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ABSTRACT

We formulate, implement, and illustratively apply a model specifically designed to assist
graduate-level education and exploratory research on the hydrodynamics and numerics of
shallow water circulation. RITA (River and Tidal Analysis, 1-D version) uses a flexible
finite element wave equation formulation to solve for the one-dimensional shallow water
equations. The model allows great flexibility in the choice (a) of the time-discretization
scheme, including the ability to handle each physical process differently, and (b) of strate-
gies for the treatment of non-linear terms.

The reference treatment of non-linear terms involves a generic “a-method” in time
and a Galerkin finite element method in space. Alternative treatments of non-linear terms
include (a) a novel time extrapolation scheme applicable to all or to individual non-linear
terms, (b) the element-average of advective acceleration, (c) the use of N+2 upwind
weighting functions for the advective acceleration, and (d) an Eulerian-Lagrangian form
of the governing equations. RITA; was tested through extensive numerical experiments,
in the context of linear and non-linear tidal propagation, Burgers’ equation, and reservoir
dynamics.

Selected applications illustrate the potential of the model for exploratory research
and education. In particular, we analyze (a) the generation of shallow water tides, (b) the
effect on numerical accuracy of the generalized wave equation factor, and (c) the perfor-
mance of different numerical strategies for the treatment of non-linear terms.
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EXTENDED SUMMARY

The numerical modeling of shallow water circulation has progressed very significantly
over the past half-century. Indeed, if properly calibrated and validated, leading depth-aver-
aged models can often claim a satisfactory degree of predictive ability within the require-
ments of many engineering applications. Also, computational costs per grid node and
prototype time have decreased drastically, as a consequence of both an explosive evolu-
tion of hardware and a steady evolution of numerical techniques.

As in many fast-evolving areas, however, only marginal effort has been dedicated
to systematic comparative research, advanced education, and practical training. Reflecting
this trend, circulation models are typically developed rigidly around a preferred numerical
technique, with the emphasis being placed on computational efficiency rather than on flex-
ible exploration of alternatives.

In this thesis we formulate, implement, and illustratively apply a model specifi-
cally designed to assist graduate-level education and exploratory research on the hydrody-
namics and numerics of shallow water circulation. This model, RITA; (River and Tidal
Analysis, 1-D version), uses a flexible finite element wave equation formulation to solve
for the one-dimensional shallow water equations. RITA, is served by a flexible user inter-
face and by advanced scientific visualization capabilities, both developed in parallel with
this research. The model is also compatible with a series of transport-transformation mod-
els that are being developed with similar objectives.

The flexibility of the formulation of RITA is particularly important at two levels:
(a) problem definition and (b) numerical strategy. Flexible problem definition is fairly
common in modern numerical models, and is clearly essential for an effective use of
RITA ; a partial measure of the flexibility of RITA is provided by the range of illustrative
applications reported in this work and elsewhere, which include linear and non-linear tidal
propagation, river-reservoir dynamics, and tsunami propagation.

Within the bounds of a finite element wave equation formulation, RITA is espe-
cially flexible in the choice of (a) the time-discretization scheme, including the ability to
discretize different physical processes differently, and (b) the strategy for the treatment of
non-linear terms. The emphasis on flexibility for the treatment of non-linear terms is
rooted on the belief that treatment of these terms still constitutes a weakness in the state-
of-the-art of circulation modeling, drastically affecting, for instance, our ability to simu-
late shallow or intermittently flooded regions.

The reference treatment of non-linear terms in RITA; involves a Galerkin finite
element method in space and a generic “a-method” in time. Alternative treatments of

xii




these terms include (a) a novel time extrapolation scheme applicable to all or to individual
non-linear terms, (b) the average over each element of the advective acceleration, (c) the
use of N+2 upwind weighting functions for the advective acceleration, and (d) an Eule-
rian-Lagrangian re-write of the governing equations.

To test the reliability of RITA; as a numerical code we performed an extensive set
of numerical experiments, in the context of (a) linearized tidal propagation, (b) Burgers’
equation, (c) non-linear tidal propagation, and (d) reservoir dynamics. Analytical solutions
are available only for problems (a) and (b), but unfortunately these problems have little or
no potential for testing the treatment of non-linear processes. For problem (c) we assume
the convergence of the reference formulation in RITA | and generate “refined solutions” by
using that formulation with highly resolved grids in space and time. Error-norms are then
computed using these “refined solutions”. Problem (d) was used to test overall mass pres-
ervation. Errors are easy to assess for this problem by comparing net influxes against
changes in water volume. Except for the Eulerian-Lagrangian treatment of the governing
equations (which will require further investigation), all major model options are consid-
ered stable, and are expected to perform reliably.

Selected applications are presented to illustrate the potentialities of RITA;. In par-
ticular, we (a) analyze the generation of shallow water tides in a way that is consistent
with classroom use in a graduate-level course on estuarine dynamics; (b) explore the per-
formance of different numerical strategies for the treatment of non-linear terms, in a way
that is consistent with comparative or exploratory research; and (c) analyze the effect on
numerical accuracy of the generalized wave equation factor, in a way that is consistent
with classroom use in a graduate-level modeling course. In a separate work!, we also
examine tsunarmi propagation in sensitivity analysis mode, to identify optimized strategies
for the applied, two-dimensional modeling of locally-generated tsunamis in the Cascadia
Subduction Zone.
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CHAPTER 1
INTRODUCTION

1.1. Context

Rivers, estuaries, lakes and coastal seas support human life in major areas of the globe and
it was at the margins of these water bodies, and largely at their expense, that many civili-
zations appeared and flourished. After almost two centuries of generalized over-exploita-
tion of these natural resources, and of growing needs for water for the most diverse uses,
virtually every nation now recognizes that the understanding and management of surface
waters is a crucial issue. Indeed, in the last few decades, serious environmental problems
have afflicted an increasing number of surface waters all over the world, sometimes to the
extent of ecological disasters?’ 3.

Most of what happens in surface waters is strongly affected by their hydrodynam-
ics. For example, the dispersal of pollutants in an estuary, the navigability of a river, the
stability of a sand beach, the distribution of organisms in a shallow bay, and the viability
of an off-shore oil platform are all among the innumerous processes and activities which
are determined by the characteristics of the water circulation. The capability of predicting
the hydrodynamics of a water body is therefore of unquestionable importance.

Rivers, estuaries and coastal seas often share an important characteristic: their
depth is much smaller than their horizontal dimensions. For this reason, circulation in
these water bodies can often be described by the Shallow Water Equations, frequently
written in depth-averaged form.

The numerical modeling of shallow waters has progressed very significantly over
the past half-century. Leading depth-averaged models*7, if properly calibrated and vali-
dated, can claim a satisfactory degree of predictive ability within the requirements of
many engineering applications. In recent years, computational costs per grid node and per
prototype unit have decreased drastically, because of an explosive evolution of hardware
and a steady evolution of numerical techniques. This reduction of computational costs has

in turn fueled fruitful research and applications in both fully 3-D modc:lmg8 -1

12,13

and in

long-term, highly resolved, regional modeling




As in many fast-evolving areas, however, only marginal effort has been dedicated
to systematic comparative research?®, advanced education, and practical training. Reflect-
ing this trend, circulation models have typically been developed rigidly around a preferred
numerical technique, with emphasis being placed on computational efficiency rather than
on the flexible exploration of alternative formulations. Although this approach is effective
for application-oriented models, we believe that there is a strong need for a circulation
model designed to educate and to explore, rather than to solve for specific applications.

The following arguments indicate the pressing need for education and exploratory
research models:

» Numerical models are widely utilized and they are now commonly available to
users with limited background and experience with numerical methods. Misuse
of models in important applications is therefore a clear risk, and one that society
can not afford when models guide our management of scarce resources. Educa-
tion-oriented models used in undergraduate and graduate-level courses and in
professional training courses can improve the competence of model users.

« Pressing issues involving surface water systems increasingly require multi-disci-
plinary approaches, which bring together people with diverse technical expertise.
In these multi-disciplinary settings, it is often difficult to establish common ter-
minology and perception of concepts. Education-oriented models, for circulation
and a variety of other processes, can help build the much needed common termi-
nology and perception of concepts.

» Numerical modeling has been an extremely prolific area of research. A variety of
techniques have been developed, and even those that “don’t work™ often provide
useful insight (or just breadth of knowledge) to advanced modelers and numeri-
cal analysts. However, because they have limited practical application, the least
used techniques are not readily available in coded form, and are often partially or
completely “lost” to the process of educating new generations. An education-ori-
ented model is ideally suited to incorporate such techniques, as a part of a broad
range of alternative techniques.

» Since most of the numerical models are rigidly developed around a fixed numer-
ical scheme, and their I/O structures are often mutually incompatible, systematic
comparison of numerical modeling methods is rarely performed. Models that
allow the flexible choice of the numerical scheme from a broad selection of alter-
natives, are particularly well suited for such comparison.

« Sensitivity analysis and exploratory research are very important for the design of
modeling strategies for particular problems. Preliminary testing of simplified
problems can be extremely useful for that purpose. However, the rigidity and

a. The Tidal Flow Forum!4 was a notable exception.




computational cost of most models discourage such practice. Easy-to-use
research-oriented models are particularly useful for sensitivity analysis, and can
thus improve the quality of problem-solving modeling.

The development on advanced education, and practical training areas can be
achieved by the creation of flexible computational structures, including a range of optional
numerical schemes and supported by comprehensive, easy to use, visualization tools and
user interfaces.

1.2. Scope and objectives

The primary objective of this thesis is to develop, validate, and illustratively apply an edu-
cation and exploratory research model for circulation in shallow waters. The main target
applications for the model are:

e Advanced (graduate-level) education in either the modeling/numerics or the
hydrodynamics of shallow waters. The model should be a tool (a) for teachers,
who will use it to illustrate concepts in the classroom; and (b) for students, who
will consolidate their knowledge through actual experimentation and explora-
tion.

» Comparative research in circulation modeling. In particular, the model should
allow detailed comparison, complementary to formal analysis, of a range of
approaches to the treatment of non-linear processes.

« Exploratory circulation modeling. In particular, the model should allow one-
dimensional sensitivity studies to help design modeling strategies for higher
dimension detailed studies.

Both the numerical scheme and the hydrodynamic problem should be easily defin-

able, by means of a user-friendly interface. Up-to-date visualization techniques, including
animation, should be used to display the results. To satisfy these goals we developed

RITA; (River and Tidal Analysis, 1-D version), based on a flexible implementation of a

EIIS, 16

finite element wave equation formulation. RITA; was built as a part of AC , an

evolving computational structure composed of:

* Selected flow and transport-transformation models!?, most of which are in
design or under development, and all of which are oriented towards education
and exploratory research.

« A coherent user interface framework, that controls grid generation, model selec-
tion and execution, definition of input parameters, and scientific visualization.
New model-specific menus are added as those models become available, a task
that for RITA; was accomplished in parallel with but outside this research.

» A flexible scientific visualization platform designed generically enough to serve
all target models.




In general, components of ACE; have a close correspondence with higher-dimen-
sion components of ITACA (Integrated Tools for the Analysis of Coasts and Land-Mar-
ginsls), a computational modular structure designed to support inter-disciplinary research
on coastal watersheds!3. In the case of RITA;, correspondence is with ADCIRC” 19, 3
new two-dimensional, depth-averaged tidal and storm surge model developed jointly at
University of Notre Dame and at University of North Carolina.

1.3. Organization and contents

This thesis comprises five chapters and two appendices. Chapter 1 puts the need for an
education-oriented circulation model such as RITA; in context, identifies the scope and
objectives of the reported research, and describes the organization of the text.

Chapter 2 describes the formulation of RITA; in detail. The model uses a flexible
finite element wave equation formulation to solve for the one-dimensional shallow water
equations. For linear processes our reference formulation uses a generic “o-method” in
time, and a Galerkin finite element method with linear shape functions in space; non-linear
processes are treated similarly, but the “a-method” is required to lead to explicit represen-
tations. Alternatively, RITA; can treat non-linear processes by using (a) a novel time
extrapolation scheme applicable to all or to individual non-linear terms, (b) an element-
averaged representation for the advective acceleration, (c) N+2 upwind weighting func-
tions for the advective acceleration, and (d) an Eulerian-Lagrangian re-write of the gov-
erning equations.

Chapter 3 describes the validation of RITA ;. We report an extensive set of numeri-
cal experiments, in the context of (a) linearized tidal propagation, (b) Burger’s equation,
(c) non-linear tidal propagation, and (d) reservoir dynamics. Analytical solutions are
available only for problems (a) and (b), but unfortunately these problems have little or no
potential for testing the treatment of non-linear processes in RITA;. For problem (c) we
developed “refined” solutions (against which to measure the error) by using the reference
formulation in RITA; with over-refined grids in space and time. Problem (d) was used
exclusively to test overall mass preservation, and errors can therefore be assessed compar-
ing net influxes against changes in water volume. Except for the Eulerian-Lagrangian
treatment of the governing equations (which will require further investigation), all major
model options are considered validated, and are expected to perform reliably.

The use of the model for graduate-level teaching/education and for exploratory
research is illustrated in Chapter 4. Selected applications are presented to illustrate the
potential uses of the model. In particular, we (a) analyze the effect on numerical accuracy




of the generalized wave equation factor, in a way that is consistent with classroom use in a
graduate-level modeling course; (b) explore the performance of different numerical strate-
gies for the treatment of non-linear terms, in a way that is consistent with comparative or
exploratory research; and (c) analyze the generation of shallow water tides in a way that is
consistent with classroom use in a graduate-level course on estuarine dynamics.

Conclusions and recommendations are presented in Chapter 5. RITA, represents a
useful step towards an integrated set of tools for education and exploratory research on
advanced numerics, surface water dynamics, and environmental analysis and modeling.
The anticipated use of RITA; and companion tools (ACE; and ELA ) in selected courses
at OGI and other universities should provide the necessary feedback for further develop-
ments.

Appendix A describes the analytical solutions used in Chapter 3. Appendix B con-
tains a brief users’ manual for RITA;. Like the code itself, this manual is expected to
evolve in time. In particular, the users’ manual will have to be extended to include the
RITA, options of the user interface of ACE;.




CHAPTER 2
FORMULATION

RITA, uses a flexible finite element wave equation formulation to solve the one-dimen-
sional shallow water equations. This chapter describes the model formulation. Section 2.1
briefly reviews the adopted form of the primitive shallow water equations, and describes
and motivates the transformation of these equations into ‘“wave equation” and “general-
ized wave equation” forms, following Lynchzo, Kinnmark?!-23, and others’» 24-28, Section
2.2 presents a detailed description of the formulation that we adopted as reference. Finally,
Section 2.3 describes selected alternative treatments of the non-linear terms of the govern-
ing equations.

