. 

SAMPLES P-VALUE 
1 2 0.14605 
1 3 2.07E-08 
1 4 0.64342 
1 5 2.07E-08 
1 6 0.0082591 
2 3 2.07E-08 
2 4 0.90592 
2 5 2.53E-08 
2 6 0.77229 
3 4 2.07E-08 
3 5 2.23E-07 
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3 6 2.07E-08 
4 5 2.14E-08 
4 6 0.21721 
5 6 8.55E-08 

 

 
 

 
 
4.3.3. Repeat GUI Test of 𝚫𝚫 

Values of Δ for repeated runs of the GUI had coefficients of variation (CoV) of 4% - 11% 

depending on the sample, and a pooled CoV of 6%. The raw repeat data of Δ vs Sample for each 

analysis of Scan CL1 with the GUI is given in Table 20, and the mean, standard deviation, and 

CoV for each sample is summarized in Table 21. Values of Δ for all tested scans (CL1 – CL7) had 

coefficients of variation of 6% - 26% depending on the sample, and a pooled CoV of 12% (Table 

22).  

 
Table 20: Δ from the 20 repeated GUI runs of scan CL1. 

REPEAT# SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 SAMPLE 6 
1 0.3676 0.5619 1.4475 0.5513 0.989 0.449 
2 0.4438 0.5403 1.5612 0.5234 0.9802 0.6092 

 
Figure 56: Multiple comparison of 𝛥𝛥 for different samples. 
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3 0.4134 0.5625 1.5823 0.5775 1.0264 0.4307 
4 0.3976 0.5355 1.4734 0.5729 1.0263 0.5114 
5 0.414 0.4574 1.3336 0.5116 1.0415 0.4337 
6 0.3725 0.7025 1.4961 0.5925 1.0725 0.5417 
7 0.386 0.4984 1.4959 0.5802 1.0381 0.4263 
8 0.3559 0.4939 1.5252 0.5493 0.9948 0.4674 
9 0.3478 0.557 1.548 0.5377 1.0297 0.464 

10 0.4535 0.5512 1.3542 0.5132 0.9385 0.445 
11 0.3996 0.5091 1.383 0.5127 1.0113 0.5312 
12 0.407 0.5302 1.4702 0.4876 0.9152 0.4256 
13 0.4263 0.5648 1.4715 0.4574 0.9822 0.3949 
14 0.3762 0.5867 1.5211 0.6063 1.0398 0.4889 
15 0.3978 0.5084 1.4328 0.5876 1.0352 0.4874 
16 0.3677 0.4973 1.4767 0.5736 0.9965 0.4519 
17 0.4404 0.5782 1.5316 0.616 1.0536 0.5371 
18 0.4037 0.5962 1.4977 0.5563 1.0275 0.451 
19 0.4186 0.5358 1.5008 0.5625 0.9718 0.4634 
20 0.4175 0.5357 1.4327 0.5576 1.0035 0.4623 

. 

Table 21: 𝛥𝛥: mean, standard deviation, and coefficient of 
variation for repeat test of GUI. 

REPEAT TEST OF GUI, SCAN CL1 
SAMPLE Count Mean Std CoV 

1 20 0.40034 0.02945 7% 
2 20 0.54515 0.05094 9% 
3 20 1.47677 0.06551 4% 
4 20 0.55136 0.04056 7% 
5 20 1.00869 0.03867 4% 
6 20 0.47359 0.05087 11% 

POOLED 120 0.74265 0.0474 6% 
 

Table 22:𝛥𝛥: mean, standard deviation, and coefficient of 
variation of all protocol scans. 

ALL PROTOCOL SCANS 
SAMPLE Count Mean Std CoV 

1 9 0.34722 0.07037 20% 
2 9 0.48857 0.08282 17% 
3 9 1.60618 0.08914 6% 
4 9 0.43133 0.11229 26% 
5 9 1.08401 0.10962 10% 
6 9 0.59658 0.08082 14% 

POOLED 54 0.75898 0.09212 12% 
 

 
4.4. Confidence Interval Area 
 
The 68% and 95% confidence interval areas represent the area on the concentration plane that is 1 

and 2 standard deviations around the mean concentration, as estimated by 500 simulations of the 

linear system. Data for the 68% CI Area for each sample and scan can be found in Table 23, and 

data for the 95% CI Area is in Table 24. 
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In this analysis we used a two-way ANOVA to test: (1) whether the scan protocol affects the CI 

Area, (2) whether the sample composition affects the CI Area, and (3) whether the effect of 

protocol is different depending on the sample composition. Preliminary analyses are presented in 

Section 4.4.1, results of the ANOVA are in Section 4.4.2, and Section 4.4.3 contains the GUI 

repeatability analysis for CI Areas. 

 

Table 23: 68% confidence interval area, for each scan and sample 
 

CL1 CL2 CL3 CL3-2 CL3-3 CL4 CL5 CL6 CL7 
SAMPLE 1 883.58 894.75 895.69 707.84 699.7 1246.1 1653.3 787.29 807.49 
SAMPLE 2 847.97 936.08 840.39 951.33 902.26 1076.2 1361.4 910.99 902.96 
SAMPLE 3 984.42 1241.6 1101.6 1175.4 1130.7 1459.6 1708.1 1121.2 1144.6 
SAMPLE 4 689.7 694.09 853.15 943.21 880.32 1068 1241.8 784.29 821.76 
SAMPLE 5 741.54 787.81 631.75 870.63 750.85 943.16 1153.1 635.42 815.67 
SAMPLE 6 688.78 785.7 803.39 702.53 727.78 1009.8 1424.4 620.4 795.64 

 
 
Table 24:  95% confidence interval area, for each scan and sample 
 

CL1 CL2 CL3 CL3-2 CL3-3 CL4 CL5 CL6 CL7 
SAMPLE 1 6107.6 6184.9 6191.4 4892.8 4836.6 8613.2 11428 5442 5581.7 
SAMPLE 2 5861.5 6470.5 5809.1 6576 6236.8 7439.4 9410.7 6297.1 6241.6 
SAMPLE 3 6804.7 8582.3 7615 8124.5 7815.8 10089 11807 7750.2 7911.8 
SAMPLE 4 4767.4 4797.8 5897.3 6519.8 6085.1 7382.1 8583.7 5421.3 5680.3 
SAMPLE 5 5125.8 5445.7 4366.9 6018.1 5190.2 6519.5 7970.6 4392.2 5638.2 
SAMPLE 6 4761.1 5431 5553.3 4856.2 5030.7 6980.1 9845.6 4288.5 5499.8 

 
 
4.4.1. Preliminary Analysis 

4.4.1.1. Normality 

The Anderson-Darling test was used to check normality of CI Areas with respect to scans and 

samples. Results are given in Table 25.  
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For CI Areas vs Scan, Scan CL7 had a statistically significant value of 0.0071. For CI Areas vs 

Sample, four distributions had p-values below 0.05 (two of which were below 0.01). Despite these 

results we chose to proceed with a two-way ANOVA. 

 
Table 25: Anderson-Darling test results for:  68%CIArea(scan), 68%CIArea(sample), 95%CIArea(scan), 95%CIArea(sample). 

 

68% CI AREA 
Scan p-value 
CL1 0.5099 
CL2 0.2395 
CL3 0.4305 
CL3-2 0.5022 
CL3-3 0.2834 
CL4 0.3067 
CL5 0.7268 
CL6 0.5078 
CL7 0.0071 

 

68% CI AREA 
Sample p-value 

1 0.01 
2 0.0049 
3 0.0314 
4 0.4814 
5 0.4514 
6 0.0083 

 

95% CI AREA 
Scan p-value 
CL1 0.5099 
CL2 0.2395 
CL3 0.4305 
CL3-2 0.5022 
CL3-3 0.2834 
CL4 0.3067 
CL5 0.7268 
CL6 0.5078 
CL7 0.0071 

 

95% CI AREA 
Sample p-value 

1 0.01 
2 0.0049 
3 0.0314 
4 0.4814 
5 0.4514 
6 0.0083 

 
 
4.4.1.2. Homogeneity of Variance 

Bartlett’s test was used to verify the assumption of homogeneity of variance of CI Areas with 

respect to Scan, Sample and the intersection of the Repeat Protocol × Sample. Results in Table 17 

indicate that this assumption was not violated. 

Table 26: Bartlett's test results for: 68%CIArea(scan), 68%CIArea(sample), 95%CIArea(scan), 95%CIArea(sample). 

    68%, 
CI(SCAN) 

68%, 
CI(SAMPLE) 

95%, 
CI(SCAN) 

95%, 
CI(SAMPLE) 

BARTLETT'S 
STATISTIC 2.62755 5.33454 2.62755 5.33454 

DEGREES OF 
FREEDOM 8 5 8 5 

P-VALUE 0.95552 0.37643 0.95552 0.37643 
 

 Table contd. 
68%, CI(SAMPLE X REPEAT 
PROTOCOL) 

95%, CI(SAMPLE X REPEAT 
PROTOCOL) 

BARTLETT'S 
STATISTIC 4.06758 4.06758 
DEGREES OF 
FREEDOM 5 5 
P-VALUE 0.53973 0.53973 
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4.4.2. ANOVA Results 

Table 27 and Table 28 report the two-way ANOVA results for the 68% and 95% CI Areas grouped 

by Protocol, Sample, and the Protocol × Sample interaction. The null hypothesis that sample 

means were equal was rejected for CI Area vs Protocol (p = 1.754E-12) and CI Area vs Sample (p 

= 6.75E-8). Tukey’s HSD post hoc tests for these results are reported in Section 4.4.2.1 and Section 

4.4.2.2, respectively. 

 
 Table 27: Two-way ANOVA results for 68% confidence interval areas. 

