
Performance Prediction

for Loop Restructuring Optimization

Theresa Alexander

B.S. Physics/Computer Science, Carnegie Mellon University

A thesis submitted to the faculty of the

Oregon Graduate Institute of Science & Technology

in partial fulfillment of the

requirements for the degree
Master of Science

m

Computer Science and Engineering

October 199:3

The thesis "Performance Prediction for Loop Restructuring Optimization" by Theresa

Alexander has been examined a.nd approved by the following Examination Committee:

Michael Wolfe
Associate Professor
Thesis Research Adviser

Steve Otto
Assistant Professor

Allen D. Malony
Assistant Professor
University of Oregon

II

Dedication

I dedicate this work to all women in science and engineering. May there be many more

degrees earned by women at all levels of education.

III

Acknowledgements

I would like to thank my advisor, Dr. Michael Wolfe, for helping my interest in architec-

ture and compilers to grow and develop into a Master's thesis and an education. I very

much appreciate the advice and support I received along the way. I would also like to

thank the Sparse research group, especially Eric Stoltz and Michael Gerlek, I appreciate

the discussions of papers and ideas that help stimulate my interest in the field and also

the company and support while my thesis progressed.

I would like to thank my parents for raising me with the knowledge that there were

no limitations on what I could could accomplish. I thank my brother for giving me a

model of youth and enthusiasm in academics; and my sister for her endless support and

understanding and long telephone calls across the country.

Finally, and most of all, I would like to thank my husband, Bill Alexander, for bot-

tomless encouragement and patience; and also for helping me through a rough transition

as I searched for my niche in academics and industry.

iv

Contents

Dedication 111

Acknowledgements IV

Abstract IX

1 Introduction

1.1 Related Work .
1
2

2 Abstract Machine Model 7
2.1 Processors 7
2.2 Memory Accesses . 8

2.3 Multiprocessors. 9
2.4 Vector Processors. . . 11
2.5 Interleaved Memory 13
2.6 Loop Overhead . 14

3 PerformanceModel 15
3.1 Performance Information. 15
3.2 Uses of Performance Prediction 17
3.3 Parameters 18

3.3.1 Sequential . 18
3.3.2 Parallel . 19
3.3.3 Additional Parameters . . 20

4 Experiment 23
4.1 Linear Regression 23

4.1.1 Goodness of Fit . 25
4.1.2 Residuals . 25

4.2 Prediction Set 26
4.3 Experimental Set 29

v

vi

5 Tools 31

5.1 Tiny. 31

5.2 Loop Restructuring Transformation. . . 32
5.3 Additions to Tiny 33
5.4 Splus. 33
5.5 Other Tools 34
5.6 Execution . 34

6 Results 36
6.1 Single Processor Results 36
6.2 Multiprocessor Results 39
6.3 Prediction Using Sequential Model . . 44

6.4 Prediction Using Parallel Model. 47

7 Discussion 52
7.1 Effects of System Load . 52
7.2 Conditionals. 53
7.3 Coefficients 54
7.4 Compilers. 54
7.5 Tiny. 55
7.6 Other Systems 55

8 Future Work 57
8.1 Increase Scopeof Programs 57
8.2 Multiple Machines . 58
8.3 Other Studies . 58

A Cholesky Decomposition 60

B Prediction Set 68

C Experimental Set 75

D Prediction Data 79

Bibliography 88

List of Tables

6.1 Coefficientsand Intercept for Sequential Performance Model. 37
6.2 Coefficientsand Intercept for Parallel Performance Model 39

6.3 Performance Prediction Times for Sequential LU Decomposition,n = 300 44
6.4 Performance Prediction Times for Sequential Back-substitution 45
6.5 Performance Prediction Times for Parallel LU Decomposition,n=400, p=4 47

6.6 Performance Prediction Times for Parallel LU Decomposition,n=400, p=2 47
6.7 Performance Prediction Times for Parallel Back-substitution 51

D.1 Sequential Performance Times (1 of 2)

D.2 Sequential Performance Times (2 of 2)

D.3 Parallel Performance Times (1 of 7)

D.4 Parallel Performance Times (2 of 7)

D.5 Parallel Performance Times (3 of 7)

D.6 Parallel Performance Times (4 of 7)

D.7 Parallel Performance Times (5 of 7)

D.8 Parallel Performance Times (6 of 7)

D.9 Parallel Performance Times (7 of 7)

80

80

81

82

83

84

85

86

87

VB

List of Figures

1.1 Ordering Graph. 3

6.1 Sequential Performance Model .. 38
6.2 Parallel Performance Model 40

6.3 P=4 data for both General and P=4 Model .. 42

6.4 P=8 data for both General and P=8 Model 43

6.5 Sequential LU Decomposition Performance Prediction 45

6.6 Sequential Back-substitution Performance Prediction. . 46

6.7 Parallel LU Decomposition Performance Prediction. . . 48

6.8 LU Decomposition Performance version K(I(Jp)) with Number of Proces-

sors (n = 500). 49
6.9 Parallel Back-substitution Performance Prediction 50

viii

Abstract

PerformancePrediction

for Loop Restructuring Optimization

Theresa Alexander, M.S.

Oregon Graduate Institute of Science & Technology, 1993

Supervising Professor: Michael Wolfe

Loop restructuring optimizations can effect the performance of a program in a number

of ways. They can change memory access patterns that effect data locality and cache

utilization. They can also enable parallelism of a loop. Furthermore, loop restructur-

ing may change conditions that enable or disable other optimizations. It is not well

understood how to find the optimal loop structure of a program.

Performance prediction is one way to give feedback to a user in order to compare

predicted performance times of a program under different loop structures. We attempt to

empirically create a linear performance model by fitting parameters of programs known

at compiler time to the execution time of the programs. We use regression analysis to

calculate the coefficients and intercept of the linear model. The challenge is to find a

complete set of parameters that reflect both the characteristics of the code and the target

architecture.

IX

Chapter 1

Introduction

Some of the common problems with writing scientific programs for either single or mul-

tiprocessor computers include the fact that although there are a number of optimizing

loop transformations, it is not well understood which transformation or combination of

transformations will give the best results. Program transformations have a large effect on

cache and local memory accesses. Loop interchanging may increase data locality so that

memory accesses follow the cache line increasing cache utilization. Loop transformations

may also enable parallelization or vectorization of a loop.

Performance prediction in a compiler would enable the programmer or the compiler

to compare predicted execution times for each loop construction. We address this by

attempting to form a statistical model which will fit parameters known at compile time

with execution times of scientific loops. We build the model by symbolically counting a

number of program features at compile time. When the program is run, its execution

time is measured, along with the dynamic value of the program features.

We chose a representative group of scientific code that we felt would cover charac-

teristics of most scientific code. We then divided the problem into two subsets, single

and multiprocessor execution. The target architecture used was a 20 processor Sequent

Symmetry, a shared memory multi-user system. The Sequent Symmetry executes each

job on a single processor unless a compiler directive requests a loop to be distributed

to more than one process. Note that there is a difference between executing a loop on

more than one process and executing a loop on more than one processor. If there are

enough free processors each process is assigned to a different processor. Otherwise more

1

2

than one process can be assigned to the same processor. In the course of this evaluation,

the load on the Sequent Symmetry was low and each process was assigned to its own

processor. Thus we will not include load values in our performance prediction. The

effects of system load are addressed later in the paper.

1.1 Related Work

Some research has been done in ordering optimizing transformations. Whitfield and

Soffa [WS90] approached the problem from a theoretical direction. They developed a

framework based on axiomatic specification technique. The framework makes use of pre-

conditions and post conditions that must exist before and after applying optimizations.

Transformations can create conditions that must be present in order to apply other opti-

mizations and they can destroy conditions that might have enabled other optimizations.

Using this information and including the perceived usefulness of each optimization, an

ordering is presented in order to get the best use out of optimization transformations.

The optimizations considered in the above reference include the following:

DCE Dead Code Elimination

CTP Constant Propagation

ICM Invariant Code Motion

LUR Loop Umoiling

8MI Strip Mining

FU8 Loop Fusion

INX Loop Interchanging

After considering the preconditions and post conditions and also the importance of each

optimization, a final ordering was determined. Figure 1.1 depicts the ordering.

This graph suggests the following ordering:

3

Figure 1.1: Ordering Graph

1. CTP - Constant Propagation

2. DCE - Dead Code Elimination

3. INX - Loop Interchanging

4. ICM - Invariant Code Motion

5. INX and ICM

6. LUR - Loop Unrolling

7. FUS - Loop Fusion

8. SMI - Strip Mining

Although our study did not include analysis of the interactions of each of these

optimizations, it is within the capabilities of the prediction model. Each optimization

will change the measured parameters somewhat and the predicted performance will allow

the user to make an informed decision concerning which transformations to apply. In

4

order to determine the optimal ordering of transformations, however, all legal orderings

would have to be tried and the performance predictions compared.

Gannon, Jalby and Gallivan [GJG88] describe a method for using data dependence

to estimate cache and local memory demand in scientific code. These estimates take the

form of "reference" windows for each variable that reflect the set of elements that should

be kept in the cache. In important special cases the size of the window can be estimated

and a lower bound can be predicted for the number of cache hits. This estimate is useful

to guide program transformations in an attempt to optimize cache performance.

They show that data dependence analysis can be extended to give a more refined

algebraic structure to a class of data dependences associated with array index expressions

that are common in scientific code. These dependences are called "uniformly generated" .

A reference window is associated with each data dependence. The reference window of

a data dependence between two statements describes the set of elements (section of the

array) that must be kept in a fast memory level to make sure that any data referenced

by both statements will stay in the fast level as long as both statements continue to be

executed and continue to reference that data item.

They further show that program transformations like loop interchange and blocking

or tiling have a substantial effect on the size of the windows and therefore on the demand

for space in the fast level.

This work is very similar to ours as far as the goal of optimizing programs with pro-

gram transformations. Our research produces feedback through performance prediction

much as theirs does through the size of the active reference windows. We consider pro-

gram optimization on a more global level, however, taking into account all contributions

to performance, rather than just cache and local memory.

Quite a bit of performance analysis research has been performed on an Alliant FX/8

system running the Cedar operating system at University of lllinois. Dimpsey and Iyer

[DI88] used statistical cluster analysis to form a state transition model that jointly char-

acterizes user concurrency and system overhead. The sample workloads they used were

two distinct, real, scientific workloads. Software facilities were used to measure both

5

the amount of concurrency in the workload and the overhead associated with virtual

memory and system operations. For both workloads they found system behavior to be

highly predictable, largely due to slow changes in system states between states of high

user concurrency and high system overhead.

Other work by Dimpsey and Iyer measure performance degradation due to multi-

programming overhead on a time shared, interactive, multiprogramming environment

[DI89]. They found that there is a correlation between the completion time of a program

and the amount of system overhead measured during program execution. This study is

restricted to operating system overhead consisting of process creation and scheduling,

context switching, vector maintenance, device interrupts, synchronization, and paging.

It does not, however, consider system overhead caused by increased memory contention

for physical and cache memories due to multiprogramming. Their results show that

the multiprogramming overhead of parallel jobs consumes at least 4% of processor time.

With two or more serial jobs introduced to the system, the overhead becomes 5.3%.

The approach used by Dimpsey and Iyer is similar to our approach. However they

concentrate on measurements of machine performance taken by instrumentation added

to the machine. Our research focusses on measurements taken in program analysis and

the relationship to performance time.

Menasce and Barroso [MB92] developed a method for performance prediction of

scientific code on shared memory multiprocessors with emphasis on studying the nonde-

terministic behavior caused by memory contention. They determined that the execution

time is dependent on the shared memory access time which is in turn dependent on the

pattern of memory access requests, network contention, and memory module contention.

Their methodology obtains the execution time of parallel programs composed of several

concurrent tasks. The precedence relationship between the tasks is a task graph. The

execution time of each task is shown to be given by the sum of two terms: a fixed term

and a nondeterministic term which is a function of the contention for shared memory.

We incorporate some of this information in our model. We measure memory con-

tention between different processors in parallel execution. We do not, however, consider

6

memory and network contention caused by multiple programs in the multiprocessing

system.

