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Abstract 

The auditory system uses sound to guide behavior. However, the aspects of the 

sensory environment that are relevant to an organism’s behavioral goals change over 

time. How does the brain allow us to understand the words of one particular speaker in a 

conversation-filled room, or tune out ambient noise as we drift to sleep? In this 

dissertation, we explore the source of this flexibility by examining how attention and 

arousal affect neural activity in one region of the brain that processes sound. 

We recorded extracellular, single-neuron spiking activity in primary auditory 

cortex (A1) of non-anesthetized ferrets trained on a selective attention task. Stimuli 

consisted of two streams of tones in noise that differed in frequency, location, and 

envelope. Ferrets were rewarded for responding to tones in one stream, but punished with 

a time-out for responding to tones or noise at a different frequency. When ferrets attended 

to sound that a neuron was tuned to, the neuron’s response to the noise distractor at the 

frequency decreased, improving the discriminability of tones from noise in the attended 

stream. During the task, spontaneous and sound-evoked activity increased relative to 

neural activity during passive exposure to the same sounds, indicating that task 

engagement effects differed from attentional effects. Varying the difficulty of the task by 

changing the signal-to-noise ratio of tones in noise also affected spontaneous activity, but 

not the neural response to tones or noise. 

Pupil size has been shown to track rapid changes in cognitive state and neural 

activity in multiple brain regions, including auditory cortex. To examine effects of 

arousal state on neural excitability, we therefore recorded responses to repeated natural 
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sounds and pupil size. In most neurons, spontaneous and sound-evoked activity in A1 

increases when pupil was large. In addition, when pupil was large, the neural response to 

sound became more reliable across sound repetitions, and the activity of neurons became 

less synchronized. During some recordings, we observed an increase in saccades and 

constricted pupil that may have indicated sleep onset, which was sometimes accompanied 

by changes in neural activity distinct from those involved in changes in waking arousal. 

To examine effects of arousal state on neural selectivity, we recorded response to tone 

pips at varying frequencies and levels. Across the population of recorded neurons, there 

was a small decrease in acoustic threshold when pupil was large, but no change in best 

frequency or spectral bandwidth. 

Taken together, these results suggest that pupil-linked arousal and attention have 

distinct effects on neural activity in A1. Pupil size tracks the gross level of activity 

evoked by auditory stimuli: representations of sound in A1 become more salient to the 

rest of the brain when pupil is large. Arousal does not produce changes in best frequency 

or spectral bandwidth. This contrasts with effects of attention on stimulus selectivity that 

we observed in A1, and that have been observed by others in previous work on learning 

and task engagement. Decreased neural variability may also support a more sensitive 

representation of sound in high-arousal states. The small decrease in acoustic threshold 

could indicate that the auditory system shifts to emphasize sound detection over sound 

discrimination in high-arousal states. Future experiments could contrast arousal and 

attention during behavior, examine whether arousal effects are dependent on learning, 

and test how effects on neural activity change at different levels of the auditory system.
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Chapter 1: Introduction 

The auditory system underlies human perception of speech, music, and 

environmental sounds. The auditory system transduces sound into nerve impulses, 

computes features such as pitch and location, and performs additional processing 

depending on what features of sound are relevant to behavior. In this dissertation, we 

contribute to knowledge of this additional processing by describing and analyzing how 

two aspects of behavioral state – attention and arousal – affect neural responses to sound 

in primary auditory cortex (A1). 

Auditory processing begins in the inner ear, which converts variation in pressure 

waves carried by air or water into action potentials on the eighth cranial nerve. The inner 

ear also breaks down sound into its frequency components, such that information about 

different vibrational rates of sound is carried by different nerve fibers (Schnupp et al., 

2011a).  From the cochlea, the auditory pathway splits to travel through the several 

brainstem regions (cochlear nucleus, superior olivary complex, and nucleus of lateral 

leminiscus). Auditory processing performed in the brainstem includes computing sound 

localization cues that require comparison between input from both ears, and integrating 

sound with other sensory information (Oertel and Doupe, 2013). The auditory pathway 

then converges in the midbrain inferior colliculus (IC) before continuing to the medial 

geniculate body of the thalamus and on to auditory cortex (AC) (Fig. 1.1).    

In various mammals, AC receives cortico-cortical inputs from visual cortex 

(Bizley and King, 2009), other auditory regions (Scheich et al., 2007), frontal cortex 

(Kaas and Hackett, 2000), and cholinergic input from nucleus basalis (Winer and Lee, 
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2007; Bajo et al., 2014), all of which may relay information about the behavioral state of 

the animal to AC. AC has been divided into areas based on connectivity, cytoarchitecture, 

and physiology (Kaas and Hackett, 2000; Hackett, 2011). These areas have been 

organized into hierarchies based on their physiology and laminar pattern of connections 

(e.g., whether connections from one area target layer IV of another area). A common 

motif observed across mammals is a primary core region, including A1 and other fields, 

projecting to secondary belt regions and (in some species) tertiary parabelt regions. 

Response latency and spectral bandwidth increase across this axis.  

 

Behavioral modulation of sensory coding in auditory cortex 

A sensory neuron’s receptive field is the way in which sensory stimuli alter the 

neuron’s activity. The term originally referred to the range of peripheral inputs that drove 

a neuron’s firing, and was later extended to the properties of stimuli to which the neuron 

responded (Hartline, 1938). For example, the firing rate of neurons in auditory cortex 

depends on the frequency, location, and level of sounds in the environment, as well as the 

rate at which some sound features change over time (Schreiner and Winer, 2007). One 

representation of a receptive field is a tuning curve, which describes the neuron’s mean 

rate of generating action potentials as a preselected feature of a stimulus varies. Other 

representations of receptive fields include multiple dimensions, and are estimated using 

methods that do not require varying only one feature of a stimulus at a time (deCharms et 

al., 1998; Chichilnisky, 2001). 

It is often useful to consider single-neuron receptive fields as static entities 

determined by feed-forward processing. Understanding how neuron’s response properties 
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change as one moves from the periphery to more central regions can lead to models of 

how neural circuits generate receptive fields. An example is the shift from the spot-like, 

center-surround receptive fields of the retina to the more complex receptive fields of 

primary visual cortex, including neurons that respond to lines oriented in a particular 

direction (Hubel and Wiesel, 1962). Within the auditory system, many studies of the 

emergence of tuning to cues relevant to sound location – which are not encoded directly 

in the cochlea – also follow this paradigm (Schnupp et al., 2011b). 

Human auditory perception is modified by experiences such as early language 

exposure and musical training, and some form of receptive field plasticity may underlie 

these phenomena (Schnupp et al., 2011c). Shifts in the frequency tuning of A1 neurons 

have been demonstrated in animals that have learned to associate a specific frequency of 

tone with a shock or water reward: typically, the neuron’s response to sounds at and near 

the frequency of the tone increases (Weinberger, 2004; Rutkowski and Weinberger, 

2005). Similar tuning shifts can be induced when tones are paired with release of 

acetylcholine in cortex, which causes a shift in the balance of excitation and inhibition in 

intracortical inputs (Froemke et al., 2007). This type of receptive field plasticity is 

widespread in A1: at the population level, pairing acetylcholine release with a tone 

frequency increases the percentage of neurons tuned to the frequency (Kilgard and 

Merzenich, 1998). Although not as extensively studied, pairing tones with stimulation of 

the noradrenergic locus coeruleus can also cause shifts in frequency tuning in A1 

(Martins and Froemke, 2015). In addition to shifts in frequency tuning, plasticity in 

cortical neurons’ responses to other sound features, such as intensity and location, follow 

behavioral training (Schreiner and Polley, 2014).  
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In addition to training, responses of neurons in auditory cortex are modulated 

when subjects are engaged in auditory tasks (Fig. 1.2). In early experiments on this 

phenomena, ferrets were presented with noise bursts periodically interrupted by tones 

(Fritz et al., 2003). Licking during a tone was punished with a mild shock, while licking 

during noise was rewarded with water. Engaging in the task increased the neuronal 

response to sound at the frequency of the tone. Unlike classical conditioning, which 

produces changes in A1 tuning that can persist for days (Weinberger, 2004), these effects 

of task-related plasticity are dynamic: receptive fields often returned to baseline after 

behavior ended, and the same cell could be induced to change its receptive field in 

multiple ways by changing the stimulus. Rapid, reversible plasticity in the frequency 

tuning of A1 neurons has also been shown in tasks requiring motor activity after only one 

of two tone frequencies (Fritz et al., 2005), chords (Fritz et al., 2007b), and sequences of 

two tones (Yin et al., 2014). Subsequent experiments indicated that the sign of changes in 

A1 frequency selectivity depend on reward valence (David et al., 2012). When ferrets 

received water for licking during the tone, but were punished with a timeout for licking 

during noise, the neuronal response to the tone frequency decreased. This effect followed 

from the structure of the task. Suppressing the response to the tone increases the salience 

of the response to noise. Thus, in both cases, A1 changes to enhance the representation of 

sounds that require inhibiting motor activity to avoid punishment. 

Evidence of task-related plasticity and learning in A1 challenges the picture of 

this region as an acoustic analyzer that extracts features for higher-level decision-making 

areas. In ferrets, behavioral modulation of neural activity during auditory tasks has been 

also been shown in IC (Slee and David, 2015) and secondary and tertiary regions of AC 
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(Atiani et al., 2014; Elgueda et al., 2019) using similar auditory tasks. Both IC and A1 

show local changes in spectrotemporal tuning and gain during behavior. Secondary and 

tertiary regions of AC show greater modulation of sound-evoked responses during 

behavior than A1. Given that there are feedback connections between A1 and secondary 

and tertiary regions of ferret AC (Bizley et al., 2015) and between AC and IC (Bajo et al., 

2006), it is not clear where in the ascending auditory pathway behavioral effects first 

appear. 

Task-related plasticity in A1 enhances acoustic features carried by one type of 

stimulus (the foreground) to maximize its discriminability from others (the background). 

Depending on the reward structure of the task, this may be achieved by increasing or 

decreasing the response to the acoustic feature: either can enhance the contrast between 

the feature and others. In Chapter Two, we examine the issue of task-related plasticity in 

the context of a selective-attention task. 

 

Auditory attention 

Selective attention can be described operationally as the ability to respond to one 

class of stimulus while ignoring others. Humans use selective attention when we follow 

the content of one speaker’s voice in a crowded room or monitor a visual scene for 

objects of one shape or color (Pashler, 1998). Selective attention is only one aspect of 

behavioral state that affects perception, and is dependent on other cognitive processes. 

For example, auditory attention requires separating the mixture of sound that reaches the 

ear into distinct sources (Shinn-Cunningham, 2008; McDermott, 2009). Sound source 

separation is itself a complicated problem for the brain to solve, given that natural sounds 



 6 

are spread out over a wide range of frequencies. Since energy adds where the frequency 

content of sounds overlaps, energy from one sound can mask others. 

In early experimental work on auditory selective attention (the cocktail-party 

problem), experimenters used headphones to present different speakers’ voices to each 

ear, or a mixture of voices to both ears and gave listeners instructions to attend to one 

voice and ignore the other (Cherry, 1953). Listeners were generally unable to repeat back 

the content of the ignored message. Shortly after, it was demonstrated that listeners 

showed better comprehension of the ignored voice when it contained their name (Moray, 

1959). These experiments and others suggested that although not all stimuli present at the 

auditory periphery are available to conscious awareness, some representations of ignored 

stimuli are preserved, even to the point of allowing some comprehension of high-level 

features such as words. In practice, however, it is often difficult to exclude the possibility 

that awareness of the ignored stimulus results from attentional lapses or the decision to 

direct attention to the unattended stimuli (Pashler, 1998). 

The human auditory system uses multiple acoustic features to separate and attend 

to sound sources. A common strategy to identify the cues used in the cocktail-party task 

is to manipulate one feature of recorded voices used in the task and test whether it makes 

the task more difficult (e.g., whether subjects are more likely to report content from the 

unattended voice) (Pashler, 1998). Introducing interaural level and timing differences, 

which simulate differences in the location of the sound sources, make the cocktail-party 

task easier, as does introducing differences in vocal pitch. Another strategy, adopted from 

studies of spatial attention in the visual system, is to present subjects with a cue that 

directs attention towards a particular acoustic feature at the start of the experiment or 
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trial. When humans are cued to focus attention at a particular location, the speed with 

which they detect sounds shows small improvements, as does the accuracy of frequency 

discriminations of sounds at the location (Spence and Driver, 1994). Cueing subjects 

about which frequency to attend to similarly improves reaction times, particularly for 

stimuli presented at fast repetition rates (Woods et al., 2001). Temporal coherence 

(whether energy at multiple frequencies changes over time following the same pattern) 

also aids in separating sound sources and directing attention (Shamma et al., 2011). 

Behavioral studies suggest that auditory attention suppresses distractors that are 

far from the locus of attention. In probe-signal experiments (Greenberg and Larkin, 

1968), listeners are asked to detect tones in a noise masker. While the majority of noise 

bursts that include tones use a tone at one frequency, some contain tones at higher or 

lower frequencies. Listeners’ error rate increases for frequencies far from the most 

common tone, suggesting that they have focused their attention on a narrow band around 

its frequency. This decrease in sensitivity has been characterized as an auditory filter 

whose shape resembles cochlear filters (Dai et al., 1991; Hafter et al., 2007). When 

subjects are required to monitor a wider range of frequencies for the target, there is a 

small increase in the bandwidth of these attentional filters (Hafter et al., 2007).    

In Chapter Two, we used a non-human animal model to explore the neural 

mechanisms of auditory selective attention. There have been relatively few studies of this 

issue at a single-neuron level, perhaps due to the difficulty of training animals to 

selectively attend in a laboratory setting, and those that have been conducted used coarse 

contrasts between sensory modalities or sound features (for review, see Osmanski and 

Wang, 2015). In addition, few studies have examined effects of attention on neural tuning 
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for stimulus features. As early as the 1950s, it was observed that some cortical neurons in 

non-anesthetized, non-restrained cats were driven by sound only when the cats “appeared 

to be paying attention” (Hubel et al., 1959). Subsequent single-unit studies have differed 

in the controls used to ensure that animals are attending, with some experiments (Benson 

and Hienz, 1978) using a combination of rewards for responding to attended stimuli and 

punishment for responding to the distractor and others (e.g., Beaton and Miller, 1975) 

only altering reward contingencies. In addition, some early single-unit studies compared 

attention to auditory and visual modalities (Hocherman et al., 1976). In spite of these 

differences, the studies generally observed increases in neural activity evoked by the 

attended auditory stimulus. Attention has also been shown to modulate the correlated 

activity of A1 neurons, which may affect the discriminability of population responses to 

attended and unattended stimuli (Averbeck et al., 2006; Downer et al., 2017).    

Population measurements of neural activity in humans suggest that attention 

modulates tuning in AC to enhance task-relevant features. When humans are instructed to 

attend to either high-frequency or low-frequency tones, activity in voxels in primary 

auditory cortex whose tuning is closer to the attended frequency increases relative to 

voxels far from the attended frequency (Da Costa et al., 2013). Modulation of neural 

tuning occurs in AC during a realistic cocktail-party task (Mesgarani and Chang, 2012; 

O’Sullivan et al., 2019). Mesgarani and Chang (2012) recorded neural activity in humans 

implanted with electrodes on the cranial surface for assessment of epilepsy. They 

modeled the receptive fields of neural populations as subjects passively listened to 

voices, then used the model to reconstruct the neural representation of the stimulus as 

subjects attended to one of two simultaneous voices. Although the reconstructed stimulus 
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contained a mixture of the attended and unattended stimuli, it more closely matched the 

attended voice. Compared to nonprimary auditory cortex (superior temporal gyrus), 

recording sites in primary auditory cortex (Heschl’s gyrus) show greater selectivity for 

one speakers’ voice and less attentional modulation, suggesting a processing hierarchy 

(O’Sullivan et al., 2019). Similar results were obtained using magnetoencephalography 

(MEG) (Ding and Simon, 2012).  

Studies of the effect of attention on intrinsic neural oscillations also suggest that 

auditory attention enhances the response to task-relevant features of sound, in this case 

their temporal dynamics. Monkeys that selectively attend to rhythmic sounds show an 

increase in the coherence of neural oscillations in AC at the rate of the attended stimulus 

(Schroeder and Lakatos, 2009; Lakatos et al., 2013). The increase in coherence 

selectively affects neurons that match the frequency of the attended stream. This suggests 

that neural oscillations that are in phase with attended sound align their phase, providing 

a boost in neural excitability just before the attended stimulus occurs. There is also an 

increase in the coherence of neural activity when humans attend to one speaker in a 

mixture of voices (Zion Golumbic et al., 2013). Because speech contains information at 

multiple timescales (Rosen, 1992; Smith et al., 2002) the particular mechanisms by which 

this increase in coherence change neural responses to the attended voice are more 

complex than in the case of the rhythmic stimuli used in primate experiments. Although 

these experiments do not explicitly study tuning, they are broadly consistent with results 

above, as both show an increase in information about attended sounds in AC. 

In Chapter Two, we build on previous research by comparing neural activity in 

A1 across attention conditions. The work that demonstrated task-related plasticity in 
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ferret IC and AC, described in the previous section of this introduction, compared 

receptive fields in behaving and passively listening animals or across tasks that differed 

in reward structure. However, comparing neural responses during behavior and passive 

listening is not the same as comparing responses across behavioral conditions in which 

attention is directed to different features of sound. Some of the neural mechanisms 

involved in selective attention may be used to perform these tasks (Fritz et al., 2007a). In 

the visual system, comparing neural responses across attention conditions has shown a 

variety of effects including multiplicative gain increases (McAdams and Maunsell, 1999) 

as well as effects on spatial receptive field shape and feature selectivity (Womelsdorf et 

al., 2006; David et al., 2008). Chapter Two examines effects of attention on the 

discriminability of neural responses to the attended stimulus and distractors, gain, and 

spontaneous activity.  

 

Pupil as an index of behavioral state 

In Chapter Three of this dissertation, we examine correlations between pupil size 

and various response properties of neurons in primary auditory cortex. In humans and 

other mammals, pupil size is controlled by the autonomic nervous system (Loewenfeld 

and Lowenstein, 1999; Mathôt, 2018). Although pupillary reflexes are involved in 

regulating the intensity and focus of images projected on the retina, pupil size also varies 

under constant luminance and visual fixation. In humans, such non-luminance-mediated 

changes in pupil size, like other measurements of autonomic activity, have been proposed 

as an index of various aspects of behavioral state, including fatigue (Lowenstein et al., 

1963; Lowenstein and Loewenfeld, 1964), emotion (Hess and Polt, 1960; Bradley et al., 
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2008; Mauss and Robinson, 2009), and cognitive load (Kahneman, 1973). Within 

auditory neuroscience, pupil size has recently attracted attention for two reasons: as a 

measurement of listening effort applicable to audiology (Winn et al., 2015, 2018), and as 

an indirect index of cortical neuromodulation (McGinley et al., 2015a). Because these 

two lines of research inspired the experiments in Chapter Three, the next two sections of 

this introduction describe and critique them in detail. 

The term “arousal” is used in some of this literature to indicate the state of the 

brain associated with a particular pupil size (McGinley et al., 2015b). Other operational 

definitions of arousal involve measurements of autonomic nervous activity besides pupil, 

the transition from sleep to wakefulness, and responses to emotionally engaging as 

opposed to neutral stimuli (Satpute et al., 2019). Although these definitions describe 

overlapping physiological processes rather than a single, simple state, they are 

conceptually united by their attempt to measure generalized changes in brain state and 

receptivity to sensory stimuli (McGinley et al., 2015b). By contrast, attention involves the 

ability to selectively focus on particular aspects of the environment, as demonstrated in 

the ability to respond to perceive particular stimuli more efficiently or accurately than 

others (Cherry, 1953; Pashler, 1998). Selective attention and arousal overlap in some of 

their physiological effects: for instance, both increase firing rates and desynchronize 

neural activity across populations (Harris and Thiele, 2011; McGinley et al., 2015b). 

However, as we will show below, pupil size is a measurement of arousal state that is 

sensitive to a wide range of behavioral manipulations besides changing the locus of 

attention. We therefore suggest that physiologists can use pupil size to distinguish neural 
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correlates of attention and task engagement from changes in behavioral state that do not 

depend on processing sensory information related to a particular task.  

 

Pupil and listening effort 

Numerous experiments have tracked pupil size as humans engage in controlled 

behaviors (Beatty, 1982a; Mathôt, 2018). The pupil dilations and constrictions shown in 

these experiments are relatively small compared to constrictions in response to changes in 

luminance or focusing on a nearby object, but they appear across a wide variety of tasks. 

For example, pupil dilations have been shown as humans perform mental arithmetic 

(Hess and Polt, 1964), recall items from short-term memory (Kahneman and Beatty, 

1966), and detect near-threshold sensory signals (Hakerem and Sutton, 1966). 

During the 1960s and 1970s, psychologists developed the theory that pupil 

dilation tracks cognitive load (Kahneman, 1973; Beatty, 1982a). According to this theory, 

transient pupil dilations occur when subjects’ processing resources are allocated to a task, 

and the amplitude of the dilation depends on both the amount of resources devoted to it 

and the total resources available to the subject at a particular time. Support for the theory 

was found in both the onset of pupil dilations and the sensitivity of their amplitude to task 

difficulty. For example, when subjects were asked to monitor for appearance of a visual 

target while adding one to a number, their pupils dilated just after being presented with 

the number to transform (Kahneman et al., 1967). Subjects were most likely to miss the 

target during the same epoch, suggesting that multitasking had put strain on their 

cognitive resources. When participants performed the visual-detection task alone, they 

showed no performance deficit and less pupil dilation. 
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Given that auditory processing requires cognitive resources, it is not surprising 

that similar relationships between pupil dilation and listening tasks have been observed. 

In an experiment from the same era as the one just described (Kahneman and Beatty, 

1967), subjects indicated whether two tones differed in frequency. The frequency of one 

tone was held constant while the other varied between trials. Subjects’ error rate 

increased as the frequency separation between the tones decreased. Examining the mean 

pupil diameter across multiple trials revealed that subjects’ pupils reliably dilated during 

each trial. The magnitude of dilation was also related to the frequency separation between 

the tone, and closely tracked changes in error rate. The authors suggested that both pupil 

size and error rate were influenced by the effort required to perform the task: the increase 

in error rate indicated that task became more difficult, and pupil dilation revealed the 

additional effort that subjects exerted. A systematic review of human studies that 

measured pupil during auditory tasks noted associations between pupil size and a wide 

range of task and individual factors (Fig. 1.3) that can be related to cognitive load, 

reflecting the broad definition of this concept (Zekveld et al., 2018). 

Several recent studies have used pupillometry to measure listening effort (i.e., 

allocation of cognitive resources during challenging auditory tasks). These studies take it 

as a given that the amplitude of pupil dilation indexes cognitive load, and use 

comparisons across subjects or tasks to explore factors that affect listening effort. For 

example, Winn et al. examined the effect of spectral resolution of speech on pupil 

dilation (Winn et al., 2015). Cochlear implants (CIs) provide poor spectral resolution due 

to constraints on the number of independent electrical channels accommodated by the 

cochlea. Participants with normal hearing were asked to repeat speech in which a noise 
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vocoder (Shannon et al., 1995) was used to reduce the number of frequency bands in the 

signal, simulating the output of a CI. The task consistently evoked larger and faster pupil 

dilation as spectral resolution declined. Pupil diameter was not tightly locked to 

performance: although speech intelligibility decreased with spectral resolution across the 

population, individual intelligibility scores were not associated with pupil measures. In 

addition, the effect of spectral resolution on pupil diameter was observed even when 

analysis was restricted to correct trials. These results imply that subjects exerted greater 

effort to understand speech at low spectral resolution and that the degree of effort was 

independent of task performance. 

 A separate series of studies examined listening effort for speech in noise. 

