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ABSTRACT 

We formulate, implement, and illustratively apply a model specifically designed to assist 

graduate-level education and exploratory research on the hydrodynamics and numerics of 

shallow water circulation. RITAl a v e r  and zdal  Analysis, 1-D version) uses a flexible 

finite element wave equation formulation to solve for the onedimensional shallow water 

equations. The model allows great flexibility in the choice (a) of the time-discretization 

scheme, including the ability to handle each physical process differently, and (b) of strate- 

gies for the treatment of non-linear terms. 

The reference treatment of non-linear terms involves a generic "a-method" in time 

and a Galerkin finite element method in space. Alternative treatments of non-linear terms 

include (a) a novel time extrapolation scheme applicable to all or to individual non-linear 

terms, (b) the element-average of advective acceleration, (c) the use of N+2 upwind 

weighting functions for the advective acceleration, and (d) an Eulerian-Lagrangian form 

of the governing equations. RITAl was tested through extensive numerical experiments, 

in the context of linear and non-linear tidal propagation, Burgers' equation, and reservoir 

dynamics. 

Selected applications illustrate the potential of the model for exploratory research 

and education. In particular, we analyze (a) the generation of shallow water tides, (b) the 

effect on numerical accuracy of the generalized wave equation factor, and (c) the perfor- 

mance of different numerical strategies for the treatment of non-linear terms. 



EXTENDED SUMMARY 

The numerical modeling of shallow water circulation has progressed very significantly 

over the past half-century. Indeed, if properly calibrated and validated, leading depth-aver- 

aged models can often claim a satisfactory degree of predictive ability within the require- 

ments of many engineering applications. Also, computational costs per grid node and 

prototype time have decreased drastically, as a consequence of both an explosive evolu- 

tion of hardware and a steady evolution of numerical techniques. 

As in many fast-evolving areas, however, only marginal effort has been dedicated 

to systematic comparative research, advanced education, and practical training. Reflecting 

this trend, circulation models are typically developed rigidly around a preferred numerical 

technique, with the emphasis being placed on computational efficiency rather than on flex- 

ible exploration of alternatives. 

In this thesis we formulate, implement, and illustratively apply a model specifi- 

cally designed to assist graduate-level education and exploratory research on the hydrody- 

namics and numerics of shallow water circulation. This model, RITAl mver  and Tidal 

Analysis, 1-D version), uses a flexible finite element wave equation formulation to solve - 
for the one-dimensional shallow water equations. RITAl is served by a flexible user inter- 

face and by advanced scientific visualization capabilities, both developed in parallel with 

this research. The model is also compatible with a series of transport-transformation mod- 

els that are being developed with similar objectives. 

The flexibility of the formulation of RITAl is particularly important at two levels: 

(a) problem definition and (b) numerical strategy. Flexible problem definition is fairly 

common in modern numerical models, and is clearly essential for an effective use of 

RITA1; a partial measure of the flexibility of RITAl is provided by the range of illustrative 

applications reported in this work and elsewhere, which include linear and non-linear tidal 

propagation, river-reservoir dynamics, and tsunami propagation. 

Within the bounds of a finite element wave equation formulation, RITAl is espe- 

cially flexible in the choice of (a) the time-discretization scheme, including the ability to 

discretize different physical processes differently, and (b) the strategy for the treatment of 
non-linear terms. The emphasis on flexibility for the treatment of non-linear terms is 

rooted on the belief that treatment of these terms still constitutes a weakness in the state- 

of-the-art of circulation modeling, drastically affecting, for instance, our ability to simu- 

late shallow or intermittently flooded regions. 

The reference treatment of non-linear terms in RITAl involves a Galerkin finite 

element method in space and a generic "a-method in time. Alternative treatments of 
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these terms include (a) a novel time extrapolation scheme applicable to all or to individual 

non-linear terms, (b) the average over each element of the advective acceleration, (c) the 

use of N+2 upwind weighting functions for the advective acceleration, and (d) an Eule- 

rian-Lagrangian re-write of the governing equations. 

To test the reliability of RITAl as a numerical code we performed an extensive set 

of numerical experiments, in the context of (a) linearized tidal propagation, (b) Burgers' 

equation, (c) non-linear tidal propagation, and (d) reservoir dynamics. Analytical solutions 

are available only for problems (a) and (b), but unfortunately these problems have little or 

no potential for testing the treatment of non-linear processes. For problem (c) we assume 

the convergence of the reference formulation in RITAl and generate "refined solutions" by 

using that formulation with highly resolved grids in space and time. Error-norms are then 

computed using these "refined solutions". Problem (d) was used to test overall mass pres- 

ervation. Errors are easy to assess for this problem by comparing net influxes against 

changes in water volume. Except for the Eulerian-Lagrangian treatment of the governing 

equations (which will require further investigation), all major model options are consid- 

ered stable, and are expected to perform reliably. 

Selected applications are presented to illustrate the potentialities of RITAl. In par- 

ticular, we (a) analyze the generation of shallow water tides in a way that is consistent 

with classroom use in a graduate-level course on estuarine dynamics; (b) explore the per- 

formance of different numerical strategies for the treatment of non-linear terms, in a way 

that is consistent with comparative or exploratory research; and (c) analyze the effect on 

numerical accuracy of the generalized wave equation factor, in a way that is consistent 

with classroom use in a graduate-level modeling course. In a separate work*, we also 

examine tsunami propagation in sensitivity analysis mode, to identify optimized strategies 

for the applied, two-dimensional modeling of locally-generated tsunamis in the Cascadia 

Subduction Zone. 
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CHAPTER 1 

INTRODUCTION 

1.1. Context 

Rivers, estuaries, lakes and coastal seas support human life in major areas of the globe and 

it was at the margins of these water bodies, and largely at their expense, that many civili- 

zations appeared and flourished. After almost two centuries of generalized over-exploita- 

tion of these natural resources, and of growing needs for water for the most diverse uses, 

virtually every nation now recognizes that the understanding and management of surface 

waters is a crucial issue. Indeed, in the last few decades, serious environmental problems 

have afflicted an increasing number of surface waters all over the world, sometimes to the 

extent of ecological disasters2* 3. 

Most of what happens in surface waters is strongly affected by their hydrodynam- 

ics. For example, the dispersal of pollutants in an estuary, the navigability of a river, the 

stability of a sand beach, the distribution of organisms in a shallow bay, and the viability 

of an off-shore oil platform are all among the innumerous processes and activities which 

are determined by the characteristics of the water circulation. The capability of predicting 

the hydrodynamics of a water body is therefore of unquestionable importance. 

Rivers, estuaries and coastal seas often share an important characteristic: their 

depth is much smaller than their horizontal dimensions. For this reason, circulation in 

these water bodies can often be described by the Shallow Water Equations, frequently 

written in depth-averaged form. 
The numerical modeling of shallow waters has progressed very significantly over 

the past half-century. Leading depth-averaged  model^^‘^, if properly calibrated and vali- 

dated, can claim a satisfactory degree of predictive ability within the requirements of 

many engineering applications. In recent years, computational costs per grid node and per 

prototype unit have decreased drastically, because of an explosive evolution of hardware 

and a steady evolution of numerical techniques. This reduction of computational costs has 

in tum fueled fruitful research and applications in both fully 3-D modeling8-" and in 
12.13 long-term, highly resolved, regional modeling . 



As in many fast-evolving areas, however, only marginal effort has been dedicated 
to systematic comparative researcha, advanced education, and practical training. Reflect- 

ing this trend, circulation models have typically been developed rigidly around a preferred 

numerical technique, with emphasis being placed on computational efficiency rather than 

on the flexible exploration of alternative formulations. Although this approach is effective 

for application-oriented models, we believe that there is a strong need for a circulation 

model designed to educate and to explore, rather than to solve for specific applications. 

The following arguments indicate the pressing need for education and exploratory 

research models: 

Numerical models are widely utilized and they are now commonly available to 
users with limited background and experience with numerical methods. Misuse 
of models in important applications is therefore a clear risk, and one that society 
can not afford when models guide our management of scarce resources. Educa- 
tion-oriented models used in undergraduate and graduate-level courses and in 
professional training courses can improve the competence of model users. 

Pressing issues involving surface water systems increasingly require multi-disci- 
plinary approaches, which bring together people with diverse technical expertise. 
In these multi-disciplinary settings, it is often difficult to establish common ter- 
minology and perception of concepts. Education-oriented models, for circulation 
and a variety of other processes, can help build the much needed common termi- 
nology and perception of concepts. 

Numerical modeling has been an extremely prolific area of research. A variety of 
techniques have been developed, and even those that "don't work" often provide 
useful insight (or just breadth of knowledge) to advanced modelers and numeri- 
cal analysts. However, because they have limited practical application, the least 
used techniques are not readily available in coded form, and are often partially or 
completely "lost" to the process of educating new generations. An education-ori- 
ented model is ideally suited to incorporate such techniques, as a part of a broad 
range of alternative techniques. 

Since most of the numerical models are rigidly developed around a fixed numer- 
ical scheme, and their I/O structures are often mutually incompatible, systematic 
comparison of numerical modeling methods is rarely performed. Models that 
allow the flexible choice of the numerical scheme from a broad selection of alter- 
natives, are particularly well suited for such comparison. 

Sensitivity analysis and exploratory research are very important for the design of 
modeling strategies for particular problems. Preliminary testing of simplified 
problems can be extremely useful for that purpose. However, the rigidity and 

a The lidal How   or urn'^ was a notable exception. 



computational cost of most models discourage such practice. Easy-to-use 
research-oriented models are particularly useful for sensitivity analysis, and can 
thus improve the quality of problem-solving modeling. 

The development on advanced education, and practical training areas can be 

achieved by the creation of flexible computational structures, including a range of optional 

numerical schemes and supported by comprehensive, easy to use, visualization tools and 

user interfaces. 

1.2. Scope and objectives 

The primary objective of this thesis is to develop, validate, and illustratively apply an edu- 

cation and exploratory research model for circulation in shallow waters. The main target 

applications for the model are: 

Advanced (graduate-level) education in either the modeling/numerics or the 
hydrodynamics of shallow waters. The model should be a tool (a) for teachers, 
who will use it to illustrate concepts in the classroom; and (b) for students, who 
will consolidate their knowledge through actual experimentation and explora- 
tion. 

Comparative research in circulation modeling. In particular, the model should 
allow detailed comparison, complementary to formal analysis, of a range of 
approaches to the treatment of non-linear processes. 

Exploratory circulation modeling. In particular, the model should allow one- 
dimensional sensitivity studies to help design modeling strategies for higher 
dimension detailed studies. 

Both the numerical scheme and the hydrodynamic problem should be easily defin- 

able, by means of a user-friendly interface. Up-to-date visualization techniques, including 

animation, should be used to display the results. To satisfy these goals we developed 

RITAl m v e r  and Tidal Analysis, 1-D version), based on a flexible implementation of a 

finite element wave equation formulation. RITAl was built as a part of ACEl 15, 16, , 
evolving computational structure composed of: 

Selected flow and transport-transformation models1', most of which are in 
design or under development, and all of which are oriented towards education 
and exploratory research. 

A coherent user interface framework, that controls grid generation, model selec- 
tion and execution, definition of input parameters, and scientific visualization. 
New model-specific menus are added as those models become available, a task 
that for RITAl was accomplished in parallel with but outside this research. 

A flexible scientific visualization platform designed generically enough to serve 
all target models. 



In general, components of ACEl have a close correspondence with higher-dimen- 

sion components of ITACA mtegrated Tools for the Analysis of Coasts and Land-Mar- 

gins18), a computational modular structun designed to support inter-disciplinary research 

on coastal watersheds13. In the case of RITAl, correspondence is with ADCIRC'. 19, a 

new two-dimensional, depth-averaged tidal and storm surge model developed jointly at 

University of Notre Dame and at University of North Carolina. 

1.3. Organization and contents 

This thesis comprises five chapters and two appendices. Chapter 1 puts the need for an 

education-oriented circulation model such as RITAl in context, identifies the scope and 

objectives of the reported research, and describes the organization of the text. 

Chapter 2 describes the formulation of RITAl in detail. The model uses a flexible 

finite element wave equation formulation to solve for the one-dimensional shallow water 

equations. For linear processes our reference formulation uses a generic "a-method" in 

time, and a Galerkin finite element method with linear shape functions in space; non-linear 

processes are treated similarly, but the "a-method" is required to lead to explicit represen- 

tations. Alternatively, RITAl can treat non-linear processes by using (a) a novel time 

extrapolation scheme applicable to all or to individual non-linear terms, (b) an element- 

averaged representation for the advective acceleration, (c) N+2 upwind weighting func- 

tions for the advective acceleration, and (d) an Eulerian-Lagrangian re-write of the gov- 

erning equations. 

Chapter 3 describes the validation of RITAl. We report an extensive set of numeri- 

cal experiments, in the context of (a) linearized tidal propagation, (b) Burger's equation, 

(c) non-linear tidal propagation, and (d) reservoir dynamics. Analytical solutions are 

available only for problems (a) and (b), but unfortunately these problems have little or no 

potential for testing the treatment of non-linear processes in RITA1. For problem (c) we 

developed "refined" solutions (against which to measure the error) by using the reference 

formulation in RITAl with over-refined grids in space and time. Problem (d) was used 

exclusively to test overall mass preservation, and errors can therefore be assessed compar- 

ing net influxes against changes in water volume. Except for the Eulerian-Lagrangian 

treatment of the governing equations (which will require further investigation), all major 

model options are considered validated, and are expected to perform reliably. 

