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ABSTRACT

Spectral Analysis of Field Emission Flicker (II J) Noise

Mark Alan Gesley, Ph.D.
Oregon Graduate Center, 1985

Supervising professor: Lynwood W. Swanson

Spectral analysis of field emission noise induced by emitter surface equilibrium

density fluctuations is developed. The noise spectrum factors as

S( w) = Soo(w) + SB( w) for a canonical ensemble, which characterizes adsorbate

covered emitters. Soo( w) and SB( w) correspond to unbounded diffusion and the boun-

dary effect respectively. Chemical diffusivity Dc is defined by Fick's first law. Its

equilibrium limit, termed hydrodynamic Dh' is derived from S( w) and related to the

adsorbate fluctuations. These diffusivities are compared using irreversible thermo-

dynamic and Kubo relations. Their equality is ensured by evaluation of the excess

entropy production only when the density gradient is small and no phase change

occurs. Two dimensional adsorbate phase transitions are identified by correlating inci-

pient nonlinearity in the Arrhenius plot of diffusivity with the onset of a temperature

dependent total noise power, which is proportional to adsorbate isothermal compressi-

bility. Examples using KIW, XefW, and HIW are given. Thermal field emission noise

is characterized by a grand canonical ensemble (GCE). Here the diffusive fluctuation

mechanism includes adatom creation and defect vacancy formation resulting from sur-

face free energy minimization. Adatom dynamics are governed by a stochastic

diffusion equation. A multidimensional version of Carson's theorem is formulated,

which leads to S( w) ~ C( x =0, w) Nc-1(w), where (hkl) geometry affects C( x =0, w)

xii



and Nc( w) accounts for probe spatial averaging. From this factorization of S( w) an

outstanding noise power divergence problem for diffusive equilibrium fluctuations

within a GCE is solved. The solution requires finite fluctuation lifetime, which is also

proved to be a necessary equilibrium condition. The other part of the solution leads

to a new method of measuring the resolution of the microscope. Derived values agree

well with a calculation that considers the transverse momentum distribution of the

field emitted electrons. The S( w) characteristics of tungsten thermal field emission

from W(112), W(31O), and W(lOO) planes are explained in detail. Diffusivity values,

their corresponding activation energies, and the defect vacancy formation activation

energy agree well with other experimental data. Conditions for the broadest band

S( w) oc w-1 are given and a hypothesis is proposed explaining its frequent occurrence

for diffusive equilibrium systems.

xiii



Introduction

Bend down low, let me tell you what I know
Cold ground was my bed last night

and rock was my pillow too
Robert Nesta Marley O.M.

Noise analysis in its entirety is a vast field with a number of approaches. One is

confronted with a probability problem as the random nature of the fluctuating signal

requires statements based on statistical averages. Then the general properties of the

system may emerge from the initially perceived chaotic nature of the observed signal.

For field electron emission the mean value of the current is well described by the

Fowler-Nordheim equation. Answering the question, what is the probability that the

current will have given values at two points in time? leads directly to the noise theory

as it is studied here. The answer to this question requires analysis of the autocorrela-

tion function. The resolution of this expression into a form that determines the weight

of the fluctuations for a given interval of time, in a sense being a probabilistic

snapshot of the system dynamics, introduces a second mathematical problem whose

solution originated with the work of Norbert Wiener and A. Khinchin. A fundamental

problem in classical Fourier analysis is that the transform of a fluctuating signal itself

does not exist, i.e. cannot be resolved into frequency components, because the function

does not decay to zero as time progresses. They joined probability theory to Fourier

analysis by first realizing the transform of the autocorrelation exists and is the spec-

tral density, which also has become known as the noise power spectrum.

Wiener stated the study of Brownian motion by Einstein and Smoluchowski

inspired his own research. The work of these men created two closely intertwined

fields; the more mathematical course leading through Wiener's functional integration

methods to Feynman's path integral technique, while Smoluchowski's research was

continued by the physicists Furth, Ornstein, Uhlenbeck, Wang, and Rice also inspired
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the mathematicians Doob, Kac, and Ito. The analysis of Brownian motion is of direct

importance to the present work as density fluctuations are the object of study in both

cases. Here they occur on the surface of a field emitter and induce the observed elec-

tron current fluctuations by varying the potential within a few angstroms of the sur-

face. Furthermore the use of the field emission microscope in a c~nfiguration that is

optically similar to those of the earlier investigators at the turn of the century, such

as Westgren and Svedberg, yields related mathematical expressions for the autocorre-

lation function.

Two events occurred in close succession which encouraged me to pursue this

research. In the spring of 1982 Professor Swanson suggested that several unresolved

questions existed concerning the nature of field emission noise and specifically the rela-

tion between Professor Gomer's autocorrelation measurements of field emission flicker

noise due to adsorbate covered emitters in the time domain and his own noise meas-

urements using a thermal field emitter, which were carried out in the frequency

domain with a spectrum analyzer. By chance I had found L. Bliek's article in "Recent

Advances in Condensed Matter Physics" on a diffusion model for flicker 1// noise. I felt

this work might contain some clue as to how the field emission noise analysis might be

done even though it was not concerned with the specific topic of field emission noise.

By fall of 1982 I began the research that has led to chapter IV, which interest-

ingly became the final one. Initially I thought this model could be applied almost

directly to the thermal field noise measurements even though some of Bliek's ideas

could not be accepted. These initial ideas were reported in part at the August 1983

Field Emission Symposium.

xv



Two problems continued to bother me at that time. The first was finding the

relation between Bliek's analysis and Gomer's autocorrelation theory of field emission

fluctuations. The second was how these studies related to Voss and Clarke's equili-

brium 1// noise theory, which represents the most recent significant contribution to

1// noise theory based on a diffusionmechanism.

Because Gomer's work was directly involved with field emission noise the first

problem stated was the most important to resolve. I came to understand two things.

One was that his paper was really part of a larger school of thought, which dated

back to the beginning of this century involving the work of Einstein and Smolu-

chowski. The reason being that field emission noise is related to surface density

fluctuations occurring on the emitter. The formalism used by Gomer is analogous to

Smoluchowski's theory of concentration fluctuations. This allowed me to draw on a

large literature in developing the spectral analysis of Gomer's theory, which resulted

in chapter 1.

The second thing I realized was that Bliek's analysis was not formally similar in

a mathematical sense to Gomer's. Physically this distinction is due to Gomer's adsor-

bate diffusion model being constrained to have the total particle number on a single

(hkl) plane constant, whereas Bliek's study allowed for the total particle number to

fluctuate about a mean value.

I next looked at what comes out of the chapter I analysis of adsorbate induced

noise in terms of physically significant information. The principal variable that is

extracted is the adsorbate diffusion coefficient. Although this term is frequently the

first term dropped from further discussion when evaluated by a mathematician, it con-

tains much information concerning the mass transport energetics and many body pro-

perties of the adsorbate viewed as a dynamical system. I then learned that even for a
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single component system there are many diffusion coefficients and many methods of

measurement. Chapter II sorts out my view on what is the mutual relationship of

these different coefficients and where field emission noise studies stand with respect to

the associated techniques of obtaining them. Diffusion processes occur in many

different systems a.nd the field emission noise measurement is a relatively new method

for studying them. Before Gomer's group began performing such measurements the

field of equilibrium diffusivity studies was restricted to thermal neutron scattering of

liquids and light scattering by dilute liquid suspensions. Field ion microscopy is res-

tricted to low densities and traditional nonequilibrium measurements were generally

accepted as yielding the same diffusion coefficient as the noise measurement. This

latter idea bothered me as it was not clear under what circumstances a diffusion

experiment carried out under equilibrium conditions could be compared with one of

the same system but which derived a diffusion coefficient from observation of the none-

quilibrium decay of a density gradient. However these concerns are not yet widely

shared by other workers with one important exception. The monograph by Glansdorff

and Prigogine develops non equilibrium thermodynamic stability theory and my own

understanding of this work has been partly incorporated in chapter II. This chapter

has since been accepted for publication in Surface Science. I believe there is still much

to be done in this field; both experimentally, as there is yet no definitive test of the

analysis, and also theoretically, as the general kinetic and thermodynamic description

of a system has not rigorously delimited the range of validity of this work for all

cases.

The diffusion coefficient reflects the dynamics of the adsorbate and is derived

from analysis of the time dependence of the current fluctuations as shown in detail in

chapters I and II. Yet noise analysis also provides insight to the thermodynamics of

xvii
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the adsorbate via the static response of the system, which is measured by the total

noise power. Analysis of experimental data in the literature appeared to me not to

fully exploit this observation. Chapter III considers how surface adsorbate thermo-

dynamics is studied by analysis of the temperature dependence of the field emission

noise power. This chapter is currently under review for publication. Besides pointing

out connections between the static and dynamic response of an adsorbate system

undergoing a phase change, as measured by field emission noise experiments, this

chapter also extends the calculation of kinetic expressions using the idea of a two level

thermodynamic system in a manner not previously undertaken.

By the end of 1984 I returned to Chapter IV. I believe that it represents a com-

pleted classical equilibrium fluctuation theory, excluding critical phenomena, within

the grand canonical ensemble, which is based on a Langevin approach to the modeling

of density fluctuations. It incorporates elements of Bliek's and Voss and Clarke's

theories. It solves certain divergence problems existing within these preyious works in

a consistent manner. The elements of the theory have direct physical significance as

evidenced by its success in describing the tungsten thermal field measurements

described therein, particularly its ability to estimate the spatial resolution of the field

emission microscope and the extraction of the diffusion coefficient and defect vacancy

activation energy. Its ultimate critical reception awaits publication in the literature,

which I intend to pursue in the near future. I feel excited about its prospects and the

possibility it affords in opening up a new class of experiments.

Finally a few words concerning the overall justification for pursuing this research.

This is always an important consideration, certainly when there is emphasis on apply-

ing science to solving technological problems. For the engineer noise is typically some-

thing to be rid of as it interferes with the signal carrying the desired information. Yet
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to control an effect requires an understanding of the factors that cause it. As soon as

this point is accepted a model containing those factors believed important is necessary

to guide further experimentation. In noise analysis one is immediately confronted with

nontrivial mathematical concepts involving Fourier analysis and probability theory

not to mention the particular details of the system under study.

Also given an understanding of how the relevant variables affect the observed

noise it is possible to then use this understanding as an extremely fine probe of addi-

tional related phenomena that otherwise may be inaccessible by more traditional

detection strategies. One then enters more into the realm of basic research, which is

sometimes signaled in the literature by a replacement of the word "noise" with the

term "fluctuations". At this point one might then say that the "noise" is the "signal".

The full value of such measurements cannot be appreciated unless a well developed

theory exists. It is remarkable that from a noise measurement atomic properties, of

for example a field emitter surface, can be so detected.

I have enjoyed developing an understanding of this field and hope that this

interest is communicated to those who read it. Behind even the most random

phenomenon may lie an ordered world, which is revealed by patience and imagination.

xix



I. Field Emission Flicker Noise - Canonical Ensemble.

"Who would have thought the old man to have had so much blood in him?

Shakespeare Macbeth

A. Introduction

Numerous mechanisms have been proposed to explain flicker (1/ f) nOIse.

Theories have developed spectral density functions from: nonstationary processes [1],

motion in a random potential [2], and diffusion mediated two site switching [3,4].

Investigations of contact noise in semiconductors by Richardson [5],MacFarlane [6],

and van der Ziel [7] led to the development of l/f type spectra from diffusion

processes. These analyses were in turn based on Smoluchowski's theory of density

fluctuations [8,9]. Since then many studies have developed autocorrelation functions

that are proportional to Smoluchowski's probability after-effect factor

P, = 1 - Ap-l JJd71 d72 G(71, t ;72),
A,A,

where the density or temperature is taken as the random variable, G(71, t ;72) is the

Green function for the diffusion equation, and Ap is the probed region [10-20]. These

theories implicitly assume fluctuations occur at equilibrium and are linear and time

reversible on a microscopic scale.

Kleint's adsorption-desorption theory [21] attempted to explain the early experi-

mental measurements of field emission flicker noise by Kleint and Gasse [22]. Timm

and van der Ziel provided the first spectral analysis of adsorbate induced noise that

included the Fowler-Nordheim (FN) equation [11]. They considered diffusive adsorbate
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motion over an infinite planar surface with site exclusion interactions only. The use of

a probe technique to detect adsorbate density fluctuations on a single (hkl) plane

along with a more precise analysis of the FN equation and field emission noise in the

time domain has since been carried out by Gomer and Chen [12,13]. Mazenko, Bana-

var, and Gomer extended the fluctuation theory to include fully interacting systems

[14]. Their study demonstrated that a density dependent surface diffusion coefficient

D(n) is derivable from the field emission current autocorrelation function R(t) meas-

urement of equilibrium density fluctuations.