Experimenters measured pupil dilation in listeners with normal hearing that repeated 

sentences masked at both ears by stationary (constant amplitude and frequency) noise 

(Zekveld et al., 2010). SNR was fixed using an adaptive procedure to obtain set levels of 

speech intelligibility. As expected, at lower SNRs and decreased speech intelligibility, 

pupil showed a small increase in task-evoked dilation, suggesting greater effort. A 

follow-up experiment (Koelewijn et al., 2012) used a similar design to contrast three 

maskers: stationary noise, noise modulated by the amplitude envelope of speech, and a 

competing voice. When SNR was adjusted to equalize the intelligibility level across all 

maskers, speech-modulated and stationary noise evoked identical pupil dilations in young 

subjects. Surprisingly, the speech masker evoked greater pupil dilation than either noise 

masker, suggesting that subjects were exerting different levels of effort to achieve the 

same intelligibility level in the two conditions. Similar results were obtained for a group 

of hearing-impaired subjects (Koelewijn et al., 2014). The result suggests that listeners 
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exerted greater effort to achieve the same level of speech intelligibility in the presence of 

interfering speech, compared to interfering noise. 

 What accounts for the observed difference in effort? One possibility is that the 

competing-voice masker obscured overlapping spectral energy in the speech target more 

effectively than the noise maskers. Speech and speech-modulated noise, unlike stationary 

noise, provide temporary release from such energetic masking during dips in amplitude. 

The ability to “listen in the dips” increases the intelligibility of speech in fluctuating 

maskers as compared to stationary noise at an identical SNR (Festen and Plomp, 1990). 

Consistent with this effect, Koelwijn, et al. (2012) observed a 4-8 dB improvement in 

speech reception threshold (SRT) for speech-modulated noise and competing-voice 

maskers relative to stationary noise (that is, the SNR for these maskers had to be set 4-8 

dB lower than the SNR for stationary noise to achieve the same error rate). However, 

participants also showed a small (< 2 dB) improvement in SRT for the competing-voice 

masker over speech-modulated noise, indicating that speech was, if anything, a less 

effective energetic masker than either noise type. The authors thus argue that the 

competing voice’s effect on pupil diameter stems from informational masking: 

interference between two signals that cannot be explained by overlapping spectral energy. 

 In particular, the competing-voice task may place demands on the subject’s ability 

to track spectrotemporal features of the target and masker, an ability thought to underlie 

selective attention to competing sound sources (Shinn-Cunningham and Best, 2008). The 

target may share spectrotemporal features with the speech masker that it does not share 

with speech-modulated noise, increasing the effort of separating masker from target. In 

addition, the competing-voice task removes spatial cues known to aid speech 
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intelligibility in multi-talker situations  (Cherry, 1953; Bronkhorst, 2000), which may 

increase listening effort. 

Cocktail-party tasks also suggest pupil diameter reflects demands on auditory 

selective attention. In one experiment (Koelwijn, et al 2014b), listeners were played two 

voices at separate ears and told to repeat the words of one or both speakers. Task 

instructions thus determined whether subjects selectively attended to one voice or divided 

attention between the two. In a control condition meant to minimize demands on 

attention, subjects were exposed to only one voice. Dividing attention evoked larger pupil 

dilation than attending to one voice, which in turn evoked larger pupil dilation than the 

control. Adding a fluctuating noise masker to both voices increased error rate and 

preserved the relationship between pupil dilation in the three attention conditions. 

Varying the location, onset time, or speaker of the attended speech stream also increased 

pupil dilation, suggesting that maintaining spatial and spectrotemporal regularity across a 

longer timescale reduced effort (Koelwijn, et al 2015). 

Pupil diameter can be non-invasively and relatively inexpensively measured in 

humans, and is therefore an appealing option as a clinical tool to measure listening effort. 

Audiologists could use the degree of pupil dilation during auditory tests to choose 

between CI or hearing-aid signal-processing strategies even when their effect on test 

performance has reached a ceiling (Winn et al., 2015). However, a wide variety of states 

are associated with pupil dilation, suggesting that interpretation of pupil size as a measure 

of listening effort is not straightforward. A number of studies have linked task-evoked 

pupil dilations to changes in cognitive variables more specific than cognitive load, 

including shifts in perception of ambiguous stimuli (i.e., pupil dilates at the moment 
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when one’s interpretation of a visual illusion changes) (Einhauser, et al 2008), lapses in 

attention (Wierda, et al 2012), bias in sensory signal detection (de Gee, Knappen, & 

Donner 2013), confidence in perceptual judgments (Lempert, Chen, & Fleming 2015), 

and uncertainty about the underlying state of a dynamic environment (Nassar, et al 2012; 

Browning, et al 2015). It is not clear if these results fit within the cognitive-load 

framework (or its particular application to listening effort) or represent alternative 

theories about what pupil encodes. 

Pupil dilation in response to sensory stimuli is part of a collection of movements 

and physiological reactions (e.g. head-turning, reduced heart rate) that orient subjects 

towards an event and prepare them to respond (Mathôt, 2018). In owls, pupil initially 

dilates in response to repeated sounds, habituates, and dilates again when sounds at a 

different frequency or location are introduced, suggesting that pupil encodes novelty 

(Bala and Takahashi, 2000). In humans, the amplitude of pupil dilation evoked by sounds 

is correlated with loudness rather than the degree of salience (Liao et al., 2016). Human 

pupils also dilate when sequences of repeated sounds become random, but not vice versa, 

suggesting that pupil encodes expectations (Zhao et al., 2019). These results are 

challenging to the listening-effort literature, since novel, loud, and unexpected sounds do 

not require a great deal of subjective effort to detect. 

More comparison across studies could be useful for placing results from the 

listening-effort literature in context, particularly for experiments or applications where 

pupil size is observed outside controlled behavior. An analogy might be made to the 

problem of reverse inference in functional magnetic resonance imaging (fMRI) 

(Poldrack, 2006). Many fMRI experiments use internal controls to establish that a 
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particular brain region is activated by a particular cognitive process (forward inference). 

Sometimes, data established by forward inference in one experiment is used in a separate 

experiment to infer from activation of the brain region that a subject is engaged in the 

cognitive process (reverse inference). Since brain regions may be involved in more than 

one cognitive process at different times, reverse inference in this crude form is not valid. 

However, pooling data across studies allows one to estimate the region’s selectivity for 

particular processes. Pupil, similarly, may be engaged by different aspects of tasks to 

different degrees. Data on the selectivity of pupil dilation for listening effort (as opposed 

to other processes) or the prior probability that particular auditory tasks will engage 

listening effort would be helpful for understanding pupil’s utility as an indicator of 

listening effort. 

 

Pupil and sub-states of wakefulness 

A series of recent studies in mice document correlations between pupil size and 

single-neuron activity in various areas of the brain, including visual and auditory cortex 

(Reimer et al., 2014; McGinley et al., 2015a; Vinck et al., 2015). Measurements of pupil 

size are correlated with changes in the number of action potentials spontaneously emitted 

by neurons or evoked by auditory and visual stimuli, shared variability between pairs of 

neurons, and the degree to which population activity is dominated by slow, correlated 

firing. In a jointly-authored review, the authors of the mouse papers suggest that pupil 

offers a physiological measurement of sub-states of waking or arousal, analogous to but 

distinct from the sub-states of sleep (McGinley et al., 2015b). 
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Pupil size is correlated with multiple other indicators of behavioral state, some of 

which also predict changes in neural activity in sensory cortex. In mice, pupil is 

consistently dilated when animals engage in activities involved in active exploration of 

the environment, including running, whisking, and licking a water reward (Lee and 

Margolis, 2016; Stringer et al., 2019). Given that rodents’ whisking is coordinated with 

sniffing (Deschenes et al., 2012) – another aspect of exploratory behavior – it is likely 

that respiration rate is also correlated with pupil size. Like pupil, locomotion is associated 

with changes in the excitability of single neurons in visual and auditory cortex (Niell and 

Stryker, 2010; Schneider et al., 2014). In auditory cortex, pupil diameter predicts more 

neural variability than locomotion, perhaps because pupil size can vary when an animal is 

not moving (McGinley et al., 2015a). However, spontaneous facial movements predict 

more neural variability in visual cortex than pupil size (Stringer et al., 2019). 

Unlike most human studies, this literature generally measures spontaneous 

changes in absolute pupil size rather than dilations evoked by particular task events. On 

its face, the reported pupillary movements resembles human literature on spontaneous 

changes in pupil size during fatigue rather than listening effort, since it involves changes 

in pupil size that occur slowly across a large dynamic range (Lowenstein et al., 1963; 

Lowenstein and Loewenfeld, 1964). One study that used air puffs to induce fast pupil 

dilation in mice found similar increase neural activity in visual cortex as when behavioral 

state was allowed to vary spontaneously (Vinck et al., 2015). It is possible that the 

dilations recorded in listening-effort experiments are accompanied by only a subset of the 

physiological processes associated with spontaneous pupil movements in mice. 
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Pupil as an index of neuromodulatory tone 

Activity in neuromodulatory centers has been proposed as a mechanism 

underlying observed correlations between pupil size and the level of neural activity in 

sensory cortex (McGinley et al., 2015b). In particular, it has been suggested that 

neuromodulators are released in sensory cortex at the same time that they are released in 

other brain regions upstream of pupil control circuits. This hypothesis suggests that pupil 

serves as an indirect marker of neuromodulation that affects sensory cortex. 

Most available evidence for the hypothesis focuses on the locus coeruleus (LC), a 

source of noradrenergic input to cortex (Larsen and Waters, 2018). During behavior, LC 

neurons switch between bursts of stimulus-locked action potentials and relatively slow, 

stimulus-independent firing when task engagement wanes, suggesting that LC is involved 

in the switch between optimizing behavior on a task and exploring the environment for 

new sources of reward (Aston-Jones and Cohen, 2005). Baseline pupil size is larger when 

humans are engaged in exploratory behavior, consistent with the hypothesis that LC 

drives baseline changes in pupil size (Jepma and Nieuwenhuis, 2011). 

Physiology also indicates that LC plays a causal role in pupil dilation. In humans, 

pupil dilation is correlated with blood-oxygen level dependent (BOLD) fMRI signal in 

LC (Murphy et al., 2014; de Gee et al., 2017). In macaques, activity in single LC neurons 

precedes pupil dilation by several hundred milliseconds (Joshi et al., 2016). Activating 

LC, either by electrical stimulation (Joshi et al., 2016; Reimer et al., 2016) or 

optogenetics (Lovett-Barron et al., 2017) induces a transient pupil dilation with a latency 

of ~1 second. Brief, high-frequency (50 or 333 Hz) stimulation of LC induces a more 

rapid dilation than tonic (< 5 Hz) LC stimulation, consistent with the hypothesis that 
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stimulus-locked, phasic activity in LC drives the fast, rapidly-decaying pupil dilations 

associated with changing cognitive load (Liu et al., 2017). 

LC acts on pupil through established circuits (Fig. 1.4). Pupil size is determined 

by the balance of activity in two smooth muscles of the iris: the sphincter and dilator 

pupillae (Mathôt, 2018). The dilator is innervated by the superior cervical ganglion 

(SCG), a component of the of the sympathetic nervous system, while the sphincter is 

innervated by the ciliary ganglion (CG), a component of the parasympathetic nervous 

system. CG receives input from cholinergic neurons of the Edinger-Westphal nucleus 

(EW). LC projects to both the constriction pathway (via EW) and the dilation pathway. In 

rats, injecting EW with a noradrenergic antagonist plus removal of the SCG renders the 

pupil insensitive to LC stimulation, suggesting that LC acts on EW to dilate pupil (Liu et 

al., 2017). Removal of the ipsilateral, but not contralateral, SCG reduces the degree of 

LC-induced pupil dilation, as well as the degree to which LC-induced pupil dilation is 

lateralized, suggesting that LC affects ipsilateral pupil size through both the constriction 

and dilation pathways, but contralateral pupil dilation only via the parasympathetic 

pathway (Liu et al., 2017). 

Pupil indexes activity of multiple neuromodulators and brain regions that act on 

sensory cortex, not just noradrenaline. Activity in cholinergic terminals in mouse visual 

and auditory cortex is correlated with pupil dilation (Reimer et al., 2016; Larsen et al., 

2018), as is activity in dopaminergic (substantia nigra and ventral tegmental area) and 

cholinergic (basal forebrain) regions in humans (de Gee et al., 2017). Slow changes in 

pupil size track acetylcholine release in sensory cortex, while faster changes in pupil size 

track noradrenaline release (Reimer et al., 2016). Microstimulation experiments in non-
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human primates suggest that additional regions involved in central control of pupil size 

include the superior colliculus (Wang et al., 2012), frontal eye fields (Lehmann and 

Corneil, 2016), and prefrontal cortex (Ebitz and Moore, 2017). 

If pupil does not offer an interpretable index of a single neuromodulator or 

activity in a particular circuit, what is its utility to physiologists? One possibility is that 

pupil can be used in particular experiments to gauge the type or degree of neural 

variability that are associated with uncontrolled fluctuations in internal state rather than 

behavioral factors such as task engagement, attention, or reward. For this purpose, the 

redundancy between the information in pupil size and other behavioral outputs such as 

running and respiration rate noted above would be an advantage, since it would suggest 

that pupil size reflects multiple types of uncontrolled variability. Such controls are 

particularly well-motivated for studies of effects of behavioral effects of the response 

properties of neurons in auditory cortex. As noted above, number of studies have used 

comparisons between passively-listening and behaving animals to demonstrate behavioral 

effects on receptive fields in A1. However, it is possible that animals are less alert during 

passive listening than they are when they behave. If so, this would introduce systematic 

differences between the state of the animal in the two conditions unrelated to the structure 

of the task, which could be indicated by changes in pupil size. 

The experiments described in Chapter Three analyze variability in pupil size and 

neural responses to sound in passively-listening ferrets, the same species originally used 

to demonstrate effects of task engagement on frequency tuning in A1. These experiments 

explore the effects of changes in pupil state on overall excitability, frequency selectivity, 

and sound level response threshold. These experiments therefore contribute towards the 
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general goal of characterizing how multiple changes in behavioral state affect the 

representation of sound in auditory cortex. 
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Figures 

 

 

 

Figure 1.1: Ascending auditory system. Simplified schematic of ascending auditory 

system through auditory cortex. Reproduced from (Butler and Lomber, 2013).  
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Figure 1.2: Task-related plasticity in receptive fields. Schematic of factors affecting 

receptive field shape during behavior.  
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Figure 1.3: Factors influencing pupil size during auditory tasks. Results of a systematic 

review of individual and task-related factors linked to pupil size during auditory 

processing in humans. The number of publications supporting each factor is indicated in 

parentheses. Reproduced from (Zekveld et al., 2018). 
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Figure 1.4: Neural circuits controlling pupil size. Schematic of neural circuits involved 

in reflexive and cognitive modulation of pupil size. Reproduced from (Mathôt, 2018). 
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This chapter was adapted from Schwartz et al. (2020) which was published in Journal of 

Neurophysiology 123(1):191-208. doi: 10.1152/jn.00595.2019.  
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Abstract 

 

Auditory selective attention is required for parsing crowded acoustic environments, but 

cortical systems mediating the influence of behavioral state on auditory perception are 

not well characterized. Previous neurophysiological studies suggest that attention 

produces a general enhancement of neural responses to important target sounds versus 

irrelevant distractors. However, behavioral studies suggest that in the presence of 

masking noise, attention provides a focal suppression of distractors that compete with 

targets. Here, we compared effects of attention on cortical responses to masking versus 

non-masking distractors, controlling for effects of listening effort and general task 

engagement. We recorded single-unit activity from primary auditory cortex (A1) of 

ferrets during behavior and found that selective attention decreased responses to 

distractors masking targets in the same spectral band, compared to spectrally distinct 

distractors. This suppression enhanced neural target detection thresholds, suggesting that 

limited attention resources serve to focally suppress responses to distractors that interfere 

with target detection. Changing effort by manipulating target salience consistently 

modulated spontaneous but not evoked activity. Task engagement and changing effort 

tended to affect the same neurons, while attention affected an independent population, 

suggesting that distinct feedback circuits mediate effects of attention and effort in A1. 
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Introduction 

 

Humans and other animals are able to focus attention on one of multiple 

competing sounds in order to resolve details in behaviorally important signals (Cherry, 

1953; Dai et al., 1991; Shinn-Cunningham and Best, 2008). Studies in humans have 

found that when attention is directed to one of two competing auditory streams, local 

field potential (LFP), MEG, and/or fMRI BOLD responses to task-relevant features are 

enhanced, and responses to distractor stimuli are generally suppressed (Ding and Simon, 

2012; Mesgarani and Chang, 2012; Da Costa et al., 2013). However, little is known about 

the effect of attention when distractors compete in the same spectral band as target 

sounds, an important problem for hearing in natural noisy environments (Shinn-

Cunningham and Best, 2008). Human behavioral studies suggest auditory attention does 

not uniformly suppress all distractor sounds, but instead preferentially suppresses 

distractors near the locus of attention (Greenberg and Larkin, 1968; Kidd et al., 2005).  

A small number of studies in behaving animals have found that attention improves 

coding of task-relevant versus irrelevant features at the population level, observed 

through changes in multiunit and LFP synchrony (Lakatos et al., 2013) and inter-neuronal 

correlations (Downer et al., 2017). As with the human studies, this work did not 

distinguish between features near and far from the locus of attention, and it is not known 

if the same mechanism operates in both cases. Sounds of similar frequency are encoded 

by topographically interspersed neurons in cortex (Bizley et al., 2013), and analysis at the 

level of single neuron responses is important for understanding their representation. 
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Several studies have identified changes in single-neuron activity in primary 

auditory cortex (A1) during behavior. Neurons can enhance or suppress responses to 

task-relevant spectral or spatial sound features. However, most of this work has relied on 

comparisons between passive listening and behavioral engagement (Fritz et al., 2003; 

Otazu et al., 2009; Lee and Middlebrooks, 2010; David et al., 2012; Atiani et al., 2014) or 

between behaviors with different structure (Fritz et al., 2005; David et al., 2012; Rodgers 

and DeWeese, 2014). It is difficult to attribute changes in neural activity to selective 

attention because other aspects of internal state also change between conditions, 

including arousal, effort, rules of behavior, and associated rewards. Moreover, the 

specific acoustic task has differed between studies, ranging among tone detection, 

modulation detection, tone discrimination, and tone-in-noise detection. Changing task 

sound features could recruit different feedback systems or require different auditory areas 

with specialized coding properties (Tian et al., 2001; Bizley et al., 2005), making a 

comparison between these studies difficult.  

To link specific aspects of behavioral state to changes in auditory coding, we 

developed an approach that isolates the effects of selective attention to sound frequency 

from general task engagement (Fritz et al., 2003; Otazu et al., 2009) and behavioral effort 

(Atiani et al. 2009). We trained animals to perform a tone-in-noise detection task in 

which they heard the same sound sequences but switched attention between target tones 

at different frequencies. To compare effects of attention and listening effort, we 

manipulated target salience while requiring detection of the same target tone (Atiani et 

al., 2009). We recorded single unit activity in A1 during behavior. During manipulation 

of selective attention, we observed suppression specifically of responses to distractors 
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near the target frequency rather than a generalized suppression of all distractors. When 

task difficulty was varied, we saw changes in tonic spike rate, rather than sound-evoked 

activity. 

The noise stimuli developed for these behaviors contain natural temporal 

dynamics and were designed to permit characterization of the sensory filter properties of 

neurons reflected in their sound-evoked activity (David and Shamma, 2013). We used 

these spectro-temporal receptive field models to compare the encoding properties of A1 

neurons between behavior conditions. This analysis revealed changes in neuronal filter 

properties consistent with changes in the average spontaneous and sound-evoked activity.  
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Methods 

 

All procedures were approved by the Oregon Health and Science University Institutional 

Animal Care and Use Committee and conform to the National Institutes of Health 

standards. 

 

Animal preparation 

Young adult male ferrets were obtained from an animal supplier (Marshall Farms, 

New York). A sterile surgery was then performed under isoflurane anesthesia to mount a 

post for subsequent head fixation and to expose a small portion of the skull for access to 

auditory cortex. The head post was surrounded by dental acrylic or Charisma composite, 

which bonded to the skull and to a set of stainless steel screws embedded in the skull. 

Following surgery, animals were treated with prophylactic antibiotics and analgesics 

under the supervision of University veterinary staff. The wound was cleaned and 

bandaged during a recovery period. After recovery (approximately 2 weeks), animals 

were habituated to a head-fixed posture for about two weeks. 

 

Auditory selective attention task 

Behavioral training and subsequent neurophysiological recording took place in a 

sound-attenuating chamber (Gretch-Ken) with a custom double-wall insert. Stimulus 

presentation and behavior were controlled by custom software (Matlab). Digital acoustic 

signals were transformed to analog (National Instruments), amplified (Crown), and 

delivered through two free-field speakers (Manger, 50-35,000 Hz flat gain) positioned 
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±30 degrees azimuth and 80 cm distant from the animal. Sound level was equalized and 

calibrated against a standard reference (Brüel & Kjær). 

Three ferrets were trained to perform an auditory selective attention task modeled 

on studies in the visual system (Moran and Desimone, 1985; McAdams and Maunsell, 

1999; David et al., 2008), in which they were rewarded for responding to target tones 

masked by one of two simultaneous, continuous noise streams and for ignoring catch 

tones masked by the other stream (Fig. 2.1). The task used a go/no-go paradigm, in which 

animals were required to refrain from licking a water spout during the noise until they 

heard the target tone (0.5 s duration, 0.1 s ramp) at a time randomly chosen from a set of 

delays (1, 1.5, 2, … or 5 s) after noise onset. To prevent timing strategies, the target time 

was distributed randomly with a flat hazard function (Heffner and Heffner, 1995). Target 

times varied across presentations of the same noise distractors so that animals could not 

use features in the noise to predict target onset. 

Noise streams were constructed from narrowband noise (0.25-0.5 octave, 65 dB 

peak SPL) modulated by the envelope of one of 30 distinct ferret vocalizations from a 

library of kit distress calls and adult play and aggression calls (David and Shamma, 

2013). The envelope fluctuated between 0 and 65 dB SPL, and its modulation power 

spectrum was low-pass with 30 dB attenuation at 10 Hz, typical of mammalian 

vocalizations (Singh and Theunissen, 2003). Thus the spectral properties of the noise 

streams were simple and sparse, while the temporal properties matched those of 

ethological natural sounds. To maximize perceptual separability (Shamma et al., 2011), 

the streams were generated using different vocalization envelopes, centered at different 
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frequencies (0.9-4.3 octave apart) and presented from different spatial locations (±30 

degrees azimuth).  

In a single block of behavioral trials, the target tone matched the center frequency 

and spatial position of one noise stream. It was switched to match the other stream in a 

subsequent block. The majority of trials (80-92%) contained a cue tone target with 

relatively high signal-to-noise ratio (SNR, 5 to -5 dB peak-to-peak, relative to reference 

noise). For all tones, SNR was calculated locally in period of the noise that overlapped 

the tone. This definition of SNR produced relatively stable performance at a given SNR. 

The remainder of trials contained probe tone targets with low SNR (-7 to -12 dB), 

requiring focused attention on the target stream. The exact target SNR was adjusted for 

each animal and target frequency so that the cue tone was super-threshold (>90% hit rate) 

and the probe tone was closer to threshold (70% hit rate). The large number of high-SNR 

cue targets provided a cue for attention and were important to maintain motivation, which 

flagged if animals were subjected to a large number of low-SNR probe targets. A random 

subset of trials (8-15%) included a catch tone in the non-target stream, occurring before 

the target and identical to the probe tone in the opposite trial block (-7 to -12 dB SNR). 

To avoid perceptual grouping of the target and catch tone, the interval between the two 

tones was jittered on each trial that contained both a target and catch. Responses to the 

cue and probe tones were rewarded with water (response window 0.1-1 s following tone 

onset). Responses to the catch tone or to the reference before the target resulted in no 

reward and were punished with a brief timeout (5-10 s) before the next trial. A 

preferential response to the probe versus catch tone indicated selective attention to the 

target stream (Moran and Desimone, 1985; McAdams and Maunsell, 1999; David et al., 
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2008). Trial blocks began by requiring correct behavior on five trials with only the cue 

target to direct attention to a single stream. Cue trials were discarded from subsequent 

analysis.  