2.1. Background

2.1.1. One-Dimensional Shallow Water Equations
We consider the one-dimensional primitive shallow water equations, written as:

continuity:
U N T
3¢ + axHu 0 [2.1]
conservation of momentum:
_ou, du on v 2.
M= 3‘; a +ga + Tu— HE;EHU = [22]

where (Fig. 1):
u - velocity [ms'l]
N - water elevation relative to a reference level [m]
g - acceleration of gravity [ms?]
1 - friction parameter [s’l]
vV - viscosity [m2s’1]
H=h+mn -total water depth [m]
h - water depth relative to a reference level [m]




The friction coefficient is defined as:

2
T = gl:ll‘;' [2.3)

with:
R=P/A - hydraulic radius [m]
P - wetted perimeter [m]
A - cross-sectional area [m2]
n - Manning coefficient [sm'm]

Equations [2.1] and [2.2] may be perceived as describing either (a) a laterally uni-
form depth-averaged flow (in which case R is approximated by H), or (b) a cross-section
averaged flow in a constant-width channel, depending on the meaning assigned to the vis-
cosity and friction coefficients. While either type of flow is over-simplified for most prac-
tical situations, these equations support the educational and exploratory research role for
which RITA; was designed.

2.1.2. Wave Equation Formulations

The use of a wave equation formulation to numerically solve for the shallow water equa-
tions was first introduced by Lynch20
water equations.

. The concept is reviewed below, for the 1-D shallow

Recognizing that Galerkin finite element methods lead to wiggly (i.e., with para-
sitic spatial oscillations) solutions to this problem, Lynch resorted to a classical transfor-
mation to convert the continuity into a wave-like equation (the Continuity Wave
Equation):

_JdL _oM° _am 2 3.,0M, . 33 an _
where
MC=HM +uL = Hu + 2 Huu+ gHM + tHu - v-2Hu = 0 [2.5]
at ax ox ox2 )

represents the conservative form of the momentum equation.

Formal examination of amplification and propagation errors of the same Galerkin
finite element methods, when Equation [2.4] is used instead of Equation [2.1] revealed
that short wavelengths responsible for wiggles were dampedzo. These studies were per-
formed on the linearized 1-D equations; however numerical experimentation have con-
firmed that smooth solutions can be obtained in higher dimensions and for both linear and
non-linear problems.




Kinnmark?!-23 extended the work of Lynch by introducing the Generalized Conti-
nuity Wave Equation formulation. In this formulation, as in Lynch’s, a wave-like equation
replaces the continuity equation. However, the new operator is now written as:

(]
Ws_?‘ %M +GL [2.6]
leading to:
o _ 32 2,20, n, 3
at ax Huu gé— 8 Hu+Ga + (G T Hu = [2.7]

G is an arbitrary numerical parameter with the same units as the friction factor t (s'l).

In the Continuity Wave Equation, the presence of T as a coefficient of the first time
derivative of 1 makes the mass matrix corresponding to that equation time-dependent and
computationally expensive to solve in an implicit or semi-implicit way. The main advan-
tage of the generalized formulation is that, for a constant G=t, the mass matrix becomes
time-independent, allowing an implicit treatment without significant increase in computa-
tional cost. This approach retains the ability to eliminate spurious node-to-node oscilla-
tions.

Several authorsz“' g

27-32 have formally investigated the wave equation formulations
or have tested these formulations in the context of realistic multi-dimensional shallow
water problems involving non-linear processes. Results consistently support the findings
of Lynch and of Kinnmark, and suggest that generalized wave equation finite element
methods favorably compare with corresponding primitive equation methods.

One of the remaining questions on the use of the generalized wave equation finite
element is the choice of the parameter G. Formal studies?2 suggest that for optimal accu-
racy and stability G should be similar in magnitude to the friction factor 1. This is partially
confirmed by our experimental analysis (Section 4.1.1). In the limit of large values of G,
the wave and generalized wave equation formulations approach the behavior of the corre-
sponding primitive equation formulation; hence, spurious node-to-node oscillations
should be expected. In the limit of small values of G is too small, mass conservation prob-
lems may occur because the system of equations lacks the ability to damp out errors in the
continuity equation??,

From here on we refer the Generalized Continuity Wave Equation simply as wave

equation.




2.2. Reference Formulation

The finite element method is used. It is based on a weighted residuals method in which the
residuals, weighted by arbitrary weighting functions are minimized over the domain.

The dependent variables are approximated, at an elemental level, by combinations
of a set of predetermined basis functions:

N
n=~ 3 né 0 28]

i=1

N
u= Y ¢, (r) [2.9]
i=1

where

M, - values of elevation at the nodes [m]

u; - values of velocity at the nodes [ms'l]
N - number of nodes in the domain
¢, - finite element basis functions
r - local space-coordinate

In its present version, RITA; is limited to linear shape functions, defined locally

¢ = %(l—f) ¢, = %(1+r) [F1sr<] [2.10]

However, quadratic basis functions could easily be incorporated in the model.
The bathymetry is defined functionally as:

N
h= Y ho, [2.11]

i=1

where h; is the depth at the node i. Other coefficients in the governing equations (v, T if
the equations are linear, and n if the equations are non-linear) are treated as constants.

Once the residuals are defined, for both the wave and the momentum equations the
Galerkin method is used; hence the weighting functions are the same as the basis func-
tions. This approach leads to two systems of N equations, one corresponding to the
GCWE, and the other to the momentum equation, solved for the velocities at the nodes. In
each time step, the system for the GCWE is solved first. The results are then used for the
solution of the momentum equation.

2.2.1. The Generalized Continuity Wave Equation
We write the weighted residual statement as:
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£e¢kdx =0 k=1N [2.12]
where the residual, €, is:
_dhm_ 2 2uM, . 3% .M. 3
= at W Huu ga—Ha—+u Hu+Gat + == (G 7)Hu [2.13]

All the terms involving space derivatives are integrated by parts, as follows:
2
Lq)ka 2 Huu + gHén—-— (G-t)Hu- Dsa—z-Hu) dx =
X

2 L
= 6, (LHuu+ gHgn)—( - (G-1)Hu- oai -2 Hu) [2.14]
0

0
laq) (aHuu+gHa—n— (G-1)Hu- ua——Hu)dx k=1N

leading to a general reduction of the order of the space derivatives at the expense of an
additional boundary condition.

We note that linear shape functions do not allow the actual treatment of the viscos-
ity term in the wave equation. Indeed, even using integration by parts, second-order deriv-
atives will be involved. Viscosity then appears only in the momentum equation, which
constitutes a limitation of our formulation.

Time derivatives are approximated by finite differences using up to three time lev-
els. For the second derivative in time only one scheme is consistent>?; for all the others
terms a general o-method is used. Since the wave equation is solved before the momen-
tum equation, all the linear terms in the wave equation involving velocity and all the non-
linear terms must be treated explicitly. The time discretization scheme is specified for each
term by the parameters w{ with I identifies the term of the equation and i the time step.
All the integrals are computed using 3-point Gauss quadrature.

Developing each term on an elemental basis we have:

+ Second-order time derivative:
The spatial discretization is:

2 1
jq»kat dx =27 an¢k¢ldrdr— %Z I¢k¢idr k=12 [215]

1-1 -1

where:
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+n"h [2.16]

and Ax, is the length of the element.
+ First-order time derivative:
The G factor is assumed to be constant in space and time. Hence:

I%G dx = G an¢k¢dr k=1,2 2.17]
1‘1 -1
where:
1 -
g—? =A—t(wén““+w}n“+w;n" h [2.18)

+ Gravity:
The gravity term in the wave equation has two components, which result from separating
the depth h and the finite amplitude 1. The first component is linear; the space discretiza-

tion is given by:
e h, ¢’d k=12 2.19
Jé— I x~——g 2"1,; ’nljar iar - (2.19]
and the time discretization potentially includes values at three time levels:
L U 9 3 n-1
h-a;-wohan +W1ha n" +w2ha " [2.20]

The second component is non-linear and the mass matrix must be treated explicitly
in order to preserve time independency. Then:

o 3,
Jox kg"gl’ (2 Z" "J a, ,a,’df) k=12 221]

e =1j=
and the time discretization only considers the values at time n and n-1:

ng: :‘1’11"5 20"+ win'” 153- [2.22]
» Advection:
As in the gravity term, the advection term includes a finite amplitude component. Since
one of the objectives of RITA; is to allow a independent treatment of each term, an
explicit treatment is required. For the component which does not depend on the finite
amplitude we have:




a¢k au ch a¢k
a -a—huudx-ja ax+uu§;)dx=jﬁ d +Ia
99, ah
= 5= Q’a 2hu d+J’a dr) k=12
with:
aaxhuuzwlaahu u +wgaah n-1 u 1

The finite amplitude effect is treated as:

aq’k 811

k0, = -
! " x1’]uudx (Iar 2nu dr + Ia uuS dr) k

_aa_nuuzw?aannunun_‘_wgaann lun ln 1

« Friction:
Four friction terms are considered:
atermon T and h:

j_ thudx~(2 Zhl Jja ¢¢1:dr) k=1,2
i=1j=1 -1
thu ~ wéthu" + wit" ~1hu"~ !
atermon G and h:
Ja Ghudx = G(Z Zh, Jja ¢¢d) k=1,2
i=1j=1 -1
hu = w’llhun + w;hu"— 1
atermon Tand1:
a0
j mudx~(2 anujja ¢¢tdr) k=12
e i=1j=1
mu = witin"u® + wito It et
atermon G and n:

dd
!ﬁande (IZ Z N,y J 3 ¢ . df) k=12

=1lj=1 -1

dx=

1,2

12

[2.23]

[2.24]

[2.25]

[2.26]

[2.27]

[2.28]

[2.29]

[2.30]

[2.31]

[2.32]

[2.33]
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nu=win"u"+win" "Lyt [2.34]

Friction can be linearized and considered constant throughout the domain and in
time. In this case Equations [2.27], [2.29], [2.31] and [2.33] reduce to:

Ja (G-t hudx = (G- ‘C)ZZhluJIa ¢,0dr  k

i=1j=1 -1

i

1,2 [2.35]

Ia (G-t)nudx = (G - T).le'ln'u‘ J‘l o ¢¢dr k=12 [2.36]

2.2.2. The Momentum Equation
The residual is now:

_du, du_  on v 52
€= 'a—t +u a +ga +Tu-— Ha—XEHU [2.37]
and the weighted residual statement over the domain reads:
j e¢ dx = 0 =1,N [2.38]
Q

The viscosity term is integrated by parts to balance the order of the derivatives:

—uja %3 puax K = 1,N [2.39]

92 -4 V09
J¢*Ha S Hu = ¢, 5T Hu I3xwax

Each term is treated in time using a maximum of two time steps. The time discret-
ization scheme is specified for each term by the parameters mir with I specifying the term
of the equation and i the time step; the choice between implicit and explicit treatment of
each term is done considering that the time independence of the mass matrix must be pre-
served. At an elemental basis, we have for each term:

* Local acceleration:

1 2 1
du, AXe: Bu
Jogeax= 3 [oJter = 22 3 w/eedr k=12 240
e -1 i=1l -1
with:
g_‘t‘ - L@t [2.41]

+ Advection:




du, .o, 22
Jorugedx = [duzdr= Y Y uu [e 00 k=12
e 2 i=1j=1 "
with:
~ o0 P
u§; u axu
+ Gravity
an 1 2 1
[oegax = gfodr=g T m; [o5lar k=12
[ - i:: _1
with:
+ Friction:
Ax_ 2 13
Jocudx=—= 3o [5fouar k= 1,2
e i=1 -1
with:

n n
Tu=71Tu

For linear friction this term is linear and can be re-written as:

Ax, 2 1
[oudx~—"tY ufo0dr k=12
e i=1 -1

with:
Tu= m(3,'l:un+ 1y mitu"
 Viscosity
2 2 1 p)
FALY I I 3%, %
u{&xH axHudx AXe'U (iglj::zl (H,nj + anJ) _flal’H ¢iar dr k
with:
© 9 pus 3y
ﬁs;Hu HH&H u
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[2.42]

[2.43]

[2.44]

[2.45]

[2.46]

[2.47]

[2.48]

[2.49]

[2.50]

[2.51]
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2.2.3. Boundary Conditions

The domain the value of either the elevation or the velocity must be specified at each
boundary. The values specified can be the same at the two boundaries (e.g. two elevations
or two velocities) or they can be different (i.e. the velocity at one boundary and the eleva-
tion at the other).

The elevations prescribed in the boundaries are strictly obeyed by the solution of
the wave equation; the same happens to the values of velocity in the momentum equation.
Those are essential boundary conditions. If an elevation (or velocity) is prescribed for a
certain boundary, that boundary is solved as a natural boundary condition in the momen-
tum equation (or in the wave equation, when velocity is prescribed); a boundary term
comes “naturally” from the integration by parts (Equations [2.14] and [2.39]).

The surface integral from Equation [2.14] is treated as proposed by Lynch2°, sub-
stituting in the conservative momentum equation (Equation [2.5]):

¢k( Huu+gHa—r1—(G t)Hu)

L
= =0, (5 Iyy + GHu) [2.52])

Since this only applies when flow (Q=B*Hu, where B is the width) is prescribed, one has:

n+1l n
. -Q [2.53]

)
ZHu|" BAt

ot

where At is the time step.
The boundary term from Equation [2.39] is treated as:
v Hyuy-Hy_juy.; v Hyu—Hpyy

V9 = -
o Hy Axy_; H, Ax,

HaxH

[2.54]

A transmissive boundary35 can also be prescribed in RITA: it works as an eleva-
tion specified boundary, but the value prescribed is computed based on the assumption that
the wave travels without change of form across the boundary. In that case we have:

Dn _om, on
=5t T =0 [2-33]
with ¢ = Jgh.
For the downstream (left side) boundary we have:
on _ on
n - ax [2-56]
which can be approximated by:

n}*!-n} _jg_nl n;

At C Ax, 257)
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nitl-n? _ _Ath—ﬂ
nt-nj Ax,

[2.58]

leading to:

Atfgh
n*t = ng- mp-np = [2.59]
1
where h denotes the average depth at the boundary element. Similarly, for the upstream
boundary we have:

AtJgh

=R MR- ) o [2.60]
XN-1

2.2.4. Initial Conditions

Initial conditions should be prescribed as values for elevation and velocity at all nodes at
time zero. Since the time discretization for the wave equation uses three time levels, addi-
tional information should also be provided at the time immediately preceding time zero. In
short, elevation and velocities must be prescribed for all nodes at two consecutive time
steps. The values can be assumed constant, in space and time (“cold start”), or be derived
from the results of a previous run of the model or from an analytical solution, if available.

2.3. Alternative Schemes

2.3.1. Extrapolation in Time

The reference formulation of RITA | deals with all non-linear terms explicitly, to allow (a)
the decoupling of the wave equation from the momentum equation and (b) the time-inde-
pendence of the mass matrices of the algebraic systems associated to both equations.
However, both these objectives can be achieved by introducing a pseudo-implicit treat-
ment of the non-linear terms. The approach is novel, has inherent potential, and should be
applicable to all non-linear terms. It consists in “estimating” the elevations and velocities
at ime n+1 by linear extrapolation from times n and n-1, i.e.