Chapter 2

Abstract Machine Model

The performance time of a program depends on many architectural features of the com-

puter it is run on. Although the user may not be concerned or knowledgeable about

the details of the computer he or she is using, in order to optimize the program they

may have to be taken into account. Using a performance model is a way of encapsulat-

ing these details in a tool and alleviating the need for the user to be an expert on the

machine. Some of the architectural features that our model includes are the instruction

pipeline, the memory hierarchy, multiprocessor overhead, vector execution, interleaved

memory, and loop overhead. Each of these is described in more detail in the following

sections.

2.1 Processors

Most modern architectures have pipelined execution. A typical pipeline may be divided

into instruction fetch, instruction decode and register fetch, execution and effective ad-

dress calculation, memory access, and write back stages. Each of these steps can be

performed simultaneously and thus the execution of multiple instructions is overlapped.

Because floating point operations take more cycles in the execute stage than the other

stages of the pipeline, floating point functional units are often also pipelined. Thus mul-

tiple floating point operations can take place at the same time. Also, multiple functional

units may be available, increasing potential parallelism.

Pipeline stalls can have a serious effect on performance. It is not possible to keep

7

8

the pipeline full all the time due to pipeline hazards. These hazards include resource

conflicts, when there is not enough hardware to keep all of the current instructions

executing at the same time due to demand for functional units or memory ports that are

busy. Data hazards occur when an instruction cannot proceed in the pipeline until the

result of a previous instruction is ready. Control hazards occur when the next instruction

fetch depends on the result of a previous instruction. Branches are often condition, so

the address of the next instruction fetch is not known until the conditional is resolved.

Many architectures will perform branch prediction to alleviate the penalty of control

hazards.

We model the processor by including measures of floating point adds, subtracts,

multiplies, and divides. Because floating point operations take significantly more cy-

cles to complete than integer operations, and because we limit our scope to scientific

programs, we limit these counts to floating point operations and disregard integer op-

erations. Pipeline hazards are measured only indirectly by including performance times

in the model of programs whose execution includes pipeline stalls. Because their perfor-

mance times include the time in which the pipeline was not full, that information and

how it correlates with the parameters of the code is included in the model.

2.2 Memory Accesses

Most memory hierarchies include a small fast cache in addition to main memory itself.

Caches take advantage of spatial and temporal locality of memory references. As data

is referenced an entire cache line is loaded into the cache. If the same memory address

is referenced again in a short amount of time that cache line will not have been replaced

and the data will be found in the cache (temporal locality). In this case we have avoided

a trip to main memory. If nearby addresses are referenced they will be found in the same

cache line already in the cache (spatial locality). This also avoids main memory access.

If the cache has a high hit rate average memory access time as seen by the processor is

very fast. Cache misses, however, have a high penalty because they must access main

9

memory which is relatively slow.

Accesses to main memory are limited by the latency and bandwidth of main memory.

The latency is the number of cycles that it takes to access memory and the cycle time,

the minimum time between requests to memory. The latency is important to the cache

because it affects the cache miss penalty. If the cache line is large, bandwidth also plays

a part in the time to load and store a cache line. Memory bandwidth is also a concern of

vector processors because they load and store an entire vector of data at a time. Vector

processors are discussed in more detail below.

We model memory access time by including measures of the total number of memory

accesses. More information about the pattern of memory accesses is included by mea-

suring the number of stride-l memory accesses in the inner loop as well as the number

of non-stride-l accesses and invariant accesses in the inner loop.

2.3 Multiprocessors

There is additional cost associated with parallel execution on multiprocessor architec-

tures. This includes operating system overhead to create each additional process. It also

includes overhead from memory contention and cache coherence.

Consider the following Fortran subroutine.

subroutine add (a, b, c)

real a(100,100), b(100,100), c(100,100)

do 10 i = 1, 100

c$doacross

do 10 j = 1, 100

c(i,j) = a(i,j) + b(i,j)

10 continue

This subroutine includes a compiler directive written for the Sequent Fortran compiler

that instructs the compiler that the inner loop should be performed in parallel. If there

are 9 processors available for use, in addition to the processor that is already active, each

10

time the inner loop is called 9 processes must be activated and put on the job queue

for the processors. Each process will be responsible for calculating 10 iterations of the

inner loop. The outer loop is performed 100 times and thus this overhead is incurred

100 times during the execution of this subroutine.

Another version of the loop is more optimal:

subroutine add (a, b, c)

real a(100,100), b(100,100), c(100,100)

c$doacross

do 10 i = 1, 100

do 10 j = 1, 100

c(i,j) = a(i,j) + b(i,j)

10 continue

In this version only 9 new processes are created. The current process also participates.

Each process performs 10 iterations of the outer loop. Each of these iterations includes

100 iterations of the inner loop. However, no additional overhead is incurred to perform

the inner loop.

Another factor that adds overhead is increased traffic on the memory bus. Now we

have 10 processors accessing the same arrays. Consider the following case:

subroutine add (a, b, c)

real a(100,100), b(100), c(100,100)

do 10 i = 1, 100

c$doacross

do 10 j = 1, 100

c(i,j) = a(i,j) + b(i)

10 continue

In this subroutine the inner loop is performed in multiple processes. Each iteration of

the inner loop accesses the entire b array. If this were performed on a single processor

11

the b array would be cached and accesses would be very fast. In this case the access is a

read access and thus may be cached locally on the processors as a read-only copy. This

is dependent on the cache architecture.

The case of write conflicts is more complex. The case in which more than one pro-

cessor is updating the same memory location will result in a race condition to determine

which value is written last and thus will be the resulting value. The results of this situ-

ation is indeterminate. If the loop was parallelized while taking care not to violate data

dependences this condition will not occur. However, false sharing occurs if more than

one processor writes to memory locations that are on the same cache line. The cache co-

herence protocol dictates how different processors share data in their caches. A popular

protocol is write-exclusive. In this case the processor performing the first memory access

will load the cache line into its local cache. Then as the subsequent processors write to

a memory location on the same cache line they will have to send an invalidate signal

so that the first processor will either write its copy to memory or, if it has a read-only

copy, invalidate the cache line in their cache. When all copies of the cache line have been

written or invalidated, the cache line is read from memory into the cache local to the

processor that has just requested the data. If several processors are writing data to the

same general location in memory this overhead can become very significant.

2.4 Vector Processors

Vector processors include separate functional units for vector operations. Vector oper-

ations are operations between arrays of numbers (vectors). A typical vector operation

may multiply two vectors of 64 floating point numbers element-wise and obtain a new

vector containing the result. The sequential code for this operation may be a loop step-

ping through two arrays, during each iteration two array elements are multiplied and

the result stored in a third array.

The vector unit contains several functional units which are deeply pipelined. The

latency for these units can be several clock cycles, but a new operation can be started

12

every clock cycle. Operations include arithmetic operations, and also memory accesses

and effective address calculations. In many architectures multiple vector operations can

be done at the same time, creating parallelism among the operations on different vector

elements.

Vector operations have several advantages over pipelined scalar operations on the

same input.

. Because the computation of each result is independent of the computation of the pre-

vious result there are no data hazards. This allows the deeply pipelined functional

unit to operate without expensive stalls. The absence of data hazards was deter-

mined by the programmer or compiler when the vector instruction was written.

. Control hazards are reduced because the loop conditional no longer exists. The entire

operation of the loop is contained in the vector operation.

. Fewer instructions must be fetched because a vector instruction contains operations

for each element ofthe vector. This reduces the bottleneck offetching instructions.

Vector operations also access memory in regular ways. Vectors either move across

the row or column of an array. Depending on the language being used, one of these

patterns will access memory contiguously. That is, each data element accessed is stored

contiguously in memory. The other pattern will access memory at a constant interval,

called the stride of the vector. If the program is iterating through the columns of an

array in Fortran, each access will be offset from the last by the number of rows in the

array. If the architecture contains vector registers, the vector elements are read into the

vector register with a vector load and the data elements are accessed sequentially for

the vector operations and then written back to memory using a vector store. Thus the

stride will not effect the operation of the vector functional unit.

In the course of this study we did not model program execution on vector processors.

However, measurements that would have been added to the model include the number

of vector operations. This measurement, when correlated with the performance time of

13

a program, would capture information such as the vector length on the machine and the

startup time for a vector operation.

2.5 Interleaved Memory

Interleaved memory can decrease the effective memory access time of loading or storing

a vector. Interleaved memory is organized into a number of banks. The low bits of an

address are used for bank selection. Each bank can be accessed independently, allowing

memory accesses in different banks to be performed in parallel. Although the memory

bus remains the same size, the memory bandwidth increases because the access times

are overlapped with other memory accesses in different banks. Vector data is often

consecutive in memory (stride 1) so each access will be to the next memory bank. By

the time one bank is accessed again, the previous access may have completed, allowing

maximum speedup from the interleaved memory. In the worst case, the stride of the

vector is the same as the number of memory banks. In this case, each memory access

will access the same memory bank and there is no overlap of access times.

Interleaved memory is also advantageous for caches. A cache loads data a cache line

at a time. Since a cache line is consecutive in memory, it accesses memory sequentially

and makes full use of the memory banks. If the cache has a write back policy it will

also write a full cache line at a time, getting even more efficiency out of the interleaved

memory.

Although in this study we do not model interleaved memory, our measurements in-

clude stride-1 one and non-stride-1 memory references. In the case of memory operations

this information includes the number of memory accesses that follow the cache line. In

the case of vector loads and stores this information discloses how much efficiency can be

extracted from the interleaved memory when loading or storing vectors, this efficiency

is dependent on bank conflicts. Thus the necessary information to model interleaved

memory in already included in the parameters for the performance model and could be

implemented on the appropriate architecture.

14

2.6 Loop Overhead

A certain amount of overhead is associated with every loop entry in a program. Each

loop contains a number of instructions that must be performed. It contains a conditional

that determines whether the loop is executed. The conditional must be checked at every

iteration of the loop. When the bottom of a loop is reached a jump operation must be

performed to in order to bring the control back to the top of the loop. Loop indices

must be incremented on every iteration. Together, this overhead includes three or more

instructions that must be executed at every iteration of a loop.

Pipelined architectures may have the additional overhead of having to stall the

pipeline as the loop conditional is being executed. Subsequent instructions will be fetched

from different locations depending on the results on the result of the conditional and

might not be fetched until the result is available.

Loop unrolling is one optimization that can reduce loop overhead. More than one

iteration of the loop can be performed within the same loop body. In this case the loop

is performed only a factor of the number of initial iterations and the overhead is reduced

proportionally.

In order to model the performance cost of loop overhead, we measure the number of

total loop iterations executed.

Chapter 3

Performance Model

The performance model is a linear model that can be applied to parameters measured

from scientific programs to predict the performance time of these programs. The model

is created from parameters measured from real scientific programs and the execution

time of these programs. The linear relationship between these measured parameters and

the performance time forms the performance prediction model.

performancetime = coefo+ coeftPl+ coeh,P2+ ...+ coefnPn (3.1)

where Pi are the parameters, and the coefficients are determined experimentally. Pa-

rameters are static counts taken from the code such as the number of floating point

operations or the number of stride-l memory accesses in the inner loop. Each parameter

includes information important to predict performance of the program.

3.1 Performance Information

The performance model makes a prediction of performance based on measured param-

eters and the linear model. These parameters can be measured at compile time. Per-

formance information that is included in the parameters includes the contribution to

performance by floating point instructions, cache effects, memory contention, parallel

process overhead, and others.

Floating point operations take many more cycles in the instruction pipeline than

integer operations. Because scientific code is dominated by floating point operations, we

15

16

model the performance of a code segment by the number of floating point operations

and disregard integer operations.

Memory operations also have a large contribution and are included in the measured

parameters. Each processor has a local cache which stores recently referenced data items.

Memory accesses fall into two cases: those that hit in the cache and those that miss in the

cache. In order to measure this effect, we calculate the number of stride one operations

in the inner loop. Stride one operations are those where the array index is incremented

such that each successive iteration references the next sequential array element stored

in memory. In Fortran, this means that it is incremented along the column of the array.

These operations correspond to memory accesses that are most likely to hit in the cache

because of spatial locality. References that are stride one will follow the cache line; as

long as the cache line is not replaced in the cache, each memory successive memory

reference will refer to a data element in that cache line.