The present study develops the spectral analysis of field emission 1/ f noise ass<r

ciated with adsorbate diffusion over a single (hkl) plane of the emitter including the

effect of net plane boundaries and anisotropic diffusion. Systems belonging to a canon-

ical ensemble are considered, i.e those that are closed with respect to the number of

net plane particles. Only totally reflecting boundaries are considered consistent with

the assumption of equilibrium density fluctuations occurring on a finite size net plane.

To maintain equilibrium with absorbing or partially reflecting boundaries would

require additional sources in the diffusion equation. Introducing these would fundamen-

tally change the process assumed to cause the noise, e.g. an additional mechanism

such as evaporation-condensation would then have to be included.

Factors related to the FN equation, and thus specific to the field emission pr<r

cess, are considered in section B where an integral equation for R(t) is developed

analogous to ones derived by Lax [15] and van Vliet and Fassett [16]. This equation

involves the two point covariance of the density fluctuation

0(71,72) = < On(71)On(r2)> and the Green function G(71 , t ;72) for the diffusion

operator L = a/at - DV2. Critical fluctuationsaffectboth G(71, t ;72) and

0(71,72). It is well known that 0(71,72) involves a correlation length p whose size
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becomes significant near the critical point where G(r"i, t ;r2) is also no longer deriv-

able from the diffusion equation. The system is assumed not to be dominated by criti-

cal fluctuations and thus the noise spectrum S(w) can be evaluated using G(r1,t ;r2)

and a simplified version of C(r1, r2)' In this regime interactions affect D (n) but do

not alter the time dependence of G(rl' t ;r2)' Therefore a dimensionless expression

for S( w) can be written that is not explicitly dependent on the interactions.

The influence of probe-net plane geometry on the structure of R(t) and S(w) is

investigated in section C by their decomposition in terms of eigenfunctions of

C(rl,r2). Certain geometries simplify the expressions for R(t) and S(w) and also

affect the form the total noise power takes. A reduction of the integral equation for

R( t) occurs with a special representation of G( rl' t; r2)' The existence and com-

pleteness of the basis set {<Pn}corresponding to this representation is demonstrated by

recognizing C (r} ,72) to be a nondegenerate symmetric kernel of a homogeneous

Fredholm integral equation. Representing G (rl , t ;r2) by this. particular basis is

equivalent to a Karhunen-Loeve (KL) expansion of the density fluctuation 6n(r). The

result is a linear transformation to a correlation less pair covariance. In general

finding the explicit representation is difficult. However a closed solution is derived for

the spectral density when the probed and net plane regions are concentric circles.

The dependence of the noise power on probe radius is considered in section D

where the net plane is modeled as a square and G (rl' t ;r2) is represented by a tri-

gonometric eigenfunction expansion. This version of R (t) is equivalent to one

developed by Gomer and coworkers [13,17]. For a square geometry a natural decompo-

sition of G (r1, t ;r2) as a KL series does not occur. This modifies the integral equa-

tion involving R(t). The physical consequence of this change is related to the
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requirement that total noise power be zero when the probed and net plane areas are

equal. This condition is independent of probe-net plane geometry and characteristic of

a closed system.

In the absence of net plane boundaries the autocorrelation functions for both cir-

cular and square probe geometries are reduced to one proportional to the after-effect

factor P" The solution for P, was originally stated by Smoluchowski for the case of a

circular probed region [8].An explicit derivation of P, is provided in section E to elim-

inate confusion resulting from an erroneous formulation by Chandrasekhar [9] that

was later adopted by MacFarlane in his analysis of the corresponding Soo(w) [6].

MacFarlane's Soo(w) has also been used by Saitou et al. in their study of field emission

noise [23]. Excluding the prefactor specific to the field emission process the correct

spectrum for unbounded diffusion Soo(w) is similar to one stated by Burgess [10] and

subsequently used in Timm and van der Ziel's study [11]. The Soo(w) derived in the

present work corresponds precisely to the autocorrelation function employed by

Gomer and coworkers in their study of the diffusion coefficient [12-14,24].

The expression for S( w), including the boundary effect, is derived in section F. Its

functional form eliminates criticisms that the diffusion process is inadequate for

describing flicker noise of certain adsorbate systems [4,25]. It is also noted that early

experiments have often not conformed to the assumptions of the theory. More recent

spectral density measurements of K/W(1l1) using the probe-hole method are found

consistent with the diffusion mechanism [26].

Anisotropic diffusion is considered in section G. Here the limiting case of purely

one dimensional motion is solved analytically and found to increase the low frequency

portion of S(w).
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B. The field emission a.utocorrela.tion function

The field emission current density j( amps/ cm2) is described by the Fowler-

Nordheim equation

j _ B F' exp { -6.~107. ~3/'}.

where F is the electric field in V/cm, v is an image correction term, 4>the work func-

tion in eV, B = 6.2 x 1Q6(p,/4»1/2/v2(4>+p,),and p, is the Fermi level [27]. The factor B

is insensitive to work function fluctuations compared to the exponential term and hen-

ceforth is considered constant.

From Eq.(1) the current fluctuation 6i(t) = i(t) - < i > is givenby

where < i > = <j > Ap is the equilibriumcurrent and a = - 6.8x 107v/F.

The work function 4>=4>(F,n)is dependent on the field F and adatom density

n =N /Ap, N is the number of adatoms in probed area Ap =1rrp2,

4> = 4>n + 21raFn,

4>nis the zero field work function, and a is the polarizability per adatom.

With the work function fluctuation 64>= 4>- < 4> >, Eq.(2) is approximated to

first order as

assuming 64>« < 4>>. Noting from Eq.(3) that

5

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)
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where Ca = 27raF, the relative current fluctuation

(1.6)

follows from Eq.(2) with cl = cac2'c2 = t a< <,b>1/2, and 6 <,bn= (8<,b/8n)6n. By using

Eq.(6)the relative fieldemissioncurrent autocorrelationR(t) = < 6Ut) 6i(0) >

becomes

[ (c1 + C2 8<,b/8n) ]2 < 6N(t) 6N(0) >,R(t) = A
p

(I.7)

where 6N( t) is the equilibrium fluctuation in particle number of the probed area Ap

at time t.

Several comments are necessary about the term (8<,b/8n). Gomer has noted that

since field emission is governed by the potential to '" 5.0 A from the surface it is possi-

ble to have an adatom outside the probed region influence emission within it [12].

This effect can be approximated by

6<,b= [tV h(n) + Ca ]6n, (1.8)

where the factor tV is the average contribution per adparticle to the potential energy

'" 5.0 A above the probed region and Ih (n) I < 1 is a dimensionless function describ-

ing dipole depolarization. In Gomer's analysis tV appears inside the particle number

autocorrelation <N(t) N(O» because it is really a function of position within the

probed area Ap. If density fluctuations outside Ap do not affect the probed current

then tVcan be written in the simple form, tV = 27rJ1.,where J1.is the permanent dipole

moment of the adatom. The approximation becomes exact when the probed radius

fp > > 5.0 A [12]or when the permanent dipole moment is small, in which case the
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polarizability term dominates. This happens for a physisorbed system such as XefW

[24].

In general winfluences the value of D(n) by increasing the effective probed

radius rp' but does not change the time dependence of the autocorrelation [12].

Therefore keeping in mind that a systematic error may exist in the estimation of

D(n), Eq.(7) can be written

R(t)=CFN < 6N(t) 6N(0) >, (1.9)

For a fixed value of adsorbate density h (n) is constant and does not influence the

spectral analysis. Several models relate mutual depolarization to work function and

so an expression for h (n) could be included in Eq.(8), [28,29]. Although the density

dependence of the autocorrelation function as expressed through h(n) is not of pri-

mary importance here there is one significant effect on the noise worth noting. For a

chemisorbed system, e.g. an alkali metal adsorbate on a refractory metal substrate,

4>(n) exhibits a distinct minimum, i.e. a~/anL.. = 0 and h(nmin) = O. Under this'I'''''D

condition Eq.(7) implies

< (6i)2> = cf < (6n)2 >.<i>2

The relative mean square current fluctuation is greatly reduced since the polarizabil-

ity term cl is usually much smaller than the other term involving the dipole moment.

An example of this reduction in noise power at the work function minimum can be

found in a study of KfW (Fig. 1 of ref. [30]).
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The particle number in probed area Ap, expressed in terms of the local density

n(7',t), is

N(t) = Jn(7',t) dr.
A,

(1.10)

Hence Eq.(9) becomes

R(t) = CFNJ J < c5n(7'vt) 8n(7'2,0)> d7'l d7'2,
A,A,

(1.11)

where the integrand of Eq. (11) is the two point (pair) autocovariance of the density

fluctuation. The classical expression is

< 8n(rvt) 8n(r'"2'0) > = JG(7'v t ;7'3) C(7'2,7'3) d7'3 (1.12)
AT

where G(7'l' t ;7'3) is the Green function for the diffusion equation, the integration is

over the net plane area AT. and

(1.13)

is the pair covariance function [15,16]. Combining Eqs. (11) and (12) leads to the fol-

lowing general form of the field emission autocorrelation function

R(t) = CFN JJ d7'l d7'2 Jd7'3 G(7'1,t;7'3) 0(7'2,7'3)' (1.14)
A, A, AT

i' t.f,
'.11'

,i}
t'<1 1:'a i'
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C. Karhunen-Loeveexpansion

This section evaluates R(t), as expressed by Eq.(14), in terms of its properties as

an integral equation. The analysis will show that, excluding critical fluctuations, a

correlation less pair covariance always exists. This simplifies the form of R (t), although

in practice it is often difficult finding the proper linear transformation. However a

specific example is given in section F that yields a closed expression for the spectrum

B( w). The analysis shows how the structure of R (t) is related to system geometry and

the calculation of the total noise power.

Consider the following homogeneous Fredholm equation of the second kind,

cPn('r1)= Jdr"2 C(71,72) cPn(-r2), (1.15)
AT

and note that the kernel C(71, 72) as defined by Eq.(13) is real valued and symmetric,

l.e.

(1.16)

Given that the system is not at the critical point, C(71 ,72) is continuous. To prove

continuity the inequality

is used, which is a general property of stationary or homogeneous random functions

[31]. By considering C(71 ,72) to be a linear functional T [on(72)] with parameter 71

on on(72), i.e.

and noting the thermodynamic fluctuation theory result
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(1.17)

I T [c5n(7d] I < c 118n(7dll, (U8)

where the norm is defined

118n(7d II = [f d72 < (8n)2> ]1/2 = [AT < (8n)2> ]1/2
AT"

and "'T is the isothermal compressibility. Eq.(18) demonstrates that T is bounded as

long as "'T is finite. Using the theorem that boundedness and continuity are

equivalent for linear functionals [32] ensures that 0(71,72) is continuous.

The kernel is nondegenerate as it is not expressible as a finite sum of separable

functions

m

0(71,72) ¥= ~ Qlj(7d .Bi(72).
i-I

The multivariable density function implicit in < 8n(71) 8n(72) > is not of this form

because for bounded regions 71 is statistically dependent on 72 even in the absence of

critical fluctuations.

The following theorem can then be applied to the kernel 0(71,72) [33]

"Every continuous, symmetric kernel that does not vanish identically possesses

eigenvalues and eigenfunctions; their number is denumerably infinite if and only if

the kernel is nondegenerate. All eigenvalues of a real symmetric kernel are real. "

Therefore the set {4>n}exists, is denumerably infinite, and can serve as a basis for

functions defined over the area AT' Given the existence of a basis set {4>n}over AT

the Green function in Eq.(14) can be expanded as
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G(71, t ;73) = E an 4>n(73),n-l
(1.19)

Substituting Eq.(19) into (14) leads to

R(t) = GFN« 8Nf::;Ap-1 JJd71 d72 G(71 , t ;72),
A,A,

(1.20)

This decomposition is equivalent to a KL expansion [31,34,35] of 8n(72) as shown

by writing,

00

8n(72) = L; bn 4>n(72),
n-l

(1.21)

The random coefficients bn have the properties: < bn > = 0 and < Ibnl2> = 1.

