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It was when I said, 

“Words are not forms of a single word. 

In the sum of the parts, there are only the parts. 

The world must be measured by eye.” 

— Wallace Stevens, “On the Road Home”  

 

 

§  

 

 

Everything about her spoke of alternatives and possibilities that  

if considered too deeply would wreak havoc with 

 the neat plan I had laid out for my life. 

― Tsitsi Dangarembga, Nervous Conditions 
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For all of my teachers and all of my students— 

we will go forth together.  

  



A REWARD SYSTEM POLYGENIC RISK SCORE 

 

iii 

TABLE OF CONTENTS 

Acknowledgements ........................................................................................................................ iv 

Abstract ......................................................................................................................................... vii 

I. INTRODUCTION .................................................................................................................... 1 

II. METHODS ............................................................................................................................... 6 

Data source.......................................................................................................................... 6 

Study participants................................................................................................................ 7 

Study design ........................................................................................................................ 7 

Training set phenotype and environment EDA and expert review ................................... 11 

Reward system aggregate phenotype scores ..................................................................... 13 

Null phenotype scores ....................................................................................................... 15 

Genotype quality control................................................................................................... 16 

Genome-wide association analyses................................................................................... 17 

Polygenic risk score analyses............................................................................................ 20 

III. RESULTS ............................................................................................................................... 23 

Genome-wide association analyses................................................................................... 23 

Polygenic risk score analyses............................................................................................ 28 

IV. DISCUSSION ......................................................................................................................... 33 

REFERENCES ............................................................................................................................. 38 

APPENDICES .............................................................................................................................. 46 

Appendix A. Statistical analysis plan ............................................................................... 46 

Appendix B. UK Biobank approved research summary and data dictionary ................... 52 

Appendix C. Geographic distribution of participants ....................................................... 58 

Appendix D. Summary of training set phenotype and environment EDA results ............ 59 

Appendix E. Summary of phenotype score development results ..................................... 64 

Appendix F. Summary of genotype and post-GWAS quality control results................... 68 

 

  



A REWARD SYSTEM POLYGENIC RISK SCORE 

 

iv 

Acknowledgements 

 I would like to offer my deepest acknowledgements to my mentor, Dr. Shannon 

McWeeney, for her unending commitment to teaching me the beauty of the scientific method, for 

preserving (and at times rekindling) the awe and wonder that first led me to a career in science, 

for practicing the patience and rigor that I will bring to every scientific endeavor in my future, 

and lastly for her light-hearted guidance and friendship. Thank you for nudging me along this 

journey; there is no way I would be the scientist (or teacher) I am today without you.  

 Next, I would like to thank the members of my dissertation advisory committee, who 

made working on this group project together especially meaningful. To my committee chair, Dr. 

Guanming Wu, for always holding me to the highest standards and opening my eyes to all the 

creative ways network methods can solve seemingly intractable problems in biology and 

medicine. To Dr. Joyanna Hansen, for believing in me early on during my time as a graduate 

student, offering me the opportunity to teach and share my excitement in using genomics to 

understand more about human nutrition, and always asking the clarifying questions necessary to 

make this work approachable to a wide scientific audience. And to Dr. Dan Marks, for 

remembering what it was like to be an idealistic MD-PhD student who wants to change the world 

for the better, for his willingness to trust my judgment even when he probably shouldn’t have, 

and his commitment to making this work the best it could possibly be.  

 I would like to acknowledge Dr. Aurora Blucher for her ongoing mentorship; it is very 

unlikely I would have ever come to embrace the utility of mathematical modeling for solving 

real-world scientific problems without your support. I would like to acknowledge the faculty and 

post-doctoral scholars that offered key insights into this work including Dr. Lucia Carbone, Dr. 

Eilis Boudreau, Dr. Suzanne Mitchell, Dr. Michael Mooney, Dr. Jessica Minnier, Dr. Beth 

Wilmot, Dr. Reid Thompson, Dr. Dian Chase, and Dr. Eric Feczko. I would also like to 



A REWARD SYSTEM POLYGENIC RISK SCORE 

 

v 

acknowledge the faculty with direct involvement in my early scientific training during graduate 

school, Dr. David Koeller and Dr. Kent Thornburg, whose support and encouragement were 

crucial to embarking on the work presented here. Furthermore, I would like to acknowledge Dr. 

William Hersh and Dr. David Jacoby, for their unwavering support of my scientific education 

and for building two leading research education programs without which this work would have 

been impossible. 

I cannot imagine completing this work without the camaraderie and inspiration of all the 

graduate students, post-doctoral scholars, and clinical fellows who were part of the Department 

of Medical Informatics & Clinical Epidemiology (DMICE) over the years. I especially would 

like to thank my closest fellow graduate students: Josh Burkhart, Julian Egger, Eric Leung, Rose 

Goueth, and Ben Cordier. I would like to acknowledge the DMICE faculty and staff for 

providing such a rich scientific community and support throughout my time as a graduate student 

in the department; I would especially like to thank Diane Doctor, Virginia Lankes, Lynne 

Schwabe, Andrea Ilg, and Lauren Ludwig. 

 I also cannot imagine completing this work without all of my fellow students in the MD-

PhD Training Program. I would especially like to acknowledge Elizabeth Swanson for her 

ongoing peer mentorship and friendship starting from day one of medical school in anatomy lab; 

you have a perseverance that continues to inspire me to this day. I would also especially like to 

acknowledge the program coordinators, Johanna Colgrove and Alexis Young, for their help in 

navigating this nearly decade-long path as an MD-PhD student. 

Last, but certainly not least, I would like to thank my closest friends and family. To 

Nathalie Javidi-Sharifi and Johannes Elferich, words will never come close to expressing the 

gratitude I feel towards the two of you; you have fed my mind and belly to the brink over the 



A REWARD SYSTEM POLYGENIC RISK SCORE 

 

vi 

past seven years, and while I am sad that our time together is coming to an end for now, I am 

looking forward to watching from afar as your next chapter unfolds. To Scott and Laurel 

Hoffmann, Burcu Gurun-Demir, Rachel and Gary Sivek, Addie Cuneo, Jon Buckalew, Maansi 

Shah, Janet Slesinski, Morgan Maschmeier, Catherine Welch, Lea Juzek, Allissia Gilmartin, 

Erika Freeman, and Danika Robison, your friendship and encouragement over all these years 

have made this process that much easier.  

To my mother- and father-in-law, Hope and Michael, thank you for all of the support and 

kind words over the years; you have taught me more than you can imagine. To my Aunt Carol, 

and my cousins Eric and David, your unwavering support and confidence in me made me believe 

that my success as a scholar was inevitable so long as I just stuck with it. To my “Ant” Jan, 

whose commitment to a life of service and caring for others has kept me grounded throughout 

this time devoted to academics. To my sister, Sydney, and my brother, Casey, thank you for 

keeping the fun and humor in my life alive despite my relentless (and mostly unsuccessful) 

attempts to become “serious.” To my Mommom, who reminds me: “No patience, no friends,” 

and that it is our relationships that are the most important part of life. And of course, to my mom 

and dad, Kimberly and James, who have made immeasurable sacrifices to get me where I am 

today, always ready to wipe away my tears of frustration and a hug to keep me going. 

To my son, Heath, you have been one of the greatest adventures of my life, and I am so 

looking forward to sharing all of this work with you someday. And to my husband and best 

friend, Reid, your steadfast belief that we are accomplishing great things together on this journey 

called life keeps me dreaming and aspiring for more. 

 

 



A REWARD SYSTEM POLYGENIC RISK SCORE 

 

vii 

Abstract 

A Reward System Polygenic Risk Score for Predicting Obesity and Substance Addiction 

Kristen M. Stevens 

Oregon Health & Science University, June 2020 

Genome-wide polygenic risk scores (PRS) can now predict complex genetic disease risk 

with nearly the same ability as tests for monogenic diseases. Despite this, there is no clear 

consensus how to incorporate PRS with other known modifiable and non-modifiable risk factors 

at the point of care. This challenge is further complicated by the fact that the most promising 

diseases for early PRS adoption (e.g., coronary artery disease, type 2 diabetes, and breast cancer) 

share many of the same modifiable risk factors—specifically, diet-induced obesity and drug use. 

Interestingly, the cause of these modifiable risk factors is at least partially genetic in most 

people. And while evidence for a common biological basis underlying nutrient intake and drug 

use in humans is growing, current clinical risk prediction models for complex genetic diseases 

have not incorporated any of this shared biology. 

Here we develop a reward system aggregate phenotype score from daily quantitative, 

self-reported nutrient intake and drug use in 57K people of white British ancestry. We conduct a 

genome-wide association study to identify reward system-associated loci, and then construct a 

reward system PRS from these loci to predict individuals with obesity or substance addiction. 

We also include pertinent environmental risk factors that could be reasonably ascertained at a 

clinic visit (i.e., home location’s neighborhood poverty rate and history of child abuse) in our 

prediction models. While our reward system PRS was not able to improve prediction in a 

separate test set of 12K people as compared to an obesity PRS or a substance addiction PRS, this 

research provides the necessary foundation for future preventative and therapeutic precision 

medicine efforts in the area of obesity and substance-related addictive disorders. 
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INTRODUCTION 

Genome-wide polygenic risk scores (PRS) can now predict complex genetic disease risk 

with nearly the same ability as tests for monogenic diseases.1 However, there are substantial 

barriers to implementing such tests in the clinic, most notably how to incorporate PRS at the 

point of care with other known modifiable and non-modifiable risk factors.2-7 Some of the most 

promising diseases for early PRS adoption—such as coronary artery disease, type 2 diabetes, and 

breast cancer—share a common set of robust modifiable risk factors that includes diet-induced 

obesity and drug use.8,9 Yet the cause of both obesity and substance use disorders is at least 

partially genetic in most people.10-15 Moreover, intriguing evidence for shared underlying 

biology between nutrient intake and drug use in humans continues to accumulate.16,17 Despite 

these advancements, clinical risk prediction models for complex genetic diseases have not 

incorporated any of this shared biology.18-20 

At present, greater than 13 percent of the world’s population is obese, while global deaths 

attributed to alcohol and tobacco are 5 and 12 percent, respectively.21-23 According to the U.S. 

National Comorbidity Survey, however, obesity and a current substance use disorder do not co-

occur in individuals more frequently than is expected by chance, given their respective 

prevalence and incidence rates in a general population.24 Regardless, theoretical models support 

a common biological basis for obesity and substance use disorders in humans, whereby drugs 

and certain nutrients found in food compete for overlapping reward mechanisms, thus reducing 

the probability of coincidence of both conditions in a single person.25-27 Recent empirical 

evidence from genome-wide association studies (GWAS) lends support to this theory.28-30 

Specifically, genetic variants in fibroblast growth factor 2 and β-klotho—which in humans are 

both associated with macronutrient intake and alcohol consumption—function in non-human 
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primate models as a ligand-receptor pair and nutrient sensor that controls overall food intake.31 

Meanwhile, positron emission tomography studies of obesity, binge eating disorder, alcohol use 

disorder, and cocaine use disorder all report loss of μ-opioid and dopamine D2 receptors in 

cortical, subcortical, and striatal brain regions.32,33 Further evidence from lesion studies report 

associations between damage to specific regions of the frontotemporal lobes, weight change, and 

disruption of smoking addiction.34,35 However, before recent monumental achievements in large-

scale biomedical data collection, storage, sharing, and analysis, a population-level investigation 

of the biology common to obesity and substance use disorders was, from a practical standpoint, 

infeasible.36-38  

While there is a substantial genetic component to both obesity and substance use 

disorders,39-43 accounting for variation due to an individual’s environment and lifestyle makes 

pursuing an observational study (similar to the one presented here) challenging but not 

impossible.44-48 Thanks to previous work by researchers in this area, a small number of early-life 

environmental exposures have emerged as leading risk factors for both diet-induced obesity and 

substance use disorders—namely, living in a neighborhood with a high rate of poverty (including 

unreliable access to food) and a history of physical or sexual abuse.49-51 In addition, lifestyle 

measures (i.e., modifiable risk factors) are now routinely self-reported by the participants of 

large population cohort studies through web-based surveys, which provide a more nuanced 

picture of the behaviors implicated in the etiology of obesity and substance use disorders.37,52,53 

Recognition that these behaviors, including fat and sugar intake, caffeine use, alcohol 

consumption, and cigarette smoking, exist on a continuum with a non-zero genetic contribution 

has led to further insights into disease mechanisms.28,29,54-59 Of particular interest is the 

combination of genetic variants found in these studies reflecting both substance-specific 
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metabolism and reward-motivated behavior. These findings allude to an unexploited source of 

genetic variation with the potential to improve disease prediction, and encouraged us to perform 

a systematic evaluation of the biology common to obesity and substance use disorders in a large 

human population.   

The hypothesis that drugs and certain nutrients found in food compete for overlapping 

reward mechanisms is an intuitively appealing explanation for the lack of epidemiological 

studies reporting comorbidity between obesity and substance use disorders. Yet this hypothesis is 

also difficult to test with observational studies alone. Relevant lifestyle measures have complex, 

time-dependent relationships with one another:60 (1) alcohol contains 7 calories per gram with 

inconsistent effects on food intake,61 (2) the nicotine found in tobacco suppresses appetite and 

decreases food intake,62 (3) in public environments where alcohol is readily available cigarettes 

are also more likely to be present,63 and (4) commercially available foodstuffs high in fat are 

more likely to be high in sugar.64 These challenges aside, a recent cross-sectional, population-

based study among 6,121 Chinese adult male twin pairs found that the effects of genetics on 

body mass index (BMI) were less influential in those individuals currently drinking alcohol, thus 

demonstrating a clear gene-alcohol interaction effect on BMI.65 The effects of gene-smoking 

interactions on BMI have also been reported, with one study showing a 38% increase in the 

variance of BMI explained when taking gene-smoking interactions into account.66 As these 

studies highlight, any approach to predict obesity or substance use disorders must address the 

combinatorial problem of the interactions between modifiable and non-modifiable risk factors 

over time. How best to accomplish this goal is a nontrivial task. 