~n+1

A"t = ot [2.61]

"t = 20—t [2.62]
and using the resulting values and their derivatives to estimate the non-linear terms at n+1.
Using this technique we can have for the time discretization of the non-linear

terms in the wave equation:
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e Gravity:
m st

Ny~ wan 5 +w1’q"aa’r| +win"” laa n ! [2.63]
¢ Advection:
ga—huuasw(,aihu"” "”-l—wlaa Lhy"u +wsaa O pptlyn-! [2.64]
Tﬂuu - Woé_ﬂn+l grtign+l w{)gnnunun_‘_ wgé_a_nn 1 p-1;p-1 [2.65]
e Friction:

A non-linear friction coefficient 7" * ! can be estimated using 71" * ! and &"*!.

+1 - -
thu=w§T"* 1" '+ whthu® + when -~ Thy" ! [2.66]
~n+1 -
hu=wiha' = + wihu"+ wahu" 1 [2.67]
+1 -1.n-
Mu = wst““n““u" +whtn"u" + witn - gt 1yl [2.68]

nu=wyn"*a" TR win"u" + won"~ Iyn-t [2.69]

and in the momentum equation:
» Advection;

gi mlﬁn+lgu-—xn+l+mlu aa [2.70]
* Non-linear friction:
tu=mit" 1 mlny? [2.71]
 Viscosity:
D D pyemi— i) i it D Dy (272]
Hpx? (h+7"* 1) 9x? H"9x?2

2.3.2. The Use of “Upwind” Weighting Functions
Upwinding has been often used36-40, although with mixed success, in the solution of both
the transport and the shallow-water equations. The concept is simple: when dealing with
advection, most weight should be given to the information that is upstream (rather than
downstream) of the node of interest.

To accomplish such an objective the standard Galerkin scheme must be modified
to permit the use of non-symmetric weighting functions. As the direction from which the




18

fluid is approaching a node can vary, those weighting functions must be redefined when
the flow changes direction.

This approach has been traditionally applied by using weighting functions which
are modified by polynomials one order higher than the basis functions (“n+1 upwind”36).
Westerink> introduced the use of weighting functions which are modified generically by
polynomials two orders higher than the basis functions (“n+2 upwind”). The method was
used for the finite element solution of the time dependent transport equation and it was
showed that the “n+2 upwind” results in a much improved solution compared to both the
standard and the “n+1 upwind” solutions.

As an alternative to the reference formulation of RITA |, we extend to the shallow
water equations the “n+2 upwind”. It is only applied to the advective term on the momen-
tum equation, since the second derivative in space that appears in the advective term of the
wave equation reduces the convective character of the term, and the use of upwinding
results less interesting.

The modified weighting functions are defined as:

¢, (r) = ¢,(r) +F;(r) [2.73]

where F (r) is a cubic correction function generically defined as:

F(r) = pr’+ar’+8r+o [2-74]
Forcing:
F(-1) =F(1) =0 [2-75]
we get:
F(r) = (a+Br) (P - 1) downstream — node (2.76]
! (o + Br) (r2 -1) upstream — node

the coefficients o and P are generic, and determine the “degree” of upwinding. If § = 0
we revert to a more common “n+1 upwind”, and if & = B = 0 we revert to the centered
Galerkin that constitutes the reference in RITA;.

On an elemental level, the advective term in the momentum equation (Equation
[2.42]) becomes:

99, ¢
J¢k“_dx" Z Z“ I‘Pk‘pna ~dr= 2 Z““ J (¢k+Fk)¢na

i=lj=1 _1 1-1]-—1 _1
2 1

2
- 3 S [togrers 3 T un [Rogter k=12

i=lj=1 -1 i=lj=1 ..1

[2.77]
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We should note that this technique constitutes an alteration from the reference
Galerkin method. Indeed the last two terms in Equation [2.77] represent respectively the
reference Galerkin method and a correction term.

2.3.3. Element-based Technique

In the reference formulation, all non-linear terms vary over each element consistently with
the linear variation of velocities and elevations over the same element; in particular, the
advective term in the momentum equation, udu/dx, varies linearly over each element
(since u is linear and du/dx is constant) while in the wave equation the corresponding
term (dHuu/dx )varies quadratically.

Luettich et al.” suggest that better-behaved (smoother and more stable) numerical
solutions may be obtained if the advective term is averaged over the element, in both the
momentum and the wave equations. This approach, which Luettich et al’ recommend only
for the advective term, leads to a formulation that differs from the reference one by substi-
tuting Equations [2.23] and [2.25] by:

a¢k 2 ¢k
& o hu Brd . )ja k=12 [2.78]
00, au
Ax Jor Nusdr >ja k=1,2 [2.79]
and Equation [2.42] by:
jqaku dr-(u ) j¢kdr k=12 [2.80]

where <Y>, represents the average of Y over the element.

2.3.4. An Eulerian-Lagrangian Method

The flow process has wave-like properties consistent with the hyperbolic nature of the
governing equations. The method of characteristics (MOC) is a natural method of solu-
tion. This method, being purely lagrangian, brings some practical difficulties in keeping
track of the computational grid points and the interpretation of results become somewhat
difficult*!.

The problems associated to the lagrangian nature of the MOC can be solved by
formulating the MOC over a fixed computational grid. The total derivatives of the depen-
dent variables are obtained by using the MOC (lagrangian process); at each time step the
values of the variables are stored on a fix space-time network (eulerian process). This class
of methods are known as Eulerian-Lagrangian methods (ELM) and have been effectively
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used to solve both the tmnsport42 and the shallow water equations43. They have never
been used, though, in the context of a wave equation model.

RITA,; was used to test and explore an ELM scheme for the momentum equation.
The order of solution of the equations is the same as in the reference formulation.

A total derivative of the velocity is defined:

D d d
_D% = £ + “iui [2.81]
hence:
Du _ _dn v g2
6{ = gé-; T+ ﬁ‘a?Hll [2-82]
Now, the total derivative can be approximated as:
n+l_ &
B Em 2.83)

where the superscript £ denotes the foot (at time n) of a characteristic line that follows
the flow. The generalized wave equation remains unaffected

To solve the modified momentum equation we use a standard Galerkin method.
The location of the foot of the characteristic lines is computed iteratively with a second
order Runge-Kutta method, as the position of the characteristic lines is a function of the
dependent variable of interest. For the Runge-Kutta tracking, the time step is divided into
four sub-steps, and the tracking is performed sequentially over them (Fig. 2). Term by
term we have:
+ Total derivative:

1 2 1
D Ax D Ax D

Joprdx=— [0, pdr = 5 X u; [ 6 0,dr [2.84]

e -1 i=1 -1
g_‘t’ - le (1= o) [2.85]

+ Gravity:

! 2.1 9,
¢kg@dx ~g ¢k?—"dr =gy m,|o="dr [2.86]

! Jx . or e Jr

- mgéa;m" *hy, mf(%(ng) [2.87]
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e Friction:
Non-linear:
Ax, 1
Jo rudx=—=2g o rudr  k=1,2 [2.88]
e -1
tu = o [2.89)
Linear:
j¢ktudx=—tz J"M dr k=12 [2.90]
i=1l -}
tu=mitu"* !+ mite® [2.91]
« Viscosity:
a ¢k 3 ) 2 2
a o Hu dx—-K——u(l;lj;l (Hn,+nH )JarH ) k=12 [292]
L LV 3%.& &
=L Hu~ —-CH 2.93]
Hax? .I-—IEax [

We should note that once the ELM is used to solve the momentum equation, the
time extrapolation scheme presented in Section 2.3.1 cannot be used. In the context of
ELMs, a time extrapolation method for the friction or viscosity terms only makes sense if
performed along the characteristic lines. This feature should be incorporated in future ver-
sions of RITA;.




CHAPTER 3
VALIDATION

In this chapter we describe the validation of RITA;. Our objective is to demonstrate that
the main options of the model are working properly, providing reliable solutions to com-
mon problems. For that purpose, we present a L, error-norm analysis in which the results
of RITA; are compared against either analytical solutions (Sections 3.1.1 and 3.1.2) or
numerical solutions obtained using a highly resolved grid in time and spatial (Section
3.1.3). We also describe a simple test of mass conservation (Section 3.2). A more detailed
study of the behavior of selected numerical schemes and comparisons among alternative
methods can be found in Chapter 4.

3.1. L, error-norm analysis

An error analysis of RITA; is done by comparing solutions obtained for several test cases,
using different numerical schemes, with:

1. analytical solutions - this is done for the linear shallow water equations and for
the Burgers’ equation;

2. “refined” solutions - assuming the consistency and convergence of the basic for-
mulation(s) of the model, we expect to increase accuracy as we increase both the
spatial and temporal discretization. Thus, the use of an highly resolved computa-
tional grid should lead to a solution very close to the exact solution. That solution
is then used as a reference for the error studies.

The numerical schemes tested are:

1. the reference formulation (RF) for the linear case;

2. RF and time extrapolation (TE) for the finite amplitude and non-linear friction;

3. RF, TE, element-based (EB) and upwind (UPW) for advection, advection and
viscosity and fully non-linear equations (all terms but viscosity).

3.1.1. Linear tidal propagation
The linear forms of Equations [2.7] and [2.2] are:

22




23

M g.an . g, _

32 Baxax tO5t tax (G- Whu =0 B.1]
ou K dn _
-a—£+g§;+'tu =0 [32]

Analytical solutions for the linear propagation of a tidal wave (Equations [3.1] and
[3.2]) in a closed-end channel were derived by Lynch and Gray44 and are reviewed in
Appendix A.

We will consider a M4 tidal wave with an amplitude of 1.5 m, propagating in a
shallow embayment 80 km long and with an inclined bottom. The slope is linear with
depths changing from 15 m at the mouth to 5 m at the closed end. The “average” celerity
of the waves in the channel is approximately 10 ms!. Because the Mj¢ tidal wave has a
period of 1.55 hours the resulting “average” wavelength is 55.8 km.

A sensitivity analysis of the accuracy of the reference linear model to both the
space and time discretization was performed. The sensitivity to Ax was tested with Ax of
50, 100, 500, 2500 and 10000 m, and At=4.8 s. The sensitivity to At was tested with At of
4.8, 9.6, 48.0, 240.0 and 960.0 s, using Ax=500 m.

The simulations were carried for 9.3 h (six M4 periods) starting from analytically
computed initial conditions. Since the analytical solution only equals the numerical solu-
tion in the limit as Ax, At -> 0 the simulations may need some time to reach a steady state;
however in this study the numerical solutions were assumed to reach steady state instanta-
neously (i.e., no warm-up time is allowed). The relevant parameters of the reference
numerical method are shown in Table 1. A linear friction coefficient was used (t=0.00025
s'l).

An error norm was defined as:

T N
T ( of-ab?)
1M

k= =1
L, = o [3.3]

with:
T - number of time steps

N - number of nodes

n}‘ - numerical value of the variable at time step k and node i

ak -analytical value of the variable at time step k and node i

1
Error norms were computed for both elevation and velocity. Results are shown in

Figs. 3-5, where the error-norms are mapped respectively as a function of Ax, At and aver-
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age Courant number (Cu). The average Cu (Cu=c*At/Ax, c being the celerity) is defined
based on the celerity for to the average depth in the domain.

For a constant At, Cu decreases with the increasing Ax used in the sensitivity stud-
ies. This inverse dependence of Cu on Ax explains the form of the curves shown in Fig. 3:
for small values of Ax (corresponding to large Courant numbers) the method is insensitive
to Ax, or may even show a decrease in the error norm with an increase in Ax. This is
because the value of Cu decreases and has an effect on accuracy that compensates the
effect we expect from an increase on Ax. As Ax increases Cu becomes small and has a
smaller effect on accuracy, in comparison with what happens when Cu has greater values.

For constant Ax (Figures 4 and 5), the error decreases with the decrease of At (or
Cu), showing the expected convergence of the method. The absolute values of the error
indicate very good accuracy for values of Cu less than one.

3.1.2. Burgers’ equation
Burgers’ equation has the form:

0
3t - ‘32 Uox

and will be solved in a dimensionless flat domain, with xe [0,1].

[3.4]

The analytical solution® (Appendix A) will be compared with numerical results
obtained with four alternative numerical methods for the treatment of advection. Since the
elevation does not appear in Burgers’ equation, this experiment can only provide informa-
tion about the solution of the momentum equation. Also, only the advective and viscous
terms were tested.

Four numerical simulations were run on a regular grid with Ax=0.02. Each simula-
tions corresponded to a different numerical method (Table 2). The physical parameters
(see Appendix A) were ¢=0.6 s'1, a=0.4, B=0.125 and v=0.003 5. To have a small Cou-
rant number (Cu=0.03), At was set to 0.001 s. The corresponding Peclet number
(Pe=CuAx2p0At) is 2.0.

The simulations were carried out for 1.5 s and the error norms were computed as
defined by Equation [3.3]. The velocity profiles in the domain, given by the analytical
solution and the four numerical schemes, for t=1 s, are presented in Fig. 6. The error
norms are presented in Table 3; the characteristic errors are smaller than 0.01 s'1. Since the
characteristic velocity can be assumed to be of the order of the 0.6 s'1, all methods show
acceptable accuracy for the low Cu adopted.
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3.1.3. Non-linear tidal propagation

Assuming that the numerical formulation of the model is convergent, numerical solutions
using a highly resolved grid (in space and time) are quasi-exact, and can be used to evalu-
ate Ly-error norms for simulations based on coarser grids.

“Refined solutions” were obtained for each non-linear term (finite amplitude, fric-
tion, advection) individually, and also to the case in which all the non-linear terms are
present simultaneously. The selected test case was chosen to be a M, tidal wave propagat-
ing in the same shallow channel as in Section 3.1.1. For the reference RITA ;| formulation
the model was run using a grid with Ax=100m and At=1s. This discretization corresponds
to a very low “average” Courant number (Cu=0.1) and a very large dimensionless wave-
length (I./Ax=4410). The initial conditions for the refined runs, as well as for all other runs
in this section were obtained from the linear analytical solution used in Section 3.1.1. All
runs were carried out for 49.6 h (four M, cycles), with a warm-up time of 37.2 h (three M,
cycles). The time series of elevations and velocities obtained from the refined run with all
three non-linear terms, at a station in the middle of the channel (Fig. 7) shows that a
“dynamic steady state” is quickly established.

Parameter G was set to 0.00025 s™! for all runs. This value of G is either equal to
the linear friction coefficient (Sections 3.1.3.1 and 3.1.3.3) or represents a characteristic
non-linear friction coefficient (Sections 3.1.3.2 and 3.1.3.4). In the wave equation, the val-
ues of the time discretization parameters for the first time derivative term and for the linear
gravity term remained constants for all runs (w(1,=1.0, wi=-1.0, wé=0.0; and w%=0.35,

2=0 3, w2=0 35). In the momentum equation, the time-discretization of the gravity term
was also always constant (m0=0 5, mf—O 5).

To obtain all the refined solutions the reference formulation (RF) was used. The
numerical parameters are given in Tables 4-7, together with the parameters for the alterna-
tive methods used in the runs with coarser grids. The numerical solutions presented in this
section (excluding the refined solutions) were obtained using a uniform grid with
Ax=2500 m. For the M, tidal wave, this leads to an “average” dimensionless wavelength
L/Ax of 177. Each method considered was used over a range of “average” Cu (Table 8.)
The error-norm defined by Equation [3.3] was computed for each simulation and plotted
versus the Cu.