In the case of parallel loops, the loop iterations are divided among the participating

processors. The number of processors that will participate may be known at compile

time. Otherwise, the maximum number available may be assumed. If each iteration of

a loop accesses the same location in memory, there will be memory contention. Each

of the processors will try to load the data into their local cache. In the case of write

operations only one processor can own the data at a time so this process is serialized

and processors have to wait until the data item is released by the current owner before it

can be accessed. In the case of read operations more than one copy can exist, but there

will be additional overhead incurred by the increase in bus traffic as all of the processors

try to load the data. We extract this effect on performance by measuring the number

of memory operations that are invariant in the parallel loop. That is, each iteration

accesses the same data element.

Another strong effect on performance come from the operating system overhead of

forking new processes and synchronizing for parallel loops. This contribution is easily

parameterized as it is proportional to the number of parallel forks in a code segment.

The way that parallel loops are implemented is specific to the machine it is run on. On

17

the Sequent Symmetry, parallel forks occur at each instance of a parallel loop construct.

The number of forks at each parallel loop is equal to the number of processors that

you have requested or the minimum number of loop iterations, whichever is less. If the

parallel loop is not the outer loop, this cost is incurred at every instance the parallel

loop occurs within the outer loop(s).

3.2 Uses of Performance Prediction

A performance model has a number of uses. The intention of this research is to use

the performance prediction to compare performance of different loop transformations

of a section of code. Performance evaluation and prediction is traditionally used both

to investigate how to perform computations efficiently and to determine what resources

a computer needs in order to achieve this. This includes uses by both software and

hardware developers.

Performance analysis of an application can focus specifically on the performance

of a given application, or it may have a broader scope and be aimed at determining

potential parallelism in computationally intensive applications. One could also analyze

the performance of an application across a multitude of systems to determine the most

suitable one. In a more general viewpoint, performance analysis can aid in understanding

the effects of architectural features on an applications performance and also investigate

the effects of the compiler and operating system on efficiency.

From the hardware developer's perspective, performance analysis is useful to de-

termine the requirements of parallel architectures to support computationally intensive

applications. These systems range from shared memory multiprocessors to distributed

memory multi-computers with many variations in between. The granularity of the system

also ranges from massively parallel systems to systems with small numbers of processors.

18

3.3 Parameters

The initial parameters measured and used in creating the performance model are dis-

cussed:

3.3.1 Sequential

Number of Floating Point Operations: The number of floating point operations is

proportional to the amount of time it takes to execute each floating point operation.

This measure was refined later in the experiment to include more information about

the types of floating point operations.

N umber of Memory Operations: The number of memory operations is proportional

to the total time spent reading and writing to memory. More information is needed,

however, to take cache effects into consideration. This information is included in

the following parameters.

Number of Stride One Operations in Inner Loop: The stride one memory accesses

in the inner loop are the accesses that follow the cache line. These memory accesses

are singled out because they will have much shorter access time on average. The

cache line will be loaded on the first cache miss and subsequent accesses will be

already in the cache until the end of the cache line is reached.

Number of Non-stride-l Operations in Inner Loop: The non-stride-l memoryac-

cesses are the memory accesses that will usually not hit in the cache because sub-

sequent accesses are offset in memory by a constant factor that may be greater

than the size of the cache line. These accesses usually go to memory and are much

more expensive in performance than a cache hit.

Number of Invariant Operations in inner loop: Invariant memory accesses are mem-

ory locations that are accessed in every iteration of the loop. If they are kept in

a register then memory access is very fast. If it is not kept in a register and the

19

cache line is not replaced from iteration to iteration, the access will hit in the cache.

Otherwise the memory access must go to main memory.

N umber of Loop Iterations: The number of loop iterations provides a measure for

the amount of loop overhead associated with each iteration.

3.3.2 Parallel

The parameters for the parallel model are similar to the sequential model. However, the

counts must be adjusted to take into account the fact that each processor only performs a

fraction of the operations. The maximum number of operations in a process is performed

by the original process that executes any sequential code and forks off other processes

when parallel loops are reached. The number of operations executed by this process

is the total number of operations executed in the sequential sections and lip of the

operations performed in the parallel sections where p is the number of processors.

Maximum Number of Floating Point Operations in Parallel: The maximum num-

ber of floating point operations is proportional to the time each processor spends

executing floating point operations.

Maximum Number of Memory Operations in Parallel: The maximum number

of memory operations is proportional to the time spent by each processor read-

ing and writing to memory.

Number of Parallel Stride-l Operations in Inner Loop: The stride one accesses

in the inner are the accesses that follow the cache line of the cache local to each

processor. Although it is possible for these accesses to cause memory contention

between processors, this measurement is left for a different parameter.

Number of Parallel Non-stride-l Operations in Inner Loop: The non-stride-1 mem-

ory accesses are the memory accesses that will usually not hit in the cache of the

local processor because subsequent accesses are offset in memory by a constant

factor that may be greater than the size of the cache line.

20

Number of Parallel Invariant Operations in Inner Loop: Invariant memory ac-

cesses are memory locations that are accessed in every iteration of the loop. Since

iterations is executed in parallel, each processor will be accessing the same location

in memory. This number is a measure of memory contention in the parallel loop.

N umber of Parallel Stride One Operations: This parameter is the same as the

number of stride one operations in the inner loop in parallel if the inner loop

is the parallel loop. However, it includes all stride one operations within parallel

loops. This measurement as well as the next two reveal memory access patterns

to shared memory.

Number of Parallel Non-Stride-l Operations: The total number of non-stride-l

memory accesses that take place inside a parallel loop.

N umber of Parallel Invariant Operations: The total number of invariant memory

accesses that take place inside a parallel loop.

Number of Parallel Forks: The number of parallel forks parameterizes the contribu-

tion to the performance time caused by the overhead of forking each process.

3.3.3 Additional Parameters

As the experiment progressed it became clear that not enough performance information

was being included and that some of the information was not at a fine enough granularity.

This caused the following parameters to be added to the list in addition to or to replace

previous parameters.

Floating point operations vary significantly in number of cycles to complete. By

reducing the granularity of this measurement to differentiate between each floating point

operation more accurate performance information can be inferred.

Floating Point Adds: This parameter and the following parameters replace the Num-

ber of Floating Point Operations parameter described previously. They provide

more accurate information by isolating each type of floating point operation.

21

Floating Point Subtracts

Floating Point Multiplies

Floating Point Divides

Floating Point Sqrt: This parameter and the next measure are added to extend the

standard floating point operations to include a couple of common operations. The

number of square roots parameterizes performance time due to calculating square

roots of floating point numbers.

Floating Point Exp: The number of exponentiations parameterizes performance time

due to calculating exponentials of floating point numbers.

Similarly, the parallel model was adjusted to include more accurate performance infor-

mation about floating point operations.

Maximum Floating Point Adds in Parallel: This parameter and the following pa-

rameters replace the number of floating point operations in parallel.

Maximum Floating Point Subtracts in Parallel

Maximum Floating Point Multiplies in Parallel

Maximum Floating Point Divides in Parallel

Maximum Floating Point Sqrt in Parallel: The maximum number of square roots

on a single processor is proportional to the contribution to the performance caused

by the execution of an operation to calculate the square root of a floating point

number.

Maximum Floating Point Exp in Parallel: The maximum number exponentials on

a single processor is proportional to the contribution to the performance caused

by the execution of an operation to calculate the exponent of floating point point

numbers.

22

The previous information on memory accesses in parallel loops was not always able

to account for all occasions of memory contention between processors. Invariant accesses

were known to cause memory contention but stride-l and non-stride-l did not provide

enough information to determine memory access patterns between processors. Further-

more, read and write contention have very different performance effects. Read contention

may cause very little performance hit as multiple copies can exist at the same time. In

the case of write contention, however, only one copy can exist and there is overhead

associated with managing this copy.

Total Parallel Read Contention: The total parallel read contention is a measure of

the number of memory fetches that will access the same location across iterations

of the same parallel loop. This number is proportional to the overhead caused

by multiple processors loading the value or the cache line into their local memory

(register or cache).

Total Parallel Write Contention: Total parallel write contention is a measure of

memory stores that will write to the same location from different iterations of the

parallel loop. This number is proportional to the overhead caused by managing

consistency of the global memory space.

In our final model we include ten parameters for the sequential model and sixteen

parameters for the parallel model. Processor performance is measured by the number

of floating point adds, subtracts, multiplies, and divides as well as the number of ex-

ponentiations and square roots. In the parallel model these measures are adjusted per

processor. Memory accesses and contention is measured by the total memory accesses as

well as the number of stride one, non-stride one, and invariant memory accesses in the

inner loop. The parallel model includes these measurements in the inner loop as well as

the parallel loop. Additional measurements include memory read and write contention.

Loop overhead is measured by number of loop iterations. Process overhead is measured

by the number of parallel forks.

Chapter 4

Experiment

Our goal is to predict the execution time of a program by using a performance model

based on the parameters discussed in Chapter 3. We count these parameters for a series

of different programs and different structures of each program. We then measure the

actual execution time of each program and perform a least squares fit and extract the

coefficients and the intercept that will provide a linear fit between the parameters and

the execution time. ITthe least squares fit was good and the loops used in the analysis

were representative, then these results form a model that can be used to predict the

execution time for other scientific code.

4.1 Linear Regression

The performance model was a result of multiple regression analysis. Regression analysis

is a data analysis technique used to investigate the relationship between a dependent vari-

able Y and one or more independent (predictor) variables XI, X2, ..., Xn. The regression

model can be written as:

(4.1)

Yi is the measured execution time for program i and the X's are the measured parameters

for that program Bo is the intercept for the line, Bl..Bn are the partial regression slope

coefficients, and ei is the residual term.

23

24

This equation corresponds to a system of equations of the form

(4.2)

In matrix notation this system of equations can be written as

where

Y = 1 by p column vector of observations on the independent variable Y

x = n + 1 by p matrix that results from p observations on n independent variables

XI, ...,Xn, where the first column of 1's represent the intercept term Bo; that is,

Xo = 1

B = 1 by n + 1 column vector of unknown parameters Bo, BI, ..., Bn, where Bl is

the intercept term, and B1, ..., Bn are called the partial regression coefficients or

weights

e = 1 by p column vector of p residuals ei

The performance model was created by collecting measurements of execution time

along with a number of parameters. The execution times are the dependent, Yi values

and the other measured parameters become the independent variables, Xij in the model.

There is an assumption that these parameters are related linearly with the execution

time. Violations of this assumption are discussed in the next section. Once the least

squares fit is performed, the model can be used to predict the execution times of code

1 Xn X21

... Xnl 1 r Bo \ I eo1 X12 X22

... Xn2 B, I l e,... Xnp Jl n (,

(4.3)

1 X1p X2p

25

segments that were not part of the model. This can be done by solving the equation

(4.4)

Where Y is the predicted value for the execution time of the code segment with param-

4.1.1 Goodness of Fit

The multiple coefficient of determination, R2 (also known as the squared multiple corre-

lation coefficient) is used to measure how good a fit we achieved in creating the model.

This statistic represents the the proportion of total variability in the execution times

that is accounted for in the regression model. R2 is only a measure of how well the

model fits the data that we used in our regression analysis, not how well the model can

be used to predict performance on new data.

R2 = 1 _ I:i:oC1i - Yi)2 = total variability - left-over variability
I:i:o(Yi - Y)2 total variability

(4.5)

Yi is the real execution time, Yi is the predicted execution time, and Y is the mean of

the real execution times over all programs included in the model. R2 represents the total

variability in the response variable Y that is accounted for by the regression model. R2

is restricted to the interval 0 <= R2 <= 1. A value near 1 is indicative of a good fit. By

inspection, it is clear that a value of 1 would occur when the predicted data is identical

to the predicted data.

4.1.2 Residuals

Another measure of how good the linear fit was on the data is to look at the difference

between the real value of Y for each data point and the value of Y predicted by the

model. The residual can be calculated as follows:

residuali =Yi - Yi (4.6)

Each data point represents a particular combination of characteristics of a program. The

value of the residual is important because it shows how well the model represents that

26

particular collection of characteristics. The performance of any program with similar

counts for the parameters would likely be inaccurately predicted by the model. A posi-

tive residual means that the model is overestimating the performance of that particular

program. A negative residual means that the model is underestimating the performance

of that program. How poorly the model is representing the data point can be determined

by comparing the residual with the performance value. The magnitude of the residual

should be a small proportion of the value.