The use of the model for graduate-level teachingleducation and for exploratory 

research is illustrated in Chapter 4. Selected applications are presented to illustrate the 

potential uses of the model. In particular, we (a) analyze the effect on numerical accuracy 



of the generalized wave equation factor, in a way that is consistent with classroom use in a 

graduate-level modeling course; (b) explore the performance of different numerical strate- 

gies for the treatment of non-linear terms, in a way that is consistent with comparative or 

exploratory research; and (c) analyze the generation of shallow water tides in a way that is 

consistent with classroom use in a graduate-level course on estuarine dynamics. 

Conclusions and recommendations are presented in Chapter 5. RITAl represents a 

useful step towards an integrated set of tools for education and exploratory research on 

advanced numerics, surface water dynamics, and environmental analysis and modeling. 

The anticipated use of RITAl and companion tools (ACE1 and ELAl) in selected courses 

at OGI and other universities should provide the necessary feedback for further develop- 

ments. 

Appendix A describes the analytical solutions used in Chapter 3. Appendix B con- 

tains a brief users' manual for RITA1. Like the code itself, this manual is expected to 

evolve in time. In particular, the users' manual will have to be extended to include the 

RITA 1 options of the user interface of ACE 1. 



CHAPTER 2 

FORMULATION 

RITAl uses a flexible finite element wave equation formulation to solve the one-dimen- 

sional shallow water equations. This chapter describes the model formulation. Section 2.1 

briefly reviews the adopted form of the primitive shallow water equations, and describes 

and motivates the transformation of these equations into "wave equation" and "general- 
ized wave equation" forms, following ~ ~ n c h ~ ' ,  ~ i n n m a r k ~ l - ~ ~ ,  and others 7-24-28. section 

2.2 presents a detailed description of the formulation that we adopted as reference. Finally, 

Section 2.3 describes selected alternative treatments of the non-linear terms of the govern- 

ing equations. 

2.1. Background 

2.1.1. One-Dimensional Shallow Water Equations 
We consider the one-dimensional primitive shallow water equations, written as: 

continuity: 

conservation of momentum: 

where (Fig. 1): 
u - velocity [ms-'1 

r\ - water elevation relative to a reference level [m] 

g - acceleration of gravity [ m ~ . ~ ]  
r - friction parameter [s"] 
u - viscosity [m2s-'1 

H r h + q - total water depth [m] 

h - water depth relative to a reference level [m] 



The friction coefficient is defined as: 

with: 
R = P/A - hydraulic radius [m] 

P - wetted perimeter [m] 

A - cross-sectional area [m2] 

n - Manning coefficient [sm-ID] 

Equations [2.1] and [2.2] may be perceived as describing either (a) a laterally uni- 

form depth-averaged flow (in which case R is approximated by H), or (b) a cross-section 

averaged flow in a constant-width channel, depending on the meaning assigned to the vis- 

cosity and friction coefficients. While either type of flow is over-simplified for most prac- 

tical situations, these equations support the educational and exploratory research role for 

which RITAl was designed. 

2.1.2. Wave Equation Formulations 
The use of a wave equation formulation to numerically solve for the shallow water equa- 

tions was first introduced by ~ ~ n c h ~ ' .  The concept is reviewed below, for the l-D shallow 

water equations. 

Recognizing that Galerkin finite element methods lead to wiggly (i.e., with para- 

sitic spatial oscillations) solutions to this problem, Lynch resorted to a classical transfor- 

mation to convert the continuity into a wave-like equation (the Continuity Wave 

Equation): 

a~ a~~ a a 2  a a3 a W e -  -- +zL = ---Huu-g-H-+u-Hu+r- = 0 [2.4] 
a t  ax at2 ax2 ax ax ax3  a t  

where 

represents the conservative form of the momentum equation. 
Formal examination of amplification and propagation errors of the same Galerkin 

finite element methods, when Equation [2.4] is used instead of Equation [2.1] revealed 

that short wavelengths responsible for wiggles were damped2'. These studies were per- 

formed on the linearized 1-D equations; however numerical experimentation have con- 

h e d  that smooth solutions can be obtained in higher dimensions and for both linear and 

non-linear problems. 



 innm mark*^--^^ extended the work of Lynch by introducing the Generalized Conti- 
nuity Wave Equation formulation. In this formulation, as in Lynch's, a wave-like equation 

replaces the continuity equation. However, the new operator is now written as: 

leading to: 

G is an arbitrary numerical parameter with the same units as the friction factor .r (s-I). 

In the Continuity Wave Equation, the presence of r as a coefficient of the first time 

derivative of q makes the mass matrix corresponding to that equation time-dependent and 

computationally expensive to solve in an implicit or semi-implicit way. The main advan- 

tage of the generalized formulation is that, for a constant G=r, the mass matrix becomes 

time-independent, allowing an implicit treatment without significant increase in computa- 

tional cost, This approach retains the ability to eliminate spurious node-to-node oscilla- 

tions. 

Several authors 243 27*32 have formally investigated the wave equation formulations 

or have tested these formulations in the context of realistic multi-dimensional shallow 

water problems involving non-linear processes. Results consistently support the findings 

of Lynch and of Kinnmark, and suggest that generalized wave equation finite element 

methods favorably compare with corresponding primitive equation methods. 

One of the remaining questions on the use of the generalized wave equation finite 

element is the choice of the parameter G. Formal studiesZZ suggest that for optimal accu- 

racy and stability G should be similar in magnitude to the friction factor z. This is partially 

confirmed by our experimental analysis (Section 4.1.1). In the limit of large values of G, 

the wave and generalized wave equation formulations approach the behavior of the corre- 

sponding primitive equation formulation; hence, spurious node-to-node oscillations 

should be expected. In the limit of small values of G is too small, mass conservation prob- 

lems may occur because the system of equations lacks the ability to damp out errors in the 

continuity equationp. 

From here on we refer the Generalized Continuity Wave Equation simply as wave 
equation. 



2.2. Reference Formulation 

The finite element method is used. It is based on a weighted residuals method in which the 

residuals, weighted by arbitrary weighting functions are minimized over the domain. 

The dependent variables are approximated, at an elemental level, by combinations 

of a set of predetermined basis functions: 

where 

qj - values of elevation at the nodes [m] 

ui - values of velocity at the nodes [ms-'1 

N - number of nodes in the domain 

0; - finite element basis functions 

r - local space-coordinate 
In its present version, RITAl is limited to linear shape functions, defined locally 

as: 

However, quadratic basis functions could easily be incorporated in the model. 

The bathymetry is defined functionally as: 

where hi is the depth at the node i. Other coefficients in the governing equations (u, z if 

the equations are linear, and n if the equations are non-linear) are treated as constants. 

Once the residuals are defined, for both the wave and the momentum equations the 

Galerkin method is used, hence the weighting functions are the same as the basis func- 

tions. This approach leads to two systems of N equations, one corresponding to the 

GCWE, and the other to the momentum equation, solved for the velocities at the nodes. In 

each time step, the system for the GCWE is solved first. The results are then used for the 

solution of the momentum equation. 

2.2.1. The Generalized Continuity Wave Equation 
We write the weighted residual statement as: 



where the residual, E, is: 

All the terms involving space derivatives are integrated by parts, as follows: 

leading to a general reduction of the order of the space derivatives at the expense of an 

additional boundary condition. 

We note that linear shape functions do not allow the actual treatment of the viscos- 

ity term in the wave equation. Indeed, even using integration by parts, second-order deriv- 

atives will be involved. Viscosity then appears only in the momentum equation, which 

constitutes a limitation of our formulation. 

Time derivatives are approximated by finite differences using up to three time lev- 

els. For the second derivative in time only one scheme is con~is ten t~~;  for all the others 

terms a general a-method is used. Since the wave equation is solved before the momen- 

tum equation, all the linear terms in the wave equation involving velocity and all the non- 

linear terns must be treated explicitly. The time discretization scheme is specified for each 

term by the parameters w[ with I' identifies the term of the equation and i the time step. 

All the integrals are computed using 3-point Gauss quadrature. 

Developing each term on an elemental basis we have: 

Second-order time derivative: 
The spatial discretization is: 

where: 



and Ax, is the length of the element. 

First-order time derivative: 
The G factor is assumed to be constant in space and time. Hence: 

where: 

Gravity: 
The gravity term in the wave equation has two components, which result from separating 

the depth h and the finite amplitude q. The first component is linear; the space discretiza- 

tion is given by: 

and the time discretization potentially includes values at three time levels: 

The second component is non-linear and the mass matrix must be treated explicitly 

in order to preserve time independency. Then: 

and the time discretization only considers the values at time n and n- 1: 

Advection: 
As in the gravity term, the advection term includes a finite amplitude component. Since 

one of the objectives of RITAl is to allow a independent treatment of each term, an 

explicit treatment is required. For the component which does not depend on the finite 

amplitude we have: 



with: 

The finite amplitude effect is treated as: 

3% a 2 a @ k  aLl 
xquudx = - ( 2qua;dr+Jx r uu-dr a r  [2.25] 

e *xe e e 

a n n n  n - 1  n - 1  n - 1  - ~ U U ~ w s ~ q u u  ax lax +w;& ax ll LI 

Friction: 
Four friction terms are considered: 

a term on z and h: 

zhu = wtznhun + w;zn-'hc- ' 
a term on G and h: 

a @ k  2 2 Ghudx - G x x hiuj - 9-@.dr 
a r  J 

k = 1,2 
e i = l j = l  -1 

7 n  7 n - 1  hu-  wlhu +w2hu 

a term on z and q: 

8 n - 1  n - 1  n - 1  z q u = w ~ ~ " q n u n + W 2 ~  q U 

a term on G andq: 



Friction can be linearized and considered constant throughout the domain and in 

time. In this case Equations [2.27], [2.29], [2.31] and r2.331 reduce to: 

2 a$k 
(G - r) hudx = (G - .r) x x hiuj I li$,dr k = 1,2 ax 

e i =  l j = 1  -1 

23.2. The Momentum Equation 
The residual is now: 

and the weighted residual statement over the domain reads: 

The viscosity term is integrated by parts to balance the order of the derivatives: 

Each term is treated in time using a maximum of two time steps. The time discret- 
I- ization scheme is specified for each term by the parameters mi with r specifying the tem 

of the equation and i the time step; the choice between implicit and explicit treatment of 

each term is done considering that the time independence of the mass matrix must be pre- 

served. At an elemental basis, we have for each term: 

Local acceleration: 
1 

Axe aU Axe a 2 1  au ~ ~ k z d x - - ~ $ - d r = - - ~ u i ~ $ k $ i d r  k = 1 , 2  
e 

2 kat 2 at. - 1 1 = 1  - 1  

with: 

Advection: 



with: 

Gravity: 

with: 

Friction: 

with: 

ZU = Znun 

For linear friction this term is linear and can be re-written as: 

with: 

zu = mirun + ' + m?.run 

Viscosity: 

+ + a+, a a Hudx - (Hiqj + qiHj) 1 $;+.- dr) k = 1,2 [2.50] u k ~ ~  e - 1 lar 

with: 



2.2.3. Boundary Conditions 
The domain the value of either the elevation or the velocity must be specified at each 

boundary. The values specified can be the same at the two boundaries (e.g. two elevations 

or two velocities) or they can be different (i.e. the velocity at one boundary and the eleva- 

tion at the other). 

The elevations prescribed in the boundaries are strictIy obeyed by the solution of 

the wave equation; the same happens to the values of velocity in the momentum equation. 

Those are essential boundary conditions. If an elevation (or velocity) is prescribed for a 

certain boundary, that boundary is solved as a natural boundary condition in the momen- 

tum equation (or in the wave equation, when velocity is prescribed); a boundary term 

comes "naturally" from the integration by parts (Equations [2.14] and [2.39]). 

The surface integral from Equation [2.14] is treated as proposed by ~ ~ n c h ~ ' ,  sub- 

stituting in the conservative momentum equation (Equation [2.5]): 

Since this only applies when flow (Q=B*Hu, where B is the width) is prescribed, one has: 

where At is the time step. 

The boundary term from Equation [2.39] is treated as: 

A transmissive boundaryU can also be prescribed in RITAI: it works as an eleva- 

tion specified boundary, but the value prescribed is computed based on the assumption that 

the wave travels without change of fom across the boundary. In that case we have: 

For the downstream (left side) boundary we have: 

which can be approximated by: 



leading to: 

where fi denotes the average depth at the boundary element. Similarly, for the upstream 

boundary we have: 

2.2.4. Initial Conditions 
Initial conditions should be prescribed as values for elevation and velocity at all nodes at 

time zero. Since the time discretization for the wave equation uses three time levels, addi- 

tional information should also be provided at the time immediately preceding time zero. In 

short, elevation and velocities must be prescribed for all nodes at two consecutive time 

steps. The values can be assumed constant, in space and time ("cold start"), or be derived 

from the results of a previous run of the model or from an analytical solution, if available. 

2.3. Alternative Schemes 

23.1. Extrapolation in Time 
The reference formulation of RITAl deals with all non-linear terms explicitly, to allow (a) 

the decoupling of the wave equation from the momentum equation and (b) the time-inde- 

pendence of the mass matrices of the algebraic systems associated to both equations. 

However, both these objectives can be achieved by introducing a pseudo-implicit treat- 

ment of the non-linear terms. The approach is novel, has inherent potential, and should be 

applicable to all non-linear terms. It consists in "estimating" the elevations and velocities 

at time n+l by linear extrapolation from times n and n-1, i.e. 

- n + l  = 2qn- . ,n-1  ., [2.61] 

i n +  1 = 2un-un-1 [2.62] 

and using the resulting values and their derivatives to estimate the non-linear terms at n+l. 