3.1.3.1. Finite amplitude
To isolate the finite amplitude from other non-linear effects we solve for:

oh_ o, 2

32 e oy +Ga

L (G-1)hu = 0 [3.5]
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g‘:+ug +ggn+1:u—0 [3.6]
Only the RF and the TE methods are of interest for this case; relevant parameters are given
in Table 4. The linear friction coefficient was set to 7=0.00025 s1.

The time series of the errors in elevation and velocity at a mid-channel station, are
presented in Figs. 9-12, for values of Cu of respectively 0.12, 0.96, 2.4 and 9.6. In Fig. 8
the L, error-norms are plotted vs. Cu. The RF and TE methods show a very similar behav-
ior for low Cu. However, the RF method is stable for Cu as large as 9.6, while the TE
method becomes unstable at Courant numbers above 2.4. Both methods have a maximum

absolute error in elevation and velocity, of approximately 3 mm and 3 mms’!

, Tespectively,
for Cu=0.12 (this correspond to average errors of approximately 0.3%); the errors can be
as large as 75 mms ! in velocity and 50 mm in elevation for Cu=2.4. Even though the RF
method is still stable for Cu=9.6, the errors can be as large as 30% in both elevation and
velocity.

The error sensitivity to the value of Cu was expected, and the good agreement
between the coarser and the refined solutions for small values of Cu suggests the validity

of the implementation of both the RF and the TE methods, for Equations [3.5] and [3.6].

3.1.3.2. Friction
Sensitivity studies to alternative treatments (RF and TE methods) of the non-linear friction
term require the solution of:

a’n 2,0, A, 3

gzl +Gal + (G- 1)hu = 0 [3.7]

Only the RF and the TE methods are of interest for this case. The relevant parameters are
given in Table 5; friction is described by a Manning coefficient n=0.025 sm’13,

The Ly-error norms are plotted vs. Cu (Fig. 13). Results indicate that the RF
method is stable for Cu as large as 9.6 while the TE method becomes unstable at a Cu
between 4.8 and 9.6. As in the previous section, the errors increase with the value of the
Cu. The slopes of the log-log plots (Fig. 13) are similar for both methods and are similar to
those of Fig. 8. This similarity indicates a dependency of the error on Cu. The TE method
shows a slightly smaller error than the RF method, especially in velocity. Examination of
the time series of the errors for several values of Cu (Figs. 14-17) shows that the TE
method smooths the error (see Section 4.1.3. for further discussion). The implementation
of both methods is correct for the solution of Equations [3.7] and [3.8].
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3.1.3.3. Advection
Sensitivity experiments on the advection term utilized he governing equations:

I _ 3 3, A 3
S-t-z-—gz-huu—ga—xha—;+Ga-i eTi(G‘T) hu = 0 [3.9]
%?+ug—::+g%+1:u =0 [3.10]

For this case the methods RF, TE, UPW and EB presented in Chapter 2 are of interest.
Their numerical parameters are given in Table 6. All the simulations in this section were
done with a linear friction coefficient of 7=0.00025 5.

Errors (Fig. 18) are generally small for all methods, but no method is stable for a
Courant number greater than 1.92 (and even for that value of Cu the results show already
signs of unstable behavior - Fig. 21) All methods seem to give very close results.
Although Cu appears to be very restrictive to stability, the relatively small error norms
obtained with all methods for low Cu suggest the validity of the implementation for Equa-
tions [3.9] and [3.10].

3.1.3.4. Fully non-linear case
The fully non-linear case requires the solution of:

I _ 32 3y, 9N, 3 =
ﬁ—ﬁHuu_ga—xHa_i-FGéT tax(G-DHu =0 [3.11)
du_ du_ omn _
m +u§;+g—a-;+‘cu =0 [3°12]

The relevant numerical parameters for the four methods considered are given in Table 7.
The TE scheme is only applied to the advective terms.

The error norms obtained from the simulations are shown in Fig. 22; time-series of
errors can be seen in Figs. 23-25. The RF, UPW and EB methods become unstable for
Cu>1.2,; the TE method is already unstable for Cu=1.2. All methods have reasonably
small errors for small values of Cu, which we take as an indication of proper implementa-
tion of the solution technique for Equations [3.11] and [3.12].

3.2. Mass conservation tests

Mass conservation is a very important feature in numerical hydrodynamic models. The
main numerical methods included in RITA; were tested for mass conservation by means
of a simple numerical experiment.
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Our test case was based on the reservoir schematically shown in Fig. 26. Starting
from initial conditions of zero elevation and zero velocity throughout the domain, the flow
from upstream increases from zero to a constant value of 500 m3s’! in about three hours.
Downstream, a sinusoidal function controls the flow leaving the domain; the fluctuation
has a cycle of 6 h, a maximum of 1000 m3s’! and a minimum of zero. The problem was
simulated for 48 h using the four numerical schemes identified in Table 7. A uniform grid
with 101 nodes and Ax=500 m was used; the time step was set to 25 s.

The cumulative volume losses are computed over time and are defined as:

AV (k) = VE- (VE-V) [3.13]

where Vt is the cumulative net volume through the boundaries and V¥ the volume in the
domain, both after k time steps, and V) is the initial volume of the reservoir, i.e.:

k
VbE = Aty ((nd +hy)ul - (g, +hyg)) whg) [3.14]
j=1

100 k k
n.: +h-+T]. +h.
k _ 1 1 i+1 i+l
vat = Z > Ax. [3.15]

i=1
The fluctuation of volume in the reservoir can be seen in Fig. 27 together with the
volume loss as a function of time for each numerical scheme. The errors are of the order of
10"7% of the total volume, for all formulations tested. The behavior of the UPW method is
remarkably different from that of all the other methods: the error exhibits no periodicity
and has a definitely non-zero (although very small) average over time.

3.3. Conclusions

Small error-norms obtained for small Courant numbers in comparisons with analytical
solutions and finely discretized domains and the excellent mass balances obtained in the
reservoir problem validate RITA;. The relative importance of the linear and non-linear
terms for the inclined-bottom channel (Figs. 30 and 31) suggests that friction is the domi-
nant non-linear process. Thus, the apparent lack of sensitivity of the results to the method
used, while studying the solution for finite amplitude and advection, may be due mainly to
the relatively small importance of these terms in the case studied.
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CHAPTER 4
APPLICATION

The value of RITA; as a tool for studying both physical processes and numerical methods
associated with the shallow water equations is illustrated in this chapter. In Section 4.1 we
use RITA; to explore numerical aspects of particular interest: (a) the sensitivity of the
method to the parameter G in the wave equation and (b) the comparison of alternative
treatments of non-linear terms, with emphasis on friction. In Section 4.2 we illustrate the
use of RITA; as an educational tool through a classroom-oriented study of the generation
of shallow-water tides.

4.1. Numerical Studies

4.1.1. Sensitivity of wave equation solutions to G

In this section a very simple test is performed to examine the sensitivity of the reference
formulation to the value of G. Simulations refer to the case described in Section 3.1.3.4,
using a range of values for G, for a set of average Courant numbers (see section 3.1.1). An
RF numerical scheme was used with the time discretization specified in Table 7.

The Ly-error norms were computed as in Section 3.1.3.4 and are presented as a
function of the value of G for several Cu (Fig. 28). In Fig. 29 we show the time series of
the differences between the results of each simulation and the corresponding refined solu-
tion, at a mid-channel station.

The results show, for small average Courant numbers, a sharp increase in accuracy
as the value of G increases to the characteristic value of the friction coefficient T (com-
puted from a characteristic velocity and an average depth). For values of G greater than
the characteristic value of friction the accuracy decreases slowly as G increases. As the
Courant number increases, the accuracy decreases, for all values of G; however this accu-
racy decrease seems more accentuated for G greater than the characteristic friction. The
accuracy on elevation and velocity exhibit different dependence of the optimal G on the
Courant number. While the velocity accuracy seems to have an optimal G very close to the
characteristic value of friction and is independent of the value of the Courant number, the
elevation accuracy shows an optimal G varying with Cu. The optimal G approaches the
characteristic value of friction, at greater values, as the Courant number increases.

As a general rule, for Courant numbers greater than 1, an optimal accuracy is
expected (for both elevation and velocity), when the value of G is close to the value of the
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characteristic friction. However, when dealing with small Courant numbers the optimal G
can be more than an order of magnitude greater than the characteristic friction.

4.1.2. The numerical treatment of friction

One of the more interesting and immediate uses of RITA; is in the comparative study of
numerical schemes for the treatment of non-linear terms. In this section we explore the
time-extrapolation method applied to the non-linear friction term, and compare its accu-
racy against the lumping technique used by Luettich et al.’. These authors use a semi-
implicit time-discretization scheme centered at n+1/2 for the treatment of friction in the
momentum equation. The friction coefficient T is computed at time n and used at n+1. Rel-
ative to the reference formulation of RITA;, Equation [2-49] is approximated by:

Tu= mg‘t"u" tly m?t"u“ (4.1

The mass matrix corresponding to the momentum equation becomes time depen-
dent and the solution requires the factorization of the matrix at each time step. The compu-
tational effort is reduced by lumping the non-diagonal part of the matrix and treating it
explicitly. The implicit treatment would likely decrease the error and increase the stability,
compensating for the loss in accuracy due to lumping.

To compare the method of Luettich et al. with time-extrapolation methods in
RITA; we retain as a reference the problem solved in Section 3.1.3. We recall from Figs.
30 and 31 that friction is clearly the dominant non-linear process in this problem.

In the previous chapter we observed that the time extrapolation method for non-
linear friction seems to enhance accuracy relative to the reference method. The same case
studied in Section 3.1.3.2 was simulated by using different time discretization schemes (or
different values for mg, the weight for the non-linear friction term at time n+1, in the
momentum equation), in a time-extrapolation fashion. The L,-error norms are presented
as function of the Courant number in Fig. 32. A small gain in accuracy is obtained with the
time extrapolation method. The gain of accuracy in elevation consistently increases with
the weight given to the value of the non-linear friction terms at time n+1, for all Cu. The
gain in accuracy of velocity is greater for Cu in the range 0.5-1.2 and the Crank-Nicholson
scheme performs better than any of the others. The time series of the errors at a station
localized at mid-channel, and relative to an average Cu of 0.96, can be seen in Fig. 33.

To compare the results for the time extrapolation method with those for the lump-
ing technique of Luettich et al., both models ADCIRC’ and RITA; were used to simulate
an M, tidal wave, with an amplitude of 1.5 m and forcing phase zero, propagating in a
closed-end rectangular channel (80 km long), with a constant depth of 10 m. Since
ADCIRC does not allow the treatment of non-linear friction without the inclusion of finite




31

amplitude, the RITA simulations also considered both non-linear terms (non-linear fric-
tion and finite amplitude). All simulations started from zero initial conditions and were
carried out for four days; the warm-up period was set to three days. Results were obtained
with RITA; using three different numerical schemes: the reference method, and two dif-
ferent time-extrapolation methods in which the non-linear friction term is treated either
with a Crank-Nicholson scheme centered at time n+1/2 or fully implicitly.

The results obtained with the time extrapolation method are compared to the
results of ADCIRC (Fig. 34), in the form of L,-norms as a function of Cu. For large Cu
the values obtained with RITA; have a different behavior than the ones presented in Fig.
32.

As we can see in Fig. 34, the lumping used in ADCIRC is very insensitive to the
Courant number, when Cu<2. RITA, is more accurate for Cu<1, regardless the choice of
specific non-lumping method. For 1<Cu<2, the lumping technique shows greater accu-
racy. This can be interpreted as a balance between sources of error: both lumping and time
extrapolation attempt to increase accuracy and stability by extrapolating in time the value
of the friction terms, in the case of RITA, and the value of the non-linear friction coeffi-
cient and part of the local acceleration term, in the case of ADCIRC. Although the errors
decrease by increasing the degree of implicity, the errors increase as a result of the extrap-
olation in time. The L,-norms obtained for simulations done with ADCIRC, using three
different grids are shown in Fig. 35. For Ax=5000 m, the results show the same behavior
with a minimum error greater than the one obtained when using Ax=2500 m. For the sim-
ulations with Ax=1250 m, we expect the minimum error (corresponding to the smaller
values of Cu) would be smaller than the one obtained with Ax=2500 m. More simulations
(with smaller Cu) are required to confirm this expectation.

In general, the results suggest that for small values of Cu, a time-extrapolation
technique applied to the non-linear friction term provides greater accuracy than the lump-
ing technique. However, for computationally intensive problems, the increase in accuracy
must be weighted against the computational cost advantages associated with lumping.

4.2. The Generation of Shallow Water Tides

The propagation of tides in shallow-waters is a complex problem of significant practical
importance. RITA; and the associated visualization interface can be used very effectively
either in a classroom context or as a tool for personal learning, to explore and demonstrate
several aspects of the problem. We will deal in this section with the role of specific propa-
gation mechanisms on the generation of harmonic and compound tides.
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Tides in the oceans are related to the periodic motion of celestial bodies. In deep
sea, the tides can be described as the sum of harmonic constituents whose frequencies are
dictated by the motion of the moon and sun relative to the earth surface. In deep sea, the
effect of the non-linear terms of the equations of motion are negligible; thus, the propaga-
tion of tides is a quasi-linear process and no significant interaction occurs between differ-
ent tidal constituents. These tidal constituents are called astronomical tides.

As the tidal waves enter shallower regions, the effect of non-linear processes
becomes very significant: elevations are now an important percentage of the total water
depth, friction at the bottom can be very important, and advection eventually becomes
non-negligible. These non-linear processes allow the different tidal constituents to interact
with each other and, in the process, energy is transferred to related frequencies, originating
another type of tidal constituent: the shallow water tides.

The elevation and velocity of the water surface at any given point can still be rep-
resented as a summation of cosines (or sines) with different amplitudes and frequencies:

N

n = Y Ngcos (wt—b,.) [4.2]
N

u = ) ugsin (;t-6p,) [4.3]

with:
; - frequency of the constituent i frad.s™h)
MNg; - elevation amplitude of the constituent i [m]
uy; - velocity amplitude of the constituent i [ms™]
¢g; - elevation phase of the constituent i [rad)
8, - velocity phase of the constituent i [rad].

Through the analysis of the governing equations one can identify the non-linear
terms and study their effects on the generation of shallow water tides. This is done by sub-
stituting Equations [4.2] and [4.3] into the equations that describe the case in study.

Three non-linear terms are considered in the equations of motion:

1. advection, with the general form uu,

2. finite amplitude, with the form nu,

3. friction, with the form ulul (we do not consider the effect of the finite

amplitude that comes from the denominator of 7).
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In the next sections, each non-linear term is analyzed alone and in combination
with others, both by mathematical handling of the governing equations and by interpreta-
tion of the results provided by RITA ;. Two test cases are considered:

1. alongitudinal slice of a closed-end channel, 80 km long and 10m deep and

2. alongitudinal slice of a closed-end channel, 80 km long and with the depth

varying linearly from 15 m at the mouth to 5 m at the closed end.