Behavioral performance was quantified by hit rate (correct responses to targets vs. 

misses), false alarm rate (incorrect responses prior to the target), and a discrimination 

index (DI) that measured the area under the receiver operating characteristic (ROC) curve 

for hits and false alarms (Fig. 2.1C-D, (Yin et al., 2010; David et al., 2012)). To compute 

DI, each time when a target could occur was identified in each trial. The first lick during 

each trial was treated as a hit (response following target onset) or false alarm (response to 

noise at a time when a target could occur), depending on whether it fell in a bin before or 

after tone onset. Trials with licks prior to any possible target window were punished as 

false alarms but classified as invalid and excluded from behavioral analysis. The 

probability of a hit was computed as a function of the latency after tone onset, and the 

probability of a false alarm was computed for latency relative to times when targets could 

occur. These probabilities were then used to construct the ROC curve. A DI of 1.0 

reflected perfect discriminability and 0.5 reflected chance performance. 

Behavioral statistics were computed separately for the three tones (cue, probe, and 

catch). Target responses at the last possible time (5 sec) were discarded, as catch 

responses and false alarms never occur at that latency. Only sessions with above-chance 

performance on cue tones (DI>0.5, p>0.05, jackknife t-test) were included in analysis of 

neurophysiology data. During about 30% of behavior blocks, animals’ behavioral state 

lapsed at some point (indicated by missing 5-10 cue targets in a row, usually later in the 

day), and the experimenter provided a reward manually following a target tone to re-
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engage behavior. Typically, a single reminder trial was adequate. If animals failed to re-

engage after multiple reminders (up to 10), the behavioral block was ended. These 

reminder trials were excluded from the analysis of neurophysiology data. Truncating all 

data acquired after reminder trials to control for long-term effects of the reminder 

increased noise in the analysis of neurophysiology data but did not significantly change 

any of the results observed across the neural population. Selective attention to the target 

stream was confirmed by larger DI for the probe tone than the catch tone across two 

behavioral blocks with reversed probe and catch tones. 

As expected, animals were better able to report the cue tone, but also responded 

preferentially to the probe tone versus the catch tone (Fig. 2.1E). The combination of 

spatial and spectral streaming cues maximized behavioral attention effects. Animals were 

also able to perform tasks with only spectral separation between streams, but behavioral 

effects were weaker (data not shown). If only spatial cues were used, the two streams 

were fused, producing a strong percept of a single noise stream moving in space. This 

effect produced a spatial release from masking, increasing the salience of probe and catch 

tones and eliminating the need for selective attention. Animals were not tested on a 

spatial-only task because it appeared that attention would not be required for probe 

detection. 

 

Variable effort task 

Two animals were trained on a variant of the tone-in-noise task, in which the 

frequency and location of the target tone was fixed, but target SNR was varied between 

blocks. For this task either one or two noise streams were used (defined as above), but the 
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target was always masked by the same stream. In a high-SNR condition, the target tone 

level was well above threshold on 80-90% of trials (10 to -5 dB SNR, measured by peak-

to-peak amplitude). For a small number of trials (10-20%), a low-SNR probe target (0 to 

-15 dB SNR, 10 dB below high SNR) was used to measure behavioral sensitivity to a 

near-threshold target. Detection threshold varied according to the frequency of the target 

tone, and probe targets were chosen to be 10 dB above threshold. In the low-SNR 

condition, the majority of trials used low-SNR targets, and the remainder used high-SNR 

targets. While the exact level of high- and low-SNR targets varied across days, they were 

always fixed between blocks on a given day, so that performance could be compared 

between identical stimuli. 

Behavioral performance was assessed using DI, as for the selective attention task. 

A change in effort was indicated by comparing DI for the low-SNR target between low-

SNR and high-SNR conditions. Greater effort in the low-SNR condition was indicated by 

higher DI, reflecting adjustment of behavioral strategy to detect the difficult, low-SNR 

targets more reliably. 

 

Neurophysiological recording 

After animals demonstrated reliable selective attention behavior (DI>0.5 for at 

least three successive sessions), we opened a small craniotomy over primary auditory 

cortex (A1). Extracellular neurophysiological activity was recorded using 1-4 

independently positioned tungsten microelectrodes (FHC). Amplified (AM Systems) and 

digitized (National Instruments) signals were stored using open-source data acquisition 

software (Englitz et al., 2013). Recording sites were confirmed as being in A1 based on 
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tonotopy and relatively reliable and simple response properties (Shamma et al., 1993; 

Atiani et al., 2014). Single units were sorted offline by bandpass filtering the raw trace 

(300-6000 Hz) and then applying PCA-based clustering algorithm to spike-threshold 

events (David et al., 2009). 

Upon unit isolation, a series of brief (100-ms duration, 100-ms interstimulus 

interval, 65 dB SPL) quarter-octave noise bursts was used to determine the range of 

frequencies that evoked a response and the best frequency (BF) that drove the strongest 

response. If a neuron did not respond to the noise bursts, the electrode was moved to a 

new recording depth. For the selective attention task, one noise stream was centered at 

the BF and at the preferred spatial location (usually contralateral). The second stream was 

positioned two octaves above or below BF, usually outside of the tuning curve. 

Occasionally, neurons responded to noise bursts across the entire range of frequencies 

measured, and a band with a very weak response (< 1/2 BF response) was used for the 

second stream. Thus, task conditions alternated between attend RF (target at BF and 

preferred spatial location) and attend away (target in the non-preferred stream). For the 

variable effort task, the noise configuration was the same, but the target was always 

centered over neuronal BF. 

The order of behavior conditions (attend RF and attend away blocks for selective 

attention, low- and high-SNR blocks for variable effort) was randomized between 

experiments to offset possible bias from decreased motivation during later blocks (note 

gradual decrease in DI across blocks in Fig. 2.1D). We recorded neural activity during 

both behavior conditions and during passive presentation of task stimuli pre- and post-

behavior. Thirty identical streams, with frozen noise carriers were played in all behavior 
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conditions. Of the 30 noise streams, 29 were repeated 1-2 times in each behavior block. 

One stream was presented 3-10 times, permitting a more reliable estimate of the PSTH 

response during neurophysiological recordings. Noise stimuli presented on incorrect 

(miss or false alarm) trials were repeated on a later trial, and a repetition was complete 

only when all the noise stimuli were presented on correct (hit) trials. Data from the 

repeated stimuli were used as the validation set to evaluate encoding model prediction 

accuracy (see Spectro-temporal receptive field analysis, below). 

 

Evoked activity analysis 

Peri-stimulus time histograms (PSTHs) of spiking activity were measured in each 

behavioral condition, aligned to reference and target stimulus onsets (Fig. 2.2). Because 

target and catch tones were embedded in the reference sound at random times, reference 

responses were truncated at the time of tone onset. We compared the PSTH during three 

epochs (Fig. 2.3): spontaneous (0-500 ms before reference onset), reference-evoked (0-

2000 ms after reference onset, minus spontaneous) and target-evoked (0-400 ms after 

target onset minus 0-500 ms before target onset). A longer target window did not affect 

changes measured in the target response, but the short target window minimized potential 

confounds from motor signals associated with licking, which typically had latency > 400 

ms for probe tones. 

To measure changes in mean spontaneous and evoked activity for single neurons, 

we measured a behavior modulation index, the fraction change (Otazu et al., 2009) in 

spontaneous activity and evoked responses between behavior conditions: 
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 ! =
#̅A − #̅B
#̅A + #̅B

 (2.1) 

The subscripts A vs. B refer to experimentally controlled behavioral conditions (e.g., 

attend RF vs. attend away, active vs. passive, low SNR vs. high SNR). Significant 

differences between behavior conditions were assessed by a jackknifed t-test, and 

significant average changes across a neural population were assessed by a Wilcoxon sign 

test. We compared results of the sign test for population data to a jackknifed t-test, and 

found similar results. 

To measure changes in baseline rate and response gain, we modeled the time-

varying response to a stimulus in behavior condition A, rA(t), as the response in condition 

B, rB(t), scaled by a constant gain, g, plus a constant offset, d (Slee and David 2015), 

 #'()) = +,#-()) − #-,/0 + #-,/ + ! (2.2) 

The gain term was applied after subtracting the spontaneous rate, rB,0, so that it impacted 

only sound-evoked activity. We used least-square linear regression to determine the 

optimal values of d and g that minimized mean squared error over time: 

 !, + = 1#+2345,#'()) − +,#-()) − #-,/0 − #-,/ − !0
6

7

 (2.3) 

Identical noise stimuli were presented in each behavioral condition, but variability in 

performance did not always permit presentation of a complete stimulus set in all 

behavioral conditions. To control for any possible difference in sound-evoked activity, 

these analyses were always applied to the subset of data with identical stimuli in both 

behavior conditions for a given experiment. For comparison of average PSTH (Figs. 

2.2C, 2.6C), responses were normalized by mean noise-evoked activity in the passive 

condition before averaging. 
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We used signal detection analysis to measure neural discriminability (d’) of task-

relevant sounds, based on single-trial responses to tone and reference noise stimuli (Niwa 

et al., 2012), 

 !8 =
#̅9
:9
−
#̅;
:;

 (2.4) 

where #̅9 and #̅; were the average response to tone and noise stimuli, respectively, and :9 

and :; were the standard deviation of responses across trials. For the selective attention 

data, d’ was computed for the probe tone in the attend RF condition and compared to d’ 

for the catch tone in the attend away condition. For the variable SNR data, d’ was 

compared between the low-SNR target in the low-effort (high-SNR) and high-effort 

(low-SNR) blocks. Neural responses to probe and catch tones were computed as the mean 

spike rate during 0-400 ms following tone onset. This relatively short window avoided 

possible motor artifacts from licking during behavior. Reponses to noise were computed 

during 400-ms windows prior to probe or catch, during which time a tone could occur on 

a different trial. 

Only data from correct trials were analyzed, although no significant differences 

were observed for data from incorrect trials. The majority of incorrect trials were false 

alarms with relatively short duration. Because stimuli were terminated immediately after 

a false alarm, their relative contribution to the overall data set size was limited. Probe and 

catch tones were relatively rare during selective attention behavior (8-20% of trials). This 

limitation, combined with their low SNR, made it difficult to measure reliable probe 

responses in some neurons. Only 43/54 neurons with at least 5 presentations of probe and 

target tones during behavior were included in the d’ analysis. In addition, during early 
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experiments, probe tones were not presented during passive listening (7/43 neurons), and 

these were also excluded from the target BMI analysis (Fig. 2.3C). 

 

Spectro-temporal receptive field analysis 

Vocalization-modulated noise was designed so that the random fluctuations in the 

two spectral channels (noise stream envelopes) could be used to measure spectro-

temporal encoding properties. The linear spectro-temporal receptive field (STRF) is a 

current standard model for early stages of auditory processing (Aertsen and Johannesma, 

1981; Theunissen et al., 2001; Machens et al., 2004; David et al., 2009; Calabrese et al., 

2011). The linear STRF is an implementation of the generalized linear model (GLM) and 

describes time-varying neural spike rate, r(t), as a weighted sum of the preceding 

stimulus spectrogram, s(x,t), plus a baseline spike rate, b, 

 #()) =5ℎ(=, >)?(=, ) − >) + @
A,B

 (2.5) 

The time lag of temporal integration, u, ranged from 0 to 150 ms. In typical STRF 

analysis, the stimulus is broadband and variable across multiple spectral or spatial 

channels, x. Here, the stimulus is composed of just two time-varying channels, and a 

spectrally simplified version of the STRF can be constructed in which x=1…2 spans just 

these two channels. The encoding model for a single spectral band is referred to simply as 

a temporal receptive field (TRF, (Ding and Simon, 2012; David and Shamma, 2013)), but 

because the current study included two bands, we continue to refer to these models 

STRFs. Analytically, this simplified STRF can be estimated using the same methods as 

for standard STRFs. For the current study, we used coordinate descent, which has proven 
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effective for natural stimuli (David et al., 2007; Thorson et al., 2015). Spike rate data and 

stimulus spectrograms were binned at 10 ms before STRF analysis. 

The ability of the STRF to describe a neuron’s function was assessed by 

measuring the accuracy with which it predicted time varying activity in a held-out 

validation dataset that was not used for model estimation. The prediction correlation was 

computed as the correlation coefficient (Pearson’s R) between the predicted and actual 

average response. A prediction correlation of R=1 indicated perfect prediction accuracy, 

and a value of R=0 indicated chance performance.  

To measure effects of behavioral state on spectro-temporal coding, we estimated 

behavior-dependent STRFs, by estimating a separate STRF for data from each behavioral 

condition (attend BF vs. attend away or high-SNR vs. low-SNR). Thus two sets of model 

parameters were estimated for each neuron, e.g., in the case of selective attention data, 

filters hRF(x,u) and haway(x,u), and baseline rates bRF and baway. Predication accuracy was 

assessed using a validation set drawn from both behavior conditions, using each STRF to 

predict activity in their respective behavioral state. Significant behavioral effects were 

indicated by improved prediction correlation for behavior-dependent STRFs over a 

behavior-independent STRF estimated using data collapsed across behavior conditions. 

Behavior-dependent changes in tuning were measured by comparing STRF parameters, 

h(x,u) and b, directly between conditions. 

Competing behavior-dependent and –independent models were fit and tested 

using the same estimation and validation data sets. We used coordinate descent for 

fitting, which has previously been demonstrated as useful for fitting nonlinear encoding 

models using natural and naturalistic stimuli (David et al., 2007; Willmore et al., 2010; 
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Thorson et al., 2015). Significant differences in prediction accuracy across the neural 

population were determined by a Wilcoxon sign test. 
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Results 

Ferrets can selectively attend among competing auditory streams 

We trained three ferrets to perform an auditory selective attention task requiring 

detection of a tone in one of two simultaneous noise streams. Task stimuli were 

composed of two simultaneous tone-in-noise streams (Fig. 2.1A-B). During a single 

block of trials, animals were rewarded for responding to tones masked by one stream (the 

target stream) and punished for responding to the other (the non-target). Reward 

contingencies were reversed between blocks. The task therefore allowed comparison of 

neural responses to identical sensory stimuli while animals reported targets occurring in 

only one of the two streams (Moran and Desimone, 1985). 

Spectral, spatial, and temporal cues were used to maximize perceptual separability 

of the streams. Both streams consisted of tones embedded in narrowband noise (0.25-0.5 

octave) modulated by the temporal envelope of natural vocalizations (David and 

Shamma, 2013). To facilitate perceptual segregation, the streams differed in center 

frequency (0.9-4.3 octave separation), location (±30 degrees azimuth) and temporal 

envelope dynamics (one of 30 envelopes from a vocalization library, chosen randomly on 

each trial).  

The task employed a go/no-go paradigm (David et al., 2012; Slee and David, 

2015). Ferrets initiated each trial by refraining from licking a water spout for a random 

period (1-3 s). They were then simultaneously presented with the target and non-target 

noise streams (Fig. 2.1B). On each trial, a target tone at the center frequency and spatial 

location of the target stream was presented at a random time after noise onset (1-4 s). The 

majority (80-92%) of trials contained a high signal-to-noise ratio (SNR, 5 to -4 dB) cue 
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tone, while the remaining trials contained a low-SNR probe tone (-7 to -12 dB). On a 

random subset of trials (8-15%), the target was preceded by a low-SNR catch tone at the 

frequency and location of the non-target stream, with SNR matched to the probe tone. 

The specific SNR was manipulated between experiments to produce near-threshold 

behavior, but probe and catch tones were presented at identical SNRs within a single 

experiment. Licks that occurred before target tone onset (including catch tone periods) 

resulted in termination of the trial and punishment with a brief timeout (5-10 s). Licks 

that promptly followed target tone onset were rewarded with water (0.1-1 s following 

target onset). 

A behavioral session consisted of two blocks, with the attended stream switching 

between blocks. The frequency, location, and level of the noise bands and the probe and 

catch tones remained the same across blocks. Only the reward contingencies, indicated by 

the frequency of the cue tone, were reversed: the target stream became the non-target, and 

the behavioral meaning of the probe and catch tones was reversed. The task therefore 

allowed comparison between responses to identical noise and tone stimuli under different 

internal states, a key requirement of a selective attention task (Moran and Desimone, 

1985; McAdams and Maunsell, 1999). 

We verified selective attention by comparing behavioral responses to the probe 

and catch tones. In humans, knowledge of the location or frequency of an attended sound 

affects the speed and accuracy with which the sound is detected relative to distractors 

(Greenberg and Larkin, 1968; Scharf et al., 1987; Dai et al., 1991; Spence and Driver, 

1994; Woods et al., 2001; Kidd et al., 2005). We expected a similar improvement in 

behavioral discriminability for the target over catch tone. To test this prediction, we 
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calculated a discrimination index (DI), which quantified the area under the receiver-

operating characteristic (ROC) curve for discrimination of each tone class from the 

narrowband noise background (Fig. 2.1C-D, (Yin et al., 2010; David et al., 2012)). A DI 

of 1.0 reflected perfect discriminability and 0.5 reflected chance performance. As 

expected, animals were able to report the cue tone more reliably than the low-SNR tones, 

but they also responded preferentially to the probe tone versus the catch tone. Mean 

performance of all three ferrets showed significantly greater DI for the probe tone versus 

catch tone and no difference between attention to left and right streams (Fig. 2.1E).  

The order of behavioral conditions was randomized across days, but we 

considered the possibility that increased satiety might lead to a decrease in DI over the 

course of behavior during a single day. We did observe a decrease in overall DI between 

the first and second behavioral block for one animal (mean DI, animal 1: 86.4 vs. 82.7**, 

animal 2: 78.0 vs. 78.3, animal 3: 76.1 vs. 74.8, **p<0.01, jackknife t-test, p>0.05), but 

the random ordering of behavioral blocks controlled for this trend. We also considered 

the possibility of changes in DI over the course of a single behavioral block. One animal 

showed a trend toward decreased DI in the second half of each block (animal 1: 86.7 vs. 

83.2), while two showed a trend toward increased DI (animal 2: 77.1 vs. 80.6, animal 3: 

74.6 vs. 76.7). However, none of these within-block changes was significant (jackknife t-

test, p>0.05), and performance was broadly stable over time. 

 



 49 

 

A1 single-unit responses are selectivity suppressed for the attended distractor 

stream 

We recorded single-unit activity in primary auditory cortex (A1) of the three 

trained ferrets during selective attention behavior to determine how neural activity 

changed as attention was switched between noise streams. For each unit, one noise 

stream was centered over its best frequency (BF) and was presented from a location 

contralateral to the recording site. The other stream was presented in a frequency band 

outside the neuron’s frequency tuning curve (0.9-4.3 octaves from BF) and ipsilateral to 

the recording site. Thus, the task alternated between an attend receptive field (RF) 

condition (target stream in the RF) and attend away condition (target stream outside the 

RF). We recorded activity during both behavior conditions and during passive 

presentation of task stimuli (two behavior conditions: n=54, at least one behavior 

condition: n=94 neurons). The order of attend RF and attend away blocks was 

randomized across experiments to avoid bias from changes in overall motivation over the 

course of the experiment. 

Changes in behavioral state can influence spontaneous spike rate and/or the sound 

evoked activity of single-units (Ryan et al., 1984; Rodgers and DeWeese, 2014). We 

measured the effects of selective attention by comparing spontaneous and noise-evoked 

activity (after subtracting spontaneous rate) between attend RF and attend away 

conditions. We measured the effects of task engagement by comparing activity between 

behaving and passive conditions. Because identical noise stimuli were played in all 

behavioral conditions, this controlled for any difference in sound-evoked responses. We 
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measured noise-evoked responses only during the periods prior to the occurrence of 

target and catch tones. 

When animals attended to a noise stream in a neuron’s RF, the response of many 

neurons to the noise stimuli decreased (Fig. 2.2A-B). Of the 54 neurons with data from 

both attend-RF and attend-away conditions, 16 showed significant changes in baseline 

rate and 26 showed significant changes in noise-evoked response (p<0.05, jackknife t-

test). The average peristimulus time histogram (PSTH) response computed from the 

activity of neurons that underwent a change in either spontaneous or evoked activity 

followed a pattern consistent with the examples, showing no consistent change in 

spontaneous rate but a decreased evoked response (Fig. 2.2C). The change in evoked 

activity was roughly constant over time, occurring with about the same latency as the 

sensory response itself.  

We quantified behavior-dependent changes in neural activity using a behavior 

modulation index (BMI, Eq. 2.1), computed as the ratio of the difference in neural 

activity between conditions to the sum of activity across conditions (Otazu et al., 2009). 

For selective attention comparisons, BMI was calculated as the difference between attend 

RF and attend away. Thus, BMI greater than zero indicated greater neural activity in the 

attend RF condition, and negative BMI indicated greater activity in the attend away 

condition. A value of 0.5 or -0.5 indicated complete suppression of responses in the 

attend away or attend RF condition, respectively. For the 16 neurons showing significant 

changes in spontaneous activity, median BMI was not significantly different from zero 

(p>0.5, sign test, Fig. 2.3A, D, shaded bars). However, for the 26 neurons showing 

significant changes in noise-evoked response, BMI was significantly decreased in the 
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attend RF condition (-0.12, p=0.005, approximately 20% suppression, Fig. 2.3B, E). A 

decrease in the noise-evoked response was also observed across the entire selective 

attention dataset (median BMI -0.06, p<0.001, n=54). Because the stimuli were designed 

so that only the RF stream evoked a neural response, this change reflected suppression of 

responses to the noise stream that masked the attended target. In addition to measuring 

changes in the mean evoked response, we also compared changes in the gain of noise 

evoked responses (Slee and David, 2015), which showed a similar suppression in the 

attend RF condition (median gain change -14%, p<0.001, Fig. 2.4). 

There was no systematic effect of selective attention on responses to the probe 

tone (target during attend RF vs. catch during attend away), indicating that suppression 

was selective for the masking noise in the attended stream (Fig. 2.2D, 2.3C). Across the 

entire set of recordings with a sufficient number of probe and catch tones to measure 

responses in both conditions (n=36 neurons with at least 5 presentations of probe and 

catch tones in passive and both active conditions), the tone response changed 

significantly between attention conditions in 12 neurons, but median BMI was not 

significantly different from zero (p>0.5, Fig. 2.3F). 

These attention-related effects were distinct from changes in neural activity 

related to task engagement. When compared to passive listening, the median spontaneous 

spike rate and noise evoked response both increased significantly (Fig. 2.3G-I, 

spontaneous: median BMI 0.17, p=0.002; noise-evoked: median 0.11, p=0.005; probe-

evoked: median 0.14, p=0.09; sign test). Because the magnitude of spontaneous rate 

changes was the same for both attention conditions, there was no difference between 

attend RF and attend away conditions (Fig. 2.5A). Thus, the suppression of noise-evoked 
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activity between selective attention conditions contrasted with a general increase in 

spontaneous activity and excitability during task engagement.  

The effects of selective attention and task engagement varied substantially across 

neurons. To better understand the interplay of these effects across the population, we 

compared the BMI for the noise-evoked response between behavior (averaged across 

attention conditions) and passive listening across neurons to the BMI between attention 

conditions (Fig. 2.5B). We found no correlation between these effects (r=0.031, p>0.5, 

jackknife t-test), consistent with a system in which effects of selective attention and task 

engagement operate on different subsets of A1 neurons. We also considered the 

possibility that the magnitude of behavior effects might depend on tuning bandwidth or 

the recording depth in cortex. However, no significant relationship was observed (data 

not shown).  

 

Distractor suppression enhances neural discriminability of target versus distractors 

We hypothesized that if responses to the distractor noise were suppressed relative 

to the probe tone when attention was directed to the neuronal BF, then the neural 

response to the noise versus tone-plus-noise stimuli should be more discriminable when 

attention was directed to the RF (Fig. 2.5C). To assess discriminability of these 

responses, we computed a neurometric d’ for discrimination of the RF (probe/catch) tone 

from distractor noise, based on single-trial neural responses during attend RF vs. away 

conditions (Fig. 2.5D-E). Previous work has used this approach to measure improvements 

in neural discriminability following engagement in a temporal modulation detection task 

(Niwa et al., 2012).  Across all behavioral sessions, neural d’ increased slightly between 
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the two attention conditions (median change 0.03, p=0.02, sign test). However, the 

selective attention task was difficult for animals to perform during neurophysiological 

recordings, and behavioral performance varied between experiments. If we considered 

only sessions in which animals showed a significantly greater DI for the probe target than 

for the catch tone (p<0.05, jackknife t-test), this subset of neurons showed a greater 

increase in d’ in the attend RF condition (median change 0.1, p=0.02, sign test, Fig. 