Using this technique we can have for the time discretization of the non-linear 

terms in the wave equation: 



Gravity: 

Advection: 

Friction: 
- n +  1 - n + l  A non-linear friction coefficient r can be estimated using q and 3"' ' . 

6 - n + l  - n + l  rhu = wOr hu + wfrnhun + w!.rn- lhun- ' [2.66] 

9 - n + l - n + l  9 n n 9 n - 1  n - 1  q u  = w0q u + w l q  u + w2q u [2.69] 

and in the momentum equation: 

Advection: 

au ,-,+I & n +  1 
u- r: 1 n a  n ax m ~ "  x + m  u-u ax 

Non-linear friction: 

3 - n + l - n + l  3 n n r u=mor  u + m l z u  

Viscosity: 

23.2. The Use of 'Vpwind" Weighting Functions 
Upwinding has been often used36-40, although with mixed success, in the solution of both 

the transport and the shallow-water equations. The concept is simple: when dealing with 

advection, most weight should be given to the information that is upstream (rather than 

downstream) of the node of interest. 

To accomplish such an objective the standard Galerkin scheme must be modified 

to permit the use of non-symmetric weighting functions. As the direction from which the 



fluid is approaching a node can vary, those weighting functions must be redefined when 

the flow changes direction. 
This approach has been traditionally applied by using weighting functions which 

are modified by polynomials one order higher than the basis functions C6n+l upwind'd6). 

 esteri ink^^ introduced the use of weighting functions which are modified generically by 

polynomials two orders higher than the basis functions ("n+2 upwind"). The method was 

used for the finite element solution of the time dependent transport equation and it was 

showed that the "n+2 upwind" results in a much improved solution compared to both the 

standard and the "n+l upwind" solutions. 

As an alternative to the reference formulation of RITAI, we extend to the shallow 

water equations the "n+2 upwind". It is only applied to the advective term on the momen- 

tum equation, since the second derivative in space that appears in the advective term of the 

wave equation reduces the convective character of the term, and the use of upwinding 

results less interesting. 

The modified weighting functions are defined as: 

(Pi ('1 = $i ('1 + Fi ('1 

where F (r) is a cubic correction function generically defined as: 

Forcing: 

we get: 

- ( a +  pr) (rL- 1) downstream - node 
Fi (r) = 

( a  + pr) (r2 - 1) upstream - node 

the coefficients a and p are generic, and determine the "degree" of upwinding. If P = 0 
we revert to a more common "n+l upwind", and if a = P = 0 we revert to the centered 

Galerkin that constitutes the reference in RITA1. 

On an elemental level, the advective term in the momentum equation (Equation 

[2.42]) becomes: 



We should note that this technique constitutes an alteration from the reference 

Galerkin method. Indeed the last two terms in Equation [2.77] represent respectively the 

reference Galerkin method and a correction term. 

23.3. Element-based Technique 
In the reference formulation, all non-linear terms vary over each element consistently with 

the linear variation of velocities and elevations over the same element; in particular, the 

advective term in the momentum equation, uaulax, varies linearly over each element 

(since u is linear and &/ax is constant) while in the wave equation the corresponding 

term (aHuu/dx)varies quadratically. 

Luettich et al? suggest that better-behaved (smoother and more stable) numerical 

solutions may be obtained if the advective term is averaged over the element, in both the 

momentum and the wave equations. This approach, which Luettich et a17 recommend only 

for the advective term, leads to a formulation that differs from the reference one by substi- 

tuting Equations [2.23] and [2.25] by: 

2 8% au 2 au 3% --  u d r  = - ( u - )  - dr k = 1 , 2  
AX, ear AX, d r e a r  e 

and Equation [2.42] by: 

where <Y>, represents the average of Y over the element. 

2.3.4. An Eulerian-Lagrangian Method 
The flow process has wave-like properties consistent with the hyperbolic nature of the 

governing equations. The method of characteristics (MOC) is a natural method of solu- 

tion. This method, being purely lagrangian, brings some practical difficulties in keeping 

track of the computational grid points and the interpretation of results become somewhat 

difficult4'. 

The problems associated to the lagrangian nature of the MOC can be solved by 

formulating the MOC over a fixed computational grid. The total derivatives of the depen- 

dent variables are obtained by using the MOC (lagrangian process); at each time step the 

values of the variables are stored on a fix space-time network (eulerian process). This class 

of methods are known as Eulerian-Lagrangian methods (ELM) and have been effectively 



used to solve both the transport42 and the shallow water equations43. They have never 

been used, though, in the context of a wave equation model. 

RITAl was used to test and explore an ELM scheme for the momentum equation. 

The order of solution of the equations is the same as in the reference formulation. 

A total derivative of the velocity is defined: 

hence: 

Now, the total derivative can be approximated as: 

where the superscript 6 denotes the foot (at time n) of a characteristic line that follows 

the flow. The generalized wave equation remains unaffected 

To solve the modified momentum equation we use a standard Galerkin method. 

The location of the foot of the characteristic lines is computed iteratively with a second 

order Runge-Kutta method, as the position of the characteristic lines is a function of the 

dependent variable of interest. For the Runge-Kutta tracking, the time step is divided into 

four sub-steps, and the tracking is performed sequentially over them (Fig. 2). Term by 

term we have: 

Total derivative: 

1 
Axe DU Axe D 

2 1 

~ $ ~ g d X z  1 $kEdr = -- 
e 

2 ~ t .  C ui J 9k9idr 
-1 1 = 1  -1 

* Gravity: 



Friction: 
Non-linear: 

Linear: 

3 5 TU - m;.run + ' + ml.ru 

Viscosity: 

We should note that once the ELM is used to solve the momentum equation, the 

time extrapolation scheme presented in Section 2.3.1 cannot be used. In the context of 

ELMS, a time extrapolation method for the friction or viscosity terns only makes sense if 

performed along the characteristic lines. This feature should be incorporated in future ver- 

sions of RITA1. 



CHAPTER 3 

VALIDATION 

In this chapter we describe the validation of FUTA1. Our objective is to demonstrate that 

the main options of the model are working properly, providing reliable solutions to com- 

mon problems. For that purpose, we present a L2 error-norm analysis in which the results 

of RITAl are compared against either analytical solutions (Sections 3.1.1 and 3.1.2) or 

numerical solutions obtained using a highly resolved grid in time and spatial (Section 

3.1.3). We also describe a simple test of mass conservation (Section 3.2). A more detailed 

study of the behavior of selected numerical schemes and comparisons among alternative 

methods can be found in Chapter 4. 

3.1. Lz error-norm analysis 

An error analysis of RITAl is done by comparing solutions obtained for several test cases, 

using different numerical schemes, with: 

1. analytical solutions - this is done for the linear shallow water equations and for 

the Burgers' equation; 

2. "refined" solutions - assuming the consistency and convergence of the basic for- 

mulation(~) of the model, we expect to increase accuracy as we increase both the 

spatial and temporal discretization. Thus, the use of an highly resolved computa- 

tional grid should lead to a solution very close to the exact solution. That solution 

is then used as a reference for the error studies. 

The numerical schemes tested are: 

1. the reference formulation (RF) for the linear case; 

2. RF and time extrapolation (TE) for the finite amplitude and non-linear friction; 

3. RF, TE, element-based (EB) and upwind (UPW) for advection, advection and 

viscosity and fully non-linear equations (all terms but viscosity). 

3.1.1. Linear tidal propagation 
The linear forms of Equations [2.7] and [2.2] are: 



Analytical solutions for the linear propagation of a tidal wave (Equations [3.1] and 

[3.2]) in a closed-end channel were derived by Lynch and ~ r a ~ " l  and are reviewed in 

Appendix A. 

We will consider a M16 tidal wave with an amplitude of 1.5 m, propagating in a 

shallow embayment 80 km long and with an inclined bottom. The slope is linear with 

depths changing from 15 m at the mouth to 5 m at the closed end. The "average" celerity 

of the waves in the channel is approximately 10 mi1. Because the M16 tidal wave has a 

period of 1.55 hours the resulting "average" wavelength is 55.8 krn. 

A sensitivity analysis of the accuracy of the reference linear model to both the 

space and time discretization was performed. The sensitivity to Ax was tested with Ax of 

50, 100,500,2500 and 10000 m, and At=4.8 s. The sensitivity to At was tested with At of 

4.8,9.6,48.0,240.0 and 960.0 s, using Ax=500 m. 

The simulations were carried for 9.3 h (six M16 periods) starting from analytically 

computed initial conditions. Since the analytical solution only equals the numerical solu- 

tion in the limit as Ax, At -> 0 the simulations may need some time to reach a steady state; 

however in this study the numerical solutions were assumed to reach steady state instanta- 

neously (i.e., no warm-up time is allowed). The relevant parameters of the reference 

numerical method are shown in Table 1. A linear friction coefficient was used (~=0.00025 

s-I). 

An error norm was defined as: 

with: 

T - number of time steps 

N - number of nodes 

nr - numerical value of the variable at time step k and node i 

af -analytical value of the variable at time step k and node i 

Error norms were computed for both elevation and velocity. Results are shown in 

Figs. 3-5, where the error-norms are mapped respectively as a function of Ax, At and aver- 



age Courant number (Cu). The average Cu (Cu=c*At/Ax, c being the celerity) is defined 

based on the celerity for to the average depth in the domain. 

For a constant At, Cu decreases with the increasing Ax used in the sensitivity stud- 

ies. This inverse dependence of Cu on Ax explains the form of the curves shown in Fig. 3: 

for small values of Ax (corresponding to large Courant numbers) the method is insensitive 

to Ax, or may even show a decrease in the error norm with an increase in Ax. This is 

because the value of Cu decreases and has an effect on accuracy that compensates the 

effect we expect from an increase on Ax. As Ax increases Cu becomes small and has a 
smaller effect on accuracy, in comparison with what happens when Cu has greater values. 

For constant Ax (Figures 4 and 5), the error decreases with the decrease of At (or 

Cu), showing the expected convergence of the method. The absolute values of the error 

indicate very good accuracy for values of Cu less than one. 

3.1.2. Burgers' equation 
Burgers' equation has the form: 

and will be solved in a dimensionless flat domain, with XE [0,1]. 

The analytical solution45 (Appendix A) will be compared with numerical results 

obtained with four alternative numerical methods for the treatment of advection. Since the 

elevation does not appear in Burgers' equation, this experiment can only provide informa- 

tion about the solution of the momentum equation. Also, only the advective and viscous 

terms were tested. 

Four numerical simulations were run on a regular grid with Ax4.02. Each simula- 

tions corresponded to a different numerical method (Table 2). The physical parameters 

(see Appendix A) were c 4 . 6  s-l, a a . 4 ,  @0.125 and 1.14.003 s-'. To have a small Cou- 

rant number (Cu=0.03), At was set to 0.001 s. The corresponding Peclet number 

(~e=CuAx~/v~ t )  is 2.0. 
The simulations were carried out for 1.5 s and the error norms were computed as 

defined by Equation [3.3]. The velocity profiles in the domain, given by the analytical 

solution and the four numerical schemes, for t=l s, are presented in Fig. 6. The error 

norms are presented in Table 3; the characteristic errors are smaller than 0.01 s-I. Since the 

characteristic velocity can be assumed to be of the order of the 0.6 s", all methods show 

acceptable accuracy for the low Cu adopted. 



3.1.3. Non-linear tidal propagation 
Assuming that the numerical formulation of the model is convergent, numerical solutions 

using a highly resolved grid (in space and time) are quasi-exact, and can be used to evalu- 

ate L2-error norms for simulations based on coarser grids. 

"Refined solutions" were obtained for each non-linear term (finite amplitude, fric- 

tion, advection) individually, and also to the case in which all the non-linear terms are 

present simultaneously. The selected test case was chosen to be a M2 tidal wave propagat- 

ing in the same shallow channel as in Section 3.1.1. For the reference RITAl formulation 

the model was run using a grid with Ax=100m and At=ls. This discretization corresponds 

to a very low "average" Courant number (Cu4.  1) and a very large dimensionless wave- 

length (L/Ax=4410). The initial conditions for the refined runs, as well as for all other runs 

in this section were obtained from the linear analytical solution used in Section 3.1.1. All 

runs were carried out for 49.6 h (four M2 cycles), with a warm-up time of 37.2 h (three M2 
cycles). The time series of elevations and velocities obtained from the refined run with all 

three non-linear terms, at a station in the middle of the channel (Fig. 7) shows that a 

"dynamic steady state" is quickly established. 

Parameter G was set to 0.00025 h1 for all runs. This value of G is either equal to 

the linear fiiction coefficient (Sections 3.1.3.1 and 3.1.3.3) or represents a characteristic 

non-linear friction coefficient (Sections 3.1.3.2 and 3.1.3.4). In the wave equation, the val- 

ues of the time discretization parameters for the &st time derivative term and for the linear 

gravity term remained constants for all runs (wA=1.0, w: =-1.0, W;=O.O; and wi4.35, 

wt4.3,  w:=0.35). In the momentum equation, the time-discretization of the gravity term 

was also always constant (mi4.5, mta.5).  

To obtain all the refmed solutions the reference formulation (RF) was used. The 

numerical parameters are given in Tables 4-7, together with the parameters for the alterna- 

tive methods used in the runs with coarser grids. The numerical solutions presented in this 

section (excluding the refined solutions) were obtained using a uniform grid with 

Ax=2500 m. For the M2 tidal wave, this leads to an "average" dimensionless wavelength 

UAx of 177. Each method considered was used over a range of "average" Cu (Table 8.) 
The error-norm defined by Equation [3.3] was computed for each simulation and plotted 

versus the Cu. 