Recently, Bastarache and colleagues made headway on this front after making the astute 

observation that genetic association studies often examine phenotypes independently, potentially 
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missing groups of people with multiple phenotypes that share a single cause.67 By aggregating 

phenotypes together using well-characterized diseases with Mendelian inheritance patterns, they 

uncovered 18 associations between rare variants and phenotypes consistent with Mendelian 

diseases. Implicit in this approach is that a set of phenotypes can serve as a signal for a 

conserved biological system, but that in any given group of people this biological system can 

have more than one independent genetic cause—i.e., biological systems contain redundancies. 

We extend their framework here by again using a set of phenotypes to serve as a signal for a 

conserved biological system, but instead we allow for this biological system to have more than 

one independent genetic or environmental cause. To explore the utility of this approach, we 

chose the reward system as our use case with relative nutrient intake and drug use across the 

population as our set of phenotypes. The dual aims of the present study were (1) to uncover 

novel variants associated with this biological system, and (2) improve prediction of obesity and 

substance addiction in humans by allowing for independent reward system-genetic and 

environmental causes of disease. 

To accomplish this, we first defined a set of reward system-related phenotypes 

comprising quantitative measures of daily nutrient intake and drug use (i.e., percent energy from 

total fat, percent energy from total sugars, milligrams of caffeine, grams of alcohol, and number 

of cigarettes per day) available for a subsample of participants of the UK Biobank project. Next, 

we aggregated these reward system-related phenotypes together by calculating a score based on 

each participant’s relative nutrient intake and drug use. We then conducted a GWAS to identify 

reward system-related loci in participants of white British ancestry. Lastly, from the results of 

this GWAS we constructed a reward system PRS to predict participants with obesity (BMI ≥ 30 

kg/m2) and substance addiction. Here, each participant’s substance addiction status was defined 
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as a self-reported affirmative history of or current addiction to a substance (but not a behavior), 

including alcohol, illicit or recreational drugs, and prescription or over-the-counter medications. 

If a participant self-reported ≥ 10 pack-years of smoking, we also designated that the participant 

had a substance addiction. In addition to the reward system PRS, environmental risk factors for 

obesity and substance addiction that could be reasonably ascertained during a pediatric clinic 

visit (specifically, residing in a neighborhood with a high rate of poverty and a history of 

physical or sexual abuse as a child) were included in our prediction models. To evaluate any 

improvement in predictive ability using our reward system PRS, we compared its performance to 

an obesity-specific PRS and a substance addiction-specific PRS—as well as null phenotype 

PRS—in our obesity and substance addiction models, respectively, generated using the same 

training, validation, and test sets.  

The findings from this work include four reward system aggregate phenotype-associated 

loci that were significant at the genome-wide level. Two of these loci contain genes or previously 

identified variants associated with one of the five constituent phenotypes comprising our reward 

system aggregate phenotype, while the other two loci contain variants previously identified in 

GWAS of obesity. Our PRS prediction models of obesity and substance addiction, however, 

recapitulated known challenges in translating disease biology into clinically actionable insights. 

Specifically, neither of our obesity or substance addiction PRS performed better than a PRS 

generated from a set of five quantitative phenotypes chosen at random. These results suggest that 

while an expert-curated aggregate-phenotype approach to predict related complex genetic 

diseases may prove effective in specific at-risk groups (e.g. adolescents) in the future, we did not 

find evidence here that this approach was effective for predicting obesity and substance addiction 

in middle-aged all-comers. 
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METHODS 

The statistical analysis plan dated April 23, 2019 is provided as Appendix A. 

 

Data source 

We used data donated by people who participated in the UK Biobank project.36 Briefly, 

the UK Biobank project is a publicly available, controlled-access prospective cohort study of 

approximately 500,000 participants. UK Biobank project participants were living in the United 

Kingdom (UK) and between the ages of 40 and 69 years old at recruitment, which occurred 

between 2006 and 2010. UK Biobank participants contributed their phenotypic and genetic data 

(including their electronic health records) to the project by traveling to one of 22 assessment 

centers located throughout the UK. The UK Biobank researchers chose the locations of these 

centers so as to include a diverse set of participants from both urban and rural communities of 

various socioeconomic backgrounds. Around 6% of people contacted by the UK Biobank 

researchers chose to participate, and these participants were healthier on average than the general 

population of the UK.68 

After giving written consent, each of the participants completed a series of surveys, 

provided physical measurements (e.g., body size, imaging, etc.), and donated biological samples 

(i.e., blood, urine, and saliva), which are now stored in Stockport, UK. Between 2013 and 2015, 

the UK Biobank researchers extracted DNA from the participants’ blood samples and genotyped 

approximately 800,000 markers per participant using two custom-designed arrays (with 95% of 

the genotype markers common between the two arrays). A more detailed description of the 

characteristics of the entire UK Biobank cohort are described elsewhere.37  
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 Study participants 

We used a subsample of participants from the entire UK Biobank cohort for our study. To 

be included in our study, each UK Biobank participant had to meet the following criteria: (1) 

they reported their age (i.e., month and year of birth) and sex, (2) they were genotyped by the 

UK Biobank researchers and assigned to the white British ancestry subset, (3) they had their 

height and weight measured at least once, (4) they answered the requisite questions from the 

smoking section of the lifestyle and environment questionnaire and the addictions section of the 

mental health questionnaire used to determine substance addiction status, and (5) they completed 

at least one 24-hour dietary recall questionnaire (i.e., a date was recorded for when the diet 

questionnaire was completed). The total number and proportion of UK Biobank participants with 

complete data under these five criteria are shown in Figure 1. The final study subsample 

comprised 81,420 UK Biobank participants (16%). Unless explicitly stated otherwise, all data 

management and statistical analyses were performed using the R software for statistical 

computing.69 A summary of our UK Biobank-approved research and a list of all 287 distinct data 

fields we received from the UK Biobank in our project application are provided as Appendix B.  

 

Study design 

Before partitioning the participants in our study subsample, we first determined the 

proportion of participants who were obese (BMI ≥ 30 kg/m2) and who reported either a history of 

or a current addiction to a substance, which is shown in Table 1. Next, we split the participants in 

our study subsample into three groups: 70% of the participants were randomly assigned to the 

training set (i.e., the “GWAS discovery sample”), 15% to the validation set (i.e., the “GWAS 

target sample”), and 15% to the test set (i.e., “PRS validation sample”). Participants from the 
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study subsample were randomly assigned to these three groups such that that the relative 

proportion of participants with the two study outcomes (i.e., obesity and substance addiction) in 

each group was approximately equivalent to their relative proportions in the entire study 

subsample. The results of this split, along with statistics on the age and self-reported sex of the 

participants in the entire study subsample, the training, validation, and test sets are also shown in 

Table 1. The training set was then used for our genome-wide association studies, while the 

validation and test sets were used to fit and test our polygenic risk score prediction models, 

respectively (see “Genome-wide association analyses” and “Polygenic risk score analyses” 

sections below). An overview of the study design is shown in Figure 2.  

N = 502,536 (100%) 

Total UK Biobank participants 

as of April 8, 2019 

N = 409,629 (82%) 

UK Biobank participants 

N = 408,391 (81%) 

UK Biobank participants 

N = 158,085 (31%) 

UK Biobank participants 

N = 81,421 (16%) 

UK Biobank participants  

in the study subsample* 

N = 92,907 (18%) 

UK Biobank participants excluded 

who were not of  

white British ancestry   

N = 1,238 (<1%) 

UK Biobank participants excluded 

who did not have their standing 

height and/or weight recorded  

N = 250,306 (50%) 

UK Biobank participants excluded 

who did not report their  

substance addiction status 

N = 76,664 (15%) 

UK Biobank participants excluded 

who did not complete at least one  

24-hour dietary recall questionnaire 

Figure 1. Derivation of the study subsample from the UK Biobank cohort based on the exclusion criteria at 

right. *One UK Biobank participant from the study subsample withdrew and was removed effective February 

2, 2020. The final study subsample includes N = 81,420 UK Biobank participants. 
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Table 1. Comparison of study outcomes across the UK Biobank cohort, the study subsample, the training, validation and test sets.  

 UK Biobank* 
Study 

subsample*  

Training set* 

(70%) 

Validation set 

(15%) 

Test set 

(15%) 

   (N = 502,536)  (N = 81,421) (N = 56,994) (N = 12,214) (N = 12,213) 

Age, mean (standard deviation), years  56.5 (8.1)   56.6 (7.7)   56.6 (7.7)   56.6 (7.7)   56.6 (7.6)  

Self-reported sex, number (%)           

     Women  273,402 (54.4)   43,766 (53.8)   30,591 (53.7)   6,520 (53.4)   6,655 (54.5)  

     Men  229,134 (45.6)   37,655 (46.2)   26,403 (46.3)   5,694 (46.6)   5,558 (45.5)  

Obesity, number (%)   (N = 499,520)          

     BMI ≥ 30 kg/m2 122,281 (24.5)  18,179 (22.3)   12,695 (22.3)   2,795 (22.9)   2,689 (22.0)  

     BMI < 30 kg/m2  377,239 (75.5)   63,242 (77.7)   44,299 (77.7)   9,419 (77.1)   9,524 (78.0)  

unadjusted P-value#   0.816 0.169 0.443 

BMI, mean (standard deviation), kg/m2  27.4 (4.8)   27.1 (4.7)   27.1 (4.7)   27.2 (4.7)   27.1 (4.7)  

Substance addiction, number (%)  (N = 189,620)          

     Substance addiction  116,617 (61.5)   36,861 (45.3)   25,636 (45.0)   5,671 (46.4)   5,554 (45.5)  

     No substance addiction  73,003 (38.5)   44,560 (54.7)   31,358 (55.0)   6,543 (53.6)   6,659 (54.5)  

unadjusted P-value#    0.283  0.017  0.673  

Joint outcomes, number (%)  (N = 188,768)          

     BMI ≥ 30 kg/m2 and a substance addiction 35,032 (18.6) 10,474 (12.9) 7,272 (12.8) 1,637 (13.4) 1,565 (12.8) 

     BMI ≥ 30 kg/m2 and no substance addiction 13,202 (7.0) 7,705 (9.4) 5,423 (9.5) 1,158 (9.5) 1,124 (9.2) 

     BMI < 30 kg/m2 and a substance addiction 80,892 (42.8) 26,387 (32.4) 18,364 (32.2) 4,034 (33.0) 3,989 (32.7) 

     BMI < 30 kg/m2 and no substance addiction 59,642 (31.6) 36,855 (45.3) 25,935 (45.5) 5,385 (44.1) 5,535 (45.3) 

*Total UK Biobank participants as of April 8, 2019. One UK Biobank participant from the study subsample (and training set) withdrew and was removed 

effective February 2, 2020. The final study subsample and training set include N = 81,420 and N = 56,993 UK Biobank participants, respectively. #No difference 

in study outcomes between the study subsample and the training, validation, or test set (Bonferroni correction, P ≥ 0.05 / 6). 
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Assess any improvement in prediction of obesity and substance addiction 

using a reward system PRS compared to: 

1. Obesity-specific PRS and substance addiction-specific PRS, respectively 

2. Null PRS 

Choose best PRS per phenotype based on lowest Bayesian 

information criterion in logistic regression models for:  

1. Obesity 

2. Substance addiction   

Test set N = 12,213 (15%) 

Validation set N = 12,214 (15%)  

Training set N = 56,993 (70%) 

Study subsample participants N = 81,420 (100%) 

UK Biobank participants N = 488,288*  

Conduct genome-wide association analyses for: 

1. Reward system phenotype (2 aggregate scores) 

2. Null phenotype (2 aggregate scores) 

3. Obesity  

4. Substance addiction  

Construct 16 candidate polygenic risk scores 

(PRS) per phenotype using the clumping + 

thresholding algorithm. 

Genetic  

principal  

components  

and genotype  

quality control  

thresholds  

Figure 2. Study design overview, where n is a power transformation (see “Methods”). *Total genotyped UK 

Biobank participants as of April 8, 2019.   

Calculate 2 aggregate phenotype scores (sum and maximum of Z-scores) each for: 

1. Reward system: % fat, % sugars, (mg caffeine)n, (g alcohol)n, and (no. cigarettes)n per day 

2. Null (background control): 5 data fields chosen at random from UK Biobank application 

Linkage 

disequilibrium 

reference panel  

N = 3,000 chosen  

at random 
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The rates of obesity and substance addiction, as well as age and self-reported sex, for all UK 

Biobank participants (whose data are available) are provided for comparison in Table 1. Maps 

showing the percentage of total participants from each geographic region in the UK Biobank 

cohort and our study subsample are provided as Appendix C.  

 

Training set phenotype and environment EDA and expert review 

Before constructing our reward system aggregate phenotype scores and null phenotype 

scores, we conducted an exploratory data analysis (EDA). First we evaluated the reliability of the 

study outcomes, as well as the data fields used to derive these two outcomes (i.e., BMI and pack 

years of smoking) across repeat assessments. For the data fields used to derive our study 

outcomes, we used each participant’s earliest recorded value if it was measured or reported more 

than once. We evaluated the performance of both the smoking section of the lifestyle and 

environment questionnaire and the addictions section of the mental health questionnaire by 

calculating the proportion of questions answered by each participant who started these sections. 

We evaluated whether there were differences in the outcomes based on study-specific covariates 

(e.g., assessment center, device ID, etc.).  

Second, we derived three phenotypes that we anticipated using in our reward system 

aggregate phenotype scores from the distinct data fields we received from the UK Biobank (see 

“Reward system aggregate phenotype scores” section below).  To derive percent energy from 

total fat yesterday and percent energy from total sugars yesterday, we divided each participant’s 

estimated total fat yesterday (g) and estimated total sugars yesterday (g) by estimated total 

energy yesterday (kJ) using each nutrient’s energy content reference value: 37 kJ/g (9 kcal/g) fat 

and 17 kJ/g (4 kcal/g) sugar.  This allowed us to compare relative daily nutrient intakes across 
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participants while accounting for differences in each participant’s daily energy requirements. 