For each case, and for each set of selected terms, RITA is used to solve the hydro-
dynamics equations, using two different boundary conditions at the mouth of the channels.
The boundary conditions consist of prescribed elevations defined as values for the follow-
ing astronomical tides:

1. a M, tide with amplitude of 1.5 m and zero phase; and

2. a combination of M,, S, and Oy tides; forcing amplitudes are 1.5, 0.84 and

0.375 m, and all forcing phases are zero.
A space-time grid with Ax=500 m and At=60 s was used to support all RITA, simulations.
The reference numerical scheme was used in all the simulations.

After several tidal periods of warm-up from analytically-generated initial condi-
tions, 1024 h long hourly records of elevation were “collected” at two stations: at the wall
(A), and at mid-channel (B). All records were analyzed with a least-squares sinusoidal
regression method, to identify amplitudes and phases of the 16 tidal constituents listed in
Table 9. The results of the tidal analysis are given as amplitude (1, in meters), phase (¢, in
hours) and relative amplitude (¥ in percentage of the M, amplitude), for each constituent
of interest.

4.2.1. Frictionless linear case
We first consider a simple balance of the local acceleration and the gravity terms. No finite
amplitude effects are included and the governing equations reduce to:

g—? +§a;hu =0 [4.4]
%’+ gg"-)-‘ =0 [4.5]

Since all the governing processes are strictly linear the different waves cannot interact and
no new tidal constituents can be generated.

The results of the simulations for the flat bottom channel are presented in Tables
10 and 11 and in Figs. 36 and 37. A significant, constituent-dependent, tidal amplification
was observed at stations A and B. No energy was detected at any frequency other than the
forcing frequencies. This result was expected and can be effectively used to illustrate the
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notion that linear propagation mechanisms cannot transfer energy from one frequency to
another. We also note that each tidal constituent is in phase over the entire channel. This is
a characteristic of standing waves.

For the channel with inclined bottom (Tables 12 and 13, Figs. 38 and 39) the same
type of constituent-dependent tidal amplification at stations A and B is obtained. The val-
ues of elevation are slightly lower, at both stations, than the ones obtained for the flat bot-
tom channel. This is due only to the relative situation of the flat bottom case in relation to
a resonance mode.

4.2.2. Linear friction case
We now introduce linear friction (1=0.00025 s°1) in the system; the governing equations
become:

M 3.4

'-a—t +§—X-Uh =90 [4.6]
du, on _
S Feg t = 0 [4.7]

As in the previous section, all the governing processes are strictly linear and the forcing
constituents cannot interact to generate new constituents.

The results of the simulations for the flat bottom channel are presented in Tables
14 and 15 and in Figs. 40 and 41. Results for the inclined bottom channel are shown in
Tables 16 and 17 and in Figs. 42 and 43. The tidal amplification at stations A and B
observed for the frictionless case is reduced or even reversed. The elevations at station A
are consistently lower than the ones at station B; in both stations the elevations are slightly
greater in the inclined bottom case. Results are consistent with the role of frictional
effects, which are cumulatively felt along the channel; the difference between the results
obtained for the flat and the inclined bottom cases are due to the length of the bottom
rather than to the actual change in depth.

4.2.3. Finite amplitude
Considering the effect of finite amplitude, while keeping a linearized representation for
friction (t=0.00025 s'1), the governing equations become:

om. 3 =
a—t- + -é-;Hll = [4.8]
du , on _

The non-linear term is:
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dy, = 9
E;Hu = a—);(h-l-‘n)u [4.10]

Using the expressions for u and 7 stated in Equations [4.2] and [4.3], we recognize that a
product involving a sine and a cosine will result from this non-linear term.

If the ocean boundary is forced with only one constituent, say the M,, energy will
be transferred to a constituent with twice the frequency, and to Sg:

cos (W ,t+ ¢) sin (Wt +0) =

4.11
= (cosdcostm,, — sindsintw,,) (sintw,,,cosd + sinecostmm) 14.11]
Or, as:
A = cos¢ B = sin¢g
4.
C = cosO D = sin® [4.12]
we get:

(Acostwy,, — Bsintw,,,) (Csintw,,, + Dcostwy,,) =
= ACsintw,,costw,,, + ADc:osztcoMz - BCsinzt(:)M2 - BDsintw,,,costw,,, =
= 0.5 ((AD +BC) cos2tw,,, + (AC+BD) sin2tw,;, + (AD - BC) cos0)

[4.13]
Noting that:

20,,, =W
M2 M [4.14]
0= g,

we can see that indeed the original M potentially generates two new constituents: the My
and the Sg. The Sy will not produce energy at new frequencies but the My will interact
with the original My and with itself as follows (for the sake of simplicity we neglect the
phases, since as we see in equation [4-13] they only affect the amplitudes of the new con-
stituents and not their frequency):

€08 (Wy;,t) sin (Wy1,t) =
= 5 (5in ((@yy + Oy ) = sin ((Qpgy = Oy D) = [(4.15]
= 3 (sin (@ygt) = sin (1)
oS (W),t) sin (@,,,t) =

(Sin ((©yg, + Wy ) 1) = sin ((@, = Oy I1)) = [4.16)

S

= % (sin ((0M6t) + sin (mMZt))
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cos (mM4t) sin (W, ,t) = %sin (2w, = %sin (@p45t) [4.17]

Two new constituents were generated, both with frequencies which are multiple of
the M, frequency. This new constituents will also interact and other are generated, with
progressively higher frequencies and smaller energies. The frequencies of the new constit-
uents are always multiples of the frequency of the original constituent. They are called
overtides.

If the ocean boundary is forced with two constituents, say M, and S,, energy will
be transferred to the overtides of each of the original constituents but, in addition, another
type of shallow water tides will be also generated. These new constituents are called com-
pound tides, and are generated through the interaction at two different astronomical tides:

cos (Wyy,t) sin (g, t) =

(sin ((@yg, + 0g,) 1) = sin (@, = @g,) 1)) = [4.18]

(SR

1, . .
=3 (sin (@pg4t) — sin (@y,¢0t))

Again, two new constituents were generated, both with frequencies which are now combi-
nations of the M; and S, frequencies. These new constituents will interact with the origi-
nal ones and other constituents are generated.

The general algorithm of generation of new constituents through finite amplitude
can be stated as:

o = |0)iimj| [4.19]

where ®,, o, denote the forcing frequencies and w, the shallow-water frequencies.

Table 18 presents some shallow water tides resulting from one or two astronomical
tides, through the finite amplitude non-linear process. The results of the simulations are
presented in Tables 19 and 20 and in Figs. 44 and 45 (flat bottom channel) and in Tables
21 and 22 and in Figs. 46 and 47 (inclined bottom channel).

The numerical results are consistent with the behavior expected from the above
analysis: when the M;, is the only forcing tidal constituent, energy is transferred only to its
overtides and to the S constituent; when more than one forcing tide is present, both over-
tides and compound tides are generated.

The results of the simulations also provide interesting additional insight. For
instance, we note that:
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1. The transfer of energy appears to be more important in the inclined bottom
channel, which can be attributed to the stronger amplification of the waves
that occurs in this case (Section 4.2.2).

2. The My (the first harmonic of the dominant forcing frequency M) and the
MS, (the first order effect of the interaction of the M, and S, frequencies)
are consistently important constituents while the zero-frequency constitu-
ent captures an insignificant amount of energy; i.e., the finite amplitude
contributes only marginally to a residual slope in the water surface of the
channels.

3. The second and higher harmonics of the M3 and S (Mg, Sg, Mg, Sg, etc.)
are essentially negligible, while the MO3 and SOj (the first order effect of
the interaction of the semi-diurnal and the diumal forcing frequencies) are
more weakly represented than the MS,, but not negligible.

4.2.4. Non-linear friction
For a non-linear friction without finite amplitude effects, the governing equations

becomes:
g—? +2hu =0 [4.20]
g'—: + gg—:-l— Tu=0 [4.21]
The non-linear friction T, is defined as:
T = % [4.22]

with n=0.025 sm™1/3,
The non-linearity now has the form ulul. Substituting u by it expression as stated in Equa-
tion [4.3] and using Tschebyscheff polynomials we obtain non linear terms involving46:

3

N
(Zum sin (o,t+6,) ) [4.23]
i
The general equation for generation of new constituents through non-linear fric-
tion is:
@ = !2(oiicoj| [4.24]
In Table 23, some shallow water tides resulting from one or two astronomical
tides, through the non-linear friction process are presented. The results of the simulations
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are presented in Tables 24 and 25 and in Figs. 48 and 49 (flat bottom channel) and in
Tables 26 and 27 and in Figs. 50 and 51 (inclined bottom channel). As in the previous
cases, the numerical results are consistent with the behavior expected by the analysis
above. We observe that:
1. The transfer of energy does not seem to depend consistently on the form of
the bottom, unlike in the finite amplitude case. Since the amplification is
much more accentuated in the inclined bottom channel we suspect that
some cancelation of effects occurs.
2. The S captures significantly more energy than when only finite amplitude
is considered; i.e., the non-linear friction contributes to a residual slope in
the water surface of the channels.
3. When only the M, is forcing the system, only the Sy and the Mg capture
significant energy. In this case the S is far more important than the Mg at
station A and the opposite is true at station B.
4. The 2MS,, 2MSg, Mg and 2SM; are dominant in a fairly full spectrum of
shallow-water constituents, for both channels, when the system is forced
by the three astronomical tides.

4.2.5. Finite amplitude and non-linear friction
In this section, we consider simultaneously the non-linear effects studied separately in the
two previous sections. The governing equations are:

M. 9 _
3 +§—£Hu = [4.25]
du  on _
5 TE5 T = [4.26]
with:
2
1= 9@'%' [4.27]

The shallow water tides that are generated in these conditions are expected to be
similar to the ones generated by finite amplitude only, plus the ones generated through
non-linear friction. Since we are now considering a finite amplitude effect in the friction
term (Equation [4.27]), we should keep in mind that the amplitudes of the constituents
generated through non-linear frictional processes are not expected to equal to those
obtained in the previous section.
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The results of the simulations for the flat bottom channel are presented in Tables
28 and 29 and in Figs. 52 and 53. Tables 30 and 31 and Figs. 54 and 55 show the results
for the inclined channel. The results appear to be only slightly different from the sum of
those obtained in the two previous sections.

4.2.6. Advection
Considering the advective term as single non-linear mechanism, the equations of motion
become:

CAE T

a +'a-;11h =0 [4.28]
du, du_  On —
3 Y U3, HEy Y 0 [4.29]

Friction is linear and characterized by t=0.00025 s). The non-linear term leads to a
generic algorithm of generation of shallow water tides which is similar to that identified
by Equation {4.19]. Indeed, in terms of the definition of the frequencies to where energy is
transferred, it does not matter if the transference is done through elevation (when finite
amplitude is the only non-linear process considered) or velocity (when advection is
present with the non-linear character coming from the product of velocities).

The results of the simulations for the flat bottom channel are presented in Tables
32 and 33 and in Figs. 56 and 57 while the results for the inclined bottom channel are
shown in Tables 34 and 35 and in Figs. 58 and 59. The numerical results are consistent
with the behavior expected by the analysis performed for the case in which finite ampli-
tude was the only non-linear effect.

Even though the main conclusions of Section 4.2.3 apply in this case, a significant
difference was found in the importance of the Sy constituent. While the zero-frequency
constituent does not capture significant energy through finite amplitude non-linear effects,
it assumes considerable importance when advection is accounted for; i.e., advection con-
tributes in a major way to a residual slope in both channels.

4.2.7. Advection, finite amplitude and non-linear friction
Finally, considering simultaneously all the non-linear terms we have the governing equa-
tions:

a'l d
3 3 ~Hu =0 [4.30]
du aﬂ
3, +u a +gy T = 0 [4.31]
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where 1 is computed by Equation [4.27] with n=0.025 sm’13, The results of the simula-
tions are presented in Tables 36 and 37 and in Figs. 60 and 61 (flat bottom channel) and in
Tables 38 and 39 and in Figs. 62 and 63 (inclined bottom channel).

Dominant shallow water constituents are, for both channels, the M4 and Sy when
only the M, was forced at the boundary, and the 2MS, (primarily due to friction), the S,
(primarily due to advection), and the M4 and MS, (contributed by all terms) when the M,,
S, and Oj are all imposed at the open boundary.

As in Section 4.2.5 we expect to observe the generation of shallow water tides
roughly corresponding to the ones generated by each of the non-linear processes taken by
itself. In this case, we should not only consider the finite amplitude effect on the non-linear
friction but also in the advective term.

RITA; results indicate in this case a small deviation from a simple sum of the
effects of the three non-linear terms taken in separate. In the comparison done in Section
4.2.5 the amplitudes of the constituents seemed to be approximately added together. In the
presence of all three non-linear effects we note that some shallow water constituents (e.g.,
Sg) decrease in amplitude showing an interesting cancellation effect.

4.2.8. Conclusions

Throughout the last sections we have explored the generation of shallow water tides tak-
ing advantage of the capabilities of RITA; and, more generically, of ACE;. The educa-
tional value of the process has significant potential and suggests the usefulness of our
computational structure for the teaching and learning of physical phenomena. The ani-
mated video sequence that supports this work is also an example of how the advances on
computer hardware can assist education.

We observed, using numerical simulations, the non-linear mechanisms of genera-
tion of overtides and compound tides. From a didactic standpoint we can summarize the
content of the last sections as follows:

1. Only through non-linear processes it is possible for the energy associated to
tidal constituents to be transferred to other frequencies, corresponding to
shallow water tides. This is a well-known fact, that becomes perhaps more
clear through analysis such as the one now performed.

2. The type of shallow water tides that are generated, for a well defined case,
depend on the dominant non-linear process active in the system. The fre-
quencies of the overtides and compound tides can be determined as func-
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tions of the frequencies of the forcing frequencies to the system; results
from numerical simulations using RITA; obey the general rules obtained
analytically from the governing equations.

3. The conjugate effect of several non-linear processes acting simultaneously
in the system shows a significant synergistic response. Interesting cases of
cancelation of effects, extremely difficult to detect otherwise, can be
observed by numerical simulation.

The experiments which were object of this section could be further improved. In

particular:

1. A larger list of constituents should be used. The constituents K;=M,-Oy,
Mgg=S,-M; and SO;=5,-O, could have been generated in the cases studied in
this section and they were not detected since the harmonic analysis only detects
specified constituents. Complementary spectral analysis could detect energy in
unspecified constituents.

2. Quadratic bottom friction generates more terms than the ones considered (Equa-
tion [4.23));

3. The analysis of the results based on the comparison of ratios of compound tides
against the ratio of the generating astronomical tides (e.g. MO3/MS, vs. 0;/S;)
could provide interesting insight;

4. The analysis of the velocities can provide different results than those obtained for
clevations;

5. A larger set of cases should be used. In particular the use of domains with non-
uniform Ax should be studied.




CHAPTER §
CONCLUSIONS

Computer hardware has achieved an extraordinary degree of sophistication in the last few
years and hydrodynamic modelling has taken substantial advantage of those advances.
However, systematic comparative research and the education and advanced practical train-
ing of modelers have been somewhat neglected. To address these issues we developed
RITA as a tool for education and exploratory research rather than for problem-solving.