They are orthogonal since solut.ions {4>n}exist which satisfy Eq.(15) [31]. The right

side of Eq. (21) converges in the mean square sense to 8n(72) if the kernel is of the

form [31]

00

G(7,7)= L; 1 4>n(t) 12.
n-l

(1.22)

The kernel C(71, 72) satisfies Mercer's theorem, which states [33]

"If C(71 ,72) is a definite continuous kernel then the expansion given by Eq.(22) is

valid and converges absolutely and uniformly. "

This theorem ensures the convergence of Eq.(21). Eq.(20) is similar to that used by

van Vliet and Chenette in their spectral analysis (excluding the constant CFN) (Eq.(4)

of ref. [20]), although they assumed that zero correlation for 171-721» p, where p is

the correlation length, is a sufficient condition for its derivation [16]. Here we see that

one must also check that the eigenfunctions used correspond to a basis set of a KL

expansion. However their original analysis remains valid because a circular probe was
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assumed and section F shows that the conditions leading to Eq.(20) are satisfied for

this geometry.

D. Correlation effects

The influence of net plane boundaries and critical fluctuations on the pair covari-

ance C(r'i, r2) is now considered assuming reflecting boundaries exist on the perimeter

of the net plane and that they exert a negligible effect on the critical fluctuations.

The pair covariance is then written

(1.23)

where

(1.24)

is the correlation boundary effect [16]. Critical fluctuations are excluded from the

present study, which implies Cp = o. To find the condition under which this assump-

tion is valid the Fourier transform of the two dimensional density fluctuation

8n( r) = ~ elf.'" 8n(k),
k

(1.25)

and the probability density function for the Fourier component 8nCk) in mean field

approximation [36]

(1.26)

is used, where do is a normalization constant and d1, d2 are coefficients resulting from

the density fluctuation expansion of the thermodynamic potential. Using the defining
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relation for the k-space covariance of the density fluctuation and Eq.(26) leads to

(1.27)

Eqs.(17) and (27) yield

(1.28)

The Fourier transform of Eq.(27) is

(1.29)

where the area is assumed large enough to replace summation by integration,

R = 11"'1-1"'21, Ko is the zero order modified Bessel function, and p =( d2/ dl )1/2. The

asymptotic expansion of Eq.(29) is

Thus critical fluctuations are negligible when Ap » p2. Assuming this holds then

Cp = 0 and substitution of Eq.(24) into (14) yields

R(t) = CFNAp-l < 8AJ2>{ J J d1"'1d1"'2[G(1"'1' t ;1"'2) - Ail Jd1"'3 G(1"'1' t ;1"'3)]} (1.30)
A, A, AT

If the net plane, with reflecting boundary, and probed region are squares of area

4b2 and 4a2 respectively and centered at the origin then the Green function is

2 00

G(1"'1't ;1"'2)= II [ :E e->..2Dt 'Yn(Xil) 'Yn(Xi2) ],
i-I n-O

(1.31)

Neumann factor. Combining Eqs.(31) and (30) results in

R(t) = CFN<(8N)2 > [Ap-l JJG(1"'1' t ;1"'2)d1"'1d1"'2- (Ap /AT )]. (1.32)
A,A,
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Eq.(32) is equal to the autocorrelation function Gomer and coworkers obtained by

other means [13,14,171.

The factor (Ap / AT) is a result of the boundary effect. Its physical significance is

00

clarified by considering the relative noise power P = JS(J)df , which is also .given by
o

P = 2R(0). (1.33)

Using Eqs.(32) and (33) the relative field emission flicker noise power becomes

(1.34)

Thus, in the limit Ap -+AT, the noise power approaches zero. The reason is that

fluctuations occur in this system only when particles diffuse in or out of the probed

region Ap, which is impossible when Ap = AT. This condition holds whenever adsor-

bate induced flicker noise occurs in a closed system and will be used in section F to

check the validity of the spectral density derived for the case of a circular net plane.

The autocorrelation function derived by Reed and Ehrlich does not have this property

[37]. That the autocorrelation functions given by Eqs.(20) and (32) are not equivalent

is due to the system geometry. The '"Yn(x)in Eq.(31) constitute a Fourier series, which

do not form a basis in a Karhunen-Loeve expansion [311. Thus one cannot substitute

Eq.(31) into (20) and obtain the proper expression for the noise power, Eq.(34), since

the factor (Ap/AT) would be missing.

It is also noted in passing that the total field emission noise power is really a sum

of Eq.(34) and the shot noise term 2el Af BW, where Af BW is the bandwidth of the

spectrum analyzer. However this last term will be dropped from further discussion.
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E. Unbounded diffusion spectrum.

The noise spectrum S( w) is now developed in the absence of net plane boundaries.

First an explicit derivation of the after-effect factor P, is provided to disprove several

erroneous formulations [6,9,23]. Then the correct form of S( w) is given when site

exclusion occurs for an otherwise noninteracting adsorbate lattice gas. Also another

method is suggested for deriving D (n) from S( w) for a fully interacting adsorbate sys-

tern.

In the limit AT--.oo, Eqs.(20) and (32) become identical and are related to

Smoluchowski's probability after-effect factor since R( t) = CFN<(8N)2 > [1-P,( t)].

Specifically,

(1.35)

Eq.(35) can be evaluated in closed form' by transforming to polar coordinates. The

factor P, becomes

(1.36)

where ex2=rp2/4Dt and 10 is the zeroth order modified Bessel function.

The integrand of Eq.(36) can be expressed as the Bessel function Jo hence,

(1.37)

Expanding the ex'" order Bessel function as a sum of Laguerre polynomials [38]

00

eZJa(2VXZ)=(xztI2 ~ [f(n+a+l)]-l L:(x)zn,
n-O

(1.38)
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casts Eq.(37) in the form

(1.39)

The integral in Eq.(39) is given by

00

Je-I/ L:(y) dy =e-z [L:(x) -LnQ-1(x)].
z

(1.40)

Combining Eqs.(40) and (39) leads to

With the aid of the recursion relation

(1.42)

Eq.(41) becomes

Substituting Eq.(38) into (43) yields

(1.44)

As noted in the introduction the value of the argument Q'has been the source of con-

fusion, although Eq.(44) was first stated long ago by Smoluchowski [8].

Using Eq.(44) the field emission current autocorrelation Eq.(35) can be written

The asymptotic expansion of Eq.(45) is
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lim R(t) '" CFN«8N)2>(rp2/4Dt).t_oo

This expansion, also derivable directly from Eq.(35), determines D( n) when noise

measurements are made in the time domain [12,13,24]. Using the Wiener-Khinchin

theorem, the spectral d~nsity corresponding to Eq.(45) is

Soo(W)=CFN«8N)2> 8rp2
[

berl~keil~ + beil~kerl~

]D -u . (1.46)p

The subscript 00 is a reminder that the diffusive motion is unbounded, up = wr; /D,

and berv beiv keil, kerl are Kelvin functions. The term in braces was first given by

Burgess [10] and later by van Vliet and Chenette [20]. The Eq.( 46) spectrum also

corresponds to the field emission current autocorrelation function developed by

Mazenko, Banavar, and Gomer [14].

If the adsorbate is represented as a noninteracting lattice gas with site exclusion,

then

< (8N)2> = < n > Ap (I-A), (1.47)

where A= n ao2and ao is the lattice constant. Note that lim< (8N)2 > = < N > ,>'_0

which is characteristic of ideal gas behavior. In this case Eq.(46) yields a spectrum

similar to Timm and van der Ziel's [11]except they mistakenly inserted an additional

factor of A into Eq.(47).

The low and high frequency limits of Eq.(46) are respectively,

(1.48)

and

lim Soo(w)= 23/2CFN< (8N)2 > DI/2 r-l W-3/2.w_oo p (1.49)

,:
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Recent measurements of K/W(I11) show a good fit to Eq.(46) [261.Comparison of the

theoretical and experimental curves allows a value of D(n) to be obtained in two

ways. The most direct method is to compare abscissas, which assuming rp is known,

leads directly to D (n )."The second method is to compare ordinates and introduce a

vaiue for CFN < (8N)2 >, which is obtainable by a measurement of the total noise

power P. This determines D( n) as it is the only remaining variable.

F. Bounded diffusion spectrum

In this section a closed form solution for the spectral density function including

the boundary effect is derived. The net plane and probed region are taken to be con-

centric circles with radii r, and rp respectively. Physically the bounded plane

corresponds to the radius of the chosen (hkl) plane of the emitter. For this geometry

the form of the Green function is shown to be equivalent to a KL expansion of 8n.

The spectral density will then be given as the Fourier transform of Eq.(20)

Sew) =4CFN«8N)2>Ap-1Re f f G(7i,w;r2) drl dr2,
A,A,

(1.50)

00

where G(r1,w;r2) = f G(rl,t;r2)eiwt dt. To prove that the rep~esentation of
o

Re f drg G(rl' w;rg) = O.
AT

(1.51)

Then the spectrum derived from Eq.(30) will be equal to that obtained from Eq.(20).
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The function G(71 I t ;72) satisfies

(1.52)

and G(711 w;72) solves

(1.53)

with Neumann boundary condition

where k2=-iw/D and a/an is the normal derivative evaluated at the boundary.

Expanding G(71, w;72) as

and then substituting Eq.(55) into (53) leads to,

(1.56)

_ -6(r1-rz)6(4>~-4>2)
- D r1

271'

Operating on Eq.(56) with Jd4>e-n~ and defining Pm( zll zz) = plm)( r11 r2) I where
o

(1.57)

Here the primes (' and") represent a/azand a2/az2 respectively, and Pm satisfies
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Bessel's equation. The Eq.(55) expansion must also be substituted into the Eq.(54)

boundary condition which yields

The reciprocity relation for the Green function requires the solution to Eq.(57) be

written

where r «r» is the lesser (greater) of r1 and r2. The Wronskian W(Yvyz) is

evaluated at r1 = r2 and Y1and yz must satisfy the boundary conditions at r < =0 and

at r>=r,. The finiteness of G at r<=0 implies

The function Y2must be bounded as r>~oo, which requires yz to have the form

where H~1) is the m,h order Hankel function of the first kind. A and B are deter-

mined by the boundary condition, ~ Y2(r) Ir-r = 0, and sour I

The Wronskian is then equal to

Eq.(59) becomes

20

(1.58)

(1.59)

(1.60)

(1.61)

(1.62)

(1.63)

(1.64)
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Combining Eqs.(55) and (64) leads to

Jd-r3 G(-rl' Wj-r3) = 1r/iw.
AT

(1.65)

Thus Eq.(51) holds, which proves that the expression for G(-r1,Wj-r2), as given by

Eqs.(55) and (64), does correspond to a Karhunen-Loeve expansion of {)n(-r). Substi-

tuting Eqs.(55) and (64) into (50) leads to the following "expression for the spectral den-

sity,

(1.66)

where

(1.67)

and

Evaluation of Eq.(67) leads to Eq.(46). Eq.(68) represents the affect of the boundary

on S(w). The Eq.(66) factorization is a general result independent of the net plane

geometry, which arises from the possibility of separating the Green function into a

source and boundary term [39]. Performing the integrations in Eq.(68) yields



A check on SB( w) is obtained by noting,

lim SB(W)= O.
r,-oo

Equation (69) reduces to

where U, = wr,2/ D. Comparing Eqs.(46) and (71) shows that for all frequencies

lim S(w) = O.
r,_r,

22

(1.70)

, (1.71)

(1.72)

As discussed earlier with regards to the total noise power Eq.(72) is a necessary condi-

tion that must be obeyed by a closed diffusive system. Furthermore,

Combining Eqs. (48),(66), and (73) results in

(1.73)

(1.74)

Eq.(74) shows that in the low frequency limit, the spectrum for a bounded net plane is

constant. This conclusion has also been arrived at by different means for the case of

one dimensional diffusion by van Vliet and Fassett [16] and by van Vliet and van der

Ziel [40], who argued within the general framework of Richardson's theory that a con-

stant low frequency spectrum would result from placing a lower bound on vectors in

k-space.

The presence of the boundary removes the low frequency logarithmic divergence

of S( w). This negates the argument that a diffusion process cannot produce a constant
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low frequency spectrum such as found experimentally for K/W [4,25]. However it

must be noted that a clear refutation of the model was never really provided by these

experiments as they did not conform to the assumptions of the theory. Neither study

probed a portion of a single crystal plane and in one case the adsorbate was in equili-

brium with its vapor [25], which requires analysis using a grand canonical ensemble.