Here, participants’ intake of total sugars includes both sugars naturally present in foods and those 

added during food production.70 To derive caffeine yesterday (mg), we estimated use from coffee 

and tea drank by the participants using their completed 24-hour dietary recall questionnaires and 

the U.S. Department of Agriculture caffeine content reference values (see Appendix D for 

details).   

Next we checked the proportion of missing data and evaluated the reliability of the data 

fields we anticipated using in either our reward system aggregate phenotype scores or null 

phenotype scores (see “Null phenotype scores” section below). We evaluated whether there were 

differences in these data fields based on study-specific covariates (e.g., assessment center, the 

number of diet questionnaires each participant completed, the hour of the day, the day of the 

week, and the season each participant completed the questionnaire, how long it took each 

participant to complete the questionnaire, etc.). 

For all of the data fields we anticipated using in either our reward system aggregate 

phenotype scores or null phenotype scores, we examined the distributions using both visual and 

numerical descriptive statistical summaries and noted (but did not remove) any outliers. We 

examined the relationships between every pair of nutrients and drugs using both visual and 

numerical (i.e., Spearman’s correlation coefficients) summaries, and noted any non-linear 

relationships.  

Lastly, we checked the proportion of missing data for the data fields we anticipated using 

as environmental covariates in our polygenic risk score analyses (i.e., Townsend deprivation 

index71 of self-reported home location at recruitment and a self-reported affirmative history of 
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physical or sexual abuse as a child72). Again, we evaluated whether there were differences in 

these data fields based on study-specific covariates (e.g., assessment center). 

Clinical and research experts in obesity and substance use disorders reviewed the results 

of the EDA for measurement validity, reliability, and potential use in the reward system 

aggregate phenotype scores. A summary of notable EDA results is included as Appendix D. 

 

Reward system aggregate phenotype scores 

Current research suggests that chemical properties inherent to particular drugs and 

nutrients found in food increase the probability that a person will seek them out again; 

specifically, repeated intake over time induces a pathophysiological response in the brain that 

limits a person’s capacity to avoid the particular drug or nutrient in the future.9 While the extent 

to which this response in humans is similar across various self-administered chemical substances 

is unknown, fat and sugar are the substances found in food that consistently elicit this response.73  

Next, we considered these nutrients found in food, together with drugs, as 

pharmacological agents that produce an effect on a person’s reward system. We then proposed 

that the amount of drugs and nutrients that a person self-administers each day is an estimate of 

the dose required to achieve that person’s individual pharmacokinetic steady state. From this 

assumption, it follows that the variation in this steady state dose across a human population 

reflects differences in the underlying biology of the human reward system. 

We then calculated two aggregate phenotype scores for each participant in our training 

set, which represent two alternative biological models of reward system function. The two 

alternative ways we chose to collectively model drug use and nutrient intake in a single 
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participant were: (1) calculate a sum, or (2) take the maximum across all drugs and nutrients that 

a given participant consumes each day: 

Reward System Aggregate Phenotype ScoreS =  ∑ 𝑍𝑖𝑖∈{𝑆}  

Reward System Aggregate Phenotype ScoreM = max
𝑖∈{𝑆}

𝑍𝑖  

Here, Z is a given participant’s standard score (i.e., Z-score) as compared to the rest of the study 

participants in the training set, and S is a set containing the participant’s drug use and nutrient 

intake per day. When a participant completed the same questionnaire multiple times, we used the 

participant’s average daily consumption. 

In our additive model above (i.e., Reward System Aggregate Phenotype ScoreS), a higher 

score for a given participant represents a higher daily dose on average across multiple nutrients 

and drugs needed to achieve the pharmacokinetic steady state, while a lower score represents a 

lower daily dose on average across these same nutrients and drugs to achieve the steady state. 

Alternatively, in our single agent model above (i.e., Reward System Aggregate Phenotype 

ScoreM), a higher score for a given participant represents a higher daily dose of at least one of the 

nutrients or drugs needed to achieve the pharmacokinetic steady state, while a lower score 

represents a lower daily dose across any of these same nutrients or drugs to achieve the steady 

state.  

The nutrients and drugs we included in our reward system aggregate phenotype scores 

were: percent energy from total fat yesterday, percent energy from total sugars yesterday, 

caffeine yesterday (mg), alcohol yesterday (g), and number of cigarettes currently smoked daily. 

Cannabis and other drugs were not included in our reward system aggregate phenotype scores as 

quantitative data on their daily use were not available. We anticipated that average intake of each 

nutrient (as a proportion of total energy) yesterday would follow a normal distribution.74 

(1) 

(2) 
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Meanwhile, we anticipated that average drug use yesterday (and average daily drug use) would 

follow a Poisson distribution75  (where λ = 1) or, alternatively, a log(x+1)-normal distribution. 

We also anticipated that there might be a disproportionate number of participants with very little 

to no average drug use per day, such that these data would be more appropriately modeled using 

a zero-inflated distribution.76 Depending on the distribution of best fit (as determined by a 

comparison of one-sample Kolmogorov–Smirnov and Poissonness plot77 test statistics), we 

anticipated performing a square root or other power transformation (estimated using the 

maximum likelihood-like approach of Box-Cox78) or a log(x+1) transformation. The test 

statistics used to evaluate the distribution of best fit for average nutrient intake and drug use are 

shown in Appendix E (Q-Q and Poissonness plots not shown). Based on these results and the 

previously described distributions that are theoretically appropriate to model drug use, we 

performed a power transformation of 3 5⁄ , 2 5⁄ , and 1 2⁄  to mean caffeine yesterday (mg), mean 

alcohol yesterday (g), and mean number of cigarettes currently smoked daily, respectively.  

Similar to our assessment of the untransformed data in our EDA, we examined the visual 

and numerical descriptive statistical summaries of these now transformed data and noted (but did 

not remove) any outliers. We also examined the relationships between every pair of nutrients and 

drugs using both visual and numerical (i.e., Pearson correlation coefficients) summaries, and 

noted any non-linear relationships. A summary of notable results from the development of our 

reward system aggregate phenotype scores is included as Appendix E. 

 

Null phenotype scores 

We calculated two null phenotype scores to serve as background controls to our two 

reward system aggregate phenotype scores. To accomplish this, we first sampled five data fields 
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(of type continuous or integer) at random from the 287 distinct data fields we received in our UK 

Biobank application (see Appendix B). If any of the fields chosen at random were missing for all 

repeat assessments in greater than 50% of the participants, we resampled until all the chosen data 

fields were not missing for a majority of the participants.  

Similar to the calculation of our reward system aggregate phenotype scores above, we 

calculated (1) a sum, and (2) the maximum across the randomly chosen data fields: 

Null Phenotype ScoreS =  ∑ 𝑍𝑖𝑖∈{𝑆}   

Null Phenotype ScoreM = max
𝑖∈{𝑆}

𝑍𝑖  

Here, Z is a given participant’s standard score (i.e., Z-score) as compared to the rest of the study 

participants in the training set, and S is a set containing the randomly chosen data fields. If repeat 

assessments were available for any of the randomly chosen data fields, we calculated each 

participant’s average across these assessments. For the randomly chosen data fields that were not 

approximately normally distributed, we performed a log or power transformation to yield a 

distribution as close to normal as possible. The five data fields chosen at random comprising our 

null phenotype scores are included in Appendix E. 

 

Genotype quality control 

The UK Biobank researchers released a final dataset of 488,377 participants genotyped at 

97,059,328 markers (805,426 of these markers were genotyped directly) after extensive marker 

and sample quality control, haplotype estimation79 and genotype imputation;80 a detailed 

description of the quality control pipeline, haplotype estimation, and genotype imputation 

performed by the UK Biobank researchers is described elsewhere.37 As thresholds set by the UK 

Biobank researchers to designate poor quality markers and samples across the entire genotyped 

(3) 

(4) 
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cohort were not particularly stringent (so as to allow researchers to further refine the thresholds 

more appropriate for their own studies), we performed a secondary quality control step. We 

removed genotype markers that: (1) had a minor allele frequency (MAF) ≤ 0.1%, or (2) had an 

imputation quality score81 ≤ 0.3 among the UK Biobank’s final genotyped dataset. We removed 

participants if UK Biobank researchers: (1) determined that their samples were of poor quality 

(i.e., they were outliers for genotype missing rate or heterozygosity), (2) did not impute their 

genotypes across all chromosomes, (3) determined that the sex inferred from their genetics did 

not match their self-reported sex, or (4) they were a third degree relative or closer to at least one 

other genotyped UK Biobank participant (i.e., we used the maximal set of unrelated participants 

inferred by the UK Biobank researchers). In Appendix F we show the number and proportion of 

markers and samples we removed from the training set using these quality control criteria based 

on the entire UK Biobank genotyped cohort; the number and proportion of markers and samples 

that would have been removed if we had used the same quality control criteria but based on the 

training set participants only are provided for comparison. Management of the UK Biobank 

binary genotype files was performed using the BGEN suite of software tools.82 

 

Genome-wide association analyses 

After partitioning our study subsample (see “Study design” section above), we performed 

six GWAS using participants from the training set. The six outcome phenotypes for these 

analyses were: (1) Reward System Aggregate Phenotype ScoreS, (2) Reward System Aggregate 

Phenotype ScoreM, (3) Null Phenotype ScoreS, (4) Null Phenotype ScoreM, (5) obesity (BMI ≥ 

30 kg/m2), and (6) substance addiction (see “Introduction” for definition). The first four GWAS 
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were quantitative trait loci analyses conducted using linear regression models, while the latter 

two GWAS were case-control analyses conducted using logistic regression models. 

The central (alternative) hypothesis of this study was that there was at least one variant 

genome-wide associated with either reward system aggregate phenotype score. The null 

hypothesis was that there was no relationship between any genome-wide variant and either 

reward system aggregate phenotype score. There was no hypothesis per se for GWAS #3-6; 

instead, the output of these analyses was used to evaluate any relative improvement in predictive 

ability of our reward system polygenic risk score models (see section “Polygenic risk score 

analyses” below for further details). The GWAS of obesity was considered a replication study. 

To test our central hypothesis, we first built six regression base models—corresponding 

to the six GWAS above—simultaneously. We included age, sex, array, assessment center, and 

the first 9 genetic principal components (PCs) as covariates across all six base models. 

Additionally, we included a covariate to indicate whether a participant had their weight measured 

using the Tanita BC418MA body composition analyzer or a standard scale in the obesity base 

model. The rationale behind including 9 genetic PCs was based on an evaluation of the 

geographical evidence for their inclusion—i.e., we tested whether the north or east coordinates of 

each participant’s home location at assessment could explain a significant amount of the 

variation in genetic PCs 1-10, after accounting for array and assessment center (two-sided Wald 

test based on the t-distribution, Bonferroni correction for multiple hypothesis testing where m = 

20). GWAS were performed with PLINK using a linear transformation (mean of zero and 

variance of one) of all quantitative phenotypes and covariates. 83,84 A Firth logistic regression 

model was fit for any variants that failed to converge with a logistic regression model.85  
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We used the genetic PCs calculated from the entire genotyped UK Biobank cohort as 

covariates in our base models (as provided by the UK Biobank researchers), rather than re-

calculating the genetic PCs using either the training set participants only or all UK Biobank 

participants in the white British ancestry subset (see Figure 2). The rationale behind this decision 

was based on the assumption that genetic PCs calculated from a population sample containing 

people of diverse ancestries (i.e., from around the world) can be used to correct for population 

stratification in complex disease GWAS of a homogeneous subsample of people of a single 

ancestry without adding noise sufficient to obscure any genome-wide significant findings. Ma 

and Amos provided theoretical justification for this decision.86 In addition, we anticipated and 

confirmed concordance between variants significantly associated with obesity using (1) our 

obesity replication GWAS that employed this “population” genetic PCs approach, and (2) the 

results of previously published obesity GWAS that did not employ this approach.39   

To assess whether a variant was associated with either reward system aggregate 

phenotype score, we used a two-sided Wald test based on the t-distribution.84 We counted each 

minor allele at multi-allelic sites as independent markers. Since we performed multiple tests (one 

each for the total number of variants tested), we used the multiple hypothesis testing adjustment 

procedure proposed by John Storey with an acceptable false discovery rate set at 5%, which was 

partitioned evenly between the two reward system aggregate phenotype scores.87 We confirmed 

that none of the reward system aggregate phenotype-associated loci could explain a significant 

amount of the variation in genetic PCs 1-9 (two-sided Wald test based on the t-distribution, 

Bonferroni correction for multiple hypothesis testing where m = 9). 
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Polygenic risk score analyses  

We constructed PRS from the output of the six GWAS conducted on the training set 

above. To construct these six PRS, we applied the same genotype marker and sample quality 

control criteria to the validation and test sets as the training set (see above under “Genotype 

quality control”). Before constructing the six PRS, we used the participants from the validation 

set to fit two logistic regression base models (using the same covariates as our GWAS base 

models) to predict obesity and substance addiction. We included Townsend deprivation index of 

home location at recruitment and history of physical or sexual abuse as a child as environmental 

covariates in these logistic regression base models.  