3.1.3.1. Finite amplitude 

To isolate the finite amplitude from other non-linear effects we solve for: 



Only the RF and the TE methods are of interest for this case; relevant parameters are given 

in Table 4. The linear friction coefficient was set to z=0.00025 s-l. 

The time series of the errors in elevation and velocity at a mid-channel station, are 

presented in Figs. 9-12, for values of Cu of respectively 0.12,0.96,2.4 and 9.6. In Fig. 8 
the error-norms are plotted vs. Cu. The RF and TE methods show a very similar behav- 

ior for low Cu. However, the RF method is stable for Cu as large as 9.6, while the TE 

method becomes unstable at Courant numbers above 2.4. Both methods have a maximum 

absolute error in elevation and velocity, of approximately 3 mm and 3 mms-', respectively, 

for Cu=0.12 (this correspond to average errors of approximately 0.3%); the errors can be 

as large as 75 mms-' in velocity and 50 mm in elevation for Cu=2.4. Even though the RF 

method is still stable for Cu=9.6, the errors can be as large as 30% in both elevation and 

velocity. 

The error sensitivity to the value of Cu was expected, and the good agreement 

between the coarser and the refined solutions for small values of Cu suggests the validity 

of the implementation of both the RF and the TE methods, for Equations [3.5] and [3.6]. 

3.1.3.2. Friction 

Sensitivity studies to alternative treatments (RF and TE methods) of the non-linear friction 

term require the solution of: 

Only the RF and the TE methods are of interest for this case. The relevant parameters are 

given in Table 5; friction is described by a Manning coefficient 114.025 sm*lD. 

The b-error norms are plotted vs. Cu (Fig. 13). Results indicate that the RF 

method is stable for Cu as large as 9.6 while the TE method becomes unstable at a Cu 

between 4.8 and 9.6. As in the previous section, the errors increase with the value of the 

Cu. The slopes of the log-log plots (Fig. 13) are similar for both methods and are similar to 

those of Fig. 8. This similarity indicates a dependency of the error on Cu. The TE method 

shows a slightly smaller error than the RF method, especially in velocity. Examination of 

the time series of the errors for several values of Cu (Figs. 14-17) shows that the TE 

method smooths the error (see Section 4.1.3. for further discussion). The implementation 

of both methods is correct for the solution of Equations [3.7] and [3.8]. 



3.1.3.3. Advection 

Sensitivity experiments on the advection term utilized he governing equations: 

For this case the methods RF, TE, UPW and EB presented in Chapter 2 are of interest. 

Their numerical parameters are given in Table 6. All the simulations in this section were 

done with a linear friction coefficient of ~=0.00025 s". 

Errors (Fig. 18) are generally small for all methods, but no method is stable for a 

Courant number greater than 1.92 (and even for that value of Cu the results show already 

signs of unstable behavior - Fig. 21) All methods seem to give very close results. 

Although Cu appears to be very restrictive to stability, the relatively small error norms 

obtained with all methods for low Cu suggest the validity of the implementation for Equa- 

tions [3.9] and [3.10]. 

3.1.3.4. Fully non-linear case 

The fully non-linear case requires the solution of: 

The relevant numerical parameters for the four methods considered are given in Table 7. 

The TE scheme is only applied to the advective terms. 

The error norms obtained from the simulations are shown in Fig. 22; time-series of 

errors can be seen in Figs. 23-25. The RF, UPW and EB methods become unstable for 

C01.2.; the TE method is already unstable for Cu=1.2. All methods have reasonably 

small errors for small values of Cu, which we take as an indication of proper implementa- 

tion of the solution technique for Equations [3.11] and r3.121. 

3.2. Mass conservation tests 

Mass conservation is a very important feature in numerical hydrodynamic models. The 
main numerical methods included in RITAl were tested for mass conservation by means 

of a simple numerical experiment. 



Our test case was based on the reservoir schematically shown in Fig. 26. Starting 

from initial conditions of zero elevation and zero velocity throughout the domain, the flow 

h m  upstream increases from zero to a constant value of 500 m3s-I in about three hours. 

Downstream, a sinusoidal function controls the flow leaving the domain; the fluctuation 

has a cycle of 6 h, a maximum of 1000 m3s-I and a minimum of zero. The problem was 

simulated for 48 h using the four numerical schemes identified in Table 7. A uniform grid 

with 101 nodes and Ax=500 m was used, the time step was set to 25 s. 
The cumulative volume losses are computed over time and are defined as: 

AV (k) = V: - (v: - Vo) [3.13] 

where V: is the cumulative net volume thmugh the boundaries and V! the volume in the 

domain, both after k time steps, and Vo is the initial volume of the reservoir, i.e.: 

The fluctuation of volume in the reservoir can be seen in Fig. 27 together with the 

volume loss as a function of time for each numerical scheme. The errors are of the order of 

lo"% of the total volume, for all formulations tested. The behavior of the UPW method is 

remarkably different from that of all the other methods: the error exhibits no periodicity 

and has a definitely non-zero (although very small) average over time. 

3.3. Conclusions 

Small error-norms obtained for small Courant numbers in comparisons with analytical 

solutions and finely discretized domains and the excellent mass balances obtained in the 

reservoir problem validate RITAI. The relative importance of the linear and non-linear 

terms for the inclined-bottom channel (Figs. 30 and 31) suggests that friction is the domi- 

nant non-linear process. Thus, the apparent lack of sensitivity of the results to the method 

used, while studying the solution for finite amplitude and advection, may be due mainly to 

the relatively small importance of these terms in the case studied. 



CHAPTER 4 

APPLICATION 

The value of RITAl as a tool for studying both physical processes and numerical methods 

associated with the shallow water equations is illustrated in this chapter. In Section 4.1 we 

use RITAl to explore numerical aspects of particular interest: (a) the sensitivity of the 

method to the parameter G in the wave equation and (b) the comparison of alternative 

treatments of non-linear terms, with emphasis on friction. In Section 4.2 we illustrate the 

use of RITAl as an educational tool through a classroom-oriented study of the generation 

of shallow-water tides. 

4.1. Numerical Studies 

4.1.1. Sensitivity of wave equation solutions to G 
In this section a very simple test is performed to examine the sensitivity of the reference 

formulation to the value of G. Simulations refer to the case described in Section 3.1.3.4, 

using a range of values for G, for a set of average Courant numbers (see section 3.1.1). An 

RF numerical scheme was used with the time discretization specified in Table 7. 

The L2-error norms were computed as in Section 3.1.3.4 and are presented as a 

function of the value of G for several Cu (Fig. 28). In Fig. 29 we show the time series of 

the differences between the results of each simulation and the corresponding refined solu- 

tion, at a mid-channel station. 

The results show, for small average Courant numbers, a sharp increase in accuracy 

as the value of G increases to the characteristic value of the friction coefficient z (com- 

puted from a characteristic velocity and an average depth). For values of G greater than 

the characteristic value of friction the accuracy decreases slowly as G increases. As the 

Courant number increases, the accuracy decreases, for all values of G; however this accu- 

racy decrease seems more accentuated for G greater than the characteristic friction. The 

accuracy on elevation and velocity exhibit different dependence of the optimal G on the 

Courant number. While the velocity accuracy seems to have an optimal G very close to the 

characteristic value of friction and is independent of the value of the Courant number, the 

elevation accuracy shows an optimal G varying with Cu. The optimal G approaches the 

characteristic value of friction, at greater values, as the Courant number increases. 

As a general rule, for Courant numbers greater than 1, an optimal accuracy is 

expected (for both elevation and velocity), when the value of G is close to the value of the 



characteristic friction. However, when dealing with small Courant numbers the optimal G 
can be more than an order of magnitude greater than the characteristic friction. 

4.1.2. The numerical treatment of friction 
One of the more interesting and immediate uses of RITA1 is in the comparative study of 

numerical schemes for the treatment of non-linear terms. In this section we explore the 

time-extrapolation method applied to the non-linear friction term, and compare its accu- 

racy against the lumping technique used by Luettich et al?. These authors use a semi- 

implicit time-discretization scheme centered at n+1/2 for the treatment of friction in the 

momentum equation. The friction coefficient z is computed at time n and used at n+l. Rel- 

ative to the nference formulation of RITAl, Equation [2-491 is approximated by: 

The mass matrix corresponding to the momentum equation becomes time depen- 

dent and the solution requires the factorization of the matrix at each time step. The compu- 

tational effort is reduced by lumping the non-diagonal part of the matrix and treating it 

explicitly. The implicit treatment would likely decrease the error and increase the stability, 

compensating for the loss in accuracy due to lumping. 

To compare the method of Luettich et al. with time-extrapolation methods in 

RITAl we retain as a reference the problem solved in Section 3.1.3. We recall from Figs. 

30 and 31 that friction is clearly the dominant non-linear process in this problem. 

In the previous chapter we observed that the time extrapolation method for non- 

linear friction seems to enhance accuracy relative to the reference method. The same case 

studied in Section 3.1.3.2 was simulated by using different time discretization schemes (or 

different values for 4, the weight for the non-linear friction term at time n+l, in the 

momentum equation), in a time-extrapolation fashion. The L2-error norms are presented 

as function of the Courant number in Fig. 32. A small gain in accuracy is obtained with the 

time extrapolation method. The gain of accuracy in elevation consistently increases with 

the weight given to the value of the non-linear friction terms at time n+l, for all Cu, The 

gain in accuracy of velocity is greater for Cu in the range 0.5-1.2 and the Crank-Nicholson 

scheme performs better than any of the others. The time series of the errors at a station 
localized at mid-channel, and relative to an average Cu of 0.96, can be seen in Fig. 33. 

To compare the results for the time extrapolation method with those for the lump- 

ing technique of Luettich et al., both models ADCIRC~ and RITAl were used to simulate 

an MZ tidal wave, with an amplitude of 1.5 m and forcing phase zero, propagating in a 

closed-end rectangular channel (80 km long), with a constant depth of 10 m. Since 

ADCIRC does not allow the treatment of non-linear friction without the inclusion of finite 



amplitude, the RITAl simulations also considered both non-linear terms (non-linear fric- 

tion and finite amplitude). All simulations started from zero initial conditions and were 

carried out for four days; the warm-up period was set to three days. Results were obtained 

with RITAl using three different numerical schemes: the reference method, and two dif- 

ferent time-extrapolation methods in which the non-linear friction term is treated either 

with a Crank-Nicholson scheme centered at time n+1/2 or fully implicitly. 

The results obtained with the time extrapolation method are compared to the 

results of ADCIRC (Fig. 34), in the form of b-nonns as a function of Cu. For large Cu 

the values obtained with RITAl have a different behavior than the ones presented in Fig. 

32. 

As we can see in Fig. 34, the lumping used in ADCIRC is very insensitive to the 

Courant number, when C u d .  RITAl is more accurate for C u d ,  regardless the choice of 

specific non-lumping method. For 1<Cu<2, the lumping technique shows greater accu- 

racy. This can be interpreted as a balance between sources of error: both lumping and time 

extrapolation attempt to increase accuracy and stability by extrapolating in time the value 

of the friction terms, in the case of RITAl, and the value of the non-linear friction coeffi- 

cient and part of the local acceleration term, in the case of ADCIRC. Although the errors 

decrease by increasing the degree of implicity, the errors increase as a result of the extrap- 

olation in time. The b-norms obtained for simulations done with ADCIRC, using three 

different grids are shown in Fig. 35. For Ax=5000 m, the results show the same behavior 

with a minimum error greater than the one obtained when using Ax=2500 m. For the sim- 

ulations with Ax=1250 m, we expect the minimum error (corresponding to the smaller 

values of Cu) would be smaller than the one obtained with Ax=2500 m. More simulations 

(with smaller Cu) are required to confirm this expectation. 

In general, the results suggest that for small values of Cu, a time-extrapolation 

technique applied to the non-linear friction term provides greater accuracy than the lump- 

ing technique. However, for computationally intensive problems, the increase in accuracy 

must be weighted against the computational cost advantages associated with lumping. 

4.2. The Generation of Shallow Water Tides 

The propagation of tides in shallow-waters is a complex problem of significant practical 

importance. RITAl and the associated visualization interface can be used very effectively 

either in a classroom context or as a tool for personal learning, to explore and demonstrate 

several aspects of the problem. We will deal in this section with the role of specific propa- 

gation mechanisms on the generation of harmonic and compound tides. 



Tides in the oceans are related to the periodic motion of celestial bodies. In deep 

sea, the tides can be described as the sum of harmonic constituents whose frequencies are 

dictated by the motion of the moon and sun relative to the earth surface. In deep sea, the 

effect of the non-linear terms of the equations of motion are negligible; thus, the propaga- 

tion of tides is a quasi-linear process and no significant interaction occurs between differ- 

ent tidal constituents. These tidal constituents are called astronomical tides. 

As the tidal waves enter shallower regions, the effect of non-linear processes 

becomes very significant: elevations are now an important percentage of the total water 

depth, friction at the bottom can be very important, and advection eventually becomes 

non-negligible. These non-linear processes allow the different tidal constituents to interact 

with each other and, in the process, energy is transferred to related frequencies, originating 

another type of tidal constituent: the shallow water tides. 

The elevation and velocity of the water surface at any given point can still be rep- 

resented as a summation of cosines (or sines) with different amplitudes and frequencies: 

N 
u = uOj sin ( wi t - Boi) 

i 

with: 

q - frequency of the constituent i [rad.bl] 

qoi - elevation amplitude of the constituent i [m] 

u, - velocity amplitude of the constituent i [ms-'1 

qoi - elevation phase of the constituent i [rad] 

- velocity phase of the constituent i [rad]. 