Residuals can also be used to measure how good a job the model did to predict

the performance time of a program. In this case, after predicting the performance time

the program is run and the actual performance is measured. This is the value used to

compute the residual.

Residual versus performance value plots are used in the results section to measure how

well the model represents the prediction set of programs and to measure the effectiveness

of the model on the experimental set of programs.

Another use of residual plots is to determine if the model is incomplete. If the

residuals form a linear pattern, there may be a linear relationship that is not included

in the model. The addition of another parameter may help to reduce the residuals and

provide a better model. On the other hand, a curvature in the residuals may represent

some non-linear factor that is not represented by the model. This would disprove the

assumption we made previously that a linear relationship exists between the parameters

and the execution time.

4.2 Prediction Set

The programs in the prediction set included a number of programs with different versions

of the same program representing a different loop structure, problem size, or number of

processors. The criteria for selecting the set of programs used to create the performance

model included a number of considerations. The set should include characteristics of

programs that are commonly used in the scientific community. This is due to the fact that

27

the model will be built around the parameters measured from these programs. Programs

that include characteristics that are not included in the base set might have parameters

that are not well represented in the model and thus the performance prediction for these

programs will not be accurate.

For example, in the simple case where the base set of programs include no floating

point divides, the resulting model will not include any information about floating point

divides and the coefficient for that parameter would be zero. As a result, if a performance

prediction is performed on a program that contains floating point divides in the inner

loop, that prediction is likely to underestimate the performance time. In this example,

the model does not include this relationship between number of floating point divides

and performance. Thus the resulting performance prediction will be inaccurate.

Another example is memory contention. The relationship between memory con-

tention and performance was discussed earlier. If the base set does not include a program

that has this characteristic, then the model will not contain the necessary information

to accurately predict the performance of programs that contain memory contention. In

fact, this is true for any of the parameters that we use in our model. They must all be

well represented.

Another factor that must be considered is the proportion in which each parameter

is represented. If a characteristic is included, but it is under-represented in the base set

of programs then it may result in becoming an outlier in the fit. The R2 term which

we use to measure the fit does not always expose the fact that these outliers exist. If

they are in very small numbers, the R2 term will not be significantly affected. For this

reason, care was taken to represent each characteristic in as even a manner as possible.

As an example, instead of including only one version of a program that contains memory

contention, multiple versions were included. This reduces the likelihood that that one

program would become an outlier in the model and memory contention would not be

represented in the model. Due to the dimensionality of the problem it is not possible to

graphically represent the problem space in order to inspect the fit for outliers. However,

a graph of the residuals after the fit is completed is a good measure of whether there

28

were data points that were not close to the line.

Which programs to use in the prediction set is only one issue. Another is what

form of the program to use. Different loop orderings were included for the programs in

order to include data with different memory access patterns but the same instructions.

Loop transformations were performed using Tiny, a loop restructuring research tool. For

example, one algorithm for Cholesky decomposition of a matrix follows:

subroutine chol(n, a)

integer n
real a(n,n)

do 10 k = 1,n

a(k,k) = sqrt(a(k,k))

do 20 i = k+1,n

a(i,k) = a(i,k)/a(k,k)

do 30 j = k+1,i

a(i,j) = a(i,j)-a(i,k)*a(j,k)
30 continue

20 continue

10 continue

end

By performing loop distributions and loop interchanges on this code segment and by

parallelizing different levels of the nested loops, it is possible to create at least fifteen

different versions of this code. A listing of these versions can be found in Appendix A.

Each version is characterized by a label ofthe type K(I(J)). In this case K represents the

outer loop which contains I, the next level loop, which in turn contains J, the innermost

loop. Parallel loops use a "p" suffix, as K(I(Jp)).

Finally, performance depends on which loop level was run in parallel and how many

processors it was run on. The Sequent does not allow nested parallel loops so each

allowable level of parallelization was included in the model. The loop transformations

mentioned above change the dependences within the loop which determine which loop

29

levels are allowed to be parallelized. Each version of parallel loop was run on differing

numbers of processors in order to include data for each.

The base set of programs that was used for the final performance models includes

the following:

Cholesky Decomposition A specialization ofLU decomposition for symmetric, positive-

definite matrices. The sequential model includes eight versions of the program and

problem size n = 100,200,300, and 400. The parallel model includes seven versions

of the program run with number of processors p = 2, 4, 6, 8, and 10and array size

n = 50, 100, 200, 300, and 500.

Matrix Multiply Multiplication of two matrixes. The sequential model includes four

versions of the program and problem size n = 100,200,300, and 400. The parallel

model includes nine versions of the program run with number of processors p = 2,

4, 6, 8, and 10and arraysizen = 50, 100,200,300,and 500.

Other Programs created by hand in order to represent characteristics not found in the

rest of the base set. Each of these has one sequential and one parallel version.

The sequential program is executed with problem size n = 100, 200, 300, and 500.

The parallel version is executed with problem size n = 100,200,300, and 500 and

number of processors p = 2, 4, 6, 8, and 10.

The code for each of these programs is included in Appendix B.

4.3 Experimental Set

The experimental set includes both programs that were used in creating the model and

programs that were not used in the model. Programs were chosen that were representa-

tive of programs used in the scientific community.

LV Decomposition Decomposes a matrix into its upper and lower triangular parts.

There are four sequential and six parallel versions of this program. The sequential

30

versions are executed with varying problem size n = 100, 200, 300, and 400. The

parallel versions are run with varying problem size n = 100,200, 300, and 400 and

varying number of processors p = 2, 4, 6, 8, 10.

Back-Substitution The back-substitution part of Gaussian elimination. There are

two sequential and two parallel versionsof this program. The sequential versions

are executed with varying problem size n = 300, 400, 500, and 600. The parallel

versions are run with varying problem size n = 300,400,500, and 600 and varying

number of processors p = 4, 6, 8.

The code for LU Decomposition and back-substitution are included in Appendix C.

Chapter 5

Tools

A number of tools were used in the data collection and analysis phase of this project.

The Tiny program was used to analyze programs and collect counts for the parameters.

It was also used to perform loop transformations on the program. Splus, a data analysis

environment, was used to create the linear model from the data. Other tools assisted in

running the programs and collecting data.

5.1 Tiny

Tiny is a program restructuring tool for a simple imperative language [WoI91b]. The

main objective of Tiny is loop restructuring. Tiny has a menu based user interface,

which allows users to restructure loops interactively. During an interactive session, illegal

restructuring (i.e. those which may change the semantics of the original program) are

detected by its built-in data dependence analysis, and users are informed automatically.

After this session, Tiny can convert the program to an executable C or Fortran program

with parallel execution directives.

Unlike Fortran, the Tiny language is not designed to write big scientific programs.

We can easily convert a well-formed loop structure as would be written by Fortran DO

statements to a Tiny program and can restructure the program to get more parallelism,

although it does not have several important features to write real application programs,

like subroutine calls, I/O, or intrinsic math libraries.

31

32

5.2 Loop Restructuring Transformation

Using direction vectors and/or other results of the dependence analysis, Tiny can re-

structure loops without changing the semantics of the original program. Currently Tiny

supports the following eight loop restructuring transformations.

Parallelization Try to parallelize a loop. If there is no loop carried dependence for the

loop, this transformation succeeds.

Vectorization Try to vectorize a loop. If the loop is the innermost and it has no loop

carried dependence cycle, this transformation succeeds.

Distribution Try to distribute a multi-statement loop. All dependence cycles should

be kept in a single loop.

Interchange Try to interchange a loop with its immediate outer loop. If there is no

«,» dependence relation concerning the (outer, inner) loops, this succeeds. Non-

tightly nested loops can also be interchanged.

Circulation Try to move the innermost (or outermost) loop to the outermost (or in-

nermost) position in a single step.

Skewing Add (or subtract) an outer loop index to the lower and the upper limits for

an inner loop. This is always legal and can change its direction vectors, allowing

interchanging or other restructuring.

Reversal Try to reverse the execution order of a loop. If the loop carries no dependen-

cies this succeeds.

More discussion on these transformations can be found in [WoI91a).

33

5.3 Additions to Tiny

At the time this research was begun Tiny kept limited statistics on a program, such as

the number of floating point operations, memory operations, stride-l operations, non-

stride-l operations, invariant operations, and parallel forks. This is done by visiting

each statement in the intermediate representation and keeping a symbolic count of the

operations. Operations inside loops are counted in terms of the loop limits. We expanded

the statistics collected to include the counts we needed to extract or calculate each of

our parameters. This involved making counts of more operations such as floating point

adds, etc., and also more specific cases such as operations inside parallel and/or inner

loops.

In addition to displaying this information on the screen and writing it to a file,

we added the ability in Tiny to write this information as a Fortran procedure. The

procedure contained a series of write statements, each containing a string describing one

of the statistics. The program written in Tiny was also converted into Fortran and was

instrumented to collect timing information. The Fortran program was executed using a

script and the timing information and statistics were written to a file.

5.4 Splus

Splus is a statistical language and environment [BCW88]. This was the medium used

to process and analyze the data. Splus has a built-in least-squares fit function which

uses the QR decomposition of the x matrix. The LINPACK library contains subroutines

that use the QR decomposition of x along with the y values to estimate the coefficients,

residuals, and other statistics. The Splus linear fitting function takes advantage of these

LINPACK subroutines and provides these results and statistics. The residuals are used

to calculate the R2 value and to create the residuals plots used for data analysis. The

coefficients and intercept returned by the linear fit function defined the performance

models from data collected for each parameter for each program in the experiment set.

Splus was also used to calculate prediction times using the measured parameters for the

34

programs we wish to predict and the coefficients and intercept of the linear performance

model.

5.5 Other Tools

Data was collected by running each program with the output procedure added by Tiny.

Each program was run multiple times while timing information was collected. The

average execution times were kept. A script ran each program with differing values for

the number of loop iterations (also the size of the arrays) and number of processors. In

writing the output file the script parsed and evaluated the symbolic counts substituting

reals values for the loop limits and extracted the performance time and the information

needed for the model parameters. The data from each program was collected and written

in an easy to understand, English format.

An additional script extracted the data from the output file and wrote a data file,

packing data in a format readable by Splus. This script allowed the output file to contain

any amount of data which might not be used in the model. The information required

for the current model could be extracted from the output file. If the model changed and

required new information there was no need to re-run the programs; changes could be

made in this script to include a different set of data and the data could be extracted

from the same output file.

5.6 Execution

Programs were run on the Sequent Symmetry with twenty processors. Execution of

programs run in parallel was limited to ten or less processors in order to ensure that

no other users were sharing the processors. Each processor is a 16 MHz 386 with 32

KB cache and a 16 B cache line. The operating system is Dynix version 3.2.0. The

Fortran programs were compiled using the ATS FORTRAN compiler and the parallel

programming libraries. In order to minimize confounding effects from the compiler, op-

timization was not turned on. The effects of the compiler on the model will be discussed

35

later. Each Fortran program included measured the execution time of the subroutine

being measured by running it five times, discarding the first time in order to ensure a

warm cache and averaging the rest. Time was measured by the SECNDSO function call

that takes a time in seconds as an argument and returns the number of seconds that

has elapsed since that time. In this way the number of seconds that elapsed from right

before the subroutine call to right after the call completed was calculated.

Chapter 6

Results

Performing the least squares fit on the parameters collected from the prediction set of

programs and the performance times for those programs creates the coefficients that

represent the performance model. In the following sections we will discuss the fit of each

model, sequential and parallel, and the results of performance prediction using these

models.

6.1 Single Processor Results

There are ten parameters for the sequential model. These parameters were discussed in

detail in the previous chapter. Table 6.1 contains the coefficient for each of the param-

eters. There are three categories of coefficients: zero coefficients, positive coefficients,

and negative coefficients.

A parameter with a zero coefficient can be removed from the model without any loss

of information. In this case both the number of invariant operations in the inner loop and

the number of loop iterations adds no information to the model. It does not mean that

these parameters are not contributing to the performance time of the programs. It means

that they are making no further contribution to the model. That is, any variance in the

model that is due to these parameters has already been removed by other parameters.

These parameters are not independent from the rest of the parameters.

Positive and negative coefficients are both contributions to the performance model.