To obtain each participant’s six PRS, we calculated the average of the count of their risk 

alleles weighted by each allele’s GWAS effect size (or log odds ratio). To determine exactly 

which risk alleles to include in each of the six PRS, we first generated 16 candidate PRS per 

GWAS (for a total of 6 x 16 = 96 PRS) using the clumping and thresholding algorithm as 

implemented in PLINK.83,84 For the 16 candidate PRS, we used a range of r2-values within a 

250kb sliding window (r2 = 0.2, 0.4, 0.6, 0.8) and a range of P-values (P = 0.5, 0.05, 5 × 10-4, 5 

× 10-8). For our linkage disequilibrium reference panel, we used a random sample of 3,000 

participants from the entire genotyped UK Biobank cohort after applying the same genotype 

marker and sample quality control criteria as the training set (see Figure 2). The rationale behind 

this decision is similar to the one provided above for using the genetic PCs from the entire 

genotyped UK Biobank cohort—i.e., modeling linkage disequilibrium at the population level is 

theoretically sufficient to correct for population stratification in a (biased) sample.86 In addition, 

we included variants in our PRS only if they were located on the autosomes or within the 

pseudo-autosomal region of the sex chromosomes. For variant sites that were multi-allelic, we 
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chose one minor allele at random for inclusion across all of our PRS. After generating these 16 

candidate PRS, we then choose one PRS per GWAS with the lowest Bayesian information 

criterion (BIC) for inclusion in our obesity and substance addiction logistic regression prediction 

models. The logistic regression model equations for obesity were: 

ln{
𝑃𝑟(obesity)

1−𝑃𝑟(obesity)
 } = β0 + β(age) + β(sex) + β(array) + βn(assessment center n = 21) +  

βn(genetic principal component n = 9) + β(scale type) + β(Townsend deprivation index) + 

β(child abuse)  + β(PRSi)                

       (5) 

where PRSi is a polygenic risk score of obesity, the Reward System Aggregate Phenotype 

ScoreS, the Reward System Aggregate Phenotype ScoreM, the Null Phenotype ScoreS, or the Null 

Phenotype ScoreM. Likewise, the logistic regression model equations for substance addiction 

were:   

ln{
𝑃𝑟(substance addiction)

1−𝑃𝑟(substance addiction)
 } = β0 + β(age) + β(sex) + β(array) + βn(assessment center n = 21) +  

βn(genetic principal component n = 9) + β(Townsend deprivation index) + β(child abuse) + 

β(PRSi)                

       (6) 

where PRSi is a polygenic risk score of substance addiction, the Reward System Aggregate 

Phenotype ScoreS, the Reward System Aggregate Phenotype ScoreM, the Null Phenotype ScoreS, 

or the Null Phenotype ScoreM.    

Finally, we used our two reward system aggregate phenotype score PRS models to 

predict obesity and substance addiction among the participants in the test set. To evaluate any 

relative improvement in the prediction of obesity or substance addiction using a reward system 
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aggregate phenotype score PRS, we compared the area under their receiver operating 

characteristic (ROC) curves against the obesity-specific PRS model and the substance addiction-

specific PRS model, respectively. We also evaluated our two reward system aggregate phenotype 

score PRS models against our background, or null phenotype, PRS models. 
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RESULTS 

Genome-wide association analyses 

The main characteristics of the participants in our reward system aggregate phenotype 

GWAS are summarized in Table 1 under “Training set,” and in Appendices C-F. Briefly, 54% of 

the participants were women, the mean age was 57 years, 22% were obese (BMI ≥ 30 kg/m2), 

9% were current smokers, and 45% had a history of or current addiction to a substance (see 

Appendix D for a breakdown of participants by type of substance addiction). Seventy-eight 

percent of participants completed the entire addictions section of the UK Biobank mental health 

questionnaire, while 80% completed the entire smoking section of the UK Biobank lifestyle and 

environment questionnaire at least once. Sixty-eight percent of participants completed more than 

one 24-hour dietary recall questionnaire. 

Among participants in our reward system aggregate phenotype GWAS (i.e., the training 

set), the mean estimated total energy intake yesterday was 8,877 kJ with a standard deviation 

(SD) of 2,584 kJ (2122 kcal, SD 618). The mean estimated percent energy intake from total fat 

and total sugars yesterday were 32.2 (SD 6.6) and 23.3 (SD 7.2), respectively. Meanwhile, the 

mean estimated caffeine use yesterday was 177.6 mg (SD 99.6), the mean estimated alcohol use 

yesterday was 17.7 g (SD 22.4), and the mean number of cigarettes currently smoked daily was 

1.4 (SD 5.0) among all participants. Among participants who drank coffee, tea, or both (i.e., non-

drinkers excluded), the mean estimated caffeine use yesterday was 189.6 mg (SD 91.1), 

approximately 2-8 oz. cups of filtered coffee or 4-8 oz. cups of standard (black) tea. Among 

participants who drank alcohol (i.e., non-drinkers excluded), the mean estimated alcohol use 

yesterday was 25.7 g (SD 22.8), approximately 3 standard drinks. Among participants who 
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smoked cigarettes (i.e., non-smokers excluded), the mean number of cigarettes currently smoked 

daily was 15.1 (SD 8.0).  

The mean Townsend deprivation index, a relative measure of poverty by neighborhood, 

based on the participants’ home location at recruitment was -1.7 (SD = 2.8), indicating that fewer 

participants on average in our reward system aggregate phenotype score GWAS lived in an 

impoverished neighborhood compared to the entire UK Biobank cohort (mean = -1.3, SD = 3.1). 

Seventy-eight of participants reported whether or not they were physically or sexually abused as 

a child, and (of those reporting) 24% reported in the affirmative. 

We tested the association of ~20.3 million genetic variants in 39,710 participants of white 

British ancestry with either of our two reward system aggregate phenotype scores—a sum 

phenotype score (additive model) and a maximum phenotype score (single agent model). Four 

independent loci (MAF ≥ 0.01%) showed an association, one with the sum phenotype score and 

three with the maximum phenotype score (see Figure 3). The significance level (q-value), the 

estimated genetic effect size per copy of the minor allele (β), imputation quality (INFO score81), 

and the number of variants at the locus passing genome-wide significance (q-value ≤ 0.025 for 

either phenotype score) are detailed in Table 2. Another 13 additional independent rare loci 

(MAF < 0.01%) that showed an association with either of our two reward system aggregate 

phenotype scores are detailed in Appendix F. 

The strongest association between either reward system aggregate phenotype score was 

observed between the 4p15 locus and the maximum phenotype score (i.e., the single agent 

model). This association was driven by rs79800723 (minor allele: C, MAF = 0.01%, β = 1.55, q 

= 0.003), a genetic variant located in long inter-genic non-protein coding RNA 1182 and 181kb  
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Table 2. Reward system aggregate phenotype-associated loci  

Locus 
Phenotype

score 
Chr 

Locus 

boundaries 

GWS 

variants 

at locus 

(no.) 

Index variant 

Reference/ 

minor 

alleles 

MAF 

(UKB) 

INFO 

score81 
β q-value 

Closest gene 

to index 

variant 

1 Max 4 
13810020 

- 13810454 
2 rs79800723 T/C 

0.0001 

(0.002) 
0.76 1.55 0.003 BOD1L1 

2 Max 9 96709777 1 rs192895672 C/A 
0.004 

(0.005) 
0.97 0.25 0.024 BARX1 

3 Sum 15 
74817689 

- 75027880 
3 rs2470893 C/T 

0.331 

(0.315) 
1.00 0.09 0.007 CYP1A1 

4 Max 17 79844997 1 rs190091303 G/T 
0.0001 

(0.001) 
0.81 1.51 0.008 ALYREF 

*Max, maximum; Chr., chromosome; GWS, genome-wide significant (q-value ≤ 0.025 for either phenotype score); MAF, minor allele frequency; UKB, UK 

Biobank. GWS variant with smallest q-value at locus is the index variant. Exact β and q-values for GWS variants with MAF < 0.0005 should be interpreted with 

caution. See Appendix F for rare GWS variants (MAF < 0.0001). Reference assembly GRCh37/hg19.
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 from the closest coding gene, BOD1L1. The tissue with the highest median expression of 

BOD1L1 is the cerebellum.88 Other nearby coding genes include NKX3-2 (264kb upstream) and 

RAB28 (324kb upstream). Nearby genetic variants, rs73237428 (151kb), rs10939485 (271kb), 

and rs59341143 (280kb) have been previously identified in GWAS of weight,89 height,90 and hip 

shape as measured by dual energy x-ray absorptiometry.91  

The second strongest association was detected between the 15q24 locus and the sum 

phenotype score (i.e., the additive model). This association was driven by rs2470893 (minor 

allele: T, MAF = 33.1%, β = 0.09, q = 0.007), another inter-genic single-nucleotide 

polymorphism (SNP) located 8kb and 22kb upstream from the genes that code for cytochrome 

P450 1A1 and 1A2, respectively. Representative SNP cluster plots for rs2470893 are provided in 

Appendix F. Both enzymes are mono-oxygenases that catalyze many reactions responsible for 

xenobiotic drug metabolism, in addition to the metabolism of endogenous substrates including 

polyunsaturated fatty acids.92,93 CYP1A1 is primarily located in extra-hepatic tissues, while the 

tissue with the highest median expression of CYP1A2 is the liver.88 Evidence for a brain-specific 

CYP1A1 splice variant that differs from the hepatic form expressed within the same individuals 

has also been reported.94 Furthermore, both enzymes are inducible by polycyclic aromatic 

hydrocarbons, which are found in cigarette smoke. This SNP has been previously identified in 

GWAS of caffeine metabolism and kidney function,59,95 and is an eQTL of CYP1A1 expression 

in skeletal muscle.88 The other two genome-wide significant variants at this locus have been 

previously identified in GWAS of visceral adiposity96 (rs2472297), alcohol consumption20 

(rs2472297), and breakfast skipping97 (rs35107470). The other genes located within this locus 

are ARID3B, CLK3, and EDC3. 
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The third and fourth strongest associations were detected between the maximum 

phenotype score and the loci 9q22 and 17q25, respectively. Only one variant at each locus 

reached genome-wide significance: rs192895672 at 9q22 (minor allele: A, MAF = 0.4%, β = 

0.25, q = 0.024) and rs190091303 17q25 (minor allele: T, MAF = 0.01%, β = 1.51, q = 0.008). 

The closest gene to rs192895672 is BARX1 (6kb downstream). The tissues with the highest 

median expression of BARX1 are the stomach and the esophogus.88 Nearby genetic variants, 

rs143581991 (1.5kb), rs56285369 (2.5kb), rs1933683 (3kb), and rs11789015 (6kb) have been 

previously identified in GWAS of bone mineral density,98 waist-to-hip ratio90, pyloric stenosis,99 

and digestive system disease,100 respectively. The closest genes to rs190091303 are ALYREF 

(4.5kb downstream), ANAPC11 (4.6kb upstream), and NPB (and 15kb upstream). Widely 

expressed in the central nervous system, the NPB gene codes for neuropeptide B, which 

modulates feeding behavior, regulates the release of corticosterone, prolactin and growth 

hormone while also manipulating the pain pathway.101 There are no nearby genetic variants 

identified in previous GWAS at this locus. 

The remaining associations between either reward system aggregate phenotype score and 

any genome-wide variants are provided in Appendix F. As the MAF of these variants fell below 

0.01% (i.e., minor allele count < 8 among 39,710 participants), we do not elaborate on them 

here. 

 

Polygenic risk score analyses 

 We set out to test the ability of the reward system aggregate phenotype-associated loci 

from the GWAS above to improve prediction of obesity and substance addiction in an 

independent “hold out” set comprising the last 15% of our study subsample (i.e., the test set). To 



A REWARD SYSTEM POLYGENIC RISK SCORE 

 

29 

accomplish this, we first chose the best-performing sum and maximum reward system aggregate 

phenotype score PRS for predicting obesity among participants in the validation set using the 

lowest model BIC as our criterion. The model parameters for the best-performing sum reward 

system phenotype score PRS were r2 = 0.4 and P = 0.5, while the model parameters for the best-

performing maximum reward system phenotype score PRS were r2 = 0.2 and P = 5 × 10-8. To 

assess any improvement in the prediction of obesity based on these reward system aggregate 

phenotype score PRS, we tested their performance against: (1) an obesity PRS, and (2) a sum and 

a maximum null phenotype score PRS. The model parameters of the best-performing obesity, 

sum and maximum null phenotype score PRS were r2 = 0.8 and P = 0.5, r2 = 0.6 and P = 5 × 10-

4, and r2 = 0.2 and P = 0.05, respectively. The ROC curves plotted in Figure 4 (top) show the 

relative ability of these five logistic regression models to predict obesity among participants in 

the test set. The model containing the obesity PRS as a predictor had the highest area under the 

ROC (AUROC) curve across the full range of possible test sensitivity and specificity thresholds 

(0.599, 95% CI: 0.581-0.616).102 Neither the sum (AUROC curve: 0.574, 95% CI: 0.556-0.592) 

nor the maximum (AUROC curve: 0.576; 95% CI: 0.559-0.594) reward system aggregate 

phenotype score PRS were able to improve the prediction of obesity among participants in the 

test set, as both of these PRS performed similarly to the null phenotype score PRS. The AUROC 

curve of the model containing the sum null phenotype score PRS was 0.579 (95% CI: 0.561-

0.597), while the AUROC curve of the model containing the maximum null phenotype score was 

0.577 (95% CI: 0.559-0.595). 

 Likewise, we chose the best-performing reward system aggregate phenotype score PRS 

for predicting substance addiction among participants in the validation set (r2 = 0.8 and P = 0.5 

for both PRS). To assess any improvement in the prediction of substance addiction based on  
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Figure 4. Receiver operating characteristic curves of polygenic risk score prediction models for 

obesity (top) and substance addiction (bottom). 
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these reward system aggregate phenotype score PRS, we tested their performance against: (1) a 

substance addiction PRS, and (2) a sum and a maximum null phenotype score PRS. The model 

parameters of the best-performing substance addiction, sum and maximum null phenotype score  

PRS were r2 = 0.8 and P = 0.5, r2 = 0.8 and P = 0.5, and r2 = 0.2 and P = 5 × 10-4, respectively. 

The ROC curves plotted in Figure 4 (bottom) show the relative ability of these five logistic 

regression models to predict substance addiction among participants in the test set. All five PRS 

performed similarly across the full range of possible test sensitivity and specificity thresholds. 

Neither the sum (AUROC curve = 0.654; 95% CI: 0.639-0.668) nor the maximum (AUROC 

curve = 0.656; 95% CI: 0.641-0.670) reward system aggregate phenotype score PRS were able to 

improve the prediction of substance addiction among participants in the test set, as both of these 

PRS performed similarly to the null phenotype score PRS. The AUROC curve of the model 

containing the sum null phenotype score PRS was 0.655 (95% CI: 0.641-0.669), while the 

AUROC curve of the model containing the maximum null phenotype score was 0.654 (95% CI: 

0.640-0.668).  

