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Abstract 

 

 Effective treatments for cancer have traditionally been divided into three separate 

arms: surgery, chemotherapy, and radiotherapy. Recently, however, a fourth arm, known 

as cancer immunotherapy, has been incorporated into treatment regimens and clinical 

trials with remarkable efficacy. These immunotherapies, designed to generate anti-

cancer immune responses, have emphasized the importance of the immune system in 

controlling cancer and have placed greater focus on the the immune consequences of 

more traditional therapies. In this thesis, we have attempted to elucidate the way that 

radiotherapy can stimulate the interactions between the immune system, specifically 

CD8+ T cells, and cancer cells to induce lasting clearance of tumors. 

 In the field of radioimmunology, it is commonly thought that radiotherapy may 

work in part by functioning as an in situ vaccine, boosting CD8+ T cell numbers in 

circulation and generating systemic anti-tumor immunity. This model is supported in part 

by observations of abscopal effects, where localized irradiation of cancer can stimulate 

immune-mediated regression of tumors outside of the treatment field. In order to test the 

hypothesis that radiation can induce regression of tumors by acting as a vaccine, we 

modeled radiation-induced vaccination with a live-attenuated Listeria monocytogenes 

vaccine capable of generating order-of-magnitude higher numbers of tumor-specific 

CD8+ T cells. We demonstrated that vaccine-induced T cells have cytotoxic capacity 

and effectively traffic to tumors; however, we found that vaccination alone or in 

combination with PD-1/PD-L1 checkpoint blockade was insufficient to replicate the 

efficacy of radiation. Significantly, we observed that while cancer cells were resistant to 

killing by CD8+ T cells, antigen-specific T cell responses could be enhanced by 

pretreatment of cancer cells with cytokine stimulation or irradiation. These results 
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suggest that vaccination by radiation is not sufficient to explain enhanced CD8+ T cell-

mediated control, but that radiation can augment the susceptibility of cancer cells to 

killing by T cells. 

 While the traditional aim of radiotherapy is to directly kill cancer cells, sublethal 

doses of radiation can trigger phenotypic alterations in these cells; among the most 

compelling of these potential alterations for the enhanced response of T cells in 

irradiated tumors is the augmentation of antigen presentation on MHC-I molecules, due 

to the integral role of antigen presentation in permitting recognition by CD8+ T cells. In 

order to determine whether enhanced antigen presentation by radiation was sufficient to 

generate effective anti-tumor T cell responses, we attempted to determine the 

mechanism by which radiation upregulates MHC-I on cancer cells. Contrary to previous 

reports, we found that MHC-I induction in our model was not dependent on signaling 

through STING or IFNAR, but instead found that radiation was able to induce expression 

of the MHC-I transactivator, NLRC5, independently of these pathways. Significantly, we 

found that increased expression of NLRC5 was sufficient to enhance MHC-I expression 

on cancer cells. Finally, we demonstrated that while NLRC5 upregulation by cancer cells 

did not improve CD8+ T cell recognition of cancer cells, T cells were better able to 

control NLRC5hi cancer cells than NLRC5lo controls. Together, these results support a 

model where radiation permits CD8+ T cell mediated control by upregulation of MHC-I 

via NLRC5.  
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Chapter 1: Introduction 

 

1.1 Cancer and Adaptive Immunity 

Cancer is a disease that provides a set of unique challenges for its control and 

eradication. Tumors generally form from healthy tissues that have been transformed 

through the acquisition of somatic mutations, which arise through assaults to DNA by 

exposure to carcinogens, UV radiation, or through the normal stress of repeated cell 

divisions that occur as a body ages. The transformation of a single healthy cell to a 

progenitor of millions of malignant cells proliferating at the cost of the organism as a 

whole has been studied extensively (1). Very broadly, oncogenic transformation requires 

activating mutations in tumor promoting oncogenes (hastening the rate at which cells 

replicate) and deactivating/suppressive mutations in tumor suppressor genes 

(preventing recognition of, or response to, deregulated cell growth). Collectively, the 

mutations that confer selective advantages to the growth of cancer cells are called driver 

mutations.  

Comprehension of cancer biology requires an extension of our understanding of 

normal tissue biology under intense Darwinian selection. Early in their development, 

cancer cells look very similar to healthy cells in their tissue of origin. The 2000 seminal 

article by Douglas Hanahan and Robert Weinberg, “The Hallmarks of Cancer,” listed six 

key acquired characteristics of cancer, differentiating it from cells at the origin: limitless 

replicative potential, self-sufficiency in growth signals, insensitivity to anti-growth signals, 

sustained angiogenesis, tissue invasion and metastasis, and evasion of apoptosis (2). 

The most self-evident of these features is the enhancement of replicative potential since 

cancer is, above all, an abnormal accumulation of cells forming a tumor. Hanahan and 
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Weinberg expanded on the six original Hallmarks with the addition of two “emerging” 

Hallmarks in 2011: deregulation of cellular energetics (metabolism) and, significantly for 

this thesis, evasion of immune destruction (3).  

The first line of defense against malignant transformation requires cell-intrinsic 

sensing of significant alterations to DNA sequences and/or structure or its consequence: 

changes in the shape or abundance of proteins produced; the mechanisms and 

outcomes these processes will be discussed further in this chapter. Cellular sensing of 

alterations to DNA trigger pauses in cell division at set checkpoints in the cell cycle and 

activation of DNA repair pathways; if the damage is too severe to be repaired the cell 

signals to itself to begin the process of apoptosis, or cell suicide. Key for the 

development of cancer are disruptions in the ability of cells to sense or respond to DNA 

damage; accordingly, the vast majority of human cancers lose function in one or more of 

these pathways, allowing for continued proliferation and accumulation of pro-tumorigenic 

mutations.   

A second major line of defense in higher organisms is extrinsic to transformed 

cells: the immune system. It is now known that the immune system heavily shapes the 

progression of cancer, in ways that are both advantageous and disadvantageous to the 

body. In the early 1900s, Paul Ehrlich proposed that the precursors to cancer were likely 

generated at some frequency throughout the lifespan of an individual, but that most of 

these cells were eradicated early on in development by immune cells (4). Ehrlich’s 

proposal was an extension of his work on organ transplantation where it was known that 

despite gross anatomical similarities, the immune system was able to recognize 

differences between the graft and host tissue: because transplantation is an artificial 

condition that does not exist in nature it is otherwise perplexing that such a violent 

inflammatory response should be inbuilt against seemingly subtle differences derived 
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from the host source of transplanted tissues. Many of the immunological barriers to 

organ transplantation appear to be symptoms of protective immunity against malignant 

transformation including recognition of altered major histocompatibility complex (MHC) 

expression, which will be discussed further in this work. More than fifty years later, the 

description of this process of was expanded on independently by Lewis Thomas and 

Frank Macfarlane Burnet and termed cancer immunosurveillance (5-7).  

Cancer immunosurveillance is in large part conducted by T cells, a member of 

the adaptive immune system, but other members of that system, B cells and NK cells, 

and members of the innate immune system can also play roles in the body’s response to 

carcinogenesis (8-11). Cells of the adaptive immune system differentiate themselves 

from innate immune cells in their ability to clonally respond to a specific antigen and to 

confer lifetime immunity to that specific signal. For example, each T cell generates by 

genetic recombination a unique T cell receptor sequence that is able to bind to recognize 

specific peptide structures in the context of MHC molecules. When a naïve T cell meets 

a cognate peptide-MHC complex (pMHC) in the appropriate context it becomes 

activated, proliferates, and eventually forms an expanded clonal population of memory 

cells that persist throughout the life of the organism and are capable of rapidly 

responding to the signal should it appear again. By contrast, cells of the innate immune 

system do not undergo genetic recombination, respond to a range of broad stimuli such 

as bacterial cell wall components and cytosolic DNA, and typically favor more rapid 

responses (12). 

Early experiments attempting to link T cells and resistance to cancer overall 

failed to prove a definitive connection. Logically, if components of the immune system 

were able to control tumorigenesis, then hosts with impaired immunity would exhibit 

increased incidences of induced carcinogenesis by viral infection, exposure to 
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carcinogens, or in animals with genetic dispositions to developing spontaneous tumors. 

Studies in nude mice, conducted by Osías Stutman and others, which fail to develop 

functional thymuses key to the development of T cells, overwhelmingly demonstrated no 

significant differences in the development of carcinogen methylcholanthrene (MCA) 

induced tumors between nude and immunocompetent animals. In retrospect, these 

findings are more likely due to incomplete understanding of degree of 

immunocompetence of the model (nude mice have detectable numbers of functional αβ 

T cells, some intact subsets of γδ T cells, and NK cells, which can facilitate anti-tumor 

immunity but do not require the thymus for development) and susceptibility to MCA-

induced tumorigenesis (CBA/H nude mice express an enzyme that rapidly activates the 

drug’s carcinogenic capacity, potentially overwhelming the ability of the immune system 

to control transformed cells) than to logical failure of the immunosurveillance hypothesis 

(13, 14). However, among the most significant findings from this period were that mice 

with induced immune deficiencies were highly susceptible to lymphomas and virally-

induced carcinomas, although these were generally explained by attenuated responses 

to viral pathogens and chronic activation and exhaustion of lymphocytes, resulting in 

cancer (13).  

In the 1990s, studies by Robert Schreiber and others demonstrated clear links 

between the ability of host lymphocytes to exert functional control by T cells or NK cells 

secreting interferon-gamma (IFNγ) and perforin and the susceptibility of animal models 

to develop tumors (15-17). The key role of T cells in cancer immunosurveillance was 

revealed when the Rag2-/- model was developed, wherein mice completely lack mature T 

and B cells due to their inability to perform V(D)J recombination; in this setting, mice are 

far more sensitive to the development of MCA-induced tumors with this effect being 

exacerbated when they are also unable to produce interferons (Rag2-/-STAT1-/-) (8). 
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Together with studies deciphering the roles of other adaptive lymphocytes such as NKT 

and γδ T cells and innate subsets such as NK cells, Schreiber proposed a model 

incorporating immune surveillance of carcinogenesis: The Three Es of Cancer 

Immunoediting (13, 18). The Three Es describe a process in which immune cells 

eliminate potentially carcinogenic cells by the process of immune surveillance as 

proposed by Burnet and Macfarlane. In circumstances where cancerous cells evade 

early immune screening and form stable masses, the immune system later can form an 

equilibrium within the tumor maintaining the size or severity of disease, but effectively 

selects for cancer cells capable of further evasion: cells which are capable of this 

evasion can then escape the equilibrium stage and overwhelm the immune system, 

leading to disease progression and potentially death of the host.  

The Three Es of Cancer Immunoediting describe a Darwinian interplay between 

the developing tumor and the host immune system wherein the host eliminates cells 

capable of easy immune control and thus selects for cells better able to evade detection. 

As evidence of this, it was observed that implanted MCA-induced tumors developed in 

both RAG2-/- and immune competent control mice shared similar growth kinetics in 

RAG2-/- mice; however, when implanted in immune competent hosts, a portion of the 

tumors derived in RAG2-/- mice established but were then rejected, indicating that tumors 

arising in the absence of immune-mediated selective pressures are more immunogenic 

(8). This study highlighted the ability of tumors to adapt immune evasion strategies as 

they develop under the selective pressure of the immune system; some of these 

mechanisms will be elaborated upon throughout this chapter. 

 

1.1.1 CD8+ T cells as Effectors of Anti-Tumor Immunity 
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Cytotoxic T lymphocytes (also known as CTLs, CD8+ T cells, CD8s, or cytotoxic 

T cells) are among the most therapeutically relevant effector cells in the adaptive 

immune system in controlling transformed cells (19-21). T cells are defined by their 

expression of the protein complex known as the T cell receptor (TCR), which contains a 

randomly-generated binding sequence capable of recognizing a specific shape and 

affinity of antigen, generally bound to a specific major histocompatibility complex (MHC) 

molecule; the requirement for T cell antigens to be bound to MHC molecules in order to 

be recognized is termed MHC restriction1 (22-24). CD8+ T cells are defined by their 

expression of the CD8 co-receptor, which binds MHC class I (MHC-I), whereas another 

major population of T lymphocytes, CD4+ T cells (also known as CD4s or helper T cells), 

use the CD4 co-receptor to bind MHC class II (MHC-II) (22). The binding of these co-

receptors facilitates localization of signaling molecules to the intracellular domain of the 

TCR and enhances signaling (22, 25). Cytotoxic CD8+ T cells are able to directly induce 

cell death in target cells presenting the cognate pMHC through the ligation of death 

receptors (Fas-FasL) (26), release of inflammatory cytokines (interferon-gamma, IFNγ, 

and tumor necrosis factor alpha, TNFα) (27), and transfer of cytotoxic granules (serine 

proteases known as granzymes) via perforin-lined pores generated in the target cell 

membrane (22). Together these abilities allow CD8+ T cells to selectively target tumor 

cells expressing mutated protein antigens (tumor-associated antigens or neoantigens) 

with relatively little damage to normal tissue. 

Humans begin to develop T cells very early in life as lymphoid progenitor cells 

leave the bone marrow and traffic to the thymus where interactions with the stroma 

                                                           
1 Broadly, T cells with TCRs containing α and β subunits (αβ T cells) require their cognate antigen 
to be presented on an appropriate MHC molecule in order for it to be recognized. However, 
certain minority T cell subjects, for example those with TCRs containing γ and δ subunits (γδ T 
cells) can recognize antigens resulting in activation outside of the context of MHC restriction 
(Janeway 2012). 
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trigger differentiation into T cell subsets, the majority of which will go on to become αβ T 

cells, expressing TCRα and TCRβ subunits. As these precursor cells develop in the 

thymus, they upregulate RAG1 and RAG2 genes to allow genetic rearrangement of the 

TCRβ locus followed by rearrangement of the TCRα locus in a process termed V(D)J 

recombination; simultaneously, expression of both CD8 and CD4 are upregulated. The 

process of rearrangement generates a vast array of unique TCR binding sequences that 

enable recognition of a wide range of antigens. Once the rearrangement process has 

produced a stable mature TCR, cells undergo positive selection in which their ability to 

bind MHC-I (with CD8) or MHC-II (with CD4) is determined and expression of the 

extraneous co-receptor is downregulated. These single-positive cells then move into the 

thymic medulla where negative selection occurs, the process by which cells that bind 

high-affinity self-peptides expressed by medullary thymic epithelial cells are triggered to 

activate apoptotic signaling (28). This process of eliminating self-reactive T cell clones 

results in central tolerance, reducing the risk of developing autoimmune diseases. 

Notably, an exception to the process of negative selection allows the generation of a 

population of CD4+ T cells which differentiate into T regulatory cells (Tregs) that are able 

to produce immune suppressive signals in the peripheral tissue, contributing to 

peripheral tolerance and further reducing the risk of developing autoimmune disease 

(29). By the end of thymic development only about 2% of the initial input of progenitor 

cells have passed selection and are exported from the thymus to form the peripheral T 

cell repertoire (22). 

Outside of the thymus, CD8+ T cells exist in various stages of activation 

throughout the body and can differentiate into many subtypes depending on timing and 

location. The initial output of CD8+ T cells from the thymus are termed naïve CD8+ T 

cells as they have not yet met their cognate antigen and patrol the body by circulating 
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throughout the blood, lymphatics, and lymphoid organs. In order to enact their immune 

functions, CD8+ T cells must undergo the multistep process of activation. Once 

activated, CD8+ T cells proliferate over the course of several days in a process of clonal 

expansion, expanding the number of cells capable of responding to that antigen by many 

thousands, and differentiating into a population of effector CD8+ T cells which only 

require pMHC ligation in order to exercise cytotoxic functions on presenting target cells 

(22). These effector cells are relatively short-lived, with cell numbers peaking 5-7 days 

after acute stimulation and sharply declining in the absence of sustained or repeated 

antigen exposure. Appropriately activated CD8+ T cells can also differentiate into 

memory T cell populations which are maintained throughout the lifespan of the individual 

and are able to respond more quickly and strongly to repeated antigen exposure due to 

100-1000-fold increased frequency above naïve T cell levels, increased sensitivity for 

pMHC:TCR signaling, increased capacity for expansion, and increased capacity for 

production of effector molecules (22, 30-33). 

The activation of CD8+ T cells is a tightly regulated process requiring multiple 

positive signals (referred to here as Signal 1, Signal 2, and Signal 3) although the 

strength of each of these signals necessary for activation and differentiation of T cells 

depends on the type of T cell and the presence of negative signals. Briefly, Signal 1 

refers to the ligation of the TCR with its cognate pMHC complex. All nucleated cells in 

the body express MHC-I molecules, presenting peptides derived from cytosolic proteins: 

this continuous process allows circulating CD8+ T cells to patrol for mutated (potentially 

cancer-derived), viral, bacterial or parasitic proteins; however, the amount of MHC-I 

expressed can vary, depending in part on inflammatory context and viral or oncogenic 

transformation. As mentioned previously, T cells are broadly restricted by MHC, meaning 

that they respond not only to the structure of the antigen but the structure of the MHC 
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molecule presenting the antigen; variability in T cell responses between individuals due 

to MHC haplotypes can thus be wider in humans, which are often heterozygous for 

these alleles, compared to laboratory mice which are commonly homozygous. Antigen 

presentation on MHC-I will be discussed further later in this chapter.  

In order for CD8+ T cells to become appropriately activated by antigen 

recognition they must also receive costimulation by mature dendritic cells (DCs) (Signal 

2). Although nearly all cells present self-derived peptides on MHC-I molecules, only DCs 

are capable of presenting exogenously-derived antigen on the cell surface to stimulate 

CD8+ T cell immunity, known as cross-presentation (34, 35). Among professional 

phagocytes, which also include macrophages and neutrophils, dendritic cells are 

specialized in their ability to preserve antigen structure by reduced proteolytic 

degradation (36, 37): this, combined with their ability to shuttle protein from the 

extracellular space into phagolysosomes and the endoplasmic reticulum (ER) to allow 

presentation on MHC-I, allows DCs to efficiently cross present MHC-I antigens that are 

not self-derived along with the exogenous MHC-II antigens which are common to 

professional antigen presenting cells (APCs) (38). Following activation in peripheral 

tissue by microbial contact or inflammatory cytokine, DCs halt antigen uptake, undergo 

maturation and migrate to the draining lymph node in a CCR7-dependent manner (39, 

40). Once in the lymph node, mature DCs presenting antigens on MHC-II molecules will 

undergo licensing through CD40-CD40L interactions (L denotes the canonical ligand for 

the receptor) with helper CD4+ T cells (41-43) and upregulate costimulatory molecules 

CD80 and CD86 for CD8+ T cell activation: the interaction between CD28 on CD8+ T 

cells and CD80/CD86 on DCs represents the dominant costimulatory Signal 2 for naïve 

T cells (44).  
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While mature DCs may activate CD8+ T cells in the absence of CD4+ T cell help, 

the threshold for activation is high and requires strong adjuvant signals (45) and 

evidence suggests that CD4+ T cell help is required for the generation of effective long-

term memory responses (22, 46-49). Notably, an absence of any costimulation by 

mature DCs appears to result in CD8+ T cell tolerance where T cells, despite receiving 

Signal 1, are not able to enact cytotoxic functions (50), demonstrating the essential role 

for Signal 2 in activating effective T cell responses. 

Following activation by Signal 1 and Signal 2, T cells upregulate the α chain of 

the interleukin-2 (IL-2) receptor (CD25) to allow high-affinity binding of the Signal 3 

molecule IL-2 to drive proliferation and differentiation (51); simultaneously, activated T 

cells produce and secrete IL-2 and thus form a feedback loop (52). In addition to IL-2, 

other proinflammatory cytokines (including type I interferons and interleukin-12) may act 

as Signal 3 molecules, enhancing the proliferation and memory formation of activated 

CD8+ T cells (53-55). Having received all three activation signals, T cells can divide 2-3 

times a day for several days peaking in number around seven days following acute 

stimulation (12). The duration of T cell expansion is affected by the duration of antigen 

exposure as well as the persistence of adjuvant signals providing inflammatory context. 

 

1.1.2 Therapeutic Interventions to Enhance Anti-Tumor T Cell Responses 

Despite the ability of CD8+ T cells to mount potent and effective responses 

against cancer, there are significant barriers to T cell-mediated tumor killing. Studies 

have demonstrated that the presence of tumor-infiltrating CD8+ T cells is associated with 

improved prognosis (56, 57); however, these patients still have cancer despite the 

presence of these cells and require treatment in order to survive. These circumstances 
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raise important questions: how can we ensure that patients have sufficient CD8+ T cells 

capable of responding to tumor antigens and, in patients with sufficient T cells, how can 

we ensure that the T cells are able to kill the cancer? Some of the barriers to T cell-

mediated treatment and ongoing efforts to subvert them are described below, but due to 

the recent explosion in research many strategies currently under exploration will not be 

addressed. As a whole, therapies such as these, aimed at stimulating immune 

responses against cancer, fall within the field of cancer immunotherapy. 

1.1.2.1 Cancer Vaccines 

The most successful vaccine used in the treatment of cancer is Bacillus 

Calmette-Guerin (BCG), which was developed more than 100 years ago to protect 

against tuberculosis infection and is still used for that effect. A connection between 

cancer survivors and cleared or active tuberculosis infections was observed in the 1920s 

but interest in using BCG to combat cancer waned when safety concerns arose 

regarding preparations of the vaccine (58). It wasn’t until a 1959 study by Lloyd Old and 

others, demonstrating intravenous injection of BCG enhanced resistance of mice to the 

establishment of model tumors, that interest was renewed (59). Further studies 

demonstrated that BCG protects against tumors by activating macrophages and 

promoting local delayed hypersensitivity to induce clearance of cancer cells, thus 

requiring close contact between cancer cells and in location of inoculation (58). BCG 

vaccination is therefore in the same treatment category as Coley’s vaccine, a 

preparation of killed Strepococcus pyogenes and Serratia marcescens, which was 

successfully used in the localized treatment of cancer in the late 19th century due to its 

adjuvant quality (60). These “vaccines” are powerfully inflammatory but function primarily 

to activate innate immunity rather than target adaptive immunity to specific targets and 

thus broadly fail to generate lasting immunological memory (61). As a result, over the 
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last 40 years BCG has been primarily successful in bladder cancer where cystoscopic 

injection of the vaccine engages inflammatory responses in the thin tissue of the organ 

and promotes local tumor eradication (58).  

A second category of cancer vaccines, which prophylactically target oncogenic 

viruses, have also been successful. Prophylactic vaccination targeting Hepatitis B 

(HepB) was added to the routine vaccine schedule for infants in the mid-1990s and is 

about 70% effective in preventing the development of hepatocellular carcinomas (62). 

More recently, vaccination against human papilloma virus (HPV) has been 

recommended to be given to children ages 11 and 12 and is largely effective in 

preventing HPV-linked head and neck, cervical, penile, vulvar, and anal cancers (63). 

These vaccines confer lifelong protective immunity by activating adaptive immune 

subsets against virus-specific peptides: in the case of HPV vaccination the exterior of 

viral particles (L1 major capsid protein) is targeted to allow early clearance of an 

infection. Notably, successful vaccination strategies have only been developed to protect 

against establishing infection; clearing viral infections once they have been established 

has proved to be a far more difficult task (64).  