It is important to keep in mind that these coefficients do not represent the contribution

36

37

Table 6.1: Coefficients and Intercept for Sequential Performance Model

to the performance time from each parameter but the amount of variance in the model

that is associated with this parameter. The coefficients, along with the parameters and

the intercept point represent the best fit line in the linear model. With this in mind it

is not surprising that some of the parameters are negative. The interdependence among

the parameters and the intercept point in the model all have influence on the coefficients.

The R2 value for the sequential model is 0.995. The residual plot is shown in Fig-

ure 6.1. The plot shows increasing magnitude of residuals as performance time increases.

Since there is a linear relationship present rather than randomly scattered residuals, there

are still some linear variables unaccounted for. Possible omissions are integer operations

or operating system overhead that is independent of program parameters. The only

points in the residual plot that have a significant residual value (more than 10% of the

performance time) have very small performance times. In these cases any operating

system overhead is a significant portion of the performance time. For this reason the

model loses accuracy for programs with small execution times. We will limit the model

to programs with performance times greater then one second. This is not actually much

of a limitation because we are modeling scientific code which in general has performance

times much greater than one second.

Parameter Coefficient
Intercept -0.97

Floating Point Adds -1.27e-5

Floating Point Subtracts -1.14e-5

Floating Point Multiplies -1.43e-5

Floating Point Divides -1.25e-5

Floating Point Exp 4.81e-6

Floating Point Sqrt 4.87e-6

Memory Operations 9.65e-6

Stride-l Operations in Inner Loop -6.92e-6

Non-Stride-1 Operations in Inner Loop 1.61e-7

Invariant Operations in Inner Loop 0.00

Loop Iterations 0.00

o 100 200 300 400 500

-.

Performance Time (sec)

Figure 6.1: Sequential Performance Model

38

0

- .(.) I
Q) 0 .en C\I I-

i- .en . .CtS0 " . , .::J . .."U
.00 .Q) ,
a:

0
I

39

Table 6.2: Coefficients and Intercept for Parallel Performance Model

6.2 Multiprocessor Results

The parallel performance model has a number of parameters in addition to those used

in the sequential model. Table 6.2 shows the parameters and coefficients for the parallel

model. Once again we find that the number of memory operations is not necessary in

the parallel model. The same is true for the number of loop iterations. In addition,

the number of writes to the same memory location did not contribute to the model. It

was found that this parameter did not occur in any of the experiment set of programs.

As discussed previously, multiple writes to the same memory location in a parallel loop

violates data dependency relations. Other parameters that are specific to multi-processor

execution were found to contribute to the model. For instance, the overhead of creating

new processes to run the parallel loop executions does contribute to the model. Memory

read contention was present in the experimental programs and did contribute to the

model. Similarly, the stride in the inner loop of the parallel execution was found to be

Parameter Coefficient
Intercept -0.48

Max Stride-1 Operations in Inner Loop 3.38e-6

Max Non-stride-1 Operations in Inner Loop 4.23e-6

Max Invariant Operations in Inner Loop 3.70e-6

Max Floating Point Adds 2.74e-6

Max Floating Point Subtracts 3.83e-6

Max Floating Point Multiplies -6.92e-6

Max Floating Point Divides 1.62e-5

Max Floating Point Exp 2.72e-5

Max Floating Point Sqrt 3.80e-5

Memory Operations 0.00

Par Stride-1 Operations in Inner Loop -1.36e-6

Par Non-stride-1 Operations in Inner Loop -1.9ge-6

Par Invariant Operations in Inner Loop 3.16e-6
Par Read 9.53e-7
Par Write 0.00
Parallel Forks 1.70e-4

Loop Iterations 0.00

40

o
~ .--.c..> .

Q) 0 .U) C\J ...- ,.U)
18iiJ

.. .. ·
to 0 ~..I'"::J
:c . .."',. :
U) .
Q) .
a::

OJ.~
I

o 100 200 300 400 500

PerformanceTime(sec)

Figure 6.2: Parallel Performance Model

significant.

The R2 value for this model is 0.985. This fit has lost some accuracy over relative to

sequential model. The residual plot for the parallel model can be found in Figure 6.2.

Once again we see a relationship between the magnitude of the residuals and the per-

formance time. As mentioned previously, the most likely effect missing in the model is

due to operating system overhead that is not covered by existing parameters. Residuals

are again significant for programs with performance time less than one second. We will

restrict the model to programs with performance time greater than one second.

The R2 value for the parallel model shows some loss of accuracy over the sequential

model. This is also evident in the residual plot. There are a small number of points with

large residuals in the model that do not fall into the range of small performance times.

Some residuals are up to 30% of the performance time for the program. Since this was

41

not true in the sequential model it leads us to believe that an addition parameter is nec-

essary to include more information about the parallel execution. Adding the number of

processors as a parameter, however, was not found to improve the model. The parameter

removes no additional variance and the fit remains the same in both the R2 value and in

the residuals. It does, however, partially mask the variance from other parameters, thus

changing the coefficients. For this reason, the parameter was not included in the final

model. The fact that the model is not improved with the additional parameter, suggests

that if the variance is associated with the number of processors, the missing information

does not have a linear relationship with respect to the number of processors.

In an early version of the model we found that by removing the number of processors

as a variable would increase the accuracy of the model. This is done by creating a

independent model for each number of processors. However, as the general model became

more accurate by adjusting the parameters, there was no longer any noticeable advantage

of separate models over one single model for all values of p. We built both the general

model and the models for each value of P to compare. As mentioned before, the general

model has a R2 value of 0.985. The model for p=4 has a R2 value of 0.978 and the

R2 value for the model with p=8 is 0.994. Figure 6.3 compares the residuals for the

p=4 model with the residuals for the data points from executions with four processors

in the general model. In this case both the R2 value and the residual plot show a slight

improvement over the general case. However, not all the models show improvement,

Figure 6.4 compares the residuals for the p=8 model with the residuals for the data

points with execution on 8 processors in the general model. Here both the R2 and the

residual plot show a slightly worse fit than in the general case. These two examples

represent the two ends of the range of R2 values. The models for the rest of the p values

have R2 values that fall within this range. Overall the models were very similar in fit to

the general model. No information was lost and none was gained.

Figure 6.3: P=4 data for both General and P=4 Model

42

a I +
C\I +-

(,) + .
Q) a -irCJ) ,.... · -!r .--- ... 'CJ)

..it + ,as a
=:J .
:2
CJ)
Q)
a: · = general modela

C\I + = P=4 modelI

0 20 40 60 80 100

Performance Time (see)

...

+
~++...

...

· = generalmodel
+ = P=8 model

I I I

20 30 40 50 60o 10

PerformanceTime (see)

Figure 6.4: P=8 data for both General and P=8 Model

43

0
C\I-

0
(J) 0
en ,....-
en
as 0

:c
en
(J)
a:

0
C\I

I

44

Table 6.3: Performance Prediction Times for Sequential LU Decomposition, n = 300

6.3 Prediction Using Sequential Model

We applied the sequential performance model to the parameters measured for different

versions of LU decomposition. Table 6.3 contains true performance times and predicted

performance times for each version with constant problem size, n = 300. Only one

version has a significantly different performance time. This is the case where memory

accesses are following the cache line. All other versions have very similar performance

times. The performance model was able to predict the optimal version of the program

and the prediction time for this version was within 2% of the true performance time. The

other versions were predicted less accurately (within 15%). The model does, however,

accurately predict that the times for these versions are very close.

A more global picture, for all five versions and problem sizes (n = 50, 100, 200, 300,

400) of the program, can been seen in the residual plot, Figure 6.5. We disregard points

with very low performance times because of limitations of the model mentioned above.

The remaining points are each within 15% of the true performance time.

We use the same model to predict performance of two versions of our back-substitution

program. The versions are listed in appendix C. It is clear from the residual plot, Fig-

ure 6.6, that the predicted performance values are not as accurate as in the LU de-

composition program. In this case the performance times were predicted within 10 to 60

percent of the true performance times. Once again the smaller execution times had worse

prediction results. In this case there is no clear optimal version of the program. Both

the true and the predicted values are very similar for both versions. Table 6.4 shows the

true performance times and the predicted times for both versions of the program and all

values of n.

Program Version Performance Time Predicted Performance
K(IJ(I)) 95.15 96.71

K(II(J)) 105.09 119.61

K(I(J)) 105.22 119.61

I(K(J)) 104.77 119.69

,.

. .
. .

100 200 300 400

PerformanceTime(see)

Figure 6.5: Sequential LU Decomposition Performance Prediction

Table 6.4: Performance Prediction Times for Sequential Back-substitution

45

0

-
(,)
(J) 0
en C\J-
en
ro 0 i · .
:J .
:2
en
(J)

((
0

I

L.-

0

Program Version n Performance Time Predicted Performance
J (I)I(J) 300 2.01 0.75

J (I)J (I) 300 2.02 1.02

J(I)I(J) 400 3.62 2.09

J(I)J(I) 400 3.65 2.56

J (I)I(J) 500 5.63 3.80

J (I)J (I) 500 5.63 4.54

J(I)I(J) 600 8.21 5.90

J (I)J (I) 600 8.17 6.96

..
...I .

I I

2 4 6 8 10

Performance Time (see)

Figure 6.6: Sequential Back-substitution Performance Prediction

46

..q

-
(.) C\IQ)
en-
en
m 0
::J
:c
en
Q) C\I

cr: I

..q
I ---.

0

47

Table 6.5: Performance Prediction Times for Parallel LU Decomposition, n=400, p=4

Table 6.6: Performance Prediction Times for Parallel LU Decomposition, n=400, p=2

6.4 Prediction Using Parallel Model

The same program, LU decomposition, also has a number of parallel versions. The

performance for each of these is predicted with the parallel performance model.

LU decomposition on multiple processors has seven versions with slightly more vari-

ation in performance times than the sequential versions. Table 6.5 contains true perfor-

mance times and predicted performance times for a subset of these programs where the

problem size and number of processors is held constant at p=4 and n=400. The pre-

dicted performance times correctly ranks the programs versions in order of performance.

The predicted times are grouped into three sets with very similar times. The first set

contains the version 5, the optimal version of the program. The second set contain ver-

sions 2, 4, and 6 with predicted performance times of about 72 seconds. The third set

contains versions 1, 3, and 7 with performance times of about 87 seconds. Within the

second and third set the actual performance times varied much more than the predicted

times. The performance model has difficulty distinguishing between the performance of

these versions.

Program Version Performance Time Predicted Performance

K(lpJ p(l)) 63.26 60.42

K(lp(J)) 64.44 72.66

K(lplp(J)) 69.74 72.72

K(II(Jp)) 73.25 87.31

K(l(Jp)) 73.69 87.31

I(K(Jp)) 80.16 87.49

Program Version Performance Time Predicted Performance
K(lpJ p(l)) 121.49 118.12

K(Ip(J)) 130.33 143.92

K(IpIp(J)) 138.34 143.99

K(II(Jp)) 140.94 158.04

K(I(Jp)) 141.37 158.04

I(K(Jp)) 141.63 158.22

48

o 50 100 150 200

PerformanceTime(sec)

Figure 6.7: Parallel LU Decomposition Performance Prediction

Not all subsets of the data show as good results in distinguishing the best performance

from different program versions. Table 6.6 extracts the actual performance times and the

predicted performance times for the programs with p=2 and n=400. Here, the optimal

program version is still predicted correctly. However, the predicted times on the rest of

the versions is not accurate enough to correctly rank the performance of the program

versions.

The performance model does a good job of predicting the decrease in performance

time for increasing numbers of processors. Figure 6.8 shows the speedup of one version

of LU decomposition when the number of processors increases. Also shown are the

predicted decrease in performance. The performance values are very similar and shows

the same trend in performance over differing numbers of processors.

The residual graph for all versions of LU decomposition can be found in Figure 6.7.

0
-.;;t

- 0(.)
Q) C\J
w . . .
- ..w

--"'!i ·· .ca 0
w, 4.. .::J

. . . .
1:)
.w 0Q) C\Ja: I

0
-.;;tI

49

2 4 106 8

Number of Processors

Figure 6.8: LU Decomposition Performance version K(I(Jp)) with Number of Processors
(n = 500)

.-(.)
Q)
C/)--- 0
Q) 0

E
,-

i- 0
Q)

ex:>

(.)
c: 0as
E

CD

0 0
't:
Q)
a..

t

* = True Times
+ = Predicted Times

T

..-
..-

...

