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Abstract

Prospective Procedure Cloning
with

Linear Algebra Routines

William Marshall Hilands, M.S.

Oregon Graduate Institute of Science & Technology, 1992

Supervising Professor: Michael Wolfe

With procedure cloning, the linker tailors a routine to suit the call site. With

prospective procedure cloning, the compiler identifies routine characteristics (with-

out knowledge of call sites) so that the linker can make effective and efficient op-

timization choices. Conventional language tools take compiler-generated objects

into an executable program image directly. ParaScope, a programming environ-

ment, uses interprocedural methods to generate a more optimal executable. With

a pr.oposal for prospective procedure cloning, this project examines the costs and

benefits of ParaScope usage on Fortran linear algebra routines. We investigate the

requirements of conventional language tools and of ParaScope. These experiments

use the Basic Linear Algebra Subroutines (BLAS) routines and the LINP ACK

linear algebra subroutine package.
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Chapter 1

Introduction

With procedure cloning, the linker tailors a routine to suit the call site. With

prospective procedure cloning, the compiler identifies routine characteristics (with-

out knowledge of call sites) so that the linker can make effective and efficient

optimization choices. The compiler analyzes procedures to determine whether pa-

rameters can be used to create alternative implementations that will execute more

efficiently. The linker uses the actual parameters to generate a procedure ver-

sion. Also, prospective procedure cloning makes possible reduction of program

code size, resulting in lower memory demands at execution time. Constant pa-

rameters, stride, and array size provide opportunities to improve efficiency. This

project uses the ParaScope programming environment to evaluate how linear al-

gebra routines respond to prospective procedure cloning. Additionally, the time

and space required by ParaScope are compared to those required by conventional

language tools.

Prospective procedure cloning's major opportunity examined in this thesis

comes in serial code. As parallel operations are set up to execute more efficiently,

the relative importance of serial code increases. As more parameter checking and

link-time constant conditional expressions occur, there are more opportunities to

improve that serial code.

1



2

1.1 Ba~kground

Typically, a source file compiles into an object module with some relocation in-

formation. A linker then combines these modules into an executable image. This

approach was satisfactory in a slow single processor environment with expensive

memory. Separate compilation speeds program development; only modified files

need to be recompiled so that the link can create an executable program.

Parallel and vector processors now offer increased capabilities that demand

better tools in a world of inexpensive storage. Taking advantevge of today's super-

computing capability requires use of more complex tools. A change in method is

a prerequisite to improving support.

1.2 Motivation

There is consensus that the traditional compilation scheme needs improvement

[KDLS86]. ParaScope is one tool that supports a new approach [CCH+87]. This

programming environment offers many possibilities by maintaining more infor-

mation - interprocedural data - that can be used to make optimization choices.

Fortran is the traditional language for scientific computation and is the language

handled by ParaScope. A module editor provides for program entry and does

module analysis. The program compiler performs the linking function; in addi-

tion, it achieves even more through interprocedural optimization. Initial phases of

ParaScope determine interprocedural data for later phases. Thus, the program-

ming environment maintains many advantages of separate compilation so that a

program's entire text need not be processed at one time; indeed, ParaScope's de-

sign attempts to apply its additional efforts so that the extra time required is not

noticeable. If analysis occurs once in the module compiler, it need never be a

concern of the program compiler. Avoiding redundant effort - always a good idea
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- is especially desirable at link time when the entire program comes together.

1.3 Linear Algebra Routines

The linear algebra routines in the BLAS (basic linear algebra subroutines) and

LINP ACK linear algebra subroutine package are used to evaluate the optimiza-

tions examined here. Linear algebra is only part of a large body of mathematical

software that is the subject of much current optimization study. "[S]ince scientific

calculations are extremely computation-intensive, efficiency of the code generated

by the compiler is critical to the Fortran programmer" [CCH+S7]. Human fac-

tors such as turnaround time are often more important criteria than execution

efficiency; however, sophisticated linkage analysis may determine that interproce-

dural optimization results in less total effort. Because mathematical kernel rou-

tines are called a great many times in engineering applications, any improvement

in execution efficiency will accumulate. Procedure development can be simplified

if intraprocedural issues receive automatic handling because interprocedural infor-

mation is available. Interprocedural optimization thus permits the programmer to

focus on human factors, letting language tools do more work.

1.4 Interprocedural Optimization

Procedure or function inlining is an obvious form of interprocedural optimization.

However, using inlining, code size can grow exponentially as can the demands

on the optimizer. It is difficult to tell how sophisticated a scheme to choose for

inlining. A simple, naive approach can result in unproductive work.

Mary Wolcott Hall's dissertation Managing Interprocedural Optimization in-

vestigates interprocedural compilation [HaI91]. After examining benchmarks using

inlining and cloning separately, she moves to a goal-directed strategy; this strategy
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"clone[s] to expose additional interprocedural constants" so the program compiler

can "[i]nline to expose loop nests". In one benchmark, execution speed doubles

because of efficient memory access.

This thesis exploits simpler situations that provide modest savings. Prospective

procedure cloning (outlined in Section 2.3.4) may not produce any improvements;

however, if parameter checking and other conditional expressions use constant val-

ues, the suggested optimizations provide significant advantages. With prospective

procedure cloning, much of the optimization effort comes during module compila-

tion where the time can be best afforded. Hall's strategy provides a higher payoff,

but it applies in narrower circumstances and depends on greater linkage effort.

1.5 Goals

Performance - in terms of lessened execution time - is the central goal. The ques-

tion is whether ParaScope's benefits provide adequate reward for an increased in-

vestment in compilation time and memory utilization. Little published evaluation

has been done on interproceduraloptimization; Conradi did a mainly theoretical

treatment in 1983 [Con83]. Performa:nce must provide a compelling reason for

the use of a new program development paradigm. This project looks at linear

algebra routines using the ParaScope environment to determine the ,potential of

interprocedural optimization, and in particular, of prospective procedure cloning.

1.6 Overview

The second chapter provides background on interprocedural optimization and its

implementation in the ParaS cope programming environment; at the chapter's end,

we propose prospective procedure cloning. The third chapter surveys a variety of

linear algebra routines. The fourth chapter discusses the different opportunities
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with serial and parallel execution. The fifth chapter gives the experimental results

of prospective procedure cloning. The last chapter summarizes the results and

suggests future work.



Chapter 2

The Progralllllling Environlllent

The ParaScope programming environment, a project at Rice University, is the

base tool this thesis uses to explore how interprocedural optimization improves

mathematical software's efficiency. ParaScope supports Fortran, the language tra-

ditionally used by scientific programmers. ParaScope's achievements come from

development and storage of interprocedural information in an intelligently designed

database. The database facilitates efficient updating, recompilation and compu-

tation; however," handling the additional information requires greatly increased

memory.

This chapter discusses the potential advantages in the executable program im-

age made possible by interprocedural optimizations. At the end of the chapter,

we propose prospective procedure cloning as an additional ParaScope capability;

description and evaluation of experiments with it will follow in later chapters.

ParaScope is the successor to Rn [CCH+S7]. It gains a dependence analysis

and a parallel optimization capability [WoIS9] that Rn lacked. ParaScope is a

huge program. In total, over 100,000 lines of 'c' code make up this Fortran pro-

gramming environment (before the integration of parallel analysis). The graphical

window interface requires more code than a purely textual one, but it adds an

important capability. The interprocedural aspects of ParaScope require significant

time and result from considerable algorithmic effort. The fifth chapter will present

6
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experiments showing the resources required by ParaScope in comparison to those

required with more conventional language tools.

ParaScope is difficult to use casually, but moderate expertise provides compu-

tational scientists with a powerful tool. In the course of many executions, more

efficient operation provides the user with worthwhile savings. A quick discussion

of ParaScope's components follows.

An interactive module editor provides structure and text editing; it produces an

abstract syntax tree. This abstract syntax tree is stored to facilitate efficient access

and analysis. At any time, module compilation is possible to verify correctness. If

a module is syntactically correct, interprocedural information is generated for all

its routines.

The screen-oriented composition editor provides the environment with detailed

instructions on what modules to use in creating a program. A new capability adds

a textual interface to develop a composition. This editor uses module information

to build "a hierarchical description ... a list of modules and other compositions"

[CCH+S7] that will make up the executable program image. The program compiler

knows if the composition presented to it is consistent and complete.

Finally, using interprocedural analysis to guide optimization, the program com-

piler constructs an executable program image. ParaScope does not itself generate

object code; it depends on the host compiler to pull together the generated Fortran

source. Execution monitoring is available to aid in debugging the program.

2.1 Interprocedural Analysis

Interprocedural analysis augments and connects with data dependence analysis.

An intraprocedural scope restricts dependence analysis so that optimizing trans-

formations cannot occur. The availability of procedural summary information
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makes possible interproceduralanalysis and thus improved optimization choices.

Thus, more exact analysis of data dependence replaces unnecessarily conserva-

tive assumptions. This thesis does not address dependence analysis nor parallel

transformations.