SOURCE SUM SQ. D.F. MEAN SQ. F PROB>F 
PROTOCOL 1947903.7 4 486975.9 64.42 1.754E-12 
SAMPLE 764089.4 5 152817.9 20.21 6.75E-08 
PROTOCOL*SAMPLE 174732.2 20 8736.6 1.16 0.364 
ERROR 181433.1 24 7559.7   

TOTAL 3322942.5 53       
 

 

 
 
 Table 28: Two-way ANOVA results for 95% confidence interval areas. 

SOURCE SUM SQ. D.F. MEAN SQ. F PROB>F 
PROTOCOL 93072700 4 23268177.1 64.42 1.754E-12 
SAMPLE 36508900 5 7301784.6 20.21 6.75E-08 
PROTOCOL*SAMPLE 8348870 20 417443.6 1.16 0.364 
ERROR 8669050 24 361210.4   

TOTAL 158773000 53       
 

 

 
 
4.4.2.1. Protocol 

Tukey’s HSD post hoc test for CI Area vs Protocol for the 68% CI Area and the 95% CI Area are 

reported in Table 29 and Table 30, respectively. Results indicate that the scan protocols used in 

CL4 and CL5 resulted in statistically significantly different CI Areas than all other protocols (and 

each other). The multiple comparison figures (Figure 63, Figure 64) show that the average CI Area 
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for Scan CL5 was the largest, and that from Scan CL4 was the next largest. Box-whisker plots for 

68% CI Area vs Scan and 95% CI Area vs Scan (Figure 59 and Figure 60) also show that CL4 and 

CL5 have larger CI Areas than the other scans.  

 

 

 

Figure 57: Multiple comparison for 68% CI Area vs Protocol 

Table 29: Pairwise Tukey HSD results 
for 68% CI Area vs Protocol 

PROTOCOLS P-VALUE 
1 2 2.35E-06 
1 3 9.94E-09 
1 4 0.73 
1 5 0.97 
2 3 5.42E-05 
2 4 1.05E-05 
2 5 3.42E-04 
3 4 1.00E-08 
3 5 1.10E-08 
4 5 0.62 
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Figure 59: 68% CI Area vs Scan. Scans CL1 - CL3-3 are from 
the "repeat protocol". 

 

Figure 60: 95% CI Area vs Scan. Scans CL1 - CL3-3 are from 
the "repeat protocol". 

 

4.4.2.2. Sample 

Tukey’s HSD post hoc test for CI Area vs Sample for the 68% CI Area and the 95% CI Area are 

reported in Table 31 and Table 32, and their respective multiple comparison figures are shown in 

 

Figure 58: Multiple comparison for 95% CI Area vs Protocol 

Table 30: Pairwise Tukey HSD results 
for 95% CI Area vs Protocol 

PROTOCOLS P-VALUE 
1 2 2.35E-06 
1 3 9.94E-09 
1 4 0.73 
1 5 0.97 
2 3 5.42E-05 
2 4 1.05E-05 
2 5 3.42E-04 
3 4 1.00E-08 
3 5 1.10E-08 
4 5 0.62 
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Figure 63 and Figure 64. Box plots for CI Area vs Sample are shown in Figure 61 and Figure 62 

for better representation of the distribution of data. 

 

Results show that Sample 3 (8.4 I + 7.0 Gd) had statistically significantly larger average CI Area 

than all other samples. Sample 5 (2.7 I + 7.4 Gd) had the smallest average CI Area, and this group 

was statistically significantly different than CI Areas from Sample 1 (8.9 I + 1.1 Gd) in addition 

to Sample 3.  

 

 

 

Figure 61: 68% CI Area vs Sample. 

 

Figure 62: 68% CI Area vs Sample. 
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Figure 63: Multiple comparison for 68% CI Area vs Sample 

Table 31: Pairwise Tukey HSD 
results for 68% CI Area vs Sample 

SAMPLES P-VALUE 
1 2 0.99 
1 3 5.89E-04 
1 4 0.23 
1 5 0.01 
1 6 0.08 
2 3 1.19E-04 
2 4 0.57 
2 5 0.03 
2 6 0.27 
3 4 2.28E-06 
3 5 7.79E-08 
3 6 6.89E-07 
4 5 0.56 
4 6 0.99 
5 6 0.86 

 

 

Figure 64: Multiple comparison for 95% CI Area vs Sample 

Table 32: Pairwise Tukey HSD 
results for 95% CI Area vs Sample 

SAMPLES P-VALUE 
1 2 0.99 
1 3 5.89E-04 
1 4 0.23 
1 5 0.01 
1 6 0.08 
2 3 1.19E-04 
2 4 0.57 
2 5 0.03 
2 6 0.27 
3 4 2.28E-06 
3 5 7.79E-08 
3 6 6.89E-07 
4 5 0.56 
4 6 0.99 
5 6 0.86 
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4.4.3. Repeat Test of GUI 

Raw data for the repeated GUI study is provided in Table 33, and mean, SD, and CoV of these 

results are reported in Table 34 and Table 35. The mean, SD, and CoV for CI Area vs Sample of 

all scans (CL1 – CL7) are reported in Table 36 and Table 37. The CoV for the repeat GUI test for 

Samples 1 – 6 was: 8%, 10%, 10%, 12%, 6%, and 10%, while the CoV of all scans for Samples 1 

– 6 was: 32%, 17%, 18%, 20%, 20%, and 29% 

 

Table 33: Confidence Interval Area vs. Sample for 20 GUI analyses of scan CL1. 

68% CONFIDENCE INTERVAL AREA 95% CONFIDENCE INTERVAL AREA 

# 1 2 3 4 5 6 1 2 3 4 5 6 

1 839.70 729.14 1093.90 744.76 782.06 680.17 5804.30 5040.10 7561.50 5148.10 5405.90 4701.60 

2 934.22 726.41 1147.80 820.70 737.34 698.21 6457.70 5021.20 7934.10 5673.00 5096.80 4826.30 

3 1003.70 842.77 1192.50 611.83 740.32 740.07 6937.80 5825.60 8242.70 4229.20 5117.40 5115.70 

4 1001.60 884.81 1083.20 752.42 722.39 618.33 6923.80 6116.10 7487.80 5201.00 4993.40 4274.10 

5 854.75 674.27 1423.20 938.43 787.89 653.39 5908.40 4660.80 9837.90 6486.80 5446.20 4516.50 

6 860.95 800.56 1089.50 774.64 859.41 658.67 5951.20 5533.80 7531.00 5354.60 5940.60 4553.00 

7 863.23 739.88 1274.40 792.15 710.28 689.04 5967.00 5114.40 8809.20 5475.70 4909.70 4762.90 

8 968.26 950.93 1359.50 669.69 726.51 671.94 6693.00 6573.20 9397.50 4629.20 5021.90 4644.70 

9 888.17 828.52 1257.00 802.18 711.67 662.93 6139.30 5727.00 8688.60 5545.00 4919.30 4582.40 

10 849.08 793.57 1207.20 913.00 726.33 714.48 5869.20 5485.50 8344.50 6311.00 5020.70 4938.70 

11 877.00 878.65 1379.20 868.49 837.07 713.45 6062.10 6073.60 9533.40 6003.30 5786.20 4931.60 

12 1025.30 663.34 1395.10 767.48 723.70 832.31 7087.50 4585.30 9643.30 5305.10 5002.50 5753.30 

13 937.91 751.76 1239.90 788.84 720.99 643.15 6483.20 5196.40 8570.90 5452.80 4983.70 4445.70 

14 809.80 847.42 1313.00 684.61 801.40 704.79 5597.70 5857.70 9076.00 4732.30 5539.60 4871.80 

15 790.70 779.16 1122.10 897.61 660.91 764.84 5465.60 5385.90 7756.60 6204.60 4568.50 5286.90 

16 881.43 844.84 1126.90 898.52 746.75 756.48 6092.80 5839.90 7789.60 6210.90 5161.80 5229.10 

17 908.53 919.41 1148.60 868.00 811.70 851.74 6280.10 6355.30 7939.40 5999.90 5610.80 5887.60 

18 817.80 744.81 1299.40 710.52 726.70 769.05 5652.90 5148.40 8981.90 4911.40 5023.30 5316.00 

19 792.85 843.57 936.51 689.90 770.96 847.43 5480.50 5831.10 6473.50 4768.90 5329.20 5857.70 

20 889.31 776.55 1134.30 703.54 747.51 872.50 6147.20 5367.80 7840.80 4863.10 5167.10 6031.10 
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Table 34: Repeat GUI study, 68% CI area vs Sample 

68% CI AREA VS SAMPLE, REPEAT 
GROUP Count Mean Std CoV 

1 20 889.72 69.818 8% 
2 20 801.02 77.504 10% 
3 20 1211.16 126.427 10% 
4 20 784.87 91.383 12% 
5 20 752.6 48.108 6% 
6 20 727.15 75.368 10% 

 

Table 35: Repeat GUI study, 95% CI area vs Sample 

95% CI AREA VS SAMPLE, REPEAT 
GROUP Count Mean Std CoV 

1 20 6150.06 482.608 8% 
2 20 5536.94 535.738 10% 
3 20 8372.01 873.913 10% 
4 20 5425.29 631.677 12% 
5 20 5202.22 332.544 6% 
6 20 5026.33 520.97 10% 

 

 
 

Table 36: 68% CI Area vs Sample: mean, standard deviation, 
and coefficient of variation of all scans 

68% CI AREA VS SAMPLE, ALL SCANS 
GROUP Count Mean Std CoV 

1 9 952.85 308.352 32% 
2 9 969.96 162.115 17% 
3 9 1229.69 220.855 18% 
4 9 886.25 178.155 20% 
5 9 814.43 161.982 20% 
6 9 839.82 244.728 29% 

 

Table 37: 95% CI Area vs Sample: mean, standard deviation, 
and coefficient of variation of all scans 

95% CI AREA VS SAMPLE, ALL SCANS 
GROUP Count Mean Std CoV 

1 9 6586.47 2131.45 32% 
2 9 6704.74 1120.6 17% 
3 9 8500.09 1526.63 18% 
4 9 6126.09 1231.47 20% 
5 9 5629.68 1119.68 20% 
6 9 5805.14 1691.65 29% 

 

 
 

4.5. 𝚫𝚫⊥(E-bin), known-line distance 
 
Δ⊥(E-bin 𝑒𝑒) is defined as the perpendicular distance from Energy-bin-line 𝑒𝑒 to the known 

concentration point. Δ⊥ was calculated for all energy-bins of each scan and sample. Raw data for 

Δ⊥ is reported in Table 38, and the summary figures of Δ⊥ for each scan are shown below (Figure 

65 and Figure 71).  