Therapeutic vaccination strategies against established cancer, similarly, have 

largely proved ineffective in patients. It is clear that many tumor types express antigens 

that may, in theory, be sufficient to stimulate potent anti-cancer adaptive immune 

responses; regardless, targeting proteins overexpressed by cancer cells or mutated 

versions of proteins exclusively expressed by cancer cells (neoantigens) have failed to 

elicit tumor regression once the disease has established in the majority of patients 

treated (65). Many of these vaccines generate large populations of cells with cytotoxic 

capacity; however, by necessity tumors develop effective immune evasion strategies 

early in their development including: downregulation of tumor antigen presentation by 
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decreasing TAP1, β2M and MHC-I expression (8, 66), establishment of hypoxia and 

acidity affecting T cell metabolism (67), and upregulation of inhibitory immune 

checkpoints on tumor cells and infiltrating innate immune cells (68); as a result, 

theoretically tumor-reactive CD8+ T cells are often rapidly or chronically tolerized to 

tumor proteins. Many of these evasion strategies mean that vaccination to generate 

large populations of tumor-reactive cells will be ineffective because the T cells will not be 

able to “see” the cancer cell targets or be able to react appropriately due to 

immunological context.  

1.1.2.2 Checkpoint Inhibitors 

Perhaps the most significant breakthrough in cancer immunotherapy came in the 

form of checkpoint inhibitor therapy, developed based on increased understanding of 

how the immune system dampens self-destructive autoimmune responses and the ways 

in which tumors can hijack these processes. As described above, T cell responses can 

be potently effective at eliminating transformed or virus-infected cells, but particularly in 

cases of incomplete tolerance where self-reactive T cells survive thymic selection, T 

cells can be detrimental in the destruction of normal tissue. In order to protect against 

these unfavorable responses, along with the complement of proteins T cells express to 

enhance cytotoxic abilities, T cells express a number of self-inhibitory receptors which, 

when ligated, increase the downstream signaling threshold required to exert cytotoxic 

function. Additionally, tissue infiltrating immune cells such as regulatory T cells (Tregs) 

express protein receptors on their surfaces which can inhibit the ability of surrounding T 

cells to function providing an additional mechanism of peripheral T cell tolerance. 

The first major therapeutic breakthrough in checkpoint inhibitors came with the 

blockade of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (69, 70). Throughout 

the 1990s, James Allison and colleagues published work characterizing the function of 
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this newly-discovered protein expressed on the surface of CD4+ T cells, originally 

described as a murine homolog to human CD28 (71-74); however, further exploration 

demonstrated that CTLA-4 and CD28 have opposing effects in the response to T cells to 

antigen stimulation (75). Mice lacking CTLA-4 develop a severe lymphoproliferative and 

autoimmune condition which leads to death 2-3 weeks after birth (76, 77). Part of the 

immune suppressive capability of CTLA-4 is a result of its rapid and relatively higher 

avidity binding to the costimulatory molecules CD80/CD86 with comparably higher 

avidity than CD28 (78, 79); this results in effective sequestering of costimulatory signal 

and dampened T cell effector responses. Allison’s group observed that blockade of 

CTLA-4 was able to enhance anti-tumor immunity in mouse models, later finding that 

this effect was due to relatively high expression of CTLA-4 on Tregs allowing for 

selective depletion of Tregs in vivo (80, 81). In humans, however, there is little evidence 

to suggest that the depletion of Tregs observed in mice is the primary mechanism of 

efficacy for therapeutic CTLA-4 blockade (82); instead, signaling through the Fc domain 

of CTLA-4 blocking antibodies appears to be relevant (83). 

A second major breakthrough in checkpoint inhibition came with the development 

of programmed death receptor 1 (PD-1) blockade. Tasuku Honjo and colleagues 

discovered PD-1 while exploring mechanisms of T cell death (84); however, the function 

of the protein as a T cell inhibitory receptor was not elucidated until the generation of 

PD-1 deficient mice (Pdcd1-/-) which develop lupus-like autoimmune disorders, indicating 

a functional role in the development of peripheral tolerance (85, 86). PD-1 expression is 

low on naïve T cells but is upregulated in response to antigen stimulation; as a result, T 

cells that have been chronically exposed to their cognate antigen without eliminating the 

source of exposure, as in the case of chronic viral infection or within tumors, have 

characteristically high expression of PD-1 (87, 88). Ligation of PD-1 with its canonical 
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ligands PD-L1 or PD-L2, expressed on tumor infiltrating immune cells or on tumor cells 

(68, 89-92), results in suppression of intracellular signaling downstream of costimulatory 

CD28 (93, 94) and increases the threshold of activation for T cells to exert cytotoxic 

capacity. In human patients, tumor expression of PD-L1 can correlate with decreased 

functioning of T cells and negative prognosis (85, 95, 96); antibody-mediated blockade 

of the PD-1/PD-L1 axis has led to remarkable improvements in the treatment of many 

types of cancer including: melanoma, Hodgkin’s lymphoma, non-small cell lung 

carcinoma (NSCLC), renal cell carcinoma, urothelial cancer, and head and neck cancers 

(97, 98). 

While checkpoint blockade with CTLA-4 and PD-1/PD-L1 inhibitors have had 

unprecedented clinical successes, there are lingering questions regarding why some 

cancers still evade control by immunotherapy and what interventions can turn non-

responders into responders. Additional checkpoint inhibiting agents including those 

targeting Lag-3, Tim-3 and TIGIT (99) are being explored, while another class of 

therapeutic antibodies targeting activating costimulatory receptors such as OX40, GITR, 

and 4-1BB (100) aim to increase positive signaling rather than alleviate negative 

signaling to overcome immune suppression; some of these newer checkpoint inhibitors 

have indeed been shown to combine with CTLA-4 or PD-1/PD-L1 blockade in preclinical 

models (101-103). Importantly, traditional cancer therapies such as radiotherapy also 

appear to be able to alleviate checkpoint blockade resistance in mouse models and in 

patients (102, 104-113); the immune modulatory effects of radiation therapy and how 

they may synergize with checkpoint inhibition are discussed below. 

1.1.2.3 Radiotherapy 

In cancer therapy, radiotherapy (RT) is primarily used to initiate localized death of 

cancer cells by targeted administration of beams of radiation (typically x-rays or γ-rays) 
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to tumors with the goal of reducing tumor burden at that location. Approximately 50% of 

cancer patients undergo RT at some point during their course of treatment in part 

because RT can be administered with either palliative or curative intent. RT is uniquely 

attractive in patients with inoperable tumors or incompletely resected tumors, although 

treatment doses are limited by the sensitivity of normal tissue to radiation and associated 

toxicities (114, 115).  

In order to limit toxicity in healthy tissue and enhance efficacy in tumor tissue, 

radiation doses are often fractioned into many smaller doses, as will be discussed later 

on in this chapter in the context of the Four Rs of Radiobiology (116). Today, a standard 

conventional course of radiation therapy consists of daily fractions of 1.8-2 Gy over the 

course of 6-7 weeks, resulting in a cumulative dose of 50-70 Gy administered to the 

tumor (114, 117). This contrasts with experimental accelerated or hyper- fractionated 

courses, which may consist of yet smaller doses of radiation, administered more than 

five times weekly or 2-3 times daily (discussed further in a following section). More 

recently, however, hypofractionated regimes, with fewer doses administered on the 

order of 8-30 Gy per dose, have become accepted and in some cases the standard of 

care for cancers, particularly NSCLC (118-121).  

One compelling argument for the utilization of hypo-, rather than hyper- or 

conventionally, fractionated radiation is that lymphocytes are particularly sensitive to cell 

death induced by radiation and thus any immune responses initiated to the tumor by 

radiation may be ablated before becoming effective (21, 116). Indeed, in mice it has 

been observed that following a high-dose of radiation with a series of smaller doses is 

actually less effective at inducing tumor clearance than the single high-dose alone, 

correlating with a decrease in radiosensitive CD8+ T cells and increase in more 

radioresistant myeloid-derived suppressor cells (MDSCs) (20).  
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It has long been established that lymphocytes accumulate around regressing 

tumors following irradiation (122), and radiotherapy is often poorly effective in non-

immune competent mouse models (123). There is a growing body of evidence 

supporting the conclusion that many radiation responses are dependent on antigen-

specific adaptive immunity (21, 124-128). In the following section we discuss the role of 

radiation in unleashing anti-tumor immunity as well as some of the established 

mechanisms of immune-related protection of tumors enhanced by radiation.  
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1.2 Radiation as Cancer Therapy 

Radiotherapy (RT) has been used to control the growth of tumors for well over 

100 years following observations by Pierre Curie, Antoine Becquerel and others that 

prolonged exposure to radioactive materials produced lesions that required weeks to 

heal (129). It was not until much later, however, that the mechanism of radiation-induced 

tumor regression was discovered. Radiation refers to the emission of energy in the form 

of waves or particles, and the type of radiation used to treat tumors in patients is termed 

ionizing radiation, denoting its ability to excite electrons in atoms to higher energy states. 

When atoms in cells are exposed to ionizing radiation, some high-valence electrons are 

ejected from the outer shell and react non-discriminately to induce damage to protein 

and DNA, followed by damage repair responses and potentially cell death. 

Approximately half of the damage caused to cells by ionizing radiation is 

generated by water radicals (reactive oxygen species (ROS): OH·, H· and eaq
-) that 

rapidly react to disrupt protein structures and damage DNA (indirect effects), while the 

other half of damage is induced by direct ionization of non-water molecules such as 

protein and DNA (direct effects)2 (129-131). Disruption of proteins following irradiation 

can initiate damage response pathways (132, 133) and may be responsible for a portion 

of post-RT cell death; however, protein degradation occurs naturally and frequently 

during the lifespan of a cell and damaged proteins may be turned over without lasting 

effects, while alterations to DNA have the potential to be passed on through cell 

divisions and cause lasting damage to the organism. Thus, there is strong evidence that 

damage to DNA is the primary mediator of RT-induced therapeutic responses (129, 134) 

                                                           
2 Although water comprises about 80% of cells, the role of water radicals in initiating damage 
after irradiation is dampened by the presence of natural ROS scavengers (Sevilla 2016) 
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and mammalian cells have multiple, overlapping pathways designed to maintain the 

integrity of DNA sequences.  

 

1.2.1 Radiation and the DNA Damage Repair Response 

For mammalian cells, a relatively small dose of ionizing radiation (1-2 Gy) can 

trigger the formation of thousands of DNA lesions, primarily in the form of base damage 

or single-strand breaks (SSBs) which can be rapidly repaired using the corresponding 

DNA strand as a template (129). Double-strand breaks (DSBs) occur less frequently but 

form when SSBs occur within 10-20 base pairs of each other on opposite strands and 

can lead to chromatin cleaving into two fragments (135), and this type of lesion is 

considered to be the most significant DNA lesion in inducing cancer cell death following 

radiotherapy. Both normal and cancer cells undergo sensing and repair pathways for 

DSBs which can result in downstream signaling responsible for delaying or stopping cell 

division and inducing senescence, mitotic catastrophe and/or cell death. 

In mammalian cells, DSBs are sensed shortly after irradiation and most lesions 

are repaired by non-homologous end joining (NHEJ) within two hours. DSBs cause 

relaxation in the chromatin fiber and post-translational modification of histones (e.g. 

acetylation) (134) and allow the initial direct sensors of double-stranded breaks, Ku70/80 

heterodimers, to bind the blunt end of the DNA phosphate backbone (136). Bound Ku 

complexes recruit the DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-

PKcs), which auto-phosphorylates and recruits DNA polymerase (DNA pol μ and pol λ), 

nuclease (Artemis), and ligase (DNA ligase IV, XRCC4, and XLF) subunits to fill in 

overhang regions, clip away residual or damaged single-stranded DNA bases and ligate 

the previously broken ends together (137, 138). Notably, although NHEJ is the preferred 
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method of mammalian cells to repair damage throughout the cell cycle (139, 140), the 

process is more prone to inserting or deleting bases in the repaired strand than 

homologous recombination, discussed below, and may result in significantly altered 

transcript structure or function. This potential disadvantage is counterbalanced, however, 

by the relative speed with which DNA-PK-dependent NHEJ resolves DSBs meaning that 

this method of repair does not have a clear role in slowing cancer cell cycle progression 

(141, 142).  

While NHEJ occurs most commonly when DSBs occur during the majority of the 

cell cycle, its high-fidelity counterpart homologous recombination (HR) occurs mainly 

during late S/G2 phase, after the chromatids have been replicated and joined by a 

centromere (139). HR is less error-prone than NHEJ due to the presence of the 

duplicate sister chromatid as a template for repair (143). The precise mechanism for the 

recruitment and activity of HR machinery is still under investigation, but it appears that 

after Ku proteins bind to DSBs, if NHEJ fails, the cell attempts to repair the damage 

through HR (144-146). Components of the Mre11-Rad50-Nbs1 (MRN) complex bind to 

homoduplex DNA, scan past nucleosomes to locate free DNA ends, remove Ku 

heterodimers, and allow loading of the DNA exonuclease Exo1 to initiate single-stranded 

DNA resection (147, 148). Activation of the MRN complex requires the recruitment of 

Ataxia-Telangiectasia Mutated kinase (ATM) dimers to the c-terminus of Nbs1, where 

the kinase is converted to the activated monomer form through an unknown mechanism 

(148, 149). ATM/MRN complex signaling triggers a complex cascade of recruitment and 

activation of proteins facilitating homologous recombination, including Rad51 and 

BRCA2, which are responsible for DNA end resection, invasion of the template strand by 

free DNA ends, synthesis of new DNA using the template, and reconstitution of DNA on 

the previously damaged chromosome (145, 148, 150). ATM is abundant in cells but is 
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rapidly inhibited by DNA-PKcs when NHEJ, not HR, is underway (151). In patients with 

ataxia-telangiectasia, the namesake condition describing mutational inactivation of the 

ATM kinase, cells are extremely sensitive to radiation-induced damage, to the point 

where radiotherapy can be lethal (152). 

An alternate pathway of DSB repair by homologous recombination following 

irradiation occurs solely during S phase (interphase) while chromosomes are duplicated 

into sister chromatids. As the template helix is unwound at the replication fork, DNA 

lesions can cause stalling of DNA-synthesizing polymerases triggering extension of long 

stretches of single-stranded DNA (ssDNA) or collapse of the replication fork resulting in 

single-ended double-stranded breaks on one side of the fork (153). In these cases, 

ssDNA is rapidly coated by replication protein A (RPA) complexes and the ATM- and 

Rad3- related kinase (ATR) localizes to the lesion via its necessary binding partner ATR-

interacting protein (ATRIP) (154). Once bound to the lesion, ATR is activated primarily 

by DNA topoisomerase II binding protein 1 (TopBP1) and initiates Rad17-dependent 

homologous recombination, similar to that mediated by ATM (143, 155).  

The apical kinases of these DNA DSB repair pathways, DNA-PKcs, ATM and 

ATR, are members of the phosphoinositide-3-kinase-related protein kinase (PIKK) family 

and share sequence homology and activity (143), although the pathways of activation 

are distinct as described above. These kinases have numerous roles in a vast array of 

activities coordinating DNA repair, cell cycle progression, senescence, apoptotic 

signaling and more, and significant interplay exists between the kinases (143, 156). 

Inhibition of cell cycle progression is a significant consequence of activation of DSB 

repair pathways, particularly ATM- and ATR- dependent mechanisms which are 

implicated in the phosphorylation of over 900 sites on over 700 proteins (157). Both 

ATR, via phosphorylation of Chk1, and ATM, via phosphorylation of Chk2, halt cell cycle 
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progression during S/G2 phase to allow for repair prior to mitotic progression (158, 159). 

Activation of cell cycle checkpoints allows time for the cell to repair DNA damage but in 

cases where the damage is too significant to be repaired cell death may occur. 
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Fig. 1-1 The cell cycle and DNA double-strand break (DSB) repair pathways. Cell 

division occurs over the course of four phases: G1 (gap 1), S (synthesis), G2 (gap 2), and 

M (mitosis), while cells not actively undergoing cell division reside in G0 phase. The 

replicative cell cycle begins in G1, where cells increase in size and prepare for DNA 

synthesis in S phase, where DNA condenses and is replicated to form pairs of sister 

chromatids. In G2, cells continue to grow and produce machinery required for the 

completion of mitosis. During M phase (divided further into prophase, metaphase, 

anaphase, and telophase), sister chromatids bind to spindles, line up at the metaphase 

plate, and are pulled to opposite poles before the cell divides into two daughters in a 

process of cytokinesis. DSBs generated by cell irradiation can be repaired by different 

processes depending on the cell cycle phase. During the majority of the cycle, DSB 

repair is completed rapidly by DNA-PK-dependent non-homologous end joining (NHEJ). 

While DNA is being replicated in early S phase, ATR-dependent homologous 

recombination occurs at the DNA replication fork. During late S and G2 phase while 

chromatids are copied, ATM-dependent homologous recombination can occur.  

G1 

G2 

M 
S 

G0 
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1.2.2 Lethal Radiation and the Induction of Cell Death 

A major target of ATM/ATR activation is the phosphorylation of the protein p53 at 

serine-20 and serine-15, respectively, allowing for the stabilization and conversion into 

the tetrameric transcription factor form. Ionizing radiation is a well-established initiator of 

p53 activity, both through activation of the protein directly and the inhibition of its 

inhibitors, including Mdm2 (160). P53 has been extensively studied due to its role as a 

key tumor suppressor; indeed its gene, TP53, is one of the most commonly mutated 

genes in human cancers, demonstrating the selective advantage cancer cells have in 

the absence of regulation by p53 (161). The protein has many overlapping roles in basic 

cellular pathways including in DNA damage repair, cell cycle progression, apoptosis, 

senescence, angiogenesis and metastasis (162, 163). How p53 switches between 

functions is not yet clear but appears to involve epigenetic modification to the protein 

following stabilization to trigger arrest and repair or initiate activation of cell death 

pathways (164, 165).  

Studies in wild-type and p53-deficient murine thymocytes demonstrated that p53-

dependent mechanisms are key in the induction of apoptosis following cell irradiation 

(166, 167). Following cellular irradiation, apoptosis can occur within several hours as the 

transcription factor p53 activates pro-apoptotic genes, including those of the Bcl-2 family, 

which play a role in permeablizing the outer membrane of mitochondria allowing for 

formation of the apoptosome. This complex, activated by cytosolic cytochrome c, 

mediates activation of caspase-9, allowing for cleavage and activation of the effector 

caspases 3, 6 and 7 (168). Caspase-dependent apoptosis results in degradation of 

chromosomal DNA, degradation of nuclear and cytoskeletal proteins, nuclear 

fragmentation, formation of apoptotic bodies and ultimately cell death (169). p53 also 

initiates cell-extrinsic pathways through the upregulation and export of death receptors, 
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which are also mediated by caspases 3, 6 and 7 (168) and will be discussed briefly in 

the section below on sublethal radiation and induction of anti-tumor immunity. 

Lymphoid and myeloid lineage cells are among the most radiosensitive 

populations, where apoptosis appears to be the main form of cell death initiated by 

radiation. It seems, however, that apoptosis is less significant in cells of epithelial origin, 

from which many solid tumors are derived (168). Additionally, many cancer cells harbor 

inactivating mutations in p53-dependent pathways and are dysfunctional in normal 

apoptotic signaling. In these cases, cell death by p53-independent mitotic catastrophe is 

more likely to occur (170). 

Mitotic catastrophe is considered to be the major pathway of cell death following 

radiation in tumor cells of non-hematopoietic origin. Cells which are undergoing mitotic 

catastrophe are morphologically distinct from those undergoing apoptosis most notably 

by their greatly increased size: this process results from aberrant mitosis where cells do 

not appropriately segregate chromosomes and is characterized by the formation of 

multiple nuclei, abnormally structured nuclei, and/or micronuclei: small extra-nuclear 

structures containing fragments of DNA (some of the immunological consequences of 

micronucleus formation are discussed in a future section). Mis-segregation of 

chromosomes leading to micronuclei formation frequently occurs as a result of mis-

repair or incomplete repair of chromosomes following DSB induction by radiation 

resulting in lagging chromosomes or chromosome fragments during anaphase 

separation (171), but may also be triggered by overduplication of centrosomes 

generating division of chromosomes over more than two poles (172). 

Mitotic catastrophe appears to be initiated in part by uneven condensation of 

chromatin around nucleosomes, characteristic of premature entry into mitosis prior to 

completion of S/G2 as a result of faulty cell cycle checkpoint signaling (172). Following 
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irradiation, this may occur as a result of incomplete cell signaling where, for example, a 

deficiency in p53 results in premature entry into M phase past a dysregulated G2/M 

checkpoint (168). Mitosis will then progress but halt at the spindle assembly checkpoint, 

also known as the mitotic checkpoint, prior to anaphase; in part because many normal 

cell processes are paused during mitosis, this delay can lead to apoptotic signaling in 

competent cells and be fatal (173, 174). However, transformed cells are often able to 

adapt to and progress past the mitotic checkpoint to complete M phase, but fail to 

undergo cytokinesis and enter subsequent the G1 phase with tetraploid or greater 

chromosomes (168). Therefore, aberrant cells which will undergo death by mitotic 

catastrophe may complete one or more division cycles prior to cell death, which may 

occur as a delayed response 2-6 days following the initiation of radiotherapy. 

 

1.2.3 The Rs of Radiotherapy  

As mentioned previously, radiotherapy has been used for the treatment of cancer 

for more than a century with great debate about the most effective way to administer 

radiation treatments. Initial treatments of patients mostly utilized what is now called 

hypofractionated radiation with single or very few treatment doses administered but with 

very little control or quantification regarding the dose. By 1910, radium-contact therapy, 

where a radioactive source was placed near the tumor for 24 hours at a time repeated at 

an interval of six weeks, was popular and was still in use by 1951 when it was famously 

used in the treatment of cervical cancer in Henrietta Lacks, from whom the cell line HeLa 

was derived (175). 

Very gradually, sentiments shifted away from single-, high-dose radiotherapy. At 

the turn of the 20th century, Claudius Regaud began experiments in rodent testes where 

it was first observed that undifferentiated cells and those undergoing mitosis were more 
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sensitive to cell death by irradiation (175). He expanded on these results in the 1920s 

with the observation that while a single dose exposure of ram’s testes was sufficient to 

induce severe skin injury, it did not cause sterilization; however, breaking that dose into 

fractions did sterilize the animal (176). By the late 1920s and early 1930s, studies 

primarily in head and neck cancer patients using fractionated regimes presented by 

Henri Coutard generated interest in dose fractionation over periods longer than forty 

days with significantly improved results in patients (175, 177, 178). Dose fractionation 

has become the standard of care for the majority of malignancies in the time since 

Coutard’s seminars following these observations and studies describing the sparing 

effect of dose fractionation on normal tissue. 

In 1975 H. Rodney Withers published the foundational article “The Four R’s of 

Radiotherapy” upon which many students of radiobiology base their mechanistic 

understanding of how fractionated radiation influences treatment outcomes (116). The 

four Rs are, briefly described, as follows:  

1. Repair: Damage to cells following irradiation is distributed randomly and thus the 

probability of inducing cell death is equal for all cells in the treatment field receiving 

the same dose. In the examples provided, and in accordance with the findings of 

others (179), cells irradiated ex vivo have similar sensitivity to radiation-induced 

death based on the tissue of origin rather than malignant status; that is, cancer cells 

are not more sensitive to radiation than normal cells. All cells, if unable to sufficiently 

repair the initial injury, are more sensitive to the induction of cell death following 

subsequent doses of radiation due to the accumulation of “sublethal (multihit) 

events.” Repair of sublethal injury to DNA, which has been discussed above, is 

dysregulated in cancer cells as a necessary component of the Hallmarks of Cancer 

in the evasion of cell death (2, 3) and thus multiple hits to key genes may be required 
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before the damage is catastrophic enough to induce cell death. Cells in normal 

tissues are unable to complete mitosis without repairing damage and thus are less 

susceptible to the accumulation of sublethal hits. 