Through the analysis of the governing equations one can identify the non-linear 

terms and study their effects on the generation of shallow water tides. This is done by sub- 

stituting Equations [4.2] and [4.3] into the equations that describe the case in study. 

Three non-linear terms are considered in the equations of motion: 

1. advection, with the general form uu, 

2. finite amplitude, with the form qu, 

3. friction, with the form ulul (we do not consider the effect of the finite 
amplitude that comes from the denominator of z). 



In the next sections, each non-linear term is analyzed alone and in combination 

with others, both by mathematical handling of the governing equations and by interpreta- 

tion of the results provided by RITA1. Two test cases are considered: 

1. a longitudinal slice of a closed-end channel, 80 km long and 10m deep and 

2. a longitudinal slice of a closed-end channel, 80 km long and with the depth 

varying linearly from 15 m at the mouth to 5 m at the closed end. 

For each case, and for each set of selected terms, RITA1 is used to solve the hydro- 

dynamics equations, using two different boundary conditions at the mouth of the channels. 

The boundary conditions consist of prescribed elevations defined as values for the follow- 

ing astronomical tides: 

1. a M2 tide with amplitude of 1.5 m and zero phase; and 

2. a combination of M2, S2 and O1 tides; forcing amplitudes are 1.5,0.84 and 

0.375 m, and all forcing phases are zero. 

A space-time grid with Ax=500 m and At=60 s was used to support all RITAl simulations. 

The reference numerical scheme was used in all the simulations. 

After several tidal periods of warm-up from analytically-generated initial condi- 

tions, 1024 h long hourly records of elevation were "collected" at two stations: at the wall 

(A), and at mid-channel (B). All records were analyzed with a least-squares sinusoidal 

regression method, to identify amplitudes and phases of the 16 tidal constituents listed in 

Table 9. The results of the tidal analysis are given as amplitude (qo, in meters), phase ($, in 

hours) and relative amplitude (X in percentage of the M2 amplitude), for each constituent 

of interest. 

42.1. Frictionless linear case 
We first consider a simple balance of the local acceleration and the gravity terms. No finite 

amplitude effects are included and the governing equations reduce to: 

Since all the governing processes are strictly linear the different waves cannot interact and 

no new tidal constituents can be generated. 

The results of the simulations for the flat bottom channel are presented in Tables 

10 and 11 and in Figs. 36 and 37. A significant, constituent-dependent, tidal amplification 

was observed at stations A and B. No energy was detected at any frequency other than the 

forcing frequencies. This result was expected and can be effectively used to illustrate the 



notion that linear propagation mechanisms cannot transfer energy from one frequency to 

another. We also note that each tidal constituent is in phase over the entire channel. This is 

a characteristic of standing waves. 

For the channel with inclined bottom (Tables 12 and 13, Figs. 38 and 39) the same 

type of constituent-dependent tidal amplification at stations A and B is obtained. The val- 

ues of elevation are slightly lower, at both stations, than the ones obtained for the flat bot- 

tom channel. This is due only to the relative situation of the flat bottom case in relation to 

a resonance mode. 

43.2. Linear friction case 
We now introduce linear friction (~=0.00025 s-l) in the system; the governing equations 

become: 

As in the previous section, all the governing processes are strictly linear and the forcing 

constituents cannot interact to generate new constituents. 

The results of the simulations for the flat bottom channel are presented in Tables 

14 and 15 and in Figs. 40 and 41. Results for the inclined bottom channel are shown in 

Tables 16 and 17 and in Figs. 42 and 43. The tidal amplification at stations A and B 
observed for the frictionless case is reduced or even reversed. The elevations at station A 

are consistently lower than the ones at station B; in both stations the elevations are slightly 

greater in the inclined bottom case. Results are consistent with the role of frictional 

effects, which are cumulatively felt along the channel; the difference between the results 

obtained for the flat and the inclined bottom cases are due to the length of the bottom 

rather than to the actual change in depth. 

43.3. Finite amplitude 
C o n s i d e ~ g  the effect of finite amplitude, while keeping a linearized representation for 

friction (~S.00025 s-I), the governing equations become: 

The non-linear term is: 



Using the expressions for u and q stated in Equations [4.2] and [4.3], we recognize that a 

product involving a sine and a cosine will result from this non-linear term. 

If the ocean boundary is forced with only one constituent, say the M2, energy will 

be transferred to a constituent with twice the frequency, and to So: 

cos (uM2t + $) sin (wM2t + 0) = 
[4.11] 

= (cos~costoM2 - sin@ sintoM2) (sintoM2cos0 + sin0 costaM2) 

Or, as: 

A = c o s $  B = s i n $  

C = c o s 0  D = s i n 0  

we get: 

(AcostwM2 - B sinto,,) (Csin toM,! + Dc0stwM2) = 

2 2 = + ADCOS toM2 - BCsin toM2 - B D S ~ I I ~ ~ ~ ~ C O S ~ ~ ~ ~  = 

= 0.5 ( (AD + BC) cos2twM2 + (AC + BD) sin2toM2 + (AD - BC) COSO) 

[4.13] 

Noting that: 

we can see that indeed the original M2 potentially generates two new constituents: the M4 

and the So. The So will not produce energy at new frequencies but the M4 will interact 

with the original M2 and with itself as follows (for the sake of simplicity we neglect the 

phases, since as we see in equation 14-13] they only affect the amplitudes of the new con- 

stituents and not their frequency): 

cos (oM4t) sin (oM2t) = 

1 
= - ( s i n ( ( w M 4 + ~ M 2 ) t )  2 - s in ( (oM4-oM2) t ) )  = 

1 = - 2 (sin (oM6t) - sin (oM2t) ) 

cos (uM2t) sin (uM4t) = 

1 = - (sin ( (oM2 + 0,4) t) - sin ( ( aM2 - 0,4) t) ) = 
2 

1 = - 2 (sin (wM6t) + sin (wM2t) ) 



1 1 
cos ( ~ h 1 ~ t )  sin ( wM4t) = - sin (2aM4t) = - sin (aM8 t) 

2 2 

Two new constituents were generated, both with frequencies which are multiple of 

the M2 frequency. This new constituents will also interact and other are generated, with 

progressively higher frequencies and smaller energies. The frequencies of the new constit- 

uents are always multiples of the frequency of the original constituent. They are called 

overtides. 

If the ocean boundary is forced with two constituents, say M2 and S2, energy will 

be transferred to the overtides of each of the original constituents but, in addition, another 

type of shallow water tides will be also generated. These new constituents are called com- 

pound tides, and are generated through the interaction at two different astronomical tides: 

cos (oM2t) sin (wS2t) = 

1 = - (sin ( (% + wS2) t) - sin ( (wM2 - wS2) t) ) = 
2 

1 = - 2 (sin (wMS4t) - sin (aMSot) ) 

Again, two new constituents were generated, both with frequencies which are now combi- 

nations of the M2 and S2 frequencies. These new constituents will interact with the origi- 

nal ones and other constituents are generated. 

The general algorithm of generation of new constituents through finite amplitude 

can be stated as: 

4 = Iaif o,I [4.19] 

where y, 9 denote the forcing frequencies and ak the shallow-water frequencies. 

Table 18 presents some shallow water tides resulting from one or two astronomical 

tides, through the finite amplitude non-linear process. The results of the simulations are 

presented in Tables 19 and 20 and in Figs. 44 and 45 (flat bottom channel) and in Tables 

21 and 22 and in Figs. 46 and 47 (inclined bottom channel). 

The numerical results are consistent with the behavior expected from the above 

analysis: when the M2 is the only forcing tidal constituent, energy is transferred only to its 

overtides and to the So constituent; when more than one forcing tide is present, both over- 

tides and compound tides are generated. 
The results of the simulations also provide interesting additional insight. For 

instance, we note that: 



1. The transfer of energy appears to be more important in the inclined bottom 

channel, which can be attributed to the stronger amplification of the waves 

that occurs in this case (Section 4.2.2). 

2. The M4 (the first harmonic of the dominant forcing frequency M2) and the 

MS4 (the first order effect of the interaction of the M2 and S2 frequencies) 

are consistently important constituents while the zero-frequency constitu- 

ent captures an insignificant amount of energy; i.e., the finite amplitude 

contributes only marginally to a residual slope in the water surface of the 

channels. 

3. The second and higher harmonics of the M2 and S2 (M6, $6, M8, S8, etc.) 

are essentially negligible, while the M03 and SO3 (the first order effect of 

the interaction of the semi-diurnal and the diurnal forcing frequencies) are 

more weakly represented than the MS4, but not negligible. 

4.2.4. Non-linear friction 
For a non-linear friction without finite amplitude effects, the governing equations 

becomes: 

The non-linear friction z, is defined as: 

with n=0.025 smel*. 

The non-linearity now has the form ulul. Substituting u by it expression as stated in Equa- 

tion [4.3] and using Tschebyscheff polynomials we obtain non linear terms involving46: 

The general equation for generation of new constituents through non-linear fric- 

tion is: 

a, = 120i& y( [4.24] 

In Table 23, some shallow water tides resulting from one or two astronomical 

tides, through the non-linear friction process are presented. The results of the simulations 



are presented in Tables 24 and 25 and in Figs. 48 and 49 (flat bottom channel) and in 

Tables 26 and 27 and in Figs. 50 and 51 (inclined bottom channel). As in the previous 

cases, the numerical results are consistent with the behavior expected by the analysis 

above. We observe that: 

1. The transfer of energy does not seem to depend consistently on the form of 

the bottom, unlike in the finite amplitude case. Since the amplification is 

much more accentuated in the inclined bottom channel we suspect that 

some cancelation of effects occurs. 

2. The So captures significantly more energy than when only finite amplitude 

is considered; i.e., the non-linear friction contributes to a residual slope in 

the water surface of the channels. 

3. When only the M2 is forcing the system, only the So and the M6 capture 

significant energy. In this case the So is far more important than the M6 at 

station A and the opposite is true at station B. 
4. The 2MS2, 2MS6, M6 and 2SM2 are dominant in a fairly full spectrum of 

shallow-water constituents, for both channels, when the system is forced 

by the three astronomical tides. 

4.2.5. Finite amplitude and non-linear friction 
In this section, we consider simultaneously the non-linear effects studied separately in the 

two previous sections. The governing equations are: 

with: 

The shallow water tides that are generated in these conditions are expected to be 
similar to the ones generated by finite amplitude only, plus the ones generated through 

non-linear friction. Since we are now considering a finite amplitude effect in the friction 

term (Equation [4.27]), we should keep in mind that the amplitudes of the constituents 

generated through non-linear frictional processes are not expected to equal to those 

obtained in the previous section. 



The results of the simulations for the flat bottom channel are presented in Tables 

28 and 29 and in Figs. 52 and 53. Tables 30 and 31 and Figs. 54 and 55 show the results 

for the inclined channel. The results appear to be only slightly different from the sum of 

those obtained in the two previous sections. 

43.6. Advection 
Considering the advective term as single non-linear mechanism, the equations of motion 

become: 

Friction is linear and characterized by .d).00025 s*'. The non-linear term leads to a 

generic algorithm of generation of shallow water tides which is similar to that identified 

by Equation [4.19]. Indeed, in terms of the definition of the frequencies to where energy is 

transferred, it does not matter if the transference is done through elevation (when finite 

amplitude is the only non-linear process considered) or velocity (when advection is 

present with the non-linear character coming from the product of velocities). 

The results of the simulations for the flat bottom channel are presented in Tables 

32 and 33 and in Figs. 56 and 57 while the results for the inclined bottom channel are 

shown in Tables 34 and 35 and in Figs. 58 and 59. The numerical results are consistent 

with the behavior expected by the analysis performed for the case in which finite ampli- 

tude was the only non-linear effect. 

Even though the main conclusions of Section 4.2.3 apply in this case, a significant 

difference was found in the importance of the S o  constituent. While the zero-frequency 

constituent does not capture significant energy through finite amplitude non-linear effects, 

it assumes considerable importance when advection is accounted for; i.e., advection con- 

tributes in a major way to a residual slope in both channels. 

4.2.7. Advection, finite amplitude and non-linear friction 
Finally, considering simultaneously all the non-linear terms we have the governing equa- 

tions: 



where r is computed by Equation [4.27] with n=0.025 sm*lD. The results of the simula- 

tions are presented in Tables 36 and 37 and in Figs. 60 and 61 (flat bottom channel) and in 

Tables 38 and 39 and in Figs. 62 and 63 (inclined bottom channel). 

Dominant shallow water constituents are, for both channels, the M4 and So when 

only the M2 was forced at the boundary, and the 2MS2 (primarily due to friction), the So 

(primarily due to advection), and the M4 and MS4 (contributed by all terms) when the M2, 

S2 and Or are all imposed at the open boundary. 

As in Section 4.2.5 we expect to observe the generation of shallow water tides 

roughly corresponding to the ones generated by each of the non-linear processes taken by 

itself. In this case, we should not only consider the finite amplitude effect on the non-linear 

friction but also in the advective term. 

RITAl results indicate in this case a small deviation from a simple sum of the 

effects of the three non-linear terms taken in separate. In the comparison done in Section 

4.2.5 the amplitudes of the constituents seemed to be approximately added together. In the 

presence of all three non-linear effects we note that some shallow water constituents (e.g., 

So) decrease in amplitude showing an interesting cancellation effect. 

43.8. Conclusions 
Throughout the last sections we have explored the generation of shallow water tides tab- 

ing advantage of the capabilities of RITAl and, more generically, of ACEl. The educa- 

tional value of the process has significant potential and suggests the usefulness of our 

computational structure for the teaching and learning of physical phenomena. The ani- 

mated video sequence that supports this work is also an example of how the advances on 

computer hardware can assist education. 