50

Figure 6.9: Parallel Back-substitution Performance Prediction

Again disregarding points with very low performance times, in general residuals are small

(within 15%) of the performance times. However, as seen in the above examples, the

granularity of the performance prediction is not always accurate enough to accurately

differentiate between performance of closely related versions of the same program.

The back-substitution program has quite a bit more inconsistent prediction times

when compared to true performance times. In Figure 6.9 the residuals are a greater

percent of the performance time. In worst case, more than 100%. Part of the problem

in this case is that the performance times were very small when the program was run on

multiple processors. However, one point that sticks out in the graph has a performance

time of greater than 2:30 sees. and a corresponding residual of about 1:30 sees. The

times for all of the versions of the program along with all values of nand p can be found

in Table 6.7. The Jp(I)Jp(I) version of the program has better performance than the

C\I

-
0 ,....Q)
en---
en

1

..
co 0::J . .:2
en
Q) ,....
a: I

I

.
C\I

I
I I I I I I I

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Performance Time (sec)

51

Table 6.7: Performance Prediction Times for Parallel Back-substitution

Jp(I)Ip(J) version. Although the predicted performance times are not accurate in many

cases, they are consistently less than the times for the Jp(I)Jp(I) version.

A complete listing of performance times and predictions times for all versions of

programs in the experimental set over all values of nand p are included in Appendix D.

Program Version p n Performance Time Predicted Performance
Jp(I)Jp(I) 4 300 0.50 0.08

Jp(I)Ip(J) 4 300 0.67 0.08

Jp(I)Jp(I) 6 300 0.34 0.11

Jp(I)Ip(J) 6 300 0.51 0.13

Jp(I)Jp(I) 8 300 0.26 0.03

Jp(I)Ip(J) 8 300 0.44 0.06

Jp(I)Jp(I) 4 400 0.91 1.12

Jp(I)Ip(J) 4 400 1.18 1.12

Jp(I)Jp(I) 6 400 0.61 0.52

Jp(I)Ip(J) 6 400 0.91 0.54

Jp(I)Jp(I) 8 400 0.45 0.38

Jp(I)Ip(J) 8 400 0.74 0.41

Jp(I)Jp(I) 4 500 1.41 2.47

Jp(I)Ip(J) 4 500 1.85 2.44

Jp(I)Jp(I) 6 500 0.95 1.05

Jp(I)Ip(J) 6 500 1.40 1.07

Jp(I)Jp(I) 8 500 0.71 0.83

Jp(I)Ip(J) 8 500 1.15 0.86

Jp(I)Jp(I) 4 600 2.04 4.10

Jp(I)Ip(J) 4 600 2.65 4.06

Jp(I)Jp(I) 6 600 1.36 1.70

Jp(I)Ip(J) 6 600 2.00 1.71

Jp(I)Jp(I) 8 600 1.02 1.38

Jp(I)Ip(J) 8 600 1.62 1.41

Chapter 7

Discussion

A number of simplifying assumptions were made that restrict the domain of the per-

formance model. These restrictions were made because of limitations in resources and

in order to focus the scope of the research project. The scope includes scientific code

executed in an environment that is not restricted because of multiple users sharing cycle

time.

7.1 Effects of System Load

One restriction in our model is due to the fact that processes created in a parallel loop

construct on the Sequent Symmetry are not necessarily scheduled on different processors.

The Sequent creates processes which will then be scheduled on available processors.

If enough processors are available, each process will each be scheduled on a different

processor and will be executed in parallel. The Sequent Symmetry is a time sharing

system and thus processes must compete with processes scheduled by other applications

and other users. The operating system overhead of context switch time, time spent in

the wait queue, overhead from being swapped out of memory, etc., is indeterminate and

could cause performance times to be significantly worse than predicted times. In the

realm of this study the load on the system was small and thus each process was always

scheduled to its own processor. This greatly increases the predictability of performance

for a given code segment.

In most cases this simplification should have no effect on the use of the performance

52

53

prediction tool as long as the load on the system is consistent during the use of the tool.

The use of performance prediction to evaluate the optimal loop transformation will not

depend on the load of the system. A loop formulation that is superior to an alternate

formulation in most cases will remain optimal even with the additional overhead added

by a more heavily loaded system. The reason that this is true is based on the fact that

course grained parallelism is optimal on even a lightly loaded system because of the

overhead included in forking a parallel process. A heavily loaded system would cause

more overhead per process and thus provide better performance for coarsely grained

parallel constructs. Since this is already the case, it would not effect the evaluation

of optimal loop construct. If the load on the system is not consistent while predicting

transformations of a loop then one loop formulation might artificially perform better or

worse than another while the difference is caused only by a decrease in parallelism due

to processes spending time on the wait queue.

7.2 Conditionals

There has been little discussion of the effect of conditional branches on the performance

prediction model. In this model, conditionals of the form if/then/else were analyzed in-

cluding both paths. This could clearly cause an overestimate of the performance time. A

better algorithm would be to predict the branch taken. Clark and Levy [CL82] measured

simple conditional branches were taken about 50% of the time. Hennessy and Patterson

[PH90] measured branches taken 53% of the time. Clearly on the average, predicting

the branch taken is as good as you can do without a more elaborate branch prediction

scheme. The number of executions of a loop body was known in this analysis. Thus

loop branches did not need to analyzed. The number of executions of a loop can often

be determined at compile time with analysis such as constant propagation.

54

7.3 Coefficients

It is important to understand what the coefficients in the linear performance model

represent. It is tempting to interpret them as weights for the parameters. In this way

a parameter with a higher coefficient would have more contribution to the performance

time. If the parameters were completely independent, this would be the case. However,

the parameters are not at all independent. For example, the number of memory accesses

is not independent from the number of floating point operations because the floating

point results are stored in memory and the operands are read from memory. Indeed, the

number of floating point multiplies is not necessarily independent from the number of

floating point adds. If a program contains a loop that includes two multiplies and one

add, the total number of multiplies and adds are a multiple of the number of times the

loop is executed. In this case the number of multiplies will also be twice the number of

adds. This is certainly not independent.

If two parameters share some variance, that is, if they are dependent on each other,

the coefficient for one parameter might carry this shared variance. Thus the second

parameter will have a smaller coefficient than it would if the first had not been present.

Much of the relationship between the parameter and the performance time is included

in other factors. In the extreme case a parameter adds no additional information to

the model and the coefficient is zero. Although a relationship may exist between the

parameter and the performance time, that relationship adds no information that is not

already included in other factors.

7.4 Compilers

We intend for this model to be used in a compiler independent way. Of course, re-

alistically, different compilers and even different optimizations performed by the same

compiler can effect the performance time of the program. The parameters are measured

before the code is compiled so any optimization done by the compiler can influence the

performance time relative to these parameters. In these models we held these variables

55

constant by using the same compiler with the same optimizations active.

To account for differences of compilers and optimizations, some information on the

compiler optimizations that will be used by the compiler must be included. This infor-

mation can be included as additional parameters in the model or different versions of

the model could be built to handle different compiler optimizations. Alternatively, the

parameters could be measured by the compiler after optimizations have taken place.

7.5 Tiny

The Tiny language is a reduced language from more typical imperative languages. Tiny

was used to analyze the programs and collect data for the parameters. The programs

included were originally written in Tiny and translated by Tiny into Fortran. This

restricted the programs to those that Tiny could understand. One restriction imposed

by Tiny is that program size must be limited to small programs. Tiny also doesn't

understand subroutine or function calls, so our programs were limited to those that did

computation without calling other functions.

7.6 Other Systems

Although we restricted this work to the shared memory Sequent system, it is equally

applicable to other shared memory systems as well as vector processors and sequential

machines. The parameters used to create this model should work as well on these other

systems. The only way that they are specific to an architecture is that the parameters

were chosen to cover all architectural features that effect performance of a program. If,

for example, we wished to model a vector processor, other parameters would need to be

included to cover that feature such as the number of vector operations and the stride of

vector loads and stores. If the architectural features are similar, the only requirement to

port the performance model is to collect the data for the experimental set of programs

on each machine and perform the linear fit to create the model.

56

In addition, the method is easily adapted to distributed memory machines. Addi-

tional parameters may be needed however, to include information on data distribution

and communication.

Chapter 8

Future "Work

In the previous section some restrictions to the scope of this research were discussed.

With these restrictions in mind, this section discusses possible ways to expand this

research in order to overcome these limitations.

8.1 Increase Scope of Programs

One of the underlying restriction was the fact that programs had to be read by the

Tiny tool which both counted the parameters and performed loop transformations. If

this analysis could be performed using a tool with a larger scope, such as a compiler,

more programs could be considered for inclusion in the performance and prediction set

of programs.

Additional questions will arise by incorporating the work in a compiler. For instance,

how will subroutine and function calls be treated in the performance parameters? Should

the compiler provide feedback to the user about which compiler optimizations were

performed in order to disambiguate the performance gain do to compiler optimizations

over loop restructuring? Also, the Tiny tool would not be available to perform loop

restructuring. It will have to be done by hand unless the compiler has that ability built

m.

With a larger pool of programs to choose from, it should be unnecessary to include

the programs in the Other category of the prediction set. These programs were included

because real programs could not be found to cover all the characteristics necessary to

57

58

cover a wide variety of programs. Since these Other programs were created in order

to artificially contribute to the range of programs that are represented by the model,

they may have affected the coefficients in a way that might not be representative of real

programs. It should be possible to choose programs from various benchmark sets that

well represent most scientific programs without included any programs created by hand.

8.2 Multiple Machines

This research was restricted to the Sequent Symmetry, a shared memory multiprocessing

system. Further work should include both other shared memory systems and systems

with different performance characteristics, such as vector processors and distributed

memory systems. The model itself will not port to different systems, however, the

methodology should port easily. If the new system does not have any additional perfor-

mance characteristics, the same parameters may apply to the new model. The prediction

set of programs must be run on the new system and the linear model recalculated. As

mentioned previously, if the system includes characteristics that affect the performance

time that were not present in this work, then additional parameters must be added to

include information about the effect of the system on the performance of programs. For

example, if the system includes vector processors, the stride of the vector loads and stores

may be included as well as the number of vector operations. These programs must be

reanalyzed to include all the parameters and the run on the system in order to build the

new linear model.

8.3 Other Studies

A study might be carried out in order to measure the effects of operating system overhead

on performance on a time-shared system. It would also be beneficial to include some

information in the model in order to parameterize these effects. However, these effects

can not be measured statically.

Another study might investigate the effect of conditionals on performance prediction.

59

It may be found that scientific code does not follow the 50% taken rule mentioned above.

It is possible that conditional branches are often never taken because they check for error

conditions that rarely occur.

At the least, a simple branch prediction scheme should be implemented in order to

measure parameters more accurately for code that contains branches. Possibly a more

accurate prediction scheme can be determined from the study.

Appendix A

Cholesky Decomposition

In this section we will demonstrate multiple versions Cholesky Decomposition and how

they are derived from the base version (KIJ form). These transformations were performed

using the Tiny tool.

Version 1: K(I(J» form.

The original program is a Cholesky Decomposition.

real a(n.n)

integer n

for k = l.n do

a(k.k) = sqrt(a(k.k))

for i = k+l.n do

a(i.k) = a(i.k)/a(k,k)

for j = k+l,i do

a(i,j) = a(i,j)-a(i,k)*a(j,k)

endfor

endfor

endfor

60

61

Version 2: K(I(Jp» form.

Parallelize the J loop.

real a(n,n)

integer n

for k = 1,n do

a(k,k) = sqrt(a(k,k))

for i = k+1,n do

a(i,k) = a(i,k)/a(k,k)

doall j = k+1,i do

a(i,j) = a(i,j)-a(i,k)*a(j,k)

endfor

endfor

endfor

Version 3: K(II(J» form.

Go back to serial form. Distribute I loop.

real a(n,n)

integer n

for k = 1,n do

a(k,k) = sqrt(a(k,k))

for i = k+1,n do

a(i,k) = a(i,k)/a(k,k)

endfor

for i = k+1,n do

for j = k+1,i do

a(i,j) = a(i,j)-a(i,k)*a(j,k)

endfor

endfor

endfor

62

Version 4: K(IpI(Jp» form.