While the higher predictive ability of the obesity PRS compared to the performance of all 

four phenotype score PRS suggests a lack of shared biology between nutrient intake and drug use 

in humans of white British ancestry, the difference in the predictive ability between all five 

curves is not statistically significant. Furthermore, the performance of all five PRS for predicting 

substance addiction were comparable, with the substance addiction PRS providing no predictive 

ability above a background control PRS (i.e., the null phenotype score PRS). As we were unable 

to generate population-level PRS models from the UK Biobank sample to predict obesity and 

substance addiction independently above background control PRS models, we therefore cannot 
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provide evidence either for or against the hypothesis that the biology underlying nutrient intake 

and drug use in humans is shared.  
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DISCUSSION 

 Here we described a systematic approach to test whether a set of phenotypes constitute a 

single biological system with more than one independent genetic or environmental cause using 

cross-sectional, population-based data. We incorporated information from ~20.3 million genetic 

variants and two well-known environmental risk factors to predict disease outcomes (i.e., obesity 

and substance addiction) by aggregating phenotypes comprising the reward system together into 

a single score. With this aggregate phenotype score, we identified four genome-wide significant 

loci associated with reward system function across a population of 39,710 people of white 

British ancestry. We then tested whether these reward system aggregate phenotype-associated 

loci could improve prediction of obesity and substance addiction in middle-aged adults (as 

compared to obesity- and substance addiction-associated loci, respectively). While the reward 

system aggregate phenotype-associated loci were unable to improve disease prediction, their 

predictive ability was approximately equivalent to that of obesity- and substance addiction-

associated loci, as well as loci associated with a background control phenotype. Our results, 

while inconclusive with respect to the shared biology underlying nutrient intake and drug use in 

humans, suggest that the etiology of obesity and substance addiction may differ across the 

lifespan.   

 In earlier work, Khera and colleagues reported using 2.1 million loci from previously 

published GWAS of BMI to predict obesity across the lifespan from birth to middle age.18 While 

they observed a 12.3 kg gradient in weight at 18 years of age between the top and bottom 10% of 

people by PRS, the magnitude of this gradient remained largely unchanged (Δ = 13.0 kg) when 

they performed the same evaluation in a separate cohort of middle-aged adults. Despite that 

differences in weight at the population level did not continue to diverge into adulthood, their 
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PRS of BMI successfully identified young adults (mean age 28.0 years) with a baseline BMI in 

the normal range (mean 24.2 kg/m2) who would later go on to develop severe obesity. These 

findings, together with the results from the study presented here, highlight that while polygenic 

risk for obesity in middle age overlaps to a degree with polygenic risk for obesity in adolescents, 

they are not equivalent. As our study does not suggest that reward system aggregate phenotype-

associated loci contribute to obesity in middle age, testing whether these loci predict obesity in 

adolescents is an important future direction of this work. 

 Likewise, previous studies of polygenic risk for substance addiction, including cigarette 

smoking and alcohol consumption, report differences between initiation and subsequent regular 

use. In a longitudinal cohort study, Belskey and colleagues tested whether a polygenic risk score 

generated from an earlier GWAS of cigarettes smoked per day was associated with smoking 

initiation and greater cigarette use over the 4-decade study period. While their polygenic risk 

score was associated with faster conversion from initiation to both daily and heavy smoking, it 

was unrelated to smoking initiation.103 That said, a more recent analysis of drug use among 1.2 

million people reported a genetic correlation between cigarettes smoked per day and age of 

smoking initiation that was significant after a Bonferroni correction for multiple hypothesis 

testing.20 However, the magnitude of this correlation (-0.38) was smaller than the genetic 

correlation between age of smoking initiation and regular use (-0.71), suggesting that while the 

genetics that predispose people to smoking more cigarettes per day overlaps with the genetics 

that confer risk for smoking initiation, they are not equivalent. In a similar vein, a previous study 

by Sartor and colleagues reported a moderate to high positive genetic correlation between 

alcohol initiation and greater alcohol use (0.59), but this overlap was not complete.104 These 

earlier findings, together with the results from the study presented here, warrant a future 
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investigation into whether our reward system aggregate phenotype-associated loci contribute to 

risk of heavier drug use among adolescents or young adults rather than substance addiction in 

adults of middle age.  

There are some important limitations to the study presented here. First, the cohort used 

for this research was composed of individuals of white British ancestry rather than an unbiased 

sample of the human population. Thus, further validation is needed to confirm whether our 

reward system aggregate phenotype-associated loci will generalize to people of other ancestries. 

Despite this limitation, we provided empirical support for the “population” formulation approach 

proposed by Ma and Amos to account for population stratification in our polygenic risk score 

prediction models.86 Such findings should reassure other researchers of the merit of this approach 

and facilitate ease of future PRS modeling efforts for other phenotypes of clinical importance. 

A second limitation of this study is that we only tested the predictive ability of our reward 

system aggregate phenotype-associated loci on one easily obtainable measure of obesity (i.e., 

BMI ≥ 30 kg/m2), and did not test the ability of these loci to predict abdominal obesity (e.g., 

waist-to-hip ratio, waist circumference, etc.). In light of recent reports of a possible stronger 

association between abdominal obesity and all-cause mortality, testing of these loci is of pressing 

clinical importance.105 As our genome-wide significant reward system-associated loci contained 

variants previously identified in GWAS of visceral adiposity, such a study seems particularly 

pertinent.  Likewise, we only tested the predictive ability of our reward system aggregate 

phenotype-associated loci on one simplified measure of substance addiction: a combination of 

direct, explicit questions (“Have you been addicted to…?” “Is this addiction ongoing?”) along 

with each participant’s smoking history in pack-years. This assessment does not take into 

account participant responses to previously validated surveys and clinical screening tools used to 
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identify patients at risk for substance use disorders, such as the Alcohol Use Disorders 

Identification Test. Given the relatively high number of participants in this study who were 

designated as having a substance addiction due to their smoking history and the relatively small 

number of participants who self-identified as having a substance addiction due to their use of 

other drugs (including alcohol), we must emphasize that the substance addiction outcome 

measure used here likely differs substantially from the diagnosis of a substance use disorder by a 

trained clinical professional. 

Third, in formulating our models of reward system function in humans, we made the 

simplifying assumption that a person’s self-reported, self-administered daily dose of a given drug 

(or nutrient) could be used to estimate that individual’s pharmacokinetic steady state dose. This 

approach overlooks the role of alternative mechanisms for differences in drug use across 

humans—e.g., variation in a drug’s rate of onset. Furthermore, the reward system phenotypes as 

well the substance addiction outcome measure (excluding height and weight) were collected via 

surveys rather than direct measurement. While not inherently problematic, our analysis revealed 

clear differences in the rates of substance addiction (and to a lesser degree the rates of obesity) 

among participants depending on the number of 24-hour dietary recall questionnaires they 

completed. One possible explanation for this finding is that the 24-hour dietary recall 

questionnaire did not offer participants the option to skip questions pertaining to their alcohol use 

(as a lack of information on alcohol use would invalidate estimates of total energy intake). While 

alternative estimates of alcohol use as reported by UK Biobank participants on a separate 

alcohol-specific questionnaire (which offered participants the option “Do not know” or “Prefer 

not to answer” for each question) were similar, they were not identical.  
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Our analysis also revealed, somewhat surprisingly, that almost all participants who did 

not report whether they were physically or sexually abused as a child also reported having a 

substance addiction (98%); these participants either specifically skipped the questions pertaining 

to physical or sexual abuse as a child or declined to complete the mental health questionnaire in 

its entirety. We highly encourage any researchers who are planning future population-level 

investigations into the biology common to obesity and substance addiction to allocate 

appropriate resources during study design to mitigate the impact of this particular source of bias 

and missing data. 

In conclusion, we identified four loci associated with a reward system aggregate 

phenotype at a genome-wide significance level. Similar to previous GWAS of cigarette smoking 

and alcohol consumption that identified loci containing genes involved in substance-specific 

metabolism, the loci identified in this study contained genes broadly responsible for both 

polyunsaturated fatty acid and xenobiotic drug metabolism (i.e., CYP1A1 and CYP1A2). Our 

results encourage a more thorough investigation of Phase I drug metabolic enzyme genetics and 

their potential role in the etiology of obesity and substance addiction. In addition, we provide an 

initial framework for combining genetic, environmental, and lifestyle data to improve prediction 

of clinical outcomes while facilitating greater understanding of human biological systems at the 

population level. Furthermore, our study of 81,420 people suggests that if we aim to use 

polygenic risk scores in the clinic for stratified prevention of obesity, substance use disorders, or 

their sequelae for generations to come, highly coordinated phenotypic and genetic data collection 

efforts and the cooperation of millions of people worldwide will be essential prerequisites. 
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APPENDICES 

Appendix A. Statistical analysis plan 

Study participants 

 

We will use data from a subsample of people who participated in the UK Biobank project. 

Briefly, the UK Biobank is a publicly available, controlled access prospective cohort study of 

approximately 500,000 participants. Participants were living in the United Kingdom and between 

the ages of 40 and 69 at recruitment, which occurred between 2006 and 2010. UK Biobank 

participants contributed their phenotypic and genetic data (including their past and future health 

information via electronic medical records) to the project by traveling to one of 22 assessment 

centers distributed throughout the UK. The UK Biobank researchers chose the locations of these 

centers to target a diverse set of participants from both urban and rural communities of various 

socioeconomic backgrounds. Around 6% of people contacted by UK Biobank researchers chose 

to participate, and these participants were healthier on average than the UK population. 

 

After giving written consent, each of the participants completed a series of touchscreen 

questionnaires, provided physical measurements (e.g., body size, imaging, etc.), and donated 

biological samples (i.e., blood, urine, and saliva), which are now stored in Stockport, UK. 

Between 2013 and 2015, UK Biobank researchers extracted DNA from the participants’ blood 

samples and genotyped approximately 800,000 single nucleotide variants per participant using 

two custom-designed arrays (95% of the genotype markers were common between the two 

arrays). A detailed description of the characteristics of the entire UK Biobank cohort and study 

design are described elsewhere. 

 

UK Biobank participants were eligible for inclusion in our study if they (1) completed at least 

one optional 24-hour dietary recall questionnaire from the previous day, (2) completed the 

optional mental health self-assessment questionnaire, (3) had their height and weight measured, 

and (4) were genotyped by the UK Biobank researchers.  

 

Reward system aggregate phenotype scores 

 

We will develop two aggregate phenotype scores as metrics of reward system function. To 

accomplish this, we will first consider addictive nutrients and drugs as pharmacological agents 

that produce an effect on a person’s reward system. We will then assume that the amount of 

addictive nutrients and drugs a person self-administers each day is an estimate of the dose 

required to achieve that person’s individual pharmacokinetic steady state. Variation in this steady 

state dose across a human population will reflect differences in the underlying biological makeup 

of the human reward system. 

 

Two ways to measure the amount of addictive substances consumed by a single person are: (1) 

calculate a sum, or (2) take the maximum across all addictive nutrients and drugs that person 

consumes per day. We will use both of these approaches, and calculate two reward system 

aggregate phenotype scores for each participant: 
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𝑅𝑒𝑤𝑎𝑟𝑑 𝑆𝑦𝑠𝑡𝑒𝑚 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑆𝑐𝑜𝑟𝑒𝑆 =  ∑ 𝑍𝑖𝑖∈{𝑆}                                                   (1) 

𝑅𝑒𝑤𝑎𝑟𝑑 𝑆𝑦𝑠𝑡𝑒𝑚 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑆𝑐𝑜𝑟𝑒𝑀 = max
𝑖∈{𝑆}

𝑍𝑖                      (2) 

Here, Z is the participant’s standard score (i.e., Z-score) as compared to the remaining UK 

Biobank participants, and S is a set containing the participant’s current daily addictive nutrient 

intake and drug use. If a participant completed repeated administrations of the same 

questionnaire across multiple days, we will use the participant’s average daily consumption (so 

long as the participants were equally likely to complete the questionnaire across the different 

days of the week).  

 

We will include all nutrients and drugs in our reward system aggregate phenotype scores if (1) 

previous evidence suggests that consumption of the nutrient or drug in at least some people 

increases the probability that s/he will seek it out again (i.e., the nutrient or drug is “addictive”), 

and (2) participants’ daily consumption was measured on a quantitative scale (i.e., we will not 

include nutrients or drugs in our study if the UK Biobank researchers only ascertained whether 

or not a participant consumed any of the nutrient or drug.)  

 

Before we establish a common scale between the addictive nutrients and drugs, we will first 

assess phenotype data quality. We will report the percentage of missing data and any evidence of 

duplicate data. We will report the consistency of repeated measures of the same self-reported 

addictive nutrient intake or drug use for a given participant.  

 

Next we will perform an exploratory data analysis. We will examine and report the distributions 

of each substance using both visual (e.g., histogram, box plot, Q-Q plot) and numerical (e.g., 

mean, standard deviation, median, range, quartiles, mode, etc.) descriptive statistical summaries 

and report any outliers. Before normalizing or transforming the data in any way, we will examine 

and report the relationships between each pair of substances using both visual (e.g., scatterplot, 

conditional histogram) and numerical (correlation coefficients) summaries. We will comment 

whether any relationships may not be linear. 

 

We anticipate that current daily intake of addictive nutrients will be normally distributed. For 

each addictive nutrient, we plan to normalize each participant’s daily intake by the participant’s 

total daily energy intake (which we also expect to be normally distributed). This will allow us to 

compare relative daily addictive nutrient intakes across participants while accounting for each 

participant’s individual energy requirements. We will examine and report the visual and 

numerical descriptive statistical summaries as above but after this normalization. 

 

We anticipate that current daily addictive drug use will be log-normally distributed. We plan to 

log transform current daily use of each addictive drug so that the distributions are approximately 

normal. If an alternative distribution (e.g., Poisson for unrestricted count data, binomial for count 

data with a restricted maximum) better models current daily addictive drug use, we will consider 

using the corresponding appropriate transformation (i.e., square root transformation, arcsine 

transformation) instead. We anticipate that there may be a disproportionate number of 

participants with very little or no current daily addictive drug use. In this case, we will also 
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consider modeling current daily addictive drug use with a zero-inflated or piecewise distribution 

and using a power (Box-Cox) transformation.  