2. Reoxygenation: It has been observed since the 1950s that hypoxia enhances the 

ability of cancer cells to evade cell death following irradiation (180). This effect is 

predominantly due to the chemical reactions resulting in DSBs: radicalized DNA 

(DNA·) generated by ionization or reaction with free radical molecules derived from 

water (131) generates lesions at the deoxyribose sugar moieties that are only fixed in 

the presence of oxygen (O2); however, under reducing conditions DNA radicals are 

repaired by siphoning hydrogen from sulfhydryl (SH) groups present in nearby 

proteins (181, 182). It is estimated that in order to affect the same degree of DNA 

damage in a hypoxic environment as an aerobic environment, 2-3 times the dose of 

radiation is required (116, 181). In dose fractionation schemes, however, incremental 

reoxygenation of the tumor occurs as cells die (reducing O2 consumption) and the 

mass is revascularized (116). This mechanism appears to be key to the efficacy of 

fractionated radiotherapy, gradually reducing the dose required for therapeutic 

efficacy. 

3. Redistribution: One of the founding principles of radiobiology, the “Law of Bergonié 

and Tribondeau,” was proposed in 1906, stating: “X-rays act on cells inasmuch 

efficiently as cells have a greater reproductive activity, their karyokinetic fate is 

longer, their morphology and function are at least definitively fixed. Hence from this 

law it is easy to understand that roentgenisation [radiation] destroys tumors without 

destroying healthy tissues…” (179). This broad statement that rapidly proliferating 

cells, with longer mitotic phases and less well-differentiated statuses, may be in part 

mechanistically explained by the third R: redistribution. As Withers describes, some 

stages of the mitotic cycle confer greater radiosensitivity to dividing cells than others: 
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cells in G1, G2 and M phases are more radiosensitive than those in late S phase. 

When a non-synchronized pool of cells is irradiated (as in a tumor), those cells in 

more sensitive phases are more readily eliminated causing redistribution 

(synchronization) of the remaining cells into radioresistant portions of the cell cycle. 

When subsequent doses of radiation are administered, cells that were previously 

resistant will have progressed into more-sensitive phases as the population 

regenerates. Accordingly, cells which are rapidly dividing, as cancer cells, are more 

radiosensitive than slowly dividing cells or those that are terminally differentiated 

(non-dividing) (175) due to the enhanced frequency with which they reach mitosis, 

triggering the potential for mitotic catastrophe and checkpoint-mediated apoptosis in 

the induction of cell death by irradiation.  

4. Regeneration/Repopulation: Within the field of radiation, both normal cells and 

cancer cells receive equivalent doses of radiation damage in a somewhat random 

distribution. As stated previously, cells that are rapidly dividing are more prone to 

dying in response to that damage and because of that, ideally, cancer cells die in 

greater proportions than normal cells following irradiation. Unfortunately, rapidly 

proliferating cells can also repopulate much faster than normal cells, outpacing the 

intervals at which fractionated radiation is administered. In some cases, tumor 

masses continue to grow despite radiation treatment and radiation may be given 

more frequently (termed accelerated fractionation or hyperfractionation3) in order to 

                                                           
3 In a 1983 follow-up paper, H Rodney Withers and others (Thames 1983) defined accelerated 
fractionation as “overall time shorter than conventional, achieved by giving 2 or 3 doses daily; 
total dose and fraction size similar to conventional” and hyperfractionation as “fractional doses 
smaller than conventional, given 2 or 3 times daily to achieve an increase in the total dose given 
in the same overall time as conventional.” Both accelerated and hyper- fractionated radiation are 
administered more than five times weekly but the doses given in hyperfractionated regimes are 
also smaller than conventional regimes; thus, accelerated regimes take the least amount of time 
to achieve a fixed dose while hyperfractionated and conventional regimes can take similar 
amounts of time. 
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attempt to control cancer cell repopulation (183). Ultimately, the principle of 

repopulation guides the design of radiation therapy toward timing doses to reduce as 

much as possible the number of surviving clonogenic cancer cells which may 

ultimately lead to recurrence of disease, with the understanding that early-

responding normal tissue may be increasingly damaged as treatment is 

accelerated4. As a result, fractions are typically administered no fewer than six hours 

apart in order to allow for the repair of sublethal hits in normal tissue which are 

estimated to resolve within that time period (184).  

The “Rs of radiotherapy” have now been expanded to include radiosensitivity, 

describing the intrinsic difference in cell-type specific responses to radiation defined by 

the steepness of a curve mapping the radiation dose versus the surviving fraction of 

cells (185). Calculating the dose response of irradiated tissue is notoriously complex, 

making comparison of treatments across tumor types particularly difficult. It is well 

established in radiobiology, for example, that dose fractionation effects are not linear; 

that is, fifteen doses of 2 Gy is not equivalent to one dose of 30 Gy. An approximation of 

dose equivalence is represented by the biologic equivalent dose (BED), which is based 

on a combination of linear and quadratic modeling: 

𝐵𝐸𝐷 = (𝑡𝑜𝑡𝑎𝑙 𝑑𝑜𝑠𝑒) × (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠) 

𝐵𝐸𝐷 = (𝑛𝑑) × (1 +
𝑑

𝛼 𝛽⁄
) 

                                                           
4 The terms early responding tissue and late responding tissue refer to the time it takes for normal 
tissue to demonstrate radiation-induced toxicities (e.g. loss of function, death). Early responding 
tissues (skin, mucosa, intestinal lining) express peak injury 2-3 weeks after completion of 
standard radiotherapy regimes; late responding tissues (spinal cord, kidney, lung) may take 
months or years to express peak injury. (Hall 2012) 
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where n is the number of fractions, d is the dose per fraction, α describes the linear 

component of the curve (reflecting death induced by a single lethal hit) and β describes 

the quadratic component (reflecting death resulting from multiple sublethal hits) (129, 

186). The α/β component is used to define the intrinsic radiosensitivity of affected tissue 

types, where early-responding tissues such as skin and mucosa have α/β ratio 

estimated around 10 Gy and slow-proliferating late-responding tissues such as the 

spinal cord are estimated to have a ratio around 2-3 Gy; this value corresponds to the 

dose at which single- and multiple- hit killing is approximately equal. Notably, this 

modeling is more accurate at conventionally low doses of radiation where normal cells 

are able to repair damage in between dose administrations; at higher doses (as used in 

hypofractionated regimes such as SBRT), the killing of non-cancer components of the 

tumor such as endothelium can enhance the destruction of tumor architecture (187). 

Together, these five principles help to mechanistically describe how fractionated 

radiotherapy takes advantage of differential responses of normal and cancerous tissues 

to maximize radiation-induced cell death. However, as described briefly above, immunity 

plays a significant role in the control of cancers following radiotherapy in vivo and 

immunological factors help to explain why in some cases administering more radiation 

does not necessarily mean more effective tumor killing.  

 

1.2.4 Sublethal Radiation and the Induction of Anti-Tumor Immunity 

Models of radiotherapy traditionally focus on maximizing lethal radiation: that is, 

how radiation can be administered in order to directly kill as many cancer cells as 

possible while keeping normal tissue toxicity at a manageable level. However, as the 

field of radiobiology builds a greater understanding of how the immune system interacts 
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with tumor cells a greater appreciation for the role of sublethal radiation is developing. 

While the direct induction of cancer cell death and reduction of tumor burden 

undoubtedly plays a very significant role in eradication of disease following 

administration of radiation therapy, it cannot be ignored that almost inevitably some 

cancer cells will remain viable after treatment.  

It is tempting to introduce a sixth R of radiobiology into the discussion of 

appropriate dose fractionation to enhance the tumor killing: for example reactivation of 

anti-tumor immune responses as proposed by Boustani et al (188). Total-body 

irradiation, as is used in preparation for organ transplantation, has clearly suppressive 

effects to the degree that about 3.5-4.5 Gy can inhibit the body response to new 

antigens by ablating lymphocyte populations (129). However, in localized therapy tumor 

irradiation can set the stage for an influx of potent immune cells able to take advantage 

of the newly altered environment.  

1.2.4.1 Activation of cGAS-STING 

As mentioned previously, radiation responses frequently depend on the ability of 

the host to form a CD8+ T cell response to tumor antigens (21, 124-128, 189-191); a key 

driver of this response is intratumoral secretion of type I interferon (IFN-I) following 

activation of the cGAS-STING pathway.  

In eukaryotic cells, DNA is typically restricted to the cell nucleus and nucleic acid 

sequences are transmitted through the cytosol with messenger RNA transcripts; DNA in 

the cytoplasm is therefore sensed as pathogen invasion or host damage. In the cytosol, 

nucleic acids may be sensed through retinoic acid-inducible gene I (RIG-I)-like receptor 

family members including RIG-I, MDA5 and LGP2 (192), ERAdP (193), and in the case 

of double-stranded DNA cGAMP synthase (cGAS) (194, 195) upstream of the secondary 
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messenger receptor STING (196). The cytosolic DNA sensor cGAS, upon ligation with 

double-stranded DNA, produces from GTP and ATP the secondary messenger molecule 

[G(2’-5’)pA(3’-5’)p] (cGAMP), a non-canonical cyclic dinucleotide (197). Cyclic 

dinucleotides, either 2’3’-cGAMP from cGAS or cyclic di-GMP or 3’3’-cGAMP secreted 

by intracellular bacteria, trigger conformation changes in the ER resident protein STING 

(198), which in turn activates the transcription factor interferon regulatory factor 3 (IRF3) 

through the protein kinase TANK-binding kinase 1 (TBK1) (196, 199). Most notably, 

activation of STING and IRF3 lead to production and secretion of IFN-I, namely IFNβ 

(200). 

Activation of ISGs through STING leads to the production and secretion of 

proinflammatory type I IFNs α and β and binding of IFNs to the interferon-alpha/beta 

receptor (IFNAR) on the cell surface. For cells secreting IFN-I or bystander cells, ligation 

of IFNAR can trigger upregulation of antigen processing and presentation on major 

histocompatibility complexes (MHC-I and MHC-II) (201-204), can enhance T cell 

proliferation and activation by providing additional Signal 3-type signaling (54), and for 

dendritic cells specifically can enhance maturation signals and expression of CD40, 

CD80, and CD86 (205, 206). IFNAR/IFN-I signaling is critically important for regulation of 

the immune response to pathogen invaders, playing additional roles in the production of 

anti-pathogenic effector molecules and chemokines (207-209), and has been 

demonstrated to play an equally essential role in the efficacy of some anti-cancer 

therapies including radiotherapy (125). This may be in part due to the enhancement of T 

cell recruitment to interferon-inflamed tumors via production of CXCR3 ligands including 

IP-10 (CXCL10) (128). T cell activation frequently occurs in secondary lymphoid organs 

such as lymph nodes rather than at the site of infection or within tumors: this process, 

termed cross presentation, is described further in a later section. In order for activated T 
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cells to exact cytotoxic function they must then traffic from the lymphoid organ into the 

peripheral blood and be actively recruited by chemokines into inflamed tissue. Notably, T 

cell recruitment is not antigen-specific and following irradiation, TCR diversity has been 

observed to increase, indicating the recruitment of a wide variety of potentially reactive T 

cells (210, 211). 

Following cell irradiation, as previously described, DSBs form in chromosomal 

DNA leading to the formation of micronuclei. During subsequent rounds of cell 

replication, micronucleus membranes are frequently disrupted (212), exposing the DNA 

content to cytoplasmic sensors. Cancer cells with micronuclei can respond to damaged 

DNA themselves (194, 195), or they can transfer it to tumor infiltrating phagocytes (213, 

214). Significantly, activation of STING following radiotherapy promotes the induction of 

effective anti-tumor immunity in numerous tumor models (125, 194, 214, 215), 

demonstrating the key role of cytosolic sensing of damaged DNA downstream of tumor 

irradiation. The induction of IFN-I in the radiation-induced anti-tumor immune response 

appears to be essential but its role is unclear and may be multifaceted, from enhancing 

dendritic cell functions to increasing antigen presentation on cancer cells (discussed 

further in Chapter 3) (201, 216). 

1.2.4.2 Vaccination in situ 

Radiation has long been used as a local therapy in the treatment of cancer but 

observations that radiation can (rarely) contribute tumor regression outside of the field, 

known as the abscopal effect, highlight that irradiation of one site can have systemic 

effects transmitted by the immune system (217, 218). Leaders in the field of radiation 

immunology including Sandra Demaria and Silvia Formenti have built a case that 

radiation-induced vaccine effects in situ are a key mediator of tumor clearance in vivo 

(219, 220).  
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Effective vaccination requires a source of antigen, in the case of T cells 

necessarily a unique peptide, and an adjuvant to stimulate a pro-inflammatory adaptive 

immune response rather than a short lived “clean up” response. Thus, radiation-induced 

vaccination effects are thought to result in part from the generation of danger-associated 

molecular pattern (DAMP) signals by damaged or dying cells following irradiation, 

including cell surface exposure of endoplasmic reticulum (ER) resident chaperones 

calreticulin (CRT) and Erp57, translocation of the nuclear protein HMGB1, and 

extracellular release of ATP (221-223) which function as immunological adjuvants. 

Additionally, release of tumor-associated DNA and induction of STING signaling in 

phagocytes appears to play a significant role in the radiation-induced CD8+ T cell 

response (125, 214). Along with the uptake of tumor associated antigens, these damage 

signals may drive dendritic cell maturation, trafficking to tumor draining lymph nodes 

(TDLNs), and activation of tumor-reactive CD8+ T cells (126, 190, 224-226). Following 

tumor irradiation in vivo, the number and proportion of activated tumor-reactive CD8+ T 

cell increases in the TDLN, indicating the activation of a vaccination response (126, 

227).   

While radiotherapy is a localized therapy that primarily modulates immunity within 

the field of radiation, i.e. the tumor, there is some evidence to suggest that sufficient 

generation of effector T cells downstream of tumor radiation may be able to boost anti-

tumor responses systemically to control metastatic disease (228). At the beginning of 

this thesis project, radiation-mediated vaccination was the dominant mechanistic 

rationale for synergy between radiotherapy and the immune system. In Chapter 2, we 

address the question of whether vaccination effects might be responsible for radiation-

mediated tumor control by CD8+ T cells in mouse models of cancer.  

1.2.4.3 Augmentation of Cancer Cell Susceptibility to Control by T Cells 
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In addition to generating CD8+ T cells able to respond to tumor-specific 

neoantigens through in situ vaccination effects and enhancing recruitment of these cells 

to the tumor through the production of pro-inflammatory chemokines and cytokines, 

radiation can alter the susceptibility of tumors to killing by T cells. Among the most 

compelling models for increased sensitivity of cancer cells to T cell-mediated killing is 

the upregulation of MHC-I molecules due to the integral role of MHC-I in directing CD8+ 

T cells. It is clear that radiation increases the expression of MHC-I on cancer cells (201, 

229, 230) and specifically presentation of tumor-associated neoantigens (227). 

Proposed mechanisms of radiation-induced MHC-I upregulation are discussed in the 

following section and the significance of radiation-induced upregulation of MHC-I is 

explored in Chapter 3.  
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1.3 Major Histocompatibility Complex I (MHC-I) 

As described previously, CD8+ T cells recognize cognate antigen only when it is 

bound to MHC-I molecules. This phenomenon, known as MHC restriction, was first 

realized by Rolf Zinkernagel and Peter Doherty when they found immune spleen cells (T 

cells) could only lyse lymphocytic choriomeningitis virus (LCMV) infected cells if the 

MHC-I haplotype from the source matched (24, 231). CD8+ T cells require antigen 

sources (proteins or protein fragments) to be processed internally for presentation: 

typically only a small fragment of the protein, an 8-10 amino acid long peptide chain, is 

presented on MHC-I. This model of recognition is unique and contrasts, for example, 

with antigen recognition by B cells, another member of the adaptive immune system, 

which can bind intact exposed antigen regardless of context (22).  

MHC-I molecules are glycoproteins expressed on all nucleated cells in most 

vertebrates with the essential immune function to present up-to-date samplings of 

intracellular proteins to CD8+ T cells. The constant cycling of peptides on MHC-I allows 

the immune system to survey tissue for novel peptides resulting from infection, 

predominantly from intracellular viruses, and genetic mutations. This process provides 

the immune system with a mechanism of detection for potentially carcinogenic mutations 

by allowing recognition of novel peptide sequences resulting from altered gene 

sequences as neoantigens (genetic mutations are not directly surveilled by immune 

cells). Thus, antigen presentation on MHC-I plays an essential role in the recognition of 

cancer cells by the adaptive immune system.  

 

1.3.1 Antigen Processing and Presentation on MHC-I 
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Antigen presentation on MHC-I is a tightly regulated process that has been 

progressively described over the more than 80 years since the discovery of the H-2 

antigen in mice and more than 60 years since the discovery of its equivalent, the HLA 

complex, in humans. The original studies of major histocompatibility molecules 

described their function first in the context of transplantation, where different MHC alleles 

caused rejection of a transplanted tumor in mice or febrile response to blood 

transfusions in humans (232). Since these early discoveries, much has been elucidated 

about the structure and significance of MHC-I in health and disease.  

1.3.1.1 MHC-I Structure 

MHC-I molecules are composed of two subunits: the polymorphic heavy chain, 

known as H2 in mice and HLA in humans, and the monomorphic light chain β2-

microglobulin (β2M) whose structure is also species-specific. The MHC-I heavy chain is 

composed of a long polypeptide strand with three domains, α1 and α2 which compose 

the antigenic peptide binding superdomain, and c-terminal α3 which contains the 

transmembrane domain and β2M binding domain. The superdomain consists of eight 

antiparallel β sheets supporting two α helix structures, one contributed by each α1 and 

α2: together, these helix structures form the walls of the peptide binding groove (12). 

MHC-I complexes present peptides of 8-10 amino acids in length, although 5-10% of 

bound peptides may exceed this length and extend past the edge of the binding cleft 

(23). Polymorphism within the superdomain is responsible for variable antigenic peptide 

binding affinities to different MHC-I haplotypes; this variability is thought to decrease the 

susceptibility of an entire population to an infectious agent by increasing the chance that 

some individuals will bind and present immunogenic peptides (12). 

1.3.1.2 Antigen Presentation Pathways 
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Assembly of MHC-I complexes occurs in the endoplasmic reticulum (ER) 

following translation of the MHC-I heavy chain (HC) and β2M into the ER membrane. 

Once formed, HC molecules stabilize by associating with the membrane-bound 

chaperone calnexin (CXN), commonly bound to Erp57. Once bound to β2M, the HC 

swaps CXN for the soluble chaperone calreticulin (CRT) bound to Erp57: notably, CXN 

and CRT are also involved in quality control for the glycosylation of the MHC-I HC (12, 

233). Together this complex associates with the peptide loading complex (PLC), 

described below (12).  

1.3.1.2.1 Generation, Presentation, and Recognition of Antigens 

In the absence of inflammation, candidate peptides are processed by the 

constitutively expressed 26S proteasome, a large barrel-shaped proteolytic complex 

made up a 20S subunit flanked by two 19S subunit “lids.” Proteins which are damaged, 

aged, or misfolded are tagged for degradation by the addition of ubiquitin (Ub) molecules 

by a cascade of E1, E2, and E3 Ub ligases. PolyUb chains of about four Ub moieties 

allow binding of the substrate to receptor components of the 19S regulatory particle (RP) 

subunit known as the proteasome lid; these Ub-tagged proteins are deubiquitinated and 

unfolded by ATPases by the RP as they pass into the 20S catalytic particle (CP). The 

CP consists of four stacked rings, two outer α rings and two inner β rings, each made up 

of seven protein subunits (12, 234, 235). Within the β rings are six catalytic active sites 

(β1, β2, and β5 on each ring) which cleave peptide bonds to ultimately form polypeptide 

chains 3-22 residues long: some portion of these peptides go on to become presented at 

antigens on MHC-I (236, 237). 

In the context of inflammatory cytokine stimulation (including by IFN-I, IFNγ, and 

TNFα), alternate proteasome subunits are produced to favor processing of peptides 

appropriate for antigen presentation, generating a modified structure is known as the 
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immunoproteasome (235, 238). Within the 20S proteasome subunit rings β1, β2, and β5 

are replaced by β1i (LMP2), β2i (MECL-1), and β5i (LMP7) which associate more rapidly 

than constitutive 20S components to preferentially assemble the immunoproteasome 

complex (235). In place of the 19S lid, the IFNγ proteasome activator PA28 can 

associate with the immunoproteasome to enhance the generation of MHC-I binding 

peptides; although this subunit is not essential for function it appears to enhance the 

yield of peptides able to bind MHC-I and may reduce generation of polypeptide chains 

too short for binding (12, 235, 239). Overall, immunoproteasome subunits demonstrate 

enhanced cleavage after hydrophobic and basic amino acid resides, favoring generation 

of peptides with C-terminal residues preferred for binding by many MHC-I alleles (12).  

In order to be presented on MHC-I, peptide chains generated by the 

proteasome/immunoproteasome must first enter the ER through the transporter 

associated with antigen processing (TAP), a heterodimeric complex made up of TAP1 

and TAP2. TAP transports peptide chains 8-12 amino acids long most efficiently but has 

been observed to transport chains as long as 40 residues long (12, 240); protein strands 

which are too long are trimmed once in the endoplasmic reticulum at the N-terminal end 

to an appropriate length for MHC-I presentation by the ER-associated aminopeptidase 

(ERAAP) ERAP1. TAP is an essential subunit of the PLC and associates with MHC-

I/CRT/Erp57 via binding to tapasin (Tpn). Tpn stabilizes the open peptide-binding groove 

of MHC-I until a peptide of appropriate affinity binds and initiates the final folding of the 

ligand-binding groove; this stabilization of the structure releases MHC-I from the PLC 

and triggers export of the fully assembled complex through the Golgi apparatus to the 

cell surface for extracellular antigen presentation (12).  
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Fig. 1-2 Antigen processing and presentation on major histocompatibility complex 

class I (MHC-I). A) Ribosomes in the cytosol or endoplasmic reticulum (ER) synthesize 

new proteins, up to 30% of which are considered defective and are tagged with ubiquitin 

substrates for refolding or degradation. B) Defective ribosomal products, old proteins, 

and damaged proteins are degraded into polypeptide fragments by the proteasome or, in 

the context of inflammatory stress, the immunoproteasome. C) Peptide fragments can 

be further degraded or can be transported in an ATP-dependent manner into the ER for 

MHC-I presentation through heterodimeric channels made up of TAP1 and TAP2 protein 

subunits which favor the transport of polypeptides 8-12 amino acids long. D) Peptide 

fragments within the ER can be further clipped for optimal protein loading by ERAAP. E) 

Tapasin proteins stabilize the open peptide-binding groove of MHC-I molecules to allow 

for cycling of polypeptides until one of sufficient affinity stabilizes the complex and 

initiates dissociation from the peptide loading complex. F) Stable peptide-MHC-I 

complexes (pMHC) are exported from the ER and presented at the cell surface for 

recognition by immune cells. 
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The T cell receptor (TCR) interacts with MHC-I complexes bound to peptide 

(pMHC) via the variable regions of the subunits TCRα and TCRβ, known respectively as 

Vα and Vβ. At the terminal end of the Vα and Vβ structures are six complementarity-

determining regions (CDRs), CDR1, CDR2 and CDR3 for each the α and β chains, 

forming peptide loops which bind the pMHC; CDR3 contains the greatest polymorphism 

derived from V(D)J recombination and thus the CDR3α and CDR3β loops are 

responsible for antigen recognition within the MHC peptide binding groove (12, 23, 241).  