Researchers at Rice University, the developers of ParaScope, developed low-

cost interprocedural analysis for FORTRAN[CK87a). Side-effect analysis computes

many sets: MOD, USE, DMOD, GMOD, LOCAL, LMOD, IMOD, RMOD, and

ALIAS [CK87b)j a time-bound linear in the size of the program is made possible

through this intelligent choice of set construction. Constant propagation "is linear

in the size of the call graph" [CCKT86) with three reasonable assumptions.

A call multigraph details all the call sites in the program. Hall's dissertation

provides the algorithm of choice to build the call multigraph; it works in the

presence of procedure-valued parameters. Muitigraph construction takes time O(N

+ EP) "where Nand E are the number of nodes and edges in the final call

multigraph, respectively" [HaI91) and P ::; N (P is the number of procedure-

valued parameters).

With low-cost interprocedural analysis, there is significant potential for com-

prehensive optimization. Once a complete view of the program is available, the

program compiler can determine how to guide program creation.

2.2 Interprocedural Optimization

Reidar Conradi surveyed the advantages to be gained by interprocedural optimiza-

tion [Con83). In his "Introduction - the Compiler Crisis", Conradi says "to produce

good object code, we must at least perform conventional (i.e. intra-procedural)

flow analysis, common sub-expression elimination, code motion, global/local reg-

ister allocation, etc. In addition, inter-procedural flow a.nalysis may improve the
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code both at the calling sites and in the called procedures." To be more precise,

How analysis only provides an opportunity for code improvement.

In Conradi's work, primarily a theoretical treatment, he presents "seven appli-

cations of inter-procedural optimization":

1. Optimization of the procedure call mechanism,

2. Optimization of the calling context's code,

3. Optimization with complete alias information,

4. Optimization of global data allocation,

5. Optimization across subprogram boundaries,

6. Optimization for data layout,

7. Optimizing transformations of parallel programs.

These applications provide a framework for discussing the potential benefits

of interprocedural optimization. Conradi also briefly reviews many projects. He

states that such optimizations produce "a potential saving of 8% in code size

and 20% in execution time for normal... programs on the NORD-lO computer

[Con83]". In the next few pages, there are brief descriptions of these seven appli-

cations.

2.2.1 Optimization of the Procedure Call Mechanism

Allen and Cocke describe four types of linkage [AC72]: open, closed, semi-open

and semi-closed. Open linkage is just inline substitution and receives extended

discussion in Managing Interprocedural Optimization [Hal9l]. Closed linkage is

that found in standard separate compilation.
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Semi-open linkage puts the called procedure into the calling context, with re-

peated jumps between them. Code size grows more slowly than with inlining, but

we find that execution time may increase.

"Semi-closed linkage requires the called procedure to be compiled before the

calling procedure. In this way, the compiler can optimize the passing of parameters

at the call site... " [Hal91].

2.2.2 Optimization of the Calling Routine's Code

Procedure call side-effects limit optimization. Interprocedural information facili-

tates optimizations across calls. Also, improved register usage becomes possible

with coordination between caller and callee.

2.2.3 Optimization with Complete Alias Information

When ref-parameters and global variable accesses within procedure bodies are

analyzed, optimization occurs with complete alias information. "If we know all

possible aliases of a procedure's ref-parameters, we may eliminate compile-time

'cascading of kill actions' when such entities are changed" [Con83].

2.2.4 Optimization of Global Data Allocation

Frequently used data can be put in globally reserved registers. Life-time analysis

of variables permits improved space utilization.

2.2.5 Optimization across Subprogram Boundaries

With interprocedural information, the linker can eliminate code that has no effect

nor possibility of execution. In many cases, constant parameters are the basis for

tailoring routines.
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Prospective procedure cloning (described in section 2.3.4) optimizes across sub-

program boundaries. The literature contains little discussion of creating multiple

versions, each version built to suit sets of call sites having similar characteristics.

This project develops an approach that facilitates cloning, an approach discussed

more fully at the end of this chapter.

2.2.6 Optimization for Data Layout

Analysis of global data access patterns determines optimal space allocation. Com-

posite data objects and local stack-frames are of interest here.

2.2.7 Optimizing Transformations of Parallel Programs

Conradi focuses his attention on parallel processes. However, with interprocedural

information, there are improved opportunities to manipulate loops. Huson uses

procedure inlining to allow parallel transformations [Hus82]; he investigates calls

inside loops using the Parafrase "environment. With his efforts, Parafrase obtains

more information about the loop's actions thus finding more potential parallelism

with a speedup of 1.1 to 6 times (an average speedup of 2).

2.3 Current Interprocedural Optimization Re-
search

Hall's dissertation Nlanaging Interprocedural Optimization is the major recent con-

tribution in this field. Hall first presents an inlining study that proves unfruitful.

She then offers a goal-based approach that achieves significant success.

We propose prospective procedure cloning in the last part of this section. In

contrast to Hall's improvement of parallel operations, we suggest an approach that

improves serial code.
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2.3.1 Inline Substitution Research

Recently, researchers at Rice University have enhanced ParaScope to do inline

substitution. Their experiences provide a base for discussing interprocedural code

manipulation. This study [CHT90a] used inlining to restructure eight benchmarks

with the resultant code given to five different compilers; program execution times

indicate inlining's success or failure.

In An Experiment with lnline Substitution [CHT90a], three types of call sites

were inlined:

1. "a procedure of fewer than 25 source code lines",

2. "the sole call to a procedure of less than 100 source code lines",

3. "in a loop and invoked a procedure of less than 175 source code lines".

These three heuristics rely mostly on syntactic measures, not on semantic anal-

ysis. The inlining choices resulted in elimination of 75% of static calls and 89% of

dynamic calls. On average, procedure length increased from 66 lines to 297 lines.

Object code growth "averaged less than ten percent" even though average total

source lines grew from 1887 to 3101.

Relative to source text size, compile time no more than doubled - except for

four programs on one computer. Execution time changes showed "no real trend,

either by compiler or by program. Overall, wins outnumber losses. But, the vast

majority of the wins fall in the range between the infinitesimal improvement and

five percent". The study suggests that register pressure and data interlocks are

second-order costs that reduce speedups gained from reduced call overhead.

The Perils of lnterprocedural Knowledge [CHT90b] documents unexpected be-

havior when inlining the LINPACK benchmark. "The Fortran 77 standard allows
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the compiler to assume that no aliasing occurs at call sites" [CHT90b]. However,

inlining breaks this assumption so 72% more nops, 76% more data interlocks, 100%

more add interlocks, and 45,503% (!) more floating point interlocks cause running

time to increase by 8.5%. They then demonstrate that use of dependence analysis

can restore the speed lost by'inlining.

Another report, Improving Parallelism After Inline Substitution, details meth-

ods to reap inlining's benefits. "After inlining, some loops exhibited properties

inhibiting optimization that would not likely appear in human-generated code.

These properties can be categorized in the following way:

1. Unreachable code.

2. Loop-invariant code.

3. Bounds checking.

4. Partial parallelism." [HaI90]

Unreachable code elimination is an obvious step and can result in fewer depen-

dences. Loop-invariant code at times causes problems that disappear when such

code is placed outside the loop. Bounds checking often improves when given a

larger context to work with. Within this larger context, partial parallelism can

occur, and loop distribution takes advantage of this parallelism.

However, only the one set of inlining heuristics receives consideration in An

Experiment with lnline Substitution [CHT90a]. Different heuristics would likely

produce different results. Limited improvement might occur in a particular case

with less additional source text and thus less additional compile time. The success

of heuristics is a function of the source text and its constructs. The use of the

number of source code lines as a predictor of inlining success is too simplistic:

one procedure may be all unconditional code and therefore offer no optimization
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opportunity whereas another procedure could have high customization potential,

allowing inlining to result in the selection of only a few statements. An example

of customization appears in section 3.3.

The appeal of inlining is obvious, but as the above study suggests, second-order

effects can mask or even outweigh the primary savings. The SGBCO routine makes

many identical calls to the level 1 BLAS routines SSCAL and SASUM. In my study

of this LINP ACK routine, open linkage never improves execution speed with any

subset of level 1 BLAS inlined. Also, semi-open linkage fails to improve execu-

tion speed although less additional code occurs, and some optimizations become

possible.

2.3.2 Goal-Directed Interprocedural Optimization

Hall moves to a goal-directed cloning and inlining approach that looks at the

benchmark matrix300. Execution speedup comes from cloning a level 1 BLAS

routine, DAXPY. As her study demonstrates, six versions of DAXPY, inlined into

different contexts, are necessary to resolve dependence relations and allow "loop

interchange, loop fusion, unroll and jam, and scalar replacement" [HaI91). Pro-

gram execution is faster by a factor of two or more. Savings result from "avoid[ing)

nearly 100% of the stores and 50% of the loads. In matrix300, we save about 216

million stores and nearly as many loads". Also, "multiply-accumulate statements

can potentially be executed in parallel" [HaI91). Inlining and cloning are now the

tools to permit other semantically-based optimizations.

Because Hall's dissertation focuses on benchmarks, her use of LINPACK uses

just the level 1 BLAS routines: IDAMAX, DAXPY, DDOT, and DSCAL. Our

project examines all the BLAS routines. There are ten level 1 BLAS routines,

twenty-five level 2 BLAS routines and six level 3 BLAS routines; their character-

istics differ. The next chapter will examine all the BLAS routines.
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2.3.3 Reasons for Prospective Procedure Cloning

In a sense, prospective procedure cloning is Goal-Based Interprocedural Optimiza-

tion; the technique uses program semantics to achieve particular results. Whereas

Hall focuses on improving parallel operations, we work to improve serial code. The

changes are always profitable, although often to a limited degree.