 

If the distributions of current daily addictive drug use are still not approximately normally 

distributed after applying any one of the above transformations, we will quantile (i.e., rank) 

normalize across all current daily addictive drug use and nutrient intakes. We will examine and 

report the visual and numerical descriptive statistical summaries as above but after we have both 

normalized and transformed (or quantile normalized) the data. We will again examine and report 

the relationships between each substance using both visual and numerical (correlation 

coefficients) summaries. And again, we will comment whether any relationships may not be 

linear.  

 

In the unlikely case that one or more measures of drug use follow a bi-modal or tri-modal 

distribution (suggesting that the phenotype is not actually a quantitative trait), we will conduct a 

case-control genome-wide association analysis for addiction to any nutrient (defined as intake in 

the top 5% of participants) or drug (see below under “Study design" for definition of “substance 

addiction”).  

 

Study design 

 

We will partition the participants in our final study subsample into three groups: 70% of the 

participants will be randomly assigned to the training set, 15% to the validation set, and 15% to 

the testing set. We will ensure that each of the three groups contains approximately the same 

proportion of participants who are obese (BMI ≥ 30) and who self-reported a current or past 

history of substance addiction (to alcohol, prescription or recreational drugs, or ≥ 10 pack-years 

of smoking). We will state participants’ self-reported age, gender, ethnicity, and their geographic 

distribution by these three groups, as well as altogether for comparison to the entire UK Biobank 

cohort. The training set will be used for our genome-wide association analyses, while the 

validation and testing sets will be used to fit and test our PRS prediction models, respectively. 

 

Genome-wide association analyses  

 

Before conducting any genome-wide association analyses, we will first assess genetic data 

quality. The UK Biobank researchers performed initial quality assurance and quality control 

(QA/QC), phasing, and imputation on the initial dataset of 489,212 UK Biobank participants 

genotyped at 812,428 markers.  

 

Briefly, UK Biobank researchers identified poor quality genotype markers (0.97%) using 

samples from participants with inferred European ancestry (n = 463,844), the largest ancestral 

group within the cohort (94%). They tested for consistency across array (Affymetrix UK 

BiLEVE Axiom Array or Applied Biosystems UK Biobank Axiom Array), batch (4,700 samples 

were genotyped from array intensity data and together comprised one “batch,” with a total of 106 

batches to genotype all samples), plate (each 96-well plate contained samples from 94 UK 

Biobank participants plus 2 individuals in the CEU group of the 1000 Genomes project, which 

served as controls), and sex. UK Biobank researchers also tested for departure from Hardy-

Weinberg equilibrium (HWE) within each batch and discordance across control replicates.  
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For their sample QA/QC, UK Biobank researchers identified poor quality samples (0.2%) using 

a subset of high-quality autosomal genotype markers (n = 605,876). Poor quality samples had 

either an unusually high proportion of missing autosomal genotype markers or extreme 

heterozygosity, which can indicate DNA contamination or mixed samples (n = 968). Affymetrix 

inferred each participant’s sex from the relative intensity of their sex chromosome genotype 

markers on their sex chromosomes. UK Biobank researchers then identified participants whose 

self-reported gender did not match the sex inferred by Affymetrix. UK Biobank researchers also 

identified participants whose sex chromosome karyotype is likely neither XX nor XY (n = 652). 

They identified duplicate samples that were not from identical twins, samples that were likely 

mishandled, and samples from participants who asked to be withdrawn from the project were 

removed (n = 835).  

 

After UK Biobank researchers completed their genotype marker and sample QA/QC, they 

released a final dataset of 488,377 UK Biobank participants genotyped at 805,426 markers. They 

also confirmed that the allele frequencies among participants with inferred European ancestry 

were similar to another independent cohort of people with European ancestry (Exome 

Aggregation Consortium data, n = 33,370). 

 

UK Biobank researchers performed phasing on the autosomes using SHAPEIT3 with the 1000 

Genomes phase 3 data as a reference panel. They performed imputation using IMPUTE4 with 

the Haplotype Reference Consortium (HRC) data used as the main reference panel, followed by 

a second round of imputation using a merged UK10K and 1000 Genomes phase 3 reference 

panel, bringing the total number of testable variants to around 96 million.  

 

As thresholds set by UK Biobank researchers to designate poor quality markers and samples 

across the entire genotyped cohort were not particularly stringent (so as to allow researchers to 

further refine the thresholds more appropriate for their own studies), we will perform secondary 

QA/QC. We will remove genotype markers that: (1) failed any of the UK Biobank’s QA/QC 

tests in more than one batch, (2) are missing in >1% of the UK Biobank’s final dataset, (3) have 

a minor allele frequency (MAF) < 0.1% in the UK Biobank’s final dataset, or (4) have low 

imputation quality (i.e., information score < 0.3) as reported by UK Biobank researchers. We 

will include samples from participants only if: (1) they are not a third degree relative or closer to 

any other UK Biobank participants (i.e., we will use one of the maximal sets of unrelated 

participants inferred by UK Biobank researchers), (2) they are part of the white British ancestry 

subset as defined by UK Biobank researchers (n = 409,728), (3) their self-reported gender 

matches their sex inferred by Affymetrix, and (4) UK Biobank researchers imputed their 

genotypes.  

 

After partitioning our final analysis subsample as described under “Study design” above, we will 

use the training set to perform four genome-wide association analyses. The outcomes for these 

analyses will be: (1) the reward system aggregate phenotype score—sum, (2) the reward system 

aggregate phenotype score—maximum, (3) obesity (BMI ≥ 30), and (4) substance addiction (see 

above under “Study design" for definition of “substance addiction”). The first two genome-wide 

association studies will be quantitative trait loci (QTL) analyses, while the second two genome-

wide association studies will be case-control analyses.  
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The central (alternative) hypothesis of this project is that there is at least one variant genome-

wide associated with either reward system aggregate phenotype score. The null hypothesis is that 

there is no relationship between any genome-wide variants and either reward system aggregate 

phenotype score. (There is no hypothesis per se for the two case-control genome-wide 

association analyses, as we will use the output of these analyses for polygenic risk score 

evaluation only.)  

 

To test our central hypothesis, we will first build two linear regression models, one to predict 

each reward system aggregate phenotype score. (For the two case-control analyses, will build 

logistic rather than linear regression models.) We will include age, gender, and up to the first 10 

principal components as predictors. (We will calculate principal components using the directly 

genotyped, not the imputed, markers and provide a geographic interpretation of the axes of 

variation using the participants’ place of birth.) We will also include array as a predictor, as the 

sampling of participants for the UK Biobank Lung Exome Variant Evaluation (UK BiLEVE) 

study in addition to the array itself differed from the rest of the UK Biobank cohort. 

(Specifically, UK BiLEVE researchers recruited participants with either very high or low lung 

function who were non-smokers and heavy smokers, respectively.) In addition to array, we will 

consider including other study-specific covariates as predictors (e.g., assessment center, batch, 

plate, etc.).   

 

To assess whether any genome-wide variant is associated with either reward system aggregate 

phenotype score, we plan to use a two-sided test (e.g., Wald test based on the t-distribution). 

Since we will perform multiple tests (2 outcomes × total number of genotype markers) under one 

central hypothesis, we plan to use the multiple testing procedure proposed by Storey, Taylor, 

Siegmund and Tibshirani with an acceptable false discovery rate set at 5%.  

 

For any genotype markers called significant, we will check that the error has constant variance 

and is normally distributed. We will also visually inspect the cluster plots for the significant 

genotype markers to confirm that there are well-defined clusters for 0, 1, and 2 copies of the 

allele. We will report all genotype markers called significant (even if they are located close to 

one another on the chromosome). However, we will propose the boundaries of the ancestral 

chromosome segment from which the significant genotype marker(s) most likely arose as part of 

a post hoc analysis. We will report all genes located within these boundaries. We will also report 

if these boundaries contain variants significantly associated with related phenotypes from 

previous genome-wide association studies conducted using the UK Biobank cohort. We will use 

publicly available variant annotation and prioritization tools as well as manual literature review 

to highlight the functional relevance of any significant genotype markers. 

 

Polygenic risk scores analyses 

 

We will construct four polygenic risk scores from the output of our four genome-wide 

association analyses conducted on the training set above—one for each of the reward system 

aggregate phenotype scores, obesity, and substance addiction. For each participant, we will 

calculate her/his polygenic risk scores as the sum of the count of risk alleles weighted by each 

allele’s effect size or odds ratio.  
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To determine which risk alleles to include in each of our polygenic risk scores, we plan to use 

two approaches. We will first use the pruning and thresholding algorithm to generate 16 

candidate PRSs over a range r2-values using a 100kb sliding window (r2 = 0.2, 0.4, 0.6, 0.8) and 

a range of P-values (P = 0.5, 0.05, 0.0005, 5% FDR). Second, we will use the LDPred algorithm 

to generate an additional 6 candidate PRSs over a range of ρ-values (ρ = 0.5, 0.05, 0.005, 

0.0005), where ρ is the fraction of variants with non-zero effect sizes or odds ratios.  

 

For each of the 20 candidate PRSs, we will choose the PRS with the best predictive ability (i.e., 

highest area under the receiver operator characteristic curve) across two logistic regression 

models, one with obesity as the outcome and one with substance addiction as the outcome. 

Before the predictive ability of the candidate PRSs are calculated, however, we will fit the two 

logistic regression base models using age, age squared, inferred sex, up to the first 10 principal 

components, the poverty index of the participant’s postal code (i.e., Townsend Deprivation 

Index), and the frequency of childhood traumatic events experienced by the participant (i.e., 

Childhood Trauma Screener) as possible covariates. We will select the logistic regression base 

models with the lowest BIC.  

 

To evaluate our two reward system polygenic risk scores, we will test their ability to predict 

obesity and substance addiction in participants in the testing set, again by calculating the 

AUROC curve. We will then compare these AUROC curves to those generated from logistic 

regression models using the obesity and substance addiction PRSs as predictors.  

 

 

 

 

_________________________________________ 

 

Completed by Kristen M. Stevens on April 23, 2019 
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Appendix B. UK Biobank approved research summary and data dictionary 
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UK Biobank Data Dictionary for Application 48083 

Date Extracted: 2019-04-08T08:53:52 

 
*Unique Data Identifier instances, counts, and data coding removed for brevity  

Distinct 

Data Field 

Unique Data 

Identifier* 
Type Description 

1 eid Sequence Encoded anonymised participant ID 

2 21 Categorical (single) Weight method 

3 31 Categorical (single) Sex 
4 34 Integer Year of birth 

5 39 Text Height measure device ID 

6 40 Text Manual scales device ID 
7 41 Text Seating box device ID 

8 43 Text Impedance device ID 

9 44 Text Tape measure device ID 

10 48 Continuous Waist circumference 

11 49 Continuous Hip circumference 

12 50 Continuous Standing height 
13 51 Continuous Seated height 

14 52 Categorical (single) Month of birth 

15 53 Date Date of attending assessment centre 
16 54 Categorical (single) UK Biobank assessment centre 

17 189 Continuous Townsend deprivation index at recruitment 

18 190 Categorical (single) Reason lost to follow-up 
19 191 Date Date lost to follow-up 

20 1239 Categorical (single) Current tobacco smoking 

21 1249 Categorical (single) Past tobacco smoking 
22 1259 Categorical (single) Smoking/smokers in household 

23 1269 Integer Exposure to tobacco smoke at home 

24 1279 Integer Exposure to tobacco smoke outside home 
25 1488 Integer Tea intake 

26 1498 Integer Coffee intake 

27 1508 Categorical (single) Coffee type 
28 1538 Categorical (single) Major dietary changes in the last 5 years 

29 1548 Categorical (single) Variation in diet 

30 1558 Categorical (single) Alcohol intake frequency. 
31 1568 Integer Average weekly red wine intake 

32 1578 Integer Average weekly champagne plus white wine intake 
33 1588 Integer Average weekly beer plus cider intake 

34 1598 Integer Average weekly spirits intake 

35 1608 Integer Average weekly fortified wine intake 
36 1618 Categorical (single) Alcohol usually taken with meals 

37 1628 Categorical (single) Alcohol intake versus 10 years previously 

38 1647 Categorical (single) Country of birth (UK/elsewhere) 
39 1677 Categorical (single) Breastfed as a baby 

40 1687 Categorical (single) Comparative body size at age 10 

41 1697 Categorical (single) Comparative height size at age 10 
42 1787 Categorical (single) Maternal smoking around birth 

43 2644 Categorical (single) Light smokers, at least 100 smokes in lifetime 

44 2664 Categorical (single) Reason for reducing amount of alcohol drunk 
45 2867 Integer Age started smoking in former smokers 

46 2877 Categorical (single) Type of tobacco previously smoked 

47 2887 Integer Number of cigarettes previously smoked daily 
48 2897 Integer Age stopped smoking 

49 2907 Categorical (single) Ever stopped smoking for 6+ months 

50 2926 Integer Number of unsuccessful stop-smoking attempts 
51 2936 Categorical (single) Likelihood of resuming smoking 

52 3077 Categorical (single) Seating box height 

53 3160 Continuous Weight, manual entry 
54 3436 Integer Age started smoking in current smokers 

55 3446 Categorical (single) Type of tobacco currently smoked 

56 3456 Integer Number of cigarettes currently smoked daily (current cigarette smokers) 
57 3466 Categorical (single) Time from waking to first cigarette 

58 3476 Categorical (single) Difficulty not smoking for 1 day 

59 3486 Categorical (single) Ever tried to stop smoking 
60 3496 Categorical (single) Wants to stop smoking 

61 3506 Categorical (single) Smoking compared to 10 years previous 
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Distinct 

Data Field 

Unique Data 

Identifier* 
Type Description 

62 3659 Integer Year immigrated to UK (United Kingdom) 
63 3731 Categorical (single) Former alcohol drinker 

64 3859 Categorical (single) Reason former drinker stopped drinking alcohol 

65 4407 Integer Average monthly red wine intake 
66 4418 Integer Average monthly champagne plus white wine intake 