One of the objectives in developing the model was to assure its flexibility by incor-
porating alternative numerical schemes and defining these schemes in a generic way. In
doing this, we allow the user to more precisely tailor the characteristics of the method
according to his/her particular interests. In Chapter 2, a reference finite element formula-
tion was presented: it is based on the Generalized Continuity Wave Equation, known for
its ability to suppress spurious spatial oscillations that afflict the numerical solutions of
primitive equations formulations. As deviations from the reference formulation, four alter-
natives are presented for the treatment of non-linear terms:

1. A time extrapolation method, which allows a certain degree of impliticity

on the treatment of non-linear terms without changing the stationarity of
the mass matrices;

2. An element-based method, which attempts to reduce the non-linear charac-

ter of the advective term hence relaxing the stability criteria;

3. A“n+2 upwind” method, in which a more “natural” treatment of the advec-

tion is allowed, by means of using non-symmetric weighting functions; and

4. An Eulerian-Lagrangian method. This method was not validated or applied

in any simulations; only the interest inherent to the formulation justified its
inclusion in Chapter 2.

Our implementation of the numerical algorithms was partially validated by com-
parison of the numerical results provided by the model with analytical solutions and solu-
tions obtained with an extremely refined time and space discretization (Chapter 3). All
methods are very sensitive to the Courant number, as expected. For small Courant num-
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bers all methods performed very well, providing accurate results. A simple mass conser-
vation test was also performed and all methods showed excellent behavior.

The usefulness of RITA; for comparative research in numerical methods and for
graduate-level education on hydrodynamics was exemplified in Chapter 4. A sensitivity
study examined the optimal value of the parameter G of the wave equation. The results
show that the optimal value of G depends on the Courant number, and although the opti-
mal G is often of the order of magnitude of the “characteristic” friction coefficient, it may
be significantly higher for small Courant numbers.

A brief comparative interpretation of the different accuracy of each method was
done in Section 4.1.2. Non-linear friction is the only term to which a notable gain in accu-
racy was observed by the use of an alternative method (time extrapolation). This fact may
be due to a greater importance of friction, relative to advection and finite amplitude.

The use of time extrapolation techniques for the treatment of non-linear friction
was compared with lumping of the momentum equation (Section 4.1.3). The results show
that for small Courant numbers the lumping scheme is less accurate than the time-extrapo-
lation, but the lumping scheme is more accurate for larger values of Cu.

The generation of shallow water tides was explored using RITA; as an educational
tool. The theoretical concepts of the transfer of energy by non-linear processes were illus-
trated and some interesting aspects of the behavior of each non-linear process were
detected and interpreted.

We feel the objectives proposed for this thesis were achieved. In particular:

1. In an educational perspective, RITA| and the associated interface and sci-
entific visualization tools, give the graduate student tools to explore theo-
retical concepts, and to literally see how they function. This can
substantially enhance the learning of both physical processes and numeri-
cal methods.

2. The performance of systematic comparisons of alternative schemes is of
great interest for the advancement of numerical methods. Due to its charac-
teristics, RITA, is very well adapted for this type of studies.

3. Preliminary sensitivity analysis of complex multidimensional cases can
successfully be performed by RITA . This practice can be extremely useful
on the design of “heavier” studies, by providing information on the domi-
nant processes and on the general behavior of the system being studied
towards space and time discretization and numerical strategies.

Areas where RITA should be substantially improved in the near future include:




1. Implementation and exploration of Eulerian-Lagrangian Methods, follow-

ing the formulation described in Chapter 2 or an appropriate alternative;

2. Ability to choose quadratic shape functions;

3. Introduction of numerical solutions involving lumping, such as in

ADCIRC’;

4, Ability to treat moving boundaries.

More than in any specific contribution to hydrodynamic modeling, it is in the con-
cept of an educational, research oriented tool, that is the major interest of this thesis
resides. We expect that RITA[will become the first of a generation of similarly-oriented
tools, covering other areas of environmental science and engineering.
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TABLES

Table 1.  Numerical parameters for the reference linear scheme.
finite amplitude NO
advection NO
friction YES
viscosity NO
friction type linear
fin. amp. effect on friction NO
wp, w{, wé 1.0,-1.0,0.0
wa, wi, w2 0.35,0.3,0.35
wa, W3, W3 0.0, 1.0, 0.0
wo, ws, wS 0.0, 1.0,0.0
m(z), mf 0.5,0.5
mg, m? 0.0,1.0
Table 2. Numerical parameters for the Burgers’ equation simulations.

RF TE EB UPW
finite amplitude NO NO NO NO
advection YES YES YES YES
friction NO NO NO NO
viscosity YES YES YES YES
m{, m) 0.0,1.0 0.3,0.7 0.0, 1.0 0.0,1.0
time extrapolation NO YES NO NO
element based NO NO YES NO
upwind NO NO NO YES
alpha, beta - - - 0.0,1.2
mg, m} 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0
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Table 3. Error norms from the Burgers’ equation simulations.
RF TE EB UPW
L, ) 0.8203E-02 0.7155E-02 0.5446E-02  0.535E-02
Table 4.  Numerical parameters for the finite amplitude simulations.
RF TE

finite amplitude YES YES

advection NO NO

friction YES YES

viscosity NO NO

friction type linear linear

fin. amp. effect on friction NO NO

wg, Wi, W) 0.0, 1.0 0.3,0.7

wa, W3, W3 0.0, 1.0 0.0, 1.0

w, wi, wi 0.0,0.1 0.0, 1.0

m;, m3 0.0, 1.0 0.0, 1.0
Table 5. Numerical parameters for the non-linear friction simulations.

finite amplitude
advection
friction
viscosity
friction type

fin. amp. effect on friction

W, Wi, W
wg, W1, W3
wg, Wi, W3
wg, Wi, W3

3 3
mg, my

RF
NO
NO
YES
NO

non-linear

NO
0.0,1.0
0.0,0.1
0.0,1.0
0.0,0.1
0.0,1.0

TE
NO
NO
YES
NO
non-linear
NO
0.3,0.7
0.3,0.7
0.3,0.7
0.3,0.7
0.3,07
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Table 6. Numerical parameters for the advection simulations.

RF TE EB UPW
finite amplitude NO NO NO NO
advection YES YES YES YES
friction YES YES YES YES
viscosity NO NO NO NO
friction type linear linear linear linear
fin. amp. effect on friction NO NO NO NO
fin. amp. effectonadv. NO NO NO NO
Wo, W3, W3 0,10,0 37,0 0,100 .0,10,.0
element based NO NO YES NO
wg, W3, W5 0,10,.0  0,1.0,0 .0,10,.0  .0,10,.0
we, ws, wS 0,10,0 .0,10,0 .0,10,.0 .0,1.0,.0
m}, m] 0.0, 1.0 3,.7 0.0, 1.0 0.0, 1.0
time extrapolation NO YES NO NO
element based NO NO YES NO
upwind NO NO NO YES
alpha, beta - - - 0.0, 1.0

m3, m3 0.0,1.0 0.0,1.0 0.0,1.0 0.0,1.0
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Table 7. Numerical parameters for the fully non-linear simulations.

RF TE EB UPW
finite amplitude YES YES YES YES
advection YES YES YES YES
friction YES YES YES YES
viscosity NO NO NO NO
friction type non-linear  non-linear  non-linear  non-linear
fin. amp. effect on frictionYES YES YES YES
wa, wi, w3 0,10,0 .0,10,0 .0,10,0 .0,10,0
fin. amp. effect on adv. YES YES YES YES
wa, W3, W3 0,10,0 37,0  0,10,0 .0,10,.0
element based NO NO YES NO
Wy, W), W5 0,10,0 0,100 .0,10,.0 .0,10,.0
wg, wS, w) 0,10,0 .0,10,0 .0,10,.0 .0,1.0,.0
wg, W1, W) 0,10,.0 .0,10,.0 .0,10,.0 .0,10,.0
wh, wh, wS 0,10,.0 .0,10,0 .0,10,.0 .0,10,.0
m}, m} 0.0,1.0 3,7 0.0,1.0 0.0,1.0
time extrapolation NO YES NO NO
element based NO NO YES NO
upwind NO NO NO YES
alpha, beta - - - 0.0,1.0
mg, m3 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0
Table 8. Time steps and corresponding average Courant numbers.

At (s) 30 60 120 240 300 430 600 1200 2400
Cu .12 24 A8 96 1.2 192 24 48 9.6




Table 9. Tidal components of interest.
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Component

2MSg
2SMg
S¢
Mg

Frequency (rad.s-1)

0.0

0.6759774260E-04
0.1355936984E-03
0.1405188959E-03
0.1454441081E-03
0.1503693056E-03
0.2081166458E-03
0.2130418434E-03
0.2810377919E-03
0.2859630040E-03
0.2908882161E-03
0.4215567023E-03
0.4264819145E-03
0.4314070975E-03
0.4363323096E-03
0.5620755837E-03

Period (h)
Inf
25.819
12.872
12.421
12.000
11.607

8.386
8.192
6.210
6.103
6.000
4.140
4.092
4.046
4.000
3.105

Table 10. Harmonic analysis results. Frictionless linear case. M,, flat bottom.

Component

SO

01
2MS2
M2
S2
2SM2
MO3
SO3
M4
MS4
S4
M6
2MS6
2SM6
S6
M8

5888

| o
o
W
w

2888333338388

Station A

X (%) ¢ (h)
.0 .00

0 .00
100.0 .00
.0 .00

0 .00

0 .00

.0 .00

0 .00

.0 .00

0 .00

.0 .00

.0 .00

0 .00

0 .00

0 .00

Station B
Mo (m) X (%) ¢ (h)
.000
.000 0 .00
.000 .0 .00
3.475 100.0 .00
.000 0 .00
.000 0 .00
.000 0 .00
.000 0 .00
.000 0 .00
.000 0 .00
.000 0 .00
.000 0 .00
.000 0 .00
.000 0 .00
.000 0 .00
.000 0 .00
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Table 11.  Harmonic analysis results. Frictionless linear case. M+S,+0;, flat

bottom.
Component Station A Station B
m %% 10) nom X% ¢ (h)

So .000 .000
0, 422 14.3 00 437 12.6 .00
2MS, .000 0 00 .000 0 .00
M; 2.953 100.0 00 3.475 100.0 .00
Sy 1.781 60.3 12.00 2.122 61.1 12.00
25M, .000 .0 .00 .000 .0 .00
MO; .000 0 .00 .000 0 .00
SO, .000 0 00 .000 .0 .00
My .000 0 .00 .000 0 .00
MS, .000 0 .00 .000 .0 .00
S4 .000 0 00 .000 0 .00
Mg .000 0 .00 .000 .0 .00
2MSg .000 0 .00 .000 .0 .00
2SMg .000 0 .00 .000 .0 .00
S .000 0 .00 .000 .0 .00
Mg .000 0 00 .000 0 .00

Table 12. Harmonic analysis results. Frictionless linear case. My, inclined

bottom.
Component Station A Station B
Mom X %) ¢ (h) nm % (% o (h)

SO .000 .000
01 .000 0 .00 .000 0 .00
2MS2 .000 0 00 .000 0 .00
M2 2.539 100.0 .00 3.124 100.0 .00
S2 .000 0 00 .000 0 .00
25M2 .000 0 .00 .000 .0 .00
MO3 .001 0 245 .001 .0 245
SO3 .000 0 .00 .000 .0 .00
M4 .000 0 .00 .000 .0 .00
MS4 .000 0 00 .000 .0 .00
S4 .000 0 .00 .000 .0 .00
M6 .000 0 00 .000 0 00
2MS6 .000 0 .00 .000 0 .00
2SM6 .000 0 .00 .000 .0 .00
S6 .000 0 .00 .000 .0 .00
M8 .000 0 .00 .000 0 .00




55

Table 13. Harmonic analysis results. Frictionless linear case. Mp+8,+0,

inclined bottom.
Component Station A Station B
Mg (M) X (%) ¢ () Mo (M) X (%) ¢ ()

SO .000 .000
01 412 16.2 25.82 432 13.8 25.82
2MS2 .000 0 .00 .000 .0 .00
M2 2.539 100.0 .00 3.124 100.0 .00
S2 1.502 59.1 12.00 1.877 60.1 12.00
2SM2 .000 0 .00 .000 0 .00
MO3 .001 0 2.45 .002 1 245
S03 .000 0 .00 .000 0 .00
M4 .000 0 00 .000 0 .00
MS4 .000 0 00 .000 0 .00
S4 .000 0 .00 .000 0 .00
M6 .000 0 00 .000 0 .00
2MS6 .000 0 .00 .000 0 .00
2SM6 .000 0 00 .000 0 .00
S6 .000 0 00 .000 0 .00
M8 .000 0 00 .000 0 .00

Table 14.  Harmonic analysis results. Linear case. My, flat bottom.

Component Station A Station B

Mo (M) x (%) o (M) Mo (m) X (%) ¢ (h)

SO .000 .000
01 .000 0 00 .000 .0 .00
2MS2 .000 0 .00 .000 .0 .00
M2 1.438 100.0 2.01 1.650 100.0 2.60
S2 .000 0 .00 .000 0 .00
2SM2 .000 0 .00 .000 0 .00
MO3 .000 0 .00 .000 0 .00
SO3 .000 0 .00 .000 0 .00
M4 .000 0 00 .000 .0 .00
MS4 .000 0 00 .000 0 00
S4 .000 0 00 .000 0 .00
M6 .000 0 00 .000 0 .00
2MS6 .000 0 00 .000 0 .00
2SM6 .000 0 00 .000 0 .00
S6 .000 0 .00 .000 0 .00
M8 .000 0 .00 .000 .0 .00
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Table 15. Harmonic analysis results. Linear case. My+S,+0, flat bottom.

Component Station A Station B

Mo (m) X (%) ¢ (h) Mo (m) x (%) ¢ (h)
SO 000 000
01 381 26.5 1.77 393 23.8 2.33
2MS2 .000 0 .00 .000 .0 .00
M2 1.438 100.0 2.01 1.650 100.0 2.60
S2 795 55.3 2.02 921 55.8 2.62
2SM2 000 0 .00 .000 0 .00
MO3 .000 0 00 .000 0 .00
SO3 .000 .0 00 .000 0 00
M4 000 .0 .00 .000 0 .00
MS4 .000 0 .00 .000 0 .00
S4 .000 0 .00 .000 0 .00
M6 .000 .0 .00 .000 0 .00
2MS6 .000 0 .00 .000 0 .00
2SM6 000 0 .00 .000 0 .00
S6 .000 0 .00 .000 0 .00
MS§ .000 0 .00 .000 0 .00

Table 16. Harmonic analysis results. Linear case. M,, inclined bottom.

Component Station A Station B

No (m) X (%) ¢ (h) Mo (m) X (%) ¢ (h)
SO .000 000
01 000 0 .00 .000 .0 .00
2MS2 .000 0 .00 .000 .0 .00
M2 1.500 100.0 1.66 1.769 100.0 242
S2 .000 0 .00 .000 .0 .00
2SM2 000 0 .00 .000 .0 .00
MO3 .000 0 .00 .000 .0 .00
SO3 .000 .0 .00 .000 .0 .00
M4 .000 .0 .00 .000 .0 .00
MS4 000 0 .00 .000 .0 .00
S4 .000 0 .00 .000 .0 .00
Mé6 000 .0 00 .000 .0 .00
2MS6 .000 .0 00 .000 .0 .00
2SM6 000 0 .00 000 0 .00
S6 .000 0 .00 .000 .0 .00
M8 .000 .0 .00 .000 .0 .00
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Table 17.  Harmonic analysis results. Linear case. My+5,+0, inclined bottom..