1.3.1.2.2 Cross Presentation 

Among antigen presenting cells, dendritic cells (DCs) have the unusual ability to 

present exogeneously-derived protein antigens on MHC-I in a process termed cross 

presentation. Cross presentation allows DCs to be licensed by CD4+ T helper cells 

through ligation of DC-expressed peptide-MHC class II (pMHC-II) complexes, resulting 

in upregulation of costimulatory (Signal 2) molecules, and to prime naïve CD8+ T cells 

via ligation of cross-presented pMHC-I. Notably, some subsets of DCs are better able to 

cross present than others, the most efficient of which appears to be Batf3-dependent 

CD8+ XCR1+ DCs also known as inflammatory DCs or DC1s (242, 243).   

DCs sample their surroundings through a process of phagocytosis, engulfing 

extracellular fragments in a membrane-bound vesicle called the phagosome. Typically, 

phagosomes undergo a process of acidification through fusion with lysosomes called 

maturation, leading to the destruction of microbial contents; however, in the presence of 

immune adjuvants such as TLR ligands, DCs slow the process of acidification to favor 

preservation of antigen structure (37). Upon receiving adjuvant signals, DCs undergo a 

process of maturation, downregulating phagocytosis and presentation of activation 

receptors while upregulating expression of costimulatory molecules (CD80/86) and 



 

43 
 

chemokine receptors responsible for lymph node trafficking (244). Significantly, T cells 

stimulation by DCs in the steady state (i.e. DCs not stimulated by inflammatory signals) 

results in T cell tolerance (12, 245).  

Protein antigens preserved from the phagosome can enter the ER for protein 

loading through either of two pathways, the first of which is the vacuolar pathway. In the 

vacuolar pathway, peptides degraded within acidified phagosomes are loaded onto post-

Golgi MHC-I molecules in a TAP-independent manner. This process requires 

phagosome-derived peptides to outcompete peptides loading through the classical TAP-

dependent pathway and occurs most efficiently in TAP-expressing cells (242). In the 

second pathway for ER trafficking, the cytosolic pathway, protein fragments are exported 

from the phagosome into the cytosol either through an unknown transport channel 

protein or through disruption of the phagosomal membrane (242). Once in the cytosol, 

exogenously-derived proteins are processed through the classical proteasome- and 

TAP- dependent antigen processing pathway and are loaded onto MHC-I as described 

previously (246). 

Significantly, antigen presentation on APCs is essential for priming optimal CD8+ 

T cell responses but antigen presented in the context of a DC does not guarantee 

elimination/killing of the original source of the antigenic protein. This means that even in 

cases where a vaccine generates a potent CD8+ T cell response through presentation of 

tumor antigens on cross presenting DCs, cancer cells can still evade immune detection 

through downregulation of MHC-I antigen presentation pathways. Known mechanisms of 

MHC-I evasion are discussed further in this section. 

 

1.3.2 Genetic Regulation of MHC-I  
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MHC-I presentation requires the simultaneous expression of multiple genes in 

the same cells with many of these genes clustered together in the Mhc locus. In 

humans, the Mhc gene region is located on the short arm of chromosome 6 and is 

subdivided into the MHC-II region, MHC-III region, and MHC-I region; the MHC-I region 

contains genes coding for classical HLA-A, HLA-B, and HLA-C heavy chain molecules 

as well as non-canonical HLA heavy chains. In mice, the Mhc gene region is located on 

chromosome 17 and is similarly divided into regions by MHC class; however, in rodents 

a portion of the MHC-I region has been translocated so from the centromere the gene 

regions order: MHC-I, MHC-II, MHC-III, and MHC-I. In mice, the classical heavy chain 

molecules are H-2D, H-2K, and H-2L. For both mice and humans, non-MHC genes 

which are integral to antigen presentation on MHC-I are also contained within the Mhc 

region, including the genes for tapasin, TAP1, TAP2, and LMP7; however, in both 

humans and mice the gene for β2m is located on a separate chromosome (chromosome 

15 and 2, respectively) (12).  

Expression of classical MHC-I elements is mediated by three major regulatory 

elements: enhancer A, IFN-stimulated response element (ISRE), and the SXY module. 

Within MHC-I promoters, enhancer A elements are bound by NF-κB/rel family members 

and ISRE elements are bound by interferon regulatory factors (IRFs) including IRF1; 

these transcription factors notably mediate transcription of MHC-I proteins downstream 

of IFNγ and TNFα stimulation (247-249).  The SXY module, comprised of S/W, X1, X2 

and Y boxes, binds a number of nuclear factors including RFX (comprised of RFX5, 

RFXAP, and RFXANK/B), CREB/ATF, and NF-Y, which require a transcriptional 

regulator, either the Class I Transactivator (CITA, or NLRC5) or the Class II 

Transactivator (CIITA), to coordinate enhanceosome assembly (247, 250, 251).  
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NLRC5 and CIITA are NOD-like receptor (NLR) family members, a group of 

proteins characterized by common structural elements including central nucleotide 

binding domains (NBD, a component of a NACHT domain) and C-terminal leucine-rich 

repeat (LRR) domains (252). While the majority of research on NLRs has focused on 

those with pattern recognition or inflammasome activities in the cytosol, NLRC5 and 

CIITA primary target the nucleus and are known as master transcriptional regulators of 

MHC-I and MHC-II, respectively. Notably, NLRC5 and CIITA lack DNA-binding protein 

domains and can only exert coactivating function through binding to DNA-binding 

adaptor proteins (253). 

CIITA was first described as a key MHC-I transactivating element in the early 

1990s after being found defective in a form of MHC-II deficiency known as Bare 

Lymphocyte Syndrome (BLS) (254), a rare and heterogeneous condition grouping 

mutations in CIITA and members of the RFX protein complex. The role of CIITA in 

controlling MHC-I expression was less clear, however, and complicated by the 

overlapping adaptor proteins utilized by both the CIITA and NLRC5 enhanceosomes: in 

human patients with BLS, MHC-I expression may also be significantly reduced (255-

257). CIITA was found to contribute to transcription of β2M and MHC-I heavy chains but 

not TAP1 or LMP2 (253, 257) and is not critical for MHC-I expression in the same way it 

is for MHC-II (258, 259).  

After the discovery of NLRC5 as a regulator of MHC-I in cell lines (259), the 

relative contributions of NLRC5 and CIITA to MHC-I expression were best elucidated in 

genetic knockout mouse models. In these models, the contribution of NLRC5 or CIITA to 

MHC-I expression depends predominantly on cell type, where cells with high basal 

CIITA expression (APCs, including DCs and macrophages) are more resistant to MHC-I 

abrogation by NRLC5 deficiency than cells with low basal CIITA expression 
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(lymphocytes, including B cells and T cells) (250, 258, 260). Notably, expression of 

NLRC5 can be induced by IFNγ and, accordingly, NLRC5 deficiency reduces IFNγ-

mediated induction of MHC-I; however, it does not abrogate it (261), demonstrating 

regulation of MHC-I expression is layered with partially overlapping mechanisms. 

 

1.3.3 Tumor Suppression of MHC-I as a Mechanism of Immune Evasion 

Tumor evolution is shaped by positive selection of genes advantageous to tumor 

growth and negative selection of genes inhibiting growth or enhancing immune-mediated 

control; due to the potency of adaptive immunity in detecting and controlling tumors, 

downregulation of antigen presentation on MHC-I is a common immune evasion 

mechanism employed by tumors (9). While decreased antigen presentation is a common 

feature of cancer, total loss of MHC-I expression (i.e. biallelic loss of B2M) is less 

common (262), likely due to selective pressure from natural killer cells whose cytotoxic 

function is inhibited by the presence of MHC-I. Antigen presentation on MHC molecules 

can be reduced without total ablation by epigenetic suppression or genetic loss of factors 

regulating MHC-I expression (e.g. NLRC5) (263-265), downregulation of molecules 

involved in peptide loading onto MHC-I (266-268), loss of specific HLA alleles (269), or 

suppression of cytokine-activated pathways for augmenting MHC-I expression (e.g. loss 

of IFNγR/IFNAR or downstream JAK/STAT molecules) (270-272). 

Significantly, reduction of cognate pMHC expression on target cell surfaces can 

affect the magnitude and efficacy of CD8+ T cell responses (273); thus, rescue of MHC-I 

expression is a significant target for cancer immunotherapy. In cases where total genetic 

loss of B2M prevents augmentation of MHC-I expression, T cell enhancing therapies are 



 

47 
 

unlikely to effective and use of immunotherapy must be tailored to take this into account 

(270, 271). 

 

1.3.4 MHC-I Upreguation on Cancer Cells by Radiation 

Due to the common immune evasion tactic of cancer cells to downregulate 

antigen presentation on MHC-I, it is appealing to explore cancer therapies able to 

enhance visibility of these cells to tumor-reactive CD8+ T cells. As discussed previously, 

irradiation of cancer cells can increase their susceptibility to T cell-mediated control, 

including by upregulation of MHC-I expression. Multiple mechanisms have been 

proposed for MHC-I induction following radiation which may occur simultaneously.  

In 2006, Eric Reits and colleagues proposed that MHC-I expression after 

radiation is enhanced due to increased availability of intracellular peptides available for 

loading (229). In their model, damage sustained by irradiation triggered activation of the 

key metabolic kinase mTOR and increased transcription of genes related to the damage 

response, including DNA repair genes. The increase in bulk transcription following a 

spike in damaged proteins generated by irradiation triggered an increase in proteins 

processed through the proteasome/immunoproteasome and thus higher concentrations 

of peptides available for TAP-dependent ER transport and loading onto MHC-I 

molecules.  

An alternate mechanism of MHC-I induction by cancer cell irradiation is 

dependent on activation of the cGAS/STING and IFN-I pathways. As described 

previously, cancer cell irradiation triggers the release of dsDNA into the cytosol, 

triggering activation of the cGAS/STING pathway and triggering extracellular release of 

IFN-I including IFNβ (194). Ligation of IFNAR with IFN-I triggers downstream signaling 
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via STAT1, STAT2 and IRF9 and leads to transcription of ISGs including MHC-I related 

proteins (201, 274); in some cases, upregulation of MHC-I may be entirely dependent on 

IFN signaling (275).  

The significance of radiation-induced upregulation of MHC-I on MHC-Ilo cancer 

cells is unclear, although augmentation of MHC molecules has been used as justification 

for studies of cancer immunotherapy (276, 277). In Chapter 3, I explore mechanisms of 

radiation-induced upregulation of MHC-I and the significance of MHC modulation on 

cancer cells to CD8+ T cell responses.  
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2.1 Abstract 

It has been established in numerous cancer models that radiation-driven tumor 

clearance requires the presence of CD8+ T cells, but how radiation drives these T cell 

responses is unclear. In these studies, we built on previous work in our lab examining 

the role of radiation as an in situ T cell vaccine, which found that radiation required the 

pre-existing tumor immunity generated by tumor inoculation to exert tumor control. Thus, 

we hypothesized that radiation might function to enhance CD8+ T cell responses by 

boosting existing T cell numbers. For these experiments a live-attenuated Listeria 

monocytogenes vaccine platform expressing tumor model antigens was used to 

generate large tumor-reactive CD8+ T cell populations in the absence of tumor 

irradiation. we demonstrated that while T cells generated by Listeria vaccination traffic to 

tumors, recognize antigen in situ and have cytotoxic potential, the generation of antigen-

reactive CD8+ T cells is not sufficient to replicate the efficacy of radiation in controlling 

tumors. These experiments suggest that radiation functions poorly as an in situ vaccine 

and that other mechanisms are necessary to explain how radiation improves tumor 

susceptibility to control by CD8+ T cells.  
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2.2 Introduction 

Vaccines capable of stimulating strong T cell responses require an antigen 

capable of being recognized by the host’s T cells and an adjuvant capable of stimulating 

antigen-presenting cells (APCs) to take up and present the antigen to antigen’s cognate 

T cells (22). In the field intersecting radiation biology and immunology, the ability of 

tumor irradiation to stimulate adaptive immunity by T cells is under investigation. It is 

clear that the irradiation of tumor tissue results in the release of tumor-associated 

antigens (TAAs) and strong inflammatory damage signals (DAMPs) which can act as 

immunological adjuvants; whether radiation-induced vaccination is necessary or 

sufficient to immune-mediated tumor clearance is therefore of interest. 

Previous work from our lab demonstrated that the efficacy of radiation in 

combination with checkpoint inhibitors (antibody blockade of CTLA-4 and PD-1/PD-L1) 

requires the initial T cell priming event of tumor inoculation (124): silencing the initial 

activation of T cells at tumor challenge by CD8+ T cell depletion, blockade of dendritic 

cell (DC) maturation by αCD40L (278), or blockade of T cell egress through lymphatic 

vessels by FTY720 (279) resulted in the failure of therapy. Blockade of de novo T cell 

priming at the time of radiation, conversely, does not significantly affect therapeutic 

responses. From these results, we found that T cell priming resulting from tumor 

irradiation is not required for tumor clearance by radiation and checkpoint inhibitors. 

These studies did not address, however, the significance of radiation-mediated 

CD8+ T cell boosting, and whether this effect might be able to account for the ability of 

radiation to initiate immune-dependent control of tumors. Efficient priming of CD8+ T 

cells, as described in Chapter 1, requires the presence of cognate antigen on presented 

on MHC-I (Signal 1), costimulation by mature dendritic cells (Signal 2), and pro-

inflammatory cytokines triggering proliferation (Signal 3). Following an acute priming 
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event, the effector T cell population contracts and a small population of cells become 

long-lived memory T cells; this population can then be reactivated, or boosted, to re-

expand and control the antigen source. It is unclear whether this reactivation of tumor-

specific CD8+ T cells might account for the efficacy of T cells in controlling tumors 

following irradiation. 

In order to determine whether radiation-mediated CD8+ T cell boosting can explain 

immune control of tumors, we modeled radiation-mediated in situ vaccination with a live-

attenuated Listeria monocytogenes vaccine (280) expressing tumor model antigens. 

This vaccine is capable of generating significantly greater CD8+ T cell numbers than 

radiation-induced vaccination systemically, but these cells are unable to control tumors. 

Instead, we found that cancer cells are intrinsically resistant to killing by T cells but that 

radiation directly improves the susceptibility of cancer cells to immune control. In 

Chapter 3, I describe experiments exploring how radiation might augment the ability of 

CD8+ T cells to control cancer. 
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2.3 Materials and Methods 

Animals and Cell Lines 

Animal protocols were approved by the Earle A. Chiles Research Institute IACUC 

(Animal Welfare Assurance No. A3913-01). All experiments were performed in 

accordance with relevant guidelines and regulations. 5-8 week old C3H/HeJ mice (Stock 

#00659) and 5-8 week old C57BL/6 mice (Stock #000664) were purchased from the 

Jackson Laboratory (Bar Harbor, ME) for use in these experiments. Nur77GFP reporter 

mice were kindly provided by Dr. Weinberg (Earle A. Chiles Research Institute, Portland, 

OR)(281). 2C transgenic mice were kindly provided by Dr. Gajewski (University of 

Chicago, Chicago, IL), bred in-house and crossed with Nur77GFP reporter mice. OT-I 

transgenic mice were gifted by Dr. Redmond (Earle A. Chiles Research Institute). Pdx-

Cre mice (Stock #014647, Jackson Laboratory) were crossed with B6.129S4-

Gt(ROSA)26Sortm3(CAG-luc)Tyj/J (Stock #009044, Jackson Laboratory) to generate animals 

tolerant to SIYRYYGL peptide. B6.SJL-Ptprca Pepcb/BoyJ mice expressing CD45.1 were 

obtained from the Jackson Laboratory (Stock#002014) for in vivo cytoxicity assays. 

Survival experiments were performed with 3-8 mice per group as noted in figure 

legends.  

Cell lines were cultured in RPMI-1640 (HyClone, Fisher Scientific, Hampton, NH) 

supplemented with 10% heat inactivated fetal bovine serum (Cat#10082147, Thermo 

Fisher Scientific, Waltham, MA), 2mM L-glutamine (Cat#SH3003401, HyClone, Fisher), 

10mM HEPES (Cat#HOL06, Caisson Labs, Smithfield, UT), 100U/mL penicillin-

streptomycin (Cat#PSL01, Caisson), 1X non-essential amino acids (Cat#SH3023801, 

Fisher), 1mM sodium pyruvate (Cat#PYL01, Caisson).  
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The parental squamous cell carcinoma line SCCVII was kindly provided by Walter T. Lee 

(Duke Cancer Center Institute, Durham, NC). To generate SCCVII cells expressing 

EGFRvIII, cancer cells were transfected using Lipofectamine 2000 Transfection Reagent 

(Life Technologies, Carlsbad, CA) with MSCV-loxp-dsRed-loxp-eGFP-Puro-WPRE 

(Addgene plasmid #32702, gifted from Hans Clevers) and MSCV-XZ066-EGFRvIII 

(Addgene plasmid #20737, gifted from Alonzo Ross) and sorted on a BD FACSAria II 

cell sorter (Becton Dickinson, Franklin Lakes, NJ) for high expression of GFP (SCCVII-

EGFRvIII) and RFP (SCCVII-control) as previously described (280). The parental murine 

pancreatic adenocarcinoma cell line Panc02 was kindly provided by Dr. Woo (Mount 

Sinai School of Medicine, New York, NY). Panc02 expressing the model antigen SIY 

was kindly provided by Dr. Weishelbaum (University of Chicago, Chicago, IL), as used 

previously (124), and expresses GFP-SIY in approximately 40% of cells. Panc02SIY100 

was derived and expanded from a high GFP expressing single clone within Panc02SIY 

on a BD FACSAria II cell sorter.  

Antibodies and Reagents 

Viability staining was performed in PBS using Zombie Aqua Fixable Viability Kit 

(BioLegend, San Diego, CA) for 15 minutes prior to staining with fluorescently-

conjugated antibodies for flow cytometry. Monoclonal antibodies were used against: 

CD3 [17A2], CD4 [RM4-5], CD8α [53-6.7], CD11b [M1/70], CD45.1 [A20], CD45.2 [104], 

CD69 [H1.2F3], CD90.1 [HIS51], IFNγ [XMG1.2], H-2Kb [AF6-88.5.5.3], and TNFα 

[MP6-XT22]. Fluorescently-conjugated MHC-multimer complexes were used as follows: 

tetramer-EEKKGNYV (tEGFRvIII, NIH Tetramer Core, Atlanta, GA), tetramer-SIINFEKL 

(tOva, NIH Tetramer Core), and pentamer-SIYRYYGL (pSIY, ProImmune, Sarasota, 

FL). 
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Immunohistochemistry was performed on Zinc-fixed tumors embedded in paraffin 

preserved as described previously (282). Five micron sections were stained with primary 

αCD3 (SP7, Cat#ab16669, Abcam, Burlingame, CA) diluted in blocking buffer, 

secondary goat anti-rabbit IgG conjugated to HRP (Cat #AP1879, EMD Millipore, 

Burlingame, MA), and ImmPACT DAB Peroxidase (HRP) Substrate (Cat#SK-4105, 

Vector Laboratories, Burlingame, CA). Slides were counterstained with hematoxylin 

7211 (Cat#S7439-1, Cardinal Health, Dublin, OH). CD3 infiltration was quantified using 

Aperio ImageScope (Aperio, Sausalito, CA). 

For in vitro stimulation of cell lines, recombinant mouse IFN-gamma protein (Cat#14-

8311-63, Thermo Fisher) was used at a final concentration of 20ng/mL. 

The in vivo cytotoxicity experiment was conducted as described previously(283). Briefly, 

wild-type mice were vaccinated with LmSIY or LmOva seven days prior to injection of 

congenic splenocytes labelled with CFSE (Cat#C34554, Thermo Fisher) and pulsed with 

peptide (A&A Labs, San Diego, CA). Six hours later, recipient spleens are harvested and 

analyzed by flow cytometry. 

Listeria monocytogenes vaccination 

ActA deleted (ΔactA) Listeria monocytogenes (Lm) strains used for vaccination were 

engineered to express the EGFRvIII peptide EEKKGNYV (LmEGFRvIII) as described 

previously (280), the ovalbumin peptide SIINFEKL (LmOva), or SIYRYYGL peptide 

(LmSIY) cloned in-frame with the actA N-terminal fragment. Bacteria were grown in 

brain-heart infusion broth, washed twice in PBS and administered by retro-orbital 

injection at a dose of 1 x 105 (C3H mice) or 1 x 107 (C57BL/6 mice) CFU in 100μL total 

volume. Effective vaccination was confirmed seven days later by MHC-multimer binding 

of peripheral blood as described above. 
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Immunotherapy and Radiation Therapy of Tumors 

Tumors were inoculated at a dose of 2 x 106 for SCCVII-control and SCCVII-EGFRvIII 

tumors, 5 x 106 for Panc02SIY tumors and 10 x 106 for Panc02SIY100. Tumor size was 

determined via caliper measurements of the longest length x the longest perpendicular 

width. Survival endpoint was defined as tumor size greater than or equal to 150mm2 or 

when the mouse appeared moribund.  

For in vivo experiments, 12 Gy of CT-guided radiation was administered to tumor 

isocenters using a Small Animal Research Radiation Platform (SARRP) (Xstrahl, 

Suwanee, GA) and Murislice software (Xstrahl), 14 days after tumor implantation. 250μg 

per dose αPD-L1 checkpoint blockade (Cat#BE101, BioXCell, West Lebanon, NH) was 

administered intraperitoneally at day 7, 14 and 21 post tumor implantation. For vaccine 

protection studies, Listeria vaccines were administered in prime-boost regimes 21 days 

and 7 days prior to challenge with SCCVII tumor cells; for Panc02 derivative cell lines, 

vaccines were administered 7 days prior to tumor challenge. For therapeutic early 

vaccination, SCCVII tumors were treated at 3 days post tumor challenge and Panc02 

derivative tumors were treated at 6 days post tumor challenge. For studies where 

therapeutic Listeria vaccines were used in comparison with radiation the vaccines were 

administered at day 14 following tumor challenge to coincide with radiation controls.  

Tumor analysis 

For flow cytometric analysis of tumor-infiltrating cells, tumors harvested seven days after 

treatment were chopped into small fragments and dissociated in a solution of 250 U/mL 

collagenase IV (Worthington Biochemical Corporation, Lakewood, NJ) and 30 U/mL 

DNase (Millipore Sigma, St Louis, MO) using a GentleMACS tissue dissociator (Miltenyi 

Biotec, Auburn, CA). After 30 minutes incubation at 37°C, the digest was quenched in 
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RPMI-1640 (Cat#SH30027LS, Fisher) supplemented with 10% FBS (Cat#16000069, 

Thermo Fisher) and 2mM EDTA (Cat#324504, Millipore Sigma) and strained through 

100μM and 40μM cell strainers. Filtered cells were rinsed in cold PBS twice prior to 

counting and staining for analysis on a BD LSR II flow cytometer (Becton Dickinson).  

In vitro T Cell Coculture Assays 

Prior to coculture with cancer cells, donor CD8+ T cells were activated in vivo with 

Listeria vaccines. Seven days after vaccination, spleens were harvested and dissociated 

using a 70μM cell strainer and syringe plunger then red blood cells were lysed with ACK 

Lysing Buffer (Lonza, Basel, Switzerland). CD8+ T cells were sorted from splenocytes 

using a CD8α+ T cell negative isolation kit (Cat#130-104-075, Miltenyi) and counted 

prior to use in vivo or in in vitro cell coculture assays. 