67 4429 Integer Average monthly beer plus cider intake 

68 4440 Integer Average monthly spirits intake 
69 4451 Integer Average monthly fortified wine intake 

70 4462 Integer Average monthly intake of other alcoholic drinks 

71 5364 Integer Average weekly intake of other alcoholic drinks 
72 5959 Categorical (single) Previously smoked cigarettes on most/all days 

73 6157 Categorical (multiple) Why stopped smoking 

74 6158 Categorical (multiple) Why reduced smoking 
75 6183 Integer Number of cigarettes previously smoked daily (current cigar/pipe smokers) 

76 6194 Integer 
Age stopped smoking cigarettes (current cigar/pipe or previous cigarette 

smoker) 
77 6218 Integer Impedance of whole body, manual entry 

78 10115 Categorical (single) Why stopped smoking (pilot) 

79 10818 Categorical (single) Reason for reducing amount of alcohol drunk (pilot) 
80 10827 Categorical (single) Ever stopped smoking for 6+ months (pilot) 

81 10853 Categorical (single) Reason former drinker stopped drinking alcohol (pilot) 

82 10895 Categorical (single) Light smokers, at least 100 smokes in lifetime (pilot) 
83 10912 Categorical (single) Variation in diet (pilot) 

84 20002 Categorical (multiple) Non-cancer illness code, self-reported 

85 20008 Continuous Interpolated Year when non-cancer illness first diagnosed 
86 20009 Continuous Interpolated Age of participant when non-cancer illness first diagnosed 

87 20015 Continuous Sitting height 

88 20041 Categorical (single) Reason for skipping weight 
89 20045 Categorical (single) Reason for skipping waist 

90 20046 Categorical (single) Reason for skipping hip measurement 

91 20047 Categorical (single) Reason for skipping standing height 
92 20048 Categorical (single) Reason for skipping sitting height 

93 20074 Integer Home location at assessment - east co-ordinate (rounded) 

94 20075 Integer Home location at assessment - north co-ordinate (rounded) 
95 20077 Integer Number of diet questionnaires completed 

96 20078 Date When diet questionnaire completion requested 

97 20079 Categorical (single) Day-of-week questionnaire completion requested 
98 20080 Categorical (single) Day-of-week questionnaire completed 

99 20081 Integer Hour-of-day questionnaire completed 
100 20082 Integer Duration of questionnaire 

101 20083 Integer Delay between questionnaire request and completion 

102 20085 Categorical (multiple) Reason for not eating or drinking normally 
103 20086 Categorical (multiple) Type of special diet followed 

104 20095 Categorical (multiple) Size of white wine glass drunk 

105 20096 Categorical (multiple) Size of red wine glass drunk 
106 20097 Categorical (multiple) Size of rose wine glass drunk 

107 20116 Categorical (single) Smoking status 

108 20117 Categorical (single) Alcohol drinker status 
109 20160 Categorical (single) Ever smoked 

110 20161 Continuous Pack years of smoking 

111 20162 Continuous Pack years adult smoking as proportion of life span exposed to smoking 

112 20401 Categorical (single) Ever addicted to any substance or behaviour 

113 20403 Categorical (single) Amount of alcohol drunk on a typical drinking day 

114 20404 Categorical (single) Ever physically dependent on alcohol 

115 20405 Categorical (single) 
Ever had known person concerned about, or recommend reduction of, alcohol 

consumption 

116 20406 Categorical (single) Ever addicted to alcohol 

117 20407 Categorical (single) 
Frequency of failure to fulfil normal expectations due to drinking alcohol in 

last year 

118 20408 Categorical (single) Frequency of memory loss due to drinking alcohol in last year 
119 20409 Categorical (single) Frequency of feeling guilt or remorse after drinking alcohol in last year 

120 20410 Integer Age when known person last commented about drinking habits 

121 20411 Categorical (single) Ever been injured or injured someone else through drinking alcohol 

122 20412 Categorical (single) 
Frequency of needing morning drink of alcohol after heavy drinking session 

in last year 

123 20413 Categorical (single) Frequency of inability to cease drinking in last year 
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Distinct 

Data Field 

Unique Data 

Identifier* 
Type Description 

124 20414 Categorical (single) Frequency of drinking alcohol 
125 20415 Categorical (single) Ongoing addiction to alcohol 

126 20416 Categorical (single) Frequency of consuming six or more units of alcohol 

127 20431 Categorical (single) Ever addicted to a behaviour or miscellanous 
128 20432 Categorical (single) Ongoing behavioural or miscellanous addiction 

129 20453 Categorical (single) Ever taken cannabis 

130 20454 Categorical (single) Maximum frequency of taking cannabis 
131 20455 Integer Age when last took cannabis 

132 20456 Categorical (single) Ever addicted to illicit or recreational drugs 

133 20457 Categorical (single) Ongoing addiction or dependence on illicit or recreational drugs 
134 20488 Categorical (single) Physically abused by family as a child 

135 20490 Categorical (single) Sexually molested as a child 

136 20503 Categorical (single) Ever addicted to prescription or over-the-counter medication 
137 20504 Categorical (single) Ongoing addiction or dependence to over-the-counter medication 

138 20544 Categorical (multiple) Mental health problems ever diagnosed by a professional 

139 20551 Categorical (multiple) Substance of prescription or over-the-counter medication addiction 
140 20552 Categorical (multiple) Behavioural and miscellaneous addictions 

141 21000 Categorical (single) Ethnic background 

142 21001 Continuous Body mass index (BMI) 
143 21002 Continuous Weight 

144 21003 Integer Age when attended assessment centre 

145 21022 Integer Age at recruitment 
146 22000 Categorical (single) Genotype measurement batch 

147 22001 Categorical (single) Genetic sex 

148 22002 Text CEL files 
149 22003 Continuous Heterozygosity 

150 22004 Continuous Heterozygosity, PCA corrected 

151 22005 Continuous Missingness 
152 22006 Categorical (single) Genetic ethnic grouping 

153 22007 Text Genotype measurement plate 

154 22008 Text Genotype measurement well 
155 22009 Continuous Genetic principal components 

156 22019 Categorical (single) Sex chromosome aneuploidy 

157 22020 Categorical (single) Used in genetic principal components 
158 22021 Categorical (single) Genetic kinship to other participants 

159 22022 Continuous Sex inference X probe-intensity 

160 22023 Continuous Sex inference Y probe-intensity 
161 22024 Continuous DNA concentration 

162 22025 Continuous Affymetrix quality control metric "Cluster.CR" 
163 22026 Continuous Affymetrix quality control metric "dQC" 

164 22027 Categorical (single) Outliers for heterozygosity or missing rate 

165 22028 Categorical (single) Use in phasing Chromosomes 1-22 
166 22029 Categorical (single) Use in phasing Chromosome X 

167 22030 Categorical (single) Use in phasing Chromosome XY 

168 22100 Text Chromosome XY genotype results 
169 22101 Text Chromosome 1 genotype results 

170 22102 Text Chromosome 2 genotype results 

171 22103 Text Chromosome 3 genotype results 
172 22104 Text Chromosome 4 genotype results 

173 22105 Text Chromosome 5 genotype results 

174 22106 Text Chromosome 6 genotype results 

175 22107 Text Chromosome 7 genotype results 

176 22108 Text Chromosome 8 genotype results 

177 22109 Text Chromosome 9 genotype results 
178 22110 Text Chromosome 10 genotype results 

179 22111 Text Chromosome 11 genotype results 

180 22112 Text Chromosome 12 genotype results 
181 22113 Text Chromosome 13 genotype results 

182 22114 Text Chromosome 14 genotype results 

183 22115 Text Chromosome 15 genotype results 
184 22116 Text Chromosome 16 genotype results 

185 22117 Text Chromosome 17 genotype results 

186 22118 Text Chromosome 18 genotype results 
187 22119 Text Chromosome 19 genotype results 

188 22120 Text Chromosome 20 genotype results 

189 22121 Text Chromosome 21 genotype results 
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Distinct 

Data Field 

Unique Data 

Identifier* 
Type Description 

190 22122 Text Chromosome 22 genotype results 
191 22123 Text Chromosome X genotype results 

192 22124 Text Chromosome Y genotype results 

193 22125 Text Mitochondrial genotype results 
194 22182 Curve HLA imputation values 

195 22700 Date Date first recorded at location 

196 22702 Integer Home location - east co-ordinate (rounded) 
197 22704 Integer Home location - north co-ordinate (rounded) 

198 22800 Text Chromosome XY imputation and haplotype results 

199 22801 Text Chromosome 1 imputation and haplotype results 
200 22802 Text Chromosome 2 imputation and haplotype results 

201 22803 Text Chromosome 3 imputation and haplotype results 

202 22804 Text Chromosome 4 imputation and haplotype results 
203 22805 Text Chromosome 5 imputation and haplotype results 

204 22806 Text Chromosome 6 imputation and haplotype results 

205 22807 Text Chromosome 7 imputation and haplotype results 
206 22808 Text Chromosome 8 imputation and haplotype results 

207 22809 Text Chromosome 9 imputation and haplotype results 

208 22810 Text Chromosome 10 imputation and haplotype results 
209 22811 Text Chromosome 11 imputation and haplotype results 

210 22812 Text Chromosome 12 imputation and haplotype results 

211 22813 Text Chromosome 13 imputation and haplotype results 
212 22814 Text Chromosome 14 imputation and haplotype results 

213 22815 Text Chromosome 15 imputation and haplotype results 

214 22816 Text Chromosome 16 imputation and haplotype results 
215 22817 Text Chromosome 17 imputation and haplotype results 

216 22818 Text Chromosome 18 imputation and haplotype results 

217 22819 Text Chromosome 19 imputation and haplotype results 
218 22820 Text Chromosome 20 imputation and haplotype results 

219 22821 Text Chromosome 21 imputation and haplotype results 

220 22822 Text Chromosome 22 imputation and haplotype results 
221 22823 Text Chromosome X imputation and haplotype results 

222 23098 Continuous Weight 

223 23099 Continuous Body fat percentage 
224 23100 Continuous Whole body fat mass 

225 23101 Continuous Whole body fat-free mass 

226 23102 Continuous Whole body water mass 
227 23104 Continuous Body mass index (BMI) 

228 23105 Continuous Basal metabolic rate 
229 23106 Continuous Impedance of whole body 

230 23127 Continuous Trunk fat percentage 

231 23128 Continuous Trunk fat mass 
232 23129 Continuous Trunk fat-free mass 

233 23130 Continuous Trunk predicted mass 

234 40000 Date Date of death 
235 40001 Categorical (single) Underlying (primary) cause of death: ICD10 

236 40002 Categorical (single) Contributory (secondary) causes of death: ICD10 

237 40018 Categorical (single) Death report format 
238 41078 Integer Episodes containing "Diagnoses - secondary ICD10" data 

239 41080 Integer Episodes containing "Operative procedures - secondary OPCS4" data 

240 41082 Integer Episodes containing "Dates of operations" data 

241 41083 Integer Episodes containing "Episode start date" data 

242 41084 Integer Episodes containing "Episode end date" data 

243 41096 Integer Episodes containing "Date of admission to hospital" data 
244 41101 Integer Episodes containing "Date of discharge from hospital" data 

245 41142 Integer Episodes containing "Diagnoses - main ICD10" data 

246 41146 Integer Episodes containing "Operative procedure - main OPCS4" data 
247 41148 Integer Episodes containing "Date of operation" data 

248 41252 Integer Episodes containing "Inpatient record format" data 

249 100001 Continuous Food weight 
250 100002 Continuous Energy 

251 100003 Continuous Protein 

252 100004 Continuous Fat 
253 100005 Continuous Carbohydrate 

254 100006 Continuous Saturated fat 

255 100007 Continuous Polyunsaturated fat 
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Distinct 

Data Field 

Unique Data 

Identifier* 
Type Description 

256 100008 Continuous Total sugars 
257 100009 Continuous Englyst dietary fibre 

258 100010 Categorical (single) Portion size 

259 100020 Categorical (single) Typical diet yesterday 
260 100022 Continuous Alcohol 

261 100023 Continuous Starch 

262 100026 Categorical (single) Daily dietary data credible 
263 100240 Categorical (single) Coffee consumed 

264 100250 Categorical (single) Instant coffee intake 

265 100270 Categorical (single) Filtered coffee intake 
266 100290 Categorical (single) Cappuccino intake 

267 100300 Categorical (single) Latte intake 

268 100310 Categorical (single) Espresso intake 
269 100330 Categorical (single) Other coffee type 

270 100360 Categorical (single) Decaffeinated coffee 

271 100390 Categorical (single) Tea consumed 
272 100400 Categorical (single) Standard tea intake 

273 100410 Categorical (single) Rooibos tea intake 

274 100420 Categorical (single) Green tea intake 
275 100430 Categorical (single) Herbal tea intake 

276 100440 Categorical (single) Other tea intake 

277 100470 Categorical (single) Decaffeinated tea 
278 100580 Categorical (single) Alcohol consumed 

279 100590 Categorical (single) Red wine intake 

280 100630 Categorical (single) Rose wine intake 
281 100670 Categorical (single) White wine intake 

282 100710 Categorical (single) Beer/cider intake 

283 100720 Categorical (single) Fortified wine intake 
284 100730 Categorical (single) Spirits intake 

285 100740 Categorical (single) Other alcohol intake 

286 105010 Time When diet questionnaire completed 
287 105030 Time When diet questionnaire started 
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Appendix C. Geographic distribution of participants 

 
 

Figure C1. Maps showing the percentage of total participants from each geographic region in the UK 

Biobank cohort (left) and the study subsample (right). 
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Appendix D. Summary of training set phenotype and environment EDA results 

Table D1. Performance of the addictions and smoking questionnaire sections 

Questionnaire section Addictions Smoking 

Parent category Mental health 
Lifestyle and 

environment 

Category ID 141 100058 

Number of distinct data fields in category 12 33 

Participants who answered at least 1 question, no. (%) 
44,886 

(78.8) 

56,994 

(100) 

Of the participants who answered at least 1 question, 

no. (%) participants who answered “Do not know,”  

“Prefer not to answer,” etc. for: 

  

     0 questions 
44,371 

(98.9) 

45,317 

(79.5) 

     1 question 
481 

(1.1) 

9,128 

(16.0) 

     2 questions 
30 

(0.1) 

1,994 

(3.5) 

     3+ questions 
4 

(<0.1) 

555 

(1.0) 
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672 

46 142 

93 5 

80 

7 

365 

29 

564 

9 

62 

3 

41 

15 

Ever addicted to illicit 

or recreational drugs  

N = 284  

Ever addicted to prescription 

or OTC medications  

N = 511 

Ever addicted to alcohol 

 N = 1,461 

≥ 10 pack years  

of smoking 

 N = 24,525 

373 

168 65 

Ever addicted to a substance N = 25,636  Never  

addicted to  

a substance 

 N = 31,358  

Figure D1. Venn diagram of participants by history of or current substance addiction(s). Colored circles 

contain participants with missing information for at least 1 of the 3 other substance addictions.   