 

In this analysis we tested whether Δ⊥(E-bin) was affected by scan protocol or sample composition 

by using a two-way ANOVA for each energy-bin. Preliminary analyses to assess the assumptions 

of normality and homogeneity of variance are given in Section 4.5.1, and the results of the 

ANOVA are explained in Section 4.5.2. 



 109 

 
 Table 38: 𝛥𝛥⊥ for all scans 

SCAN CL1 𝚫𝚫⊥(E1) 𝚫𝚫⊥(E2) 𝚫𝚫⊥(E4) 𝚫𝚫⊥(E4) 
SAMPLE 1 0.31675 0.31703 0.17325 0.47548 
SAMPLE 2 0.52843 0.40919 0.39016 0.90996 
SAMPLE 3 0.54749 0.079053 0.69814 0.93736 
SAMPLE 4 0.60788 0.48077 0.43095 0.81174 
SAMPLE 5 0.60542 0.31952 0.65317 0.89416 
SAMPLE 6 0.22299 0.013204 0.18348 0.34957 

 

 

 
SCAN CL2 𝚫𝚫⊥(E1) 𝚫𝚫⊥(E2) 𝚫𝚫⊥(E4) 𝚫𝚫⊥(E4) 

SAMPLE 1 0.37029 0.28266 0.081009 0.2424 
SAMPLE 2 0.55778 0.41491 0.36675 0.85008 
SAMPLE 3 0.69951 0.16648 0.81688 1.2413 
SAMPLE 4 0.59775 0.49277 0.43095 0.6799 
SAMPLE 5 0.66159 0.38171 0.71786 1.0013 
SAMPLE 6 0.13424 0.062708 0.15431 0.40714 

 

SCAN CL3 𝚫𝚫⊥(E1) 𝚫𝚫⊥(E2) 𝚫𝚫⊥(E4) 𝚫𝚫⊥(E4) 
SAMPLE 1 0.30914 0.33036 0.15137 0.41834 
SAMPLE 2 0.33927 0.25871 0.2255 0.60427 
SAMPLE 3 0.41514 0.011308 0.61635 0.99841 
SAMPLE 4 0.39047 0.3226 0.2464 0.44855 
SAMPLE 5 0.69568 0.39237 0.75324 1.1737 
SAMPLE 6 0.14287 0.0099438 0.21962 0.40793 

 

SCAN CL3-2 𝚫𝚫⊥(E1) 𝚫𝚫⊥(E2) 𝚫𝚫⊥(E4) 𝚫𝚫⊥(E4) 
SAMPLE 1 0.45312 0.34629 0.24857 0.48023 
SAMPLE 2 0.58158 0.36619 0.36951 0.63838 
SAMPLE 3 0.69236 0.11442 0.79669 1.0512 
SAMPLE 4 0.44913 0.33022 0.28515 0.4797 
SAMPLE 5 0.69214 0.31615 0.6836 0.92924 
SAMPLE 6 0.24186 0.002112 0.24582 0.42896 

 

SCAN CL3-3 𝚫𝚫⊥(E1) 𝚫𝚫⊥(E2) 𝚫𝚫⊥(E4) 𝚫𝚫⊥(E4) 
SAMPLE 1 0.16275 0.20204 0.046631 0.22791 
SAMPLE 2 0.32761 0.27158 0.25947 0.5993 
SAMPLE 3 0.51928 0.06498 0.75225 1.0719 
SAMPLE 4 0.20717 0.20507 0.15746 0.24528 
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SAMPLE 5 0.57589 0.32332 0.64757 0.80508 
SAMPLE 6 0.18704 0.0055418 0.23006 0.53358 

 

SCAN CL4 𝚫𝚫⊥(E1) 𝚫𝚫⊥(E2) 𝚫𝚫⊥(E4) 𝚫𝚫⊥(E4) 
SAMPLE 1 0.3351 0.27193 0.11201 0.14696 
SAMPLE 2 0.39082 0.27475 0.32011 0.71296 
SAMPLE 3 0.41123 0.028019 0.62328 0.76632 
SAMPLE 4 0.40975 0.33325 0.31898 0.47371 
SAMPLE 5 0.6671 0.35678 0.72735 1.1144 
SAMPLE 6 0.15074 0.039993 0.18578 0.44277 

 

SCAN CL5 𝚫𝚫⊥(E1) 𝚫𝚫⊥(E2) 𝚫𝚫⊥(E4) 𝚫𝚫⊥(E4) 
SAMPLE 1 0.50534 0.34054 0.15373 0.33097 
SAMPLE 2 0.5537 0.40466 0.35015 0.70864 
SAMPLE 3 0.66821 0.36821 0.74305 1.2783 
SAMPLE 4 0.52966 0.4141 0.31437 0.43826 
SAMPLE 5 0.64836 0.41128 0.62114 0.8645 
SAMPLE 6 0.21799 0.04196 0.16258 0.31411 

 

SCAN CL6 𝚫𝚫⊥(E1) 𝚫𝚫⊥(E2) 𝚫𝚫⊥(E4) 𝚫𝚫⊥(E4) 
SAMPLE 1 0.32589 0.18632 0.028833 0.3441 
SAMPLE 2 0.51047 0.40089 0.36781 0.79041 
SAMPLE 3 0.51337 0.069961 0.74347 0.82246 
SAMPLE 4 0.54719 0.39244 0.36712 0.55565 
SAMPLE 5 0.60684 0.32485 0.74253 0.94567 
SAMPLE 6 0.17881 0.014943 0.26356 0.32148 

 

SCAN CL7 𝚫𝚫⊥(E1) 𝚫𝚫⊥(E2) 𝚫𝚫⊥(E4) 𝚫𝚫⊥(E4) 
SAMPLE 1 0.32589 0.18632 0.028833 0.3441 
SAMPLE 2 0.51047 0.40089 0.36781 0.79041 
SAMPLE 3 0.51337 0.069961 0.74347 0.82246 
SAMPLE 4 0.54719 0.39244 0.36712 0.55565 
SAMPLE 5 0.60684 0.32485 0.74253 0.94567 
SAMPLE 6 0.17881 0.014943 0.26356 0.32148 
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Figure 65: 𝛥𝛥⊥ summary plot for scan CL1 

 

 

 
Figure 66: 𝛥𝛥⊥ summary plot for Scan CL2 

 
Figure 67: 𝛥𝛥⊥ summary plot for Scan CL3 
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Figure 68: 𝛥𝛥⊥ summary plot for Scan CL3-2 

 
Figure 69: 𝛥𝛥⊥ summary plot for Scan CL3-3 

 

 
Figure 70: 𝛥𝛥⊥ summary plot for Scan CL4 

 
Figure 71: 𝛥𝛥⊥ summary plot for Scan CL5 

 

 
Figure 72: 𝛥𝛥⊥ summary plot for Scan CL6 

 
Figure 73: 𝛥𝛥⊥ summary plot for Scan CL7 

 

 



 113 

4.5.1. Preliminary Analysis 

4.5.1.1. Normality 

The Anderson-Darling test was used to test normality of Δ⊥(E-bin 𝑒𝑒) with respect to Scan, Sample 

and the intersection of the Repeat Protocol × Sample. Results for each are given in Table 39,  

Table 40, and Table 41, respectively.  

 

Results are summarized: 

- Δ⊥ vs Scan: statistically significant p-values were found for scan CL3, all energy bins. 

- Δ⊥ vs Sample: statistically significant p-values were found for Sample 2, Energy-bins 1, 2, 

and 3. 

- Δ⊥ vs Repeat Protocol × Sample: no statistically significant p-values were found. 

 

We decided to perform a two-way ANOVA even with these results because most groups had non-

significant p-values, and an ANOVA is robust for violations of normality [75]. 