With the aid of Eqs.(49) and (66) the asymptotic expansion of Eq.(71) yields

When up » 1/2(1-rdrp)2 then S(w)-+Soo(w),i.e., Eq.(75) reduces to a w-3/2 depen-

dence equivalent to Eq.(49) for the unbounded system. Physically this is because

appreciable adatom interaction with the boundary is not allowed on such a small time

scale.

Fig. 1 graphs the spectra Soo(w) and S( w) given respectively by Eqs.(46) and (66).

S( w) is plotted for several different ratios of the net plane to probed area radii rt/ r p=

1.5,2,3,and 10. The presence of the boundary reduces the noise power in the low fre-

quency regIme.

G. Anisotropic diffusion

The preceding sections assume two dimensional adsorbate diffusion is isotropic.

However certain substrate systems exist, e.g. bcc (211) planes, that are known to

induce anisotropy in the diffusive adatom motion. The relation between a diffusion

tensor and the field emission autocorrelation function has been worked out by Bow-

man et al. [41]. This section considers what influence such behavior has on the

unbounded spectral density.
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If a square region of the net plane is probed the Eq.(35) autocorrelation can be

factored as

R~(t) = R~(t)xR~(t). (I.76)

The 0 superscript is a reminder that a square probe is used,

and Ii is the length of the probed region in the ith direction, (i = x,y). Di denotes the

corresponding diffusion coefficient. The spectrum is then

S~(w) = S~(w) * S~(w), (I.77)

where * denotes the convolution product and S:x,(w) is the spectrum corresponding to

the one dimensional R~(t). In general this results in a complicated expression for

S~(w). By treating the limit of one dimensional diffusion, i.e., D,JDz = 0, with no

boundaries the effeCtof channeled motion on the noise can be demonstrated. Restrict-

ing adatom motion to the x-direction reduces Eq.(76) to

The superscript 1D shows the spectrum results from one dimensional motion. Appli-

cation of the Wiener-Khinchin theorem yields

(1.78)

and O=lz(w/2D)I/2. The frequency dependence due to one dimensional diffusion has

been given previously by Burgess [10] and Voss and Clarke [18]. Eq.(78) is graphed in

Fig.l assuming Iz = 1rrt This results in equality of the scaled noise power

P /« 8N)2> for circular and square probed regions. The normalization allows for
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Fig.!. Graph of the normalized spectra for: unbounded diffusion Soo(up ) with probe radius
rp' bounded diffusion S( up ; rt /rp = 1.5,2,3,10) with net plane radius rt, and unbounded
one dimensional diffusion S;:( up) with a square probe of length (z, The latter quantity is

plotted assuming /:z = 1f'rp2.up = wr;/D. See Eqs.(46), (66), (71), and (78) for the function-
al forms.

possible anisotropy in < ( oN)2 >, which has been observed by measuring R (0) with a

narrow rectangular probe [42].
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To compare one and two dimensional motion using SJ! and Soo respectively it is

necessary to show that the probe geometry has a negligible effect on the frequency

dependence of Soo , because in the latter case a circular probe was assumed for the

calculation. The ambiguity is removed by first noting

(1.79)

and

(1.80)

Comparing Eqs.(49) and (80) yields

(I.81)

Thus, excluding a numerical factor, the high frequency dependence of the flicker noise

is geometry independent. This is a characteristic property of diffusion processes [19].

The high frequency noise component is one dimensional in nature.

It is now shown that the low frequency limit of Eq.(77), i.e. the spectrum

corresponding to a square probe, is the same as that obtained in Eq.(48) for the case

of a circular probe. For a square probe Ap =1:2and Eq.(77) becomes

's : 's /I

S~(w) = CFN«6N)2> --Lf dx f dzf dyf dv ker [YW(z2 + v2)/D]. (1.82)
Ap 7rD 0 0 0 0

Eq.(82) can be written

: IcosS

dO f
o

dr r ker(ar), (1.83)

where a = VWfl5 and r=Y z2+v2. For lowfrequenciesEq.(83)becomes
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(1.84)

Comparison of Eqs.(48) and (84) coupled with Eq.(81) demonstrates that probe

geometry has a negligible effect on the spectra and therefore one can use 8;: and 800

to represent the limiting cases of one and two dimensional diffusion. Fig. 1 illustrates

that one dimensional motion increases the noise power in the low frequency band of

the spectrum.

H. Summary

The aim of this paper has been to analyze the spectrum of field emission flicker

noise induced by equilibrium adsorbate density fluctuations in a canonical ensemble.

The relative field emission current autocorrelation function R(t) is a product of two

factors. One contains terms related to the Fowler-Nordheim equation CFN and the

second is the autocorrelation of the total adparticle number within the probed region

<8N( t) 8N(O», Eq.(9). A general expression for R (t) has been derived that contains

the Green function for the diffusion equation G(rl' t ;r2) and the pair covariance of

the density fluctuations C(rl' r2)' Eq.(14). This expression is simplified using several

results from the theory of integral equations where C(r1, r2) is taken as the kernel.

The procedure is equivalent to a Karhunen-Loeve expansion of the density fluctuation

8n(rj, section C. The presence of boundaries and critical fluctuations on C(r1,72)

has also been discussed, although subsequent analysis assumes the system is not

influenced by critical fluctuations, section D. A form of R(t) studied by Gomer was

obtained by considering a square probed region on a square net plane, Eq.(32). This
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formulation yields an expression for the flicker noise power that is a product of the

constant CFN, the mean square particle number fluctuation < (8N)2 > within the

probed region, and the factor ( 1- Ap / AT ). The latter term relates the noise power

to the ratio of the probed to net plane area, Eq.(34). For unbounded diffusion the

autocorrelation function is proportional to Smoluchowski's probability after-e.ffect fac-

tor, Eq.(36), and the spectral density function Soc,(w)is analogous to one derived by

Burgess for contact noise in semiconductors, Eq.(46). A closed expression was found

for diffusion on a circular net plane with a circular probe. The form of S(w) explains

several characteristics of field emission noise measurements. It was shown that the

existence of finite net plane area produces a flat low frequency spectrum, Eq.(74). The

affect of anisotropic diffusion on S( w) in the limit of one dimensional motion was con-

. sidered in section G. The qualitative result of such motion is to increase the noise

power in the low frequency band in contrast to the boundary effect which decreases it.

The high frequency dependence of S( w) is affected by neither the finite size of the net

plane nor by anisotropic motion.
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I. Appendix. Wiener-Khinchin theorem.

The specific pupose of this appendix is to derive Eq.(I.33), which requires use of

the Wiener-Khinchin theorem. A detailed analysis is provided for several reasons.

First, although there are many expositions of this theorem, alas, not all are mutually

consistent. The derived relation between the autocorrelation R ( t ) and the spectral

density S( w) can vary by a factor of two or four. Second, the theorem is applied fre-

quently throughout this dissertation and a clear understanding of its origins provides

a more secure basis upon which these results can be placed. Third, certain elements of

the derivation are used in the Fourier analysis presented in chapter IV, section E.

Fourth, a technique used here provides a quick alternate calculation of R( t)

evaluated by Gomer in reference [12], although this point is not shown here. Finally it

was done so that every step would be clear to myself. The construction of the proof is

nontrivial and many authors either state the result or go only part way in deriving it.

For example even van der Ziel's relatively thorough analysis [43] excludes a necessary

section concerning arguments related to Fig.(2) below.

Historically this theorem arose from the inability of classical Fourier analysis to

deal with a random function I(t), which does not approach zero as its argument tends

to infinity. Gouy, Rayleigh, and Schuster preceeded Wiener in considering this type of

function in their investigations of various systems, e.g. white light, stock market

fluctuations, and weather forecasting. For a discussion of the early history see the

classical reference [44]. Wiener's contemporary, J.R. Carson, a communication

engineer at Bell labs, also provided important insights into calculating the spectrum of

a random function, see reference [45] and chapter IV. Khinchin, working in Russia

independently of Wiener and Carson, found the relation between R( t) and S( w) four
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years after Wiener [46]. His research was concerned more with questions of existence

and the measure theoretic aspects of the functions.

The original and most general version due to Wiener himself can be found in

reference [44]. His result appears as

00

s' (u) =...L J~(x) eizu dx21r
-00

(A.1)

or

00

1 J
[

eizu 1

]
S(u) = - ~x) . - dx,21r tx-00

(A.2)

where ~x) = lim IT JI(x + t) I. (t) dt is the autocorrelation. s' is the spectral
. . T_oo 2

density function named S( w) here. Eq.(A.2) was called the integrated periodogram of

I(t). A problem with reading the early literature is that the 6 function had not been

developed and use of Stieltjes integration techniques was required. Although Eq.(A.l)

is the most general result, Wiener does not discuss several of the more specialized ver-

sions. He does consider the case where I(t) is vector valued as does Reichl [471.For the

presen t purposes this extension is not necessary and we consider 1(t) to be a scalar

valued function. The present account follows more along the lines of Lax [151.

The random function I(t) is assumed stationary

< I(t +t') I(t') > = < I(t) 1(0)> (A.3)

with< I(t) > = O.Although lim I( t)::F0, one begins by defining I(t) ::F 0 only in the
T-oo

interval 0 < t < T and later taking the limit T --+ 00. Then it may be expressed in a

Fourier series



,
i

00

I(t) = ~
n--oo

where wn = 2 ~n, n = O,:H,:f:2, etc., with

T

1
f

.

an =T J(t) e-IW. t dt.o

The noise power per frequency atfn = wn /2rr is defined

T/2

f I(t) e-iw. t dt 12
-T/2
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(AA)

(A.5)

>. (A.6)

is given by

The factor 2 arises from the convention that the total dissipated power P = < 12 >

T/2
00

< 12> = lim ..L f J2(t) d t = J S(J) df.
T_oo T -T/2 0

Proof of Eq.(A. 7).

T /2 T /2

S(J) = lim .!. f f < I(t) I(t') > e-27ri/ (t-t') d t d t'.T_oo T
-T/2 -T/2

Integrating Eq.(A.8)

(A.7)

(A.8)

00 T/2 T/2 00

f S(f) df = i~oo~ f f dt dt' < I( t) I( t') > f e-27ri/(t-t')df (A.9)
o -T/2-T/2 0

and using

00

8(f) = 2 f e27r/Tdr
o

(A.10)
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00 T/2

JS(J)df =i~oo~J dt <I(t)2>=<I2>. Q.E.D.
o -T~

(A.ll)

The assumption of stationarity has been used, which makes < I (t )2 > time indepen-

dent.

T

-T

-T

t'

/
/

/
/

/
T

Fig. 2. Diagram of the double integration limits used in Eq.(A.13).

to Eq.(A.6), which is written as

Referring to Fig.(2) the coordinate transformation t - t ' = T, S = t ' is applied

t
I

t

t

I
'"

.
I
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T T

< an a; > = f~004~2 f f < I(t) I(t') > e-iw(t-t')dt dt'. (A.I2)-T-T

It then follows from Eq.(A.I2) that

2T 2T-1 TI

· . I f f ( )
-iw T

< an an > = hm ~ dr ds R r e ·
T-oo 4T -2T 0

2T

= lim --L f (T-004T2 dr 2 T -I rl ) R(r) e-iWT-2T

2T 2T

= lim [-L f R(r) e-iWT- ~ f I rI R(r) e-iWTdr ], (A.I3)
T_oo 2T -2T 4T -2T

where R(r) = < I(r) 1(0) >. Hence

00 T

S(J) = 2 f R(r) e-iWTdr - lim .1. f I rl R(r) e-iWTdr. (A.I4)T_00 T-00 -T .

Consider the last term

T T 0

lim .1. f I rI R(r) e-iWTdr = lim .1.[ f r R(r) e-iWTdr + f (-r) R(r) e-iWT dr ]T-oo T
T T_oo T

- O-T

T

= lim I
T [f r ( R (r) + R (-r) ) 2 cos wr d r ]T_oo

o

T

= lim
T
I Re f r [R(r) + R(-r) ] e-iWT drT_oo

o

T

= Re lim ~T d
d f [R(r) + R(-r) ] e-iWTdr.T-oo I W

o
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Assuming the current is bounded, i.e. I< I( t) > I <M then

T T

I i~oo ~ J I TI R(T)e-iWTdrl < 2 /, i~oo ~ J I R(T) + R(-r) I dT.-T 0

Now

I R(T)+ R(-T) I < I R(T)I + I R(-T) I < 2M2.

Therefore

T

lim 1... J I T I R(T) e-iwr dT = O.T-oo T -T

Thus Eq.(A.I4) becomes

00

S (I) = 2 JR(T) e-iWTdT,
-00

34

(A.IS)

(A.I6)

which is the Wiener-Khinchin theorem. Th:: factor of 2 is sometimes omitted as, e.g. in

Papoulis [31].