2.5E). This larger change in d’ suggests that selective attention improves neural 

discriminability in A1 during the tone-in-noise detection task, and the degree of 

improvement depends on the animal’s performance. 

 

A1 spontaneous activity, but not gain, is modulated by changes in task difficulty 

Previous work has suggested that behavioral effort, driven by changing task 

difficulty, can also modulate neuronal activity in A1 (Atiani et al., 2009) and other 

sensory cortical areas (Chen et al., 2008). To assess the effects of changing effort in the 

current tone-in-noise context, we recorded A1 single-unit activity during a variant of the 

tone-detection task. In this case, the target stream was fixed, but the task varied from easy 

to hard by changing the SNR of the target tone relative to the noise stream from high (10 

to -5 dB) to low (0 to -15 dB) between behavioral blocks (Fig. 2.6A). To probe 

differences in effort associated with changes in difficulty, the high-SNR condition 

included a small number of low-SNR targets (10-20%, (Spitzer et al., 1988)). We could 

then assess listening effort by comparing performance for identical low-SNR targets 

between the two conditions. In both animals, DI was consistently higher when the low-
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SNR target was more likely to occur, consistent with greater effort during blocks when 

target detection was more difficult (Fig. 2.6B, (Spitzer et al., 1988)). 

We recorded from 88 neurons from two ferrets in both effort conditions and from 

122 neurons in at least one effort condition. Mean PSTHs showed an increase in 

spontaneous activity during low- versus high-SNR blocks but no change in the average 

response evoked by noise or targets (Fig. 2.6C-D). The spontaneous rate of 47/88 units 

was significantly modulated by task difficulty (p<0.05, jackknife t-test). Among these 

cells, the spontaneous rate showed a significant decrease during low-SNR blocks (median 

BMI -0.16, p=0.008, sign test, Fig. 2.7A). Many neurons also showed an effect of task 

difficulty on the evoked responses to noise (n=51) or tones (n=35). However, there was 

no consistent average change in either sound-evoked response (Fig. 2.7B-C, p=0.4 and 

0.09, respectively, for noise and tone responses). As in the case of selective attention, we 

observed increases in spontaneous activity and sound-evoked responses during behavior 

relative to passive listening (Fig. 2.7D-F). Thus, task engagement effects were similar to 

those of the selective attention task, but unlike selective attention, changing task 

difficulty impacted average spontaneous rate rather than the noise-evoked response (Fig. 

2.7G).  

As in the case of selective attention, effects of task difficulty varied substantially 

across neurons. To better understand the interplay of task engagement and effort across 

the neural population, we compared the change in noise-evoked activity during task 

engagement (active versus passive) to the change between difficulty conditions (Fig. 

2.7H). In this case, we observed a significant negative correlation in BMI (r=-0.45, 

p=0.004). Neurons whose response increased during task engagement tended to be 
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suppressed in the more difficult, low-SNR condition. Conversely, neurons whose 

response decreased during engagement tended to produce an enhanced response in the 

low-SNR condition. Thus, although no consistent effects of effort on average evoked 

activity were observed, neurons affected by changes in difficulty were the same as those 

affected by task engagement. 

The pattern of changes in neural activity associated with changes in task difficulty 

did not suggest an obvious impact on neural discriminability. For a complete comparison 

with the selective attention data, however, we also tested whether engaging in the more 

difficult, low-SNR task increased neural discriminability of target versus noise (Fig. 

2.7I). We used the same measure of d’ as for the selective attention data. Across the 

entire set of 88 neurons in the variable SNR dataset, we observed a small increase in d’ 

(median change 0.04, p=0.05, sign test). When we considered only the subset of neurons 

for which DI for the low-SNR tone significantly improved in the low-SNR versus high-

SNR condition, we observed a trend toward a greater increase in d’, but this change was 

not significant (median change 0.07, p=0.06). Thus, the change in effort may be 

accompanied by increased neural discriminability between target and noise, but any 

effects were weaker than in the selective attention data. 

 

Selective attention and task-difficulty effects are reflected in neuronal filter models 

To investigate the effects of changing behavioral state on sensory coding in more 

detail, we computed spectro-temporal receptive field (STRF) models for each single unit, 

fit using activity evoked by the distractor noise under the different behavioral conditions 

(Fig. 2.8A). The linear STRF typically describes spectro-temporal tuning as the weighted 
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sum over several channels of a broadband stimulus spectrogram (see Eq. 2.5 and (Aertsen 

and Johannesma, 1981; Thorson et al., 2015)). For vocalization modulated noise, we 

employed a spectrally simplified version of the STRF that summed activity over just the 

two spectral channels that comprised the noise stimulus. Because one noise band was 

positioned outside of the neuron’s receptive field, the STRF typically showed tuning to 

only one of the two stimulus channels (see examples in Fig. 2.8A).  

To investigate the interaction between attention and spectro-temporal tuning, we 

calculated separate STRFs for data from each behavior condition. Model performance 

was assessed by measuring the accuracy (correlation coefficient, Pearson’s R) with which 

the STRF predicted the neuron’s time-varying spike rate. Effects of behavioral state were 

identified by comparing the predictive power of these behavior-dependent STRFs to 

performance of behavior-independent STRFs, for which a single model was fit across all 

behavior conditions. A neuron was labeled as showing a significant effect of attention if 

the behavior-dependent STRF predicted neural responses significantly better than the 

behavior-independent STRF (p<0.05, permutation test). Prediction accuracy was 

measured using a held-out validation dataset, so that any difference in prediction 

accuracy could not reflect overfitting to noise (Wu et al., 2006; David et al., 2009). 

Identical noise sounds were presented during passive listening and different task 

conditions. Thus, each STRF for a single neuron was estimated using identical stimuli, 

avoiding potential stimulus-related bias between estimates (Wu et al., 2006; David et al., 

2007). 

For the selective attention data, the behavior-dependent STRF performed 

significantly better in 26/54 neurons, and the mean prediction correlation was 
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significantly greater for the behavior-dependent model (mean R=0.31 vs.0.25, n=54, 

p<0.0001, sign test, Fig. 2.8B). We then compared the fit parameters of STRFs for 

neurons showing a significant improvement for the behavior-dependent model. For these 

neurons, peak gain of the STRF’s temporal filter was lower for the attend RF versus 

attend away condition (Fig. 2.8C-D, p=0.007, permutation test). Baseline firing rate, 

which would reflect a change in spontaneous rate, did not change between attention 

conditions (p=0.3). Thus, we observed changes in STRFs that were consistent with 

changes in mean spontaneous and evoked firing rates (Fig. 2.3E). Moreover, there was no 

consistent change in the shape of the temporal response (Fig. 2.8C), indicating that 

selective attention primarily affected the magnitude of A1 noise-evoked responses, but 

not temporal tuning. 

For the variable SNR task, we also observed improved prediction accuracy for the 

behavior-dependent model in a subset of neurons (51/88), and an overall improvement in 

mean prediction accuracy (mean R=0.34 vs. 0.29, n=88, p<0.0001, permutation test). For 

neurons with significantly better behavior-dependent STRFs, baseline firing rate 

increased during the less difficult, high-SNR task (p=0.02, permutation test), and there 

was no change in the STRF’s temporal filter (p>0.5, Fig. 2.8E-F). Thus, as in the case of 

the selective attention data, the behavior-dependent changes observed in mean spike rate 

were reciprocated by changes in the STRF baseline, again with no systematic change in 

temporal filter properties. 
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Discussion 

 

This study demonstrates that auditory selective attention suppresses the responses of 

neurons in primary auditory cortex (A1) to distractor sounds that compete with an 

attended target. In nearly 50% of A1 neurons, responses to distractor noise centered at the 

frequency of a target tone were suppressed relative to distractors in a different frequency 

band. Responses to the target tone were not suppressed, leading to an improvement in its 

neural detection threshold. Selective attention effects differed from those of task 

engagement and changing task difficulty, which produced more systematic changes in 

spontaneous rather than evoked activity and tended to affect a different population of A1 

neurons. 

A primary goal of this study was to isolate mechanisms producing task-related 

plasticity previously reported in A1 when animals engaged in auditory behavior (Fritz et 

al., 2003; Lee and Middlebrooks, 2010; David et al., 2012; Niwa et al., 2012). The 

current data demonstrate that task-related effects can in fact be broken down into 

components that reflect task engagement, selective attention and effort. These behavior-

related changes have a similar total magnitude to those reported following task 

engagement in A1 (Fritz et al., 2003; Niwa et al., 2012). The same approach can be 

applied to measure the composition of behavior-related changes in more central belt and 

parabelt areas, where overall behavior effects are generally larger (Niwa et al., 2013; 

Atiani et al., 2014; Tsunada et al., 2016). 
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Mechanisms of auditory selective attention 

Distractor suppression may be a general strategy used by the auditory system to 

perform a variety of tasks, including those that require selective attention. At face value, 

these results are inconsistent with human studies of attention during streaming of 

simultaneously presented sounds. When human subjects attend to one of two speech or 

non-speech streams, the neural representation of the attended stream is enhanced over the 

non-attended stream (Ding and Simon, 2012; Mesgarani and Chang, 2012; Da Costa et 

al., 2013). Local field potential and fMRI recordings in non-human primates show similar 

enhancement for selective attention between two auditory streams (Lakatos et al., 2013) 

or auditory versus visual streams (Rinne et al., 2017).  

Several factors could explain this difference from the suppression observed in the 

current study. First, previous studies used field recordings that sum the activity of large 

neural populations, and the contribution of single neuron activity to these signals is not 

well understood. For example, the magnitude of evoked field potentials can be influenced 

the synchrony of local neural populations, independent of their firing rate (Telenczuk et 

al., 2010). Thus, a change in the amplitude of one signal does not necessitate a change of 

the same sign in the other. Second, several of the human studies focused on non-primary 

belt and parabelt areas of auditory cortex that may not undergo the same changes as A1. 

Finally, and perhaps most importantly, these differences may be explained by task 

structure. In the tone-in-noise task used in the current study, the noise does not provide 

useful information to the subject performing the task. A strategy of suppression thus may 

be helpful for enhancing contrast with the masked target tone (Durlach, 1963; Dai et al., 

1991; de Cheveigné, 1993). Streaming speech, in contrast, requires a much different 
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listening strategy in which the semantic content of the signal must be encoded rather than 

suppressed. An alternative task in which animals must detect specific features in the noise 

stream (e.g., modulation patterns) may reveal enhanced responses similar to those 

observed in the speech studies. Neural populations encoding targets and spectrally similar 

maskers are difficult to isolate in large-scale field recordings, which may explain why the 

effects of attention on masker stimuli have not been characterized previously. 

The distractor suppression we observed may be a neural correlate of a phenomenon 

observed in psychophysical studies of tone-in-noise detection. Humans can attend to a 

narrow frequency band surrounding a tone target: when listeners are cued to expect a tone 

at a given frequency, their ability to detect tone targets more than one critical bandwidth 

from the expected frequency dramatically decreases, effectively attenuating off-target 

sounds by 7 dB (Greenberg and Larkin, 1968; Scharf et al., 1987; Dai et al., 1991). More 

generally, the hypothesis that the auditory system suppresses neural responses to 

predictable distractors in order to amplify target signals is widespread in studies of 

psychoacoustics (Durlach, 1963; de Cheveigné, 1993; Shinn-Cunningham and Best, 

2008). We observed suppression of responses to a ½-octave noise distractor during a tone 

detection. This suppression may reflect sharpening of frequency tuning curves when 

attention was shifted into the neuron’s RF. If so, then the noise suppression would 

increase the neural representation of the tone target at the expense of sounds at nearby 

frequencies. 

Some aspects of our experiment suggest caution before adopting this 

interpretation. First, our acoustic stimuli sampled frequency tuning very sparsely and did 

not permit direct measurement of changes in frequency tuning bandwidth across attention 
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conditions. Second, it is not certain that animals used frequency as the dominant cue to 

direct their attention, since our stimuli also provided spatial and envelope cues to 

distinguish the attended and non-attended stream (Nelson and Carney, 2007). Specific 

interactions between attention and spectral coding can therefore only be resolved by 

future studies that require attention exclusively to spectral cues and probe a larger range 

of stimulus frequencies.  

 

Separability of engagement and attention effects 

Previous studies of tone-detection behavior have identified changes in the 

selectivity of A1 neurons specific to the frequency of a target tone (Fritz et al., 2003; 

Atiani et al., 2009; David et al., 2012; Kuchibhotla et al., 2017), but it has remained 

unclear how much these changes in neural tuning reflect selective attention to the target 

frequency versus more global processes of task engagement. Here we have isolated these 

effects and shown that selective attention produces frequency-specific suppression of 

responses evoked by distractors. Task engagement also produced changes that were 

independent of the locus of attention. Engagement was equally likely to produce 

enhancement or suppression of sound-evoked activity. This overall stability of average 

evoked activity suggests that changes in cortical network activity are tempered by a 

homeostatic mechanism that maintains stability in the level of spiking activity across 

auditory cortex. The selective suppression of noise responses at the locus of attention, 

thus, may be accompanied by enhancement at non-attended location (Fritz et al., 2005).  

Changing behavioral effort also influenced noise-evoked responses in A1. However, 

effects were not consistent, and a change in effort was equally likely to increase or 
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decrease responses. Instead, greater behavioral effort lead to a decrease in spontaneous 

spike rate. The distinct effects of attention and effort on evoked versus spontaneous 

activity suggest that different modulatory circuits mediate these changes. Task 

engagement and adjusting effort could reflect large-scale changes in brain state that do 

not depend on the acoustic features of task stimuli. The influence of these global state 

variables may arise from circuits that mediate effects of arousal (Issa and Wang, 2008; 

McGinley et al., 2015b). In contrast to changes in global state, selective attention requires 

differential processing of acoustic features, and its effects cannot be uniform across the 

auditory system. Consistent with a system containing distinct global versus local 

modulatory top-down circuits, the neuronal populations affected by selective attention 

and task engagement are not correlated.  

While we did observe a correlation in the magnitude of effects of task 

engagement and effort, there was substantial additional variability of behavioral effects 

across neurons that could not be explained by tuning properties or recording depth. 

Future studies that identify the location of neurons the cortical circuit more precisely, 

either by genetic labels (Natan et al., 2015; Kuchibhotla et al., 2017) or network 

connectivity (Schneider et al., 2014) may explain more of this variability. These 

approaches may also be used to confirm whether engagement and effort effects derive 

from the same source. 

Effects of selective attention and effort could emerge at different stages of the 

auditory network. Multiple populations of inhibitory interneurons have been implicated 

in behavioral state modulation in A1, and signals reflecting different aspects of 

behavioral state could arrive through distinct inhibitory subpopulations (Pi et al., 2013; 
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Kuchibhotla et al., 2017). These signals could also arrive in different auditory brain areas. 

Engaging in a tone detection task changes activity in the inferior colliculus (IC), an area 

upstream from A1 (Slee and David, 2015), but it is not known if selective attention 

modulates IC activity. Studies comparing the same tasks across brain areas are critical for 

determining where behavior-mediated effects emerge in the auditory processing network. 

More generally, these results indicate that multiple aspects of task structure can influence 

activity in sensory cortical areas. Control and monitoring of behavioral state (arousal, 

reward, motor contingencies, attention) is required to assess the effects of a desired 

behavioral manipulation (David et al., 2012; Baruni et al., 2015; Luo and Maunsell, 2015; 

McGinley et al., 2015a). 

 

Impact of behavioral state on neural coding 

The changes in sound evoked activity associated with selective attention support 

enhanced neural discriminability of target tone versus distractor noise in A1. The absence 

of significant suppression in the target response alone does not imply a selective 

suppression of distractor responses. However, the increase in neural discriminability 

when attention is directed into the receptive field does indicate that any suppression is 

stronger for the distractor, increasing the difference in neural response between the two 

sound categories. Improvements in neural discriminability with similar magnitude have 

been observed previously in A1 following engagement in auditory detection tasks (Ryan 

et al., 1984; David et al., 2012; Niwa et al., 2012). Some early single-unit studies in 

monkey auditory cortex also support the view that enhanced responses occur selectively 

for stimuli that carry task-relevant information. In tasks that required discrimination 
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between spectral (Beaton and Miller, 1975) or spatial sound features (Benson and Hienz, 

1978), neural responses were enhanced to the sound requiring a behavioral response. 

Moreover, activity in auditory cortex can explicitly encode behavioral choice (Bizley et 

al., 2005; Niwa et al., 2012; Tsunada et al., 2016). Thus, across several studies, a model 

has emerged in which neural discriminability of task-relevant stimulus features increases, 

and that emergent representation feeds directly into behavioral decisions. The parallel 

between neural signaling and behavioral output encourages a straightforward conclusion 

that changes in behavioral state serve primarily to enhance coding of behaviorally 

relevant categories. While a change in d’ in the range 0.05-0.1 is not extremely large for a 

single neuron, this value represents the average increase per A1 neuron. Effects of this 

size can be substantial when compounded across an entire neural population (Shadlen and 

Newsome, 1998). 

However, in the current study, the benefit of changes in neural coding is not 

always so clear. The shift in spontaneous rate associated with listening effort did not 

produce significant enhancement in neural discriminability. Changes in spontaneous 

activity that do not enhance discriminability have been reported previously, following 

switches between tasks that vary in difficulty (Rodgers and DeWeese, 2014). Studies 

involving switching targets between auditory and other sensory modalities have also 

reported mixed results, sometimes finding enhanced coding of the attended modality 

(O’Connell et al., 2014) and sometimes not (Hocherman et al., 1976; Otazu et al., 2009). 

The cortex contains a rich diversity of circuits for learning new behavioral associations 

and adapting to new contexts (Fritz et al., 2010; David et al., 2012; Jaramillo et al., 

2014). An architecture that supports flexibility and multiplexing of behaviors likely 
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imposes additional constraints on behavior-related changes beyond enhanced sensory 

discriminability.  

The analysis of behavior-dependent STRFs revealed task-related effects 

consistent with the changes in PSTH response gain between selective attention conditions 

and changes in spontaneous between variable SNR conditions. The STRF analysis also 

allowed us to identify any possible changes in temporal filter properties between behavior 

conditions. However, temporal response properties were largely stable. Thus, while we 

do observe changes in spectral tuning, top-down behavioral signals do not affect temporal 

tuning in the current task. It should be noted that the current task did not require attention 

to specific temporal features, and a task requiring discrimination of temporal features, 

such as modulation detection or discrimination, might have a different effect (Fritz et al., 

2010; Niwa et al., 2012).   

 

Comparison to studies of visual selective attention 

Noise suppression may be viewed as a mechanism to bias competition between 

neural representations of the tone target and masking noise. Analogous effects have been 

observed in the primate visual system (Spitzer et al., 1988; Desimone and Duncan, 1995; 

Connor et al., 1996; Reynolds et al., 1999). When macaques attend to one of two stimuli 

in a the receptive field of a visual cortical neuron, the neural response shifts to resemble 

the response to the attended stimulus presented in isolation (Connor et al., 1996; 

Reynolds et al., 1999). Thus, when attention is directed within a visual receptive field, the 

spatial receptive field effectively shrinks, and responses to stimuli outside the locus of 

attention are attenuated. Similar effects are observed across visual cortex, growing 
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progressively greater in magnitude across areas V1, V2 and V4 (Motter, 1993; Luck et 

al., 1997). This narrowing of tuning has been modeled as enhanced surround inhibition 

(Sundberg et al., 2009). In the auditory system, stimulus bandwidth can be viewed as a 

dimension in sensory space (bandpass noise versus very narrowband tones), analogous to 

retinotopic space (Schreiner and Winer, 2007). By the logic of the current task, attention 

within the A1 receptive field is directed to narrowband versus broadband stimuli. A 

narrowing of spectral tuning bandwidth that would produce the distractor suppression 

reported here may be analogous to the shrinking of visual spatial receptive fields around 

the locus of spatial attention. The average BMI of -0.12 for noise responses in A1 falls 

between the magnitude of spatial attention effects in areas V2 and V4 measured using a 

similar statistic (Luck et al., 1997). 

Simultaneous population recordings from V4 during selective attention behavior 

have revealed a decrease in noise correlations between pairs of neurons that encode 

stimuli at the locus of attention (Cohen and Maunsell, 2009), and similar effects were 

recently reported in A1 (Downer et al., 2017). Because the current data were collected 

serially from single neurons, it was not possible to measure inter-neuronal correlations. 

The effect of auditory selective attention on neural population activity in this sensory 

context remains an open question for future studies.  
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Figures 

 

 

Figure 2.1: Selective attention behavior in ferrets. A. Configuration of selective attention 

behavior. Head-fixed ferrets were presented with simultaneous, continuous noise streams 

from two locations 30 degrees left and right of midline. A target tone was presented at the 

center frequency and location of the attended noise stream 1-5 s after noise onset. 

Animals were rewarded for licking following target onset. Responses prior to target onset 

were punished with a short timeout. B. Top shows spectrogram representation of stimuli 

during a single selective attention trial. Two narrowband (0.25 octave) noise streams with 

different center frequency were presented from different spatial locations (3000 Hz, left; 

700 Hz, right). Noise level fluctuated from quiet (white) to loud (black) with dynamics 

drawn from natural vocalizations. The target tone (purple) appeared at a random time, 

centered in the attended stream (in this case the high frequency stream). To control for 

selective attention, a catch tone (green) appeared in the non-attended stream on a 

minority (8-15%) of trials. Bottom shows the time course of noise, catch and target 
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stimuli, as well as the time course of false alarm and hit windows during the same trial. 

C. Cumulative probability of hit or false alarm following onset of each task stimulus 

during one behavioral block. False alarms were measured during windows when a target 

could occur (vertical lines in B). D. DI was computed as the area under the receiver 

operating characteristic (ROC), calculated from lick probability curves in D. for each 

target and catch tone during four sequential behavioral blocks. Between blocks, the low-

SNR probe target alternated between 8 kHz/contra and 1 kHz/ipsi, and was reversed with 

the catch tone. DI was higher for the probe than the catch tone in all blocks, consistent 

with shifts in selective attention. Trial block order (attend RF versus attend away) was 

randomized during neurophysiology experiments to prevent any bias from changes in 

motivation, which could produce a gradual decrease in DI across blocks. E. Bar plot 

shows average discrimination index (DI) for each tone category (cue, probe, catch), 

broken down by animal and attended location, indicating the accuracy with which 

animals reported the presence of a tone versus the noise. DI was consistently highest for a 

tone with high signal-to-noise ratio (SNR, -4 to 5 dB peak relative to noise) used to cue 

animals to the attended location. DI was lower for low-SNR probe targets (-7 to -12 dB), 

but consistently greater than for low-SNR catch tones, indicating that animals 

consistently allocated attention to the target stream (**p<0.01, sign test). 
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Figure 2.2: Sound-evoked activity during selective attention behavior. A. Comparison of 

spike raster plots and average PSTH responses to reference noise for one neuron, aligned 

to trial onset in different behavior conditions. Evoked activity was suppressed when the 

animal engaged in the task (passive versus attend RF or attend away). When attention 

was directed toward the noise stream that falls in the neuron’s receptive field (attend RF) 

responses were further suppressed, relative to attention directed to the stream out of the 
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RF (attend away). Behavioral modulation index (BMI, Eq. 2.1) for attend RF versus 

away is -0.17. B. Responses of a second neuron are enhanced during task engagement, 

but again show relative suppression in the attend RF versus attend away condition (BMI -

0.24).  C. Average PSTH response to distracter noise across significantly-modulated units 

(34/54 units) in the different behavior conditions (p<0.05 spontaneous or noise response 

change, Bonferroni corrected jackknife t-test). Dashed lines show the average PSTH 

difference between active and passive conditions (red) and between attend RF and attend 

away (blue). Spontaneous rate increases during task engagement; reference-evoked 

activity is suppressed for attend RF versus attend away conditions. D. Average PSTH 

response aligned to probe target onset in the three conditions reflects pre-target 

differences in noise-evoked activity, but the magnitude of the target-evoked response 

does not change. 
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Figure 2.3: Summary of selective attention and task engagement effects on A1 evoked 

activity. A-C. Scatter plot of average spontaneous rate (A), noise-evoked response 

(spontaneous rate subtracted, B), and target-evoked response (noise-evoked response 

subtracted, C) for each A1 neuron between attend RF and attend away conditions. Black 

circles indicate neurons with a significant difference between attention conditions for any 

of the three statistics (p<0.05, jackknifed t-test with Bonferroni correction). Target data 
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are shown for the subset of neurons with adequate presentations of probe and catch tones 

(n=36/54). D-F. Histograms show behavioral modulation index (BMI, Eq. 2.1), reflecting 

fractional change in spontaneous rate, noise-evoked response, and target-evoked response 

between attention conditions for each neuron. Neurons with a significant increase are 

indicated in red, and those with a significant decrease in blue (p<0.05, jackknifed t-test). 