We observed, using numerical simulations, the non-linear mechanisms of genera- 

tion of overtides and compound tides. From a didactic standpoint we can summarize the 

content of the last sections as follows: 

1. Only through non-linear processes it is possible for the energy associated to 

tidal constituents to be transferred to other frequencies, corresponding to 

shallow water tides. This is a well-known fact, that becomes perhaps more 

clear through analysis such as the one now performed. 

2. The type of shallow water tides that are generated, for a well defined case, 

depend on the dominant non-linear process active in the system. The fre- 

quencies of the overtides and compound tides can be determined as func- 



tions of the frequencies of the forcing frequencies to the system; results 

from numerical simulations using RITAl obey the general rules obtained 

analytically from the governing equations. 

3. The conjugate effect of several non-linear processes acting simultaneously 

in the system shows a significant synergistic response. Interesting cases of 

cancelation of effects, extremely difficult to detect otherwise, can be 
observed by numerical simulation. 

The experiments which were object of this section could be further improved. In 

particular: 

1. A larger list of constituents should be used. The constituents Kl=M2-01, 

MSF=S2-M2 and S01=S2-O1 could have been generated in the cases studied in 

this section and they were not detected since the harmonic analysis only detects 

specified constituents. Complementary spectral analysis could detect energy in 

unspecified constituents. 

2. Quadratic bottom friction generates more terms than the ones considered (Equa- 

tion [4.23]); 

3. The analysis of the results based on the comparison of ratios of compound tides 

against the ratio of the generating astronomical tides (e.g. M03/MS4 vs. 01/S2) 

could provide interesting insight; 

4. The analysis of the velocities can provide different results than those obtained for 

elevations; 
5. A larger set of cases should be used. In particular the use of domains with non- 

uniform Ax should be studied. 



CHAPTER 5 

CONCLUSIONS 

Computer hardware has achieved an extraordinary degree of sophistication in the last few 

years and hydrodynamic modelling has taken substantial advantage of those advances. 

However, systematic comparative research and the education and advanced practical train- 

ing of modelers have been somewhat neglected. To address these issues we developed 

RITAl as a tool for education and exploratory research rather than for problem-solving. 

One of the objectives in developing the model was to assure its flexibility by incor- 

porating alternative numerical schemes and defining these schemes in a generic way. In 

doing this, we allow the user to more precisely tailor the characteristics of the method 

according to hisher particular interests. In Chapter 2, a reference finite element formula- 

tion was presented: it is based on the Generalized Continuity Wave Equation, known for 

its ability to suppress spurious spatial oscillations that afflict the numerical solutions of 

primitive equations formulations. As deviations from the reference formulation, four alter- 

natives are presented for the treatment of non-linear terms: 

1. A time extrapolation method, which allows a certain degree of impliticity 

on the treatment of non-linear terms without changing the stationarity of 

the mass matrices; 

2. An element-based method, which attempts to reduce the non-linear charac- 

ter of the advective term hence relaxing the stability criteria; 

3. A"n+2 upwind" method, in which a more "natural" treatment of the advec- 

tion is allowed, by means of using non-symmetric weighting functions; and 

4. An Eulerian-Lagrangian method. This method was not validated or applied 

in any simulations; only the interest inherent to the formulation justified its 

inclusion in Chapter 2. 
Our implementation of the numerical algorithms was partially validated by com- 

parison of the numerical results provided by the model with analytical solutions and solu- 

tions obtained with an extremely refined time and space discretization (Chapter 3). All 

methods are very sensitive to the Courant number, as expected. For small Courant num- 



bers all methods performed very well, providing accurate results. A simple mass conser- 

vation test was also performed and all methods showed excellent behavior. 

The usefulness of RITAl for comparative research in numerical methods and for 

graduate-level education on hydrodynamics was exemplified in Chapter 4. A sensitivity 

study examined the optimal value of the parameter G of the wave equation. The results 

show that the optimal value of G depends on the Courant number, and although the opti- 

mal G is often of the order of magnitude of the "characteristic" friction coefficient, it may 

be significantly higher for small Courant numbers. 

A brief comparative interpretation of the different accuracy of each method was 

done in Section 4.1.2. Non-linear friction is the only term to which a notable gain in accu- 

racy was observed by the use of an alternative method (time extrapolation). This fact may 

be due to a greater importance of friction, relative to advection and finite amplitude. 

The use of time extrapolation techniques for the treatment of non-linear friction 

was compared with lumping of the momentum equation (Section 4.1.3). The results show 

that for small Courant numbers the lumping scheme is less accurate than the time-extrapo- 

lation, but the lumping scheme is more accurate for larger values of Cu. 

The generation of shallow water tides was explored using RITAl as an educational 

tool. The theoretical concepts of the transfer of energy by non-linear processes were illus- 

trated and some interesting aspects of the behavior of each non-linear process were 

detected and interpreted. 

We feel the objectives proposed for this thesis were achieved. In particular: 

1. In an educational perspective, RITAl and the associated interface and sci- 

entific visualization tools, give the graduate student tools to explore theo- 

retical concepts, and to literally see how they function. This can 

substantially enhance the learning of both physical processes and numeri- 

cal methods. 

2. The performance of systematic comparisons of alternative schemes is of 
great interest for the advancement of numerical methods. Due to its charac- 

teristics, RITAl is very well adapted for this type of studies. 

3. Preliminary sensitivity analysis of complex multidimensional cases can 

successfully be performed by RITAl. This practice can be extremely useful 
on the design of "heavier" studies, by providing information on the domi- 

nant processes and on the general behavior of the system being studied 

towards space and time discretization and numerical strategies. 

Areas where RITAl should be substantially improved in the near future include: 



1. Implementation and exploration of Eulerian-Lagrangian Methods, follow- 

ing the formulation described in Chapter 2 or an appropriate alternative; 

2. Ability to choose quadratic shape functions; 

3. Introduction of numerical solutions involving lumping, such as in 

ADCIRC~; 
4. Ability to treat moving boundaries. 

More than in any specific contribution to hydrodynamic modeling, it is in the con- 
cept of an educational, research oriented tool, that is the major interest of this thesis 

resides. We expect that RITAlwill become the first of a generation of similarly-oriented 

tools, covering other areas of environmental science and engineering. 
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TABLES 

Table 1. Numerical parameters for the reference linear scheme. 

finite amplitude NO 
advection 
friction 

NO 
YES 

viscosity NO 
friction type linear 
fin. amp. effect on friction NO 

Table 2. Numerical parameters for the Burgers' equation simulations. 

RF TE EB UPW 
finite amplitude NO NO NO NO 
advection YES YES YES YES 
friction NO NO NO NO 
viscosity YES YES YES YES 

1 1  
mo, ml 0.0, 1.0 0.3,0.7 0.0, 1.0 0.0, 1.0 
time extrapolation NO YES NO NO 
element based NO NO YES NO 
upwind NO NO NO YES 
alpha, beta - - - 0.0,1.2 

4 4 
mo, ml 0.0,l.O 0.0, 1.0 0.0, 1.0 0.0, 1.0 



Table 3. Error norms from the Burgers' equation simulations. 

RF TE EB UPW 
L2 (sml) 0.8203E-02 0.7 155E-02 0.5446E-02 0.535E-02 

Table 4. Numerical parameters for the finite amplitude simulations. 

RF TE 
Anite amplitude YES YES 

advection NO NO 

friction YES YES 

viscosity NO NO 

friction type linear linear 

fin. amp. effect on friction NO NO 
4 4 4  Wo, W1, W2 0.0, 1.0 0.3,0.7 
5 5 5 

WO' w1, w2 0.0, 1.0 0.0, 1.0 
6 6 6 Wo, w1, w2 0.0,O.l 0.0, 1.0 
3 3 

m o p  ml 0.0, 1.0 0.0, 1.0 

Table 5. Numerical parameters for the non-linear friction simulations. 
- 

RF TE 
finite amplitude NO NO 

advection NO NO 

friction YES YES 

viscosity NO NO 

friction type non-linear non-linear 

fin. amp. effect on friction NO NO 
5 5 5  Wo, W1, W2 0.0, 1.0 0.3,0.7 
6 6 6 Wo, W1, W2 0.0,O.l 0.3,0.7 
7 7 7  Wet W1, W2 0.0, 1.0 0.3,0.7 
8 8 8  Wo, W1, W2 0.0,O.l 0.3,0.7 
3 3 

mol ml 0.0, 1.0 0.3,0.7 



Table 6. Numerical Dammeters for the advection simulations. 

RF TE EB UPW 
finite amplitude NO NO NO NO 
advection YES YES YES YES 
friction YES YES YES YES 
viscosity NO NO NO NO 
friction type linear linear linear linear 
fin. amp. effect on friction NO NO NO NO 
fin. amp. effect on adv. NO NO NO NO 

3 3 3  Wo, w1, w2 .o, 1.0, .o .3, .7, .o .o, 1.0, .o .o, 1.0, .o 
element based NO NO YES NO 

5 5 5  Wo, wl, w2 .o, 1.0, .o .o, 1.0, .O .o, 1 .o, .o .o, 1.0, .O 
6 6 6 Wo, W l ,  W2 .o, 1.0, .O .o, 1.0, .o .o, 1.0, .o .o, 1.0, .o 
1 1  

*o,  ml 0.0, 1.0 .3, .7 0.0, 1.0 0.0, 1.0 
time extrapolation NO YES NO NO 
element based NO NO YES NO 
upwind NO NO NO YES 
alpha, beta - - - 0.0, 1.0 

3 3 
mo, m1 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 



Table 7. Numerical parameters for the fully non-linear simulations. 

RF TE EB UPW 
finite amplitude YES YES YES YES 
advection YES YES YES YES 
friction YES YES YES YES 
viscosity NO NO NO NO 
friction type non-linear non-linear non-linear non-linear 
fin. amp. effect on frictionYES YES YES YES 

4 4 4 wo, W1' w2 .o, 1.0, .o .0,1.0, .o .o, 1.0, .o .o, 1.0, .O 
fin. amp. effect on adv. YES YES YES YES 

3 3 3 
W ~ 9  W2 .o, 1.0, .o .3, .7, .o .09 1 .o, .o .o, 1.0, .o 
element based NO NO YES NO 

5 5 5 wo, W1' w2 .o, 1.0, .O .o, 1.0, .O .o, 1.0, .o .o, 1.0, .O 
6 6 6  wo, W1' w2 .o, 3.0, .o .o, 1.0, .o .o, 1.0, .o .o, 1.0, .o 
7 7 7  

wo, w1, w2 .o, 1.0, .o .o, 1 .o, .o .o, 1.0, .o .o, 1.0, .O 
8 8 8 wo, w1, w2 .o, 1 .o, .o .o, 1.0, .o .o, 1.0, .o .o, 1.0, .o 
1 1  

*o, ml 0.0, 1.0 .3, .7 0.0, 1.0 0.0, 1.0 
time extrapolation NO YES NO NO 
element based NO NO YES NO 
upwind NO NO NO YES 
alpha, beta - - - 0.0, 1.0 

3 3 
mo, ml 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 

Table 8. Time steps and corresponding average Courant numbers. 

At (s) 30 60 120 240 300 480 600 1200 2400 

Cu .12 .24 .48 .96 1.2 1.92 2.4 4.8 9.6 
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Table 9. Tidal components of interest. 

Component Frequency (rads-1) Period (h) 

Inf 
25.819 

12.872 

12.42 1 

12.000 

1 1.607 

8.386 

8.192 
6.210 

6.103 
6.000 
4.140 

4.092 

4.046 

4.000 

Table 10. Harmonic analysis results. Frictionless linear case. M2, flat bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x (%I 

.o 

.O 
100.0 

.O 

.o 

.o 

.o 

.o 

.o 

.O 

.o 

.o 

.o 

.o 

.o 

Station B 

x (%I 

.O 

.O 
100.0 

.o 

.O 

.o 

.o 

.O 

.o 

.O 

.O 

.o 

.O 

.o 

.o 



Table 11. Harmonic analysis results. Frictionless linear case. M2+S2+01, flat 
bottom. 

Component Station A Station B 

Table 12. Harmonic analysis results. Frictionless linear case. M2, inclined 
bottom. 

Component 

SO 
01 
2MS2 
M2 
S 2  
2SM2 
M 0 3  
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

X (%I 

.O 

.O 
100.0 

.o 

.o 

.O 

.O 

.o 

.o 

.o 

.o 

.o 

.o 

.o 

.o 

Station B 

x (%I 

.o 

.o 
100.0 

.O 

.O 

.O 

.O 

.o 

.o 

.o 

.o 

.O 

.o 

.o 

.o 



Table 13. Harmonic analysis results. Frictionless linear case. M2+S2+01, 
inclined bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x 

16.2 
.o 

100.0 
59.1 

.o 

.o 

.O 

.o 

.O 

.o 

.o 

.o 

.o 

.o 

.O 

Station B 

x (%I 

13.8 
.o 

100.0 
60.1 

.o 

.1 

.O 

.O 

.o 

.o 

.O 

.O 

.o 

.o 

.O 

Table 14. Harmonic analysis results. Linear case. M2, flat bottom. 

Component Station A Station B 



Table 15. Harmonic analysis results. Linear case. M7+S7+01, flat bottom. 