 
 Table 39: Anderson Darling test results for 𝛥𝛥⊥(E-bin) vs. Scan 

NORMALITY TEST DELTA(EBIN) VS SCAN FOR ALL SAMPLES 
 SCAN E1 E2 E3 E4 
CL1 0.47205 0.47205 0.47205 0.47205 
CL2 0.71999 0.71999 0.71999 0.71999 
CL3 0.041282 0.041282 0.041282 0.041282 
CL3-2 0.077001 0.077001 0.077001 0.077001 
CL3-3 0.22325 0.22325 0.22325 0.22325 
CL4 0.40202 0.40202 0.40202 0.40202 
CL5 0.37969 0.37969 0.37969 0.37969 
CL6 0.71278 0.71278 0.71278 0.71278 
CL7 0.36042 0.36042 0.36042 0.36042 
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Table 40: Anderson Darling test results for 𝛥𝛥⊥(E-bin) vs. Sample 

NORMALITY TEST 𝚫𝚫⊥(EBIN) VS SAMPLE FOR ALL SCANS 
SAMPLE E1 E2 E3 E4 

1 0.46797 0.087263 0.84832 0.80356 
2 0.032156 0.019463 0.041723 0.59613 
3 0.47623 0.026594 0.26561 0.83256 
4 0.25664 0.5976 0.79338 0.5751 
5 0.39688 0.31314 0.72031 0.35514 
6 0.42602 0.24171 0.53513 0.14313 

 

 

 
 Table 41: Anderson Darling test results for 𝛥𝛥⊥(E-bin) vs. Protocol 1 × Sample 

NORMALITY TEST 𝚫𝚫⊥(EBIN) VS SAMPLE FOR REPEAT SCANS (1-5) 
SAMPLE E1 E2 E3 E4 

1 0.67254 0.29199 0.89617 0.12405 
2 0.10489 0.21956 0.14083 0.10247 
3 0.4912 0.96108 0.74099 0.5382 
4 0.58108 0.41852 0.44123 0.86946 
5 0.40917 0.059735 0.66368 0.74961 
6 0.60455 0.012703 0.68394 0.26544 

 

 

 
 
4.5.1.2. Homogeneity of Variance 

Bartlett’s test was used to verify the assumption of homogeneity of variance of Δ⊥(E-bin 𝑒𝑒) with 

respect to Scans, Sample and the intersection of the Repeat Protocol × Sample. Results for each 

are given in Table 42, Table 43, and Table 44, respectively. Two statistically significant results 

were found for Δ⊥(E1) vs Sample 1 (p = 0.0167), and Δ⊥(E2) vs Sample 2 (p = 0.004). We believe 

that these significant p-values may be due to low sample size and do not indicate a pattern of 

violating homogeneity of variance, so a two-way ANOVA was used to test for homogeneity of  

Δ⊥ vs. Protocol, Sample and the Protocol × Sample interaction. 
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 Table 42: Bartlett's test results for 𝛥𝛥⊥(E-bin) vs. Scan  

HOMOGENEITY OF VARIANCE FOR 𝚫𝚫⊥(E) VS SCAN DISTRIBUTIONS 
  E1 E2 E3 E4 

BARTLETT'S STATISTIC 0.86292 1.01825 0.62837 1.78316 
DEGREES OF FREEDOM 8 8 8 8 
P-VALUE 0.99897 0.99813 0.99968 0.98695 

 

 

 
 Table 43: Bartlett's test results for 𝛥𝛥⊥(E-bin) vs. Sample 

HOMOGENEITY OF VARIANCE FOR 𝚫𝚫⊥(E) VS SAMPLE DISTRIBUTIONS 
  E1 E2 E3 E4 

BARTLETT'S STATISTIC 13.8317 17.2702 5.23653 2.79752 
DEGREES OF FREEDOM 5 5 5 5 
P-VALUE 0.0167 0.004 0.3877 0.73117 

 

 

 
 Table 44: Bartlett's test results for 𝛥𝛥⊥(E-bin) vs. Protocol 1 × Sample 

HOMOGENEITY OF VARIANCE FOR 𝚫𝚫⊥(E) VS SAMPLE DISTRIBUTIONS 
(REPEAT SCANS) 

  E1 E2 E3 E4 
BARTLETT'S STATISTIC 7.43842 10.0763 6.0392 4.92923 
DEGREES OF FREEDOM 5 5 5 5 
P-VALUE 0.19002 0.0731 0.30242 0.42458 

 

 

 
 
4.5.2. ANOVA Results 

Two-way ANOVA results for the protocol and sample effect on Δ⊥ are reported for Energy-bins 

1 - 4 in Table 45 - Table 48. There was no statistically significant Protocol × Sample interactions 

found for Δ⊥ of any energy-bin, which indicates that the effect of sample composition is the same 

for each scan. There were also no statistically significant results for Δ⊥ vs Protocol. ANOVA 

results were statistically significant for Δ⊥ vs Sample of every energy-bin, with p-values of 9.28E-

06, 8.06E-09, 6.12E-13, and 4.06E-09 for Bins 1-4, respectively. Relevant Tukey’s HSD post hoc 

multiple comparison tests for these significant results are presented in Section 4.5.2.1. 

 



 116 

 Table 45: 2-way ANOVA results for 𝛥𝛥⊥(E-bin 1) 

ENERGY-BIN 1 
SOURCE Sum Sq. d.f. Mean Sq. F Prob>F 
PROTOCOL 0.06124 4 0.01531 1.25 0.3174 
SAMPLE 0.70806 5 0.14161 11.55 9.28E-06 
PROTOCOL*SAMPLES 0.06503 20 0.00325 0.27 0.9981 
ERROR 0.29436 24 0.01226     
TOTAL 1.56404 53     

 

 
 Table 46: 2-way ANOVA results for 𝛥𝛥⊥(E-bin 2) 

ENERGY-BIN 2 
SOURCE Sum Sq. d.f. Mean Sq. F Prob>F 
PROTOCOL 0.04843 4 0.01211 2.52 0.0673 
SAMPLE 0.6042 5 0.12084 25.19 8.06E-09 
PROTOCOL*SAMPLES 0.08584 20 0.00429 0.89 0.596 
ERROR 0.11512 24 0.0048     
TOTAL 1.20519 53     

 

 
 Table 47: 2-way ANOVA results for 𝛥𝛥⊥(E-bin 3) 

ENERGY-BIN 3 
SOURCE Sum Sq. d.f. Mean Sq. F Prob>F 
PROTOCOL 0.00502 4 0.00125 0.21 0.9311 
SAMPLE 1.86559 5 0.37312 62.07 6.12E-13 
PROTOCOL*SAMPLES 0.05826 20 0.00291 0.48 0.9479 
ERROR 0.14427 24 0.00601     
TOTAL 3.03641 53     

 

 
 Table 48: 2-way ANOVA results for 𝛥𝛥⊥(E-bin 4) 

ENERGY-BIN 4 
SOURCE Sum Sq. d.f. Mean Sq. F Prob>F 
PROTOCOL 0.03074 4 0.00768 0.38 0.8224 
SAMPLE 2.74646 5 0.54929 26.99 4.06E-09 
PROTOCOL*SAMPLES 0.39141 20 0.01957 0.96 0.5308 
ERROR 0.48843 24 0.02035     
TOTAL 4.82112 53     
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4.5.2.1. Samples 

Statistically significant Tukey’s HSD results are reported below for Δ⊥ vs Sample of all energy-

bins. 

- Energy-bin 1: Sample 6 vs. Samples 2, 3, 4, and 5 (Sample 6 has smallest Δ⊥), and Samples 

1 vs. 5. 

- Energy-bin 2: Sample 6 vs. Samples 1, 2, 4, and 5, as well as Sample 3 vs. Samples 1, 2, 

4, and 5, (Sample 6 and 3 have the smallest Δ⊥) 

- Energy-bin 3: Statistically significantly differences were observed in 11 of 15 pairs. From 

the multiple comparison graph, Figure 76, Samples 1 and 6 have the smallest Δ⊥, and 

Sample 3 and 5 have the largest Δ⊥. 

- Energy-bin 4: Statistically significant differences were observed in 8 of 15 pairs. From the 

multiple comparison graph, Figure 77, Samples 1 and 6 have the smallest Δ⊥, and Sample 

3 and 5 have the largest Δ⊥. 
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Figure 74: Multiple comparison for  𝛥𝛥⊥(E-bin 1) vs Sample. 

Table 49: Tukey's HSD results 
for 𝛥𝛥⊥(E1) vs Sample 

GROUP P-VALUE 

1 2 0.41 
1 3 0.09 
1 4 0.42 
1 5 0.01 
1 6 0.09 
2 3 0.95 
2 4 1.00 
2 5 0.36 
2 6 9.73E-04 
3 4 0.94 
3 5 0.86 
3 6 1.08E-04 
4 5 0.35 
4 6 9.98E-04 
5 6 7.02E-06 

 

 
 
 
 

 
Figure 75: Multiple comparison for  𝛥𝛥⊥(E-bin 2) vs Sample. 

Table 50: Tukey's HSD results 
for 𝛥𝛥⊥(E2) vs Sample 

GROUP P-VALUE 

1 2 0.28 
1 3 0.01 
1 4 0.20 
1 5 0.82 
1 6 2.12E-05 
2 3 5.25E-05 
2 4 1.00 
2 5 0.93 
2 6 1.71E-07 
3 4 3.10E-05 
3 5 5.53E-04 
3 6 0.15 
4 5 0.84 
4 6 1.16E-07 
5 6 1.26E-06 
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Figure 76: Multiple comparison for  𝛥𝛥⊥(E-bin3) vs Sample. 

Table 51: Tukey's HSD results 
for 𝛥𝛥⊥(E3) vs sample 

GROUP P-VALUE 

1 2 2.97E-04 
1 3 2.07E-08 
1 4 8.86E-04 
1 5 2.08E-08 
1 6 0.44 
2 3 1.79E-07 
2 4 1.00 
2 5 2.69E-06 
2 6 0.03 
3 4 8.28E-08 
3 5 0.80 
3 6 2.09E-08 
4 5 9.97E-07 
4 6 0.07 
5 6 2.31E-08 

 

 
 
 
 

 
Figure 77: Multiple comparison for  𝛥𝛥⊥(E-bin 4) vs Sample. 

Table 52: Tukey's HSD results 
for 𝛥𝛥⊥(E4) vs Sample 

GROUP P-VALUE 

1 2 2.48E-04 
1 3 2.46E-07 
1 4 0.12 
1 5 8.87E-07 
1 6 1.00 
2 3 0.06 
2 4 0.12 
2 5 0.20 
2 6 2.68E-04 
3 4 1.08E-04 
3 5 0.99 
3 6 2.61E-07 
4 5 4.88E-04 
4 6 0.13 
5 6 9.49E-07 
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4.5.3. Repeat Test of GUI 

Table 53 reports the mean, standard deviation, and coefficient of variation of Δ⊥(E-bin) of each 

sample for the GUI Repeat test (20 runs of the GUI for Scan CL1). The same data is provided for 

Δ⊥ of all scans in Table 54. For insight into the variation and spread of this data, the minimum, 

median, and maximum of mean(Δ⊥), SD(Δ⊥), and CoV(Δ⊥) from the GUI repeat study are 

summarized in Table 55, and the same data is provided for all scans in Table 56. 