Median BMI was significant only for noise-evoked responses; spontaneous rate: -0.14 

(p=0.38, n=16/54, sign test), noise-evoked response: -0.12 (**p=0.005, n=26/54), target-

evoked response: 0 (p>0.5, n=12/36). G-I. Histograms comparing changes between 

active and passive conditions for the same neurons, plotted as in D-F. For the active 

condition, data were combined from the two attention conditions. In all comparisons, 

responses to an identical set of stimuli were used to compute the difference between 

behavior conditions. Median BMI increased for spontaneous rate and noise-evoked 

response: spontaneous rate: 0.17 (**p=0.002, n=27/54), noise-evoked response: 0.11 

(**p=0.005, n=38/54), target-evoked response: 0.14 (p=0.09, n=13/36). 

  



 73 

 

 

Figure 2.4: Effect of selective attention on A1 response gain. A. Example of noise-

evoked gain changes between the passive and attend RF conditions (same unit as Fig. 

2A). Scatter plot compares responses to identical epochs of the noise stimulus between 

behavior conditions. The majority of points fall below the line of unity slope (dashed) 

indicating a general suppression when attention was directed toward a target in the 

neuron’s receptive field. The slope of the line fit to the scatter plot (solid) is 0.76, 

indicating suppression of 24% during the attend RF condition. B. Comparison between 

passive and the attend away condition for the same neuron reveals a slight gain 

enhancement (slope 1.04). C. Each point compares noise-evoked response gain for a 

single neuron between attend RF and attend away conditions, computed relative to 

passive listening. Across all neurons, mean gain was higher during attend away than 

attend RF (1.11 vs. 0.99, p<0.001, sign test). For neurons showing significant changes in 

mean response (black points, see Fig. 3E), mean gain was also different (1.11 vs. 0.97, 

p<0.001). 
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Figure 2.5: Effect of selective attention on A1 neural discriminability A. Mean fraction 

change in spontaneous rate, noise-evoked response and target-evoked response between 

the passive listening and attend RF (black) or attend away condition (white), for neurons 

showing significant effects of attention (n=34, Fig. 3D-F). Error bars indicate one 

standard error (**p=0.005, sign test). B. Scatter plot compares BMI for the noise-evoked 

response of each neuron between active and passive conditions and between attend RF 

and attend away conditions. Most neurons fall in the lower right quadrant (increased 

response during behavior and decreased response during attend RF), but there is no 

correlation between the magnitude of the effects across cells (r=0.031, p>0.5, 

permutation test). C. Model for enhanced discriminability following suppression of noise 
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response at attended location. Curves represent the distribution of single-trial responses to 

a tone at the neuronal best frequency (BF) embedded in noise (solid line) and to noise 

alone (dashed lines). If noise responses are suppressed when attention is directed to BF, 

then the distributions become more discriminable, as measured by d’. D. Scatter plot 

compares d’ for the discriminability of neural responses to probe or catch tones (the same 

stimulus, respectively, in attend RF or attend away conditions) and the reference noise 

during time windows when the target could occur. Only units with at least 5 probe and 

catch tone presentations were included in order to obtain stable d’ measures (n=43). 

Filled circles indicate experimental sessions when DI for probe tones was significantly 

greater than for catch tones (p<0.05, n=21/43, permutation test). E. Histogram of change 

in d’ between attend RF and attend away conditions. For sessions in which DI was 

significantly greater for probe targets (filled bars), mean d’ increased (0.10, p=0.02, 

permutation test). The mean change for all sessions was smaller (0.03, p=0.02). 
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Figure 2.6: Effects of varying target SNR on behavioral effort and A1 evoked activity. 

A. Configuration of variable SNR behavior for manipulating listening effort. Ferrets were 

presented with vocalization-modulated noise streams, configured as for the selective 

attention task. A target tone appeared at a random time, always in a stream contralateral 

to the recording site and centered over BF of the recorded neuron. In high-SNR blocks, 

the target tone was presented at high SNR (10 to -5 dB relative to the noise) for 80-90% 

of trials and at low SNR (10 dB lower) for the remaining trials. Conversely, in low-SNR 

blocks, the target tone had low SNR for 80-90% of trials. Tone levels were adjusted 

between experiments to span super- and near-threshold behavior, which varied across 

target frequency and animals. SNR values were always identical during all recordings 

from a single neuron.  B. To test for changes in effort, behavioral performance was 
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compared for identical target tones between behavior conditions. Bar chart compares 

mean DI for high- and low-SNR targets, broken down between high- and low-SNR 

blocks and between animals. DI was significantly greater for the low-SNR target in low-

SNR blocks when the more difficult target was likely to occur, consistent with an 

increase in effort (**p<0.01, permutation test). DI did not improve for high SNR targets 

for Animal 1, possibly due to a ceiling effect in performance for the easy target. C-D. 

Average population PSTH for noise-evoked (C) and high-SNR target-evoked responses 

(D) compared between passive listening, high-SNR and low-SNR behavior conditions, 

for all neurons showing any significant difference between SNR conditions (n=65/88, 

p<0.05, jackknife t-test, Bonferroni correction). 
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Figure 2.7: Summary of variable SNR effects on A1 evoked responses. A-C. Histograms 

of BMI for spontaneous rate (A), noise-evoked response (B) and target-evoked response 

(C) between high-SNR and low-SNR blocks, plotted as in Fig. 3D-F. Median 

spontaneous rate is suppressed (-0.16, p=0.008, n=47/88 significantly modulated 

neurons, sign test), but there is no change in noise-evoked (0.05, p=0.4, n=51) or target-
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evoked responses (0.04, p=0.09, n=35) D-F. Histograms comparing active versus passive 

BMI for the variable SNR task. High- and low-SNR data were combined for the active 

condition. Task engagement leads to increased spontaneous activity (0.11, p<0.0001, 

n=43) and noise-evoked responses (0.06, p=0.005, n=63) but no change in target-evoked 

response (0.04, p=0.11, n=57). G. Bar chart shows mean fraction change in activity 

between passive listening and low-SNR (black) and high-SNR conditions (white), for 

neurons showing significant change in the corresponding statistic in A-C. H. Scatter plot 

compares change in noise-evoked response between active and passive conditions 

(horizontal axis) and the change in spontaneous rate between high- and low-SNR 

behaving conditions (r=-0.53, p<0.001, permutation test). I. Histogram comparing the 

change in d’ between low SNR and high SNR conditions. The mean d’ across all sessions 

showed a small increase in the low SNR condition (0.04, p=0.05, n=88, sign test). For 

sessions in which DI was significantly greater for low SNR targets in low SNR blocks 

(filled bars), the change was not significant (0.07, p=0.06, n=55). 
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Figure 2.8: Effect of varying target SNR on A1 neural discriminability. A. Comparison 

of behavior-dependent STRFs for three neurons from selective attention experiments, 

estimated separately using data from attend RF and attend away conditions. In both 
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attention conditions, the temporal filter for the RF channel (solid lines, for the stimulus 

channel centered in the neuron’s receptive field) showed excitatory tuning with 0-50 ms 

time lag. Gain was lower for this channel in the attend RF condition (black vs. gray 

lines). The non-RF channel (dashed lines) typically showed weaker gain, if any, and no 

consistent change between attention conditions. B. Scatter plot comparing prediction 

accuracy of behavior-independent versus behavior-dependent STRFs across the selective 

attention dataset. Filled dots correspond to neurons with a significant difference in 

prediction accuracy between models (p<0.05, sign test). Mean prediction accuracy was 

higher for the behavior-dependent model (mean r=0.24 versus 0.28 for behavior-

dependent versus -independent, p<0.001, n=54, sign test). C. Average temporal response 

function at BF for behavior-dependent STRFs in the attend RF vs. attend away condition 

(n=26/54 neurons with significant improvement for behavior-dependent model). D. Mean 

baseline and peak gain for behavior-dependent STRFs in attend RF vs. attend away 

conditions show a significant difference in gain (**p=0.007, sign test). E. Average 

temporal response functions of behavior-dependent STRFs estimated separately for low- 

and high-SNR conditions (n=51/88 with significant benefit for behavior-dependent 

model). F. Mean baseline and peak gain for behavior-dependent STRFs in low-SNR and 

high-SNR conditions shows a significant difference in response baseline (*p=0.02, sign 

test).  
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This chapter was adapted from Schwartz et al. (2020) which was published in Journal of 

Neurophysiology 123(1):191-208. doi: 10.1152/jn.00595.2019.  
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Abstract 

 

Recent research in mice indicates that luminance-independent fluctuations in pupil size 

predict variability in spontaneous and evoked activity of single neurons in auditory and 

visual cortex. These findings suggest that pupil is an indicator of large-scale changes in 

arousal state that affect sensory processing. However, it is not known whether pupil-

related state also influences the selectivity of auditory neurons. We recorded pupil size 

and single-unit spiking activity in the primary auditory cortex (A1) of non-anesthetized 

male and female ferrets during presentation of natural vocalizations and tone stimuli that 

allow measurement of frequency and level tuning. Neurons showed a systematic increase 

in both spontaneous and sound-evoked activity when pupil was large, as well as 

desynchronization and a decrease in trial-to-trial variability. Relationships between pupil 

size and firing rate were non-monotonic in some cells. In most neurons, several 

measurements of tuning, including acoustic threshold, spectral bandwidth, and best 

frequency, remained stable across large changes in pupil size. Across the population, 

however, there was a small but significant decrease in acoustic threshold when pupil was 

dilated. In some recordings, we observed rapid, saccade-like eye movements during 

sustained pupil constriction, which may indicate sleep. Including the presence of this 

state as a separate variable in a regression model of neural variability accounted for some, 

but not all, of the variability and non-monotonicity associated with changes in pupil size. 
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Introduction 

 

Although the iris primarily functions to regulate the formation of images on the 

retina, pupil dilation and constriction are also a result of autonomic nervous activity 

unrelated to visual stimuli . Growing evidence suggests that these autonomic changes in 

pupil diameter are an indicator of changes in internal state that affect processing in 

sensory cortex . In mice, pupil dilation is correlated with transitions from stillness to 

walking (McGinley et al., 2015a; Vinck et al., 2015), which increase firing rates in visual 

cortex (Niell and Stryker, 2010) and decrease firing rates in auditory cortex (Schneider et 

al., 2014). Dilated pupil is associated with increases in high-frequency local field 

potential (LFP) activity, a physiological signature of alertness, in sensory cortex (Harris 

and Thiele, 2011; Vinck et al., 2015). In mouse auditory cortex, intermediate pupil 

diameter is also associated with increases in the gain of sound-evoked responses, 

decreased spontaneous activity, and stable, hyperpolarized subthreshold membrane 

potential, which have been hypothesized to reflect an “optimal state” for detecting 

sensory stimuli (McGinley et al., 2015a). 

Pupil dilation has also been correlated with changes in sensory selectivity. In 

visual cortex, orientation tuning becomes more selective when pupil dilates, suggesting 

that sensory representations are more precise in some internal brain states (Reimer et al., 

2014). However, it is not known if pupil-associated state influences the selectivity of 

neurons in the auditory system. Some population-level associations between pupil size 

and cortical activity do differ between sensory systems (Shimaoka et al., 2018). Data 

from mouse auditory cortex – which suggests that pupil size is non-monotonically related 
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to neural activity (McGinley et al., 2015a) – conflicts with data from mouse visual cortex, 

which show either monotonic increases in neural activity when pupil dilates (Reimer et 

al., 2014; Vinck et al., 2015), or simultaneous increases and decreases in different 

neurons recorded at the same time (Stringer et al., 2019). These observations may reflect 

functional differences between the auditory and visual systems. 

To explore effects of pupil-associated state on sensory coding in auditory cortex, 

we recorded pupil size and single-unit spiking activity in the primary auditory cortex 

(A1) of head-restrained, non-anesthetized ferrets. To study effects of internal state on gain 

and spontaneous activity, we presented a large number of repetitions (up to 120) of ferret 

vocalizations. To study state effects on sensory selectivity we presented random 

sequences of tone pips at various frequencies and levels. Each stimulus set therefore 

allowed in-depth exploration of a distinct feature of auditory responses, as well as 

comparison to previous work in the visual system (Reimer et al., 2014). We characterized 

effects of pupil by comparing responses to each distinct sound as pupil size varied. 

Neurons typically showed an increase in baseline firing rate as well as the gain and 

reliability of sound-evoked activity when pupil was large, although there was also 

evidence for non-monotonic effects of pupil-associated state in some neurons. In most 

neurons, parametric measurements of tuning, including acoustic threshold, spectral 

bandwidth, and best frequency, remained stable across large changes in pupil size. Across 

the population, however, we observed a small decrease in acoustic threshold when pupil 

was dilated.  

In some recordings, we observed increased saccadic eye movements during 

periods of sustained pupil constriction, possibly indicating sleep onset. Including the 
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presence of this state as a separate variable in a regression model of neural variability 

accounted for some, but not all, of the variability associated with changes in pupil size. 

The stability of best frequency across large changes in pupil size (and associated changes 

in gain and spontaneous activity) contrasts with task-related plasticity of receptive fields 

in ferret auditory cortex (Fritz et al., 2003; David et al., 2012), suggesting a difference 

between effects of engaging in tasks that require listening and variation within passive 

states. 
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Methods 

 

All procedures were approved by the Oregon Health and Science University Institutional 

Animal Care and Use Committee (IACUC) and conform to standards of the Association 

for Assessment and Accreditation of Laboratory Animal Care (AAALAC). 

 

Neurophysiology 

Five young adult ferrets (4 males and 1 female, Marshall Farms) were implanted 

with stainless steel headpost and acrylic cap to permit head-fixation and access to 

auditory cortex. After recovery (1-2 weeks), animals were habituated to a head-fixed 

posture and presentation of auditory stimuli. Following habituation, a small (1-2 mm) 

craniotomy was opened over primary auditory cortex (A1). In 66 recordings, data was 

collected using 1-4 independently positioned tungsten microelectrodes (FHC, 1-5 MΩ) 

advanced by independent microdrives (Electrode Positioning System, Alpha-Omega). In 

3 recordings, data was collected using a single-shank 64-channel silicon microelectrode 

array, spanning 1 mm (Masmanidis Lab, UCLA) (Du et al., 2011). 

After a unit was isolated during tungsten recordings, its auditory responsiveness 

was tested using tones or narrowband noise bursts. If the site showed no response, the 

electrode was lowered to search for another site. During depth-array recordings, the probe 

was lowered into auditory cortex until auditory-evoked activity was observed across the 

span of recorded channels. Amplified and digitized signals were stored using open-source 

data acquisition software (MANTA: Englitz et al., 2013; Open Ephys: Siegle et al., 

2017). Ferrets were observed by video monitor during recordings. If a unit became 
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indistinguishable from the noise floor following a body movement, the recording was 

stopped and the 5 trials preceding the putative isolation loss (28 to 40 seconds of 

recording time) were excluded from analysis. A1 recording sites were identified by 

characteristic short latency, frequency selectivity, and tonotopic gradients of single or 

multiunit activity across multiple penetrations (Bizley et al., 2005; Elgueda et al., 2019). 

 

Spike sorting 

For tungsten electrode recordings, events were extracted from the continuous 

electrophysiological signal using a principal components analysis and k-means clustering 

(Meska-PCA: (David et al., 2009). Single-unit isolation was quantified from cluster 

overlap as the fraction of spikes likely to be produced by a single neuron rather than 

another unit. For depth-array recordings, single-unit spikes were sorted using polytrode 

sorting software (Kilosort: Pachitariu et al., 2016). Only units maintaining stable 

isolation > 95% through the experiment were considered single neurons for analysis. 

 

Pupillometry 

During neurophysiological recordings, infrared video of one eye was collected for 

offline measurement of pupil size. Video was collected using either (1) a commercial 

CCTV camera fitted with a lens to provide magnification of the eye and an infrared filter 

(Heliopan ES 49 RG 780) or (2) an open-source camera (Adafruit TTL Serial Camera) 

fitted with a lens (M12 Lenses PT-2514BMP 25.0 mm) whose focal length allowed 

placement of the camera 10 cm from the ferret’s eye. To improve contrast, the imaged eye 

was illuminated by a bank of infrared LEDs. Ambient luminance was provided using a 
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ring light (AmScope LED-144S). At the start of each recording day, the intensity of the 

ring light was set to a level (~1500 lux measured at the recorded eye) chosen to give a 

maximum dynamic range of pupil sizes. Light intensity remained fixed across the 

recording session. 

Pupil size was measured using custom MATLAB (version R2016b) software 

(code available at https://bitbucket.org /lbhb/baphy). For each video, an intensity 

threshold was selected to capture pupil pixels and exclude the surrounding image. During 

initial recordings, the threshold was selected manually. We observed that the intensity 

histogram is multi-modal with the first peak (reflecting the darkest pixels) generally 

corresponding to the pupil. In later recordings, we therefore automatically updated the 

threshold of each frame to position it at the first valley in the frame’s intensity histogram. 

Each frame was smoothed by a Gaussian filter before thresholding, then segmented by 

Moore boundary tracing. The segment with the largest area was identified as pupil. We 

measured pupil size as the length of the minor axis of an ellipse fit to this region using a 

direct least-squares method. To avoid identifying shadows at the edge of the eye or other 

dark regions of the image as pupil, we restricted the search for the largest-area segment to 

a rectangular region of interest surrounding the pupil identified in the preceding frame 

(Nguyen and Stark, 1993). Measurements were calibrated by comparing the width of 

each ferret’s eye (in mm) and the width of the ferret eye as it appeared in each video (in 

pixels), which gave a conversion factor of pixels to mm. 

The frame rate of the cameras used in the experiments varied from 10 to 30 

frames/second. To compensate for variability in camera frame rate, we recorded a 

timestamp at the start and end of each trial, then interpolated measurements of pupil size 
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to match the sampling of the simultaneously recorded neural data. This procedure ensured 

that the two data streams (video and neural recording) remained synchronized throughout 

each recording. 

Blink artifacts were identified by rapid, transient changes in pupil size (McGinley 

et al., 2015a). The derivative of the pupil trace was taken and bins with derivatives more 

than 6 standard deviations from the mean were marked. Blinks were identified within 

these bins by screening for decreases in pupil size followed by increases. Data during a 1-

second period surrounding the blink was then removed from the trace and replaced by a 

linear interpolation of the pupil size immediately before and after the blink. 

When comparing pupil and neural data, a 750 ms offset was applied to pupil trace 

to account for the lagged relationship between changes in pupil size and neural activity in 

auditory cortex to allow for comparison with previous research (McGinley et al., 2015a). 

Setting the offset at values between 0 and 1.5 s did not affect the mean accuracy of the 

pupil-based regression models of neural activity described below (data not shown). 

To measure changes in eye position, we calculated the Euclidean distance 

between the center of the ellipse fit to the pupil in each video frame, then multiplied by 

frame rate to find eye speed. We identified putative sleep states by screening for a 

combination of tonically constricted pupil and a high rate of saccades. Sleep states were 

identified by selecting parameter values for each recording (maximum pupil size, 

maximum pupil standard deviation, minimum saccade speed, minimum saccade rate) that 

marked abrupt state transitions in the traces of pupil size and eye speed. Gaps of less than 

15 seconds between sleep episodes were considered artifacts and coded as sleep. We 
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restricted our analysis to sleep episodes with a duration of at least 30 seconds. 

 

Acoustic stimuli 

Stimulus presentation was controlled by custom MATLAB software (code 

available at https://bitbucket.org/lbhb/baphy). Digital acoustic signals were transformed 

to analog (National Instruments), amplified (Crown), and delivered through a free-field 

speaker (Manger). 

During initial recording sessions, ferrets were presented with two 3-second 

species-specific vocalizations: an infant call and an adult aggression call. Stimuli were 

recorded in a sound-attenuating chamber using a commercial digital recorder (44-kHz 

sampling, Tascam DR-400). No animal that produced the recorded vocalizations was 

used in the study. Each vocalization was repeated up to 120 times. The order of 

vocalizations was randomized on each repetition. Each repetition was preceded by a 2-

second silent period to allow measurement of spontaneous neural activity on each trial. 

To improve sampling of internal states, recording was paused for several seconds 

after the 40th and 80th sound repetitions, during which the ferret was roused by an 

unexpected sound (e.g., turning the doorknob of the recording booth), which often 

resulted in pupil dilation. A stepwise regression analysis (see below) using the number of 

trials since each pause to predict neural activity suggests that the time since this event did 

not predict neural activity independent of pupil size (data not shown). 

During later recording sessions, ferrets were presented with sequences of 10-ms 

tone pips with varying frequency (4-6 octaves surrounding best frequency, ranging over 

32 Hz to 40 kHz) and level (0 to 65 dB SPL, 5 or 10 dB SPL steps). Each pip sequence 
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was 6 seconds long, preceded by a 2-second silent period to allow measurement of 

spontaneous neural activity. Tone-pip sequences were repeated multiple times in each 

recording (mean repetitions +/- SEM: 28 +/- 2). During some recordings, tone-pip 

sequences were interleaved with ferret vocalizations to improve sampling of pupil states 

in each data set. 

 

Data analysis 

 

Gain and baseline firing rate 

Single-trial neural and pupil data for ferret vocalization recordings was binned at 

4 Hz. Peristimulus time histogram (PSTH) responses to each vocalization were calculated 

by aligning spike activity to stimulus onset and averaging across presentations. To isolate 

evoked activity, the mean spike rate during the two seconds of silence preceding stimulus 

onset was subtracted from the PSTH. 

Neural and pupil data for responses to tone-pip sequences were binned at 100 Hz. 

A frequency response area (FRA) was calculated by taking the mean spike rate for each 

sound during a window 10 ms to 60 ms following pip onset. To isolate evoked activity, 

the mean spike rate during the two seconds of silence preceding tone-pip sequence onset 

was subtracted from the FRA. 

We used multivariate regression models to examine effects of pupil state on 

spontaneous and sound-evoked activity. We modeled the response to each presentation of 

a tone pip or vocalization as a function of average spontaneous rate over the entire 
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recording, average response to the stimulus across all trials, and pupil diameter during 

each stimulus presentation. 

The baseline-gain model accounted for a linear relationship between pupil 

diameter and both spontaneous and evoked spike rate. According to this model, single-

trial activity, #C(), ?), is 

 

#C(), ?) = β/2/ + βE#/(), ?) + [β62/ + βG#/(), ?)]IC(), ?) 

 

Here, #/(), ?) is the mean time-varying PSTH response evoked by stimulus s (either one 

vocalization or one tone pip at a single frequency and level), 2/ is the mean spontaneous 

rate, and IC(), ?) is pupil size observed simultaneously to #C(), ?). The model coefficients 

indicate how the neuron’s overall spiking activity (baseline, J6) and the scaling of the 

cell’s sound-evoked response (gain, JG) vary with pupil size. To cast all  J parameters in 

units of pupil-1, we normalized the baseline terms by 2/. We therefore refer to this as the 

“baseline-gain” or “first-order baseline-gain” model. 