Onsager's hypothesis [47]explains why the field emission R( t ) is an even function

R(t)=R(-t).

From Eqs.(A.16-17) it follows that

S( - f ) = S( f ).

00

Operating on Eq.(A.16) with J dl eiwt' and using the properties of the 8-function
-00

leads to

00

R( t) = ~ f S(f) eiwt df.
-00

(A.17)

(A.I8)

(A.19)
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Using Eq.(A.18) the left side of Eq.(A.19) yields

and hence

00

R ( t ) = 1.f S( f ) cos w t df
2 0

(A.20)

00

R(O) = 1. f S(f) df.
2 0

(A.21)

Combining Eqs.(A.7) and (A.21) yields the desired result

which appears as Eq.(I.33).

P = 2R(O), (A.22)
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ll. Nature of Diffusion

Coefficients and Their Relation to Field Emission Noise

"[ do~ 't know nothin' 'bout voltage
[ don't know nothin' 'bout watts"

Muddy Waters

A. Introduction

The density dependence of a diffusioncoefficient (diffusivity) D(n) provides

insight to the influence of many body interactions on the mass transport properties of

a system. Gomer's first analysis of field electron emission noise showed how equili-

brium surface density fluctuations could be measured [1]. This study related the field

electron current to the number fluctuation of noninteracting adatoms within a probed

area Ap. Prior to this work surface diffusivities were only obtainable by measuring a

nonequilibrium decay of a density gradient. Later Mazenko, Banavar, and Gomer

(MHG) extended the fluctuation theory to include fully interacting equilibrium adsor-

bate systems, with the exception of those influenced by critical fluctuations, using

hydrodynamic correlation theory [2]. This allowed a diffusivity D (n) to be measured

for a range of densities n-N lAp with N the particle number in A,. The measured

D(n) was taken to be the chemical Dc defined by Fick's first law.
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In the present study it is proposed that surface density fluctuations, such as

measured in a field emission noise experiment, be associated with a hydrodynamic Dh

defined as the equilibrium limit of Dc' The chemical Dc is placed in the more general

context of nonequilibrium systems. The circumstances under which chemical

eitffusivity is equal to its equilibrium limit, i.e. Dh(n)=Dc(n), are examined in terms of

irreversible thermodynamic stability theory [3]. In general these diffusivities are

equivalent when local equilibrium is maintained and the density gradient is small,

which is the regime of strictly linear irreversible thermodynamics. An exception

occurs when an adsorbate phase transition exists within the range of densities probed

by the nonequilibrium experiment. In this case equality of the two diffusivities cannot

be guaranteed.

The discussion begins in section B by relating phenomenological transport

coefficients to each other. Applying these equations to a Langmuir gas in C the

results are then readily extended to a fully interacting lattice gas in D where interac-

tions influence both the kinetic coefficient and the thermodynamic response of the sys-

tem. In section E relations between diffusivities associated with equilibrium fluctua-

tions are found using Kubo equations. Here it is emphasized that the distribution func-

tion used to evaluate ensemble averages is the determining factor for distinguishing

Dh from the tracer Dt. Section F evaluates the equivalence of Dh(n) and Dc(n) by

considering the excess entropy production of a diffusive process.
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')c. B. Linear phenomenological equations.
~J.
!

To introduce a consistent notation and provide relations among various mass

transport coefficients used in subsequent sections a comparison is made of three

phenomenological equations. Linear irreversible thermodynamics relates current den-

sity J to thermodynamic force X by

J(n) = L(n )X(n), (11.1)

where L is the kinetic coefficient and the vectorial nature of the pertinent variables is.
I

I
implicitly understood. The present discussion only considers mass transport and no

thermodiffusion effect. The generalized force is defined

X(n) = -\7Jl(n)/T, (II.2)

with Jl the chemical potential. Using the chain rule and Eq.(2), Eq.(l) becomes

J(n) = -[L(n)/Tx(n)]\7n, (11.3)

where the isothermal response function x(n) = ({)n/{)Jlh is [4]

(II.4)

and "'T is the isothermal compressibility.

Writing the current density in terms of a local velocity,

J(n) = n v(n), (II.5)

and defining the mobility u as,

u(n) = -v(n)/\7Jl(n), (II.6)

transforms Eq.(5) to
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J(n) =-[ nu(n)x-1(n)) V'n. (11.7)

Fick's first law provides a third expression for J and defines the chemical

diffusivity Dc(n),

(11.8)

Combining Eqs.(3), (7), and (8) leads to the following relations among L, u, and Dc:

L(n) = n u(n) T (11.9)

Dc(n) = n u(n)/x(n) (11.10)

Dc(n) = L(n)/x(n) T. (11.11)

c. Langmuir gas (site exclusion only).

Transport coefficients for a fully interacting lattice gas are most easily developed

by first applying equations of the preceding section to a Langmuir gas. The chemical

diffusivity is then independent of density and is given by [5,6]

(11.12)

where ).,2is the mean square jump length and r 0 is the single particle jump rate. The

superscript I is a reminder that a Langmuir gas is being considered.

The chemical potential for this system is [5]

pi = Po + kT In O(I-Or!' (11.13)

where Po = constant, 0 = n ao2,and Combining Eqs.(3) and (13) leads to
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J(8) = - [ k LI(8)/8( 1-8) ] \l8. (II.14)

It then follows from Eq.(8) that

(II.15)

With the help of Eq.(9), Eq.(15) can be expressed in terms of mobility as,

ul(8) = ( 1 - 8 ) D~/kT. (11.16)

Sadiq and Binder found that the transition probability for a kinetic lattice gas model

allows two neighboring atoms to exchange sites without affecting diffusivity [7],i.e.D:

remains independent of coverage 8. Eq.(16) is consistent with this site exchange

mechanism since the mobility approaches zero as 8~1. This means, by Eq.(6), that for

unity coverage the average velocity evaluated at a point between thes<>two sites will

also be zero even though each adatom has a nonzero veloc:ty.

D. Fully interacting lattice gas.

To discuss Dc(n) for a fully interacting lattice gas and also to make contact with

other studies, Eq.(3) is rewritten as

J(n) = - [k n-1L(n)F(n): '1, (II.17)

where

F(n) = n/kTx(n) (II.18)

is the thermodynamic factor discussed by Reed and Ehrlich [5]. Combining Eqs.(8),

(9), and (17) leads to
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Dc(n) = k Tu(n) F(n). (11.19)

Coupling the mobility of an interacting lattice gas, written as u(O)= u/(O)'l'(0),

with Eq.(16) yields,

u( 0) = (1-0) 'I'{O)D~/kT. (11.20)

Substituting Eq.(20) into (19) results in,

(II.21)

where the effective jump rate is defined

(II.22)

Reed and Ehrlich named Dc, expressed as Eq.(21), kinetic diffusivity [81. In Monte

Carlo MC calculations f( 0) is found by taking the ratio of successful to attempted

jumps. A problem with all phenomenological formalisms is that analytical expressions

for L, u, f, or 'Yoccur only in microscopic theories. Thus the degree of approximation

made by estimating f(0) as is done in MC experiments is not known. The same prob-

lem exists for theories cast in terms of correlation coefficients [61.

Zwerger defined bulk diffusivity as [11j,

(II.23)

which is a generalization to interacting systems of Einstein's relation between mobility

and the free particle diffusivity, Do=uokT. Then from Eqs.(19) and (23),

(II.24)

A microscopic derivation of Eq.(24) involving ..q\lilibrium fluctuations is discussed in

section E.



46

Zwerger recognized that Db is associated with the center of mass of the system.

Combining Eqs.(12), (20), and (23) yields,

(II.25)

Eq.(25) is consistent with center of mass motion since lim Db =0, i.e. the center of0_1

mass does not diffuse at unity coverage.

Db is also found in Butz and Wagner's study (Di in their paper) [12]. However

they state that this diffusivity describes the motion of a tracer particle within a homo-

geneous concentration. This interpretation is not correct as Eqs.(39) and (40) show

that for an equilibrium system Db is a sum of the adatom velocity cross-correlation

function and the tracer De. Furthermore, because Db is related to Dc by Eq.(24) it is

defined for nonequilibrium as well as equilibrium systems.

E. Equilibrium fluctuations and hydrodynamic diffusivity Dh'

Another diffusivity is now introd uced, termed hydrodynamic Dh' which is to be

associated with field emission noise measurement of surface density fluctuations and

defined as the equilibrium limit of Dc' The relationship between Dh and other equili-

brium diffusivities is then considered by expressing them as Kubo equations.

The most general first order relation between current flux and particle density is

given by

J(n(x,t)) = -Dc(n(x,t),x)Vn(x,t). (II.26)

The Dc involved in this version of Fick's law has an explicit spatial dependence
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independent of density. The form is valid when diffusion occurs over more than one

(hkl) plane, i.e. when the substrate potential profile is spatially inhomogeneous. We

shall only consider diffusion on a single plane in which case Dc =D c(n), assuming

n=n(x) is invertible. Application of the mass continuity equation to Eq.(26) yields

Fick's nonlinear second law:

[a/at - "1'(DcV)]n(x,t) = O. (11.27)

A system at equilibrium is characterized by spatial homogeneity of the density,

i.e., lim n(x,t) = constant. This condition means-1_00

lim V'Dc(n) = O.t_oo (11.28)

The hydrodynamic diffusivity is then defined as the equilibrium limit of Dc,

Dh(n) = lim Dc(n),1_00 (II.29a)

or equivalently,

(II.29b)

The limit in Eq.(29a) indicates a sufficient time has elapsed for the decay of any

macroscopic density inhomogeneity. Thus for an equilibrated system Eq.(28) holds and

Eq.(27) reduces to the linear diffusion equation,

( a/at -Dh V2 ) n(x,t) = O. (II.30)

The cross-covariance of the equilibrium density fluctuation is,

S(x-x',t) = < 6n(x,t)6n(x',O) >, (II.31)

where 6n(x,t) = n(x,t) - < n >. Onsager's hypothesis that microscopic density

fluctuations decay on the average according to the macroscopic Eq.(30) yields,
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( B/at -D" \f2 ) S(x-X', t ) = 0, (11.32)

and it is implicitly understood that the average in Eq.(31) is with respect to an equili-

brium ensemble.

The relative field emission current fluctuation can be written [2]

R(t)=cof f dXdX' S(X-X', t),
A,A,

(11.33)

where Cois a constant related to the Fowler -Nordheim equation. Ignoring boundary

effects, a consequence of Eq.(32) is that the asymptotic limit of R (t) is [2]

limR(t) =( kTXAp2/47rD"t),I_co (11.34)

where Dc of reference [2] has been replaced here by D". Thus equilibrium field emis-

sion noise experiments are associated with a measurement of the hydrodynamic

diffusivity D" and not Dc' We wish to retain the distinction between equilibrium and

nonequilibrium dynamical systems by separately considering D" and Dc and then

. evaluating under what conditions they are equal in section F.

The following discussion examines diffusivities for systems at equilibrium. Kubo's

expression for diffusivity is derived by considering a weak perturbation on an equili-

brium system and its linear response [13],

00

D" = (2kT Ap X rl f <1(t)7(O) > dt,
o

(11.35)

where the total particle flow is defined,

N

1(t) = ~ ~(t).
i-I

(11.36)
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Using Dh in Eq.(32) is justified as we have associated it with equilibrium fluctuations.

The statistical average is taken with respect to the N-body Liouville operator LN,

(11.37)

where Z-l e-fJHNis the canonical distribution, HN is the N-body Hamiltonian, and

N

r = n d2xd2p.
i=l

Tracer (tagged particle) diffusivity is defined

Dt(n) = lim< xi(t) >/4t.,-+oc (11.38)

Again the average is with respect to the canonical ensemble Eq.(37). Equivalently,

Eq.(38) can be written [14],

00

(11.39)

Combining Eqs.(35), (36), and (39) results in

00

kTxDh(n) = n D,(n) + + ~ J< Vi(t).Vj(O)> dt.
2..p i~j 0

(11.40)

Eq.(40) shows Dh(n) is not equivalent ~o Dt(n). This is well known from neutron

scattering within liquids where Dh(n) is related to the sum of coherent and incoherent

scattering effects and D,(n) is due solely to the incoherent contribution. That these

diffusivities have different energetics and preexponentials has been demonstrated

recently in a MC study of surface diffusion [10]. However the tracer D,( n) cannot be

measured from actual field emission fluctuations as there is no way to distinguish a

single particle in an interacting system by this method.