 
Table 53: GUI repeat test: 𝛥𝛥⊥ for each sample and energy bin 

𝚫𝚫⊥(E-BIN) VS. SAMPLE, REPEAT GUI STUDY 
  (1) 8.9 I + 1.1 GD (2) 7.5 I + 2.6 GD (3) 8.4 I + 7 GD 
  mean SD CoV mean SD CoV mean SD CoV 

E1 0.33322 0.02486 7% 0.52206 0.02844 5% 0.52063 0.04685 9% 
E2 0.361 0.02026 6% 0.40974 0.01742 4% 0.07533 0.02586 34% 
E3 0.16613 0.02375 14% 0.38104 0.02819 7% 0.67229 0.03976 6% 
E4 0.43679 0.07135 16% 0.90153 0.06772 8% 0.90923 0.06234 7% 

  (4) 4.9 I + 5.3 GD (5) 2.7 I + 7.4 GD (6) 1.3 I + 9.3 GD 
  mean SD CoV mean SD CoV mean SD CoV 

E1 0.58081 0.0462 8% 0.60438 0.03127 5% 0.18226 0.04093 22% 
E2 0.46926 0.0184 4% 0.32303 0.01796 6% 0.02351 0.01917 82% 
E3 0.41802 0.01841 4% 0.65406 0.0196 3% 0.14244 0.04272 30% 
E4 0.79725 0.06289 8% 0.90029 0.05605 6% 0.28686 0.06697 23% 
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Table 54: All protocol scans: 𝛥𝛥⊥  for each sample and energy bin. 

𝚫𝚫⊥(E-BIN) VS. SAMPLE, ALL SCANS 
  (1) 8.9 I + 1.1 GD (2) 7.5 I + 2.6 GD (3) 8.4 I + 7 GD 
  mean SD CoV mean SD CoV mean SD CoV 

E1 0.35196 0.09703 28% 0.48487 0.1029 21% 0.56451 0.11098 20% 
E2 0.28917 0.05936 21% 0.35926 0.07047 20% 0.11255 0.10658 95% 
E3 0.12598 0.06781 54% 0.33765 0.05848 17% 0.73309 0.07426 10% 
E4 0.33893 0.11485 34% 0.73905 0.11363 15% 1.02778 0.17081 17% 

  (4) 4.9 I + 5.3 GD (5) 2.7 I + 7.4 GD (6) 1.3 I + 9.3 GD 
  mean SD CoV mean SD CoV mean SD CoV 

E1 0.47721 0.12807 27% 0.63687 0.0463 7% 0.19029 0.04137 22% 
E2 0.37395 0.08848 24% 0.339 0.0554 16% 0.02516 0.02069 82% 
E3 0.32124 0.08682 27% 0.68134 0.0582 9% 0.20242 0.03855 19% 
E4 0.53409 0.16767 31% 0.9555 0.12119 13% 0.36549 0.12546 34% 

 
 

Table 55: Minimum, median, and maximum values of 
mean(𝛥𝛥⊥) SD(𝛥𝛥⊥) and CoV(𝛥𝛥⊥) of the repeat GUI study.  

REPEAT GUI STUDY 
 mean(Δ⊥) SD(Δ⊥) CoV(Δ⊥) 

MIN 0.02351 0.01742 3% 
MEDIAN 0.427405 0.029855 7% 

MAX 0.90923 0.07135 82% 
 

Table 56: Minimum, median, and maximum values of 
mean(𝛥𝛥⊥) SD(𝛥𝛥⊥) and CoV(𝛥𝛥⊥) of all 9 scans (CL1- CL7). 

ALL SCANS 
 mean(Δ⊥) SD(Δ⊥) CoV(Δ⊥) 

MIN 0.02516 0.02069 7% 
MEDIAN 0.362375 0.08765 21% 

MAX 1.02778 0.17081 95% 
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5. Discussion 

5.1. 𝚫𝚫, known-calculated distance 
 
A better protocol was expected to result in more accurate material decomposition results, therefore 

Δ was expected to decrease for a more optimal protocol. However, results indicated that the sample 

composition, and not the scan protocol, affected Δ for the protocols and samples tested. This 

ANOVA result is illustrated by the boxplots for Δ vs Scan (Figure 54) and Δ vs Sample (Figure 

55). Δ distributions for different Samples are distinct, while Δ distributions across all scans are 

similar. Bateman et al. states that a popular choice of protocol is to place thresholds just below the 

K-edge energies for the contrast materials in the scan [76]. This Δ vs Protocol result implies that 

this choice may be no different than placing the thresholds exactly on the K-edge energies. 

 
5.1.1. Samples 
 
The ANOVA and multiple comparison results for Δ vs Sample indicate that there are statistically 

significant differences in Δ for different sample compositions. This effect is also visibly apparent 

from the graphs of Δ vs iodine and gadolinium concentration, shown in Figure 45 - Figure 53. The 

figures and the data show that Δ is the largest for the highest combined iodine-gadolinium 

concentration that was tested, 8.4 mg/ml I + 7.0 mg/ml Gd.  The next largest Δ value for all scans 

came from 2.7 mg/ml I + 7.4 mg/ml Gd. The smallest Δ value, on average, came from 8.9 mg/ml 

I + 1.1 mg/ml Gd, although this result was not statistically significantly different from 7.5 I + 2.6 

Gd or 4.9 I + 5.3 Gd. This may mean that higher simultaneous concentration of I and Gd result in 

larger Δ values, and that Δ is preferentially affected by gadolinium concentrations for the protocols 

tested. 
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The trend of higher Δ value associated with higher simultaneous iodine and gadolinium 

concentration might be caused by two factors. (1) Small errors in calibration are magnified at 

higher material concentrations. (2) At high contrast-material concentrations, the displacement of 

water volume by contrast volume may play a role in increasing inaccuracy of the quantitative 

material decomposition.  

 

(1) Small errors in slope result in larger errors in concentration at higher material concentrations, 

which would manifest as a larger Δ value. Calibrating to a higher maximum concentration could 

mitigate this effect by reducing uncertainty in the slope of the calibration curve. A study by Curtis 

and Roeder found that calibrating to a higher maximum concentration improved the quantitative 

material decomposition accuracy for gadolinium, reasoning that greater signal to noise ratio at 

higher concentrations resulted in a better calibration, which improved quantitative accuracy [53]. 

 

(2) As the iodine and gadolinium concentrations increase, the volume fraction of water in the voxel 

would necessarily decrease, therefore lowering the attenuation contribution from water. However, 

we assumed that the attenuation contribution from water was constant. This assumption is probably 

fine for small total contrast-material concentrations, especially because the calibration matrix was 

also created under the same assumption, but it is uncertain at which concentration this would have 

a significant detrimental effect. Additionally, it is possible that this error is enhanced by mixing 

the contrast materials together, resulting in higher total volume of contrast. In their study, Curtis 

and Roeder accounted for volume fraction, but they were calibrating for a two-material system of 

water and gadolinium [53]. The MARS MD algorithms consider volume fraction when calculating 

lipid plus water concentrations in soft tissue, and only account for one high-Z material (and water) 
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in each voxel [76]. Including a second contrast material and accounting for volume fraction would 

be more accurate, but would increase complexity. 

 
5.1.2. GUI Repeatability 

Although the variation in Δ was smaller on average for repeat runs of the GUI compared to scan-

to-scan variation, in order to distinguish a change in Δ due to protocol from a change in Δ due to 

the Monte Carlo simulation in the GUI, a higher power study (more runs of each scan) or a larger 

change in Δ (more extreme protocol difference) is needed. This study covered limited protocol 

differences, and greater differences in protocols may result in a greater change in Δ. In 

conversation with Mayo Clinic medical physicists, they agreed with this assessment and shared 

their experience that energy-thresholds had to be moved by more than 10 keV before differences 

in protocol were apparent (Dr. Andrae Farraro and Dr. Christopher Favazza, personal 

communication, March 5, 2020).  

 

It is also worth noting that Δ is small for all samples (Table 13 and Table 20), reflecting the fact 

that all protocols reproduced the concentration of I and Gd in the samples fairly well, and Δ is the 

residual sum squared. Table 9 and Table 10 report the known concentration, calculated 

concentration vs Scan, mean and SD of the calculated concentration for iodine and gadolinium, 

and a summary of average error for each sample is provided in Table 11. Average error for iodine 

ranged from 0.16 mg/ml (Sample 5) – 0.62 mg/ml (Sample 3), and the average error for gadolinium 

ranged from 0.05 mg/ml (Sample 1) – 1.48 mg/ml (Sample 3). 

 
5.2. Confidence Interval Areas 
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An optimal protocol would minimize noise and maximize noncollinearity of the energy-bin-lines, 

resulting in smaller and rounder confidence ellipses. Therefore, it was expected that better 

protocols would have smaller CI Areas. The idea of using confidence region size to compare 

protocols was proposed by Nik et al. and tested with a simplified model in which only noise due 

to photon counting statistics in the sample image (𝜎𝜎 = √𝑁𝑁) was accounted for, and two energy-

bins were considered [61]. This research differed from Nik et al. by using empirical data and a 

Monte Carlo method to draw confidence regions which included noise in the calibration matrix 

and the sample image and accounting for four energy-bins.  

 

Of the protocols and samples tested, our results indicated that grouping CI Area by both sample 

composition and protocol resulted in statistically significant differences in confidence interval 

areas.  

 

In retrospect, it was unnecessary to analyze multiple CI Areas because statistical results for both 

CI Areas are identical due to the calculation method: a multivariate gaussian is fitted to the 

distribution of simulated concentration solutions, then the covariance matrix of this gaussian is 

used to draw confidence ellipses. In other words, the 68% and 95% confidence ellipses are re-

scalings of the same ellipse, scaled to represent different standard deviations of the data. Because 

of this, the analyses of the ellipse populations for groupings of Scan and Sample are the same even 

though the size of the ellipses are different.  