Parallelize both the first I loop and the inner J loop.

reala(n,n)

integer n
for k = l,n do

a(k,k) = sqrt(a(k,k))

doall i = k+l,n do

a(i,k) = a(i,k)/a(k,k)
endfor

for i = k+l,n do

doall for j = k+l,i do

a(i,j) = a(i,j)-a(i,k)*a(j,k)
endfor

endfor

endfor

Version 5: K(IpIp(J)) form.

Parallelize both I loops.

real a(n,n)

integer n
for k = l,n do

a(k,k) = sqrt(a(k,k))

doall i = k+l,n do

a(i,k) = a(i,k)/a(k,k)
endfor

doall i = k+l,n do

for j = k+l,i do

a(i,j) = a(i,j)-a(i,k)*a(j,k)
endfor

endfor

endfor

63

Version 6: K(IJ (I)) form.

Go back to serial form. Interchange J and I loops.

real a(n,n)

integer n

for k = 1,n do

a(k,k) = sqrt(a(k,k))

for i = k+1,n do

a(i,k) = a(i,k)/a(k,k)

endfor

for j = k+1,n do

for i = max(k+1,j),n do

a(i,j) = a(i,j)-a(i,k)*a(j,k)

endfor

endfor

endfor

Version 7: K(lpJ(lp)) form.

Parallelize both I loops.

real a(n,n)

integer n

for k = 1,n do

a(k,k) = sqrt(a(k,k))

doall i = k+1,n do

a(i,k) = a(i,k)/a(k,k)

endfor

for j = k+1,n do

doall i = max(k+1,j),n do

a(i,j) = a(i,j)-a(i,k)*a(j,k)

endfor

endfor

endfor

64

Version 8: J (K(I)I) form.

Interchange J and K loops. Notice that J and K are NOT tightly nested!

real a(n,n)

integer n

for j = 1,n do

for k = 1,j-l do

for i = max(k+l,j),n do

a(i,j) = a(i,j)-a(i,k)*a(j,k)

endfor

endfor

a(j,j) = sqrt(a(j,j))

for i = j+l,n do

a(i,j) = a(i,j)/a(j,j)

endfor

endfor

Version 9: J(K(Ip)Ip) form.

Parallelize both I loops.

real a(n,n)

integer n

for j = 1,n do

for k = 1,j-l do

doall i = max(k+l,j),n do

a(i,j) = a(i,j)-a(i,k)*a(j,k)

endfor

endfor

a(j,j) = sqrt(a(j,j))

doall i = j+l,n do

a(i,j) = a(i,j)/a(j,j)

endfor

endfor

65

Version 10: J(I(K)I) form.

Go back to serial version. Interchange I and K loops.

reala(n,n)

integer n

for j = 1,n do

for i = max(1+1,j),n do

for k = 1,min(j-1,i-1) do

a(i,j) = a(i,j)-a(i,k)*a(j,k)
endfor

endfor

a(j,j) = sqrt(a(j,j))

for i = j+1,n do

a(i,j) = a(i,j)/a(j,j)
endfor

endfor

Version 11: J(Ip(K)Ip) form.

Parallelize both I loops.

real a(n,n)

integer n

for j = 1,n do

doall i = max(1+1,j),n do

for k = 1,min(j-1,i-1) do

a(i,j) = a(i,j)-a(i,k)*a(j,k)
endfor

endfor

a(j,j) = sqrt(a(j,j))

doall i = j+1,n do

a(i,j) = a(i,j)/a(j,j)
endfor

endfor

66

Version 12: I(K(J)) form.

Go back to original program: Interchange I and K loops (again, they are NOT tightly

nested).

real a(n,n)

integer n

for i = 1,n do

for k = 1,i-1 do

a(i,k) = a(i,k)/a(k,k)

for j = k+1,i do

a(i,j) = a(i,j)-a(i,k)*a(j,k)

endfor

endfor

a(i,i) = sqrt(a(i,i))

endfor

Version 13: I(K(Jp)) form.

Parallelize J loop.

real a(n,n)

integer n

for i = 1,n do

for k = 1,i-1 do

a(i,k) = a(i,k)/a(k,k)

doall j = k+1,i do

a(i,j) = a(i,j)-a(i,k)*a(j,k)

endfor

endfor

a(i,i) = sqrt(a(i,i))

endfor

Version 14: I(J(K» form.

Interchange J and K loops (again, non-tightly nested).

real a(n,n)

integer n

for i = 1,n do

for j = 1,i-1 do

a(i,j) = a(i,j)/a(j,j)

for k = 1,j do

a(i,j+1) = a(i,j+1)-a(i,k)*a(j+1,k)

endfor

endfor

a(i,i) = sqrt(a(i,i))

endfor

Version 15: J(I(K» form.

Finally, interchange J and I and get J(I(K)) form slightly different from J(I(K)I).

real a(n,n)

integer n

for j = 1,n do

a(j,j) = sqrt(a(j,j))

for i = j+1,n do

a(i,j) = a(i,j)/a(j,j)

for k = 1,j do

a(i,j+1) = a(i,j+1)-a(i,k)*a(j+1,k)

endfor

endfor

endfor

67

Appendix B

Prediction Set

The following Fortran programs are given in their basic forms. Analysis similar to that

done in Appendix A was performed in order to form multiple transformations of the

programs. Each transformation was also performed with varying values for n ranging

from n= 50 to n = 500. In addition, parallel loops were also performed with varying

numbers of processors. P varied from 2 to 10.

Cholesky Decomposition (K(I(J» form):

subroutine chol(n,a)

real a(n, n)

do 10 k = 1,n

a(k,k) = sqrt(a(k,k))

do 20 i = k+1,n

a(i,k) = a(i,k)/a(k,k)

do 30 j = k+1,i

a(i,j) = a(i,j)-a(i,k)*a(j,k)

30 continue

20 continue

10 continue

end

68

69

Cholesky Decomposition (K(Ip(J)) form):

subroutine chol(n,a)

real a(n, n)

do 10 k = 1,n

a(k,k) = sqrt(a(k,k))

do 20 i = k+1,n

a(i,k) = a(i,k)/a(k,k)

c$doacross

do 30 j = k+1,i

a(i,j) = a(i,j)-a(i,k)*a(j,k)

30 continue

20 continue

10 continue

end

Matrix Multiply (I(J(K)) form):

subroutine mm(n,c,b,a)

real a(n,n)

real b(n,n)

real c(n,n)

integer n

do 10 i = 1,n

do 20 j = 1,n

do 30 k = 1,n

c(i,j) = c(i,j)+a(i,k)*b(k,j)

30 continue

20 continue

10 continue

end

70

Matrix Multiply (Ip(J(K)) form):

subroutine mm(n,c,b,a)

real a(n,n)

real b(n,n)

real c(n,n)

integer n

c$doacross

do 10 i = 1,n

do 20 j = 1,n

do 30 k = 1,n

c(i,j) = c(i,j)+a(i,k)*b(k,j)

30 continue

20 continue

10 continue

end

Addition (I(J) form):

subroutine other1(n,a)

integer n

real a(n,n)

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)+a(i,j)

20 continue

10 continue

end

71

Addition (Ip(J) form):

subroutine other2(n,a)

integer n

real a(n,n)

c$doacross

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)+a(i,j)

20 continue

10 continue

end

Subtraction (I(J) form):

subroutine other1(n,a)

integer n

real a(n,n)

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)-a(i,j)

20 continue

10 continue

end

Subtraction (Ip(J) form):

subroutine other2(n,a)

integer n

real a(n,n)

c$doacross

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)-a(i,j)

20 continue

10 continue

end

72

Multiply (I(J) form):

subroutine other1(n,a)

integer n

real a(n,n)

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)*a(i,i)

20 continue

10 continue

end

Multiply (Ip(J) form):

subroutine other2(n,a)

integer n

real a(n,n)

c$doacross

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)*a(i,i)

20 continue

10 continue

end

Divide (I(J) form):

subroutine other1(n,a)

integer n

real a(n,n)

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)/a(i,i)

20 continue

10 continue

end

73

Divide (Ip(J) form):

subroutine other2(n,a)

integer n

real a(n,n)

c$doacross

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)/a(i,i)

20 continue

10 continue

end

Exponent (I(J) form):

subroutine other1(n,a)

integer n

real a(n,n)

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)**0.5

20 continue

10 continue

end

Exponent (Ip(J) form):

subroutine other1(n,a)

integer n

real a(n,n)

c$doacross

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = a(i,j)**0.5

20 continue

10 continue

end

74

SquareRoot (I(J) form):

subroutine other1(n,a)

integer n

real a(n,n)

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = sqrt(a(i,j))

20 continue

10 continue

end

Square Root (Ip(J) form):

subroutine other1(n,a)

integer n

real a(n,n)

c$doacross

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = sqrt(a(i,j))

20 continue

10 continue

end

Appendix C

Experimental Set

The following programs are given in their basic for~s. Analysis similar to that done in

Appendix A was performed in order to form multiple transformations of the programs.

Each transformation was also performed with varying values for n ranging from n= 50

to n = 500. In addition, parallel loops were also performed with varying numbers of

processors. P varied from 2 to 10.

LU Decomposition (K(I(J» form):

subroutine lu(n,a)

real a(n,n)

integer n
do 10 k = 1,n

do 20 i = k+1,n

a(i,k) = a(i,k)/a(k,k)

do 30 j = k+1,n

a(i,j) = a(i,j)-a(k,j)*a(i,k)
30 continue

20 continue

10 continue

end

75

76

LV Decomposition (K(I(Jp)) form):

subroutine lu(n,a)

real a(n,n)

integer n

do 10 k = 1,n

do 20 i = k+ 1,n

a(i,k) = a(i,k)/a(k,k)

c$doacross

do 30 j = k+1,n

a(i,j) = a(i,j)-a(k,j)*a(i,k)

30 continue

20 continue

10 continue

end

77

Back-substitution (J(I)J(I) form):

subroutine bksub1(u,v,b,w,x,n)

real u(n,n)

real v(n,n)

real b(n)

real w(n)

real x(n)

integer n

do 10 j = 1,n

if (w(j).gt.O) then

do 20 i = 1,n

x(j) = x(j)+u(i,j)*b(i)

20 continue

end if

10 continue

do 30 j = 1,n

do 40 i = 1,n

x(j) = x(j)+v(j,i)*x(j)

40 continue

30 continue

end

78

Back-substitution (Jp(I)Jp(I) form):

subroutine bksub1(u,v,b,w,x,n)

real u(n,n)

real v(n,n)

real b(n)

real w(n)

real x(n)

integer n

c$doacross

do 10 j = 1,n

if (w(j).gt.O) then

do 20 i = 1,n

x(j) = x(j)+u(i,j)*b(i)

20 continue

end if

10 continue

c$doacross

do 30 j = 1,n

do 40 i = 1,n

x(j) = x(j)+v(j,i)*x(j)

40 continue

30 continue

end

Appendix D

Prediction Data

79

Table D.1: Sequential Performance Times (1 of 2)

Table D.2: Sequential Performance Times (2 of 2)

80

LU Decomposition
Program Version n Performance Time Predicted Performance

K(I(J)) 100 3.68 3.51

K(I(J)) 200 30.40 34.77

K(I(J)) 300 105.22 119.61

K(I(J)) 400 314.22 284.79

I(K(J)) 100 3.70 3.52

I(K(J)) 200 30.20 34.81

I(K(J)) 300 104.77 119.69

I(K(J)) 400 270.73 284.94

K(IJ(I)) 100 3.42 2.66

K(IJ(I)) 200 28.01 28.00

K(IJ(I)) 300 95.15 96.70

K(IJ(I)) 400 225.93 230.44

K(II(J)) 100 3.70 3.51

K(II(J)) 200 30.49 34.77

K(II(J)) 300 105.09 119.61

K(II(J)) 400 309.70 284.79

Back-substitution

Program Version n Performance Time Predicted Performance
K(I(J)) 100 3.68 3.51

J (I)J (I) 300 2.02 1.02

J (I)J (I) 400 3.65 2.56

J(I)J(I) 500 5.63 4.54

J (I)J (I) 600 8.17 6.96

J(I)I(J) 300 2.01 0.75

J (I)I(J) 400 3.62 2.09

J (I)I(J) 500 5.63 3.80

J(I)I(J) 600 8.21 5.90

Table D.3: Parallel Performance Times (1 of 7)