First, we review Hall's description of cloning. She states "(c]loning is useful

when calls to a procedure can be partitioned into groups, with each group hav-

ing distinctly different interprocedural information." (HaI91] But what is to be

distinctly different? Our proposal is to examine routines at compilation time to

determine customization potential as exemplified in section 3.3. In Hall's general

strategy, she develops estimates for how many times each procedure is invoked.

With this information available, prospective procedure cloning can determine what

distinct differences to take advantage of. If a procedure with high customization

potential is called many times, cloning that procedure is a good choice. If program

size is a concern and there is a large procedure with high customization potential,

cloning that procedure can reduce that program size.

"Improved constant propagation has been suggested as the most important

effect of inlining [BaI79] [WZ89]" [HaI91]. In our project also, constant propagation

is the primary reason for cloning's success. With ParaScope, once the program

compiler finishes interprocedural analysis, optimization study begins. Through

examinination of linear algebra routines, we determined a strategy for optimization.

Early versions of ParaScope create only one version of a procedure; our proposal

is to create multiple versions tailored to sets of callsites.

ParaScope has an inlining capability, but some drawbacks to the technique

quickly appear. Programmers often find it advantageous to produce a routine that

does many related functions; therefore, overhead is high when executing a small

operation contained within a large routine. To solve this problem, inlining must be
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repeated each time the involved procedures change; this and other requisite actions

are much more complicated than is the case with cloning; therefore, inlining should

be used only when it provides greater advantages.

2.3.4 Prospective ProcedureCloning

Prospective procedure cloning determines at compile time what procedure char-

acteristics can be taken advantage of. Scalar parameters which are invariant in

the procedure body are assumed to be constants. Conditional expressions that re-

main constant given the above assumption are found and reclassified. More easily

made choices occur because important decisions within a procedure can be made

at link time - not execution time. More rewarding choices result from knowledge of

execution frequency so that optimization can focus on time-saving opportunities.

In addition, with cloning, there are fewer secondary effects that reduce efficien-

cies gained. Procedure cloning is a simpler means of interprocedural optimization

than inlining; however, the link stage must be capable of using call site information

to provide interprocedural context.

In our study, prospective procedure cloning decides whether it is possible to

divide a subroutine into two parts: a parameter checking phase and the remaining

computation phase. As a module is compiled, summary information is generated

by walking the abstract syntax tree; at this time, conditional expressions are re-

classified and a parameter checking phase, if any, is noted.

The integrity of the parameter checking phase remains intact; instead of many

individual code fragments, the code is split off as a whole so that if any exception

is detectable at link time, any prior parameter checking will still correctly occur

at execution time. For example, if the SGBMV routine (shown in Appendix B)

is invoked with M=P and N= -1, INFO is set to 3 at link time; however, at

execution time, M=P= -1 will cause INFO to be correctly set to 2. The parameter
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checking phase often contains little data flow into the following computation phase;

however, conditional assignments from the parameter checking phase must remain

in the computation phase if data flow requires it. The checking portion necessarily

has conditional return(s); in our implementation, it must occur at a single level

of nesting. Also, parameter checking can contain no loops or labels. Appendix

A.l shows the SAXPY rotitine with two statements labeled 101 and 102; these

statements are the parameter checking phase. Appendix B shows the SGBMV

routine with the parameter checking phase on page 61.

The computation phase is the remainder of the routine. With knowledge of

the call site, ParaScope's program compiler selects the applicable portion of the

routine. This conditional cloning splits routines, at program link time, into versions

with no constant conditional expressions. The decision to conditionally clone is

made with high probability of achieving success because the opportunities are

explicitly known from the module compiler's earlier work. Versions come into

being when required and remain available; it is not advisable to generate large

numbers of unused versions. A bit vector with boolean values of the constant

conditional expressions encountered enables easy discovery of the same clone's

prior generation. Appendix A.2 shows the results with SAXPY. Appendix B has

the code selection (of a typical SGBMV invocation) highlighted by use of boldface

amidst the underlying rouf.ine.

The strategy to divide a procedure into parameter checking and computation

phases is a result of examining many linear algebra routines. In the next chapter,

the linear algebra routines receive further attention.



Chapter 3

Linear Algebra Routines

Many linear algebra routines receive extensive use in both academic and industrial

applications. Mathematical software is heavily used, portable, and standardized;

thus, it is worthy of optimization. Improved performance at execution time yields

repeated payback. Mathematical software libraries are available, but a link is

required to use their functionality; prospective procedure cloning, by expanding

the link's role, provides significant opportunities for optimization.

In this project, interprocedural optimization offers a technique for improving

performance, and linear algebra problems are the context for evaluating gains pro-

duced by the technique. Dongarra and Grosse describe mathematical software

available through the mail network [DG87], including the linear algebra routines

used in this project. The following four papers provide background on these rou-

tines:

1. Basic Linear Algebra Subprograms for Fortran Usage [LHKK79],

2. An Extended Set of Fortran Line~r Algebra Subprograms [DCHH86],

3. A Set of Level 3 Basic Linear Algebra Subroutines [DCDH88],

4. LINPACK Users' Guide [DBMS79].

18



19

3.1 Benefits of Cloning

It seems appropriate here to focus on code features of the linear algebra routines

that allow successful interprocedural optimization. These features include: the

degree of mod.ularity, the ratio of serial to parallel code, and the complexity of the

parameters involved.

The degree of modularity is an idea presented by Hall [HaI90). Modularity

refers to the proportion of call overhead in relation to the work done by the proce-

dure. When high modularity is present, inlining becomes an optimization offering

efficiency gains (such as in a call to copy a string). Howeyer, we point out that the

call mechanism's speed is important; a slower mechanism provides more significant

opportunities. Schie£ler's paper finds that inlining reduces execution time by 5 to

28%, given a bulky and slow call mechanism [Sch77); he presents no separate tests

for "a significantly faster call mechanism".

Although parallel code has been the focus of interprocedurally-based optimiza-

tion, we observe that few writers have studied interprocedurally-based serial code

optimization. The next chapter more fully examines the potential of serial code

optimization; it also discusses the distinction between serial and parallel opera-

tions. Interprocedural optimization appears to be an effective method to improve

serial code. Of course, serial code optimization may increase the opportunities for

parallel code optimization.

An example of serial code is the parameter checking phase, occuring frequently

in linear algebra routines. The number of parameters and their complexity de-

termine the time spent checking them. Lengthy, time-consuming and complicated

checks a.re a significant part of code in the BLAS. Interprocedural optimization

opens the possibility of eliminating this serial code. In pa.rticular, constant propa-

gation allows many conditional expressions to be evaluated by the program linker.
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The computation phase performs the work done by the BLAS. The parameters

select one of the execution pathways. If constant propagation allows linker eval-

uation of conditional expressions, that execution pathway becomes a procedure

version. Each version will have a greater proportion of parallel activity than the

ori'ginal routine. Routines differ. Many linear algebra routines will be examined

below to determine what advantages can be gained.

3.2 BLAS: Basic Linear Algebra Subroutines

The Basic Linear Algebra Subroutines are the basis for more extended analysis.

Properly invoked, these routines need make no calls of their own; they will be

leaf nodes on a call multigraph. There are three Levels - corresponding to their

complexity - O(n1), O(n2) and O(n3).

UNPACK and many other applications use BLAS functionality. BLAS sub-

routines make no use of global data. All data is received through parameters. The

LINPACK routines call only corresponding LINPACK factor routines or level 1

BLAS.

The BLAS routines use naming conventions to identify their functionality

[DG87]. The first consonant stands for the data precision of the BLAS routine.

The S is for real or single precision, D stands for double precision real, C stands for

complex operations, and Z is for COMPLEX*16 or, if available, double complex

precision. Only the single precision or S version is discussed in this thesis.

3.2.1 Levell BLAS

The table on the next page presents the ten Level 1 basic linear algebra routines

with the number of calls to each in the LINP ACK linear algebra subroutine library:



Name

ISAMAX

SASUM
SAXPY

SCOPY

SDOT
SNRM2

SROT

SROTG
SSCAL
SSWAP

Action

index of max abs value

sum of absolute values

y = a*x + y

copy x into y

dot product
Euclidean norm

apply Givens' rotation

setup Givens' rotation
x = a*x

swap x and y
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LINPACK calls

6
38

68
11

52
6
4

7

70
15

ISAMAX, SASUM, SDOT, SNRM2 return values; SROTG modifies its param-

eters; the other routines update vector(s). All routines take time O(n).

The Euclidean norm computation, SNRM2, has a different structure than most

other routines; the function examines vector elements, handles unusual values and

calculates a result.

Givens' plane rotation setup, SROTG, is all serial code. It prepares its param-

eters for use in calls to SROT that apply the rotation( s).