 

Overall, CI Areas were very large for all samples and scans. This indicates that material images 

produced from these data sets would be extremely noisy, and the pixel-to-pixel material 
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concentration would be unreliable. This result is bad for diagnostic material measurement, and the 

source of this issue ought to be investigated. 

 

A possible source may be Poisson noise due to low signal. Low SNR from low signal in each 

energy-bin would cause noisy energy-bin lines, and this in turn could cause large CI Areas. In this 

case, increasing the number of photons by increasing the mAs would decrease the CI Areas. 

 

Another possible origin of the noisy result is detector inhomogeneity, in which different detector 

pixels to respond differently to the same signal. This is unlikely because a flatfield calibration is 

run before every scan to equalize pixel response. However, this issue could be ruled out by 

analyzing the uniformity of a flatfield image, and by examining the detector-pixel response 

collected in the flatfield calibration. 

 

Beam hardening or other artifacts could also be the source of the large CI Areas. One way this 

could be investigated is by imaging a homogeneous phantom, then testing the images for beam 

hardening artifacts and image uniformity. Another interesting experiment would be to colorize 

each pixel in the sample areas by their concentration to see if there is a pattern of concentration 

nonuniformity indicative of other artifacts. 

 
 
5.2.1. Protocol 

The two protocols with statistically significantly larger CI Areas were CL4 (18, 31, 48, 78 keV), 

and CL5 (16, 29, 46, 76 keV), with CL5 having the largest CI Areas. This implies that lowering 

the energy-thresholds by a few keV off of the K-edges increases the uncertainty (noise) in the 
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calculated material concentrations, while raising the energy-thresholds by a few keV does not 

impact the spread of concentration values.  

 

This effect may be caused by changing the number of photons in each energy-bin. Shown in Figure 

44, Energy-bin 3 (~50 keV to ~ 80 keV) contained the lowest number of photons out of all energy-

bins, and CL4 and CL5 has a visibly decreased number of photons in this bin, CL5 having the 

lowest number of photons. A lower number of photons would cause increased noise, and increased 

noise in one energy-bin may have contributed to the increased noise overall, i.e. larger CI Areas.  

 

In this study we chose to move all energy-bins simultaneously to keep the energy-bins the same 

size (except, necessarily, Bin-4). The theoretical impact of noise in E-bin 3 might be mitigated by 

widening the energy-bin (raising the upper threshold while lowering the on-K-edge threshold). It 

would be interesting to study a larger variety of protocols to see if there was a connection between 

number of photons per energy-bin and confidence region size. 

 

Based on these results, the -2 and -4 keV protocols exhibit suboptimal precision in comparison to 

the other protocols, and would therefore not be recommended. However, it appears that there is no 

statistically significant difference between the other 3 protocols, so any could be chosen as an 

optimal iodine-gadolinium protocol. 

 
5.2.2. Sample 

The sample with the highest combined gadolinium-iodine concentration (8.4 mg/ml I + 7.0 mg/ml 

Gd) had the largest CI Areas, on average. The rest of the samples had CI Area distributions that 
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were much more similar, although Sample 1 (8.9 mg/ml I + 1.1 mg/ml Gd) has a slightly larger 

average CI Area and Sample 5 (2.7 mg/ml I + 7.4 mg/ml Gd) had the smallest average CI Area. 

 

As discussed in Section 5.1.1, larger CI Areas for higher combined I plus Gd concentrations could 

be due to increased calibration error at higher concentrations, or error due to not accounting for 

lower volume-fraction of water. Additionally, material decomposition for balanced concentrations 

of contrast agents could be less precise because of less distinct K-edges due to attenuation signal 

averaging; the mixed attenuation signal of I and Gd signal is perhaps less clear than a single-

material signal. 

 
5.2.3. GUI Repeatability 

CI Areas were fairly repeatable for repeated runs of the GUI. The average CoV was 9% for the 20 

repeated analyses of CL1, with a range of 6% - 12% for different samples. CoVs for different scans 

were 23% on average, with a range of 17% - 32% for different samples. Thus, CI Area may be a 

promising metric for differentiating between protocols for precise material decomposition.  

 

5.3. 𝚫𝚫⊥, known-line distance 
 
In an ideal linear system, all energy-bin-lines would intersect at the known concentration point, so 

a smaller Δ⊥(E-bin) was expected to indicate a better protocol. Inaccuracy in each energy-bin, 

represented by Δ⊥, was thought to arise mainly from noise in the system. Therefore, we sought to 

analyze the effect of binning by comparing Δ⊥ from each energy-bin for each protocol. However, 

results indicated that differences in energy-binning did not affect Δ⊥(E-bin).  

As seen with Δ, differences in sample composition, and not the scan protocol, affected Δ⊥ for the 

protocols and samples tested. 
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5.3.1. Samples 

All energy-bins had statistically significant differences in Δ⊥ between samples. Sample 6 (1.3 I + 

9.3 Gd) stood out in the multiple comparison figures (Figure 74 - Figure 77) as being consistently 

close to 0 for all scans. Sample 1 (8.9 mg/ml I + 1.1 mg/ml Gd) had the smallest average Δ⊥ for 

Energy-bins 3 and 4. This showed an apparent trend that the smallest Δ⊥���� values came from samples 

that were primarily one material – Sample 6 had the smallest Δ⊥����(𝐹𝐹1) and Δ⊥����(𝐹𝐹2), and Sample 1 

(8.9 I + 1.1 Gd) had the smallest Δ⊥����(𝐹𝐹3) and Δ⊥����(𝐹𝐹4).  

 

This trend shows that energy-bin-lines may be more accurate when the signal from only one 

material is strong. This finding is similar to the result in Section 5.2.2 (largest confidence intervals 

associated with high, balanced contrast concentrations), and gives more evidence that a more 

definite K-edge signal results in more precise linear system, while precision is lost for balanced 

concentrations due to attenuation signal averaging.  

 

This may also be a factor of having a limited number of energy-bins. An ideal K-edge imaging 

system would have distinct pre-K-edge and post-K-edge energy-bins. In our case, the pre-K-edge 

bin for gadolinium is the post-K-edge bin for iodine. Based on these results, a better protocol may 

result from pairing iodine with a material with a higher K-edge than gadolinium, and using a 5-bin 

system with distinct pre- and post- K-edge bins for each material. 

 

A recent publication by Ostadhossein et al. reported successful material decomposition of Hafnium 

(Hf), I, lipid, water, and air with a protocol of 30 – 45 – 65 –80 – 118 keV. This protocol sacrificed 

the iodine pre-K-edge bin in order to gain distinct bins for post-K-edge I, pre-K-edge Hf, and post-
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K-edge Hf [77]. Differentiating multiple high-Z materials represents a significant improvement in 

material decomposition algorithms and is promising for multi-contrast imaging in the future. 

Additionally, Hf nanoparticles are promising for safe human use and disease targeting, and have a 

K-edge energy of 65.35 keV, which is low enough for CT imaging and high enough to allow for 

ideal K-edge energy-binning when imaged with iodine. 

 

Interestingly, the smallest Δ⊥ values for every sample came from Energy-bin 2, and five out of six 

of these came from Sample 6 (1.3 I + 9.3 Gd). Energy-bin 2 also consistently had the highest 

photon count out of all bins. Many researchers have connected increased SNR to better results, 

and this may be another indicator that increased SNR correlates with a more accurate material 

signal. However, although Sample 6 had the smallest average Δ⊥ value and the smallest average 

CI Area, this did not correlate with the smallest Δ� (associated with Sample 1), or the most accurate 

concentration solutions (Iodine; Sample 5, Gadolinium; Sample 1). This indicates that a single 

accurate energy-bin does not result in an overall more accurate protocol, instead the system as a 

whole should be considered. 

 

Variable energy-binning with PCCT creates the opportunity for use of new contrast materials or 

simultaneous use of multiple contrast agents. Novel contrast agents for PCCT are a current topic 

of research because contrast agents besides I, Ba, and Ga need to be studied and approved for 

future clinical use. In the future, it may even be possible to have a contrast material library from 

which to choose a contrast agent with a favorable K-edge based on the PCCT protocol. Also, 

combining a contrast chemical with a targeted agent would open up new possibilities in functional 

CT imaging similar to nuclear medicine and MRI. One issue that must be overcome for any PCCT 
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contrast imaging application is sensitivity. CT in general is much less sensitive than MRI or 

Nuclear Medicine, but some sensitivity improvements could be made with more advanced image 

processing algorithms, and even with lower sensitivity the new contrast imaging possibilities in 

PCCT may find an important role in clinical imaging. 

 

 
5.3.2. GUI Repeatability 

We compared the standard deviation and coefficient of variation for each sample and energy-bin 

of the 20 GUI repeat runs to the same data calculated for the 9 scans.  

 

23 out of 24 values of SD(Δ⊥) of the GUI repeatability test were smaller than SD(Δ⊥) of all scans, 

and 22 out of 24 values of CoV(Δ⊥) of the GUI repeatability test were smaller than CoV(Δ⊥) of 

all scans. The minimum, median, and maximum SD(Δ⊥) and CoV(Δ⊥) for the repeatability test 

were smaller than those for all scans, indicating that the GUI results for Δ⊥ are repeatable and 

should be able to be distinguished between different protocols, given different enough protocols 

and high enough sample size. 

 
5.4. Future Works 
 
This GUI provides insight into the behavior of the linear system, and describes a method for 

assessing the accuracy and precision of a photon-counting CT system with empirical data. This 

method is promising for future studies and future clinical use. The following section describes 

many ways that this research could be continued. Sub-sections are organized by general topic: 

expand this study (Section 5.4.1), improve analysis GUI (Section 5.4.2), extend analysis (Section 

5.4.3), new study ideas (Section 5.4.4), and clinical implementation (Section 5.4.5).  
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5.4.1. Expand This Study 

Expanding this study by testing a greater variety of protocols and a larger sample size (more 

repeated scans for each protocol) would likely result in finding differences in Δ and Δ⊥ between 

protocols. 