Cancer cell growth was monitored using an Incucyte (Sartorius, Goettingen, Germany) 

and Zoom software (Incucyte, Sartorius). Briefly, cancer cells were plated in the 

presence of cytokines or following in vitro irradiation. After 24 hours, adherent cells were 

rinsed twice in 10% complete RPMI supplemented with βME. Purified CD8+ T cells from 

Lm-vaccinated animals were added to cancer cell cultures at a 25:1, 50:1, and 100:1 

effector:target ratios. Non-adherent cells were allowed to settle for 15 minutes at room 

temperature prior to hourly tracking in the Incucyte, housed at 36.5°C/5%CO2, until 

untreated cells reached confluence. In order to isolate cancer cells from T cells for 

analysis, endogenous green fluorescence was used as a proxy for cell confluence as 

described in Figure 2-6A. 

Statistics 

Data was analyzed and graphed using FlowJo (Tree Star, Ashland, OR) and Prism 

(GraphPad Software, La Jolla, CA). Individual data sets were compared using Welch’s T 
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tests. Growth curves and analysis across multiple groups were analyzed using ANOVA 

(two-way and one-way, respectively). Kaplan Meier survival curves were compared 

using log-rank tests.  
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2.4 Results 

2.4.1 Radiation acts as an in situ cancer vaccine 

In order to confirm that radiation can act as an in situ vaccine and boost systemic 

T cell responses as has been reported previously (284), C57Bl/6 mice were challenged 

with the murine pancreatic tumor cell line Panc02 expressing the model antigen 

SIYRYYGL, Panc02SIY. Two weeks following tumor implantation, tumors were 

irradiated using a CT-guided external beam radiation platform and seven days later 

peripheral blood was harvested to measure model antigen-reactive CD8+ T cells by 

fluorescent MHC-multimer binding and flow cytometry (Fig. 2-1Ai). At around 10-14 

days, the initial peak in T cell numbers generated by the priming event of tumor cell 

inoculation has subsided and the resulting memory populations are able to be boosted 

by subsequent presentation of their cognate antigen. Following irradiation, we observed 

a significant increase in tumor-reactive CD8+ T cell numbers compared to unirradiated 

controls, consistent with a boosting effect driven by vaccination (Fig. 2-1Aii). Notably, 

however, the boosting effect by radiation was small relative to a strong T cell vaccine, 

Listeria-SIY, administered at a similar time. These results demonstrated that radiation 

can act as an in situ vaccine but that the systemic boost in tumor-reactive CD8+ T cells 

driven by this vaccination event was modest.  
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Fig. 2-1 Radiation boots tumor-reactive CD8+ T cells in circulation. A) i) Treatment 

schematic. C57Bl/6 mice were implanted with Panc02SIY tumors and then irradiated 

(12Gy) or vaccinated with Listeria-SIY. Peripheral blood was collected seven days after 

treatment from mice or matched controls.  ii) Pentamer-SIY (pSIY) binding CD8+ T cells 

of total CD8+ T cells in peripheral blood seven days after treatment or matched in 

untreated (NT) controls. 
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2.4.2 Tumors are poorly controlled by therapeutic vaccination 

In order to determine whether Listeria-induced CD8+ T cells were sufficient to 

control model-antigen expressing cancers, two subcutaneous murine tumor models were 

used. The first model, SCCVII-EGFRvIII, was derived from a spontaneously arising 

squamous cell carcinoma (285) transfected to express a rare constitutively active variant 

of the epidermal growth factor receptor (EGFR) found primarily in head and neck 

squamous cell carcinomas and glioblastomas (286, 287). Previously we had identified 

an H2Kk restricted immunogenic peptide component of EGFRvIII, EEKKGNYV, 

recognized by CD8+ T cells in C3H mice (280) and transitioned a human version of this 

vaccine into a phase I clinical trial in patients with astrocytic brain tumors 

(ClinicalTrials.gov identifier: NCT01967758).  

To determine whether Listeria-EGFRvIII (LmEGFRvIII)-induced T cells were able 

to control EGFRvIII-expressing cancer cells, mice were vaccinated with LmEGFRvIII 

prior to cancer cell inoculation and observed a significant increase in survival (Fig. 2-2A), 

indicating a protective antigen-specific vaccination response. In order to determine 

whether vaccine-induced protection was specific to SCCVII, we used a 

methylcholanthrene-induced murine pancreatic cancer model, Panc02 (288), transfected 

to express the H2Kb-restricted model antigen SIYRYYGL (SIY), Panc02SIY. When mice 

were similarly vaccinated prior to tumor challenge with Listeria expressing SIY (LmSIY), 

there was no significant enhancement in survival (Fig. 2-2B) or reduction in tumor 

establishment as there had been with the SCCVII-EGFRvIII cell line. In order to 

determine whether LmSIY failed to protect against tumor establishment due to lack of 

SIY expression by Panc02SIY, we examined cells for expression of the reporter protein 

GFP fused to the SIY peptide and determined only about 40% of cells in Panc02SIY 

expressed the model antigen (data not shown). To test whether LmSIY protected against 
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Panc02SIY cells homogenously expressing the model antigen, we derived a new cell 

line, Panc02SIY100, from a high-SIY-GFP-expressing Panc02SIY clone that was able to 

maintain SIY-GFP expression over multiple passages. Similarly, however, establishment 

of Panc02SIY100 tumors was not protected against by LmSIY vaccination (Fig. 2-2B), 

suggesting that some cancer cell lines are intrinsically resistant to control by Listeria-

induced T cells. 

In order to determine whether therapeutic vaccination is sufficient to control 

growth of model antigen expressing tumors, mice were challenged with SCCVII-

EGFRvIII, Panc02SIY, or Panc02SIY100 and vaccinated before the tumors were 

palpable (Fig. 2-2C and Fig 2-2D). All three tumor types were equivalently controlled by 

vaccination against model antigens and control peptides. Interestingly, SCCVII-EGFRvIII 

growth was significantly inhibited by Listeria vaccination but was not differentially 

affected by the antigen, suggesting that SCCVII-EGFRvIII tumors are sensitive to other 

types of inflammation resulting from the vaccine rather than the antigen-specific T cells 

induced by it. Taken together, these experiments demonstrate that the tumors tested are 

poorly controlled by antigen-specific CD8+ T cells induced systemically by vaccination.  
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Fig. 2-2 Listeria vaccines can protect tumor establishment but are poorly effective 

therapeutically. A) Kaplan-Meier survival plot of mice vaccinated with Listeria-EGFRvIII 

or Listeria-Ova 21 days and 7 days prior to challenge with SCCVII cancer cells 

expressing EGFRvIII or control construct. B) Kaplan-Meier survival plot of mice 

vaccinated with Listeria-SIY or Listeria-Ova 7 days prior to challenge with Panc02SIY or 

Panc02SIY100 cancer cells. C) Kaplan-Meier survival plot of mice challenged with 

SCCVII-EGFRvIII cancer cells and treated with saline, Listeria-EGFRvIII, or Listeria-Ova 

3 days after tumor challenge. D) Kaplan-Meier survival plot of mice challenged with 

Panc02SIY or Panc02SIY100 cancer cells and treated with saline, Listeria-SIY or 

Listeria-Ova 6 days after tumor challenge. Key: **p<0.01; ns = not significant.  
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2.4.3 Model antigen specific CD8+ T cells are necessary but not sufficient for 

therapeutic efficacy of combination radiation and checkpoint blockade  

Previous studies have demonstrated that CD8+ T cells are required for the 

efficacy of radiation-induced therapeutic responses(20, 123-125) but sequencing of 

tumor-infiltrating T cell receptors (TCRs) following radiation has demonstrated an 

expansion in TCR diversity rather than clonality (210), indicating a broadening of 

potential tumor-reactive T cell clones and suggesting non-specific T cell recruitment. 

Thus, it was unclear whether the population of model antigen reactive CD8+ T cells 

generated by Listeria vaccination were analogous to the key T cell population generated 

by radiation. In order to determine whether the SIY-reactive CD8+ T cell population was 

necessary for therapeutic tumor control by radiation, we used PDX-Cre x B6.129S4-

Gt(ROSA)26Sortm3(CAG-luc)Tyj/J mice (PDX-SIY mice) which express the SIY peptide under 

the PDX (pancreatic) promoter during thymic development and are unable to generate 

SIY-reactive CD8+ T cells (Fig. 2-3A). When wild-type (WT) and PDX-SIY mice were 

implanted with Panc02SIY100 tumors and treated with radiation and αPD-L1 checkpoint 

blockade, PDX-SIY mice were resistant to tumor control by combination therapy (Fig. 2-

3B). This result indicates that SIY-reactive CD8+ T cells are necessary for the efficacy of 

radiation with PD-L1 blockade in this model. In order to determine whether a vaccination 

effect was sufficient to explain the therapeutic efficacy of radiation with checkpoint 

blockade, mice were implanted with Panc02SIY100 tumors and treated with radiation 

and αPD-L1 or LmSIY and αPD-L1. While a majority of mice were able to clear tumors 

with the radiation combination therapy, LmSIY and PD-L1 blockade did not perform 

better than PD-L1 blockade alone. These results suggest that vaccination is not 

sufficient to explain the ability of radiation to control these tumors in a SIY-reactive T cell 

dependent mechanism.  
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Fig. 2-3 Model antigen specific CD8+ T cells are necessary but not sufficient for 

therapeutic efficacy of combination radiation and checkpoint blockade. A) 

Pentamer-SIY binding CD8+ T cells of total CD8+ T cells in peripheral blood of wild type 

(WT) and PDX-SIY mice seven days after challenge with Panc02SIY cancer cells. B) 

Tumor growth curves of wild-type (WT) or SIY tolerant (PDX-SIY) mice implanted with 

Panc02SIY100 cancer cells and given no treatment (NT) or 12 Gy radiation at day 14 

and αPD-L1 checkpoint blockade therapy at days 7, 14, and 21. Mice survival without 

tumors are listed as fractions in the lower right-hand side of each growth chart. C) 

Listeria-SIY does not replicate efficacy of radiation in treatment of Panc02SIY100 in 

combination therapy with αPD-L1 i) Tumor growth curves of wild-type mice given no 

treatment (NT), αPD-L1 at days 7, 14, and 21, 12 Gy radiation (RT) at day 14, 

combination αPD-L1 and RT, Listeria-SIY at day 14, or combination αPD-L1 and 

Listeria-SIY. ii) Kaplan-Meier survival plot of mice treated in ii). Key: *p<0.05; ns = not 

significant.  
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2.4.4 Tumors are resistant to tumor-specific CD8+ T cells generated by 

vaccination 

Due to the inability of LmSIY to protect against Panc02SIY100 tumor 

establishment, we aimed to determine whether the inability of LmSIY-induced CD8+ T 

cells to control SIY-expressing cancer cells was specific to tumors or whether this 

population of T cells lacked cytotoxic capacity. To determine whether the failure of 

Listeria-induced CD8+ T cells to cure tumors was due to failure to traffic to tumors, we 

examined tumors by immunohistochemistry following LmSIY vaccination (Fig. 2-4Ai). 

Within SIY-expressing tumors, significant increases in T cell numbers compared to 

tumors from unvaccinated animals were observed (Fig. 2-4Aii) and found that T cells in 

more recently-vaccinated samples formed distinct clusters, suggestive of in situ 

activation (Fig 2-4Ai). To determine whether CD8+ T cells recognize antigen within 

tumors following vaccination we used transgenic Nur77GFP reporter mice which rapidly 

express GFP following of TCR ligation (281). Nur77GFP mice were implanted with SIY-

expressing tumors and treated with radiation or Listeria vaccination (Fig. 2-4Bi) and 

tumors were harvested seven days later for analysis by flow cytometry. Tumors 

harvested from mice following LmSIY vaccination contained greater proportions of SIY-

specific CD8+ T cells compared to vaccine controls (LmOva) and to irradiated tumors 

(Fig 2-4Biii), demonstrating that LmSIY-induced T cells effectively traffic to tumors. 

Across treatment groups, similar proportions of SIY-reactive CD8+ T cells expressed 

Nur77GFP, indicating that recognition of tumor antigens was not improved by radiation 

compared to controls or LmSIY vaccination (Fig 2-4Biii). These results demonstrate that 

LmSIY-induced CD8+ T cells effective traffic to tumors in abundance and recognize 

tumor antigen in situ despite failure of therapy to reduce tumor burden.  
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In order to confirm that therapeutic failure of LmSIY was not due to the inability of 

Listeria-induced CD8+ T cells to kill antigen-presenting target cells, in vivo cytotoxicity 

was tested using peptide-pulsed, CFSE-labeled congenic splenocytes transferred into 

vaccinated animals. These transferred cells were found to be selectively depleted based 

on matched antigen (Fig 2C), indicating that Listeria vaccines generated functional 

antigen-specific CD8+ T cell cytotoxic immunity appropriately for SIYRYYGL- or 

SIINFEKL- presenting cells depending on vaccine specificity. Together, these results 

demonstrate that Listeria vaccines induce functional, antigen-specific CD8+ T cells that 

traffic to antigen-expressing tumors and indicate that the failure of Listeria vaccination to 

control antigen-expressing tumors is due to unknown mechanisms of tumor-intrinsic 

resistance. This suggests that the ability of radiation to potentiate CD8+ T cell responses 

is not due to its ability to enhance T cell numbers or activation (e.g. vaccination) but its 

ability to improve the intrinsic susceptibility of tumors to control by T cells.   
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Fig. 2-4 Listeria-induced T cells are cytotoxic in vivo and traffic to tumors despite 

being unable to control tumor growth. A) i) Representative immunohistochemistry 

images from paraffin-embedded zinc-fixed Panc02SIY tumors harvested from mice 

treated with Listeria-SIY at indicated times following tumor challenge or given no 

treatment (NT). Tumors were harvested at 27 days following tumor challenge. 5μM 

tissue sections were stained with CD3-DAB (brown) and counterstained with 

hematoxylin and eosin ii) Quantification of images represented in i) where each dot 

represents a representative section from an individual animal. B) i) Treatment schematic. 

Nur77GFP reporter mice were challenged with Panc02SIY tumors followed by treatment 
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with Listeria-SIY, Listeria-Ova, 12 Gy radiation (RT), or no treatment (NT). Tumors were 

harvested seven days after treatment and processed for analysis of tumor-infiltrating 

lymphocytes. ii) Representative flow cytometry dot plots of tumor-infiltrating CD8+ T cells 

described in i), quantification of iii) MHC-multimer binding or iv) Nur77-GFP expression 

of tumor-infiltrating CD8+ T cells. C) in vivo cytotoxicity of Listeria-induced CD8+ T cells. 

Briefly, CD45.2+ mice were vaccinated with Listeria-Ova or Listeria-SIY and seven days 

later given CFSE-labelled, peptide-pulsed splenocytes from CD45.1+ SJL mice i) 

representative dot plot of splenocytes harvested six hours after donor splenocyte 

challenge, ii) representative histograms of CFSE-labeled CD45.1+ cells from 

unvaccinated, Listeria-Ova (LmOva) vaccinated or Listeria-SIY (LmSIY) vaccinated 

mice, iii) quantification of percent specific lysis in untreated (NT), Listeria-Ova (LmOva) 

vaccinated, or Listeria-SIY (LmSIY) vaccinated mice. Key: *p<0.05; **p<0.01; 

***p<0.001; p<0.0001; ns = not significant.  
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2.4.5 Cancer cells are intrinsically resistant to killing but can be modified to 

increase susceptibility to control by CD8+ T cells 

The ability of cancer cells to evade detection by the immune system is a hallmark 

of cancer (3) and has been discussed to some extent in chapter one of this thesis. 

Likewise, the ability of cancer therapies to disrupt cancer resistance to immunity is of 

significant interest to the field. To test whether Panc02SIY100 could be modified to 

improve susceptibility to control by LmSIY-induced CD8+ T cells, we developed an 

assay using an Incucyte (Sartorius) to monitor cancer cell growth microscopically in vitro 

over a time course (Fig. 2-5A). In order to monitor cancer cells separately from T cells, 

we used a confluence mask only over the portions of cells expressing GFP (Fig. 2-5Aii 

versus Fig. 2-5Aiii), which broadly tracked with overall growth confluence (Fig.2-5Aiv). 

This assay allowed visualization of killing of SIY-expressing cancer cells by T cells in 

vitro while quantitatively tracking cancer cell growth. To test whether Listeria-induced 

CD8+ T cells were capable of killing antigen-matched cancer cells and whether T killing 

could be enhanced by pretreatment of cancer cells with the potent pro-inflammatory 

cytokine interferon-gamma (IFNγ), cancer cells were cocultured with CD8+ T cells 

harvested from LmSIY- or LmOva- vaccinated mice. Strikingly, LmSIY-induced CD8+ T 

cells were no better at controlling cancer cells in vitro than control T cells in the absence 

of cytokine pretreatment (Fig. 2-5Bii). Additionally, incubating cancer cells with IFNγ for 

24 hours and washing prior to administration of the T cells was sufficient to markedly 

improve control of tumor cells to control by antigen-specific CD8+ T cells (Fig. 2-5Bi and 

Fig 2-5Bii). Taken together, these results indicate that Panc02SIY100 cancer cells are 

intrinsically resistant to control by CD8+ T cells but can be modified to improve 

susceptibility to control. In Chapter 3, we discuss how radiation might drive these 

alterations to improve therapeutic control of cancer by T cells. 
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Fig. 2-5 Cancer cells can be modified by cytokines to increase susceptibility to 

killing by Listeria-induced CD8+ T cells. A) Characterization of assay to track in vitro 

cancer cell growth. i) Incucyte image of Panc02SIY100 cells expressing GFP. ii) 

Incucyte image in i) with confluence mask. iii) Incucyte image in i) with confluence mask 

only over GFP expression. iv) Quantification of cancer cell growth by phase (as in ii) or 

GFP (as in iii). B) Panc02SIY100 cell growth in coculture with Listeria-SIY induced CD8+ 

T cells i) Representative Incucyte images from Panc02SIY100 cells untreated (left) or 

treated with IFNγ (right) prior to addition of T cells at 25:1 effector:target ratio. ii) 

Panc02SIY100 growth chart following the addition of Listeria-Ova (LmOva) or Listeria-

SIY (LmSIY) induced CD8+ T cells at 100:1 effector:target ratio.  
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2.5 Discussion 

There are many challenges to creating effective therapeutic cancer vaccines 

including lack of known antigens, low expression of MHC-I on cancer cells, and failure of 

T cells in blood to penetrate the tumor (22, 61, 289-292). While there is no shortage of 

innovation in the field in designing novel vaccine strategies (61, 293), some of these 

barriers may be overcome by using radiation as an in situ vaccine: radiation-mediated 

vaccination uses dying tumor cells as an antigen source and radiotherapy can modulate 

the tumor environment to favor antigen presentation and trafficking of CD8+ T cells (127, 

128, 229, 294). However, it is unclear whether control of tumors mediated by CD8+ T 

cells following irradiation is due to these vaccine effects or which other immune 

modulatory effects might permit T cell control. In this study, we used a live-attenuated 

Listeria monocytogenes vaccine expressing tumor antigen peptides in order to model 

vaccination in the absence of other radiation-mediated immune modulation and found 

that vaccination is not sufficient to explain how radiation enhances control of cancer 

cells. 

Listeria-generated CD8+ T cells are capable of cytotoxicity and traffic to antigen-

expressing tumors; however, the presence of these cells is not sufficient to control 

tumors. In vitro, we demonstrated that cancer cells are resistant to immune-mediated 

control, suggesting that the tumor microenvironment was not responsible for 

suppression of vaccine-generated T cells (Fig. 2-5). We found, however, that modulation 

of cancer cells using inflammatory cytokine (IFNγ) was sufficient to permit control by 

Listeria-induced CD8+ T cells (Fig. 2-5). These results suggest that radiation might alter 

cancer cell phenotypes in order to permit control by antigen-specific T cells.  

The findings here concur with prior observations that tumor control by radiotherapy 

and checkpoint inhibitors depends on pre-existing immune responses rather than by 

vaccination by tumor irradiation (124). In preclinical models, implantation of cancer cells 
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can induce CD8+ T cell priming sufficient to establish T cell memory and can cause 

spontaneous rejection of immunogenic tumors (8, 124, 243, 295, 296); in models were 

pre-existing anti-tumor immunity is not present, additional vaccination is necessary to 

permit tumor control by radiation and checkpoint inhibition (297). While vaccination 

effects by radiation have been observed here and elsewhere (220), these data suggest 

that this response is inadequate to generate sufficiently effective T cells for tumor 

control. 

While the traditional goal of radiotherapy is to induce cancer cell death, it is well 

established that sublethal irradiation can alter the ability of T cells to control cancer cells 

(26, 27, 127, 277, 298). Work by James Hodge and colleagues highlighted the 

upregulation of MHC-I by radiation as a potential means for augmenting these 

interactions (229). In this study, the authors proposed that increased MHC-I expression 

by radiation was due to the upregulation of mTOR and increased intracellular peptide 

pools resulting in enhanced peptide loading and cell surface expression of pMHC-I 

complexes; in order to inhibit this pathway, cells were treated with the mTOR inhibitor 

rapamycin, resulting in decreased MHC-I expression and attenuated control by T cells 

following radiation. These studies are confused, however, by the multifaceted role of 

mTOR signaling in both cancer cells and T cells, including regulating proliferation, cell 

cycle, metabolism, and protein synthesis (299-301). Studies isolating MHC-I modulation 

as a potential mechanism for enhanced T cell function following cancer irradiation are 

therefore lacking; we aim to address this deficit in Chapter 3. 
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3.1 Abstract 

Work by our group and others has demonstrated that cancer cells can be intrinsically 

resistant to control by CD8+ T cells and that radiation can alleviate some of this 

suppression. However, due to the broad capacity of radiation to modulate the immune 

responses, the precise means of how radiation can permit CD8+ T cell killing is unclear. 

Here, we aimed to explore the role of augmentation of MHC-I expression on cancer cells 

by radiation in permitting control by T cells. We found that radiation-mediated 

upregulation of MHC-I on cancer cells was not dependent on the ability of cancer cells to 

respond to STING ligands or type I interferon but found instead that radiation was able to 

upregulate the MHC-I transactivator, NLRC5, independent of these pathways. We found 

that NLRC5 expression correlated with basal MHC-I expression and that upregulation of 

NLRC5 was sufficient to enhance MHC-I expression on cancer cells. Significantly, we 

found that while NLRC5 upregulation did not improve CD8+ T cell recognition of MHC-Ilo 

cancer cells, antigen-matched T cells were better able to control NLRC5hi cancer cells 

than NLRC5lo controls. These results suggest that radiation might enhance the 

susceptibility of cancer cells to control by CD8+ T cells through upregulation of MHC-I 

via NLRC5. 
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3.2 Introduction 

Broadly, the ability of the killer cells of the immune system to exert cytotoxic 

functions requires a signaling threshold within the cell to shift from a state where these 

functions are inhibited to a state where they are favored (i.e. where positive signaling 

overcomes negative signaling). For CD8+ T cells, a population of potentially potent 

cytotoxic cells with the ability to specifically control cancer cells while largely sparing 

healthy tissue, this threshold of activation has come under increasing scrutiny following 

the unprecedentedly wide success of checkpoint inhibitor therapies such as antibody 

blockade of CTLA-4 and PD-1/PD-L1 as discussed in Chapter 1. Blockade of the PD-

1/PD-L1 signaling axis in particular directly favors positive signaling through the T cell 

receptor by alleviating suppressive signaling of CD28 via SHP-2 (94, 302). This 

understanding highlights our ability to augment T cell efficacy in cancer therapies by 

inhibiting negative signaling and, potentially, enhancing positive signaling.  