Component Station A Station B 

Table 16. Harmonic analysis results. Linear case. M2, inclined bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M 0 3  
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

X (8) 

.o 

.o 
100.0 

.o 

.o 

.o 

.O 

.o 

.o 

.O 

.o 

.o 

.o 

.o 

.o 

Station B 

x 

.o 

.O 
100.0 

.O 

.O 

.o 

.o 

.O 

.o 

.O 

.O 

.O 

.o 

.O 

.o 



Table 17. Harmonic analysis results. Linear case. M2+S2+01, inclined bottom.. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M 0 3  
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x (%I 

25.5 
.o 

100.0 
55.5 

.o 

.o 

.O 

.O 

.o 

.o 

.O 

.o 

.o 

.o 

.o 

Station B 

X ("/.I 

22.5 
.o 

100.0 
56.2 

.O 
-0 
.o 
.O 
.o 
.O 
.o 
.O 
.O 
.O 
.o 

Table 18. Finite amplitude generated shallow water tides. 

Astronomical Xdes Shallow Water Tides 

M2 So, M4, M6, Ma, ... 
S2 so, s49 s6, ... 
M2 + s 2  MSo, MS4, ... 
M2 + 0 1  M03,  M02, ... 
SZ + 01 s o 3 ,  so2, ... 





Table 21. Harmonic analysis results. Linear case + finite amplitude. M2, inclined 

bottom. 

Component Station A 

rlo (m) 
-.028 
,000 
.om 

1.746 
.ooo 
.om 
.ooo 
.000 
.092 
.ooo 
.ooo , 

.006 

.000 

.om 

.om 

.oo 1 

Station B 

x 

Table 22. Harmonic analysis results. Linear case + finite amplitude. M2+S2+01, 

inclined bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x 

25.5 
.1 

100.0 
55.5 

.1 
1.2 
.6 

1.4 
1.4 
.3 
.3 
.5 
.3 
.1 
.o 

Station B 

X (%I 

22.6 
.2 

100.0 
56.1 

.2 
2.5 
1.3 
5.3 
6.0 
1.7 
.4 
.6 
.4 
.1 
.1 
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Table 23. Non-linear friction generated shallow water tides. 

Astronomical ?ides Shallow Water Tides 

M2 &, ... 
S2 s6, ... 
M2 + S2 2MS6, 2SM6, 2MS2, 2SM2, ... 

Table 24. Harmonic analysis results. Linear case + non-linear friction. M2, flat 

bottom. 

Component 

SO 
01 
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x (a) 

.o 

.O 
100.0 

.O 

.o 

.o 

.o 
1.2 

.O 

.O 
1.6 

.O 

.O 

.o 

.2 

Station B 

X (a'.) 

.O 

.o 
100.0 

.o 

.o 

.o 

.o 
3.5 

.O 

.O 
7.5 
.o 
.O 
.o 
.7 



Table 25. Harmonic analysis results. Linear case + non-linear friction. 
M2+S2+01, flat bottom. 

Component Station A Station B 

rlo (m) 
,048 
.37 1 
.205 

1.53 1 
,733 
.055 
,038 
.026 
.038 
.042 
.006 
.052 
.lo9 
.036 
.003 
-004 

Table 26. Harmonic analysis results. Linear case + non-linear friction. M2, 
inclined bottom. 

Component Station A 

x 4) (h) rlo (m) 
.045 
.001 
.001 

1.982 
.001 
.oo 1 
.001 
.oo 1 
.099 
.oo 1 
.oo 1 
.I21 
.oo 1 
.oo 1 
.oo 1 
.019 

Station B 

x (%I 



Table 27. Harmonic analysis results. Linear case + non-linear friction. 
M2+S2+01, inclined bottom. 

Component Station A Station B 

rlo (m) 
.052 
,380 
.I54 

1.567 
.776 
.046 
.02 1 
.016 
.007 
.004 
.005 
.013 
.02 1 
,014 
.003 
.003 

rlo (m) 
.056 
.395 
.257 

1.836 
.927 
.08 1 
.05 1 
.024 
.074 
.083 
.015 
.055 
.I13 
.044 
,005 
.006 

Table 28. Harmonic analysis results. Linear case + finite amplitude and non- 
linear friction. M2, flat bottom. 

Component 

SO 
01 
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x (%) 

.o 

.O 
100.0 

.o 

.o 

.O 

.o 
3.3 

.O 

.O 
1.9 
.o 
.O 
.o 
.8 

rlo (m) 
.03 1 
.000 
.ooo 

1.643 
.000 
.ooo 
.ooo 
.ooo 
.I37 
.000 
.000 
.I13 
.000 
.ow 
.ooo 
.025 

Station B 

x (8) 

.o 

.O 
100.0 

.o 

.o 

.o 

.O 
8.4 

.O 

.o 
6.9 
.o 
.o 
.o 

1.5 



Table 31. Harmonic analysis results. Linear case + finite amplitude and non- 
linear friction. M2+S2+01, inclined bottom. 

Component Station A 

X (%I 
Station B 

X 4) (h) 

Table 32. , Harmonic analysis results. Linear case + advection. M2, flat bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4  
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x 

.o 

.O 
100.0 

.o 

.O 

.O 

.O 
1.6 
.O 
.o 
.1 
.o 
.o 
.o 
.1 

Station B 

x 

.1 

.1 
100.0 

.1 

.1  

.o 
-0 

4.3 
.o 
.O 
.3 
.o 
.O 
.O 
.1 



Table 33. Harmonic analysis results. Linear case + advection. M2+S2+01, flat 

bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x ("/.I 

26.4 
.7 

100.0 
55.7 

.3 

.8 

.5 
1.4 
1.5 
.3 
.1 
.1 
.1 
.o 
.1 

Station B 

x (%I 

23.9 
.6 

100.0 
56.3 

.3 
1.3 
.7 

4.2 
4.7 
1.2 
.3 
.5 
.3 
.O 
.1 

-- 

Table 34. Harmonic analysis results. Linear case + advection. M2, inclined 

bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x (%) 

.O 

.o 
100.0 

.O 

.O 

.O 

.o 

.8 

.O 

.o 

.1 

.O 

.o 

.o 

.O 

Station B 

X ("/.I 

.o 

.o 
100.0 

.o 

.O 

.O 

.o 
4.0 

.O 
-0 
.2 
.O 
.o 
.O 
.1 



Table 35. Harmonic analysis results. Linear case + advection. M2+S2+01, 
inclined bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x (%) 

25.5 
.2 

100.0 
55.7 

.1 

.5 

.3 

.8 

.9 

.2 

.o 

.I 

.1 

.o 

.O 

Station B 

x 

22.8 
.2 

100.0 
56.3 

.2 
1.1 
.6 

3.9 
4.4 
1.2 
.1 
.3 
.1 
.o 
.1 

Table 36. Harmonic analysis results. Fully non-linear case. M2, flat bottom. 

Component Station A Station B 



Table 37. Harmonic analysis results. Fully non-linear case. M2+S2+01, flat 

bottom. 

Component Station A Station B 

rlo (m) x (%) 4) (h) rlo (m) x (%I 
SO .I54 

4) (h) 
.I55 

0 1  .356 27.1 2.33 ,370 24.1 2.70 
2MS2 .I47 11.2 7.53 .I90 12.4 7.57 
M2 1.313 100.0 2.20 1.533 100.0 2.54 
S2 .617 47 .O 2.40 .732 47.8 2.8 1 
2SM2 .038 2.9 7.81 .052 3.4 7.85 
M03 .05 1 3.9 1.20 .083 5.4 1.23 
SO3 .005 .3 4.36 ,006 .4 3.96 
M4 ,048 3.7 1 .SO .I43 9.3 1.51 
MS4 .048 3.7 1.53 .I59 10.4 1.57 
S4 .008 .6 1.21 .035 2.3 1.80 
M6 .017 1.3 2.23 .035 2.3 2.99 
2MS6 .034 2.6 2.18 .076 4.9 3.00 
2SM6 .O 14 1.1 2.32 .019 1.2 3.21 
S6 .002 .1 3.37 .004 .3 1.10 
M8 .003 .2 1.09 .006 .4 2.49 

Table 38. Harmonic analysis results. Fully non-linear case. M2, inclined bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
S6 
M8 

Station A 

x (%I 

.1 

.1 
100.0 

.1 

.1 

.1 

.1 
2.0 
.1 
.o 

2.6 
.O 
.o 
.O 
.8 

rlo (m) 
.078 
.oo 1 
.002 

1.955 
.002 
.002 
.002 
.002 
.243 
.oo 1 
.oo 1 
.077 
.oo 1 
.oo 1 
.oo 1 
.042 

Station B 

X ("/.I 

.1 

.1 
100.0 

.1 

.1 

.1 

.1 
12.4 

.1 

.1 
3.9 
-0 
.O 
.O 

2.1 



Table 39. Harmonic analysis results.Fully non-linear case. M2+S2+01, inclined 

bottom. 

Component 

SO 
0 1  
2MS2 
M2 
S2 
2SM2 
M03 
SO3 
M4 
MS4 
S4 
M6 
2MS6 
2SM6 
56 
M8 

Station A 

x (8) 

24.0 
9.3 

100.0 
49.6 
2.8 
2.3 
.5 
.6 
.1 
.7 

1.5 
2.9 
1.3 
-2 
.1 

Station B 

x (%I 

21.6 
13.6 

100.0 
49.9 
4.3 
5.9 
.7 

11.4 
12.9 
3.1 
.9 

2.6 
.5 
.4 
.5 



FIGURES 

MRL 

Fig. 1.  Geometry of the problem (MRL- Mean Reference Level; H - total water 
depth; h - depth; q - elevation). 

Fig. 2. Four-step 2"* order Runge-Kutta tracking scheme: tracking from time n+l to 
time n. 



loot . - - . ---- .  - - . - -  .-.. . . ... Elevation Velocity 
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: At=4.8 s 

Fig. 3. Sensitivity to space discretization. L2-norm as function of Ax; linear case. 

lo0 Elevation 
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4 

Fig. 4. Sensitivity to time discretization. L2-norm as function of At; linear case. 



Fig. 

loo 

lo-' 

10-2 

10" 

Elevation Velocity 

5. Sensitivity to Courant number. L2-norm as function of Cu; linear case. 

Fig. 6. Numerical and analytical (shadow area) solution of the Burgers' equation. 
Snapshot of velocities for various methods. 
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Time (h) 

Fig. 7. T i e  series of "refined" elevations and velocities at the middle of the channel 
(fully non-linear case). 

Elevation Velocity 

Fig. 8. Linear case + finite amplitude. b-norms as function of the Courant number. 



Reference - Elevation (m) - Velocity (m/s) 
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Fig. 9. Linear case + finite amplitude. Time series of errors in elevation and velocity. 
Cu=0.12. 



Reference - Elevation (m) - Velocity (m/s) 
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.a 
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$ 

-0.02 

-0'0437 38 39 40 41 42 43 44 45 46 47 48 49 50 
Time (h) 

Fig. 10. Linear case + finite amplitude. 'Iime series of errors in elevation and 
velocity. Cu4.96.  



Reference - Elevation (m) - Velocity (m/s) 

Fig. 11. Linear case + finite amplitude. T i e  series of errors in elevation and 
velocity. Cu=2.4. 
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-- Elevation (m) - Velocity (mls) 
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Fig. 12. Linear case + finite amplitude. Time series of errors in elevation and 
velocity. Cu=9.6. 



(UJ) uJJou-z7 

Fig. 13. Linear case + non-linear friction. b-norms as function of Cu. 



Reference - Elevation (m) - Velocity (rn/s) 

Fig. 14. Linear case + non-linear friction. Time series of errors in elevation and 
velocity. Cu=0.12. 



Reference - Elevation (m) - Velocity (mls) 
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Fig. 15. Linear case + non-linear friction. Time series of errors in elevation and 
velocity. Cu=0.96. 



Reference - Elevation (m) - Velocity (m/s) 
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Fig. 16. Linear case + non-linear friction. 'Time series of errors in elevation and 
velocity. Cu=2.4. 



Reference 
-- Elevation (m) - Velocity (mls) 

Elevation 
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Velocity 

38 39 40 41 42 43 44 45 46 47 48 49 50 
Time (h) 

Fig. 17. Linear case + non-linear friction. Time series of errors in elevation and 
velocity. Cu=9.6. 



W U - 2 7  

Fig. 18. Linear case + advection. L2-norms as function of Cu. 



Reference - Elevation (rn) - Velocity (m/s) 
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Fig. 19. Linear case + advection. Time series of errors in elevation and velocity. 
Cua.  12. 



Reference - Elevation (m) - Velocity (mjs) 

Elevation 
Q-QRF 
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Fig. 20. Linear case + advection. Time series of errors in elevation and velocity. 
Cu=0.48. 



Reference 
-- Elevation (m) - Velocity (m/s) 

Elevation 
WRF 

M E B  

-0.4 
Velocity 

0.4 r . I . I I I I I I 

Time (h) 

Fig. 21. Linear case + advection. Time series of errors in elevation and velocity. 
Cu= 1.92. 



(W W U - Z - I  

Fig. 22. Fully non-linear case. L2-norms as function of Cu. 



Reference 
-- Elevation (m) - Velocity (rnjs) 

Elevation 
M R F  
M T E  

W E B  

Fig. 23. Fully non-linear case. Time series of errors in elevation and velocity. 
cu=o. 12. 



Reference - Elevation (m) - Velocity (m/s) 

Elevation 
WRF 
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Fig. 24. Fully non-linear case. 'Erne series of errors in elevation and velocity. 
Cu4.48. 



Reference - Elevation (m) - Velocity (mls) 

Elevation 
MRF 
W E B  

Q+WW 

Fig. 25. Fully non-linear case. l ime series of errors in elevation and velocity. 
cu= 1.2. 



Fig. 26. Test case for mass conservation. 