Unless otherwise specified, model parameters were fit by linear, least-squares 

regression using 20-fold cross-validation. The median model parameters across all 20 fits 

was used to compare coefficients across cells. Model accuracy for a given cell was 

quantified by the squared Pearson correlation between actual single-trial firing rates and 

firing rates predicted using the cross-validated model coefficients. Significance of model 

fits was assessed using a permutation test. A cell with a significant fit was one in which a 

fit to real pupil data showed accuracy greater than a model fit to pupil data shuffled 

across trials for at least 50 of 1000 shuffles (i.e., p < 0.05, permutation test). 
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To determine what aspects of the baseline-gain model were important for the 

capturing the relationship between pupil and firing rate, we compared it to several 

variants. The baseline only model allowed only the baseline rate, but not the gain of the 

evoked response, to scale with pupil, 

 

rL(t, s) = β/m/ + βEr/(t, s) + β6m/pL(t, s) 

 

The gain only model allowed only the gain of the evoked response, and not the baseline 

rate, to scale with pupil, 

 

rL(t, s) = β/m/ + βEr/(t, s) + β6r/(t, s)pL(t, s) 

 

We also considered nonlinear relationships between pupil and spike rate. The second-

order baseline model allowed the baseline rate to scale with the square of pupil size, 

allowing non-monotonic effects of internal state, 

 

rL(t, s) = β/m/ + βEr/(t, s) + [β6m/ + βGr/(t, s)]pL(t, s) + βQm/pC
6(t, s) 

 

The second-order baseline-gain model allowed both the baseline rate and gain to scale 

with the square of pupil size, 

 

rL(t, s) = β/m/ + βEr/(t, s) + [β6m/ + βGr/(t, s)]pL(t, s) + [βQm/	+	βSr/(t, s)]	pC
6(t, s) 
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We measured the performance of each model by comparing its ability to predict single-

trial data to the PSTH or FRA alone, without any information on pupil size (the null 

model), 

 

rL(t, s) = β/m/ + βEr/(t, s) 

 

For each cell and each model, we measured the percent improvement in accuracy (i.e., 

the difference in squared Pearson correlation coefficient, R2, between the model 

predictions and actual data) over the null model, 

 

T6(model, data) 	−	T6(null, data)
T6(null, data)

*100 

 

Each model's performance was quantified as the median improvement in accuracy across 

all cells that showed a significant fit for any tested model (p < 0.05, permutation test). For 

comparing model performance across collections of neurons, we performed a Wilcoxon 

signed-rank test (sign test) between the distribution of prediction correlations across 

neurons for each model. 

 

Non-monotonicity 

A previous report (McGinley et al., 2015a) observed non-monotonic relationships 

between pupil size and neural activity in mouse auditory cortex. Following its language, 

we refer to neurons with a maximum firing rate at intermediate pupil sizes and a lesser 
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firing rate at small and large pupil sizes as “inverted U”s. We refer to neurons with a 

minimum firing rate at intermediate pupil sizes as “U”s. 

We restricted our analysis of non-monotonicity to neurons that showed a 

significant fit for the second-order baseline-gain model relative to the same model fit to 

shuffled pupil data (n = 79/114 neurons). The second-order terms of this model allow for 

the possibility of a non-monotonic relationships between pupil size and firing rate. 

We used a segmented linear model to test for non-monotonic relationships 

between pupil size and firing rate in single neurons (Simonsohn, Uri, 2018). The 

segmented model is similar to the baseline-gain model (see above), except that data is 

partitioned into intervals at a breakpoint in pupil size. The fit parameters of the model 

may differ on either side of the breakpoint. This allows a variety of relationships between 

pupil and firing rate, including linear increases and decreases, Us, and inverted Us. 

The segmented model included separate breakpoints for pupil-related effects on 

baseline and gain (β/, βQ). Both breakpoints were fit simultaneously with other free 

parameters in the model. Baseline and gain effects were combined to estimate the 

neuron’s firing rate, i.e., 

 

 if	pC(t, s) < β/:  baselineL(t, s) = [βE + β6pL(t, s)]m/ 

 else:    baselineL(t, s) = [shiftbase + βGpL(t, s)]m/ 

 where:    shiftbase =	JE + 	J/[J6 −	JG] 

 

 if	pC(t, s) < βQ:  gainL(t, s) = [βS + βdpL(t, s)]r/(t, s) 

 else:    gainL(t, s) = [shiftgain + βepL(t, s)]r/(t, s) 
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 where:    shiftgain =	JS + 	JQ[Jd −	Je] 

and 

 rL(t, s) = 	baselineL(t, s) +	gainL(t, s)r/(t, s) 

 

The constraints on the two shift parameters ensure that the functions will be continuous at 

their breakpoints. Model parameters were fit by nonlinear least-squares using the trust-

region-reflective algorithm and 20-fold cross validation. A change in the sign of pupil 

coefficients across the breakpoint (J6 versus JG or Jd versus Je) indicates a non-

monotonic relationship between pupil and firing rate. The direction of the sign change 

indicates if a cell is a U or inverted U. Data were pre-processed as described (see: “Data 

analysis: Gain and baseline firing rate”). 

To identify non-monotonic neurons, we compared the accuracy of the segmented 

linear model to an identical model that was constrained to be monotonic. That is, the 

slope coefficients related to baseline (J6, JG) and gain (Jd, Je) were constrained to have 

the same sign on both sides of the breakpoint. If the non-constrained model showed a 

sign change as well as an improvement in accuracy over the constrained model, we 

classified the cell as showing a non-monotonic trend. 

To identify significantly non-monotonic neurons, we performed a permutation 

test. We randomly shuffled half the firing rate predictions between the constrained and 

non-constrained models, then calculated the difference in accuracy between the shuffled 

prediction rates. Significantly non-monotonic neurons were those in which less than 50 of 

1000 shuffles showed a greater difference in accuracy than that observed between the 

constrained and non-constrained models (p < 0.05 of a chance improvement). 
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Neural response variability 

We used several measurements (Fano factor, between-trial reliability, and noise 

correlation) to characterize the variability of neural responses across trials. In all cases, 

we used data from the repeated vocalizations experiment and compared variability across 

pupil states by grouping trials based on whether the mean pupil size preceding stimulus 

onset was above or below the median pupil size observed during the recording. Data for 

the noise correlation and reliability analyses was binned at 4 Hz for consistency with 

regression analyses. Data for the Fano factor analysis was binned at 100 Hz to bring out 

faster temporal dynamics of the neural response to sound. Two neurons with extremely 

low evoked spike rates produced undefined peristimulus Fano factors (variance of 0 

divided by mean of 0) and were therefore excluded from the analysis. Reliability was 

calculated as the mean trial Pearson correlation of neural responses across trials 

(McGinley et al., 2015a). Spike rates from the response to each stimulus were z-scored 

before calculating noise correlations. 

 

Frequency and level tuning 

To assess changes in frequency and level tuning associated with pupil state, neural 

responses to tone-pip sequences were binned at 100 Hz. Data from each tone-pip 

recording was divided into two bins (large-pupil and small-pupil) based on the median 

pupil size during the recording. Data from tone-pip sequences was analyzed using: (1) the 

2-second silence preceding each tone-pip sequence (spontaneous activity), (2) the interval 

from 60 ms to 10 ms preceding onset of each tone pip (prestimulus activity), and (3) the 
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interval 10 ms to 60 ms after the onset of each tone pip (stimulus-evoked activity). Since 

the FRA was assessed using a cloud of tone pips presented in rapid succession, the cell’s 

firing rate during the 50 ms preceding sound onset (i.e., prestimulus activity) was a better 

measure of the cell’s baseline response for sub-threshold levels than spontaneous activity. 

For display, examples of FRAs were calculated taking the mean stimulus-evoked 

spike rate for each tone pip, smoothing using a two-dimensional box filter with 

dimensions equivalent to 15 dB and 1.5 octaves, and subtracting the mean spontaneous 

activity across all tone-pip sequences in the recording. To measure changes in 

spontaneous and driven rates in the tone-pip data without exploring changes in tuning, we 

used the mean spontaneous rate and the difference between the mean stimulus-evoked 

and prestimulus firing rates. Then to measure possible changes in sensory tuning we fit 

hierarchical regression models to the prestimulus and stimulus-evoked spike data for each 

tone pip. 

The hierarchical models were implemented in STAN (http://mc-stan.org) and fit 

using Bayesian inference. In contrast to conventional model fitting, Bayesian analysis 

allows for simple calculations of credible intervals on derived parameters (e.g., 

parameters that are mathematical functions of fitted coefficients), is more robust to 

outliers through the use of Poisson likelihoods for spike count data, and offers simple 

construction of realistic hierarchical models (Gelman et al., 2003). Each model was fit 

four times for 1000 samples after a 1000 sample iteration burn-in period. Posterior 

samples were combined across all chains for inference. 
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Rate-level functions 

To estimate changes in level tuning linked to internal state, we first calculated 

characteristic frequency (CF) before binning data by pupil size. An FRA for all data from 

the recording was calculated using data from the stimulus-evoked epoch and smoothed 

with a two-dimensional box filter with dimensions equivalent to 15 dB and 1.5 octaves. A 

separate standard error was calculated for each coefficient of the FRA by measuring 

variance across repetitions of tone pips at that frequency and level. The minimum sound 

level that evoked a response at least 2 standard errors above the mean spike rate during 

the 100 ms preceding pip onset, measured across all pips, was calculated for each 

frequency. CF was defined as the frequency that required the minimum sound level to 

evoke a response. 

For each cell, we went back to the unsmoothed FRA data, binned the tone-evoked 

responses according to pupil size and generated rate-level functions. Rate-level functions 

were smoothed by averaging the response across the three frequencies closest to CF. 

Rate-level functions for individual cells were fit using a function with three parameters, 

baseline firing rate, b, slope, s, and threshold, θ, for each pupil condition: 

 

4C	~	gh3??h4(@i,j) × )C     lC ≤ no 

4C	~	gh3??h4(@i,j 	+ 	?i,j 	×	plC − 	ni,jq) 	×	 )C   lC > no 

 

Here, n is the number of spikes observed in a time interval, t, for cell, c, and pupil 

condition, p, on the i-th observation of stimulus level, l. Since the time interval varied 
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across cells, depending on how long we maintained stable recordings, incorporating this 

information into our model gave greater weight to data points with longer time intervals. 

For levels less than threshold, firing rate was expected to be equal to the baseline 

firing rate. For stimulus levels greater than threshold, the cell could have an excitatory (sc 

> 0) or inhibitory (sc < 0) response.  

The distribution of baseline rates across the cells in the small pupil condition were 

modeled by a Gamma prior, @i,/	~	s1221(@t, @u), with @t	~	s1221(0.5,0.1) and 

@u	~	s1221(0.1,0.1).	Since the expected value of the Gamma distribution is α/β, we 

can compute the posterior for the average spontaneous rate of the population as @t/@u 

when the pupil is small and @t/@u × @+ywhen the pupil is large. We set the priors for α 

and β after inspecting the distributions of spontaneous rates in the small and large pupil 

condition. Although prior work (McGinley et al., 2015a) suggests that we would expect 

to see a difference in spontaneous rate between the pupil conditions, we chose an 

unbiased prior for the ratio (@i,E @i,/⁄ ) such that the mean and standard deviation were 

{h#21l(1, 1) and |1l}{h#21l(1), respectively. 

The distribution of slopes across cells were modeled using a Normal prior, 

?i,/	~	{h#21l(?y, ?~), and the priors for the population mean and standard deviation 

were modeled themselves as ?y~{h#21l(0.1, 0.1) and ?~~	|1l}{h#21l(0.1). The 

distribution of thresholds across cells was modeled using a Normal prior, 

ni,/	~	{h#21l(ny, n~) with priors for the population mean and standard deviation 

modeled as ny~	{h#21l(40, 5) and n~~	|1l}{h#21l(5). To minimize potential bias, 

unbiased priors were used for parameters representing the difference between pupil 

conditions. Specifically, the difference in slope (?i,E − ?i,/) was modeled with a Normal 
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prior with mean and standard deviation of {h#21l(0, 0.1) and |1l}{h#21l(0.1), 

respectively. The difference in threshold (ni,E − ni,/) was modeled with a Normal prior 

with mean and standard deviation of {h#21l(0, 5) and |1l}{h#21l(5), respectively. 

 

Frequency-tuning curves 

To quantify changes in frequency tuning linked to internal state, we first found 

best level (i.e., the level that evoked the maximum rate across all frequencies) using the 

FRA measured across all pupil-size bins. We then extracted frequency tuning curves 

(FTCs) at best level from the large-pupil and small-pupil FRAs. FTCs were smoothed by 

averaging across best level and the two neighboring levels in the FRA. 

We assumed that the FTC for individual cells, c, and pupil condition, p, could be 

expressed as a Gaussian function with four parameters, baseline firing rate, b, gain, g, 

best frequency, BF, and bandwidth, BW: 

 

4C	~	gh3??h4ÄÅ@i,j + +i,j × expÄ−0.5	 ×
log6 }C − ÉÑi,j

Ö-Üá,à
âäâ × )C 

 

Here, n is the evoked rate for the cell, pupil condition (small vs. large) and stimulus 

frequency, f, on the i-th observation. As in the rate-level model, the cell’s firing rate 

during the 50 ms preceding sound onset was a better measure of the cell’s baseline 

response for sub-threshold levels and the spontaneous rate model was also incorporated 

into this model to improve our estimate of b. 
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The distribution of gains across cells was modeled using a Normal prior, with 

priors for the population mean and standard deviation modeled as +y~	{h#21l(10, 1) 

and +~ = |1l}{h#21l(10). The distribution of best frequency across cells was 

modeled using a Normal prior, with priors for the population mean and standard 

deviation modeled as ÉÑy~	{h#21l(10, 1) and ÉÑ~ = |1l}{h#21l(1). The 

distribution of bandwidth across cells was modeled using a Normal prior, with priors for 

the population mean and standard deviation modeled as Éãy~	{h#21l(−0.5, 0.1) and 

Éã~ = |1l}{h#21l(0.25). 

To avoid bias in estimates of pupil-related changes, uninformative Normal priors 

were used for parameters representing the difference between small and large pupil 

conditions. Specifically, the logarithm of the ratio in gain (+i,E +i,/⁄ ) was a with a mean 

and standard deviation of {h#21l(0, 0.1) and |1l}{h#21l(0.1), respectively. The 

logarithm of the ratio in bandwidth (Éãi,E Éãi,/⁄ ) had a mean and standard deviation of 

{h#21l(0, 0.1) and |1l}{h#21l(0.25), respectively. For the ratio in gain and ratio in 

bandwidth, exp(0) = 1, such that the expected value of the prior was no effect of pupil 

size on gain or bandwidth. The difference in best frequency (ÉÑi,E − ÉÑi,/) had a mean 

and standard deviation of {h#21l(0, 0.1) and |1l}{h#21l(0.1), respectively. 

 

Sleep states 

To test for neural correlates of sleep states, we defined a binary variable that 

indicated the presence or absence of sleep (?lÖÖIC(), ?)) and added it as a term in the 

baseline-gain model (see above), 
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#C(), ?) = β/2/ + βE#/(), ?) + [β62/ + βG#/(), ?)]?lÖÖIC(), ?)

+	 [βQ2/ + βS#/(), ?)]IC(), ?) 

 

We also tested a sleep-only model in which baseline and gain were modulated only by 

sleep state, 

 

#C(), ?) = β/2/ + βE#/(), ?) + [β62/ + βG#/(), ?)]?lÖÖIC(), ?) 

 

Preprocessing and model fitting and evaluation were completed as for the baseline-gain 

model (see “Data analysis: Gain and baseline firing rate”). The model was fit to neural 

data from responses to vocalizations. 

 

Local-field potential 

The local-field potential (LFP) signals from each recording were bandpass filtered 

using a forward and reverse filtered second-order Butterworth filter into delta (1-4 Hz), 

theta (4-7 Hz), alpha (7-14 Hz), beta (15-30 Hz), low gamma (30-60 Hz) and high 

gamma (60-100 Hz) bands (Yuzgec et al., 2018). The instantaneous amplitude of each 

bandpass-filtered signal was calculated by computing the magnitude of its Hilbert 

transform, low-pass filtering with a cut-off at 1 Hz, and taking the mean amplitude across 

all electrodes. 
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Sound-evoked pupil dilation 

To calculate sound-evoked pupil dilation (∆I), pupil traces were binned at 30 Hz, 

and the mean pupil size during the 2-second silence preceding each vocalization on each 

trial (I/) was subtracted from the raw trace before averaging across repetitions of the 

same sound. For regression analysis of the effect of sound-evoked dilations, we fit a 

model that included separate baseline and gain terms for the effect of the mean 

prestimulus pupil size on each trial (IC) and the change from prestimulus pupil size in 

each bin: 

 

#C(), ?) = β/2/ + βE#/(), ?) +	2/[β6I/(), ?) +	βGΔI/(), ?)] + #/[β6I/(), ?) +

	βGΔI/(), ?)]	   

 

We compared the accuracy of this model’s results with the first-order gain model, using 

the model comparison procedure described above. 

 

Experimental design and statistical analyses 

Statistical tests used to assess whether model fits were significantly better than 

chance (i.e., whether they accounted for any auditory response, tuning parameter, or 

state-related changes in neural activity), and to compare predictions across models are 

described above, together with other aspects of the models.  Tests for correlations 

between data across conditions are reported as the unsquared Pearson correlation 

coefficient (r) and a t-test for significance. Tests for differences between conditions are 

reported using two-tailed Wilcoxon rank-sum tests (rank-sum test), Wilcoxon signed-rank 
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tests (sign test), or t-tests (paired t-test or unpaired t-test). 

 

Code 

Custom software for stimulus presentation and pupil analysis is available at 

https://bitbucket.org /lbhb/baphy. MATLAB and Python code for statistical analyses is 

available from the corresponding author on request. 
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Results 

Dilated pupil is correlated with increases in spontaneous activity and gain 

To examine the relationship between internal brain state and neural representation 

of natural sounds, we simultaneously recorded infrared (IR) video of the eye and single-

unit spiking activity in the primary auditory cortex (A1) of head-restrained, non-

anesthetized ferrets (Fig 3.1A, n = 114 neurons from 46 recording sites in 3 ferrets). Pupil 

size could be extracted from the video, providing a measure of internal state (Reimer et 

al., 2014; McGinley et al., 2015a; Vinck et al., 2015). In order to gather data on the 

response to the same sounds across a wide range of states, our stimulus consisted of a 

small number of sounds (two ferret vocalizations) repeated many times (up to 120 

repetitions per recording, mean +/- SD = 77 +/- 40 repetitions). To further increase our 

sampling of internal states, we paused this presentation at set times in the recording to 

rouse the ferret using auditory stimuli (see Methods). Although lighting conditions were 

held static during recordings, we also observed large changes in pupil size across 

timescales of tens of seconds to minutes (Fig. 3.1B).  

Visual inspection of spike rasters suggested that trial-to-trial variability in neural 

activity sometimes tracked changes in pupil size (Fig. 3.1C). To quantify the association 

between pupil size and firing rate, we fit a linear model that allowed baseline spike rate 

and gain of sound-evoked responses to depend on pupil size (baseline-gain model, see 

Methods, Fig. 3.1D). In a majority of neurons (n = 75/114, 66%) this model was 

significantly more accurate at predicting single-trial neural activity than a control model 

where pupil was shuffled in time (i.e., the prediction was based only on the neuron’s 

peristimulus time histogram [PSTH] response to each vocalization) (Fig. 3.1E, p < 0.05, 
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permutation test). The degree of improvement was not correlated with the prediction 

accuracy of the control model alone (r = -0.08, p = 0.5, t-test), suggesting that the 

influence of pupil on trial-to-trial variability did not depend on a neuron’s overall 

auditory responsiveness. 

The baseline-gain model included separate terms for effects of internal state on 

gain and baseline firing rate, both of which tended to be positive, indicating an increase 

in firing rate with increasing pupil size (Fig. 3.1F). Both the baseline and gain terms 

contributed to model prediction accuracy, compared to models that included only one 

term (Fig. 3.1G, Table 3.1). Adding second-order terms improved median prediction 

accuracy further, and increased the number of neurons that showed a significant fit from 

75 to 79 (Fig. 3.1G, Table 3.1, median increase in accuracy over PSTH only = 0.7% [gain 

model], 1.3% [baseline], 2.5% [gain and baseline], 2.4% [gain, baseline, and baseline 

squared], 3.7% [gain, baseline, baseline squared, and gain squared]). 

Given that pupil size was more variable in some recordings than others, we 

wondered whether we were unable to detect effects of internal state in some neurons 

simply because the animal’s pupil size remained fairly stable during the recording. 

Variability of pupil size during the recording was greater for neurons that showed a 

significant effect of pupil (median SD = 0.4 mm, n = 79 neurons) than for neurons that 

did not (median SD = 0.2 mm, n = 35 neurons, p = 1e-5, rank-sum test). Among neurons 

that showed a significant effect of pupil on firing rate, there was a correlation between the 

variance of pupil during the recording and the degree of improvement of the model over a 

model based on PSTH response alone (n = 79 neurons, r = 0.37, p = 4e-4, t- test). Thus, 

the measurement of 66% of neurons showing a significant effect of state on activity 
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represents a lower bound on the frequency of neurons showing pupil-related effects. To 

confirm this point, we split the dataset into high-variability and low-variability recordings 

based on the variance of pupil within a recording relative to the median variance across 

all recordings. A greater percentage of neurons in the high-variance subset were 

modulated by pupil (number of modulated neurons: 31/35 modulated in high-variance 

dataset vs. 48/79 in the low-variance dataset, p=3e-03, chi-square test). The median 

improvement in variance explained by the pupil model over a PSTH-based model was 

greater for the high-variance than low-variance model (change in R^2: 0.01 [low-

variance] vs. 0.13 [high-variance], p=2e-04, rank-sum test). These results suggest that the 

level of pupil modulation would be greater if all neurons were drawn from recordings 

with the greatest possible range of pupil states. 

The models were fit to data that included sound-evoked activity as well as activity 

during the silent intervals before and after each vocalization. The baseline term of the 

models could reflect either modulation of spontaneous activity or a stimulus-dependent 

modulation of sound-evoked firing rate that did not scale with stimulus strength. To 

distinguish between these possibilities, we fit a model with only a baseline term to data 

from the prestimulus epoch alone, ignoring sound-evoked activity. We then fit a model 

that included terms for both baseline and gain to the peristimulus epoch alone, ignoring 

spontaneous activity. The magnitude of the baseline terms in the two models was 

correlated (n = 75 neurons, r = 0.55, p = 4e-08, t-test), suggesting that the baseline term 

of the model reflected primarily modulation of spontaneous activity rather than (or in 

addition to) stimulus-evoked activity. 
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Auditory neurons encode sensory stimuli more reliably when pupil is large 

Previous research in mouse auditory and visual cortex suggests that the degree to 

which neural activity is dominated by sensory input depends on pupil-indexed state 

(Reimer et al., 2014; McGinley et al., 2015a; Vinck et al., 2015). To replicate and extend 

these results, we split the data from each recording into two groups depending on whether 

pupil size was greater or less than the median pupil size observed in the recording. We 

then calculated several metrics of neural variability across stimulus repetitions (Fig. 3.2-

4). When pupil was large, local-field potential (LFP) showed a consistent shift towards 

greater power at high-frequency (Fig. 3.2A), and pairs of simultaneously-recorded 

neurons showed a small decrease in stimulus-independent correlated activity (Fig. 3.2B, n 

= 88 neurons forming 430 pairs, mean noise correlation = 0.03 [large pupil], 0.04 [small 

pupil], p = 1.1e-03, paired t-test).   