The ability of radiation to augment the ability of CD8+ T cells to respond to cancer 

targets is well-established (229, 298, 303), although the mechanisms by which 

irradiation effects this change is unclear. Among the most compelling modifications to 

cancer cells induced by radiation is the upregulation of major histocompatibility complex 

class I (MHC-I) molecules. Work by Eric Reits and James Hodge proposed that radiation 

increases MHC-I expression on cancer cells by increasing intracellular peptide pools and 

thus increasing the favorability of peptide binding to MHC-I molecules in the 

endoplasmic reticulum (229), while others have proposed that MHC-I upregulation is 

mediated by type I interferons (IFN-I) downstream of activation of the cGAS-STING 

pathway (201). The functional consequences of MHC-I upregulation on target tumor 

cells is also unclear, given the theoretical ability of activated CD8+ T cells to kill target 

cells while engaging only 1-3 peptide-MHC-I (pMHC) complexes, although the impact of 
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epitope density on enhancing the magnitude and function of novel CD8+ T cell 

responses is clear (273). 

In this chapter, we explore the ability of radiation to improve the susceptibility of 

normally resistant cancer cells to control by CD8+ T cells. We hypothesized that the 

ability of T cells to better control cancer cells is due to upregulation of MHC-I driven by 

radiation and explore the mechanism by which radiation increases MHC-I expression. 

Finally, we describe a novel mechanism for the induction of MHC-I by radiation through 

the transcriptional upregulation of NLRC5 independent of STING and IFN-I signaling.  
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3.3 Materials and Methods 

Animals and Cell Lines 

Animal protocols were approved by the Earle A. Chiles Research Institute IACUC 

(Animal Welfare Assurance No. A3913-01). All experiments were performed in 

accordance with relevant guidelines and regulations. 5-8 week old C57BL/6 mice (Stock 

#000664) and B6.129S7-Rag1tm1Mom/J (Rag1-/-) mice (Stock #002216) were purchased 

from the Jackson Laboratory (Bar Harbor, ME) for use in these experiments. Nur77GFP 

reporter mice were kindly provided by Dr. Weinburg (Earle A. Chiles Research Institute, 

Portland, OR)(281). 2C transgenic mice were kindly provided by Dr. Gajewski (University 

of Chicago, Chicago, IL), bred in-house and crossed with Nur77GFP reporter mice. OT-I 

transgenic mice were gifted by Dr. Redmond (Earle A. Chiles Research Institute). 

Survival experiments were performed with 6-8 mice per group.  

Cell lines were cultured in RPMI-1640 (HyClone, Fisher Scientific, Hampton, NH) 

supplemented with 10% heat inactivated fetal bovine serum (Cat#10082147, Thermo 

Fisher Scientific, Waltham, MA), 2mM L-glutamine (Cat#SH3003401, HyClone, Fisher), 

10mM HEPES (Cat#HOL06, Caisson Labs, Smithfield, UT), 100U/mL penicillin-

streptomycin (Cat#PSL01, Caisson), 1X non-essential amino acids (Cat#SH3023801, 

Fisher), 1mM sodium pyruvate (Cat#PYL01, Caisson). The parental murine pancreatic 

adenocarcinoma cell line Panc02 was kindly provided by Dr. Woo (Mount Sinai School 

of Medicine, New York, NY). Panc02 expressing the model antigen SIY was kindly 

provided by Dr. Weishelbaum (University of Chicago, Chicago, IL), as used 

previously(124), and expresses GFP-SIY in approximately 40% of cells. Panc02SIY100 

was derived and expanded from a high GFP expressing single clone within Panc02SIY 

on a BD FACSAria II cell sorter (Becton Dickinson, Franklin Lakes, NJ). Panc02SIYneg 

was similarly derived from a low GFP expressing clone sorted from Panc02SIY on a BD 
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FACSAria II cell sorter. PK5L1940 was generated from established spontaneous 

pancreatic tumors in Pdx-Cre+/-Kras(G12D)+/-Trp53(R172H)+/-SIY+ as previously 

described(124).  

Antibodies and Reagents 

Viability staining was performed in PBS using Zombie Aqua Fixable Viability Kit 

(BioLegend, San Diego, CA) for 15 minutes prior to staining with fluorescently-

conjugated antibodies for flow cytometry. Monoclonal antibodies were used against: 

CD3 [17A2], CD4 [RM4-5], CD8α [53-6.7], IFNAR1 [MAR1-5A3], IFNγ [XMG1.2], H-2Kb 

[AF6-88.5.5.3], and TNFα [MP6-XT22].  

For in vitro stimulation of cell lines, recombinant mouse IFN-beta protein (Cat#8234-MB-

101/CF, RND Systems, Minneapolis, MN) at a final concentration of 1 x 103 U/mL, 

recombinant mouse IFN-gamma protein (Cat#14-8311-63, Thermo Fisher) at a final 

concentration of 20ng/mL and mammalian 2’3’-cGAMP (Cat#tlrl-nacga23-02, InvivoGen, 

San Diego, CA) at a final concentration of 25μg/mL were used. Cancer cells were 

irradiated before plating by timed exposure to a Cs137 source in a Gammacell Elan 3000 

(MDS Nordion, Ottawa, ON, CAN). 

Gene Editing of Cancer Cell Lines 

Panc02SIY100-NLRC5 was derived from Panc02SIY100 cells transfected with a plasmid 

harboring the sequence for hNLRC5 under the constitutive promoter eukaryotic 

translation elongation factor 1 alpha (EF-1α) (Cat#pUNO1-hNLRC5, Invivogen, San 

Diego, CA). Cells with constitutively high expression of MHC-I were isolated by cell 

sorting using a BD FACSAria II cell sorter. 

IFNAR knockout Panc02SIY100 and PK5L1940 cell lines were generated using Alt-R 

S.p. Cas9 Nuclease 3NLS (Cat#192528883, Integrated DNA Technologies, Coralville, 
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IA), Alt-R CRISPR-Cas9 tracrRNA ATTO 550 (Cat#129528884, IDT), Opti-MEM I 

Reduced Serum Medium (Cat#31985062, Thermo Fisher), Lipofectamine CRISPRMAX 

Cas9 Transfection Reagent (Cat#CMAX00015, Thermo Fisher Scientific, Waltham, MA) 

and predesigned Alt-R CRISPR-Cas9 crRNA guide RNAs (IFNAR1 sequence: 5’-

TCAGTTACACCATACGAATC-3’). Three gRNAs were tested for each target and pure 

populations were isolated from single cells (Panc02SIY100) or five cells (PK5L1940) 

based on ability to upregulate MHC-I in response to cytokine stimulation using a BD 

FACSAria II cell sorter.  

Immunotherapy and Radiation Therapy of Tumors 

Tumors were inoculated at a dose of 5 x 106 for Panc02SIY tumors, 10 x 106 for 

Panc02SIY100 and 10 x 106 for Panc02SIY100-IFNAR tumors. Tumor size was 

determined via caliper measurements of the longest length x the longest perpendicular 

width. Survival endpoint was defined as tumor size greater than or equal to 150mm2 or 

when the mouse appeared moribund.  

For in vivo experiments, 12 Gy of CT-guided radiation was administered to tumor 

isocenters using a Small Animal Research Radiation Platform (SARRP) (Xstrahl, 

Suwanee, GA) and Murislice software (Xstrahl), 14 days after tumor implantation. 250μg 

per dose αPD-L1 checkpoint blockade (Cat#BE101, BioXCell, West Lebanon, NH) was 

administered intraperitoneally at day 7, 14 and 21 post tumor implantation.  

For adoptive T cell transfer, naïve CD8+ T cells were harvested as splenocytes from 

naïve 2C or OT-I mice and activated in vitro with αCD3ε (Cat#BE0001-1, BioXCell) and 

αCD28 (Cat#BE0015-1) at a final concentration of 10μg/mL each. After 48 hours, cells 

were rinsed with 10% complete RPMI supplemented with β-mercaptoethanol (βME) 

(Cat#21985023, Gibco, Thermo Fisher) and plated with 60IU/mL human recombinant IL-
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2 (Chiron) for three days. Prior to retro-orbital intravenous injection, CD8+ T cells were 

purified from splenocytes using a CD8α+ T cell negative isolation kit (Cat#130-104-075, 

Miltenyi), rinsed in sterile PBS and diluted to 1e6 cells per 100μl injection volume. 

In vitro T Cell Coculture Assays 

Prior to coculture with cancer cells, CD8+ T cells were harvested as splenocytes from 

naïve animals and activated in vitro with αCD3ε (Cat#BE0001-1, BioXCell) and αCD28 

(Cat#BE0015-1) at a final concentration of 10μg/mL each. After 48 hours, cells were 

rinsed with 10% complete RPMI supplemented with β-mercaptoethanol (βME) 

(Cat#21985023, Gibco, Thermo Fisher) and plated with 60IU/mL human recombinant IL-

2 (Chiron) for three days. Prior to coculture, CD8+ T cells were purified from splenocytes 

using a CD8α+ T cell negative isolation kit (Cat#130-104-075, Miltenyi). 

Cancer cell growth was monitored using an Incucyte (Sartorius, Goettingen, Germany) 

and Zoom software (Incucyte, Sartorius). Briefly, cancer cells were plated in the 

presence of cytokines or following in vitro irradiation. After 24 hours, adherent cells were 

rinsed twice in 10% complete RPMI supplemented with βME. Purified CD8+ T cells were 

added to cancer cell cultures at a 5:1 effector:target ratio. Non-adherent cells were 

allowed to settle for 15 minutes at room temperature prior to hourly tracking in the 

Incucyte, housed at 36.5°C/5%CO2, until untreated cells reached confluence. In order to 

isolate cancer cells from T cells for analysis, endogenous green fluorescence was used 

as a proxy for cell confluence. 

Cytokine production by T cells during coculture was determined after four-hour 

incubation with brefeldin A (Cat#B7450, Thermo Fisher). Non-adherent cells were 

harvested, surface stained and permeablized using BD cytofix/cytoperm fixation and 

permeabilization solution (Cat#554655, Becton Dickinson), then frozen at -80°C 
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overnight. The next day, cells were thawed and rinsed twice with perm/wash buffer 

(Cat#554723, Becton Dickinson) and stained for intracellular cytokines.  

Immunoblotting 

Briefly, cells from pancreatic cell lines were washed twice with PBS and lysed in Pierce 

RIPA Buffer (Cat#8990, Thermo) supplemented with Halt Protease and Phosphatase 

Inhibitor Cocktail 100X (Cat#78440, Thermo). Protein concentrations were quantified 

using Pierce BCA Protein Assay Kit (Cat#23225, Thermo). Samples were denatured at 

95°C in XT Sample Buffer 4X (Cat#1610791, Bio-Rad, Hercules, CA) and loaded onto 4-

12% Criterion XT Bis-Tris Protein Gels (Cat#345-0124, Bio-Rad). Proteins were 

transferred onto PVDF Transfer Membrane (Cat#88518, Thermo) and probed for STING 

(Cat#13647S, Cell Signaling Technology, Danvers, MA), IRF3 (Cat#4302S, Cell 

Signaling) and GAPDH (Cat#2118S, Cell Signaling). HRP-conjugated goat anti-rabbit 

IgG (Cat#31460, Invitrogen, Carlsbad, CA) was used as a secondary antibody. Proteins 

were visualized using SuperSignal West Pico PLUS Chemiluminescent Substrate 

(Cat#34580, Thermo).  

Statistics 

Data was analyzed and graphed using FlowJo (Tree Star, Ashland, OR) and Prism 

(GraphPad Software, La Jolla, CA). Individual data sets were compared using Welch’s T 

tests. Growth curves and analysis across multiple groups were analyzed using ANOVA 

(two-way and one-way, respectively).  
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3.4 Results 

3.4.1 Radiation improves the susceptibility of cancer to control by antigen-specific 

CD8+ T cells 

In order to determine whether tumor irradiation improves the ability of antigen-

specific CD8+ T cells to control tumor growth, mice bearing dual flank Panc02SIY100 

tumors were adoptively transferred with in vitro activated CD8+ T cells from antigen 

matched (SIYRYYGL-reactive, 2C) or control (SIINFEKL-reactive, OT-I) TCR transgenic 

mice and treated with 12 Gy radiation to one flank tumor (Fig. 3-1Ai). Unirradiated 

tumors in both 2C- and OT-I-bearing mice grew at the same rate, indicating that 

Panc02SIY100 tumors in vivo are resistant to killing by antigen-specific CD8+ T cells 

(Fig. 3-1Aii), in agreement with experiments with Listeria monocytogenes vaccines 

discussed in Chapter 2. Conversely, irradiated tumors were controlled significantly better 

by antigen-specific T cells than by control T cells (Fig. 3-1Aii), suggesting that radiation 

improved the ability of CD8+ T cells to react to cognate antigen-expressing tumors in 

vivo. In order to determine whether radiation improved the intrinsic susceptibility of 

cancer cells to control by T cells irradiated cancer cells were cocultured with in vitro 

activated CD8+ T cells derived from 2C or OT-I mice and the growth of the cancer cells 

was tracked with an Incucyte (Sartorius). While unirradiated cancer cells were similarly 

controlled by both antigen-specific and control T cells, irradiated cancer cells were 

significantly better controlled by the antigen-specific 2C cells (Fig. 3-1B). These results 

demonstrate that radiation augments the susceptibility of irradiated cancer cells to killing 

by antigen-specific CD8+ T cells. 
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Fig. 3-1 Radiation enhances the ability of CD8+ T cells to control Panc02SIY100. A) 

Treatment schematic. Rag1-/- mice were implanted with dual flank Panc02SIY100 tumors 

followed by adoptive transfer of in vitro activated 2C or OT-I CD8+ T cells. One day after 

adoptive transfer tumors were irradiated with 12 Gy on one flank. B) Tumor growth 

curves for animals treated as in A. Lines represent average tumor area of each tumor 

group, n=4. Blue lines represent tumors areas in mice bearing 2C T cells and red lines 

represent tumor areas in mice bearing OT-I T cells. C) Panc02SIY100 growth curves 

measured with an Incucyte using GFP as a proxy for confluence. Cancer cells were 

irradiated or pretreated with IFNγ and plated 24 hours prior to coculture with in vitro 

activated CD8+ T cells derived from 2C or OT-I mice. Key: *p<0.05; **p<0.01; 

****p<0.0001; ns = not significant.  
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3.4.2 Radiation increases cancer cell expression of major histocompatibility 

complex class I (MHC-I) 

Previous studies have examined how radiation alters the phenotype of cancer 

cells to improve control by immune cells, as discussed in Chapter 1. Among these 

potential alterations, upregulation of major histocompatibility class I (MHC-I) by cancer 

cells was of significant interest due to the essential role of MHC-I in permitting 

recognition of target cells by CD8+ T cells. The murine pancreatic cancer cell lines 

Panc02SIY100 and PK5L1940 express very low levels of MHC-I at baseline but 

expression can be augmented by interferon-gamma (IFNγ) cytokine stimulation (Fig. 3-

2Ai and 3-2Aii), demonstrating the potential for therapeutic modulation. Accordingly, we 

demonstrated that MHC-I expression can be enhanced by in vitro irradiation over 24 to 

72 hours (Fig. 3-2Bi and 3-2Bii). Considering these results, we hypothesized that 

upregulation of MHC-I by radiation improved the susceptibility of cancer cells to control 

by CD8+ T cells. 
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Fig. 3-2 Radiation and IFNγ stimulation upregulate MHC-I on cancer cells. A) 

Representative histograms of MHC-I (H2Kb) Panc02SIY100 (i) and PK5L1940 (ii) cancer 

cells 72 hours following IFNγ stimulation in vitro. ISO refers to isotype control antibody, 

NT to cells not treated, and IFNγ to cells cultured in the presence of gamma-interferon. 

B) Representative histograms of MHC-I (H2Kb) expression on Panc02SIY100 24 hours 

(i) or 72 hours (ii) after in vitro irradiation at indicated doses or treatment with IFNγ.  
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3.4.3 Upregulation of MHC-I on cancer cells by radiation is independent of STING 

and IFNAR signaling 

In order to determine whether MHC-I upregulation was necessary for radiation-

induced augmentation of T cell mediated control of cancer cells, we attempted to 

engineer cancer cells to disrupt signaling pathways proposed to drive MHC-I 

upregulation by radiation. Studies have demonstrated that the cGAS-STING pathway 

plays an essential role in radiation-induced tumor clearance by T cells (125, 215) and it 

has been proposed that the production of type I interferons (IFN-I) downstream of 

STING signaling leads to upregulation of MHC-I downstream of the type I interferon 

receptor (IFNAR) (201, 275). While attempting to engineer STING knockout cancer cells, 

however, we observed that several pancreatic cell lines, including Panc02SIY100, have 

very low expression of STING protein (Fig. 3-3A) and are insensitive to upregulation of 

MHC-I by exogenous application of the endogenous STING ligand 2’3’-cGAMP (Fig. 3-

3B). These results concur with work suggesting that STING is not uniformly expressed in 

cancer cells and that deregulation of STING signaling can correlate with immune 

evasion and cancer progression (304-306). Notably, however, cell lines which have low 

expression of STING and are insensitive to STING ligand are still able to upregulation 

MHC-I in response to radiation. These results suggest that upregulation of MHC-I is not 

dependent on the STING pathway. 

In order to determine whether MHC-I upregulation is dependent on IFN-I 

signaling, activated through other nucleic acid sensors, we engineered murine 

pancreatic cancer cell lines to disrupt expression of IFNAR1, an essential component of 

the IFNAR heterodimer. We demonstrated that IFNAR1ko cell lines have significantly 

reduced capacity for upregulation of MHC-I by interferon-beta (IFNβ) (Fig 3-4A). 

Importantly, however, cancer cells which cannot respond to IFN-I still upregulate MHC-I 
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equivalently to control cells (Fig. 3-4B). These results demonstrate that IFNAR signaling 

is not necessary for the upregulation of MHC-I by radiation in these cancer cells. To 

determine whether the loss of IFN-I signaling in cancer cells affects the therapeutic 

response to radiotherapy, we treated mice bearing Panc02SIY100-IFNAR1ko tumors with 

radiation and PD-1/PD-L1 checkpoint blockade. In vivo, IFNAR1ko tumors grow faster 

than controls but are cured by single-agent radiotherapy at similar rates and synergy 

between radiotherapy and αPD-L1 is similarly observed (Fig. 3-4C); it is unclear whether 

the reduction in survival for IFNARko tumor bearing mice treated with combination 

radiation and αPD-L1 blockade is due to the increased growth rate of tumors outpacing 

therapy or if these cells produce tumors which are intrinsically more resistant to the 

combination therapy. Taken together, these experiments demonstrate that cGAS-

STING/IFNAR signaling is not necessary for the upregulation of MHC-I in our pancreatic 

cancer cell lines and that IFN-I signaling through cancer cells is not necessary for tumor 

cure by radiotherapy with PD-1/PD-L1 checkpoint blockade. 
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Fig. 3-3 Pancreatic cancer cell lines unable to respond to exogenous STING ligand 

are able to upregulate MHC-I in response to radiation. A) Pancreatic cancer cell lines 

processed for protein and immunoblotted against STING, IRF3 and GAPDH. B) MHC-I 

(H2Kb) mean fluorescent intensity (MFI) of pancreatic cancer cell lines 72 hours following 

irradiation or culture in the presence of 2’3’-cGAMP, measured by flow cytometry. Key: 

*p<0.05; **p<0.01; ****p<0.0001; ns = not significant. 
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Fig. 3-4 Upregulation of MHC-I by radiation on pancreatic cancer cells does not 

require IFN-I signaling. Pancreatic cancer cell lines were edited by CRISPR/Cas9 to 

knock out the type I interferon (IFN-I) receptor subunit IFNAR1. A) MHC-I (H2Kb) mean 

fluorescent intensity (MFI) of pancreatic cancer cell lines 72 hours following culture in the 

presence of IFNβ, measured by flow cytometry. B) MHC-I (H2Kb) mean fluorescent 

intensity (MFI) of pancreatic cancer cell lines 72 hours following irradiation or culture in 

the presence of 2’3’-cGAMP measured by flow cytometry. C) Tumor growth curves of 

mice implanted with Panc02SIY100 or Panc02SIY100-IFNAR1ko tumor cells, given no 

treatment (NT), αPD-L1 as indicated by dashed lines, 12Gy radiotherapy (RT) or 

combination αPD-L1 and radiotherapy (αPD-L1 + RT). Each line represents one mouse. 

Fractions indicate tumor-free mice at 100 days following tumor challenge. Key: *p<0.05; 

****p<0.0001; ns = not significant. 
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3.4.4 NLRC5 expression correlates with MHC-I expression in murine pancreatic 

cancer cell lines 

As discussed in Chapter 1, a key genetic driver of MHC-I expression is the MHC 

Class I Transactivator (CITA, or NLRC5) (250, 259), a reported target of immune 

evasion in human cancers (265). We observed that NLRC5 expression by pancreatic 

cancer cells correlated with basal MHC-I expression (Fig. 3-5A) in accordance with 

previous studies (307), and questioned whether modulation of NLRC5 expression might 

play a role in MHC-I induction by radiotherapy. In order to determine if radiation altered 

expression of NLRC5, cancer cells were treated with radiation in vitro and mRNA 

transcripts were quantified by qRT-PCR. Radiation significantly upregulated expression 

of NLRC5 along with genes associated with antigen presentation, B2M and TAP1, which 

can be regulated by the NLRC5 transactivation complex (Fig. 3-5B). Notably, radiation 

was similarly able to upregulate NLRC5 and B2M in Panc02SIY100-IFNAR1ko cells (Fig. 

3-5C), but did not upregulate NLRC5 in Panc02 cells (Fig. 3-5D), which have high basal 

expression of the gene (Fig. 3-5Ai). These results suggest that radiation can augment 

antigen presentation through genetic regulation of MHC-I associated genes, including by 

upregulation of NLRC5, in an IFNAR-independent manner. These results also suggest 

that NLRC5 upregulation is not responsible for augmentation of MHC-I expression in 

cells with high basal expression of NLRC5. 

In order to determine if induction of NLRC5 is sufficient to augment expression of 

MHC-I in cancer cells, we engineered Panc02SIY100 cells to express NLRC5 under the 

constitutive eukaryotic promoter, EF-1α (Fig. 3-5Ei), generating a new cell line, 

Panc02SIY100-NLRC5. Panc02SIY100-NLRC5 expressed constitutively high levels of 

MHC-I, demonstrating that augmenting NLRC5 expression is sufficient to increase 

expression of MHC-I in these cancer cells.  
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Fig. 3-5 NLRC5 expression correlates with MHC-I expression in murine pancreatic 

cancer cell lines. A) i) qRT-PCR analysis of basal NLRC5 transcription of pancreatic 

cancer cell lines. ii) Representative flow cytometry histograms of basal MHC-I (H2Kb) 

expression by pancreatic cancer cell lines. B) qRT-PCR analysis of radiation-induced 

transcription of NLRC5, B2M, and TAP1 normalized to untreated Panc02SIY100 cells. 