If the adsorbate behaves as an ideal gas with site exclusion omitted then

x = <n >/kT and Eq.(40)becomes,

00

Dh(n) = Dt(n) + IN ~ J<Vi(t).Vj(O»dt.2 .. 0'~J
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(H.4I)

cal property of this system is such that the time integral of the velocity cross-

It is then argued by MBG without further explanation that the corresponding dynami-

correlation function is identically zero, in which case Eq.(41) reduces to

(H.42)

While an ideal system in the thermodynamic sense is described by the ideal gas law, it

is not clear from a dynamical viewpoint that equilibrium fluctuations can occur

without some correlation of the velocities. Otherwise there is no mechanism for the

response of the system to re-equilibrate the fluctuation.

A slightly weaker version of MBG's implicit statement: X = nkT iff

00

f < Vj(t).Vi(O) > dt = 0 will now be proved, which then makes the derivation of
o

Eq.(42) more plausible. The proof will also clarify the role of probability density func-

tions (PDF's) in distinguishing Dh from Dt.

It is well known that

Dh = lim< Xi(t)2>h/4tt_oo

can be derived directly from Eq.(30). An equivalent form of Eq.(43) is given by,

00

(11.43)

(11.44)
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which is found by the same means that led to Eq.(39). Eqs.(43) and (44) are similar to

those satisfied by D" Eqs.(38) and (39). The difference being that, in Eqs.(43) and (44),

,

.
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1.

n(x ,t)/ N is used as the PDF rather than the one associated with the canonical ensem-

ble, Eq.(37). This change in PDF is noted by placing the subscript h with the average

< >h in Eqs.(43) and (44). Using the solution to the diffusionequation as a PDF

means that the exact time evolution implicit in Eq.(37) is replaced by an approxima-

tion which is the hydrodynamic relaxation of local equilibrium. For this reason Dh is

termed hydrodynamic diffusivity.

Forster recognized that the N-body distribution function, Eq.(37), can be

replaced by the hydrodynamic av~rage < >h in Kubo's expression for diffusivity

evaluated at equilibrium, Eq.(35) [15], i.e.,

00

Dh = (2 kT Ap X )-1 f < 1(t)7(O) >h dt.
o

(11.45)

"
a Eq.(45) is obtained by Fourier analysis of Eq.(32). Combining Eqs.(36), (44), and (45)

,;. yields,

00

a., Dh [2Ap (kT X-n) ]= :E f < ~(t)."ij(O) >h dt.
i~j 0

(11.46)

Eq.( 46) shows that the thermodynamic relation for an ideal gas,

X = n/kT, (11.47)

is a necessary and sufficient condition for the time integral of the hydrodynamic velo-

city field to be uncorrelated:

00

f < ~(tV~(O) >h dt = o.
o

(1I.48)



\.

I

I

i
,

These results, based on Eq.(45), show in what manner the :MBG argument leading to

52

Eq.(41) can be accepted. The present discussion provides a mechanism that allows re-

equilibration of equilibrium fluctuations while allowing ideal behavior to occur in the

thermodynamic sense.

As a final note concerning equilibrium fluctuations the Kubo equation for bulk

diffusivity is given by [11]

00
N

Db = 2~ .~ f < Vi(t)."if;(O)> dt.
1,}=1 0

Combining Eqs.(35), (36), and (49) yields the equilibrium version of Eq.(24), now

derived microscopically

Ideal gas behavior reduces Eq.(50) to

Eq.(51) becomes,

when site exclusion interaction is introduced. Using Eq.(25) transforms (52) to

(11.49)

(11.50)

(11.51)

(11.52)

(11.53)
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F. Irreversible thermodynamic conditions for De(n)=Dh(n).

This section considers the equivalence of De(n) and Dh(n) from the standpoint of

irreversible thermodynamic stability theory. By defining the entropy production,

17[8]= J X, (II.54)

Dh(n) and De(n) are equal over the range of thermodynamic force 0 <X < Xo given,

(II.55)

The right hand side of Eq.(55) is Dc, which is seen by combining Eqs.(l), (11), and (54).

The equality always holds in the X ~O limit as this is just the definition of Dh, see

Eq.(29). There are several reasons to expect that an upper limit Xo exists beyond

which Eq.(55) and hence De(n) = Dh(n) breaks down. First, because the theorem of

minimum entropy production is inapplicable when the kinetic coefficient is not a con-

stant [3]. This happens when the range of densities probed by \7n becomes large

enough that "\IDe ¥' 0, i.e., when the nonlinear Eq.(27) rather than the diffusion Eq.(32)

describes the decay of the density inhomogeneity. Then it is uncertain whether 17will

vary quadratically in X. Secondly, the response X of the system is a thermodynamic

property and Eq.(55) implicitly assumes that X is well defined for all values of X, i.e.

local equilibrium occurs, but this may not be the case when X becomes large. These

points have not been previously addressed in surface diffusion studies.

The stability of the nonlinear Eq.(27) guarantees the uniqueness of the solution

[16] and hence would provide a sufficient condition for Dh(n) De(n). Within the

framework of the irreversible thermodynamic stability theory a sufficient condition is

that the excess entropy production be positive [3], i.e,

,
1

..
':f"

>
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P[8s] = f u[8s]dA = f 8J 8X dA > 0, (11.56)

where 8 represents a local variation with respect to the thermodynamic variable, in

this case density. Eq.(56) is identically satisfied when the variation of the kinetic

coefficient is zero: 8L = O. This' occurs when the range of probed densities is small

enough that DcX can be considered a constant with respect to the density fluctuation.

It is outside the scope of the present study to provide a complete stability analysis of

Eq.(27). However there is one situation, pertinent to surface diffusion studies, that

may occur which renders Eq.(56) useless in determining the equivalence of the two

diffusivities. Nonequilibrium thermodynamic stability theory is based on the assump-

tion that local equilibrium exists within the system. This ensures that terms appear-

ing in the expression for entropy variation, T 8s = - p,8n, as well as X, are well

defined and spatially continuous functions. Relative changes in thermodynamic param-

eters of neighboring points are then required to be of the order of the fluctuation in

each cell [16]. The basic criterion for the validity of the local equilibrium assumption

is: if there exists a fluctuation in the local variable P, then oP « P. If we let P = J

and note

8J =L 8X +X8L, (11.57)

where

8L = D T 8X+ X T 8D,

then it follows from Eq.(57) that

8X +.§x.. + 8D « 1
X X D

(11.58)

is required for local equilibrium. These three terms describe different properties of the
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system, being respectively: imposed external thermodynamic force, thermodynamic

response, and mass transport. For the present discussion we show how the form of the

thermodynamic response function can result in a breakdown of the local equilibrium

assumption. This happens when

6X/X « 1 (II.59)

is no longer true. Evaluating Eq.(59) leads to

(11.60)

However, as a phase boundary is approached "V"'T becomes infinite. At this point the

local equilibrium assumption is invalid. Fig.3 illustrates a situation where this occurs.

Curve (a) represents a range of coverages 8 where the system exists as a single phase

and local equilibrium holds. In this case a nonequilibrium system that obeys condition

Eq.(56) can be evaluated by the stability theory. Curve (b) represents a situation

where an initial concentration 8b-+8 a would exhibit phase separation and lead to a_

breakdown of local equilibrium. Then one could not conclude that the two diffusivities

are equivalent.

Comparison of data from surface diffusion studies concerning this point is limited

to the OjW(llO) system studied under nonequilibrium conditions by Butz and Wagner

[12], at equilibrium by Chen and Gomer [17], and with MC modeling by Reed and

Ehrlich [9]. These results do not clearly demonstrate Dh(n) Dc(n) for any experimen-

tal system. A simple comparison of Dh from ref.[17] and Dc from ref.[12] is precluded

as the experiments were carried out in different temperature regimes. The MC data of

ref.[9] shows Dc(n)~Dh(n) for long range (type III) interactions with Dc(n) evaluated

by Fick's law. From this result Reed and Ehrlich concluded that the equilibrium

fluctuation theory was not applicable to the ordered states created by this type of

'<,

l'
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Fig. 3. Thermodynamic phase diagram. Curve (a) represents a coverage range with no phase

separation. Curve (b) indicates phase separation as the system proceeds from 06 to 0IS in cov-

erage.

interaction. However exclusion of a particular adsorbate state is not consistent with

the hydrodynamic relaxation theory proposed by MBG that showed a density depen-

dent diffusivity can be derived for all equilibrium systems. Nor does it follow from the

discussion of the present section that the two diffusivities are by necessity equivalent.

Dh(n):F Dc(n) was also found even with Dc(n) evaluated at equilibrium using Eq.(21)

[9,10]. The inequality in this case must be due to MC approximation of r(O) because
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these diffusivities should be equal as Dh is the equilibrium limit of Dc' Thus it is

difficult to properly ascertain whether Reed and Ehrlich's MC result, Dh(n):I=Dc(n),

with Dc(n) evaluated under nonequilibrium conditions is due to a MC artifact or to a

,,~, phase transition affecting the diffusivity measurement.

t

G. Summary.

Relations among a number of diffusivities have been analyzed in terms of irrever-

sible thermodynamics and for equilibrium fluctuations in Kubo's formalism. The

chemical Dc(n), associated with nonequilibrium systems and defined by Fick's first

law, has been distinguished from its equilibrium limit, Dh(n). This latter diffusivity is

connected with surface density fluctuations detected by field emission noise measure-

ments. A sufficient condition for their equivalence is that the density gradient probed

in the nonequilibrium experiment is small enough that "VDc~O. Otherwise if the range

of densities is such that a phase boundary is crossed then the irreversible thermo-

dynamic stability theory cannot guarantee their equality. Current experimental evi-

dence does not yet strongly support the equivalence of Dc and Dh under any condi-

tions, although this will probably change as the number of comparative diffusion stu-

dies grows. However the distinction between Dc and Dh does not affect the generality

of the equilibrium density fluctuation measurement, i.e., a density dependent

diffusivity Dh(n) can be found from the long time decay of the autocorrelation func-

tion for all adsorbate interactions other than those due to critical fluctuations.
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The relations, Dh = < x2 >h j4t and Dt = < x2 >j4t, show that hydrodynamic

and tracer diffusivities are closely related. Their different behavior is determined by

the respective probability density functions. The physical origin of this distinction is

that measurement of a tracer Dt implies distinguishability of the given particle. Meas-

urement of Dh, as in a field emission noise experiment, arises from current .fluctuations

within the probed region of indistinguishable particles. A comparison of these

diffusivities is only useful for MC studies as Dt(n) cannot be determined from a field

emission noise experiment.

We therefore conclude that field emission noise measurements provide a reliable

method of measuring Dh' However care must be taken both when Dh is compared with

MC data, since r(O) cannot be precisely simulated, and when Dh is compared with Dc,

since the latter may depend on the range of densities probed and the phase structure

of the adsorbate.
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m. Detection of Two Dimensional Phase

Transitions by Field Emission Noise Measurements

"They move in the void and catching each other up jostle together, and some recoil in any direction

that may chance, and others become entangled with one another in van'ous degrees according to the symmetry
of their shapes and sizes and positions and order, and they remain together and thus the coming into being of
composite things is effected. " Simplicius De Caelo

A. Introduction

It is now well established that field electron emission current fluctuations induced

by diffusive adsorbate motion on single crystal planes at equilibrium yield a measure-

ment of the coverage dependent surface diffusion coefficient D. This quantity is

obtained either from the long time limit of the current autocorrelation function 1

R(t) = < c5i(t)c5i(O) >/< i >2 [1,2],

lim R(t) '" CFN< (6N)2 >( rp2/4Dt),'_00 (IlL1)

where CFN is a constant containing factors from the Fowler-Nordheim equation, oN is

the fluctuation in the number of adparticles appearing in the circular probed region of

radius rp' and it is implicitly assumed that the net plane boundaries are not a factor;

or in the low frequency limit of the corresponding spectral density function [3]

(IIL2)

where the finite size of the net plane with radius r, is included.

The thermodynamic state of the ad layer is accessible by measuring the current

noise power from the probed area Ap since [4],
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R(O)= C< (8n)2 >, (III.3)

(IlIA)

. K:T= n-1( 8n/8uh is the isothermal compressibility of the two dimensional adlayer
00

with spreading pressure u. The relative noise power P = JS(J) df of the field emis-
o

sion current fluctuations is given by,

P = 2R(O) (111.5)

and the spectral density function S(f) is related to R(t) by the Wiener-Khinchin

theorem. Combining Eqs.(3-5) yields,

(111.6)

with a1 = 2 C < n >2k/Ap a constant. Therefore the isothermal compressibility K:Tis

detected by a measurement of the noise power P. This is an alternate st-atement of

Eq.(3).