Previous research also indicates that the level of pupil-indexed arousal is 

associated with changes in the reliability of neurons in auditory cortex, where reliability 

is defined as the mean cross correlation between spiking responses to the same stimulus 

in the same neuron across repetitions (McGinley et al., 2015a). To test for this effect, we 

calculated the correlation between the spiking responses of each vocalization (Fig. 3.3A-

B). The mean correlation was greater during trials when pupil was large (Fig. 3.3C, n = 

114 neurons, p = 5e-8, paired t-test). This difference in reliability was preserved in the 

subset of cells that showed modulation of neural activity by pupil-indexed state under our 

second-order baseline-gain model (Fig. 3.3D, n = 79 neurons, p = 5e-8, paired t-test), but 

disappeared when comparing only cells that did not show pupil-associated modulation 

under this model (Fig. 3.3D, n = 35 neurons, p = 0.2, paired t-test). These results suggest 



 111 

that pupil-associated state affects both the mean rate at which auditory neurons respond to 

sound and the variability of their responses, and that these effects occur in the same 

population of cells.  

Finally, dilated pupil was also associated with a decrease in a third metric of 

neural variability, the Fano factor (Fig 3.4). We noted a decrease in Fano factor upon 

stimulus onset and following large increases in sound amplitude during the stimulus (Fig. 

3.4A), the latter of which was not reported in previous studies that examined the effect of 

static stimuli on neural variability (Churchland et al., 2010). Interestingly, the decrease in 

Fano factor associated with pupil size was present in both spontaneous and sound-driven 

activity (Fig. 3.4B, n = 112 neurons, p = 3e-05 [prestimulus Fano factor], p = 7e-08 

[peristimulus Fano factor], paired t-test). Moreover, the effects of stimulus onset on Fano 

factor was independent of pupil size (Fig. 3.4B, n = 112 neurons, p = 0.9 [prestimulus 

Fano factor – peristimulus Fano factor], paired t-test), suggesting differences between the 

effects of pupil-indexed arousal and previously-studied effects of stimulus onset on 

neural variability (Churchland et al., 2010).  

 

Non-monotonic effects of pupil on firing rate are observed in some A1 neurons 

 Arousal can have a non-monotonic effect on behavior: both learning (Yerkes and 

Dodson, 1908; Diamond et al., 2007) and task performance (Aston-Jones and Cohen, 

2005; Murphy et al., 2011; van Kempen et al., 2019) are sub-optimal in minimally and 

maximally aroused states. A previous study found that multiunit spiking activity in mouse 

auditory cortex showed similarly non-monotonic relation between pupil and firing rate: 

on average, spontaneous activity was lowest, and gain highest, at intermediate pupil 
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diameter, suggesting that this range of pupil sizes was optimal for detection of auditory 

signals (McGinley et al., 2015a). We found examples of non-monotonic pupil-firing rate 

relationships in some cells (Fig. 3.5A). To test for their prevalence, we fit data on neural 

responses to ferret vocalizations with a segmented regression model (Simonsohn, Uri, 

2018) that predicted a linear effect of pupil on neural activity but allowed the slope of the 

fit to take two different values depending on pupil size (Fig. 3.5B). A difference in the 

sign of the slope between segments indicated a non-monotonic relationship between pupil 

size and spiking activity. We then compared the accuracy of this model to a similar model 

in which slope could vary between segments, but both line segments were constrained to 

have the same sign (i.e., the fit could not assume the shape of a U or inverted U). 

Although a large proportion of neurons that showed effects of pupil-associated 

state also showed a trend towards non-monotonicity in either baseline firing rate or gain 

(Fig. 5c, n = 38/79 [baseline], n = 41/79 [gain]), allowing for a non-monotonic segmented 

fit significantly improved the accuracy of the model for a smaller fraction of cells (n = 

15/79 [baseline], 14/79 [gain], p < 0.05, permutation test). Among neurons that showed a 

trend towards non-monotonicity, more showed trends towards U in baseline firing rate 

than inverted U, and more showed an inverted U than U in gain (Fig. 3.5C), suggestive of 

previous results comparing spontaneous and sound-evoked activity in mouse A1 

(McGinley et al., 2015a). 
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Frequency and level tuning show no or small dependence on pupil size 

To examine the effect of changes in internal state on stimulus selectivity, we 

recorded the responses of A1 neurons to tone pips at a variety of frequencies and levels 

(Fig. 3.6A-C, 114 neurons from 40 recording sites in 4 ferrets). To test for changes in 

frequency and level selectivity, we divided the data from each cell into large-pupil and 

small-pupil bins based on the median pupil size observed during the recording (Fig. 

3.6A-B), and constructed frequency response areas (FRAs) from the data in each bin 

(Fig. 3.6C). FRAs showed a variety of patterns typical of the auditory system (Bizley et 

al., 2005), including a sound-level response threshold and broadening of spectral 

bandwidth at higher sound levels (Fig. 3.6C). 

Comparing data from the large and small-pupil bins showed a systematic increase 

in spontaneous activity and the response to tones across all levels and frequencies (Fig. 

3.6B, D-E, n = 114 neurons, p = 1e-4 [spontaneous rate], p = 0.03 [driven rate], sign 

test). To confirm that this result did not depend on our division of the data into large and 

small-pupil bins, and to further examine changes in driven rate, we used linear regression 

to predict the response to tones based on pupil size and the average FRA of the neuron 

(see Methods). As it did for vocalizations, pupil size predicted trial-to-trial variability in a 

subpopulation of cells (Fig. 3.6F, n = 57/114 neurons, 50%, p < 0.05, permutation test). 

Most state-modulated neurons showed enhanced gain and baseline firing rate when pupil 

was large (Fig. 3.6G), suggesting that pupil-indexed state acted to shift and 

multiplicatively scale the neuron’s auditory tuning curve. 

Does the stimulus selectivity of auditory neurons change depending on pupil-

indexed state? To test for changes in level tuning, we again divided data at the median 
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pupil value in each recording, then fit a hinge function (see Methods) to the 

characteristic-frequency rate-level function in each pupil condition (Fig. 3.7A-B). Across 

the population, there was a significant decrease in threshold when pupil was large (mean 

change: -2.65 dB, 90% credible interval: -4.00 to -1.33 dB), but no change in the slope of 

the rate-level function (mean change: 0.05 [spikes/s]/dB, 90% credible interval: -0.07 to 

0.15 [spikes/s]/dB SPL). Consistent with previous analyses, we also observed an increase 

in the baseline firing rate of the cells when pupil was large (mean change: 1.68 spikes/s, 

90% credible interval: 0.80 to 2.59 spikes/s). At the single-cell level, most neurons 

showed a significant change in baseline firing rate (n = 68/114), but few showed 

significant changes in slope (n = 12/114) or threshold (n = 8/114). The low number of 

cells showing significant changes in threshold may be due to the small effect size (-2.65 

dB average across the population) and the uncertainty in model fits for individual cells. 

To test for changes in frequency tuning, we fit a Gaussian function to the best-

level frequency tuning curve (FTC) in each pupil condition (Fig. 3.7C-D). To isolate 

changes in frequency tuning (i.e., bandwidth) from nonspecific changes in baseline firing 

rate or gain, our model included multiplicative gain term and additive offset terms. 

Consistent with data from previous analysis, the gain and baseline parameters of the FTC 

showed a systematic increase across the population when pupil was large (gain: mean 

large/small ratio = 1.12, 90% credible interval = 1.06 to 1.18, baseline: mean change = 

2.02 spikes/s, 90% credible interval = 1.20 to 2.75). There was no change in the spectral 

bandwidth of the FTC when pupil was large (mean large/small ratio = 1.01, 90% credible 

interval = 0.94 to 1.07). There was also no change in mean best frequency across pupil 

conditions (mean change = -0.02 octaves, 90% credible interval = -0.09 to 0.05). The 
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number of neurons that showed a significant change in each parameter was greater for 

gain (n = 27/114) and baseline firing rate (n = 78/114) than it was for bandwidth (n = 

14/114) or best frequency (n = 4/114). Thus, while A1 neurons did sometimes show 

pupil-dependent changes in response threshold or other tuning parameters, these changes 

were relatively small compared to the changes in baseline activity and response gain. 

 

Sleep states account for additional neural variability 

 Although we did not explicitly seek to study sleep state, during some recordings 

we observed periods of tonically constricted pupil accompanied by an increase in 

saccade-like eye movements (Fig. 3.8A-B, Movies 3.1 and 3.2). We initially speculated 

that these bouts represented rapid eye-movement (REM) sleep, based on a previous 

report correlating constricted pupil and REM sleep in mice (Yuzgec et al., 2018). 

However, the delta/theta ratio of local-field potential (LFP) – a signature of REM sleep 

(Yuzgec et al., 2018) – did not show a systematic change between putative REM bouts 

and recording segments with pupil size in the same range (p = 0.8, n = 26 recordings, 

sign-rank test). Instead, the increase in eye movements was accompanied by a decrease in 

alpha power (Fig. 3.8C, p = 6e-09, n = 26 recordings, sign-rank test), suggesting that the 

eye movements indicated sleep onset (Silber et al., 2007). 

 Given that neural responses to sound in auditory cortex are preserved during 

natural sleep states, but sometimes suppressed or enhanced (Brugge and Merzenich, 

1973; Issa and Wang, 2008), we wondered if these brief sleep episodes might show 

changes in firing rate distinct from those associated with changes in pupil size. We 

therefore fit linear regression models that included putative sleep state, pupil size, or both 
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sleep state and pupil size as predictors of neural activity (Fig. 3.8D-E and Table 3.2). 

Sleep state significantly predicted neural activity in 81% of neurons recorded in 

experiments that included one or more sleep episodes (n = 38/47 neurons). Across the 

population of neurons with a significant fit for any tested model (n = 44), sleep state 

predicted less variability than pupil, which in turn predicted less variability than both 

pupil and sleep state (Fig. 3.8D and Table 3.2, median change in accuracy over PSTH-

only model: 1.5% [sleep], 8.4% [pupil], 11% [pupil and sleep]). There was no correlation 

between the duration of sleep during the recording and the improvement in accuracy of 

the sleep-based model (r = 0.2, p = 0.16, t-test), suggesting that sleep effects vary across 

neurons. 

 In some neurons, visual inspection of spiking activity and pupil state indicated 

that sleep episodes were associated with a non-monotonic change in firing rates (Fig. 

3.8D). To quantify this effect, we compared trials recorded during sleep episodes to non-

sleep trials falling in an equivalent range of pupil sizes (Fig. 3.9A-B). Across the 

population, there was no significant difference in spontaneous rate, sound-evoked rate, or 

reliability between these two conditions (Fig. 3.9C, p = 0.16 [spontaneous rate], p = 0.38 

[evoked rate], p = 0.17 [reliability], sign test, n = 47 neurons with recordings that 

included sleep episodes). However, a subpopulation of neurons did show a difference in 

spontaneous or sound-evoked rates at the single-cell level (Fig. 3.9C, n = 7/47 

[spontaneous rate], n = 15/47 [evoked rate], p < 0.05, unpaired t-test). To further examine 

the effect of sleep state, we removed data from trials recorded during sleep episodes from 

the dataset and refit the segmented regression model initially used to test for non-

monotonic effects. Fitting to data that excluded sleep state reduced the number of neurons 



 117 

that showed non-monotonic effects in both baseline and gain (Fig. 3.9D), indicating that 

sleep accounted for non-monotonic effects in some neurons (n = 7/42 [change in non-

monotonicity of baseline effect], n = 6/42 [change in non-monotonicity of gain effect], n 

= 42 neurons with recordings that included sleep episodes and a significant fit for 

second-order baseline-gain model). 

 

Sound-selective pupil dilations 

 To test whether the presentation of sound stimuli themselves affected the animals’ 

internal state, we aligned pupil traces to sound onset and calculated the mean pupil 

dilation in response to ferret vocalizations (Fig. 3.10A). We observed a sound-selective 

pupil dilation in response to one vocalization during the 2.5 seconds of silence following 

sound offset (Fig. 3.10B-C, n = 46 recordings, p = 0.1 [vocalization-related difference in 

peristimulus pupil size], p = 6e-03 [poststimulus pupil size], paired t-test). These sound-

evoked pupil dilations did not predict neural activity with greater accuracy than the raw 

pupil trace, suggesting that they do not influence neural activity in a distinct way from 

slower, intrinsically generated fluctuations in pupil-diameter (Fig. 3.10D, n = 81/114 

neurons, p = 0.5, sign test).  
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Discussion 

Pupil size is an indicator of central neuromodulatory processes related to arousal 

that affect processing in sensory cortex (McGinley et al., 2015b; Reimer et al., 2016). Our 

results show that pupil size is correlated with changes in the gain and baseline firing rate 

of neurons in the primary auditory cortex (A1) of non-anesthetized ferrets. Non-

monotonic effects of changes in pupil-indexed state were observed in some neurons, but 

the majority of effects were monotonic and showed a positive correlation between pupil 

size and spike rate. Across our population of recorded neurons, pupil size was also 

correlated with increases in the reliability of responses to sound, small decreases in 

acoustic threshold, and no change in spectral bandwidth or best frequency. The changes 

in gain that we observed suggest that pupil size tracks the gross level of activity evoked 

by auditory stimuli: sounds become more salient to the rest of the brain when pupil is 

large. Changes in threshold and decreased neural variability may also support a more 

sensitive or precise representation of sound in high-arousal states. 

 

Stability of sensory tuning across pupil states 

In mouse visual cortex, single neurons’ orientation selectivity increases when 

pupil is dilating rather than constricting: the neurons’ response to their preferred 

direction, but not the orthogonal direction, increases (Reimer et al., 2014). Although the 

impact of this change in orientation selectivity on tuning bandwidth has not been 

quantified, it suggests a narrowing of orientation tuning in the mean response across the 

population (Reimer et al., 2014). Our observation of stable tuning bandwidth in A1 may 
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therefore indicate differences between how pupil-indexed states affect sensory selectivity 

in visual and auditory cortex. 

Our results are also relevant to previous work on behavioral modulation of 

sensory receptive fields. Studies of task engagement effects on A1 reveal enhancement or 

suppression of neural responses to task-relevant sound features, including frequency 

(Fritz et al., 2003; David et al., 2012), amplitude modulation (Niwa et al., 2012), and 

spatial position (Lee and Middlebrooks, 2010), as well as generalized changes in 

excitability (Miller et al., 1972; Otazu et al., 2009). We found that best frequency is stable 

across large changes in pupil size, in contrast to previous studies of task-related plasticity 

in ferret primary auditory cortex that show frequency-specific effects (Fritz et al., 2003; 

David et al., 2012), suggesting a key difference between tasks that involve manipulation 

of the behavioral relevance of specific sound features and uncontrolled variation within 

passive states. Our data therefore suggest that effects of task engagement on frequency 

tuning in primary auditory cortex are not the result of non-specific increases in arousal, 

but instead involve separate mechanisms, such as feedback from frontal cortex (Fritz et 

al., 2010) or pairing activation of neuromodulatory systems involved in pupil dilation 

with specific auditory stimuli (Froemke et al., 2007; Martins and Froemke, 2015). The 

random sequences of tones used to characterize tuning would not pair release of 

acetylcholine with specific tone frequencies, and therefore would not be expected to gate 

shifts in tuning (Weinberger, 2004). 
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Changes in neural excitability and variability 

We found an increase in both spontaneous and sound-evoked firing rate when 

pupil was large. In addition, we found shifts in multiple metrics of neural variability, 

including Fano factor, reliability, and noise correlations, as well as a shift towards 

desynchronized neural activity associated with high-arousal states (Harris and Thiele, 

2011). Our results therefore support previous studies that found an influence of pupil-

indexed arousal on encoding of stimuli in early sensory cortex (McGinley et al., 2015a; 

Vinck et al., 2015). 

A previous study in mouse auditory cortex found that intermediate pupil diameter 

was associated with maximum evoked responses to sound and minimal spontaneous 

activity (McGinley et al., 2015a). Although we observed some cells with non-monotonic 

relationships between pupil size and spike rate, this was the not the predominant pattern 

in our sample. In addition, we found that the effect of pupil-associated state usually had 

the same sign for both spontaneous and sound-evoked activity within a single neuron, in 

contrast to earlier results suggesting that intermediate pupil sizes were associated with 

opposite changes in spontaneous and evoked activity (McGinley et al., 2015a). 

Several factors could explain this inconsistency between studies. The difference 

could reflect sampling of cortical layers. The earlier study targeted layers 4/5. We did not 

target any particular layer, but our method of recording auditory cells as the electrode 

advanced through cortex may have biased our sample towards more superficial layers. It 

is also possible that, compared to the earlier study, we tended to sample a different range 

of cortical states, either due to differences in experimental technique (the earlier study 

recorded head-restrained animals on a treadmill, while we did not use a treadmill) or 
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differences in the behavioral patterns of ferrets and mice. Ferrets were not able to run and 

rarely showed substantial motor activity during the recordings. Thus, they may not have 

achieved the very high arousal state observed during bouts of running and other motor 

activity in mice. 

 

Pupil as an index of arousal or cognitive engagement 

We used absolute pupil size as a measurement of cortical state. Because the 

variations in pupil size we observed occurred outside a controlled behavior, we have 

characterized them as a measurement of physiological arousal rather than inferring 

changes in a particular cognitive state. However, mechanisms like those we observed 

may underlie correlations between absolute pupil size and the efficiency of responses to 

sensory stimuli in some tasks (Beatty, 1982b; Murphy et al., 2011; van Kempen et al., 

2019). Our work complements human pupillometry’s traditional focus on small, rapidly-

decaying changes in pupil size that coincide with behavioral events (Kahneman and 

Beatty, 1966; Beatty, 1982a). The amplitude of these task-evoked dilations depends on a 

variety of cognitive variables (Zekveld et al., 2018), some of which may be related to the 

sound-selective pupil dilation we observed in response to pup cries over adult aggression 

calls. Work on sound-evoked pupil dilation in owls indicates that pupil adapts to repeated 

sounds (Bala and Takahashi, 2000). Studies that use a larger number of stimuli with fewer 

sound repetitions per session may therefore provide more insight into neural correlates of 

sound-evoked pupil dilation, as may studies that use controlled behaviors rather than 

passive listening.  
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Pupil as an index of noradrenergic tone 

Activity in neuromodulatory centers, particularly the noradrenergic and 

cholinergic systems, has been proposed as a mechanism underlying correlations between 

pupil size and the level of neural activity in sensory cortex (McGinley et al., 2015b; 

Reimer et al., 2016). Evidence from multiple labs, species, and experimental techniques 

indicates that central release of noradrenaline from locus coeruleus is causally involved in 

pupil dilation and that noradrenaline release in sensory cortex accompanies pupil dilation 

(Aston-Jones and Cohen, 2005; Murphy et al., 2014; Joshi et al., 2016; Reimer et al., 

2016; de Gee et al., 2017; Liu et al., 2017; Lovett-Barron et al., 2017; Larsen et al., 

2018).  

Despite the substantial evidence linking pupil size to noradrenergic tone, the gain 

increases we observed during pupil dilation do not directly match in vivo measurements 

of the effects of noradrenaline in auditory cortex. Iontophoresis of noradrenaline 

increases the signal-to-noise ratio of some auditory cortex neurons via a decrease in 

spontaneous, but not sound-evoked, activity (Foote et al., 1975; Manunta and Edeline, 

1997, 1999). The gain increases we observe persist after subtracting mean spontaneous 

activity and are present when analyzing data from the evoked period alone. It is possible 

that iontophoresis does not replicate the spatial distribution or temporal dynamics of 

noradrenaline release in non-anesthetized animals. It is also possible that the gain 

increases we observed were a result of multiple modulatory systems acting on auditory 

cortex, both directly and indirectly. Activity in the cholinergic and dopaminergic systems 

are also correlated with changes in pupil size (Reimer et al., 2016; de Gee et al., 2017; 

Larsen et al., 2018). Given that pupil size is correlated with activity in multiple 
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neuromodulatory systems, our failure to directly replicate results from spatially-localized, 

single-neuromodulator experiments is unsurprising, and indicates the complexity of 

neuromodulation under more natural conditions. 

 

Involvement of other cortical and subcortical brain regions 

Some of the trial-to-trial variability we observed in auditory cortex may also be 

due to feedback from motor cortex (Schneider et al., 2014). Pupil size varies even when 

mice are still, and explains more variability in neural activity than locomotion (McGinley 

et al., 2015a). However, in non-anesthetized mice motor activities such as running, 

whisking, and licking a water reward are associated with pupil dilation (Lee and 

Margolis, 2016; Stringer et al., 2019). Detailed tracking of face and body movements 

explains more variability than pupil alone in mouse visual cortex (Stringer et al., 2019) 

and dorsal cortex (Musall et al., 2019). We did not track detailed motor behavior in the 

current study, and thus the extent to which motor activity predicts trial-to-trial variability 

in our data is not known. However, our results add to the evidence that pupil is one of 

several variables related to movement that can be used to predict cortical activity. 

Pupil-related changes in neural activity are not restricted to the cortex. The same 

study that showed evidence of a causal relationship between pupil dilation and LC 

activity showed a similar relationship between pupil dilation and activity in superior and 

inferior colliculus (IC), including spiking preceding pupil dilation by hundreds of 

milliseconds and pupil dilation induced by microstimulation (Joshi et al., 2016). Some of 

the effects of arousal state we observed are likely to be inherited from auditory signals 

which must pass through IC before reaching cortex. 
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Sleep states during head-restrained recordings 

Recent results in head-restrained mice showed fluctuations between awake, rapid 

eye-movement (REM) sleep, and non-REM sleep states associated with changes in pupil 

size, with constricted pupil associated with REM sleep (Yuzgec et al., 2018). We 

observed epochs of tonically constricted pupil accompanied by an abrupt increase in 

saccade rate. Although alpha power consistently increased as pupil constricted, this trend 

reversed itself during these epochs. We speculate that over the course of lengthy, head-

restrained passive recordings, the ferrets may become progressively more drowsy, and 

that the high-saccade, low-alpha epochs indicate sleep onset.  

The pattern of constricted pupil, saccades, and lack of eyelid closure we observed 

may also be an artifact of head-restrained recording. Methods for recording the activity of 

single neurons in freely-moving animals can be supplemented with head-mounted 

cameras to track pupil (Meyer et al., 2018). It is likely that these techniques will yield 

data on changes in internal state more relevant to natural environments. 

Our observation of putative sleep states, like previous data from mice (Yuzgec et 

al., 2018), complicates the suggestion that the pupil size of head-restrained animals 

reveals a continuum of awake arousal states analogous to, but distinct from, sub-states of 

sleep (McGinley et al., 2015b). Thus, a full characterization of arousal states must 

incorporate both pupillometry and other physiological measurements that can distinguish 

between drowsy waking states and sleep. 
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Figures 

 

 

 

Fig. 3.1: Trial-to-trial variability in neural responses to sound tracks changes in pupil 

size. A. Schematic of experiment, illustrating ferret, free-field speaker, camera recording 

video of eye, and contralateral extracellular electrode. B. Pupil trace recorded across 120 

repetitions of one ferret vocalization, with example video frames. C. Spectrogram of one 

ferret vocalization and spike raster of one neuron’s response to the vocalization, sorted by 

time (top) and prestimulus pupil size (bottom). D. Predicted and actual pupil-dependent 

changes in spiking activity for the neuron shown in 1b-c. Panels show peristimulus time 

histogram (PSTH) responses averaged across blocks of 10 stimulus presentations selected 



 126 

from epochs with different pupil size (see 1b. PSTHs predicted by the null model 

(dashed) and baseline + gain model (solid) are overlaid on the actual PSTH (gray 

shading). E. Accuracy of pupil-based baseline-gain regression model for neural responses 

to ferret vocalizations (n = 114 neurons), plotted against accuracy of a control, PSTH-

only model, fit to temporally shuffled pupil data from each cell. Filled dots indicate 

neurons with a significant improvement over the control model (n = 75/114, p < 0.05, 

permutation test). F. Coefficients of baseline-gain model for all data from vocalization 

recordings (n = 114 neurons). Positive values indicate an increase in baseline spike rate 

(horizontal axis) or response gain (vertical axis) with larger pupil. Numbers in corners of 

each quadrant indicate the count of neurons with parameters with a significant 

improvement in prediction accuracy over the control, pupil-independent model in that 

quadrant. G. Improvement in accuracy over PSTH-only model for various models for 

population of neurons with a significant fit for any model (n = 92/114, *: p < 0.05, **: p 

< 0.01, ****: p < 0.0001, sign test). Boxplot indicates median, interquartile range, and 

1.5 times the interquartile range. 
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Fig. 3.2: Dilated pupil is associated with neural desynchronization. A. Log ratio change 

(dB) in local field potential (LFP) power between recording segments with large and 

small pupil (n = 46 recordings). Thick line indicates population median (*: p < 0.05; ***: 

p < 0.001, rank-sum test on hypothesis that median is equal to 0). Putative sleep states 

(see Fig. 8) have been excluded from the comparison. B. Change in noise correlation 

across large and small pupil trials (n  = 429 neuronal pairs, mean noise correlation = 0.03 

[large pupil], 0.04 [small pupil], p = 1.1e-03, paired t-test). Trials are classified as “large 

pupil” and “small pupil” based on whether the mean pupil size preceding the vocalization 

is greater or less than the median pupil size during the recording. 
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Fig. 3.3: Reliability of neural response to sound increases when pupil is dilated. A. 