 

Although the ANOVA results for Δ and Δ⊥ failed to reject the null hypothesis for homogeneity of 

means across protocols, this does not mean that Δ and Δ⊥ are not affected by protocol differences. 

Our study encompassed a limited range of protocols and limited sample size. Testing a wider 

variety of protocols would give a better understanding of the response of these metrics for change 

in protocol. It would be interesting to study how much an energy threshold has to be moved in 

order to see a statistically significant difference in Δ and Δ⊥. Both more extreme protocol 

differences and a higher power study would help to investigate this effect. 

 

The GUI repeatability tests showed that the spread in data due to repeated runs of the GUI was 

smaller on average than the spread in data across different protocols. This indicates that a higher 

power test (more repeated scans) would improve the model’s sensitivity to changes in Δ�, and  Δ⊥����. 

Under the direction of a statistician, we repeated one protocol five times in order to get an estimate 

for the expected spread in data. Ideally, we would have repeated scans for every protocol, but 

devoting valuable scan time and the time of our colleagues to repeat studies is not practical, 

especially when material decomposition results are good even without extreme protocol 

optimization (Δ is small for all scans). If one wanted to improve the power of this study, I would 

recommend seeking the advice of a statistician for additional guidance on balancing statistical 

power with minimal necessary scans. 
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5.4.2. Improve Analysis GUI 

The analysis GUI has the potential to continuously be improved and added to. Three interesting 

ideas for improvement include: increased automation, generalizing the system to include any 

number of materials, and adding previously overlooked analysis details. 

 
5.4.2.1. Increase Automation 

Currently, ROI selection is not automated which makes the GUI flexible for working with different 

phantom placement, numbers of vials, and vial sizes. However, when the same phantom is used in 

the same position within the scanner, analysis time could be saved by saving an ROI file to re-use 

for repeat analysis of the same phantom. 

 

Another possible place to save time is loading the images. This currently represents the largest 

time spent idle at the computer (approximately 1 minute). Instead, if the user was performing the 

same analysis on multiple scans, the image loading could be consolidated. The user would select 

all the files to be analyzed, then load them all at once. With the addition of a ROI file, the user 

would have minimal computer interaction: once to load the images, and once to select ROIs and 

enter material contents. The same analysis could then be performed automatically on all files. 

 
5.4.2.2. Generalize Analysis to Higher Dimensions 

The GUI currently works for water plus one - two additional materials, allowing the energy-bins 

to be pictured as lines in concentration space. Visualization of the linear system was one of the 

goals of this analysis, but it becomes less helpful in 3D (three materials with water subtracted, or 

water plus two materials), and visualization is impossible with more materials. However, the report 
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metrics (Δ, Δ⊥, and CI Area) can still be calculated. Therefore, this analysis could be generalized 

to higher dimensions by leaving out the linear system visualization.  

 
5.4.2.3. Add Analysis Details 

Two details that could be incorporated in the analysis are: material concentration uncertainty, and 

volume fraction. We did not incorporate uncertainty in ICP-MS measurements in the Monte Carlo 

solution for the calibration matrix and corresponding calibration error matrix, but this detail could 

be added. As instructed by Dr. Ralle, Director of the USR Elemental Analysis Core at OHSU, we 

reported the element concentration to one significant figure, and in the future, we could use the 

CoV from the ICP-MS report to include concentration error in the Monte Carlo simulation. We 

also assumed that the volume of contrast materials was not large enough to impact the attenuation 

of water in each voxel. This assumption could be corrected to incorporate volume fraction in the 

calibration. 

5.4.2.4. Increase the Number of Energy-bins 
 
We used 4 energy-bins in this research, but in the future photon-counting detectors with many 

more energy-bins will be available. PCCT with near-continuous energy bins would significantly 

improve the energy-resolution, but signal in each bin would be an issue, as would the amount of 

data to be analyzed and stored. Assuming these issues could be overcome, an increased number of 

bins would allow an increased number of materials to be identified. Also, retrospective binning 

could be applied, which would negate the need for energy-threshold optimization. This would also 

increase the complexity of image processing, but results would probably be more accurate and 

precise for material concentration maps. 
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5.4.3. Extend Analysis 

It would be possible to extend the analysis to include additional factors, such as calibrating to 

higher concentration, analyzing the number of photons per bin, and adding an eccentricity factor 

to the confidence ellipse analysis. 

 
5.4.3.1. Calibrating to a Higher Concentration 

Sections 5.1.1 and 5.2.2, suggested that calibrating to a higher concentration would decrease 

calibration uncertainty and decrease Δ and CI Areas for higher-concentration samples. A study 

could be done to test the effect of max calibration-material concentration on accuracy and precision 

of the linear system. It might also be helpful to use this information to develop a “rule of thumb” 

for calibration, i.e., calibrate to 3× the max expected concentration in your scan. A general rule of 

thumb for calibration that is based on empirical data would be useful for clinical implementation 

of photon-counting CT. 

 
5.4.3.2. Include Photons Per Bin 

Signal-to-noise ratio of the energy images are directly dependent on the number of photons 

captured in each energy-bin. Many protocol optimization methods use SNR-based figures of merit 

because the number of photons in each energy bin is likely to be important for material 

quantification. For example, in Section 5.2.1, we discussed a possible connection between 

increased CI area and lower photons in an energy-bin. A module could be built into the GUI to 

investigate correlation between number of photons and other report metrics. 
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5.4.3.3. Include Eccentricity Factor 

In addition to analyzing only one confidence ellipse, it may be interesting to add a measurement 

of eccentricity to describe the overall collinearity of energy-bin lines. Eccentricity close to zero 

would be expected for perpendicular energy-bin lines, and eccentricity would approach 1 as the 

lines become more colinear. A very long ellipse would indicate that a protocol is poor for 

distinguishing between two materials. The 68% confidence ellipse for Sample 2, pictured in the 

sample report (Section 4.2) shows that the ellipse is stretched enough to intersect with both axes, 

intersecting with the Gd = 0 axis at about ~10 mg/ml I, and intersecting with the I = 0 axis at ~12 

mg/ml Gd. This represents a fairly noisy and unreliable material image. If it were possible to make 

the confidence ellipse more circular (lower eccentricity) the material images should be less noisy. 

This may be possible in the future with detectors with higher energy resolution, and very narrow 

energy-bins combined with image processing for low-count reconstruction.  

 
5.4.4. New Study Ideas 

This section discusses the possible application of the linear-system analysis GUI developed in this 

research to a few other research projects.  

 
5.4.4.1. K-edge Imaging, Compare I + Gd with I + Hf 

Section 4.5.2.1 highlighted a possible problem with K-edge imaging of iodine in combination with 

gadolinium. The Δ⊥ results suggested that a K-edge blending issue may occur when one bin 

contains both the post-K-edge signal of one material and the pre-K-edge signal of another material, 

effectively averaging out distinguishing markers for mixed materials. Imaging of iodine in 

combination with hafnium appears to be a promising alternative, and Ostadhossein et al. 

demonstrated successful differentiation of these elements with a four-bin protocol of 30 – 45 – 65 
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– 80 – 118 keV [77]. It would be interesting to compare our iodine-gadolinium results to results 

of iodine plus hafnium, and also to compare Dr. Ostadhossein’s four-bin protocol with a protocol 

using the extended five-bin capability of the MARS photon-counting CT.  

 
5.4.4.2. Phantom Thickness Study 

Clinical CT protocols are optimized for different-sized patient populations, and this tool could be 

used to study the energy-image linear system of how photon-counting CT changes with subject 

diameter. In a paper titled, “Robustness of Optimal Energy Thresholds in Photon Counting CT,”  

Zheng et al looked at the effect of changing different parameters, like phantom thickness, on 𝑆𝑆𝑁𝑁𝑆𝑆2 

and 𝑆𝑆𝐷𝐷𝑁𝑁𝑆𝑆2 in computer models of photon-counting detectors [5]. It would be interesting to 

compare their results for optimal protocol with results using this empirical-analysis. This 

information could be used to create guidelines for photon-counting protocol adjustment for 

different patient populations. 

 
5.4.4.3. Calibration Drift Study 

In addition to studying the empirical impact of calibrating to a higher max concentration, it would 

be interesting to gather calibration data across a long period of time and look for calibration drift. 

It would also be clinically useful to develop a numerical estimation for calibration error projected 

to linear-system error. Additionally, studying calibration drift over time could be used to develop 

clinical guidelines for calibration acceptance and a timeline for re-calibration. Because calibration 

is time-consuming, it is clinically useful to determine a sufficient re-calibration frequency (daily 

vs. weekly vs. longer) to balance time spent calibrating with accuracy and precision of material 

decomposition results. 
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5.4.4.4. Response Surfaces 

In conversation with an OHSU staff biostatistician, Jack Wiedrick, we discussed the possibility of 

using response surface analysis to use these metrics as a way to truly optimize protocols (not just 

to compare protocols and point to the best). For example, Δ could be descrbed as a 5-dimensional 

response surface, Δ(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4, 𝑒𝑒5), where 𝑒𝑒1 = distance from 0 keV to the 1st threshold, 𝑒𝑒2 = 

the distance between the 1st and 2nd thresholds, and so on. Describing energy-threshold placement 

this way makes it impossible to describe a situation where the 𝑒𝑒𝑤𝑤ℎ threshold is lower than the 𝑒𝑒 −

𝐶𝐶 threshold. Then the 5D Δ surface could be sampled across the protocol hyperplane, and a global 

search for minimums would result in the optimal protocol. This method is not practical due to the 

number of scans needed to complete a global search, but it is an interesting idea. For the interested 

reader, the book recommended to me on this subject was, “Response Surfaces, Mixtures, and 

Ridge Analysis”, by George E.P. Box, and Norman R. Draper [78].  