81

LU Decomposition
Program Version p n Performance Time Predicted Performance

K(I(Jp)) 2 100 2.42 2.70

K(I(Jp)) 2 200 17.31 21.22

K(I(Jp)) 2 300 57.15 68.52

K(I(Jp)) 2 400 141.37 158.04

K(I(Jp)) 4 100 1.67 1.61

K(I(Jp)) 4 200 10.34 12.42

K(I(Jp)) 4 300 32.06 38.72

K(I(Jp)) 4 400 73.69 87.31

K(I(Jp)) 6 100 1.49 1.24

K(I(Jp)) 6 200 8.42 9.48

K(I(Jp)) 6 300 24.63 28.79

K(I(Jp)) 6 400 54.54 63.74

K(I(Jp)) 8 100 1.49 1.07

K(I(Jp)) 8 200 7.82 8.01

K(I(Jp)) 8 300 21.73 23.82

K(I(Jp)) 8 400 47.10 51.95

K(I(Jp)) 10 100 1.62 0.95

K(I(Jp)) 10 200 7.93 7.13

K(I(Jp)) 10 300 21.49 20.84

K(I(Jp)) 10 400 43.50 44.88

Table D.4: Parallel Performance Times (2 of 7)

82

LU Decomposition
Program Version p n Performance Time Predicted Performance

K(Ip(J)) 2 100 1.87 1.89

K(Ip(J)) 2 200 15.12 17.84

K(Ip(J)) 2 300 51.83 60.73

K(Ip(J)) 2 400 130.33 143.92

K(Ip(J)) 4 100 0.98 0.76

K(Ip(J)) 4 200 7.64 8.89

K(Ip(J)) 4 300 25.96 30.63

K(Ip(J)) 4 400 64.44 72.66

K(Ip(J)) 6 100 0.68 0.38

K(Ip(J)) 6 200 5.16 5.92

K(Ip(J)) 6 300 17.43 20.60

K(Ip(J)) 6 400 43.13 48.91

K(Ip(J)) 8 100 0.54 0.20

K(Ip(J)) 8 200 3.99 4.43

K(Ip(J)) 8 300 13.26 15.58

K(Ip(J)) 8 400 32.39 37.03

K(Ip(J)) 10 100 0.45 0.05

K(Ip(J)) 10 200 3.27 3.53

K(Ip(J)) 10 300 10.74 12.57

K(Ip(J)) 10 400 26.45 29.90

Table D.5: Parallel Performance Times (3 of 7)

83

LU Decomposition
Program Version p n Performance Time Predicted Performance

I(K(Jp» 2 100 2.53 2.72

I(K(Jp)) 2 200 17.69 21.27

I(K(Jp» 2 300 59.56 68.62

I(K(Jp» 2 400 141.63 158.22

I(K(Jp)) 4 100 1.85 1.62

I(K(Jp» 4 200 10.10 12.46

I(K(Jp» 4 300 32.93 38.82

I(K(Jp» 4 400 80.16 87.49

I(K(Jp» 6 100 1.66 1.26

I(K(Jp» 6 200 10.05 9.52

I(K(Jp» 6 300 28.14 28.89

I(K(Jp» 6 400 63.30 63.91

I(K(Jp» 8 100 1.72 1.07

I(K(Jp» 8 200 9.08 8.06

I(K(Jp» 8 300 26.17 23.92

I(K(Jp)) 8 400 54.77 52.13

I(K(Jp» 10 100 1.82 0.97

I(K(Jp)) 10 200 9.28 7.18

I(K(Jp» 10 300 24.30 20.94

I(K(Jp» 10 400 53.07 45.05

Table D.6: Parallel Performance Times (4 of 7)

84

LU Decomposition
Program Version p n Performance Time Predicted Performance

K(lpJp(l)) 2 100 2.02 1.51

K(lpJp(I)) 2 200 16.42 14.69

K(lpJp(l)) 2 300 53.31 49.93

K(lpJ p(I)) 2 400 121.49 118.13

K(lpJp(l)) 4 100 0.99 0.60

K(lpJp(l)) 4 200 7.54 7.44

K(lpJp(l)) 4 300 27.13 25.54

K(lpJp(l)) 4 400 63.26 60.43

K(lpJp(l)) 6 100 0.65 0.30

K(lpJ p(I)) 6 200 5.13 5.02

K(lpJ p(I)) 6 300 18.41 17.42

K(lpJ p(I)) 6 400 42.63 41.19

K(lpJp(l)) 8 100 0.49 0.14

K(lpJp(l)) 8 200 4.06 3.81

K(lpJp(l)) 8 300 13.26 13.35

K(lpJp(l)) 8 400 32.65 31.58

K(lpJp(l)) 10 100 0.41 0.05

K(lpJp(l)) 10 200 3.38 3.08

K(lpJp(l)) 10 300 11.33 10.91

K(lpJ p(I)) 10 400 25.32 25.81

Table D.7: Parallel Performance Times (5 of 7)

85

LU Decomposition
Program Version p n Performance Time Predicted Performance

K(IpIp(J)) 2 100 1.93 1.90

K(IpIp(J)) 2 200 15.96 17.87

K(IpIp(J)) 2 300 54.39 60.79

K(IpIp(J)) 2 400 138.34 143.99

K(IpIp(J)) 4 100 1.00 0.78

K(IpIp(J)) 4 200 7.82 8.93

K(IpIp(J)) 4 300 29.41 30.69

K(IpIp(J)) 4 400 69.74 72.73

K(IpIp(J)) 6 100 0.75 0.40

K(IpIp(J)) 6 200 5.41 5.95

K(IpIp(J)) 6 300 19.54 20.65

K(IpIp(J)) 6 400 46.29 48.98

K(IpIp(J)) 8 100 0.55 0.21

K(IpIp(J)) 8 200 4.38 4.46

K(IpIp(J)) 8 300 14.90 15.63

K(IpIp(J)) 8 400 35.52 37.10

K(IpIp(J)) 10 100 0.48 0.10

K(IpIp(J)) 10 200 3.49 3.57

K(IpIp(J)) 10 300 11.60 12.63

K(IpIp(J)) 10 400 30.09 29.97

Table D.8: Parallel Performance Times (6 of 7)

86

LU Decomposition
Program Version p n Performance Time Predicted Performance

K(II(Jp)) 2 100 2.41 2.70

K(II(Jp)) 2 200 17.23 21.22

K(II(Jp)) 2 300 56.85 68.52

K(II(Jp)) 2 400 140.94 158.04

K(II(Jp)) 4 100 1.65 1.61

K(II(Jp)) 4 200 10.31 12.42

K(II(Jp)) 4 300 31.96 38.72

K(II(Jp)) 4 400 73.25 87.31

K(II(Jp)) 6 100 1.48 1.25

K(II(Jp)) 6 200 8.37 9.48

K(II(Jp)) 6 300 24.42 28.79

K(II(Jp)) 6 400 53.95 63.74

K(II(Jp)) 8 100 1.48 1.06

K(II(Jp)) 8 200 7.78 8.01

K(II(Jp)) 8 300 21.68 23.82

K(II(Jp)) 8 400 46.18 51.95

K(II(Jp)) 10 100 1.58 0.96

K(II(Jp)) 10 200 7.76 7.13

K(II(Jp)) 10 300 20.74 20.84

K(II(Jp)) 10 400 43.05 44.88

Table D.9: Parallel Performance Times (7 of 7)

87

Back-substitution

Program Version p n Performance Time Predicted Performance
Jp(I)Jp(I) 4 300 0.50 0.08

Jp(I)Jp(I) 4 400 0.91 1.12

Jp(I)Jp(I) 4 500 1.41 2.47

Jp(I)Jp(I) 4 600 2.04 4.10

Jp(I)Jp(I) 6 300 0.34 0.11

Jp(I)Jp(I) 6 400 0.61 0.52

Jp(I)Jp(I) 6 500 0.95 1.05

Jp(I)Jp(I) 6 600 1.36 1.70

Jp(I)Jp(I) 8 300 0.26 0.03

Jp(I)Jp(I) 8 400 0.45 0.38

Jp(I)Jp(I) 8 500 0.71 0.83

Jp(I)Jp(I) 8 600 1.02 1.38

Jp(I)Ip(J) 4 300 0.67 0.08

Jp(I)Ip(J) 4 400 1.18 1.12

Jp(I)Ip(J) 4 500 1.85 2.44

Jp(I)Ip(J) 4 600 2.65 4.06

Jp(I)Ip(J) 6 300 0.51 0.13

Jp(I)Ip(J) 6 400 0.91 0.54

Jp(I)Ip(J) 6 500 1.40 1.07

Jp(I)Ip(J) 6 600 2.00 1.71

Jp(I)Ip(J) 8 300 0.44 0.06

Jp(I)Ip(J) 8 400 0.74 0.41

Jp(I)Ip(J) 8 500 1.15 0.86

Jp(I)Ip(J) 8 600 1.62 1.41

. -- .-..-...

Bibliography

[BCW88] Richard A. Becker, John M. Chambers, and Allan R. Wilks. The New S

Language: A Programming Environment for Data Analysis and Graphics.

Wadsworth and Brooks, Pacific-Grove, California, 1988.

[BR89] Sandra Johnson Baylor and Bharat Deep Rathi. A study of memory refence

behavior of engineering/scientific applications in parallel processors. In Inter-

national Conference on Parallel Processing, pages 78-82, 1989.

[CL82] D. W. Clark and H. Levy. Measurement and analysis of instruction set use

in the VAX A/780. In Proceedings of the Ninth Symposium on Computer

Architecture, pages 188-200, April 1982.

[Das89] Subrata Dasgupta. Computer Architecture: A Modern Synthesis. John Wiley

and Sons, Inc., 1989.

[DG84] William R. Dillon and Matthew Goldstein. Multivariate Analysis: Methods

and Applications. John Wiley and Sons. Inc., Toronto, Canada, 1984.

[DI88] R. T. Dimpsey and R. K. Iyer. Performance analysis of a shared memory mul-

tiprocessor: Case study. In Proceedings International Conference on Parallel

Processing, pages 174-181, August 1988.

[DI89] R. T. Dimpsey and R. K. Iyer. Multiprogramming performance degradation:

Case study on a shared memory multiprocessor. In International Conference

on Parallel Processing, pages 205-208, 1989.

[GJG88] Dennis Gannon, William Jalby, and Kyle Gallivan. Strategies for cache and

local memory management by global program transformantion. Journal of

Parallel and Distributed Computing, 5:587-616, 1988.

[KME92] A. Kapelnikov, R. R. Muntz, and M. D. Ercegovac. A methodology for per-
formance analysis of parallel computations with looping constructs. Journal
of Paralleland Distributed Computing,14:105-120,1992.

88

89

[Kob78] H. Kobayashi. Modeling and Analysis: An Introduction to System Perfor-

mance Evaluation Methodology. Addison-Wesley Publishing Company, Read-

ing, Massachusetts, 1978.

[MB92] Daniel A. Menasce and Luiz Andre Barroso. A methodology for performance

evaluation of parallel applications on multiprocessors. Journal of Parallel and

Distributed Computing, 14:1-14,1992.

[PH90] David A. Patterson and John L. Hennessy. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann Publishers, Inc., San Mateo, California,
1990.

[PW86] David A. Padua and Michael Wolfe. Advanced compiler optimizations for

supercomputers. Communications of the ACM, 29:1184-1201, 1986.

[SKB89] Margaret Simmons, Rebecca Koskela, and Ingrid Bucher. Instrumentation for

Future Parallel Computing Systems. ACM Press, New York, New York, 1989.

[WoI88] Michael Wolfe. Vector optimization vs vectorization. Journal of Parallel and

Distributed Computing, 5:551-567, 1988.

[WoI91a] Michael Wolfe. Data dependence and program restructuring. Journal of Su-

percomputing, 4(4):321-344, January 1991.

[Wo191b] Michael Wolfe. The Tiny loop restructuring research tool. In Proceedings

1991 International Conference on Parallel Processing, volume 2, pages 46-53,

August 1991.

[WS90] Debbie Whitfield and Mary Lou Soffa. An approach to ordering optimizing

transformations. In Second ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 137-146, March 1990.