In this study we demonstrate that the transition temperature of a two dimen-

sional phase change occurring in the thermally activated diffusion regime corresponds

to the onset of collective interactions that affect diffusivity and isothermal compressi-

bility as determined by field emission noise measurements. Although not all systems

have the simple phase structure modeled here, the correspondence is not specific to a

particular adsorbate as shown by examples using chemisorbed K/W, physisorbed

Xe/W, and H/W systems. Exceptions appear to be O/W(llO) [5] and the fJ1state of

H/W(l11) [6], which do not show an easily discernible relation between K:T(T) and

D( T) and the existence of a phase change. This is apparently due to a significant
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deviation from a simple two dimensional lattice gas model as can be inferred from a

Monte Carlo study of O/W that was able to qualitatively model the adsorbate ther-

modynamics by a lattice gas model, but could not reproduce quantitatively the large

increase in prefactor of the diffusion coefficient as a function of coverage that was

found experimentally [7]. The disparity in the quantitative results was attributed to

substrate lattice deformation induced by the adsorbate. This effect also appears

related to the anomalous behavior observed when either hydrogen or deuterium were

adsorbed on W(ll1) or \V(llO) planes [6]. Nevertheless from our analysis we are able

to find previously undetected phase transitions for the systems considered here. It is

shown that the resulting variation in noise power P is associated with the onset of a

nonlinear Arrhenius plot of D (T).

B. Temperature Dependence of #tT and D(T).

With no adsorbate-adsorbate (ad-ad) interactions a nonlocalized and mobile col-

lection of adatoms behaves as an ideal gas with an equation of state,

O"Ap = <N>kT, (III.7)

where <ANA> is the average number of particles in the probed area Ap' The

correponding noise power for a two dimensional ideal gas,

(III.8a)

is then temperature independent. With site exclusion but no other interaction (Lang-

muir gas) < (on)2 > = < n >( 1-8 )Ap-l and Eq.(III.8a) becomes,
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P=2C<n>(l-O)/Ap, (III.8b)

where 0 = n aJ and ao is the lattice constant assuming a square lattice geometry,

however the noise power remains temperature independent. Eqs.(6) and (8) suggest

that incipient temperature dependence of the field emission noise power, or

equivalently of the isothermal compressibility, reveals the existence of a phase transi-

tion. To show this, it is necessary to find the functional form of K:T(T) when the sys-

tern undergoes a phase change. Formalisms that use the compressibility equation 18],

pa.rtition functions for a lattice gas 14],or hole model of a liquid 19]require additional

information concerning interaction energies or the radial distribution function.

Instead K:T( T) is evaluated for a homogeneous condensed phase and then extrapolated

to a temperature where dilute phase behavior occurs. This temperature is taken as

the transition temperature.

The procedure is to expand the area to first order in (T-To) 19-11]:

(III.9)

where To is a fiducial temperature for the homogeneous condensed phase and

Ciu= A -l( oA /a T )q is the coefficientof thermal expansion. It then follows from

Eq.(9) that

(III.lO)

and K:1-= n-1( on/au h. When Ciq!::t.T« 1 then K:T(T)can be considered constant.a

For example this condition holds when !::t.T= lOOK and (Xq= 3.2xl0-4 K-1, the latter

va.lue is for potassium in the bulk liquid state 19]. Assuming the systems studied here

exhibit this property then

(111.11)
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i.e., the noise power is proportional to temperature.

Eqs.(8) and (11) show the noise power-temperature curve has zero slope when the

adsorbate exhibits two-dimensional ideal gas behavior and a quasi-linear temperature

dependence when condensation occurs. If interphase fluctuations exist then another

term must be added to < ( 8n )2> which can lead to additional peaks in the noise

power curve at intermediate temperatures [4,7]. Other structure can develop at even

lower temperatures when tunneling becomes the dominant mechanism for diffusion

[6,12]. The nature of these latter phase transitions is outside the scope of the present

discussion.

The static response of a phase change, measured by the compressibility of the

adlayer, can also be correlated with the adsorbate dynamics by analyzing the tem-

perature dependence of the diffusivity associated with the equilibrium surface density

fluctuations. The diffusivity D(T) is given by [13,14]:

D(O,T) = >.2qO,T) F(O,T), (111.12)

where >.2is the mean square jump length, the thermodynamic factor

F(8,T) = n/ kTX(O,T),

and the response function x-=(8n/8p,h is [15]

The effective jump rate,

r( 0) = (1-8) 'J(8) r 0 ,

accounts for site exclusion via (1-0) and the dimensionless "I represents the influence

of interactions on the kinetic coefficient. The jump rate r 0 is the probability per unit

time of a particle passing over an activation energy barrier for a dilute system and is
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given by [16]

ro = ve -~./kT , (III.13)

where v is the average vibrational frequency of the particle, AAo ==A: - A:' is the

difference in the free energy per. site for the saddle and well positions of the potential

barrier respectively. We follow the usual assumption of transition state theory by

expressing the temperature dependence of the effective jump frequency r for all cover-

ages 0 as [13]

r(O,T) = (1 - 0) ve-t:J.A(fJ,T)/kT. (111.14)

Combining Eqs.(12) and (14) yields,

(111.15)

where AA(O,T) = M(O)-T~S(O,T) is expressed as the change in activation energy

and entropy per site respectively. Substrate stability is assumed throughout the tem-

perature range of the diffusion experiment, which implies tlE(O) is temperature

independent.

The term vF(O,T) has only a weak temperature dependence compared to the

exponential factors in Eq.(15). To show this, the chemical potential is written as a

'i' sum of contributions due to site exclusion plus all other interactions respectively,

,
I

"
. A~

: '
~

JL= kT In[0/(1-0) ] + JL-. (III.16)

Then

F(O,T) = (1-0rl + f-(O)/kT, (111.17)

where f-(O) is only a function of coverage whose precise form depends on the particu-

lar approximation made in the interaction energy of the partition function. For
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example, by using the Topping model that includes mutual dipole depolarization [17],

in Bragg-Williams approximation this function is of the form:

(III.IS)

where p = a/ao3, a is the adatom pol~rizability, d is the dipole moment, and c is a

constant related to the binding energy. Given the system is above the Debye tem-

perature one can assume v=kT /h where h is Planck's constant and therefore from

Eqs.(15) and (17) find

(1-8) F(8,T) = [kT + (1-8)f"( 8) ]/hv.

We are then assured that; lim (1-8)F =1 and the T dependence of vF is negligible0_1

with respect to the exponential terms in Eq.(15), which can now be written,

D(8, T) = Do(8) eAS(O,T)/k e-AE(O)/kT, (III.19)

where Do(8) = )..2v(I-8)F(8).

Eqs.(I) and (2) show that Arrhenius plots of spectral density and autocorrelation

functions are equivalent in the sense that

,

lim dVnS(f))/d[l/kT) = lim d[lnR(t)]/d[l/kT) = dOnD)/d[l/kT). (III.20)1_0 t_oo

Combining Eqs.(19) and (20) leads to,

dOnD]/d[l/kT) = - ( f1E(8) - T~Co), (III.21)

where ~Co = CZ - C~ is the difference in heat capacity per site at constant coverage

between saddle and well positions respectively.

To evaluate ~Co the system is divided into two levels and the states are associ-

ated either with the well or the saddle position. An adatom at the saddle is always

taken to be in the gas phase whereas an adatom in the well may exist in one of two
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phases. When the system exists as a single phase for all positions along the potential

energy curve we assume the specific heat of the gas phase Ce is constant, in which
'I

case,

(III.22)

where P.(P w) is the probability the adatom is in the saddle (well) position and Ce is'I

. the specific heat per adatom of the gas phase at constant coverage. When

M(O) » kT, Pw ~ 1. Hence Eq.(22) is to good approximation given as,

ACe = -Oce .'I
(III.23)

Thus for a single phase system Eq.(21) becomes

d[lnD]/d[lik1'] = -( M(O) + OTce"). (III.24)

Regarding the vapor as an ideal gas implies Ce =k and reduces Eq.(24) to'I

d pnD]/d [l/kT] = - M(O). (III.25)

In this case a linear Arrhenius plot of diffusivity yields the diffusion activation energy

M(O). Eq.(25) is strictly true in the lim 0-+0, but is also valid for all 0 given

M(O) » kT and there is no phase transition.

When the temperature is lowered to a point within the two phase region, i.e.,

inside the coexistence curve, the specific heat for the well sites is given by [8]

The symbols 9 and I refer to the gas and liquid (condensed) phase respectively,

Ce" == Co,/Ng, Xg = N,/N, Ng is the number of adatoms (in the gas phase),

vg ==Vg/Ng, Vg is the gas phase volume, and acoez" = vg-1(ovg/oT)coez. Eq.(21) is
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now transformed with the aid of Eq.(26) to,

d[lnD]/d[l/kT] = - D.E(8) + 8, T[ CO"+ T( ()(2cOC%"VJ~T" ) ], (III.27)

where 8, = x,B and the gas phase at the coexistance line is taken to be ideal. The

app~arance of the condensed phase as the temperature is lowered then leads to a non-

linear Arrhenius plot of diffusivity for a given coverage.

~; T, and coverage 0, of the adsorbate phase, deduced from noise power-temperature

The following section presents several examples where the transition temperature

curves, corresponds with (0" T,) determined from the onset of nonlinear Arrhenius

behavior of the diffusivity.

c. Experimental results.

1. K/W(112)

K/W(112) is a previously studied chemisorbed system that exhibits a phase tran-

sition at submonolayer coverages [18]. Evidence for this behavior is given in Fig.4

where the absolute field emission noise power is plotted as a function of temperature

at a coverage ° = 0.47. The graph clearly shows a transition from ideal to condensed

behavior at T '" 385K.
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The transition at T ""385K is correlated with incipient nonlinearity of the

Arrhenius plot shown in Fig. 5, which graphs d nn S(J 0) Do!]/ d [1/ T] and hence by

Eq.(2) -d In[D(T)]/d[I/T]. This curve suggests a phase transition occurs at

T""420K. This is 35K from the transition temperature as determined by the noise

power measurement of FigA. A closer agreement between the two transition tempera-

tures would most likely be found if a narrower bandwidth had been used in the deter-

mination of S(J, T). From the data in the ideal gas regime of Fig.5 a value of the

diffusion activation energy ED = 0.20 eV is obtained from an Arrhenius plot of the

spectral density for K/W(112). Given the difference in experimental method and the

relatively large Do! used this value is comparable to ED = 0.28 eV obtained by

Schmidt and Gomer in the limit (J-+0 [19] and to ED = 0.21 eV found by Meclewski at

e = 0.2 [20]from observations of the time dependence for equilibration of adsorbate

concentration gradients in the field emission microscope.
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2. XefW(llO)

Fig. 6 shows relative field emission noise power versus temperature data of

XefW(llO) that has been replotted from Fig.6 of reference [21]. Although there is

some scatter in the data at high temperatur~s a phase transition appears to occur at

0=0.3 and T = 65K for this physisorbed system. This suspected transition

corresponds closely to the onset of nonlinearity in the Arrhenius plot of D (T) as

shown in Fig.7 where TOI=4D /rp. The data implies the transition temperature

occurs at about T = 60K, which is 5K from the temperature estimated from the noise

power data of Fig.6. Since a transition to non ideal behavior exists at T = 65K and

o = 0.3 it is reasonable to expect this temperature to rise as the coverage is increased.

Thus the anomalous behavior found by Chen and Gomer in TO(T) at 8 = 0.5 (Fig.4 of

[21]) is probably due to condensation of the adlayer, which is consistent with their con-

elusion that the system had formed an ordered phase at this coverage.

3. HfW(111)

The present analysis can also be applied in certain cases to measurements of

HfW(1l1) in the thermally activated diffusion regime. Fig. 8 shows data taken from

reference [6] where deviations from ideal behavior of the compressibility occur for T <

210K and 0 = 0.5 of the /32state. Fig. 9 shows that this temperature corresponds to

the onset of nonlinearities in the Arrhenius plot of D( T).