For all but SNRM2 and SROTG, prospective procedure cloning picks out the

proper half of the computation phase, also eliminating one to three parameter

checking statements. Each of these routines have a special case for increment(s)

equal to 1. For these unit increments, loop unrolling is typically done with a

modulus of 6,4,7,5,5 and 3 in SASUM, SAXPY, SCOPY, SDOT, SSCAL, and

SSWAP. However, loop unrolling could be under linker control; often, constant

array size parameters would allow the loop size to be made a factor of the bound.

Thus, the modulus effort would become unnecessary (see its use in Appendix A).

As the code is now, it is difficult for a compiler or linker to make a good choice.

This choice is of most importance when significant parallel capability can be stalled

in the serial modulus handling statements.
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The increment(s) for arrays are formal parameters, but all applications in LIN-

PACK use unit stride. The stride could be detected with any special cases gen-

erated automatically; this capability would eliminate now redundant code and

programmer effort.

The best example is the SAXPY routine because, with its less powerful cousin

SSCAL, it makes up 138 of LINPACK's 277 calls to BLAS level 1 routines. Also,

it has separate code for unit increments. Appendix A shows the SAXPY code.

3.2.2 Level 2 BLAS

The basic linear algebra level 2 modules perform sixteen matrix-vector operations:

SGBMV
SSPMV
SSYR

STPMV

SGEMV
SSPR
SSYR2

STPSV

SGER
SSPR2

STBMV
STRMV

SSBMV
SSYMV
STBSV
STRSV

These routines use many more parameters than BLAS level 1 routines do.

Twelve execution pathways are available through use of the parameters TRANS,

UPLO and DIAG [DCHH86]. Also, the actions of these routines are more compli-

cated than the Level 1 routines. Of course, routines for the other data types are

available.

There are nine complex number routines that have no corresponding real ver-

sions. CGERC and CGERU perform general rank-l updates. CHBMV, CHEMV,

CHER, CHER2, CHPMV, CHPR, and CHPR2 operate on hermitian matrices.

Dongarra puts it well: "The Level 2 BLAS involve O( mn) scalar operations

where m and n are the dimensions of the matrix involved. These could be pro-

grammed by a series of calls to the Levell BLAS, though we do not recommend

that they be implemented in that way. Hence, in a natural sense, the Level 2

BLAS are performing basic operations at one level higher than the Levell BLAS"
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[DCHH86]. Inlining and cloning could remove any inefficiencies caused by level 2

routines calling levell, but there is no particular reason to make this choice other

than simplicity.

Naming conventions provide the type in the first consonant as for Levell BLAS.

For Level 2 BLAS, the second and third letters correspond to matrix type:

GB General band matrix

GE General matrix

HB Hermitian band matrix

HE Hermitian matrix

HP Hermitian matrix stored in packed form

SB Symmetric band matrix

SP Symmetric matrix stored in packed form

SY Symmetric matrix

TB Triangular band matrix

TP Triangular matrix in packed form

TR Triangular matrix

The remaining letters correspond to the operation to be performed on the

previously given data and matrix type:

MV Matrix-vector product

R Rank-one update

R2 Rank-two update

SV Solve a system of linear equations

3.2.3 Level 3 BLAS

The basic linear algebra Level 3 modules perform six functions:

SGEMM
SSYR2K

SSYMM SSYRK
STRMM STRSM
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These routines solve O(n3) problems that are matrix-matrix operations

[DCDH88]. Twelve execution pathways are available through use of the parameters

TRANS, UPLO and DIAG.

Naming conventions provide the type as the first consonant as for Level 1

BLAS. The second and third letters corresp'ond to matrix type:

GE All matrices are general rectangular
HE One of the matrices is Hermitian

SY One of the matrices is symmetric

TR One of the matrices is triangular

The remaining letters correspond to the operation to be performed on the

previous data and matrix type:

MM

RK
R2K
SM

Matrix-matrix product

Rank-k update of a symmetric or Hermitian matrix

Rank-2k update of a symmetric or Hermitian matrix

Solve a system of linear equations for

a matrix of right-hand sides

3.3 An Example of Cloning's Benefits

The BLAS Level 2 and Level 3 routines are quite similar in structure. Appendix

B has code for the SGBMV routine (with some comments omitted). It is a long

routine, but only a small subset of the code applies to any given invocation. We

say that this routine has high customization potential.

For the invocation CALL SGBMV('N', 1, 1, 1, 1, 0, ARRAYA, ARRAYLDA,

ARRAYX, 1,0, ARRAYY, 1), the resultant cloned code follows on the next page.

Admittedly, this example is somewhat exaggerated but shows optimization's po-

tential; the main effort of SGBMV is not performed because the parameter ALPHA

equals O. It is much easier to inline the resultant code fragment, which of course
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takes up much less memory. Indeed, a simple vector zeroing instruction is the only

action. One hundred thirty-one executable lines of SGBMV is reduced to these

four executable lines in figure 3.1.



*************************************************************

SUBROUTINE SGBMV ( TRANS, M, N, KL, KU, ALPHA, A,

$ LDA, X, INCX, BETA, Y, INCY )
* .. ScalarArguments..

REAL ALPHA, BETA

INTEGER INCX, INCY, KL, KU, LDA, M, N
CHARACTER*l TRANS

* .. ArrayArguments
REAL A( LDA, * ), X( * ), Y( * )

*
* .. Parameters

REAL

PARAMETER

ZERO

( ZERO = O.OE+O )
*
* .. Executable Statements

DO 10, I = 1, M

Y( I ) = ZERO

10 CONTINUE

RETURN

*************************************************************

Figure 3.1: A Cloned Version of SGBMV

26

*
* Endof SGBMV .

*
END

*
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3.4 The LINP ACK Subroutine Library

LINPACK offers solutions to linear algebra problems. As with the BLAS, there are

different routines for different data types. The package makes 277 calls to Level 1

BLAS routines; there are further details regarding these invocations in the section.

on Levell BLAS. The only other calls are from seven matrix condition routines to

corresponding LINP ACK matrix factor routines. These are the 40 single precision

routines in LINPACK:

SCHDC

SGBDI

SGEFA
SPBFA
SPOSL
SPTSL
SSIFA
SSPSL

SCHDD

SGBFA

SGESL
SPBSL
SPPCO

SQRDC
SSISL
SSVDC

SCHEX

SGBSL

SGTSL
SP~C~
SPPDI

SQRSL
SSPCO
STRCO

SCHUD

SGECO

SPBCO
SPODI
SPPFA
SSICO
SSPDI
STRDI

SGBCO

SGEDI
SPBDI
SPOFA
SPPSL
SSIDI
SSPFA
STRSL

LINPACK uses no global data. LINPACK has little customization potential.

The routines vary tremendously in the number and nature of calls that they make.

One routine may make many identical calls to Level 1 BLAS with unvarying pa-

rameters. Another routine makes no calls. Some routines make many entirely

different calls with rapidly varying parameters.

LINP ACK routines do not have a parameter checking phase. There is little

opportunity to clone the computation phase. The main opportunity comes in how

LINPACK interfaces with the Levell BLAS.



Chapter 4

Amdahl's Law: Serial Execution

and 1/ s

Amdahl's law (in its simplist form) states that "execution gains are limited to

l/s where s is the serial portion of a program" [Amd67]. Since the computation

inside mathematical routines such as the BLAS can be easily parallelized, the

serial portion of these routines is of greater interest. The serial portion is usually

made up of call overhead, parameter checking and variable initialization. The next

chapter details serial program portions in the linear algebra domain.

The increase in hardware's vector and parallel capability can make the serial

portion much more important relatively. For example, the Stardent Titan has 4

processors each with a vector capability. It is not always possible to take advantage

of all this computational power; dependence relations may restrict any advantage.

However, if the serial portion is reduced by interprocedural analysis, the poten-

tial speed of execution increases substantially, barring other difficulties. Hardware

capability has thus put new demands on software to improve performance. With

mathematical software, the expense of loop execution often dominates a procedure,

and dependence analysis determines the major constraints on parallel improve-

ment. However, dependence analysis can improve with serial code optimization as

will be shown at the end of the chapter.
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4.1 An Example

Suppose a fictitious routine spends a tenth of its execution time in an inherently

serial portion and the remainder in a loop allowing parallel operations. The parallel

portion gets a speedup equal to the number of processors. As the following table

shows, serial execution takes a rapidly increasing part of the total as the number

of processors increases.

Processors Serial Portion

1 10%

-2 18%

4 31%

8 47%

16 64%

32 78%

n 100%

Routine complexity is important when considering optimization of serial code;

for instance, O(n) tasks see more improvement than O(n3) ones as n grows.

4.2 Gustafson's Work

John Gustafson points out that increased use of parallel and vector computers

allows problem dimensionality to be increased; better answers in the same time

are his desired result [Gus88]. He assumes that the serial portion is independent

of problem size, thus is fixed; parallelism is used to improve the quality of the

result by increasing array size. His example has a minute serial portion "for three

very practical applications (s=0.4-0.8 percent)" [Gus88]. With such a minor serial

portion, improvement by its diminution appears difficult and unlikely anyway.