Cancer cells were analyzed 72 hours following irradiation in vitro. C) qRT-PCR analysis 

of radiation-induced transcription of NLRC5 and B2M normalized to untreated 

Panc02SIY100-IFNAR1ko cells. Cancer cells were analyzed 72 hours following 

irradiation in vitro. D) qRT-PCR analysis of radiation-induced transcription of NLRC5 

normalized to untreated Panc02 cells. Cancer cells were analyzed 72 hours following 

irradiation in vitro. E) i) Panc02SIY100 cells were transfected with NLRC5 under a 

constitutive EF-1α promoter. ii) Representative flow cytometry histograms of basal MHC-
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I (H2Kb) expression by pancreatic cancer cell lines including cells transfected to express 

basal NLRC5, Panc02SIY100-NLRC5. Key: *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001; ns = not significant. 
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3.4.5 Cancer cell expression of NLRC5 is sufficient to enhance MHC-I expression 

and control by antigen-specific CD8+ T cells 

Reduction of MHC-I expression by cancer is a well-established immune evasion 

strategy which is thought to reduce ability of CD8+ T cells to recognize tumor targets 

(308). I hypothesized that NLRC5 expression would therefore increase CD8+ T cell 

recognition of tumor antigen by upregulating MHC-I. To determine if constitutive 

expression of NLRC5 increased the ability of CD8+ T cells to recognize cognate antigen, 

I cocultured cancer cells with naïve T cells from 2C TCR transgenic mice crossed with 

Nur77GFP reporter mice, which express GFP when the T cell receptor (TCR) engages 

with cognate pMHC. Interestingly, recognition of cancer cells was very high by 2C cells 

cocultured with control Panc02SIY100 cancer cells expressing low basal MHC-I and, 

accordingly, enhanced NLRC5 expression did not improve this level of recognition (Fig. 

3-6A), indicating that recognition of antigen was intact despite low levels of MHC-I 

expression. In order to test whether enhanced NLRC5 expression improved the 

functional responses of T cells to antigen, we examined cytokine secretion by 2C cells 

cocultured with Panc02SIY100 and Panc02SIY100-NLRC5 and determined that NLRC5 

expression was sufficient to enhance the ability of T cells to secrete effector cytokines 

(IFNγ and TNFα) (Fig. 3-6B), suggesting that there are different thresholds for 

recognition of antigen via the TCR, indicated by Nur77-GFP expression, and exertion of 

effector function by CD8+ T cells.  

In order to confirm that enhanced expression of NLRC5 is sufficient to enhance 

control of cancer cells by antigen-specific CD8+ T cells, Panc02SIY100 and 

Panc02SIY100-NLRC5 were cocultured with in vitro activated 2C and OT-I control CD8+ 

T cells. While Panc02SIY100 cells were resistant to control by 2C cells as before, 

Panc02SIY100-NLRC5 were significantly more susceptible to control by antigen-specific 
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CD8+ T cells. These results indicate that expression of NLRC5 is sufficient to permit 

control of antigen-matched cancer cells by CD8+ T cells through enhanced effector 

functions.  
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Fig. 3-6 NLRC5 expression by pancreatic cancer cells is sufficient to enhance 

control by antigen-specific CD8+ T cells. A) Naïve CD8+ T cells from Nur77GFP x 2C 

mice were plated on top of Panc02SIYneg, Panc02SIY100, and Panc02SIY100-NLRC5 

cancer cells. Analysis of Nur77GFP expression by 2C CD8+ cells was measured following 

24 hours of coculture by flow cytometry. B) In vitro activated 2C CD8+ T cells were 

plated on top of Panc02SIYneg, Panc02SIY100, and Panc02SIY100-NLRC5. Cytokine 

production (IFNγ and TNFα) was measured by intracellular cytokine staining and flow 

cytometry following 24 hours of coculture. C) Pancreatic cancer cell line growth curves 

measured with an Incucyte using GFP as a proxy for confluence. Cancer cells were 

pretreated with IFNγ and plated 24 hours prior to coculture with in vitro activated CD8+ T 

cells derived from 2C or OT-I mice. Key: *p<0.05; ****p<0.0001; ns = not significant. 
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3.5 Discussion 

Downregulation of major histocompatibility complex class I (MHC-I) molecules on 

cancer cells represents a major immune evasion tactic of murine and human cancers 

(309-312) and, accordingly, increasing MHC-I expression has been identified as a key 

target for effective immunotherapy (271, 308, 313). In the present study we have 

demonstrated that radiation increases MHC-I expression on cancer cell surfaces, 

enhances susceptibility of normally resistant cancer cells to control by antigen-specific 

CD8+ T cells and identified a novel mechanism of MHC-I regulation by induction of 

NLRC5 gene expression.  

Differential responses of CD8+ T cells to varying pMHC (peptide-MHC complex) 

concentration have been observed previously, wherein increased epitope density 

corresponds with greater responsiveness to IL-2, enhanced proliferation and increased 

cytotoxic function including cytokine production (273, 314, 315). This phenomenon is 

better understood in naïve T cells, where high levels of antigen presentation in 

combination with costimulation and integrin stabilization are required to generate a 

stable immunological synapse and to cross an activation threshold of T cell receptor 

(TCR) signaling (273, 316). In activated T cells, pMHC:TCR interactions at the kinapse 

are much shorter: a single pMHC complex can serially engage with rapidly internalizing 

TCRs and a CD8+ T cell can exert cytotoxic functions after engaging with as few as 1-3 

pMHC complexes per target cell (317, 318). It is clear that higher concentrations of 

pMHC can engage more TCRs and it has been proposed that serial engagement of the 

TCR allows increased stability and enhanced signaling within the TCR/pMHC-I/CD8 

molecular complex (315). Functionally, downregulation of MHC-I induced by viral 

infection can significantly attenuate the ability of CD8+ T cells to kill infected targets 

(319). Interestingly, expression of the early activation marker CD69 appears to be 

independent of epitope density (320), corresponding with the data presented here 
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demonstrating equivalent expression of Nur77 by naïve T cells cultured with MHC-Ilo 

Panc02SIY100 versus MHC-Ihi Panc02SIY100-NLRC5. However, we observed improved 

IFNγ and TNFα production by activated CD8+ T cells cultured with MHC-Ihi 

Panc02SIY100-NLRC5 cells in line with previous observations that increased epitope 

density is associated with increased T cell functional activation. Cumulatively, these data 

suggest that different densities of pMHC can activate different thresholds in T cells for 

expression of early activation markers, cytolytic degranulation and cytotoxic cytokine 

release (321). These experiments support the hypothesis that increased engagement of 

T cell receptors of effector CD8+ T cells enhances cytotoxic effector functions over those 

with minimally engaged TCRs. This work agrees with findings that tumor downregulation 

of antigen presentation via MHC-I correlates with checkpoint blockade resistance in 

human patients (271, 313) and highlights that total loss of MHC-I is not necessary for 

resistance to T cells.   

In this study, we propose a novel mechanism for increasing MHC-I density on 

cancer cell surfaces induced by radiation. Previous studies of MHC-I regulation by 

radiation have primarily focused on two distinct mechanisms for induction. One 

mechanism has highlighted tumor-derived type I interferon (IFN-I) signaling following 

irradiation as a mechanism of MHC-I induction (201). IFN-I secretion has been observed 

following cancer cell irradiation downstream of activation of cGAS/STING signaling 

(194), but we found that MHC-I expression on cancer cells following irradiation was not 

attenuated by knockdown of the IFN-I receptor (IFNAR). Additionally, we observed very 

little expression of STING in pancreatic cell lines that upregulated MHC-I in response to 

radiation. Together, these data suggest that in these models MHC-I upregulation is not 

dependent on IFN-I or STING signaling. Alternatively, another mechanism has proposed 

that RT-induced protein damage and enhanced mTOR signaling, as a means to facilitate 

damage repair responses, leads to increased abundance of intracellular peptide pools 
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and enhanced MHC-I loading to the cell surface (229). We found that genes involved in 

antigen presentation on MHC-I, including the MHC-I transactivator NLRC5, were 

upregulated following treatment, but surprisingly that this was not mediated via STING-

mediated innate sensing leading to type I IFN signaling. To our knowledge this 

represents a novel mechanism of MHC-I induction on cancer cells by radiation. Together 

with data showing increased cytokine release by CD8+ T cells cultured with NLRC5-

expressing Panc02SIY100, these data support our proposal that induction of NLRC5 by 

radiation enhances the ability of T cells to functionally respond to cancer cells 

expressing cognate antigen allowing for tumor regression and clearance. Further 

experiments are required, however, to determine whether induction of NLRC5 is 

necessary for the induction of MHC-I by radiation or increased susceptibility of cancer 

cells to control by CD8+ T cells. 
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Chapter 4: Concluding Remarks 

 

4.1 Summary and Conclusions 

The traditional role of radiotherapy in cancer treatment is to maximize direct 

killing of cancer cells while preserving normal tissue function; however, in part due to 

restrictions in radiation regimes due to normal tissue toxicity, tumor irradiation can leave 

behind viable cancer cells capable of leading to disease recurrence. In this manuscript, 

we have aimed to explore the way that sublethal radiation, that is radiation which does 

not entirely ablate the tumor on its own, can enhance CD8+ T cell responses to clear 

residual disease. 

We first aimed to establish whether vaccination by radiotherapy, also called in 

situ vaccination, was sufficient to explain immune-mediated tumor clearance by 

radiation. Previous reports by our lab demonstrated that T cell-mediated regression of 

tumors by radiation requires pre-existing CD8+ T cell immunity (124), suggesting that 

radiotherapy functioned poorly to prime/initiate novel T cell responses. This study, 

however, did not address whether T cell boosting, or reactivation and expansion of T 

cells, by radiation was sufficient to explain therapeutic efficacy. In order to model T cell 

boosting, we administered an exogenous vaccine capable of generating an order of 

magnitude higher tumor-specific CD8+ T cell in circulation and demonstrated that these 

cells had cytotoxic capacity, trafficked to tumors, and recognized antigen within tumors. 

Despite treatment-induced influx of T cells, however, tumors were refractory to 

vaccination alone or in combination with PD-1/PD-L1 checkpoint blockade therapy. 

Taken together, these results suggest that vaccination effects are not sufficient to 

explain the enhanced responses of CD8+ T cells driven by radiation, and raise questions 
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about whether radiotherapy might otherwise modulate the susceptibility of tumors to 

control by T cells. 

 Sublethal doses of radiation can alter cancer cell expression of proteins in a 

number of ways, but for these studies we were primarily interested in the role of 

augmentation of MHC-I expression (229) due to the integral role of antigen presentation 

in CD8+ T cell reactivity. In order to determine the role of radiation-mediated 

upregulation of MHC-I in enhancing CD8+ T cell responses, we examined candidate 

pathways which might play a role in cytokine-driven regulation of antigen presentation 

initiated by cancer cell irradiation, STING and type I interferon (IFN-I) (125, 201). We 

found, however, that our cancer cell lines express very low levels of STING protein and 

are insensitive to MHC-I induction by administration of exogenous STING ligands, 

suggesting that MHC-I upregulation occurs independently of the STING pathway. In 

order to determine whether, through means of alternate signaling, radiation induced the 

production of IFN-I and triggered MHC-I presentation through IFNAR, we used 

CRISPR/Cas9-mediated gene editing to disrupt IFNAR and render cancer cells 

insensitive to IFN-I signaling. Here, however, we determined that radiation-mediated 

upregulation of MHC-I and that therapeutic efficacy of radiation do not require cancer 

cell signaling through IFNAR. These results suggest that radiotherapy augments antigen 

presentation on MHC-I through activation of alternate pathways not yet elucidated. 

  In order to address the question of whether upregulation of MHC-I was sufficient 

to enhance the ability of CD8+ T cells to control, we genetically engineered cancer cells 

to express the MHC-I class I transactivator, NLRC5. We found that radiotherapy was 

sufficient to induce upregulation of NLRC5 in MHC-Ilo cancer cells and found that 

expression of NLRC5 was sufficient to increase expression of NLRC5. These findings 

suggest that induction of NLRC5 expression may represent a novel mechanism of 
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upregulation of MHC-I in response to radiotherapy. We found that enhancement of 

NLRC5 expression by cancer cells did not improve recognition by CD8+ T cells, but was 

able to enhance the ability of T cells to control cancer cells in vitro and produce 

cytokines in response to cancer cells in culture. These results suggest that different 

amounts or densities of pMHC presentation on target cells, controlled in part by NLRC5 

expression, can trigger different thresholds of activation in effector CD8+ T cells and 

prompt different therapeutic outcomes. 

Taken together, the data presented here support a model in which radiotherapy 

augments MHC-I expression by cancer cells and the resulting increase in antigen 

presentation can enhance the ability of cytotoxic CD8+ T cells to control these cells (Fig. 

4-1). In this model, radiotherapy functions primarily to potentiate pre-existing immune 

responses by altering the phenotype of target cancer cells, rather than by enhancing 

systemic immunity, in tumor models which are resistant to control by CD8+ T cells at 

baseline. Significantly for this work, studies have demonstrated that the gene for NLRC5 

in human cancers is frequently epigenetically suppressed rather than genetically 

disrupted (263, 265), suggesting that NLRC5 expression can be therapeutically induced, 

possibly by radiotherapy, in these tumors. Taken together, the experiments presented 

here expand our understanding of how radiotherapy can be used to control local disease 

but suggest, unfortunately, that radiation of a primary tumor is unlikely to aid in the 

control of tumors at distal sites. Accordingly, the research presented here has, in part, 

provided justification for a clinical trial examining the efficacy of neoadjuvant 

immunoradiotherapy with PD-1/PD-L1 checkpoint blockade in head and neck squamous 

cell carcinomas (HNSCC) in downstaging tumors prior to surgical resection 

(ClinicalTrials.gov Identifier: NCT03247712).  
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Fig. 4-1 Radiation-mediated induction of NLRC5 in cancer cells as a mechanism to 

enhance control by CD8+ T cells. The data presented in this manuscript support a 

model where effector CD8+ T cells differentially respond to target cells depending on 

expression of MHC-I on the cell surface, with different thresholds of activation for 

recognition (measured by Nur77 expression), cytokine production, and control/killing of 

target cells.  
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4.2 Future Directions 

In this thesis, we have presented evidence to support a model where 

radiotherapy can upregulate antigen presentation on MHC-I on cancer cells by induction 

of NLRC5. These data add complexity to our previous understanding of MHC-I 

regulation by radiation, wherein augmentation of MHC-I expression might occur either 

downstream of mTOR activation and without modulation of gene transcription (229) or 

mediated by cancer cell intrinsic secretion of IFN-I and ligation of IFNAR, triggering 

transcription of interferon-stimulated genes and genetic upregulation of MHC-I (201, 

275). Here we have shown that radiation can increase transcription of genes related to 

antigen presentation on MHC-I including NLRC5 in the absence of IFNAR signaling, 

demonstrating that alternative signaling pathways can play a role in MHC-I induction by 

cellular irradiation. While these insights aid in our understanding of how radiation can 

modulate cancer cell phenotypes to enhance anti-tumor immunity, significant gaps 

remain in our understanding of how the damage initiated by radiation triggers 

transcription of relevant genes in the absence of IFN-I as a cytokine mediator.  

It is clear, based on the work presented here and elsewhere (229, 322, 323), that 

gene transcription and protein expression are altered following cellular irradiation, but it 

is unclear what cellular machinery and pathways facilitate these changes. Due to the 

wide-ranging roles of DNA repair apical kinases, which are activated downstream of 

radiation, in regulating chromatin structure, cell cycle, and gene expression (discussed in 

Chapter 1), we question whether activation of these protein kinases might mediate the 

transition of cancer cells from an immunologically silent phenotype to one which is 

capable of stimulating CD8+ T cells (e.g. through upregulation of antigen presentation). 

To our knowledge, a potential linkage between these two phenomena has not yet been 

elucidated and has the potential to directly tie the sensing of DNA damage within cancer 
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cells to enhancement of immunogenicity potentially selected for due to the potential for 

generation of neoantigens following incorporation of mutations by radiation-induced DNA 

damage. The question of whether ATR, ATM, or other members of DNA damage 

sensing pathways are essential to immune modulation of cancer may additionally be 

therapeutically relevant, considering that agents designed to sensitize tumors to 

radiotherapy by inhibition of DNA repair kinases including ATR and poly(ADP-ribose) 

polymerase (PARP) are being tested (324-328) and that therapeutically effective 

radiation regimes can require CD8+ T cells to control residual disease (20, 21). Thus, 

disruption of critical pathways required to allow CD8+ T cell sensing of cancer cells may 

increase susceptibility of patients treated with radiotherapy and DNA repair kinase 

inhibitors to disease recurrence.  

While little is known about the link between DNA damage sensing and 

upregulation of MHC-I/NLRC5, studies indicate that ATR/ATM may be involved in 

regulation of expression of the immune inhibitory receptor PD-L15 (329-331). The gene 

encoding PD-L1, CD274, is located on human chromosome 9p.24.1 and is frequently 

upregulated by copy number expansion in human disease (332-335). Expression of PD-

L1 in human cancers appears to be regulated by a variety of factors including STAT3, 

HIF1, MYC, AP-1, and NF-κB (335-339). Cursory studies using shRNA or 

pharmaceutical inhibitors of ATR suggest that expression of PD-L1 in cancer cells can 

additionally be regulated by phosphorylated ATR via Chk1 and IRF1 (329, 340), 

although the precise signaling cascade is yet to be elucidated. Similar work with 

pharmaceutical inhibition of ATM demonstrated that blocking signaling through this 

pathway decreased PD-L1 expression by cancer cells following irradiation (329), 

                                                           
5 We and others have demonstrated that upregulation of PD-L1 and MHC-I are correlated 
following cancer cell irradiation or stimulation with interferon-gamma, suggesting that expression 
of these molecules are similarly regulated.  
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suggesting activated ATM kinase may also play a role in PD-L1 regulation. Together, 

this work suggests that expression of immune modulatory proteins such as PD-L1 and 

potentially MHC-I can be mediated by ATM/ATR/Chk1 kinases downstream of DNA 

damage induced by radiation.  

It is important to note that the current paradigm regarding how radiation 

stimulates anti-tumor immunity is heavily focused on the role of cGAS/STING/IFNAR 

signaling and it is unclear to what degree this pathway mediates upregulation of PD-L1 

downstream of radiotherapy. In the studies presented in this thesis, we disrupted IFNAR 

signaling and found MHC-I upregulation by radiation remained the same, but ATM/ATR 

signaling has been observed to enhance immunogenic signaling in cancer cells and 

antitumor immunity though cGAS/STING/IFNAR (275, 325, 329, 341). Interestingly, 

these effects are not necessarily dependent on induced damage by radiation and may 

be a result of chromosomal instability within cancer cells (342, 343). Due to the variable 

expression of STING pathway members in cancer models and human cancers (304, 

306, 344, 345), it is of interest to determine the degree to which STING signaling is 

necessary for radiation-induced control of tumors by immune cells. 

There are significant practical challenges to studying the role of DNA repair 

kinases in protein expression modulation following cellular irradiation. ATM, ATR, and 

Chk1 have integral roles in mediating DNA double-strand break (DSB) repair during 

mitosis (discussed in Chapter 1) and inhibition of these pathways results in significant 

sensitization of cancer cells to radiation-induced cell death. Accordingly, ATM/ATR 

deficiencies in cancer cells, which are commonly found in certain types human cancers 

and are associated with genomic instability, can are associated with greater sensitivity to 

radiation (346-350). While expression of ATM is important, it appears to be largely 

redundant in the presence of ATR, while a lack of functional ATR appears to be crucial 
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for dividing cells and ATR-/- mice demonstrate early embryonic lethality (351). It is 

unclear to what degree enhancing cancer cell death signaling may affect the results of 

studies aimed to elucidate the significance of pathways controlled by these kinases in 

phenotype modulation.  

Once potential solution to alleviate some of the impact of enhanced sensitization 

of cancer cells to radiation-induced cell death may be to replace the randomized and 

catastrophic DNA damage triggered by cellular irradiation with induction of genetic 

damage in known and non-essential segments of DNA. Experimental methods have 

been developed to generate controlled DSBs through genetic engineering of cell lines to 

express Cas9 or restriction enzymes, triggering chromatin remodeling and activation of 

DNA repair pathways (322, 352). These methods can activate ATM/ATR signaling in the 

absence of radiation and may be useful in determining the phenotypic consequences of 

activating these pathways while avoiding significant activation of cell death pathway 

signaling. Notably, it is unclear to what extent the genetic damage initiated by these 

methods replicates radiation-induced damage and it would be necessary to quantify and 

compare the extent to which they activate relevant signaling. 

In this thesis, we have focused on a model where radiation acts on cancer cells 

predominantly through the induction of DSBs in genomic DNA, it should not be ignored 

that radiation can cause significant damage to cancer cells through additional means 

and it is unclear to what extent these other types of damage, including single-stranded 

breaks (SSBs) and oxidative damage by ROS generation, play in modulation of cancer 

cell inflammatory phenotypes. Roux et al suggest that oxidative damage, as is initiated 

by cellular irradiation, can trigger PD-L1 expression by initiating NF-κB signaling (338); it 

is unclear whether NF-κB signaling downstream of oxidative damage can similarly 

augment expression of MHC-I and whether this signaling may occur in parallel with 
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NLRC5-mediated MHC-I upregulation (251). It may be of interest to determine which 

aspects of radiation-initiated damage signaling, including those stimulated by oxidative 

damage, are responsible for immune phenotype modulation of cancer cells. This may 

have additional implications for immune modulation by a wide range of 

chemotherapeutic agents, some of which have been shown to enhance anti-tumor 

immunity (201, 353, 354). 

Taken together, the findings presented in this thesis complement existing work 

demonstrating that cellular irradiation can lead to transcriptional alterations within and 

suggest that these previously underappreciated alterations might have significant impact 

on the interactions between treated cancer cells and immune cells. It will be important to 

elucidate the signaling pathways involved in order to better target treatments to enhance 

therapeutic benefits and avoid deleterious effects. The studies proposed here provide a 

jumping-off point from which basic biological pathways linking radiation-induced cellular 

damage to inflammatory cancer cell phenotypes, but it will additionally be important to 

better understand how these treatments affect immune cell function in in vivo settings.    
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Appendix A: Radiation and Vaccine Combination Therapy 

 

The ability of radiotherapy to modulate anti-tumor CD8+ T cell responses was 

well-established prior to the beginning of this thesis (26, 123, 126, 229, 298, 303), but 

we questioned whether radiation responses were limited by a lack of tumor-reactive 

CD8+ T cells able to respond to the newly altered tumor environment. Studies have 

demonstrated that radiotherapy can synergize with Listeria vaccines generating tumor 

model antigen-reactive T cell populations to control B16 melanoma and TRAMPC1 

prostate tumors (355-357), suggesting that radiation can permit or enhance the activity 

of activated tumor-reactive CD8+ T cells in circulation.  