Component Station A Station B

Mo (M) X (%) ¢ (h) Mo (M) X (%) ¢ (h)
SO .000 .000
01 383 25.5 1.44 397 22.5 2.14
2MS2 000 .0 .00 .000 0 .00
M2 1.500 100.0 1.66 1.769 100.0 242
S2 .833 55.5 1.67 .994 56.2 2.44
2SM2 .000 0 .00 .000 0 .00
MO3 .000 0 .00 .000 0 .00
SO3 000 .0 .00 .000 0 .00
M4 .000 0 .00 .000 0 .00
MS4 .000 0 00 .000 0 .00
S4 .000 .0 .00 .000 0 .00
M6 000 .0 .00 .000 0 .00
2MS6 .000 .0 .00 .000 0 .00
2SM6 .000 .0 00 .000 0 .00
S6 .000 0 .00 .000 0 .00
M8 .000 .0 .00 .000 0 .00

Table 18.  Finite amplitude generated shallow water tides.

Astronomical Tides Shallow Water Tides
M, Sg, My, Mg, Mg, ...
52 So, S4, S6’
M, +S, MSy, MSy, ...
M2 + 01 M03, M02,

S, + 0y S04, SO, ..
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Table 19.  Harmonic analysis results. Linear case + finite amplitude. M,, flat

bottom.
Component Station A Station B
Mo (m) X (%) ¢ (h) Mo (m) x (%) ¢ ()

SO .005 -010
o1 .000 0 00 .000 0 .00
2MS2 .000 0 .00 .000 0 .00
M2 1.427 100.0 1.98 1.628 100.0 2.58
S2 .000 0 00 .000 0 00
25M2 .000 0 00 .000 0 .00
MO3 .000 0 00 .000 0 .00
SO3 .000 0 00 .000 0 .00
M4 026 1.8 1.62 078 4.8 1.65
MS4 .000 0 .00 .000 0 .00
S4 .000 0 00 .000 0 .00
M6 .003 2 2.27 .004 2 S1
2MS6 .000 0 00 .000 0 .00
2SM6 .000 0 00 .000 0 00
S6 .000 0 .00 .000 0 .00
M8 .000 0 .00 .001 0 3.00

Table 20. Harmonic analysis results. Linear case + finite amplitude. My+S,+0,

flat bottom.
Component Station A Station B
Mo (m) x (%) ¢ (h) T (m) X (%) ¢ (h)

S0 .007 -013
01 371 26.5 1.75 389 239 231
2MS2 .002 2 12.12 .001 1 31
M2 1.425 100.0 1.97 1.625 100.0 2.58
S2 187 55.2 1.98 .905 55.7 2.59
2SM2 .001 1 9.08 .002 1 7.95
MO3 022 1.6 1.11 039 24 1.26
SO3 012 8 1.06 .020 1.2 1.25
M4 026 1.8 1.61 .078 4.8 1.65
MS4 027 1.9 1.63 .086 5.3 1.67
S4 .007 S 1.63 024 15 1.69
M6 .003 2 2.30 .004 2 49
2MS6 .005 3 2.32 .006 4 52
2SM6 .003 2 2.35 .003 2 .53
S6 .001 0 2.49 .001 0 42
M8 .000 0 .00 .001 0 2.89
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Table 21.  Harmonic analysis results. Linear case + finite amplitude. M,, inclined

bottom.
Component Station A Station B
Mo (m) x (%) o) Mo (m) X (%) o M)

SO -001 -028
o1 .000 0 .00 .000 0 .00
2MS2 .000 0 .00 .000 0 .00
M2 1.489 100.0 1.63 1.746 100.0 241
S2 .000 0 .00 .000 .0 .00
2SM2 .000 0 00 .000 .0 .00
MO3 .000 0 .00 .000 .0 .00
S03 .000 0 00 .000 0 .00
M4 021 14 2.00 .092 5.3 1.41
MS4 .000 0 .00 .000 0 .00
S4 .000 0 00 .000 0 .00
M6 .005 3 1.97 .006 A4 16
2MS6 .000 .0 .00 .000 .0 .00
2SM6 .000 0 00 .000 .0 .00
S6 .000 0 00 000 0 .00
M8 .001 1 1.30 .001 1 2.81

Table 22. Harmonic analysis results. Linear case + finite amplitude. My+S,+0y,

inclined bottom.
Component Station A Station B
Mg (M) X (%) ¢ (M) Mo (M) x (%) ¢ (M)

SO -.001 -.038
01 .380 25.5 1.42 .395 22.6 2.15
2MS2 002 1 11.36 .003 2 4.49
M2 1.487 100.0 1.63 1.744 100.0 241
S2 .825 555 1.64 978 56.1 2.44
2SM2 .001 1 9.08 .003 2 6.22
MO3 017 12 1.05 .044 25 .95
SO3 .009 .6 .93 .022 1.3 1.00
M4 .020 14 2.02 .093 53 1.42
MS4 021 1.4 2.10 .104 6.0 1.44
S4 .005 3 221 .029 1.7 1.46
M6 .004 3 2.00 007 4 .16
2MS6 .008 5 2.03 011 .6 .20
2SM6 .004 3 2.07 .007 4 23
S6 .001 1 2.20 .001 1 .26
M8 .001 0 1.18 .001 1 271




Table 23.  Non-linear friction generated shallow water tides.
Astronomical Tides Shallow Water Tides
M; Mg, ...
Sy Ses -
My + S, 2MSg, 2SMg, 2ZMS,, 2SMy, ...

Table 24.  Harmonic analysis results. Linear case + non-linear friction. M, flat

bottom.
Component Station A Station B

nom X %) 6 (h) nm  x%) ¢ (h)
SO 047 .045
01 001 0 .69 .000 .0 .00
2MS2 .001 .0 98 .000 .0 .00
M2 1.399 100.0 2.22 1.647 100.0 2.54
S2 .001 0 1.03 .001 .0 1.25
25M2 .001 0 .85 .000 .0 .00
MO3 .000 .0 .00 .000 .0 .00
SO3 .000 0 .00 .000 .0 .00
M4 .017 1.2 2.76 .057 3.5 2.00
MS4 .000 0 .00 .000 .0 .00
S4 .000 0 .00 .000 .0 .00
M6 .022 1.6 1.95 124 7.5 2.88
2MS6 .000 0 .00 .000 .0 .00
2SM6 .000 0 .00 .000 .0 .00
S6 .000 .0 .00 .000 .0 .00
M8 .003 2 1.72 .011 7 2.88
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Table 25. Harmonic analysis results. Linear case + non-linear friction.

M,+S§,+0, flat bottom.
Component Station A Station B
Mo (M) x (%) o (h) Mo (m) X (%) ¢ (h)

SO .049 .048
01 358 274 2.49 371 24.3 2.85
2MS2 159 122 7.49 205 134 7.53
M2 1.307 100.0 2.26 1.531 100.0 2.60
S2 613 46.9 2.48 733 479 2.90
2SM2 041 31 7.70 055 36 7.76
MO3 019 1.5 1.51 .038 25 1.41
SO3 020 1.6 5.13 .026 1.7 5.27
M4 .009 i 3.14 .038 2.5 2.02
MS4 .008 .6 3.30 042 2.8 2.02
54 .002 2 5.30 .006 4 1.85
M6 012 9 1.92 .052 34 3.01
2MS6 023 1.8 1.89 109 7.1 2.98
2SM6 010 i 1.85 .036 24 3.14
S6 .000 0 .00 .003 2 .76
M8 002 2 2.61 .004 3 46

Table 26.  Harmonic analysis results. Linear case + non-linear friction. M,,

inclined bottom.
Component Station A Station B
Tm  x(%) ¢ (h) om X %) o ()

SO 044 .045
01 .001 0 12.89 .001 .0 12.57
2MS2 001 1 7.08 001 1 7.10
M2 1.663 100.0 1.51 1.982 100.0 2.23
S2 001 1 6.41 .001 1 6.43
2SM2 .001 1 6.19 .001 1 6.24
MO3 .001 .0 4.96 .001 | 5.14
SO3 .001 0 4.84 .001 1 5.02
M4 016 9 2.44 .099 50 1.71
MS4 .001 0 3.77 .001 .1 4.08
S4 001 .0 3.67 .001 1 4.00
M6 011 i 1.54 121 6.1 242
2MS6 .000 0 .00 .001 .0 3.17
2SM6 .000 0 .00 001 .0 3.15
S6 .000 0 .00 .001 .0 3.13
M8 007 4 54 .019 1.0 2.19
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Table 27. Harmonic analysis results. Linear case + non-linear friction.
M2+Sz+01, inclined bottom.

Component Station A Station B

om % %) ¢ () om  x%) ¢ (h)
SO 052 056
01 .380 242 1.55 395 21.5 2.37
2MS2 154 9.8 6.57 257 14.0 6.77
M2 1.567 100.0 1.54 1.836 100.0 2.33
S2 776 49.5 1.75 927 50.5 2.71
2SM2 046 29 6.91 .081 44 7.17
MO3 021 14 .86 051 2.8 1.06
S0O3 016 1.0 4.47 .024 1.3 4.61
M4 007 4 1.91 074 40 1.82
MS4 .004 2 1.77 .083 4.5 1.85
S4 .005 3 12 .015 .8 2.10
M6 013 8 1.33 .055 30 2.66
2MS6 021 14 1.31 113 6.2 2.59
2SM6 .014 9 1.24 .044 24 2.81
S6 .003 2 1.53 .005 3 3.98
M8 .003 2 1.27 .006 4 2.84

Table 28. Harmonic analysis results. Linear case + finite amplitude and non-
linear friction. My, flat bottom.

Component Station A Station B

nom X %) ¢ (h) oM X (% ¢ (h)
SO .055 .031
01 .000 0 .00 .000 0 .00
2MS2 .000 0 .00 .000 .0 .00
M2 1.396 100.0 2.20 1.643 100.0 2.53
S2 .000 .0 00 .000 0 .00
2SM2 .000 0 .00 .000 0 .00
MO3 .000 .0 .00 .000 0 .00
SO3 .000 .0 .00 .000 0 .00
M4 046 33 1.97 137 8.4 1.82
MS4 .000 0 .00 .000 0 .00
S4 .000 0 .00 .000 .0 .00
M6 026 1.9 2.12 113 6.9 2.88
2MS6 .000 0 00 .000 0 .00
2SM6 .000 0 .00 .000 0 .00
S6 .000 0 00 .000 .0 .00
M3 .011 8 71 025 1.5 2.34




Table 31.  Harmonic analysis results. Linear case + finite amplitude and non-
linear friction. M+S,+0, inclined bottom.

Component Station A _ Station B

Mo (m) X (%) ¢ (h) Mo (M) x (%) ¢ (h)
SO 052 -.039
01 378 24.1 1.44 .396 21.7 231
2MS2 146 9.3 6.59 257 14.1 6.79
M2 1.570 100.0 1.52 1.822 100.0 2.35
52 779 49.6 1.70 916 50.3 2.74
2SM2 043 27 6.95 082 4.5 7.25
MO3 034 2.2 1.07 .103 5.7 1.16
S03 o1 i 3.99 021 1.2 3.09
M4 010 6 3.10 178 9.8 1.72
MS4 012 i 3.79 .200 11.0 1.75
S4 .010 i 5.45 051 2.8 2.04
Mé6 011 7 2.06 035 1.9 2.54
2MS6 021 1.3 2.00 079 4.3 2.53
25SM6 .008 5 1.98 023 1.3 2.71
S6 .001 0 2.78 004 2 .70
M3 .003 2 49 .008 4 243

Table 32.  Harmonic analysis results. Linear case + advection. M, flat bottom.

Component Station A Station B

Mm  x(%) o (h) om X %) o ()
SO 071 .108
01 001 0 14.03 .001 1 13.97
2MS2 .001 0 7.86 .001 1 7.79
M2 1.446 100.0 1.97 1.649 100.0 2.56
S2 001 0 7.17 .001 A 7.04
2SM2 .001 .0 6.92 .001 | 6.81
MO3 001 .0 5.41 .001 .0 5.29
S03 .000 0 .00 .001 .0 5.14
M4 .023 1.6 .60 .071 43 52
MS4 .000 0 .00 .000 .0 00
S4 .000 .0 .00 .000 0 .00
M6 .001 1 25 .005 3 .78
2MS6 .000 0 .00 .000 0 .00
2SM6 .000 .0 .00 .000 .0 .00
S6 .000 0 .00 .000 .0 .00
M8 002 1 1.23 002 1 2.58
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Table 33. Harmonic analysis results. Linear case + advection. My+S,+0y, flat

bottom.
Component Station A Station B
Mo (M) X (%) ¢ () Mo (m) x (%) ¢ (h)
SO .089 139
01 .384 26.4 1.72 .398 239 2.29
2MS2 .010 N 1.09 .010 .6 1.97
M2 1.458 100.0 1.96 1.663 100.0 2.56
S2 813 55.7 1.97 935 56.3 2.57
2SM2 .004 3 1.62 .005 3 274
MO3 .011 8 7.80 022 13 7.82
SO3 .007 5 7.89 012 N 7.71
M4 .021 14 .63 .069 42 47
MS4 022 1.5 .70 078 4.7 S1
5S4 .005 3 .84 021 1.2 47
M6 .001 1 4.12 .005 3 78
2MS6 .002 1 07 .008 5 .81
2SM6 .001 1 3.92 .004 3 .86
S6 .001 0 3.11 .001 0 1.45
M8 .001 1 1.13 .001 1 2.34
Table 34.  Harmonic analysis results. Linear case + advection. My, inclined
bottom.
Component Station A Station B
Mo (m) X (%) ¢ (h) Mo (m) X (%) ¢ (h)
S0 037 092
01 .000 0 .00 .001 .0 13.64
2MS2 .000 0 .00 .001 .0 1.55
M2 1.495 100.0 1.63 1.751 100.0 2.40
S2 .000 0 .00 .001 0 6.72
2SM2 .000 0 .00 .001 .0 6.52
MO3 .000 0 .00 .001 .0 5.09
S03 .000 0 .00 001 .0 495
M4 013 .8 1.06 .069 4.0 17
MS4 .000 0 .00 .000 .0 .00
S4 .000 0 .00 .000 .0 .00
M6 .001 1 1.73 .003 2 .28
2MS6 .000 0 00 .000 .0 .00
2SM6 .000 0 .00 .000 .0 .00
S6 .000 0 00 .000 0 .00
M8 .001 0 .93 .001 1 2.34
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Table 35.  Harmonic analysis results. Linear case + advection. My+S,+0,
inclined bottom.
Component Station A Station B
Tom  x(%) ¢ (b) om X% ¢ (h)

SO 048 120
0] .383 25.5 1.42 400 22.8 2.15
2MS2 003 2 .70 .004 2 345
M2 1.499 100.0 1.63 1.756 100.0 2.40
S2 834 55.7 1.64 .988 56.3 242
2SM2 .001 1 1.66 .003 2 421
MO3 007 S 7.72 .020 1.1 7.46
SO3 .004 3 7.74 011 .6 7.23
M4 .013 8 1.08 .068 39 .14
MS4 .014 9 1.22 .078 44 .19
S4 004 2 1.41 .021 1.2 19
M6 001 0 1.97 .002 1 35
2MS6 .001 1 1.91 .004 3 37
2SM6 .001 1 2.12 002 1 45
S6 .000 0 .00 .000 .0 .00
M8 .000 0 00 .001 1 2.10

Table 36. Harmonic analysis results. Fully non-linear case. M5, flat bottom.