Correlation between time-varying activity across trials evoked by one ferret vocalization 

in one neuron, sorted by trial order (top) and mean pupil size before stimulus onset 

(bottom). B. Mean trial-to-trial correlation for all neural responses to ferret vocalizations. 

This heat map was constructed by computing the average correlation matrix sorted by 

pupil size across all neurons (n = 114). For display, the correlation of each trial with itself 

was replaced by the mean correlation for the two trials with the most similar pupil size 

before averaging. Marginal plots indicate the mean pupil size in each trial, across all 

neurons. Dashed line indicates median pupil size. C. Comparison of reliability (mean 

trial-to-trial correlation) for each neuron’s response to vocalizations for small versus large 

pupil (n = 114, p = 5e-8, paired t-test). Trials are classified as “large pupil” and “small 

pupil” based on whether the mean pupil size preceding the vocalization is greater or less 

than the median pupil size during the recording. Filled circles indicate cells with a 

significant fit under a second-order baseline-gain regression model (n = 79, p < 0.05, 

permutation test, p = 5e-8, paired t-test). D. Mean reliability (+/- SEM) in each condition 

for subpopulations of cells that do or do not show effect of pupil-associated state under 

the regression model (***: p < 0.001, paired t-test).  
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Fig. 3.4: Fano factor decreases at stimulus onset and when pupil is dilated. A. Waveform 

of one ferret vocalization (top) and time-varying Fano factor for neural responses 

(bottom). Purple and green lines indicate mean across 112 neurons +/- SEM. B. Mean 

Fano factor preceding and during each vocalization (n = 112 neurons, p = 3e-05 

[prestimulus Fano factor], p = 7e-08 [peristimulus Fano factor], paired t-test). 
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Fig. 3.5: Non-monotonic effects of pupil-related state. A. Spike raster of one neuron's 

response to single ferret vocalization sorted by time (top) and pupil size preceding the 

stimulus (bottom). A non-monotonic relationship is evident between pupil size and 

spontaneous firing rate. B. Examples of segmented regression model fits to spontaneous 

and driven activity for three neurons. Each point represents spike rate for one neuron on 
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one trial (spontaneous activity: 2 s, driven activity: 3 s). The bottom row displays data 

from the neuron in panel A. C. Results of test for non-monotonicity using segmented 

regression model, counting the number of neurons with significant or trends toward non-

monotonic changes in baseline or gain. 
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Fig. 3.6: Spontaneous activity and evoked response to tones increases when pupil is 

dilated. A. Distribution of pupil size during three recordings of neural responses to tone 

pips, indicating division into small-pupil and large-pupil bins based on median pupil size 

during the recording. B. Mean peristimulus time histograms (PSTHs) of neural responses 

for the three example cells, computed separately for data in the small-pupil (green) and 

large-pupil (purple) bins and averaged across all tone pip levels and frequencies. Shading 

indicates SEM. Dashed lines indicate window for measurement of response to sound.  
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C. Frequency-response areas for the three examples cells, computed separately for small 

and large pupil bins. Contour indicates lowest level that shows an auditory response at 

each frequency. Dashed line indicates characteristic frequency. D-E. Spontaneous and 

driven rate for all neurons’ responses to tone pips (n = 114 neurons). F. Single-trial 

prediction accuracy of linear baseline-gain model and control, pupil-independent model 

for all neurons’ response to tone pips. Filled dots indicate neurons with a significant 

improvement for the baseline-gain model (n = 57/114, p < 0.05, permutation test).  

G. Coefficients of baseline-gain model fit for all data from tone-pip recordings. Numbers 

indicate count of neurons with significant improvement for the pupil-dependent model in 

each quadrant. 
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Fig. 3.7: Effects of pupil-related state on frequency and level tuning. A. Example of 

hinge function fit to neural response at characteristic frequency for large-pupil (purple) 

and small-pupil (green) conditions. Dashed lines indicate prestimulus firing rate in each 

condition. B. Comparison of each parameter of rate-level function between pupil 

conditions (large pupil vs. small pupil) for all neurons (n = 114). Inset cartoons illustrate 

effect of changing each parameter fit. Green and red dots indicate neurons with a 

significant change in the tuning parameter (as defined by the 90% credible interval for 

difference between conditions not bracketing 0). Gray dots indicate neurons with changes 

that were not significant at the single-cell level. C. Examples of Gaussian functions fit to 
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neural responses at best level for large-pupil (purple) and small-pupil conditions (green). 

D. Comparison of each parameter of the frequency-tuning curve across pupil conditions 

for all neurons (n = 114). Insets and color coding as in panel B. 

  



 136 

 

 

Fig. 3.8: Sleep states account for additional variability in neural responses. A. Pupil size 

and eye-speed traces from one recording. B. Pupil size and eye speed data from one ferret 

(13 recordings). Each point illustrates average pupil size and eye speed during one trial 

(5.5 s). Color indicates whether a trial was classified as sleep (red) or non-sleep (black), 

using criteria based on eye movement and pupil size data (see Methods). C. Relative 
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change in LFP power between recording segments with and without sleep, matched for 

pupil size (n = 26 recordings). Bold line indicates population median (*: p < 0.05, ***: p 

< 0.001, rank-sum test on hypothesis that median is equal to 0). D. Spontaneous (left) and 

sound-evoked neural data (right) from the recording shown in A. Each point indicates 

spike rate before or during one vocalization (prestimulus period = 2 s, stimulus period = 3 

s). E. Stepwise regression results for models including sleep state, pupil size or both sleep 

state and pupil size as predictors of spike rate (n = 44 neurons with significant fit for any 

model and recorded during experiments that include sleep episodes, **: p < 0.01, ***: p 

< 0.001, ****: p < 0.0001, sign test). Boxplot indicates median, interquartile range, and 

1.5 times the interquartile range.  
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Fig. 3.9: Sleep state accounts for non-monotonicity in some neurons. A. Mean 

prestimulus pupil size for responses to one ferret vocalization, highlighting sleep trials 

(red) and trials with matched prestimulus pupil size (blue). B. Spontaneous (i.e. 

prestimulus) and stimulus-evoked neural activity from the recording in A, illustrating 

greater spike rate in sleep trials as compared to trials with matched pupil size. C. Average 

spontaneous (left) and sound-evoked spike rate (right) during sleep trials versus trials 
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with matching pupil size (n = 47 neurons recorded in experiments including sleep 

episodes, filled circles: p < 0.05, unpaired t-test). D. Results of test for non-monotonicity 

using segmented regression model fit to all data or data with sleep trials removed (n = 42 

neurons recorded in experiments including sleep episodes, and showing significant fit to 

second-order baseline-gain regression model). 
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Fig. 3.10: A sound-selective pupil dilation does not affect neural activity independent of 

other variation in pupil size. A. Mean pupil dilation in response to ferret vocalizations (n 

= 46 recordings). Gray shading indicates SEM. B. Mean pupil size during each 3-second 

ferret vocalization. C. Mean pupil during the 3 seconds following each vocalization. 

D. Accuracy of regression models fit to the full pupil timecourse (baseline-gain model, 

see Fig. 2) or to the prestimulus pupil size on each trial and the sound-evoked dilation or 

constriction in each time bin. Filled dots indicate neurons with a significant fit to either 

model  (n = 79/114, p < 0.05, permutation test). 
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Table 3.1: Stepwise comparison of accuracy of different pupil-based models of neural 

activity applied to vocalization dataset. Numbers indicate difference in median accuracy 

across the population of neurons with significant fit for any model (n = 92/114).  Bold 

text indicates comparisons for which the difference is significant at alpha level 0.05 with 

Bonferroni correction for multiple comparisons (*: p < 0.05, **: p < 0.01, ***: p < 0.001, 

****: p < 0.0001, sign test). 

 
  

Table	3.1.	Stepwise	regression	of	pupil-based	models	of	neural	activity	

Baseline	 Gain	 Baseline-	
gain	

2nd-order		
baseline	

2nd-order		
baseline-gain	 	

-0.009****	 -0.009****	 -0.02****	 -0.01****	 -0.02****	
	

Null	
	

	 0.0001**	 -0.006****	 -0.002***	 -0.01****	
	

Baseline	
	

	 	 -0.006****	 -0.002**	 -0.01****	
	

Gain	
	

	 	 	 -0.004*	 -0.004***	

	
Baseline-	
gain	
	

	 	 	 	 -0.008****	 2nd-order		
baseline	
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Table 3.2: Stepwise comparison of accuracy of pupil and/or sleep-state based models of 

neural activity (see Methods) applied to all vocalization data including sleep episodes (n 

= 47 neurons). Text indicates median accuracy for population of neurons with significant 

fit for any model (n = 44/47 neurons).  Bold text indicates that the difference is 

significant at alpha level 0.05 with Bonferroni correction for multiple comparisons (*: p < 

0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001, sign test). 

 
  

Table	3.2.	Stepwise	comparison	of	pupil-	and/or		
sleep-based	models	of	neural	activity	

Sleep	
	

Pupil		
(baseline-gain)	

	

Sleep		
and		
pupil	

	

-0.2****	 -0.03****	 -0.04****	
	

Null	
	

	 -0.01***	 -0.02****	
	

Sleep	
	

	 	 -0.006**	

	
Pupil	

(baseline-	
gain)	
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Movie 3.1. Real-time example of pupil size and eye movement dynamics during awake 

state. Video available at https://doi.org/10.6084/m9.figshare.9859358  

 

Movie 3.2. Real-time example of pupil size and eye movement dynamics during sleep 

state. Video available at https://doi.org/10.6084/m9.figshare.9859358 
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Chapter 4: Conclusions 

 Sensory processing is traditionally studied by mapping the relationship between 

the physical features of stimuli and neural activity (Hubel and Wiesel, 1959; deCharms et 

al., 1998). In auditory cortex (AC), like other sensory systems, neural activity is also 

modulated by non-sensory variables, including the demands of tasks that require 

responding to sound (Fritz et al., 2003; David et al., 2012; Niwa et al., 2012; Osmanski 

and Wang, 2015). Such task-related plasticity is rapid, reversible, and encodes 

information not present at the auditory periphery. Thus, it suggests that the response 

properties of single neurons in AC can be modified to some degree by the large-scale 

network state of the brain at a given time, supporting behavioral flexibility. 

This dissertation explored how two aspects of behavioral state affect the brain’s 

representation of sound: attention and arousal. We recorded extracellular single-unit and 

population activity in primary auditory cortex (A1) of ferrets during passive listening as 

well as a behavioral task that involved attention to frequency, spatial, and envelope cues. 

In Chapter Two, we compared neuronal responses across attention conditions in ferret 

AC. We recorded single-neuron activity in A1 of ferrets as they were rewarded for 

attending to tones in bandpass noise, but not tones in bandpass noise at a different 

frequency. The neural response to the noise at the attended frequency decreased when 

ferrets attended to frequencies to which the neuron was tuned. Because neural responses 

to the tones did not differ between attention conditions, suppressing the neural responses 

to noise increased the discriminability between neural responses to tones and noise. 

Comparing neural responses when ferrets performed the task to those in which they 
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passively listened to the same sounds showed an increase in spontaneous activity as well 

as an increase in neural responses to noise. 

In Chapter Three, we compared neuronal responses in ferret AC across arousal 

states. Building on recent findings in mice (Reimer et al., 2014; McGinley et al., 2015a; 

Vinck et al., 2015), we used pupil size as a measurement of moment-to-moment 

fluctuations in arousal (Satpute et al., 2019). As in prior studies in mice, we found that 

arousal modulates the gain and baseline firing rate of A1 neurons’ response to ferret 

vocalizations and tones. Although neurons showed a variety of relationships between 

pupil size and firing rate, the most commonly observed relationship in our dataset was a 

monotonic increase in gain, spontaneous activity, and the reliability of sound-evoked 

responses when pupil dilated. Frequency tuning (best frequency and bandwidth) was 

stable across arousal states, but there was a small decrease in auditory threshold when 

pupil was large. During some recordings, we noted an abrupt increase in saccades and 

tonically constricted pupil that may have indicated sleep onset. In some neurons, this 

state was accompanied by distinctive changes in firing rate. 

A recent study that used 2-photon Ca2+ imaging to examine frequency tuning in 

mouse A1 across pupil size observed no change in best frequency, but a small increase in 

spectral bandwidth when pupil was large (Lin et al., 2019). Surprisingly, the bandwidth 

increase selectively affected frequencies greater than best frequency. It is not clear to 

what extent the divergence between this result and our own is due to species differences 

or different analytic methods for separating changes in gain and bandwidth. 
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Separating out effects of attention, arousal, and task engagement   

Plasticity in the responses of auditory neurons has been demonstrated following 

behavioral training, physiological manipulations, and during behavioral tasks 

(Weinberger, 2004; Schreiner and Polley, 2014; Elgueda et al., 2019). In order to 

understand the role of cortical plasticity in hearing, it is important to distinguish effects of 

task structure on neural activity from non-stimulus-specific variables such as task 

engagement (Otazu et al., 2009), motor activity (Schneider et al., 2014; Musall et al., 

2019; Stringer et al., 2019), and cortical network state (Harris and Thiele, 2011). In 

particular, because most reports of task-related plasticity compare neural activity during 

behavior and passive listening, it is difficult to completely dissociate the effect of 

attention to particular acoustic features from nonspecific arousal and task engagement. 

Arousal and both attention both desynchronize neurons and increase stimulus-evoked 

responses (Harris and Thiele, 2011). Therefore, failure to distinguish these effects could 

result in falsely attributing attentional effects to brain regions that are affected by sensory 

input and arousal. 

Our results suggest that attention and task structure produce localized changes in 

frequency tuning in A1, dependent on task-relevant sound features, while arousal 

produces non-task-specific changes in gain and baseline activity. In addition, we found 

that task engagement modulates spontaneous activity independent of selective attention. 

However, these experiments have not directly compared effects of arousal to task 

engagement and attention by recording pupil size and neural activity in the same neurons 

as animals attend to and passively listen to sound. Data from our lab indicates that arousal 

and task engagement both modulate firing rate in A1 of ferrets performing a tone-in-noise 
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detection task (Saderi et al., 2020). Some neurons show greater modulation by task 

engagement, while others show greater modulation by pupil-linked arousal, suggesting 

that different top-down circuits may be involved in task engagement and arousal. Activity 

in noradrenergic and cholinergic nuclei is correlated with changes in pupil size, and 

provides a possible circuit linking this measurement of arousal state to activity in cortex 

(Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017; Liu et al., 2017; Larsen et al., 

2018). Task-evoked pupil dilations in humans performing a challenging speech-

recognition task is associated with activity in cortical regions outside A1, including 

superior temporal gyrus, anterior cingulate cortex, and several areas of frontal cortex 

(Zekveld et al., 2014). Comparisons of the effects of these corticocortical and subcortical 

areas on A1 could aid in understanding task engagement and arousal. 

 Analyzing receptive field changes and arousal in behaving animals could answer 

additional questions about the degree to which arousal, task engagement, and other 

behavioral variables interact. For example, it is possible that arousal does not uniformly 

increase the gain on all sensory stimuli in all cases, but that its effects instead depend on 

training history or task structure, such that arousal boosts responses to sounds associated 

with reward. 

 

Selective attention and arousal in nonprimary auditory cortex 

Future experiments could explore whether effects of selective attention or arousal 

are quantitatively larger in nonprimary auditory cortex than they are in A1. In ferrets, 

sounds that differ in behavioral meaning also show progressively greater contrast in A1 

and two regions of nonprimary AC (Fritz et al., 2003; Atiani et al., 2014; Elgueda et al., 



 148 

2019). If effects of selective attention studied in animal models follow the same pattern, 

then we would expect to see a quantitatively larger suppression of the response to noise 

distractors in nonprimary AC compared to A1. This effect may offer insight into 

mechanisms of human selective attention to pitch or location, both of which modulate 

activity in nonprimary AC (Alho et al., 2014).  

It is possible that the behavioral paradigm used in previous ferret experiments 

does not generalize to selective attention. These experiments used two categories of 

sounds differing in bandwidth (tones vs. noise) or modulation rate (click-rate 

discrimination). One category of sound signaled that ferrets would receive water for 

licking a water spout, and the other that ferrets would receive an aversive stimulus for 

making the same movement. Our selective attention task involved two streams of tones in 

noise that differed in frequency and location. Ferrets were rewarded for licking in 

response to tones at one frequency, but punished with a time-out for responding to tones 

at the other frequency, or for responding to the noise at any time. We found that in A1 the 

neural response to noise in the receptive field of the neuron decreased when ferrets 

attended to the receptive field, increasing the discriminability of the rewarded tone and 

noise in the same band. This strategy may only be applicable in A1 due to the relatively 

narrow bandwidth of neurons in this region (Elgueda et al., 2019). In addition, previous 

experiments show that behavioral training itself enhances the contrast between the neural 

response to sound categories in passively-listening animals (Elgueda et al., 2019). Given 

that the same tone can signal reward or a time-out depending on the block of the attention 

task in which it appears, AC may use different mechanisms to learn the task. 
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Although correlations between neural activity and pupil size have been shown in 

several cortical and subcortical areas (McGinley et al., 2015b), it is not known if effects 

of arousal differ between primary and nonprimary sensory cortex. Data from our lab 

shows that compared to A1, a greater portion of variability in inferior colliculus (IC) can 

be explained by pupil-linked arousal rather than task engagement (Saderi et al., 2020), 

suggesting that arousal effects differ across the ascending auditory pathway. Non-

selectively increasing gain and spontaneous activity in areas outside primary sensory 

cortex would increase the metabolic cost of achieving increased contrast between 

different types of stimuli during behavior. Therefore there could be functional advantages 

to decreasing arousal effects further in nonprimary auditory cortex. The neuromodulatory 

centers whose activity is correlated to pupil size project diffusely, and arousal is 

traditionally considered a global state that simultaneously affects multiple brain areas.  

However, differences in the distribution of postsynaptic receptors could create functional 

differences between primary and nonprimary auditory cortex, as could differentiation of 

coeruleus and basal forebrain into subpopulations that project to distinct cortical targets 

(Záborszky et al., 2018; Chandler et al., 2019). 

 

Effects of arousal state on auditory perception 

 Our data indicate that arousal state affects sensory coding in A1. When pupil was 

large, we noted desynchronized population activity, decreases in correlated variability 

between pairs of neurons, and decreased single-neuron variability across stimulus 

repetitions. These results are consistent with previous research indicating that during 

high-arousal states, sensory cortex is dominated by sensory input rather than self-
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generated, correlated activity (Reimer et al., 2014; McGinley et al., 2015a; Vinck et al., 

2015). In addition, although frequency tuning remained unchanged, we found small 

decrease in auditory thresholds when pupil was large. 

 Future experiments could explore how these changes in sensory coding affect 

auditory perception. Baseline pupil size is correlated with performance on tasks that 

require auditory and somatosensory discrimination in mice and detection of visual stimuli 

with social significance in macaques (Ebitz et al., 2014; McGinley et al., 2015a; Schriver 

et al., 2018). In general, these experiments show that optimal performance occurs at 

intermediate pupil diameter. In mice, one study found that effects of arousal on neural 

gain and variability similarly peak at intermediate pupil diameters (McGinley et al., 

2015a). Although we did not find a distinctive effect of arousal state on auditory coding 

at intermediate pupil diameter in most cells in our dataset, many of the coding changes 

we noted could support enhanced sound detection or discrimination in high-arousal 

states. Future experiments could explore whether there is a correlation between behavior 

and the degree of pupil modulation of neural activity on a given trial. In addition, 

behavioral experiments could test whether there is a change in detection thresholds for 

sound in line with the decrease in neural thresholds we observed when pupil is dilated. 

 An understanding of how auditory coding and perception changes across arousal 

states could aid in determining the function of cognitive pupil dilations. It is not known 

whether these changes in pupil size are epiphenomena or a part of active vision. Pupil 

dilation increases visual sensitivity at large spatial scales at the expense of discriminating 

fine detail. It has been hypothesized that shifting vision towards sensitivity rather than 

acuity is useful during orienting or exploration (Mathôt, 2018; Ebitz and Moore, 2019). 
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The threshold decrease we observed is consistent with the idea that the auditory system 

similarly increases its sensitivity during high-arousal states. Further behavioral 

experiments could explore whether there is a trade-off between sound detection and 

discrimination when pupil is dilated. In particular, it would be interesting to know 

whether pupil dilation has an effect on the discriminability of natural sounds. 

During some recordings, we observed periods of tonically constricted pupil 

accompanied by saccades. In some A1 neurons, these epochs were accompanied by 

increases in firing rate. Given that mouse pupils are constricted during sleep (Yuzgec et 

al., 2018), we speculated that these epochs were period of rapid eye movement sleep. 

Although local-field potential did not reveal the increase in high-frequency neural 

activity that is a marker of rapid eye movement sleep, we observed a decrease in alpha 

power, indicating that the epochs may involve sleep onset. Future experiments that use 

pupil size as a measure of arousal state, particularly during protocols that involve passive 

listening, should consider the possibility that some recordings may be contaminated by 

sleep episodes. Recording other established markers of sleep state, such as 

electromyography, could help to distinguish sleep onset and low-arousal states more 

clearly. 

 In humans, pupil dilation has been linked to the degree of cognitive load required 

by many tasks, including those that require auditory processing (Beatty, 1982a; Zekveld 

et al., 2018). To reveal these pupil dilations, human studies generally examine the change 

from baseline pupil size evoked by particular task events, such as listening to a segment 

of distorted speech (Winn et al., 2015). Although there is not a similarly developed 

literature exploring behavioral correlates of changes in baseline pupil size, a number of 
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studies have noted that spontaneous pupillary movements vary with task engagement or 

wakefulness. At rest, the human pupil undergoes slow oscillations known as pupillary 

unrest or hippus that can be abolished by asking subjects to engage in mental arithmetic 

(Bouma and Baghuis, 1971). In subjects that are fatigued, progressive constrictions of the 

pupil lasting several minutes also occur, and can be reversed by sudden sensory stimuli 

(Lowenstein et al., 1963; Lowenstein and Loewenfeld, 1964; Loewenfeld and 

Lowenstein, 1999). Baseline pupil size is also related to both time awake and circadian 

rhythms, although it is not a direct proxy for subjective sleepiness in humans (Daguet et 

al., 2019). The pupillary movements reported in these studies have a greater dynamic 

range and slower dynamics than task-evoked dilations, raising the question of whether 

they are controlled by different neural circuits. For example, it is possible that areas of 

frontal cortex associated with task-evoked pupil dilation (Zekveld et al., 2014) are not 

involved in regulating all changes in baseline pupil size in humans that are fatigued, 

drowsy, or bored, or in animals engaged in passive listening. Data from our lab (Saderi et 

al., 2020) shows that sound-evoked dilations occur in behaving ferrets, but not in ferrets 

passively listening to same sounds, suggesting that different processes may be involved.  

To test whether task-evoked and baseline changes in pupil size have different effects on 

auditory processing, future experiments could directly compare changes in neural activity 

in sensory areas that depend on the degree of task-evoked pupil dilation to those that are 

sensitive to any change in pupil size. Ideally, these experiments would also use 

behavioral manipulations that vary the cognitive load imposed by the task in order to 

provide an animal model for human listening under conditions that impose effort, 

including hearing loss.  
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