However, this and the next chapter provide practical examples where serial code

optimization can work well.
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4.3 Implications

With increasing performance in loop execution, the focus of optimization may

change. ParaScope's creators use inline substitution [CHT90a] to study the four

vector processor Convex C240 and Stardent Titan machines. On average for eight

programs, Convex vector and parallel execution sped up to 2.5 and 2.25 times that

of unoptimized uniprocessor code; Stardent vector and parallel execution went 1.47

and 1.03 faster than that of unoptimized uniprocessor code. If inlining had been

performed previous to compilation, for "both compilers the difference [in reduced

execution time] was just under seven percent" [HaI91]. Of course, this reduction

is divided between savings on serial and parallel execution.

However, the averages conceal some significant improvement. In particular,

with the LINPACK benchmark in double precision, the execution speedup im-

proves significantly. And with inlining performed, the speedups are even better.

Figure 4.1 shows the speedups from [CHT90a].

The next chapter examines linear algebra routines' time demands in both serial

and parallel operations. As stated at this chapter's start, increasing vector and

parallel capability make the serial portion more important.
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LINP ACK Speedups

(Relative to unoptimized serial execution)
Inlining Performed

No Yes

4.8 5.6

3.8 7.1

5.0 5.0

4.8 7.1

Machine

Convex

Mode

Parallel

Vector

Stardent Parallel

Vector

Figure 4.1: LINPACK Speedups



Chapter 5

Results of Prospective Procedure

Cloning

This chapter presents experiments using ParaScope and prospective procedure

cloning. The compile time: link time, execution time, and object size of linear

algebra routines were measured; we evaluate ParaScope both with and withput

prospective procedure cloning. Small vectors and arrays allow improvement in se-

rial execution to be more significant than with larger spaces. Appendix C provides

details on the computation environment.

More specifically, this chapter will discuss the costs of using ParaScope with

its interprocedural analysis, elimination of parameter checking, and conditional

cloning. The chapter then shows the resultant benefits: execution efficiency, object

size reduction, and programmer feedback. Chapter 6 provides conclusions on how

the costs compare to the benefits.

In a concluding note, we offer improvements to Hall's Goal-Directed Interpro-

cedural Optimization. We review the merging phase of her algorithm suggesting

instead a simpler selection phase. Also, we recommend a space management ca-

pability that allows greater flexibility in space utilization.

Our experiments focus on four software packages: the Level 1, 2, 3 BLAS and

the LINPACK subroutine package.

32
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Routine Sun Sun ParaScope ParaScope

Class Time Size Time Size

BLASLevell 0.2:0.2 1140 0.3:0.16 10375

BLASLevel 2 0.7:0.2 4809 0.9:0.15 33213

BLASLevel 3 0.9:0.2 7440 1.1:0.15 45965

LINP ACK 0.5:0.2 3811 0.8:0.22 30007

Sun Time - user:system seconds on SUN 4

Sun Size - average size of object file (.0)

Parascope Time - user:system seconds on SUN 4

Parascope Size - average size of abstract syntax tree

Figure 5.1: Experiment One - Average Compile Time and Sizes

5.1 Costs of Prospective Procedure Cloning

Our discussion will touch on Fortran compilation and linkage, using ParaScope

and conventional language tools. Then we consider two features of prospective

procedure cloning: parameter checking elimination and conditional cloning.

5.1.1 ParaScope and its Costs

ParaScope performs interprocedural analysis in addition to other compiler and

linker duties. As most compilers do, ParaScope takes O(n) time to perform its

basic job, where n is the size of the source file [CK87a]. In figure 5.1, a comparison

is made between compilation on the Sun to that done by ParaScope. Of course,

the Sun columns reflect creation of an object module while the ParaScope columns

reflect creation of an abstract syntax tree with interprocedural information. A

time allowance for object code generation needs to be made for ParaScope.

In user time, ParaScope compilation takes from 20% to 60% longer than that

of the Sun compiler, because of the time required for interprocedural analysis and
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ParaScope

Program
Compiler

BLAS Levell 0.5:0.3 0.1:0.3
BLAS Level 2 0.7:0.3 0.1:0.3

BLAS Level 3 0.5:0.3 0.1:0.2

LINPACK 0.9:0.3 0.2:0.4
user:system seconds on SUN 4

Sun
Linker

Routine

Class

Figure 5.2: Experiment Two - Total Link Times

other capabilities. However, in system time, Parascope requires from 25% less to

10% more to perform its work. With our implementation of prospective procedure

cloning, the user and system times increase no more than 30% and 100% over

those of regular ParaScope; our inexpert implementation requires an additional

scan of the abstract syntax tree which could be much more efficiently performed

as interprocedural information generation occurs.

Next, we evaluate the link phase in figure 5.2; here, the operations differ more

than for compilation. ParaS cope's program compiler manages the link done by

the host software while the Sun linker integrates objects into an executable. The

textual interface to the composition editor appears to take a tenth of a second

of user time and two tenths of a second in system time for these applications.

The program compiler was invoked with the -n flag so no compilation (or linking)

occurred.

For the entries above, all routines in each routine class become part of the ex-

ecutable program image since a main program calls them all. For now, the ParaS-

cope link times do not include interprocedural analysis while the programming

environment is being improved. At the link phase, ParaScope takes comparable

time to perform its task. The overall task includes generation of the program
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summary graph, computation of the interprocedural sets, side-effect analysis, and

constant propagation. \Vith our implementation of prospective procedure cloning,

the user and system times should increase significantly; however, a more expert im-

plementation would require modest time demands. The implementation is grossly

inefficient in that a merging of the two' routines involved is used to generate the bit

vector described on page 17; a better method would use the constant propagation

to set up the constant parameters for analysis of the called routine. The next step

chooses optimizations and performs them.

It is obvious that ParaScope requires up to ten times the investment in memory,

if the software generates a version of the original source for compilation. However,

ParaScope produces an abstract syntax tree with added interprocedural data; this

information remains available to the user and the programming environment. In-

deed, the interprocedural information is used by the program compiler. In terms

of time, the module and program compiler require no more than twice that of

conventional language tools.

5.1.2 Elimination of Parameter Checking and its Costs

As computation of interprocedural information proceeds, analysis of scalar param-

eters that are constant on invocation and invariant in the procedure body de-

termines those conditional expressions that are thus constant. These conditional

expressions receive a new classification so they can be found quickly. The O(n)

cost for interprocedural information remains the same, though a negligible increase

in compilation time can be expected as more work occurs during interprocedural

data generation. Also, a few extra entries in the abstract syntax tree need to be

kept; these entries indicate optimization potential and important locations in the

tree.

At program link time, constant conditional expressions determine whether the
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parameter checking portion of the called routine detects if a return statement will

be performed. If no conditional return necessarily occurs, the parameter checking

code (such as on page 61 in Appendix B) need not be called and ParaScope then

does conditional cloning on the computation phase of the routine.

5.1.3 Conditional Cloning and its Costs

At compile time, the costs of conditional cloning are the same as for elimination of

parameter checking. At program link time, any constant conditional expressions

determine whether cloning of the computation phase is possible and advantageous.

An example of such cloning appears in Section 3.3.

As previously stated, our implementation of prospective procedure cloning, the

user and system times increase up to 30% and 100% for the module compiler.

For"the program compiler, the user and system times increase up to TBD% and

TBD%.

5.2 Benefits ofProspective Procedure Cloning

\Ve first examine the BLAS procedures and functions followed by LINP ACK. Our

focus is on execution efficiency, object size reduction and programmer feedback.

Gains in execution efficiency can come in code of a serial nature: call overhead,

parameter checking, variable setups, and memory demands. An obvious gain in

execution efficiency appears to be offered by inlining : elimination of procedure

call overhead. Many matrix computation routines have many constant parameters

and thus many other optimizations are possible. However, both in An Experiment

with lnline Substitution [CHT90a] and in our evaluation of LINPACK, it appears

that inlining by itself provides no consistent benefit; rather it can enable other

worthwhile optimizations.
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The greatest gain in execution efficiency usually comes in using parallel capabil-

ity in loops. Code simplification, accomplished by prospective procedure cloning,

can ease the job of parallel compilers. Cloning, as well as inlining, can produce the

opportunities discussed in section 2.3.1.

In each execution environment, different optimizations are more desirable or

possible. Opportunities depend on the resources available; the next few sections

will detail the benefits of prospective procedure cloning.

5.2.1 Execution Efficiency Benefits

Using constant parameters for the unchanged scalar arguments, most optimized

BLAS routines spend less time in serial execution. The following tables docu-

ment these reduced times. As discussed in the second chapter, interprocedural

optimization makes this result possible. As array size decreases or increases, the

relative importance of this optimization increases or decreases, respectively. As

more processors become available, the importance of this optimization increases

substantially. We note that, on a parallel/vector machine, the relative improve-

ment would be greater. Compila.tion is done using f77 on a Sun-4 computer.

In figure 5.3, we examine the Level 1 BLAS. These routines are the building

blocks of LINP ACK. Thus, an examination of their optimiza.tion potential gives a

basis for evaluation of LINP ACK. The tests use loop limits of eight. Each routine

is called a number of times so that a.round a half million iterations occur; this

iteration length achieves a good time average. ISAMAX is sensitive to increasing

data values as it has to save information when a new maximum is found. SROTG

has no loop, and its time is spent doing costly calculations. SROT has a loop and

does costly calculations.