Component Station A Station B

Mg (M) x (%) ¢ (h) Mo (m) X (%) ¢ (h)

SO 120 123
01 .000 0 .00 .000 .0 .00
2MS2 000 0 .00 .001 .0 7.54
M2 1.399 100.0 2.18 1.645 100.0 2.50
S2 .000 0 .00 .000 .0 .00
2SM2 .000 0 .00 .000 .0 .00
MO3 .000 0 .00 .000 .0 .00
SO3 .000 .0 .00 .000 .0 .00
M4 063 45 1.58 174 10.6 1.42
MS4 .000 0 .00 .000 .0 .00
sS4 .000 0 .00 .000 .0 00
M6 .035 2.5 2.07 .100 6.1 2.91
2MS6 .000 0 .00 .000 .0 .00
2SM6 .000 0 .00 .000 .0 .00
S6 .000 .0 .00 .000 .0 .00
M8 .015 1.1 .70 .040 2.5 2.20
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Table 37.  Harmonic analysis results. Fully non-linear case. My+S,+01, flat

bottom.
Component Station A Station B

M@ X% ¢ () Mm X% ¢ (h)
SO 154 155
01 356 27.1 2.33 370 24.1 2.70
2MS2 .147 11.2 7.53 .190 124 7.57
M2 1.313 100.0 2.20 1.533 100.0 2.54
S2 617 47.0 2.40 732 47.8 2.81
2SM2 .038 29 7.81 .052 34 7.85
MO3 051 39 1.20 .083 54 1.23
SO3 .005 3 4.36 .006 4 3.96
M4 048 37 1.50 .143 9.3 1.51
MS4 .048 37 1.53 .159 10.4 1.57
S4 .008 .6 1.21 .035 2.3 1.80
M6 .017 1.3 2.23 .035 23 2.99
2MS6 .034 2.6 2.18 .076 4.9 3.00
2SM6 014 1.1 2.32 .019 1.2 3.21
S6 .002 1 3.37 .004 3 1.10
M8 .003 2 1.09 .006 4 2.49

Table 38.  Harmonic analysis results. Fully non-linear case. M,, inclined bottom.

Component Station A Station B

m %% ¢ (h) m %% ¢ (h)
SO 077 078
01 .001 1 12.86 .001 1 12.79
2MS2 .001 1 7.11 .002 1 7.10
M2 1.655 100.0 1.48 1.955 100.0 222
S2 .001 1 6.47 .002 1 6.46
2SM2 .001 1 6.24 .002 1 6.24
MO3 .001 1 5.04 .002 1 5.00
SO3 .001 1 4.93 .002 1 482
M4 033 2.0 2.15 .243 124 1.14
MS4 001 1 3.97 .001 A 3.86
S4 .001 0 3.89 .001 .1 3.79
M6 .043 26 1.89 077 3.9 2.60
2MS6 .000 0 .00 .001 .0 293
2SM6 .000 0 .00 .001 0 2.89
S6 .000 0 00 .001 0 2.84
M8 .013 8 3.06 .042 2.1 1.80
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Table 39.  Harmonic analysis results.Fully non-linear case. My+S,+0), inclined

bottom.
Component Station A Station B

Mo (M) x (%) ¢ (h) Mo (M) X (%) ¢ (h)
SO 107 .106
01 .376 240 1.46 390 21.6 2.29
2MS2 .146 9.3 6.61 245 13.6 6.87
M2 1.564 100.0 1.51 1.804 100.0 2.30
S2 776 49.6 1.70 .900 49.9 2.66
2SM2 043 2.8 6.92 077 4.3 7.35
MO3 .036 23 74 .106 59 .87
SO3 .008 S5 4.26 012 7 2.58
M4 .009 .6 1.52 .205 11.4 1.33
MS4 .002 1 2.55 232 12.9 1.39
S4 011 i 5.34 .057 3.1 1.76
M6 .024 1.5 2.12 .017 9 2.76
2MS6 045 29 2.05 .046 2.6 2.72
2SM6 020 1.3 2.20 .009 5 3.38
S6 .003 2 2.98 .007 4 .87

M8 .002 1 .56 ~.009 5 243
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Fig. 1. Geometry of the problem (MRL- Mean Reference Level; H - total water
depth; h - depth; 1 - elevation).
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Fig. 2. Four-step 2™ order Runge-Kutta tracking scheme: tracking from time n+1 to
time n.
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APPENDIX A

Analytical Solutions

A.1. Tidal channel
Lynch and Gray1 present a set of solution of the linearized 1-D shallow waters equations:
on . du
5 + h:K =0 [A.1]
%+gg—2+lu+¥ =0 [A.2]

for several geometries and forcings.

From the work of Lynch and Gray, we will review here the analytical solutions that
are used in Chapter 3 to partially validate RITA;. Problems of interest in our case involve
a no-flux boundary condition at one end of the channel, and a sinusoidal variation of the
free surface at the other end, e.g.:

=0 @ x =0
n = Acos (wt) @ x =L [A.3]
The bathymetry is of the form:
h(x) = hox" [A4]

hq and n are constants. Lynch and Gray let n take the values 0, 1, or 2, but we will consider
here only the first two cases.

For tidal forcings alone (see Lynch and Gray for wind forcing) the surface eleva-
tion and the velocity due to tidal forcing can be written as:

n=0:
_ cos[B(x=x))] 4
n, = Re (Acos[B(xz—xl)] ) [A.5]
_ iAo sin[B(x-x;)] iot
u= Rc(( ﬁho) cos[B(xz—xl)] e ) [A.6]
n=1

n, = Re ([aly (2BVx) +bY, (2Bx) 1) (A7)
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-1 .
=R 2 Y, (2 ot :
u °(ﬂhoﬁ[“‘( BJX) +bY, (2B.%) Te ) [AS8]

with:

(0% —iw))
ghy
i A (Y, (2BJx,))
(Jo (2BJx2)) (Y1 (2BJx))) = (Yo (2BJx,)) (3, (2BJx)))
_ A, 2Bx)
(3o (2BJx5)) (Y, 2B.Jx))) = (Yo (2BJx,)) (3, (2B.Jx)))

where x; and x5 are the coordinates of the closed and open end of the channel, respec-

Bz = [A.9]

[A.10]

tively, and J and Y are Bessel functions.

A.2. Burgers equation
The Burgers’ equation has the form:

du _ d % du
é—t = Va7 u-a—; [All]
Herbst et al.2 present the following particular solution:
u(x,t) = f(x-ct-p) [A.12]

with:

(c+o+ (c—a)exp(a%))
f(y) = [A.13]
1+cxp(a%)

This solution represents a wave front initially at x = B, travelling at a speed ¢ and
such that u (x,t) = ¢t a if x = ta for any value of t. The initial and boundary condi-
tions that should be used with the Burgers equation, in a [0,1] domain, in order to obtain
[A.12] are given by:

u(x,0) = f(x-B) [A.14]
u(0,t) = f(-ct-p) [A.15]
u(l,t) = f(l-ct-p) [A.16]
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APPENDIX B

RITAl : Brief User’s Manual

B.1. File structure

The primary input files for RITA are the grid file (caseN.gr3 - caseN being an arbi-
trary name of the test case (5 characters) and “gr3” a mandatory suffix) and two parameter
files: one with the specifications of the numerical scheme (scheme.sch - scheme being an
arbitrary name of the numerical scheme and “sch” a mandatory suffix) and the other with
the initial and boundary conditions of the study case, as well as with the definition of the
output files to be generated (caseNnn.ibo - caseN as the meaning explained above, nn are
two digits that specify the run and “ibo” is a mandatory suffix). The structure for each one
of the files is given below (Tables B.1, B.2 and B.3). Additional files may be required,
namely files with initial conditions and/or tsunami data (Tables B.4 and B.S).

The output files are specified by the user and they can be:

5th character of scheme and caseN and nn haves the mean-

s caseNxnn.res (where x is the
ing explained above) - nodal elevations and velocities regularly spaced in space and
time (Table B.7);

¢ caseNxnn.cpz (where x is the 5th character of scheme and caseN and nn haves the
meaning explained above) - time series of elevations at selected nodes (Table B.6);

» caseNxnn.cpf (where x is the 5th character of scheme and caseN and nn haves the
meaning explained above) - time series of flows at selected nodes (Table B.6);

¢ caseNxnn.cpv (where x is the Sth character of scheme and caseN and nn haves the
meaning explained above) -time series of velocities at selected nodes (Table B.6).

In the tables below the variable name is the name of the variable in the code, the
variable type specifies the number of values read and its nature (alpha=alphanumeric,

int=integer*2 and real=real*8).

Table B.1. Structure of grid file - caseN.gr3.

variable name variable type meaning

case alpha name of the case

nnd int number of nodes

xnode(i), znode(i) [i=1,nnd) 2real distance from the origin, depth

width real width of the channel
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Table B.2. Structure of parameter file #1 - scheme.sch.

variable name variable type  meaning

alpha alpha comments

gwe real wave equation’s G factor (s’l)

kfa, kad, kfr, kvis 4int flags for finite amplitude, advection, friction and
viscosity

Ifr, kfaaf 2int flag for linearized friction, finite amplitude
in friction

wl0, wll, wi2 3real time discretization factors - time derivative in
GCWE

w20, w21, w22 3real time discretization factors - gravity/GCWE

w40, wadl, w42 3real time discretization factors - finite amplitude/GCWE

kfaaw int flag for finite amplitude in advection/GCWE

w30, w31, w32 3real time discretization factors - advection/GCWE

kew, keb 2int flags for continuity and element based - advection
/GCWE

w50, w51, w52 3real time discretization factors - linear friction/GCWE

w60, wbl, w62 3real time discretization factors - linear G/GCWE

w70, w71, w72 3real time discretization factors - non-linear friction
/GCWE

w80, w81, w82 3real time discretization factors - non-linear G/IGCWE

klum int flag for lumping of the ME

pm10, pm1l 2real time discretization factors - advection/ME

knup, alph, bet int, 2real code for upwind/element based and
parameters for upwind - advection/ME

pm20, pm21 2real time discretization factors - gravity/ME

pm30, pm31 2real time discretization factors - friction/ME

kfaav int flag for finite amplitude - viscosity/ME

pm40, pm41 2real time discretization factors - viscosity/ME

kelm, nit, crit 2int,real flag for ELM, max no. of iterations, convergence

criteria




Table B.3, Structure of parameter file #2 - caseNxx.ibo.
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if kic=0
if kic=1
if kic=1

if kocpz=1

if kocpf=1

if kocpv=1

if kbcd=1,4

if kbcd=2,3
if kbcd=2,3
if kbcd=6
if kbcu=7

if kbcu=1,4

if kbcu=2,3
if kbcu=2,3
if kbcu=6
if kbcu=7

if ktsu=1
if ktsu=1

name type

alpha alpha

alpha alpha

tau, visc 2real

grv real

dt, nti real, int

kic int

zinit, finit, tinit 3real

inft int

fileinit alpha

kresf, tpinit, ntip int, real, int
kocpz, ntsoz, nmcpoz 3int
ncpoz(i).i=1,nmcpoz (nmcpoz)int
kocpf, ntsof, nmcpof 3int
ncpof(i),i=1,nmcpof {nmcpof)int
kocpv, ntsov, nmcpov 3int
ncpov(i),i=1,nmcpov (nmcpov)int
kbcd int

beed real

ntcd int
bevphd,bevamd, bevird 3real
bevphd,bevamd,bevfrd, bevrdd 4real
bevamd,bevfrd, bevrdd 3real

kbcu int

beeu real

ntcu int

bevphu(j), bevamug(j), beviru() 3real
bevphu,becvamu,beviru, bevrdu 4real

bcvama,bevfru, bevrdu 3real
kci,nskci 2int
ktsu int
tsufil alpha
ntsu, nttsu 2int

meaning
case
comments

friction coefficient, viscosity coefficient
if Ifr=0 - manning coefficient
if fr=1 - linear friction parameter

acceleration of gravity

time step, no. of time steps
type of initial conditions
initial elevation, flow and time
no of times in fileinit

file with initial conditions

flag for result file (.res)

flag for output of elevation, initial time step,
no. of nodes

nodes for elevation output

flag for output of flow, initial time step,
no. of nodes

nodes for flow output

flag for output of velocity, initial time step,
no. of nodes

nodes for velocity output

type of downstream boundary condition

if kbcd=1 - constant elevation
if kbcd=4 - constant flow

no. of components

phase, amplitude, period (h)

phase, amplitude, period (h), reference
amplitude, offset, shape factor

type of upstream boundary condition
if kbcu=1 - constant elevation

if kbcu=4 - constant flow

no. of components

phase, amplitude, period (h)

phase, amplitude, period (h), reference
amplitude, offset, shape factor

flag for integral, nts skip for printing
flag for tsunamis

file with tsunami conditions

initial t. step for tsunami release, no. of t.steps
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Table B.4. Structure of initial conditions data file.

variable name variable type meaning
[j=L.inft]
a(i), u(@i) {i=1,nnd] 2real elevation, velocity

Table B.S. Structure of tsunami data file.

variable name variable type meaning
xnode(i), znode(i) [i=1,nnd] 2real distance from the origin, depth

Table B.6. Structure of general output file - caseNxnn.res.

variable name variable type meaning
[=T.nti,,ntip] (T - time step after tpinit)
“&”,t alpha, real time at time step j
[i=1,nnd,nnod]
xnode(i),a(i),u(i) 3real x coordinate, elevation, velocity at time step j

Table B.7. Structure of time series output file - caseNxnn.cpA (4=e,f,v).

variable name variable type meaning
(j=1.nts0A]
t, a(i), u(@) [i=1,nmcpoA] {(nmcpoA+1)real time, elevation, velocity at time step j

B.2. How to run the model

The command to run the model is:

rital scheme caseN nn [-e] [-v] [skip]

Variables scheme, caseN and nn have the meaning explained above; they identify
the numerical strategy, the case and the specific run, respectively. The flags -e and -v and
the parameter skip are to be used when the model runs from the visualization program
ACE;. The flag -e specifies the display of elevations and the flag -v the display of veloci-
ties. The parameter skip sets the number of time steps between two consecutive displays.

The command to use ACE; is simply:

acel [-p parameter file]

RITA, can then be run by using the pop-up RITA |, from the pull-down menu Mod-
els.
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