Training set N = 56,993  

22,991 
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Table D2. Study outcomes by number of 24-hour dietary recall questionnaires completed 

 Training set  UK Biobank* 

Number of 24-hour 

dietary recall 

questionnaires completed 

1 2+  0 1 2+ 

N = 18,180 

(31.9%) 

N = 38,814 

(68.1%) 
 

N = 91,779 

(48.6%) 

N = 31,188 

(16.5%) 

N = 65,801 

(34.9%) 

Obesity, no. (%)       

     BMI ≥ 30 kg/m2 
4,707 

(25.9) 

7,988 

(20.6) 
 

26,582 

(29.0) 

8,079 

(25.9) 

13,573 

(20.6) 

     BMI < 30 kg/m2 
13,473 

(74.1) 

30,826 

(79.4) 
 

65,197 

(71.0) 

23,109 

(74.1) 

52,228 

(79.4) 

Substance addiction, no. (%)       

     Substance addiction 
10,491 

(57.7) 

15,145 

(39.0) 
 

71,625 

(78.0) 

18,209 

(58.4) 

26,090 

(39.6) 

     No substance addiction 
7,689 

(42.3) 

23,669 

(61.0) 
 

20,154 

(22.0) 

12,979 

(41.6) 

39,711 

(60.4) 

*Provided for comparison. Includes UK Biobank participants of all ancestries with a status for both obesity and 

substance addiction. 
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Table D3. Estimated caffeine content per coffee or tea drink 

UK Biobank 

Unique Data 

Identifier 

UK Biobank 

Description 

UK Biobank 

Quantity 

USDA* 

Quantity 

USDA* 

Caffeine 

(mg) 

Caffeine (mg) 

per UK 

Biobank 

Quantity 

100270 
Filtered 

coffee intake 
1 cup/mug 1 cup (8 fl. oz.) 95 95 

100310 
Espresso 

intake 
1 cup 1 fl. oz. 64 64 

100290 
Cappuccino 

intake 
1 cup/mug — — 64 

100300 Latte intake 1 cup/mug — — 64 

100250 
Instant coffee 

intake 
1 cup/mug 1 tsp. 31 31 

100330 
Other coffee 

type 
1 cup/mug — — 64 

100400 
Standard tea 

intake 
1 cup/mug 

1 cup (8 fl. oz.) 

“Black Tea” 
47 47 

100420 
Green tea 

intake 
1 cup/mug 

1 cup (8 fl. oz.) 

“Tea” 
26 26 

100440 
Other tea 

intake 
1 cup/mug — — 26 

*U.S. Department of Agriculture 

 

 

Table D4. Spearman’s correlation coefficient matrix of reward system phenotypes 

 
Total fat 

(%) 

Total sugars 

(%) 

Caffeine 

(mg) 

Alcohol 

(g) 

Cigarettes 

(no.) 

Total fat 

(%) 
1.00 -0.42 0.05 -0.21 0.06 

Total sugars 

(%) 
— 1.00 -0.04 -0.31 -0.05 

Caffeine 

(mg) 
— — 1.00 0.05 0.06 

Alcohol 

(g) 
— — — 1.00 0.00 

Cigarettes 

(no.) 
— — — — 1.00 
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Table D5. Study outcomes by reporting of physical or sexual abuse as a child 

 Training set 

Physical or sexual 

abuse as a child 

reported 

Physical or sexual 

abuse as a child 

NOT reported 

 
N = 56,994 

(100%) 

N = 44,520 

(78.1%) 

N = 12,474 

(21.9%) 

Obesity, number (%)     

     BMI ≥ 30 kg/m2 12,695 (22.3) 8,941 (20.1) 3,754 (30.1) 

     BMI < 30 kg/m2 44,299 (77.7) 35,579 (79.9) 8,720 (69.9) 

Substance addiction, number (%)    

     Substance addiction 25,636 (45.0) 13,409 (30.1) 12,227 (98.0) 

     No substance addiction 31,358 (55.0) 31,111 (69.9) 247 (2.0) 
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Appendix E. Summary of phenotype score development results 

Table E1. Reward system phenotype distribution fit statistics  

 One-sample Kolmogorov–Smirnov test statistic (D)* 

Reward system phenotype 
Normal 

distribution 

Poisson 

distribution (λ=1)  

Log(x+1)-normal 

distribution 

Nutrient intake    

     Total fat,  

          mean % energy yesterday 
0.9998 — 0.9930 

     Total sugars,  

          mean % energy yesterday  
0.9992 — 0.9777 

Drug use    

     Caffeine, 

          mean yesterday (mg) 
0.9363 0.9361 0.9294 

     Alcohol, 

          mean yesterday (g) 
0.6342 0.6139 0.5661 

     Cigarettes, 

          mean no. smoked daily  
0.5000 0.5399 0.5000 

*P < 0.05 for all phenotypes and distributions. 

 

Table E2. Drug use phenotype distribution fit statistics  

 Poissoness plot test statistic (|λML – exp(slope)|) 

Drug use phenotype 
Participants with 

zero drug use included 

Participants with 

zero drug use excluded 

 

Caffeine, 

     mean yesterday (mg)  

 

 

186.822 

 

 

1.825 

Alcohol, 

     mean yesterday (g) 

     mean daily (g)* 

 

 

20.119 

35.577 

 

 

20.110 

35.757 

Cigarettes, 

     mean no. smoked daily 

          with 1 outlier removed 

 

 

4.538 

5.247 

 

 

5.071 

4.801 

 
*Provided for comparison. Derived from (1) the alcohol section (category ID 100051) of the UK Biobank lifestyle 

and environment questionnaire and (2) alcohol units per drink as defined by the UK National Health Service.  
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Table E3. Pearson correlation coefficient matrix of power-transformed drug use phenotypes and 

nutrient intake phenotypes 

 
Total fat 

(%) 

Total sugars 

(%) 

Caffeine 

(mg) 

Alcohol 

(g) 

Cigarettes 

(no.) 

Total fat 

(%) 
1.00 -0.45 0.05 -0.22 0.06 

Total sugars 

(%) 
— 1.00 -0.05 -0.31 -0.05 

Caffeine 

(mg) 
— — 1.00 0.07 0.07 

Alcohol 

(g) 
— — — 1.00 0.00 

Cigarettes 

(no.) 
— — — — 1.00 

 

 

 
 

Figure E1. Average-linkage hierarchical clustering of 10K training set participants chosen at random using 

the Euclidean distance between their power-transformed drug use and nutrient intake phenotypes. Average 

number of cigarettes is marked in grey for participants who did not report their current daily use at least once 

(N = 298, 0.5% of the training set).  
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Table E4. UK Biobank data fields comprising the null phenotype scores 

 
Distinct 

Data 

Field 

Unique 

Data 

Identifier 

(UDI) 

Description 

1 4 34 Year of birth 

2 99 20081 Hour-of-day questionnaire completed 

3 161 22024 DNA concentration 

4 197 22704 Home location - north co-ordinate (rounded) 

5 238 41078 Episodes containing "Diagnoses - secondary ICD10" data 

  

   

Figure E2. Venn diagram of participants by drug use phenotype(s). Participants who did not report the 

number of cigarettes currently smoked daily at least once are not shown (N = 298, 0.5% of the training set).   

Mean caffeine 

yesterday (mg) > 0 

Mean alcohol 

yesterday (g) > 0 

Mean no. cigarettes  

currently smoked daily > 0 

No drug use 

N = 1,634 (2.9%) 

3,048  

(5.3%) 

120  

(0.2%) 

142  

(0.2%) 

13,969  

(24.5%) 34,137  

(59.9%) 

1,925  

(3.4%) 

1,720  

(3.0%) 
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Table E5. Spearman’s correlation coefficients between null and reward system phenotypes 

 Spearman’s correlation coefficient 

Null Phenotype 
Total fat 

(%) 

Total sugars 

(%) 

Caffeine 

(mg) 

Alcohol 

(g) 

Cigarettes 

(no.) 

Year of birth 0.04 -0.06 -0.06 -0.04 0.1 

Hour-of-day questionnaire 

completed 
0 0.06 0 -0.06 -0.02 

DNA concentration 0.01 -0.02 0 0.01 0.08 

Home location - north co-

ordinate (rounded) 
-0.02 0 -0.02 -0.04 0 

Episodes containing 

"Diagnoses - secondary 

ICD10" data 

0 0 -0.03 -0.04 0.07 
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Appendix F. Summary of genotype and post-GWAS quality control results  

Table F1. Genotype marker quality control results  

Marker quality control criteria 
UK Biobank 

(N = 488,377) 

Training set 

(N = 56,993) 

Genotyped and imputed markers (N = 97,059,328)   

     Minor allele frequency ≤ 0.1% among participants 
76,755,998 

(79.1%) 

79,854,667 

(82.3%) 

     Information quality score81 ≤ 0.3 among participants  
16,258,690 

(16.8%) 
— 

     Passed marker quality control criteria 
20,210,907 

(20.8%) 
— 

Genotyped markers only (N = 805,426)   

     Missing in ≥ 1% of participants 
148,075 

(18.4%) 

146,007 

(18.1%) 

     Minor allele frequency ≤ 0.1% among participants 
75,832 

(9.4%) 

82,351 

(10.2%) 

     Missing in ≥ 1% of participants, or  

     minor allele frequency ≤ 0.1% 

610,046 

(75.7%) 

605,623 

(75.2%) 

 

Table F2. Sample quality control training set results  

Sample quality control criteria 
UK Biobank 

(N = 488,377) 

Training set 

(N = 56,993) 

Outliers for heterozygosity or missing rate  

     among UK Biobank participants* 

968 

(0.20%) 

92 

(0.16%) 

Sex discordant 
652 

(0.13%) 

40 

(0.07%) 

Genotypes not imputed across all chromosomes 
935 

(0.19%) 

186 

(0.33%) 

Third-degree relative or closer to at least one  

     other UK Biobank participant  

147,731 

(30.2%) 

17,198 

(30.2%) 

Passed sample quality control criteria — 
39,710 

(69.7%) 
*Performed by the UK Biobank researchers on a set of 621,642 high quality SNPs and accounting for population 

stratification. 
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Table F3. Post marker quality control training set results  

Marker quality control criteria 
Training set 

(N = 39,710) 

Genotyped and imputed markers (N = 20,271,549*)  

     Minor allele frequency ≤ 0.1% among participants 
3,425,000 

(16.9%) 

Genotyped markers only (N = 610,046)  

     Missing in ≥ 1% of participants 
1,718 

(0.3%) 

     Minor allele frequency ≤ 0.1% among participants 
5,671 

(0.9%) 
*Of 20,210,907 total genotyped and imputed markers that passed quality control, multi-allelic variants (0.3%) were 

counted as independent markers.   
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Table F4. Rare reward system aggregate phenotype-associated loci (MAF <0.0001) 

Locus 
Phenotype 

score 
Chr 

Locus 

boundaries 

GWS 

variants 

at locus 

(no.) 

Index variant 

Reference/ 

minor 

alleles 

UKB 

MAF 

INFO 

score81 
β q-value 

Closest gene 

to index 

variant 

1 Max 2 
37386144 

- 37387207 
3 rs10177345 C/G 0.001 0.92 3.44 0.018 EIF2AK2 

2 Max 3 
23529598 

- 23532429 
2 rs17013356 A/G 0.001 0.98 5.01 0.003 UBE2E2 

3 Max 3 73167300 1 rs144259811 T/G 0.001 0.89 3.19 0.009 PPP4R2 

4 Max 3 
79727452 

- 79746041 
5 rs115208573 C/T 0.002 0.95 3.48 0.008 ROBO1 

5 Max 3 
97509046  

- 97530462 
2 chr3:97509046 TAAGAG/T 0.001 0.94 2.94 0.008 ARL6 

6 Max 3 97841959 1 rs115858807 G/A 0.001 0.92 3.27 0.009 OR5H1 

7 Max 3 100244947 1 rs9839721 A/G 0.003 0.97 1.97 0.012 TMEM45A 

8 Max 4 
16448564 

- 16448572 
2 rs75854427 T/C 0.001 0.85 2.80 <0.001 LDB2 

9 Max 4 
190166950 

- 190189704 
4 rs11941095 A/G 0.003 0.94 2.76 <0.001 FRG1 

10 Both 14 
21356821 

- 21427751 
2 rs10132681 G/A 0.001 0.89 5.35 0.013 RNASE2 

11 Max 17 55699351 1 rs148796622 G/T 0.001 0.83 9.01 0.011 MSI2 

12 Max 20 3643595 1 rs680606 C/T 0.002 0.88 3.95 0.015 GFRA4 

13 Sum 20 59876307 1 rs73319112 G/T 0.002 0.95 8.90 0.007 CDH4 

**Max, maximum; Chr., chromosome; GWS, genome-wide significant (q-value ≤ 0.025 for either phenotype score); MAF, minor allele frequency; UKB, UK 

Biobank. GWS variant with smallest q-value at locus is the index variant. Exact β and q-values for GWS variants with MAF < 0.0005 should be interpreted with 

caution. Reference assembly GRCh37/hg19.  
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Figure F1. Representative SNP cluster plots for rs2470893 from UK Biobank batches 1-4.106 

 
 

 