 
5.4.5. Clinical Implementation 

5.4.5.1. Quality Control Tool 
 
In the future, I imagine that this analysis GUI could be a useful clinical tool for protocol quality 

control (QC). Currently, CT technologists perform daily, weekly, and monthly CT QC, and 

physicists perform yearly CT QC. This research presents an analysis GUI which assesses empirical 

accuracy of the linear system as a whole (Δ), accuracy of each energy-bin (Δ⊥) and the precision 

of PCCT material decomposition (CI Area). A tool like this (especially with increased automation) 

could be paired with a dedicated spectral phantom and used to check and track tolerance levels of 

a clinical PCCT scanner.  
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This tool may also be useful for adjusting protocols for different-sized patients or different 

materials. The relative insensitivity of a protocol to 4 keV adjustments in energy-thresholds is 

promising for future clinical implementation. This means that protocols should be robust to 

changes in X-ray spectrum within a scan, and it is known that the X-ray spectrum changes with 

position in a CT scanner and angle of projection through a patient. Protocols could be adjusted for 

different-sized patients (infant, child, adult, bariatric) by scanning phantoms of different sizes and 

using this tool to check the efficacy of the linear system while adjusting protocols. This same 

method could be used to develop and check protocols for different materials.  

 

Protocol optimization is a moving target in PCCT. I do not think you could expect the same 

accuracy and precision for different combinations of contrast material, patient thickness, machine, 

and protocol. In a clinical setting, it would be useful to have a tool that could be used to assure the 

efficacy of a scan when one of these parameters is changed. It would also be beneficial to have a 

measurement of material decomposition precision when interpreting images of material 

concentration, although this depends heavily on the material decomposition algorithm used. 

 

5.4.5.2. Machine Learning use in PCCT 
 
Machine learning is popular in any field that requires analyzing large amounts of data. At a basic 

level, machine learning is a type of data analysis in which computer algorithms are trained on large 

data sets, and the results improve with an increased amount of training data. This has been applied 

to image processing and analysis, and applying ML to PCCT image analysis is an attractive option. 

Some natural PCCT applications include: image noise reduction, increased accuracy and precision 

of material identification, and material identification of similarly attenuating materials (e.g. 
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different types of calcium, indicative of malignant vs benign breast calcifications). The challenge 

for these and any machine learning task is acquiring a large enough training set, but it is inevitable 

that machine learning will be applied to PCCT. 
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6. Summary and Conclusions 
The main goal of this research was to develop an empirical method for analyzing the linear system 

of PCCT material-basis decomposition for use in protocol optimization. We aimed to create a user-

friendly method, and test it on iodine-gadolinium contrast mixtures for the end goal of determining 

the effect of energy-threshold placement on linear-system accuracy and precision, and reaching a 

conclusion on an optimized protocol. These goals were accomplished with the creation of a 

protocol optimization GUI which was used to compare five protocols. A short explanation of the 

work accomplished for this project and notable results are described below.  

 

A GUI was made using MATLAB’s App Designer which allowed images to be loaded, viewed, 

and processed, in one platform. The GUI leads the user through the analysis process, all 

computations are performed in the background, and a report is produced which summarizes the 

results. 

 

Analysis metrics were designed to give a measurement of linear system accuracy and precision, 

and accuracy of each energy-bin. Accuracy of the linear system was measured with Δ, the residual 

sum of squares of material concentration, equivalently described as the distance between the 

known and calculated sample concentration. 

Δ =  �(𝐼𝐼𝑘𝑘𝑛𝑛𝑜𝑜𝑤𝑤𝑛𝑛 − 𝐼𝐼𝑐𝑐𝑤𝑤𝑁𝑁𝑐𝑐)2 + (𝐺𝐺𝑑𝑑𝑘𝑘𝑛𝑛𝑜𝑜𝑤𝑤𝑛𝑛 − 𝐺𝐺𝑑𝑑𝑐𝑐𝑤𝑤𝑁𝑁𝑐𝑐)2 

Accuracy of each energy-bin was measured with Δ⊥(E-bin 𝑒𝑒), the distance between the known 

concentration point and Energy-bin-line 𝑒𝑒. Precision of the linear system was measured with the 

68% and 95% confidence interval areas, measured by fitting 500 simulated solutions of the linear 

system with a multivariate gaussian then calculating the areas of 1 SD and 2 SD ellipses. It was 
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expected that a better protocol would produce a more accurate result (smaller Δ and Δ⊥), and would 

be less noisy (smaller CI areas).  

 

The linear system analysis GUI was used to test five near-K-edge protocols to gain insight on 

placing energy-thresholds on the K-edge (a common result in theoretical protocol optimization 

research) vs placing energy-thresholds a few keV off of the K-edge (a popular protocol choice in 

practice). A phantom containing iodine and gadolinium calibration vials and iodine plus 

gadolinium sample mixtures was scanned using five near-K-edge protocols: 

1. on-K-edge protocol: [20 – 33 – 50 – 80 – 118 keV], repeated 5× 
2.     −2 keV protocol: [18 – 31 – 48 – 78 – 118 keV] 
3.    − 4 keV protocol: [22 – 35 – 52 – 82 – 118 keV] 
4.     +2 keV protocol: [16 – 29 – 46 – 76 – 118 keV]  
5.     +4 keV protocol: [24 – 37 – 54 – 84 – 118 keV] 

 

From this study, we found that the only statistically significant difference between protocols 

resulted from CI Areas of the -2 and -4 keV protocols, which were larger than those of all other 

protocols. The increased size of CI Areas of these protocols was likely due to a reduction in the 

number of photons in Energy-bin 3. Bin 3 already had the lowest photon count out of all energy-

bins for all protocols, and the further reduced count may have increased noise for this energy-bin, 

resulting in increased noise for the overall linear system and appearing as increased confidence 

interval size. 

 

Additionally, differences in sample concentration produced statistically significant differences for 

all metrics (Δ, Δ⊥, and CI Areas). Notably, the largest Δ measurement came from Sample 3 (8.4 

𝑚𝑚𝐻𝐻 𝐼𝐼
𝑚𝑚𝑁𝑁

 + 7.0 𝑚𝑚𝐻𝐻 𝐺𝐺𝐺𝐺
𝑚𝑚𝑁𝑁

) and second-largest from Sample 5 (2.7 𝑚𝑚𝐻𝐻 𝐼𝐼
𝑚𝑚𝑁𝑁

 + 7.4 Gd). CI Areas were largest for 
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Sample 3 (8.4 𝑚𝑚𝐻𝐻 𝐼𝐼
𝑚𝑚𝑁𝑁

 + 7.0 𝑚𝑚𝐻𝐻 𝐺𝐺𝐺𝐺
𝑚𝑚𝑁𝑁

). Finally, Δ⊥ for Bins 1 and 2 were smallest for Sample 6 (1.3 𝑚𝑚𝐻𝐻 𝐼𝐼
𝑚𝑚𝑁𝑁

 

+ 9.3 𝑚𝑚𝐻𝐻 𝐺𝐺𝐺𝐺
𝑚𝑚𝑁𝑁

), and Δ⊥ for Bins 3 and 4 were smallest for Sample 1 (8.9 𝑚𝑚𝐻𝐻 𝐼𝐼
𝑚𝑚𝑁𝑁

 + 1.1 𝑚𝑚𝐻𝐻 𝐺𝐺𝐺𝐺
𝑚𝑚𝑁𝑁

).  

 

These results suggest:  

(1) Small errors in calibration are magnified at higher material concentrations which cause larger 

inaccuracy for higher concentrations. This may possibly be improved by calibrating to a higher 

maximum concentration. 

(2) At high contrast-material concentrations, the displacement of water volume by contrast volume 

may play a role in increasing inaccuracy of the quantitative material decomposition, again causing 

increased inaccuracy at higher concentrations. This effect may be mitigated by including volume 

fraction in the calibration and in the material decomposition. 

(3) It may not be ideal for one energy-bin to include both the post-K-edge region of one material 

(i.e. iodine) and the pre-K-edge region of another material (i.e. gadolinium). This may make the 

K-edge signal less distinct, especially for higher mixed concentrations. Using contrast materials 

with more separation between K-edges would allow for distinct pre- and post-K-edge bins for all 

scanned contrast materials, and may result in a more accurate and precise linear system. 

 

In conclusion, linear-system accuracy proved to be relatively insensitive to energy-threshold 

adjustment of ≤ 4keV, but system precision was slightly worse for protocols with the lowest 

minimum energy-bin photon count. Therefore, placing thresholds on-K-edge vs off-K-edge likely 

makes no difference to accuracy, and the best overall result would likely arise from placing them 

near the K-edge, with slight adjustments to capture as many photons as possible in the bin with the 

least photon intensity to reduce overall system noise. As photon-counting detector systems 
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improve, the benefit of placing thresholds directly at the K-edge energy may change, and protocols 

will need to be checked an optimized with any change to the PCCT imaging chain. 

 

Final Thoughts: 
 
We presented a PCCT protocol analysis method, wrapped in a user-friendly GUI, which showed 

that protocol results were relatively insensitive to threshold adjustment of ≤ 4keV for the materials 

and system tested. This apparent insensitivity is promising for clinical implementation, because 

protocols need to be robust for intra-scan changes in X-ray beam intensity as the beam is projected 

through different angles around a patient.  

 

There are many protocol optimization methods, and this research presents a new way of directly 

analyzing the material-basis linear system with empirical data. The use of empirical data and 

analysis automation makes this a promising tool for future clinical use for PCCT QC, testing 

theoretical protocol optimization results, and adjusting clinical protocols for different patient sizes 

or contrast materials. PCCT imaging is well on its way to clinical implementation, and evidence-

based protocol optimization is necessary to deliver the optimum benefit of this technology. 
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