The Original Time column above has the execution time with parameter check-

ing and all other serial activity done in the original version. The Improved Time
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Routine
Name

Original Improved
Time Time

ISAMAX 12.2 11.4

SASUM 10.8 10.4

SAXPY 12.7 11.0

SCOPY 11.0 9.2

SDOT 13.8 12.2

SNRM2 29.4 27.1

SROT 28.0 27.5

SROTG 14.0 14.3

SSCAL 13.0 11.9

SSWAP 16.1 14.9

average 16.4 15.0
(in microseconds with 8 element vector)

Figure 5.3: Experiment Three - BLAS Levell Execution Times

column shows the results of parameter checking reduction and of conditional

cloning the unit stride(s).

The average times are not too meaningful because unusual routines skew the

column totals. Removal of SROTG's results creates averages of 16.3 and 14.8.

Further removal of SROT's results has averages of 14.9 and 13.5. Thus, a tenth

of the user time is now saved. SCOPY has the best relative improvement; it

and SSWAP perform simple, noncomputational tasks. Also, SAXPY and SDOT

show considerable improvement. SROTG operates more slowly, its object does not

change.

The Level 2 BLAS perform O(n2) tasks. In figure 5.4, the tests use 4 by

4 matrices. Each routine was executed over five thousand times to achieve a

good average with each matrix element initialized to its index value times 1.013

[DDHH88].
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Original Improved
Routine Total Serial Serial

Name Time Time Time

SGBMV 11.2 1.25 0.50

SGEMV 19.5 2.50 3.50

SGER 0.9 0.13 0

SSBMV 4.5 0.50 0.30

SSPMV 4.1 0.50 0

SSPR 0.5 0.09 0.06

SSPR2 0.8 0.06 0

SSYMV 9.5 1.25 0.50

SSYR 0.7 0.06 0.13

SSYR2 1.0 0.13 0.13

STBMV 1.8 0.38 0.25

STBSV 1.8 0.44 0.13

STPMV 1.1 0.31 0.13

STPSV 0.6 0.22 0.13

STRMV 3.4 0.75 0.25

STRSV 1.6 0.31 0.19

average 3.9 0.55 0.39
(in microseconds for 4 by 4 matrices)

Figure 5.4: Experiment Four - BLAS Level 2 Execution Times
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Routine

Name

Original
Total Serial

Time Time

Improved
Serial

Time

CGERC 5.4 0.19 0.19

CGERU 5.4 0.19 0.06
CHBMV 13.0 0.50 0.38

CHEMV 26.0 1.00 0.50
CHER 3.5 0.37 0.06

CHER2 3.3 0.16 0.06
CHPMV 6.2 0.50 0.25
CHPR 2.5 0.09 0.03

CHPR2 3.0 0.09 0.03

average 7.6 0.34 0.17
(in microsecondsfor 4 by 4 matrices)

Figure 5.5: Experiment Five - BLAS Complex Level 2 Execution Times

The Level 2 BLAS improved serial times shown above vary greatly. We see

average improvement of 4% when the improved serial time is subtracted from

the original serial time and then divided by the total time. For a few routines,

improved serial time appears as 0 because too few iterations occured to get a true

measurement. SGEMV and SSYR show speed degradation, and others have gains

up to 17%.

In figure 5.5, we examine those Level 2 BLAS doing O(n2) tasks for complex

numbers that have no corresponding real routine. The tests use 4 by 4 matrices.

Again, each routine was executed over five thousand times to achieve a good av-

erage with each matrix element in X and Y initialized to CMPLX(I*1.013, -I *

0.987) and in A to CMPLX(I*1.013, REAL((J-l)*N + I)) [DDHH88].

The Level 2 complex BLAS have 2% speedup. The complex number type

requires four times the computation as is required for reals; thus, the parameter
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Routine
Name

Original
Total Serial
Time Time

Improved
Serial

Time

SGEMM 56.5 2.25 0.50
SSYMM. 10.1 0.50 0.19
SSYRK 5.3 0.19 0.09

SSYR2K 8.5 0.22 0.09

STRMM 1.8 0.19 0.06
STRSM 2.0 0.14 0.03

average 14.0 0.58 0.16
(in microseconds for 4 by 4 matrices)

Figure 5.6: Experiment Six - BLAS Level 3 Execution Times

checking code is a smaller percentage of the total time, and they exhibit less

speedup.

The Level 3 BLAS perform O(n3) tasks. As before, the tests use 4 by 4 matrices.

Also as before, each routine was executed over five thousand times to achieve a

good time average with each matrix element B(I,J) or C(I,J) initialized to 1.0EO

+ REAL(I+(J-1)*N) / (M*N+1) [DDDH88] where M and N are the dimensional

bounds.

In figure 5.6, the Level 3 BLAS achieve an average 3% speedup when the routine

being executed does not change for five thousand calls. However, as figure 5.9

shows, on average 6380 of a routine's 7440 bytes are no longer in the object; thus,

a more significant effect could occur when the called routine changes frequently. A

much smaller object needs less traffic between memory a.nd instruction cache, or

disk and virtual memory.

The BLAS offers a variety of routines, and LINP ACK has forty routines. This

large number of choices is necessary, but greater va.riety would make it difficult for
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a user to deal with. The solution is to use parameters to customize routine action;

many routines perform many different actions determined from their arguments.

In the LINP ACK routines, there is little that can be improved except in how

they interface with Level 1 BLAS subroutines. Some routines use parameters to

choose actIons; the options could be used to create a shorter routine. While seven

LINPACK condition routines call corresponding LINPACK factor routines, little

optimization opportunity is available since the call is unconditional. Every call

to Level 1 BLAS includes increment(s) which are always equal to unity. Some

LINPACK routines make the exact same call many times; thus, if parameters

become mutually known, parameterless invocation is possible.

The LINP ACK subroutine SGBCO offers a good chance for optimization. It

makes four identical invocations of SASUM, eight identical invocations of SSCAL,

another call to SASUM, two calls to SAXPY, and a call to SDOT. Also, there is an

unconditional call to the LINPACK routine SGBFA. With an 8 by 8 array argu-

ment, we evaluated SGBCO's operation on a Sequent Symmetry. By eliminating

BLAS Level 1 parameter checking, a 2% speedup resulted. By eliminating now

constant tests, another 1% was saved. The obvious elimination of the unit stride

parameter passing yielded only inconsequential savings.

5.2.2 Object Size Reduction Benefits

With constant arguments used for the unchanged scalar parameters, prospective

procedure cloning can effectively tailor most BLAS routines; the resultant object

size is substantially smaller. The following tables show the decreased object space

(in bytes) created by prospective procedure cloning. Smaller embedded programs

could save on memory requirements and thus on hardware costs.

Individually, procedure size reductions are not too important. However, mem-

ory operates at a much lower speed than a processor does, so more significant time
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savings may come from reduced cache and virtual memory traffic. Thus, if many

programs can be made smaller, decreased memory demands can result.

In this section, separate compilation occurred on a Sun computer for all rou-

tines. The Fortran compiler is invoked on each routine with the -c flag. Each

ob ject file has 36 bytes of header and other information. See Appendix C for de-

tails on the computation environment. In figure 5.7, the sizes given are those for

the object files; thus, some bytes of header and relocation information are present.

All routines but SROTG have a few statements of parameter checking that

become unnecessary. Except for SNRM2 and SROTG, the Level 1 BLAS have

a special case for unit stride(s) which we use here. Without the large SNRM2

and SROTG routines, the average 35% object size reduction increases to 45%.

This latter number reflects the elimination of the nonunit increment case(s). The

explicit loop unrolling in six routines limits the object size reduction to less than

without with

Routine Original Parameter Prospective
Name Object Checking Cloning
ISAMAX 796 756 376

SASUM 1048 976 644

SAXPY 1256 1136 656

SCOPY 1156 1124 660

SDOT 1276 1204 716
SNRM2 1756 1676 1676

SROT 1008 976 420

SROTG 932 932 932

SSCAL 960 928 604

SSWAP 1220 1188 684

average 1140 1089 736

Figure 5.7: Experiment Seven - Levell BLAS Object Size



44

half; with no unrolling, reduction by more than half would occur.

Figure 5.8 repeats the measurements for the Level 2 BLAS. The object size

reduction averages 80% for the average routine. The typical invocation uses pa-

rameters having unit strides, real values other than zero or one, and the parameter

TRANS set to 'N'. Elimination of parameter checking reduces object size by 14%,

and conditional cloning removes the other 66%.

Figure 5.9 shows that the Level 3 BLAS have even more customization potential

than previous levels. An object size reduction of 85% is possible for the average

routine. This typical invocation uses parameters having unit strides, real values

other than zero or one, the parameter TRANS set to 'N'. the parameter SIDE set

to 'L', DIAG set to 'N', and VPLO set to 'V'. Elimination of parameter checking

reduces object size by 14%, and conditional cloning removes the other 71%.

LINP ACK makes many calls to Level 1 BLAS routines. These Level 1 BLAS

routines require less code space, but LINP ACK itself has little opportunity for

object size reduction. The reduced code space affects any decision to inline.