In order to test whether radiation and Listeria vaccine synergized in our tumor 

models, we implanted mice with SCCVII-EGFRvIII tumors and treated the tumors with 

radiation and live-attenuated Listeria monocytogenes vaccines expressing a peptide 

antigen derived from EGFRvIII, EEKKGNYV (LmEGFRvIII) or a expressing an unrelated 

peptide (LmOva) (Fig. A-1A). In this model, radiation significantly extended the survival 

of mice inoculated with tumors but this effect was not enhanced by vaccination. In order 

to determine whether vaccination could improve the ability of radiation to control tumors 

in a model where radiation was poorly effective as a single therapy, we implanted mice 

with Panc02SIY tumors, which express the model antigen SIYRYYGL (SIY), and treated 

tumors similarly with radiation and Listeria vaccines expressing the model antigen 

peptide SIY (LmSIY) or an unrelated control (LmOva) (Fig. A-1B). In this case, none of 

the given therapies or combinations improved the responses of mice bearing Panc02SIY 

tumors.  
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In published reports where radiation and Listeria combinations were effective 

(355-357), the vaccine was given after radiation as in the experiments described in 

Figures A-1A and A-1B. We questioned whether establishing a large population of 

tumor-reactive, activated CD8+ T cells prior to tumor irradiation might improve the ability 

of radiotherapy to mediate T cell control. In order to determine if vaccination prior to 

radiation might improve therapeutic control, we inoculated mice with Panc02SIY tumors 

and administered LmSIY or control LmOva 14 days (Fig. A-1Ci) or 3 days (Fig. A-1Cii) 

prior to tumor irradiation. However, these tumors were similarly unaffected by single 

agent or combination therapies. 

These studies suggest that our tumor models are intrinsically resistant to control 

by vaccination as by radiation or exogenous agents, unlike the B16 and TRAMPC1 

models previously published. In at least two of reports where vaccination with Listeria 

improved radiation responses, survival of tumor bearing mice was improved by antigen-

specific vaccination alone (355, 357), suggesting that the tumors were already 

susceptible to T cell mediated control and that radiation enhanced these effects through 

unknown mechanisms. In tumor models where single agent Listeria vaccination did not 

improve survival, such as SCCVII-EGFRvIII and Panc02SIY, radiation was not able to 

alleviate tumor suppression of vaccine-induced T cells. These studies emphasize that 

certain tumor types are more resistant to control by T cells and further studies are 

required to determine the mechanisms of model-specific T cell suppression.  
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Fig. A-1 Radiation efficacy does not improve when combined with antigen-

matched Listeria vaccination.  A) Kaplan-Meier survival plot of mice implanted with 

SCCVII cancer cells expressing EGFRvIII and treated 6 Gy radiation 14 days later 

and/or with Listeria-EGFRvIII (LmEGFRvIII) or Listeria-Ova (LmOva) 17 days after tumor 

inoculation. B) Kaplan-Meier survival plot of mice implanted with Panc02SIY cancer cells 

and treated with 12 Gy radiation 20 days later and/or with Listeria-SIY (LmSIY) or 

Listeria-Ova (LmOva) 23 days after tumor inoculation. C) i) Kaplan-Meier survival plot of 

mice implanted with Panc02SIY cancer cells and treated with LmSIY or LmOva 6 days 

later and/or radiation 20 days after tumor inoculation ii) Kaplan-Meier survival plot of 

mice implanted with Panc02SIY cancer cells and treated with LmSIY or LmOva 17 days 

later and/or radiation 20 days after tumor inoculation. Key: *p<0.05; **p<0.01.  
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Materials and Methods 

Animals and Cell Lines 

Animal protocols were approved by the Earle A. Chiles Research Institute IACUC 

(Animal Welfare Assurance No. A3913-01). All experiments were performed in 

accordance with relevant guidelines and regulations. 5-8 week old C3H/HeJ mice (Stock 

#00659) and 5-8 week old C57BL/6 mice (Stock #000664) were purchased from the 

Jackson Laboratory (Bar Harbor, ME) for use in these experiments. Survival 

experiments were performed with 5-6 mice per group.  

Cell lines were cultured in RPMI-1640 (HyClone, Fisher Scientific, Hampton, NH) 

supplemented with 10% heat inactivated fetal bovine serum (Cat#10082147, Thermo 

Fisher Scientific, Waltham, MA), 2mM L-glutamine (Cat#SH3003401, HyClone, Fisher), 

10mM HEPES (Cat#HOL06, Caisson Labs, Smithfield, UT), 100U/mL penicillin-

streptomycin (Cat#PSL01, Caisson), 1X non-essential amino acids (Cat#SH3023801, 

Fisher), 1mM sodium pyruvate (Cat#PYL01, Caisson).  

The parental squamous cell carcinoma line SCCVII was kindly provided by Walter T. Lee 

(Duke Cancer Center Institute, Durham, NC). To generate SCCVII cells expressing 

EGFRvIII, cancer cells were transfected using Lipofectamine 2000 Transfection Reagent 

(Life Technologies, Carlsbad, CA) with MSCV-loxp-dsRed-loxp-eGFP-Puro-WPRE 

(Addgene plasmid #32702, gifted from Hans Clevers) and MSCV-XZ066-EGFRvIII 

(Addgene plasmid #20737, gifted from Alonzo Ross) and sorted on a BD FACSAria II 

cell sorter (Becton Dickinson, Franklin Lakes, NJ) for high expression of GFP (SCCVII-

EGFRvIII) (280). The parental murine pancreatic adenocarcinoma cell line Panc02 was 

kindly provided by Dr. Woo (Mount Sinai School of Medicine, New York, NY). Panc02 

expressing the model antigen SIY was kindly provided by Dr. Weishelbaum (University 
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of Chicago, Chicago, IL), as used previously(124), and expresses GFP-SIY in 

approximately 40% of cells. Panc02SIY100 was derived and expanded from a high GFP 

expressing single clone within Panc02SIY on a BD FACSAria II cell sorter. 

Immunotherapy and Radiation Therapy of Tumors 

Tumors were inoculated at a dose of 2 x 106 for SCCVII-EGFRvIII tumors, 5 x 106 for 

Panc02SIY tumors and 10 x 106 for Panc02SIY100. Tumor size was determined via 

caliper measurements of the longest length x the longest perpendicular width. Survival 

endpoint was defined as tumor size greater than or equal to 150mm2 or when the mouse 

appeared moribund.  

For in vivo irradiation, a Small Animal Research Radiation Platform (SARRP) (Xstrahl, 

Suwanee, GA) and Murislice software (Xstrahl) were used. For treatment, 6 Gy radiation 

was administered to SCCVII-EGFRvIII isocenters 14 days following tumor inoculation 

and 12 Gy of radiation was administered to Panc02-derived tumor isocenters 20 days 

following tumor inoculation.  

ActA deleted (ΔactA) Listeria monocytogenes (Lm) strains used for vaccination were 

engineered to express the EGFRvIII peptide EEKKGNYV (LmEGFRvIII) as described 

previously (280), the ovalbumin peptide SIINFEKL (LmOva), or SIYRYYGL peptide 

(LmSIY) cloned in-frame with the actA N-terminal fragment. Bacteria were grown in 

brain-heart infusion broth, washed twice in PBS and administered by retro-orbital 

injection at a dose of 1 x 105 (C3H mice) or 1 x 107 (C57BL/6 mice) CFU in 100μL total 

volume. Effective vaccination was confirmed seven days later by MHC-multimer binding 

of peripheral blood.  

Statistics 
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Data was analyzed and graphed using FlowJo (Tree Star, Ashland, OR) and Prism 

(GraphPad Software, La Jolla, CA). Kaplan Meier survival curves were compared using 

log-rank tests. 
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Appendix B: Enhancement of T Cell Trafficking by Tumor 

Irradiation 

 

Lack of infiltration of T cells into tumors represents a significant barrier to the 

efficacy of immunotherapies including checkpoint inhibitors, and strategies to enhance T 

cell trafficking, turning “cold” tumors into “hot” tumors, are of keen interest to researchers 

and clinicians (358). Studies have suggested that radiotherapy can trigger the production 

of intratumoral T cell chemoattractants including CXCL9 (MIG), CXCL10 (IP-10) and 

CXCL16 (127, 128, 359), and can increase the expression of cellular adhesion 

molecules on tumor vasculature required for T cell migration from the blood into tumors 

(26, 126, 359). These studies led us to question whether radiation might function in our 

model to enhance T cell trafficking.  

In order to determine whether radiation improved T cell trafficking into tumors, we 

irradiated Panc02SIY tumors implanted subcutaneously in mice and harvested tumors a 

week later. By immunohistochemistry, we observed significantly higher numbers of 

CD3+ cells within the tumors (Fig. B-1Ai and B-1Aii), suggesting an increase in T cell 

trafficking, in agreement with previous studies (20, 126). Previous studies have 

demonstrated that radiotherapy can increase representation of CD4+ regulatory T cells 

within tumors (360), but further characterization of infiltrating T cell subsets is required to 

determine whether this is the case here. In order to determine whether the infiltrating T 

cells were CD8+ T cells, we similarly treated tumors with radiation harvested the tumors 

for analysis by flow cytometry (Fig. B-1Bi). We observed that while radiation did not 

increase the proportion of CD8+ T cells of total live cells within tumors (Fig. B-1Bii), there 

was a significant increase in the proportion of T cells expressing CD8 (Fig. B-1Biii). 

Combined with the immunohistochemistry data, these results strongly suggest that 
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radiation can increase CD8+ T cell infiltration into tumors. In Chapter 2, we discussed 

whether increased numbers of T cells in tumors are sufficient to cause regression of 

tumors in this model.  

 Recruitment of T cells to inflamed tissue by chemokines is not antigen-specific; 

however, following activation of CD8+ T cells within the tissue, expansion of T cells can 

be observed. Previously we had observed no significant expansion in endogenous 

model antigen-specific CD8+ T cells in tumors treated by radiotherapy compared to 

untreated controls (Fig. 2-4Biii), but did not determine whether antigen-specific CD8+ T 

cells were preferentially retained or expanded intratumorally after radiotherapy. In order 

to determine whether tumor irradiation favored enrichment of antigen-specific CD8+ T 

cells over a fixed number of control T cells, we adoptively transferred in vitro activated 

2C T cells with equivalent numbers of control OT-I T cells into Rag1-/- animals bearing 

dual flank Panc02SIY100 tumors and irradiated the tumor on one flank (Fig. B-1C). 

Seven days following radiation, irradiated tumors were significantly smaller than controls 

(Fig. B-1Ci), but there was equivalent enrichment of antigen-specific 2C cells in both 

tumors (Fig. B-1Ciii), suggesting that antigen-specific T cell trafficking or retention was 

not enhanced by radiotherapy. 

 Taken together, these studies suggest that in our model, radiotherapy does not 

significantly alter antigen-specific or bulk CD8+ T cell numbers to improve therapeutic 

outcomes, and support our hypothesis that here, other immune modulatory functions are 

responsible for enhanced CD8+ T cell responses driven by tumor irradiation.  
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Fig. B-1 Radiation does not improve antigen-specific CD8+ T cell trafficking into 

SIYRYYGL-expressing tumors. A) i) Representative immunohistochemistry images 

from paraffin-embedded zinc-fixed Panc02SIY tumors harvested from mice treated with 

12 Gy radiation (RT) or given no treatment (NT). Tumors were harvested at 27 days 

following tumor challenge. 5μM tissue sections were stained with CD3-DAB (brown) and 

counterstained with hematoxylin and eosin ii) Quantification of images represented in i) 

where each dot represents a representative section from an individual animal. B) i) 

Treatment schematic. C57Bl/6 mice were implanted with Panc02SIY tumors and 

irradiated (12Gy). Tumors were harvested and processed for flow cytometry ii) 

Proportion of tumor-infiltrating CD3+CD8+ T cells out of total live cells and iii) Proportion 

of CD3+CD8+ of total CD3+ cells. Each point represents one mouse. C) Rag1-/- mice 
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implanted with dual flank Panc02SIY100 tumors and were adoptively transferred with in 

vitro activated OT-I or 2C T cells 13 days following tumor challenge. At day 14, 12 Gy 

radiation was administered to tumors on one flank. Tumors and peripheral blood were 

harvested at day 1, day 3, and day 7 following irradiation. i) Mass of tumors not treated 

(NT) or giving radiotherapy (RT) harvested at indicated timepoints. Each point 

represents an individual tumor. ii) MHC-multimer (SIINFEKL-tetramer (tOva) or 

SIYRYYGL-pentamer (pSIY)) binding CD8+ T cells in peripheral blood at indicated 

timepoints. iii) pSIY-binding CD8+ T cells normalized to tOva-binding T cells in tumors 

receiving indicated treatments and harvested at indicated timepoints determined by flow 

cytometry. Each point represents an individual tumor. Key: *p<0.05; **p<0.01, 

****p<0.0001.  
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Materials and Methods 

Animals and Cell Lines 

Animal protocols were approved by the Earle A. Chiles Research Institute IACUC 

(Animal Welfare Assurance No. A3913-01). All experiments were performed in 

accordance with relevant guidelines and regulations. 5-8 week old C57BL/6 mice (Stock 

#000664) and B6.129S7-Rag1tm1Mom/J (Rag1-/-) mice (Stock #002216) were purchased 

from the Jackson Laboratory (Bar Harbor, ME) for use in these experiments. Nur77GFP 

reporter mice were kindly provided by Dr. Weinberg (Earle A. Chiles Research Institute, 

Portland, OR)(281). 2C transgenic mice were kindly provided by Dr. Gajewski (University 

of Chicago, Chicago, IL). OT-I transgenic mice were gifted by Dr. Redmond (Earle A. 

Chiles Research Institute).  

Immunotherapy and Radiation Therapy of Tumors 

Tumors were inoculated at a dose of 5 x 106 for Panc02SIY tumors and 10 x 106 for 

Panc02SIY100 tumors. Tumor size was determined via caliper measurements of the 

longest length x the longest perpendicular width. Survival endpoint was defined as tumor 

size greater than or equal to 150mm2 or when the mouse appeared moribund.  

For in vivo experiments, 12 Gy of CT-guided radiation was administered to tumor 

isocenters using a Small Animal Research Radiation Platform (SARRP) (Xstrahl, 

Suwanee, GA) and Murislice software (Xstrahl), 14 days after tumor implantation. 250μg 

per dose αPD-L1 checkpoint blockade (Cat#BE101, BioXCell, West Lebanon, NH) was 

administered intraperitoneally at day 7, 14 and 21 post tumor implantation.  

For adoptive T cell transfer, naïve CD8+ T cells were harvested as splenocytes from 

naïve 2C or OT-I mice and activated in vitro with αCD3ε (Cat#BE0001-1, BioXCell) and 

αCD28 (Cat#BE0015-1) at a final concentration of 10μg/mL each. After 48 hours, cells 
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were rinsed with 10% complete RPMI supplemented with β-mercaptoethanol (βME) 

(Cat#21985023, Gibco, Thermo Fisher) and plated with 60IU/mL human recombinant IL-

2 (Chiron) for three days. Prior to retro-orbital intravenous injection, CD8+ T cells were 

purified from splenocytes using a CD8α+ T cell negative isolation kit (Cat#130-104-075, 

Miltenyi), rinsed in sterile PBS and diluted to 1e6 cells per 100μl injection volume. 

Tumor analysis 

For flow cytometric analysis of tumor-infiltrating cells, tumors harvested seven days after 

treatment were chopped into small fragments and dissociated in a solution of 250 U/mL 

collagenase IV (Worthington Biochemical Corporation, Lakewood, NJ) and 30 U/mL 

DNase (Millipore Sigma, St Louis, MO) using a GentleMACS tissue dissociator (Miltenyi 

Biotec, Auburn, CA). After 30 minutes incubation at 37°C, the digest was quenched in 

RPMI-1640 (Cat#SH30027LS, Fisher) supplemented with 10% FBS (Cat#16000069, 

Thermo Fisher) and 2mM EDTA (Cat#324504, Millipore Sigma) and strained through 

100μM and 40μM cell strainers. Filtered cells were rinsed in cold PBS twice prior to 

counting and staining for analysis on a BD LSR II flow cytometer (Becton Dickinson).  

Immunohistochemistry 

Immunohistochemistry was performed on Zinc-fixed tumors embedded in paraffin 

preserved as described previously (282). Five micron sections were stained with primary 

αCD3 (SP7, Cat#ab16669, Abcam, Burlingame, CA) diluted in blocking buffer, 

secondary goat anti-rabbit IgG conjugated to HRP (Cat #AP1879, EMD Millipore, 

Burlingame, MA), and ImmPACT DAB Peroxidase (HRP) Substrate (Cat#SK-4105, 

Vector Laboratories, Burlingame, CA). Slides were counterstained with hematoxylin 

7211 (Cat#S7439-1, Cardinal Health, Dublin, OH). CD3 infiltration was quantified using 

Aperio ImageScope (Aperio, Sausalito, CA). 
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Antibodies and Reagents 

Viability staining was performed in PBS using Zombie Aqua Fixable Viability Kit 

(BioLegend, San Diego, CA) for 15 minutes prior to staining with fluorescently-

conjugated antibodies for flow cytometry. Monoclonal antibodies were used against: 

CD3 [17A2], CD4 [RM4-5], and CD8α [53-6.7]. Fluorescently-conjugated MHC-multimer 

complexes were used as follows: tetramer-SIINFEKL (tOva, NIH Tetramer Core, Atlanta, 

CA), and pentamer-SIYRYYGL (pSIY, ProImmune, Sarasota, FL). 

Statistics 

Data was analyzed and graphed using FlowJo (Tree Star, Ashland, OR) and Prism 

(GraphPad Software, La Jolla, CA). Individual data sets were compared using Welch’s T 

tests. Growth curves and analysis across multiple groups were analyzed using ANOVA 

(two-way and one-way, respectively).  
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Appendix C: NLRC5 Correlates in Human Pancreatic Tumors 

 

In Chapter 3, we discussed the role of NLRC5 in regulating expression of genes 

related to antigen processing and presentation on MHC-I complexes (250, 361) and 

proposed a novel role for NLRC5 in augmenting MHC-I expression on cancer cells 

following radiotherapy. The role of NLRC5 in therapeutic responses in human cancer 

patients is currently under investigation (264, 265, 313), as well as mechanisms of tumor 

suppression of NLRC5 expression (263), with the hope of gaining insight into how to turn 

cancer cells into better targets for T cell killing (362). The potential role of radiotherapy in 

enhancing expression of NLRC5 in MHC-Ilo tumors is therefore of significant scientific 

and clinical interest.  

 Accordingly, we questioned whether NLRC5 expression in human pancreatic 

tumors could predict therapeutic outcomes. Using the open source resource cBioPortal, 

we obtained RNAseq data from surgical samples from the TCGA human pancreatic 

adenocarcinoma cohort. In order to determine if NLRC5 might play a role in enhancing 

antigen processing and presentation on MHC-I in accordance with previous studies, we 

plotted and identified positive correlations between gene expression values of NLRC5 

and components of this antigen presentation pathway, including classical MHC-I 

subunits (HLA-A, HLA-B, HLA-C, and B2M), TAP1, and PSMB8 (gene for the 

immunoproteasome component LMP2) (Fig. C-1). Interestingly, we also identified 

positive correlation between NLRC5 and CIITA, the MHC Class II Transactivator, 

suggesting that these pathways might be similarly regulated.  

 In order to determine whether NLRC5 expression in pancreatic tumors correlated 

with prognosis, we divided patients into NLRC5-hi and NLRC5-lo cohorts and plotted 

survival. In this cohort, we found no significant differences in overall survival (Fig. C-2A) 
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or progression free survival (Fig. C-2B) between NLRC5-hi and NLRC5-lo expressing 

tumors. We questioned whether NLRC5 expression within the tumor could predict 

therapeutic responses to radiotherapy, but also found no significant difference in overall 

survival based on NLRC5 status (Fig. C-2C).  

In the model presented in this document (Fig. 4-1), we proposed that 

radiotherapy could act on NLRC5lo expressing tumors to enhance antigen presentation. 

The findings here demonstrate that low NLRC5 expression within tumors correlates with 

low expression of antigen presentation machinery (Fig. C-1), but the lack of predictive 

value of NLRC5 status in radiotherapy responses (Fig. C-2C) suggest that our simplistic 

model tells an incomplete story. In our murine model, radiotherapy requires alleviation of 

tumor immune suppression with αPD-L1 checkpoint inhibitors (Fig. 2-3) in order to 

efficiently clear tumors, suggesting there could be a role for immune suppressive 

signaling through known checkpoints within the tumor microenvironment. However, 

human pancreatic cancers are largely resistant to systemic therapies including 

checkpoint blockade (363), in part due the tendency of pancreatic cancer cells to 

encapsulate in desmoplastic stroma, composed largely of fibroblasts, extracellular matrix 

proteins, immune cells such as macrophages, and pancreatic stellate cells. This dense 

microenvironment is largely considered immune suppressive and additionally reduces 

perfusion of systemic drug therapies within the tumor (364, 365). Therefore, without 

addressing the differences in tumor microenvironment between subcutaneous murine 

models and human pancreatic tumors, NLRC5 status might still be poorly predictive of 

survival in patients even with the inclusion of checkpoint blockade therapy in treatment 

regimes.  

Additionally, while we have focused in this thesis on the potential of radiation to 

induce anti-tumor immunity mediated by CD8+ T cells, it is well-established that radiation 
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can also have immune suppressive effects. In Chapter 4 we discussed the ability of 

radiation to upregulate PD-L1 expression by tumor cells, which is capable of dampening 

the ability of T cells and NK cells to response to disease (329, 339, 366). Additionally, 

radiation can trigger apoptosis in sensitive cell populations such as lymphocytes, 

including CD8+ T cells, at relatively low doses (129, 367, 368). Typical radiotherapy 

regimes, in which tumors are irradiated daily for several weeks, can thus dampen anti-

tumor immunity (20, 117). Significantly, fractionated radiation is also linked to increased 

immunosuppressive macrophage infiltration into tumors, further dampening the ability of 

the adaptive immune system to respond to and control cancer cells (10, 20, 369). These 

tumor-associated suppressive phenotype macrophages are associated with poor 

prognosis in human pancreatic cancer (370). Together, these phenomena suggest that 

in vivo treatment of pancreatic cancer with radiation may have opposing effects in 

initiating anti-tumor immunity and further study is required to determine how the scales 

might be tipped in favor of tumor eradication.  
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Fig. C-1 Correlation of NLRC5 gene expression with antigen presentation 

machinery in human pancreatic tumors. Correlation between NLRC5 gene 

expression and expression of genes related to antigen processing and presentation. 

RNAseq data obtained from TCGA PanCancer Atlas cohort for pancreatic 

adenocarcinomas. Pearson correlation coefficients and P values are given. 
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Fig. C-2 High expression of NLRC5 does not correlate with increased patient 

survival. A) Overall survival of patients having undergone surgical resection for 

pancreatic adenocarcinoma from the TCGA PanCancer Atlas cohort, segmented by high 

or low expression of NLRC5 quantified by RNAseq. B) Progression free survival for 

cohort as described in A. C) Overall survival for patients described in A which underwent 

post-surgical radiotherapy.  
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Materials and Methods 

RNAseq of Human Pancreatic Tumors 

RNAseq data from primary human pancreatic adenocarcinoma tumors (TCGA, 

PanCancer Atlas) for the TCGA dataset were downloaded from cBioPortal as previously 

described (371, 372). Of 184 patients in the cohort (35-88 years of age at diagnosis), 

RNAseq data was provided for 177 of which 167 included data about treatment with 

radiotherapy (43 received radiation, 123 did not). Patients did not receive neoadjuvant 

therapy prior to surgery. NLRC5-hi and NLRC5-lo groups were segmented by 

expression above or below the median expression for the cohort. 

Statistics 

Data was analyzed and graphed using FlowJo (Tree Star, Ashland, OR) and Prism 

(GraphPad Software, La Jolla, CA). Correlation was determined by linear regression 

analysis. Kaplan Meier survival curves were compared using log-rank tests. 
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