B- Volume loss - RF 

C- Volume loss - TE 

D Volume loss - EB 

E. Volume loss - UPW 
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Fig. 27. Volume loss for the four main numerical methods. 



(w) uuou-rn 

Fig. 28. L2-norms for elevation and velocity, versus the value of G, for a set of 
average Courant numbers. 



Reference 
-- Elevation (m) - Velocity (m/s) 
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Fig. 29. lime series of errors in elevation and velocity, for a set of values of G. 



time (h) 

Fig. 30. Values of terns in the continuity equation, and error. 



time (b) 

Fig. 3 1. Values of terns in the momentum equation, and error. 



(111) uuou-zq 

Fig. 32. Time extrapolation - error norms. 
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Fig. 33. lime extrapolation results: error noms as function of time for Cu=0.96. 



Fig. 34. L2-norms as function of the Courant number. Comparison between RF, TE 
and a lumping method (ADCIRC). 



Fig. 35. ADCIRC - Error-norms as function of At for three different Ax. 
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Fig. 36. Hannonic analysis results. Frictionless linear case. M2, flat bottom.
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Fig. 37. Hannonic analysis results. Frictionless linear case. M2+S2+0l> flat bottom.
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Fig. 38. Harmonic analysis results. Frictionless linear case.M2, inclined bottom.
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Fig. 39. Harmonic analysisresults.Frictionlesslinear case.M2+S2+01,inclined
bottom.
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Fig. 40. Harmonic analysis results. Linear case.M2, flat bottom.
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Fig. 41. Harmonic analysis results. Linear case.M2+S2+01, flat bottom.
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Fig. 42. Harmonic analysis results. Linear case. M2+S2+01, inclined bottom.
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Fig. 43. Harmonic analysis results. Linear case. M2+S2+0}. inclined bottom.
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Fig. 44. Harmonic analysis results. Linear case + finite amplitude. M2, flat bottom.
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Fig. 45. Harmonic analysis results. Linear case + finite amplitude. M2+S2+01, flat
bottom.
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Fig. 46. Harmonic analysis results. Linear case + finite amplitude. M2, inclined
bottom.
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Fig. 47. Harmonic analysis results. Linear case + finite amplitude. M2+S2+01,
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Fig. 48. Harmonic analysis results. Linear case + non-linear friction. M2, flat
bottom.
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Fig. 49. Harmonic analysis results. Linear case + non-linear friction. M2+S2+01,
flat bottom.
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Fig. 50. Hannonic analysis results. Linear case + non-linear friction. M2, inclined
bottom.
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Fig. 51. Hannonic analysis results. Linear case + non-linear friction. M2+S2+01,
inclined bottom.
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Fig. 52. Harmonic analysis results. Linear case + finite amplitude and non-linear
friction. M2, flat bottom.
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Fig. 53. Harmonic analysis results. Linear case + finite amplitude and non-linear
friction. M2+S2+01, flat bottom.
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Fig. 54. Harmonic analysis results. Linear case + finite amplitude and non-linear
friction. M2, inclined bottom.
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Fig. 55. Harmonic analysis results. Linear case + finite amplitude and non-linear
friction. M2+S2+01, inclined bottom.
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Fig. 56. Harmonic analysis results.Linear case + advection. M2, flatbottom.
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Fig. 57. Harmonic analysis results.Linear case + advection. M2+S2+01, flatbottom.
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Fig. 58. Hannonic analysis results.Linear case + advection. M2, inclined bottom.
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Fig. 59. Hannonic analysisresults.Linear case + advection.M2+S2+01, inclined
bottom.
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Fig. 60. Harmonic analysis results. Fully non-linear case.M2, flat bottom.
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Fig. 61. Harmonic analysis results. Fully non-linear case. M2+S2+01, flat bottom.
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Fig. 62. Harmonic analysis results. Fully non-linear case. M2. inclined bottom.
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APPENDIX A 

Analytical Solutions 

A.1. Tidal channel 
Lynch and ~ r a ~ '  present a set of solution of the linearized 1-D shallow waters equations: 

for several geometries and forcings. 

From the work of Lynch and Gray, we will review here the analytical solutions that 

are used in Chapter 3 to partially validate RITAI. Problems of interest in our case involve 

a no-flux boundary condition at one end of the channel, and a sinusoidal variation of the 

free surface at the other end, e.g.: 

u = o  @ x = o  
q = A c o s ( a t )  @ x = L  

The bathymetry is of the form: 

h (x) = hoxn M.41 

hg and n are constants. Lynch and Gray let n take the values 0, 1, or 2, but we will consider 

here only the first two cases. 

For tidal forcings alone (see Lynch and Gray for wind forcing) the surface eleva- 

tion and the velocity due to tidal forcing can be written as: 

n =0: 



with: 

p2 = (a2 - i o h )  

gho 

a = 
A (Y, (~PJ;;;) ) 

(J* (2p&)) (Yl ( 2 ~ & )  - (YO ( 2 ~ & )  (Jl  (2p&)) 
[A. 101 

b = -  
A (J, (~PJ;;) 

(Jo (2p&) ) (Y1 ) - (YO ( 2 ~ 6 2 )  ) (Ji ( Z ~ K ) )  

where x l  and x2 are the coordinates of the closed and open end of the channel, respec- 

tively, and J and Y are Bessel functions. 

A.2. Burgers equation 
The Burgers' equation has the form: 

with: 

Herbst et al.' present the following particular sol" tion: 

u (x , t )  = f ( x - c t - P )  

( c + a +  ( c - a ) e x p ( a l ) )  v 
f ( y )  = 

1 + exp (a:) 

[A. 111 

[A. 121 

[A. 131 

This solution represents a wave front initially at x r P, travelling at a speed c and 

such that u (x, t) + c f a if x ++a for any value of t. The initial and boundary condi- 

tions that should be used with the Burgers equation, in a [0,1] domain, in order to obtain 

[A.12] are given by: 

u (x, 0) = f (X - p) [A. 141 

u(0 , t )  = f ( - c t - p )  [A. 151 

u(1 , t )  = f ( 1 - c t - p )  [A. 161 
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APPENDIX B 

RITA : Brief User's Manual 1 - 

B.1. File structure 
The primary input files for RITAl are the grid file (caseN.gr3 - caseN being an arbi- 

trary name of the test case (5 characters) and "gr3" a mandatory suffix) and two parameter 

files: one with the specifications of the numerical scheme (scheme.sch - scheme being an 

arbitrary name of the numerical scheme and "sch" a mandatory suffix) and the other with 

the initial and boundary conditions of the study case, as well as with the definition of the 

output files to be generated (caseNnn.ibo - caseN as the meaning explained above, nn are 

two digits that specify the run and "ibo" is a mandatory suffix). The structure for each one 

of the files is given below (Tables B.1, B.2 and B.3). Additional files may be required, 

namely files with initial conditions and/or tsunami data (Tables B.4 and B.5). 

The output files are specified by the user and they can be: 

caseNxnn.res (where x is the 5th character of scheme and caseN and nn haves the mean- 

ing explained above) - nodal elevations and velocities regularly spaced in space and 

time (Table B.7); 
c d x n n . c p z  (where x is the 5th character of scheme and caseN and nn haves the 

meaning explained above) - time series of elevations at selected nodes (Table B.6); 
caseNxnn.cpf (where x is the 5th character of scheme and caseN and nn haves the 

meaning explained above) - time series of flows at selected nodes (Table B.6); 
caseNxnn.cpv (where x is the 5th character of scheme and caseN and nn haves the 

meaning explained above) -time series of velocities at selected nodes (Table B.6). 

In the tables below the variable name is the name of the variable in the code, the 

variable type specifies the number of values read and its nature (alpha=alphanumeric, 

ht=integer*2 and real=real* 8). 

'lbble B.1. Structure of grid file - caseN.gr3. 

variable name variable type meaning 

case alpha name of the case 

md int number of nodes 
xnode(i), node(i) [i=l pnd] 2real distance from the origin, depth 
width real width of the channel 



'hbk B.2 Structure of parameter file #1- schemescb. 

variable name variable type meaning 

alpha alpha comments 

gwe real wave equation's G factor (s-l) 

kfa, kad, kfr, h i s  4int flags for finite amplitude, advection, friction and 

viscosity 

Ifr, kfaaf 2int flag for linearized friction, finite amplitude 

in friction 

w10, wll, w12 3real time discretization factors - time derivative in 

GCWE 

w20, w21, w22 3real time discretization factors - gravityKiCWE 

w40, w41, w42 3real time discretization factors - finite amplitude/GCWE 

kfaaw int flag for finite amplitude in advection/GCWE 

w30, w31, w32 3real time discretization factors - advection/GCWE 

kcw, keb 2int flags for continuity and element based - advection 

/GCWE 
w50, w51, w52 3 r d  time discretization factors - linear friction/GCWE 

w60, w61, w62 3real time discretization factors - linear GKCWE 
w70, w71, w72 3real time discretization factors - non-linear friction 

IGCWE 
w80, w81, w82 3real time discretization factors - non-linear GIGCWE 

klurn int flag for lumping of the ME 

pml0, pmll 2real time discretization factors - advection/ME 

knup, dph, bet int, 2real code for upwind/element based and 
parameters for upwind - advec t iom 

pm20, prn2 1 2real time discretization factors - gravity/ME 

pm30, pm3 1 2real time discretization factors - frictionFlE 

kfaav int flag for finite amplitude - viscosityM 

~ 4 0 ,  pm41 2real time discretization factors - viscosity/ME 
kelm, nit, crit 2int,real flag for ELM, max no. of iterations, convergence 

criteria 



'Ibble B3. Structure of parameter We #2 - caseNxx.ibo. 

name type meaning 
alpha alpha case 

alpha alpha comments 

tau, visc 2real friction coefficient, viscosity coefficient 
if lfr=O - manning coefficient 
if b l  - linear friction parameter 

grV real acceleration of gravity 
dt, nti real, int time step, no. of time steps 

kic int type of initial conditions 

if k i c 4  zinit, finit, tinit 3real initial elevation, flow and time 

ifkic=l inft int no of times in fileinit 

if kic=l fileinit alpha file with initial conditions 

kresf, tpinit, ntip int, real, int flag for result file (.res) 

kocpz, ntsoz, nmcpoz 3int flag for output of elevation, initial time step, 
no. of nodes 

if kocpz= 1 ncpoz(i),i= 1 ,nmcpoz (nmcpoz)int nodes for elevation output 

kocpf, ntsof, nmcpof 3int flag for output of flow, initial time step, 

no. of nodes 

if kocpf=l ncpof(i),i=l nmcpof (nrncpof)int nodes for flow output 

kocpv, ntsov, nmcpov 3int flag for output of velocity, initial time step, 

no. of nodes 

if kocpv=l ncpov(i),i= 1 nmcpov (nmcpov)int nodes for velocity output 

kbcd int type of downstream boundary condition 

if kbcd=l,4 bccd real if kbcd=l - constant elevation 
if kbcdd - constant flow 

if kbcd=2,3 ntcd int no. of components 

if kbcd=2,3 bcvphd,bcvamd,bcvfrd 3real phase, amplitude, period (h) 

if kbcd=6 bcvphd,bcvamd,bcvfrd, bcvrdd 4real phase, amplitude, period (h), reference 

if kbcu=7 bcvamd,bcvfrd, bcvrdd 3 r d  amplitude, offset, shape factor 

kbcu int type of upstream b u n -  condition 

ifkbcu=1,4 bccu real if kbcu=l - constant elevation 

if kbcu4 - constant flow 

ifkbcu=2,3 ntcu int no. of components 

if kbcu=2,3 bcvphu(j). bcvamuCj), bcvfru(i) 3real phase, amplitude, period (h) 

if kbcu=6 bcvphu.bcvamu,bcvfru, bcvrdu 4real phase, amplitude, period (h), reference 

if kbcu=7 bcvamu,bcvfru, bcvrdu 3real amplitude, offset, shape factor 

kci-nskci 2int flag for integral, nts skip for printing 

ktsu int flag for tsunamis 

if ktsu=l tsum alpha file with tsunami conditions 

if ktsu= 1 ntsu, nttsu 2int initial t. step for tsunami release, no. of t.steps 



'hble B.4. Structure of initial conditions data file. 

variable name variable type meaning 

tj=lMI 
a(i), u(i) [i=l ,rind] 2real elevation, velocity 

Table B.S. Structure of tsunami data file. 

variable name variable type meaning 

xnode(i), znode(i) [i=l ,rind] 2real distance from the origin, depth 

Table B.6. Structure of general output file - caseNxnn.res. 

variable name variable type meaning 

+T,nti,,ntipl (T - time step after tpinit) 

"&", t alpha, real time at time step j 

xnode(i).a(i),u(i) 3 r d  x coordinate, elevation, velocity at time step j 

Table B.7. Structure of time series output file - caseNxnn.cpA (A=e,f,v). 

variable name variable type meaning 

t, a(i), u(i) [i=l,nmcpoA] (nmcpoA+l)real time, elevation, velocity at time step j 

B.2. How to run the model 
The command to run the model is: 

rital scheme caseN nn [-el [-v] [skip] 

Variables scheme, caseN and nn have the meaning explained above; they identify 

the numerical strategy, the case and the specific run, respectively. The flags -e and -v and 

the parameter skip are to be used when the model runs from the visualization program 

ACE1. The flag -e specifies the display of elevations and the flag -v the display of veloci- 

ties. The parameter skip sets the number of time steps between two consecutive displays. 

The command to use ACEl is simply: 

ace1 [-p parameter file] 
RITAl can then be run by using the pop-up RITA1, from the pull-down menu Mod- 

els. 
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