5.2.3 Programmer Feedback Benefits

\Vith prospective procedure cloning, the programmer and user can know how much

serial code they may remove from the program image. Interprocedural information

permits a range of optimization techniques. The Chapter 6 outlines a larger, more

useful feedback capability that allows management of the optimization process.

5.3 Routine Clone Selection

Hall's dissertation [Hal91] proposes a merging phase to be performed as the pro-

gram comes together. After constant propagation, a variety of cloning activity may

be indicated for a routine. It is important to know which variables contribute to
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without with

Routine Original Parameter Prospective
Name Object Checking Cloning
CGERC 2332 1764 936

CGERU 2256 1688 888

CHBMV 7304 6600 1584
CHEMV 6560 5816 1440

CHER 5560 6564 1772

CHER2 7252 4932 1392
CHPMV 6256 5648 1328
CHPR 4656 5876 1520
CHPR2 6428 4164 1176

SGBMV 5216 4292 972

SGEMV 4096 3188 828
SGER 1832 1296 620
SSBMV 5368 4680 1108
SSPMV 4272 3680 848
SSPR 2548 3000 704
SSPR2 3528 2060 540
SSYMV 4648 3920 964
SSYR 2748 3160 792
SSYR2 3832 2124 596
STBMV 6444 5440 808
STBSV 6444 5440 760

STPMV 4956 4056 576
STPSV 4956 4056 580
STRMV 5372 4336 672
STRSV 5372 4336 700

average 4809 4084 964

Figure 5.8: Experiment Eight - Level 2 BLAS Object Size
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Figure 5.9: Experiment Nine - Level 3 BLAS Object Size

subscript calculation as these determine the potential improvement in dependence

analysis inside a routine. Each clone can be selected with the generation of a bit

vector; thus, the effort of mergability detection is reduced. However, an important

varia1;>lemay not be constant at the call site or may not have a special case in

the calling routine; in this situation, further work is necessary. Efficient, nondu-

plicative clone generation is important, especially since unnecessary customization

would expand memory requirements without any benefit.

Space management is most important when program size is a concern. If ex-

ecution time is adversely affected by program size, prospective procedure cloning

offers size reduction. Hall suggests a limit on increasing program size - a doubling;

however, if prospective procedure cloning works effectively, freed space becomes

available so that Goal-Directed Interprocedural Optimization can suffer less of a

space penalty.

without with

Routine Original Parameter Prospective
Name Object Checking Cloning
SGEMM 6228 4748 1020

SSYMM 6164 4908 1044

SSYR2K 7688 6340 1316

SSYRK 6496 5276 972

STRMM 8460 7160 952

STRSM 9608 8308 1060

average 7440 6123 1060



Chapter 6

Conclusions

In this thesis we found that prospective procedure cloning was effective in op-

timizing linear algebra routines, especially in terms of decreased object size. If

the proportion of serial to parallel execution is a concern, prospective procedure

cloning offers a method to reduce that 'proportion; the discussion in Chapter 4 ex-

plains Amdahl's Law and this point. Other observations made during this project

suggest future work on ways of using ParaScope to mana.ge program creation and

execution.

6.1 Object Size Reduction

Object size reduction is significant with almost all BLAS routines but inconsequen-

tial with the LINP ACK routines. Level 1 BLAS average a 35% reduction (with a

greater decrease of 4.5%without the two large unoptimizable routines). The Level

2 BLAS average an 80% diminution. The greatest average decrease is 85% for

the Level 3 BLAS. LINPACK offers no object size reduction itself; however, LIN-

PACK's use of the Levell BLAS presents a minor opportunity for improvement.

The success in object size reduction just noted results from inherent character-

istics of the linear algebra routines. These routines offer up to 40 routine choices

47
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per group and any greater choice would make selection overly difficult. Thus, pa-

rameters provide the means to further select actions so that for some routines less

than an eighth of the code applies to an invocation.

The user of linear algebra routines has a better interface than if more choices

fa:ced him or her. After routine selection, the user selects parameter values to

customize operation. However, a penalty in object code space and execution time

will occur with conventional language tools.

The programmer of linear algebra routines need not develop additional sepa-

rate routines. Prospective procedure cloning selects or generates the appropriate

object for the particular call site. It has been noted that good programming style

can conflict with efficient execution; interprocedural optimization lessens this prob-

len1- BLAS Level 2 and Level 3 routines contain very substantial customization

potential; it could be said that each routine is like a page in a categorized menu

in a restaurant offering many choices. This ease of programming is an important

consideration - as was the ease of selection for the user.

The cost for this ease of development and use is increased object size and

execution time. Prospective procedure cloning provides a practical, low expense

solution to this problem. As the first and second experiments in the fifth chapter

show, ParaS cope compilation and linkage require no more than twice the time taken

by conventional compilers and linkers. The inclusion of prospective procedure

cloning added no more than 40% to the total of ParaScope's user and system

times (and would add much less with a more expert implementation).

6.2 Execution Efficiency

Prospective procedure cloning is just one step towards optimal program execution.

Interprocedural capabilities are necessary to obtain a comprehensive program view.
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A variety of optimization techniques, used in concert, will provide consistently

superior execution performance.

Serial execution efficiency is improved by prospective procedure cloning. Level

1 BLAS save about 10% of execution time with a vector length of 8. Level 2

BLAS, using 4 by 4 arrays of reals, operate 4% faster; Level 3 BLAS operate 3%

faster. UNPACK routines, using 8 by 8 arrays, achieve a modest 3% time savings.

However, the tests did not stress the code load time but rather focused on pure

execution time savings. If optimized BLAS routines trade off execution, more time

savings may result.

Prospective procedure cloning works best when array size is small and/or sig-

nificant parallel capability is available. Amdahl's Law points out that parallel

improvement can not exceed l/s, where s is the serial portion. Prospective proce-

dure cloning can also increase the success achieved by dependence analysis.

With interprocedural optimization, Hall and others offer very worthwhile tech-

niques outside the serial domain. Execution speed doubles after. Hall's effort with

matrix300. In Hall's inlining study (discussed at the end of the fourth chapter),

parallel capability provides speedups of five or more with LINPACK.

6.3 Programmer Feedback

The programmer needs feedback on where execution expense can be reduced by

changing parameters or by adding information. When ParaScope offers the fea-

tures in Hall's dissertation, execution time estimation will be closer to realization.

Indeed, Goal-Directed Interprocedural Optimization bases its choices on such time

estimation.

There are multiple measures of performance with clock time being the most
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simplistic but most reliable. For a machine, the maximum or unconstrained float-

ing point operation, FLOP, rate would be known and adjustments to it computable

by the programming environment. These adjustments include: dependence preser-

vation, serial code, inadequate parallelism, and data interlocks.

With a feedback facility added to the Paras cope environment, the programmer

could see alternatives in the use of the procedures. The advantages of constant

parameters would become better known. The dependence problems are accessible.

The improvements due to parallel computation become evident.

6.4 Future Work

Prospective procedure cloning specifically works with code features found in the

BLAS routines. Further code surveys can point out additional opportunities.

Nonetheless, prospective procedure cloning is a specialized technique and may

not provide improvement in many circumstances. As a part of Goal-Based Inter-

procedural Optimization, the technique addresses a particular goal.

ParaScope is a large program, and prospective procedure cloning is just a small

portion of this greater whole which includes Goal-Based Interprocedural Optimiza-

tion. Dependence analysis and a wide range of parallel optimizing techniques are

open to use. Also, ParaScope provides many features to the programmer to speed

the process of program development and debugging.

A variety of optimizations is needed to produce genera.l improvement. Prospec-

tive procedure cloning achieves more with serial code so its optimizations retain

their advantages with small array usage. Hall's Goal-Directed Interprocedural Op-

timization focuses on making large array accesses efficient; inlining and cloning

occur to create opportunities for other optimizations. ParaScope discovers much

information that allows superior parallel loop execution, but this arena is beyond
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the scope of this thesis; a good overview of parallel optimization is by Padua and

Wolfe [PW86].

If reusable software is an important goal, procedure cloning retains the advan-

tages of separate routines but removes the penalty of including code without any

chance of execution.

Future work could integrate the code size management aspect of prospective

procedure cloning with Hall's Goal-Directed Interprocedural Optimization. An ef-

fective tool to manage object size would attract demand from applications requiring

speed or being mass-produced. Parascope could perform its work as resources are

available so as to provide its capabilities at little cost.

Finally, a programming environment capable of creating optimal program exe-

cution would fully realize software's potential. Performance - in terms of execution

time - could be managed explicitly. Performance is a tradeoff with many variables,

and interprocedural analysis helps to determine and order these variables. Scien-

tific programmers could depend on knowing any performance degradation came

from known computational requirements or compromises chosen because optimiza-

tion cost exceeded execution savings. The programming environment could show

these constraints so that they are readily understood.
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Appendix A

Level 1 BLAS SAXPY

subroutine

First, the unchanged saxpy routine is presented followed by versions using incr~-

ments of one.

A.I Original subroutine

subroutine saxpy(n,sa,sx,incx,sy,incy)

c

c constant times a vector plus a vector.

c uses unrolled loop for increments equal to one.

c jack dongarra, linpack, 3/11/78.

c

real sx(l),sy(l),sa

integer i,incx,incy,ix,iy,m,rnpl,n

if(n.le.O)return

if (sa .eq. 0.0) return

if(incx.eq.l.and.incy.eq.l)go to 20

code for unequal increments or equal increments

55

c

100

101

102

c

c
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c not equal to 1

ix = 1

iy = 1

if(incx.lt.O)ix =

if(incy.lt.O)iy =

do 10 i = 1,n

(-n+1)*incx + 1

(-n+1)*incy + 1

sy(iy) = sy(iy) + sa*sx(ix)

ix = ix + incx

iy = iy + Incy

10 continue

return

c

c code for both increments equal to 1

c

c

c clean-up loop

c

50 continue

return

end

20 m = mod(n,4)

if( m .eq. 0 ) go to 40

do 30 i = 1,m

sy(i) = sy(i) + sa*sx(i)

30 continue

if( n .It. 4 ) return

40 mp1 = m + 1

do 50 i = mp1,n,4

sy(i) = sy(i) + sa*sx(i)

sy(i + 1) = sy(i + 1) + sa*sx(i + 1)

sy(i + 2) = sy(i + 2) + sa*sx(i + 2)

sy(i + 3) = sy(i + 3) + sa*sx(i + 3)
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A.2 With Prospective Procedure Cloning

subroutine saxpy(n,sa,sx,incx,sy,incy)

c

c constant times a vector plus a vector.

c uses unrolled loop for increments equal to one.

c jack dongarra, linpack, 3/11/78.

c

real sx(1),sy(1),sa

integer i,incx,incy,ix,iy,m,mp1,n

20 m = mod(n,4)

if( m .eq. 0 ) go to 40

do 30 i = 1,m

sy(i) = sy(i) + sa*sx(i)

30 continue

if( n .It. 4 ) return

40 mp1 = m + 1

do 50 i = mp1,n,4

sy(i) = sy(i) +

sy(i + 1) = sy(i

sy(i + 2) = sy(i

sy(i + 3) = sy(i

sa*sx(i)

+ 1) + sa*sx(i + 1)

+ 2) + sa*sx(i + 2)

+ 3) + sa*sx(i + 3)

50 continue

return

end

57
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A.3 With n a Factor of 4

subroutine saxpy(n,sa,sx,incx,sy,incy)

c

c constant times a vector plus a vector.

c uses unrolled loop for increments equal to one.

c jack dongarra, linpack, 3/11/78.

c

real sx(1),sy(1),sa

integer i,incx,incy,ix,iy,m,mp1,n

do 50 i = 1,n,4

sy(i) = sy(i) + sa*sx(i)

sy(i + 1) = sy(i + 1) + sa*sx(i + 1)

sy(i + 2) = sy(i + 2) + sa*sx(i + 2)

sy(i + 3) = sy(i + 3) + sa*sx(i + 3)

50 continue

return

end



Appendix B

Level 2 BLAS SGBMV

subroutine

The Level 2 BLAS routine SGBMV is presented here with statements selected by

the invocation:

CALL SGBMV('N', 1, 1, 1, 1, 0.5, A, 10, X, 1, 0.5, Y, 1)

highlighted by use of

boldface

type and a caret in the first column. Much comment has been removed from

the subroutine header.

59
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***************************************************************

SUBROUTINE SGBMV ( TRANS. M. N. KL. KU, ALPHA, A, LDA, X,

$ INCX, BETA, Y, INCY )

* .. Scalar Arguments ..
REAL ALPHA, BETA

INTEGER INCX. IHCY. KL, KU, LDA, M, N

CHARACTER*1 TRANS

* .. Array Arguments ..
REAL A( LDA,* ). X( * ). Y( * )

*

* .. Parameters

REAL

PARAMETER

ONE . ZERO

( ONE = 1.0E+O, ZERO= O.OE+O)

* .. Local Scalars

REAL

INTEGER

$

TEMP

I, INFO, IX. IY, J, JX, JY, K, KUP1, KX,

KY. LENX, LENY

* .. External Functions ..
LOGtCAL

EXTERNAL

LSAME

LSAME

* .. External Subroutines ..
EXTERNAL XERBLA

* .. Intrinsic Functions ..
INTRINSIC MAX. MIN

*
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IF( ( M.EQ.O ).OR.( N.EQ.O ).OR.

$ (( ALPHA.EQ.ZERO).AND.( BETA.EQ.ONE) ) )

$ RETURN

* .. Executable Statements ..
*
* Test the input parameters.
*

INFO = 0

IF ( .NOT.LSAME(TRANS, 'N' ).AND.

$ .NOT.LSAME(TRANS, 'T' ).AND.

$ .NOT.LSAME(TRANS, 'c' ) ) THEN

INFO = 1

ELSE IF( M.LT.O )THEN

INFO = 2

ELSE IF( N.LT.O )THEN

INFO = 3

ELSE IF( KL.LT.O )THEN

INFO = 4

ELSE IF( KU.LT.O )THEN
INFO = 5

ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN
INFO = 8

ELSE IF( INCX.EQ.O )THEN
INFO = 10

ELSE IF( INCY.EQ.O )THEN
INFO = 13

END IF

IF( INFO.NE.O )THEN

CALLXERBLA('SGBMV" INFO)
RETURN

END IF

*

* Quick return if possible.
*
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*

* Set LENX and LENY. the lengths of the vectors x and y. and

* set up the start points in X and Y.
*

IF( LSAME( TRANS. 'N' ) )THEN

LENX = N

LENY =M

ELSE

LENX = M

LENY = N

END IF

IF( INCX.GT.O )THEN

1OC=1

ELSE

KX = 1 - ( LENX - 1 )*INCX

END IF

IF( INCY.GT.O )THEN

KY = 1

ELSE

KY = 1 - ( LENY - 1 )*INCY

END IF

*

* Start the operations. In this version the elements of A are

* accessed sequentially vith one pass through the band part.

*

* First form y := beta*y.
*

IF( BETA.NE.ONE )THEN

IF( INCY.EQ.l )THEN

IF( BETA.EQ.ZERO )THEN
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DO 10, I = 1, LENY

y( I ) = ZERO

10 CONTINUE

ELSE

DO 20, I = 1, LENY

Y( I ) = BETA*Y( I )

20 CONTINUE

END IF

ELSE

IY = KY

IF( BETA.EQ.ZERO )THEN

DO 30, I = 1, LENY

y( IY ) = ZERO

IY = IY + INCY

30 CONTINUE

ELSE

DO 40, I = 1, LENY

Y( IY ) = BETA*Y( IY )

IY = IY + INCY

40 CONTINUE

END IF

END IF

END IF

IF( ALPHA.EQ.ZERO )

$ RETURN

KUP1 = KU + 1

IF( LSAME( TRANS, 'N' ) )THEN

*

* Form y := alpha*A*x+ y.
*

JX=KX



IF( INCY.EQ.1 )THEN

DO 60, J = 1, N

IF ( X ( JX ). NE. ZERO ) THEN

TEMP=ALPBA*X( JX )

K = KUP1 - J

DO 50, I = MAX( 1, J - Ia1 ), MJ:N( H, J + KL )

Y( I ) = Y( I ) + TEMP*A( K + I, J )

CONTINUE

END IF

JX = JX + INCX

60 CONTINUE

50

ELSE

DO 80, J = 1, N

IF( X( JX ).NE.ZERO )THEN

TEMP = ALPHA*X(JX )

IY = KY

K = KUP1 - J

DO 70, I = MAX(1, J - KU ), MIN( M, J + KL )

y( IY ) = Y( IY ) + TEMP*A(K + I, J )
IY = IY + INCY

70 CONTINUE

END IF

JX = JX + INCX

IF ( J. GT.KU )

$ KY = KY + INCY

80 CONTINUE

END IF

ELSE

*
* Form y alpha*A'*x + y.
*

JY = KY

IF( INCX.EQ.l )THEN
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DO 100, J = 1, N
TEMP= ZERO

K = KUPl - J

DO90, I = MAX( 1, J - KU ), MIN( M, J + KL )

TEMP= TEMP+ A( K + I, J )*X( I )

90 CONTINUE

Y( JY ) = y( JY ) + ALPHA*TEMP
JY = JY + INCY

100 CONTINUE

ELSE

DO 120, J = 1, N
TEMP= ZERO

IX = KX
K = KUPl - J

DO 110, I = MAX( 1, J - KU ), MIN( M, J + KL )

TEMP = TEMP + A( K + I, J )*X( IX )

IX = IX + INCX

110 CONTINUE

Y( JY ) = Y( JY ) + ALPHA*TEMP

JY = JY + INCY

IF( J.GT.KU )

$ KX = KX + INCX

120 CONTINUE

END IF

END IF

***************************************************************
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*

RETURN

*
* End of SGBMV.
*

END

*



Appendix C

The Computation Environlllent

The nine experiments shown in tabular form were done on dawn.rice.edu (internet

address 128.42.1.127), a Sun 4/490 computer. The operating system is SunOS

4.1.1. The f77 version is 1.4.

Use of the Sun 4/490 was provided by the Center for Research on Parallel

Computation under NSF Cooperative Agreement No. CCR-8809615 and the State

of Texas contract No. 1059.
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