At a coverage of 0 = 0.7 more complicated behavior is found which suggests an

isotope effect in the thermally activated diffusion regime. Fig. 10 graphs the noise
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power-temperature dependence for both IH and 2H. Interestingly a transition

appears for IH but not 2H in this range. For IH this occurs at T =170K where the

compressibility goes through a large variation, probably due to interphase fluctua-

tions, before exhibiting a monotonic decrease characteristic of a condensed homogene-

ous phase. This isotope effect is also reflected in the Arrhenius plots of diffusivity

. shown in Fig.n. Incipient nonlinearity occurs approximately at T =180K for 1H as

does the compressibility change. Yet the slope of the 2H diffusivity plot does not show

significant nonlinear behavior in this temperature range corresponding to the behavior

found in Fig.7.
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D. Summa.ry.

The temperature dependence of field emission flicker noise induced by diffusive

adatom motion in the thermally activated regime has been ~hown to be sensitive to

the onset of nonideal behavior in terms of both the isothermal compressibility and

diffusivity for the KjW(1l2), XejW(llO), and HjW(lll) systems. A simple model of

the temperature dependence of the isothermal compressibility is found useful for

detecting a phase transition by measurement of the total noise power. The autocorre-

lation or spectral density of the field emission current fluctuations indicate the onset

of ad-ad interactions via nonlinear Arrhenius plots of surface diffusivity D( T). This

latter relationship provides an estimate of the KjW(112) diffusion coefficient in the

low coverage limit, ED = 0.20 eV, similar to values derived from field emission sha-

dowing experiments. The present study has yielded several previously unidentified

phase changes whose transition temperature is confirmed by the agreement between

K.T and D( T). Although the analysis of the entire phase diagram and associated

diffusive motion requires a more general theory, the relatively simple method

presented here using field emission noise measurements has elucidated at least a por-

tion of it without requiring additional variables that must be obtained by other exper-

imental methods. Data analysis of HjW(I11) measurements at 0 = 0.7 indicate a pos-

sible isotope effect with respect to K.(T) and D(T) properties of 1Hand 2H in the ther-

mally activated diffusion regime. The origin of this effect remains to be explained. It

is concluded that field emission noise measurements provide a useful insight to the sta-

tistical thermodynamics of incipient non ideal behavior for a number of chemically dis-

similar I two dimensional adsorbate systems.
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IV. Field Emission Flicker Noise -
Grand Canonical Ensemble.

We shall not ceasefrom exploration

And the end of all our exploring
Will be to arrive where we started

And know the place for the first time.

T.S.Eliot FourQuartets

A. Introduction.

Many flicker 1/ f noise theories work within a canonical ensemble such as

chapter I, where it was assumed that the total number of adatoms on a single (hkl)

plane is kept constant. The grand canonical ensemble (GCE) has received relatively

little attention. Here this means the total adatom number is allowed to fluctuate

about a mean value. The present chapter provides the first divergence free spectral

density function for equilibrium fluctuations within this ensemble. The theory will be

used to explain experimental measurements of the noise spectrum of a tungsten ther-

mal field emitter [1]. This is the only experimental study that exists with which a

comparison can be made. Although not all aspects of the theory can be tested in

detail it is shown that almost every characteristic of the experimental spectra can be

explained. Furthermore the analysis extracts new information from this data by speci-

fying precise relationships between probe and net plane geometries, the diffusion
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coefficient, and the spectral density function. The theory is not only formally com-

plete; and by this I mean all significant consequences are derived from a few basic pos-

tulates, are consistent with them, and the resulting formulas calculable; but it is also

possible to measure every physical variable that appears in the theory. While the pri-

mary interest' is with the relation of surface density fluctuations to field emission noise

the model is applicable to any diffusive system linearly related to the observed experi-

mental variable and characterized by a GCE. Thus it is possible to imagine experi-

ments involving, e.g. an Auger microprobe to which this analysis might be applied

given the appropriate system. The noise analysis introduces a new method for study-

ing equilibrium mass transport properties of thermal field emitters in the temperature

range r-.J 800 - 1300K, which is not readily accessible by other methods. Diffusion stu-

dies involving field ion microscopy typically operate at temperatures between 250-

400K whereas macroscopic nonequilibrium tip blunting and build up experiments run

from r-.J 1500 - 25ooK. These methods measure respectively diffusion activation energy

and defect vacancy formation energetics. Both of these properties are derived by

applying the analysis presented in this chapter to the measured noise spectra. The

good agreement with the values found by the other methods provides a strong argu-

ment in support of the theory. The nature of the noise spectrum is explained by

including boundary, adatom lifetime, and geometrical effects.

This chapter incorporates several aspects of two previous spectral analyses of

diffusion models within a GCE. To my knowledge these are the only two papers that

evaluate such systems. Voss and Clarke (VC) studied temperature induced resistance

fluctuations. Temperature fluctuations are formally equivalent to the present problem

as both are based on a diffusion mechanism [2]. VC suggested a very useful approxi-

mation of a double space integration of the two point frequency correlation



86

C ( I xl - X21, w ) that yields a proportionality between the noise spectrum, the

point-frequency correlation function, and the number of correlated volumes Nc(w),

S( w) oc Nc-1(w) C (x =0, w). The correlated volume is essentially defined as the

r.m.s distance a fluctuation will diffuse during time w-1. The result is important

because C (x =0, w) is calculable and hence an approximate expression can be given

for S( w) itself, which is the experimentally accessible function. VO's suggestion is

verified in section E where an explicit derivation is provided based on Fourier decom-

position of the fluctuating probe current i( t ).

An outstanding problem concerning divergent normalization of the total noise

power found by VO for d < 3 dimensions is solved. This problem actually occurs for

d < 3 and is shown to be the result of two factors. One is by their omission of a

fluctuation lifetime T,which must appear in the diffusion equation. The necessity of

including this term is required for equilibrium to be maintained. This is proved in sec-

tion C by calculating a balance equation involving the rate of creation, the average

lifetime of a fluctuation, and < (bN)2 >. The second source of the problem comes,

somewhat surprisingly, from the correlated volume construction used to approximate

the double space integration of C( I xl - x21 , w). Analysis of the k-space correlation

C( k, w) requires the imposition of an upper bound on the magnitude of physically

allowable k-vectors. Equivalently a lower limit must exist on the minimum length

scale over which a fluctuation can be uncorrelated with itself at a given frequency.

Otherwise an infinite spatial subdivision takes place that would lead to the unphysical

situation of an individual fluctuation being distinguished from itself. This leads to a

novel method of measuring the resolution of the field emission microscope from the

noise spectrum.
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While VC considered the effect of probe spatial averaging on S( w), whose

influence is contained in the number of correlated volumes Nc ( w), boundary effects

due to sample geometry were not included. These enter through the term

C( x =0, w). Bliek has attempted a calculation of this function [3];however several

problems exist with his analysis, all of which are corrected here. The most important

is that C( x =0, w) is incorrectly identified as being S( w) itself, thereby ignoring

probe averaging effects altogether. The complementary parts of the theory excluded

by Voss and Clarke are incorporated in the present work. Section D proves that, con-

trary to Bliek's claim, a multidimensional version of Carson's theorem can be stated

and applied to a bounded region in a manner similar to the case of infinite sample

size. This avoids Bliek's ad hoc construction of C( x =0, w), which is also based on

an incorrect formulation of the bounded fundamental solution to the diffusion equa-

tion. In spite of these difficulties Bliek's general conclusion that S( w) oc w-l occurs

when the thickness of the sample is small compared to its other dimensions is, with

some qualifications concerning probe geometry, still true. A divergent low frequency

noise power is also found in Bliek's study. He attempted to solve this problem by arbi-

trarily introducing a low frequency correlation term, but this factor has no direct phy-

sical significance. Again I show the the problem arises from omission of the fluctua-

tion lifetime T factor. Bliek's principal contribution to the present work is the sugges-

tion Carson's theorem is related to the analysis of Langevin-type diffusion equations.

The chapter begins with the field emission autocorrelation function derived in

chapter I. Evaluation of the two point time delayed covariance of the density

< 8n( xl' t ) 8n ( x2'0) > marks the departure from the canonical ensemble theory.

The fluctuation dynamics are given in section B by a stochastic diffusion equation of

the Langevin-type. The solution to this equation is developed in terms of convolution
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products that provide a compact formulation convenient for Fourier analysis. The

contribution of the inhomogeneous source term requires evaluation of the statistics of

Poisson impulses, which is carried out in section C. Using a calculation method

developed by Rice [4] proofs are given for the first and second order statistics of the

impulse functions. The spectral density is constructed from the multidimensional ver-

sion of Carson's theorem and the results of the previous sections are then combined to

give the integral equation for the spectrum of field emission current fluctuations. The

double space integration of C( IXl - x21 , w) is then approximated using thf' corre-

lated volume construction in section E, which reduces the problem to a calculation of

C( x =0, w). The explicit form of COO(x =0, w) is given, which is the point-

frequency correlation excluding boundary effects. Several methods are proposed for

extracting the diffusion coefficient D from it. The influence of the net plane boundary

is contained in C( x = 0, w) and this is evaluated in section F.

The development of S( w) including boundary and lifetime effects is completed in

section G and yields the first equilibrium diffusivity analysis of a thermal field emitter

noise measurement. The reader who wishes to see how the theory is applied in prac-

tice may go directly to this section. Knowledge of the characteristics of S( w) provides

the most direct method of determining the surface diffusion coefficient and reveals

probe and net plane geometry effects, particularly those due to thermal field buildup,

i.e. growth of net planes due to a combination of electric field stress and thernlal

diffusivity of the atoms that tends to displace them from their initial equilibrium - '51-

tions. Also the defect formation activation energy is derived. Besides revealing the

energetics for both defect adatom formation and diffusion the theory also presents a

new method for measuring the resolution of the field emission microscope. This has

potential practical application as it means the virtual source size can be obtained,



----

89

which is an important variable in the development of finely focused charged particle

beams. The section concludes with a discussion of the optimum probe-sample

geometry for S( w) ex w-1 over the widest frequency band allowable by the diffusion

model. Section H provides a general summary of the chapter.

B. Stochastic diffusion equation.

The field emission autocorrelation function is given by Eq.(I.ll) as

(IV.I)

Eq.(l) is where the present work diverges from the canonical ensemble theory of

Chapter I. The present chapter reinterprets this equation in two ways. First, integra-

tion extends over a probed volume Vp = Ap lz, where the volume encloses the surface

by addition of a depth lz on the order of several lattice constants of the substrate.

Second, a defect vacancy-adatom creation-recombination mechanism is invoked that

results from surface free energy minimization. The fluctuation in local density

<5n(r, t ) then occurs through a combination of both diffusive motion and finite ada-

tom lifetime effects.

For later reference it is noted that Eq.(l) can be written

(IV.2)

Results on Poisson impulses in section C will clarify the need for this equation.
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The situation in one dimension is considered first to lay necessary groundwork for

extension to three dimensions. If a single adatom is created at Xj € [O,Lz]at time tj

then the local one dimensional density nj(x,t) must satisfy,

[

a a2
]

- - D - + T-1 n. (x t ) = 6(x -x .) 6(t -t .).
at ax2 J ' J J

(IV.3)

The necessity of including the average lifetime T to maintain equilibrium will be shown

in later sections. This point has not been addressed in any other fluctuation theory I

am presently aware of. The use of a bold variable, e.g. Xj' denotes a random variable,

whose statistics will be clarified as the discussion progresses. The solution to Eq.(3) is

n .(x t ) = e -(I-tj)/r n '!(x t )J ' J ' , (IVA)

where nJ(x,t) solves

[

a a2
]

- - D - n'!(x t) = 6(x -x .) 6(t -t .).
at ax2 J ' J J

(IV.5)

The bounded fundamental solution to Eq.(5) is

-(z+xJ+2nL.)2

,t e 'D(t-tj) ].
(IV.6)

where +(-) represents reflecting (absorbing) boundaries. To retain clarity only

reflecting boundaries are initially considered. The question of whether absorbing boun-

daries modify the noise characteristics is addressed in sections C and D.

That T does act as an average lifetime follows from

(IV.7)

which is the probability that the particle created at (Xj,tj) still exists at time t.
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Evaluating the integral for either a bounded or unbounded interval leads to

Pj( t ) = e -(I-t/)!r (IV.S)

Eq.(8) expresses conservation of particle number.

It is further assumed that adatom creation, occurring by the defect vacancy

mechanism, is a random process whereby Poisson statistics govern the number of

events in a given time interval. The density n(x,t) then solves,

(IV.9)

where the tj are uniformly distributed in time and uncorrelated with the Xj' which

themselves are uniformly distributed in [0, Lz]. The presence of the second source

term on the right side of Eq.(9) will be useful in writi~g a compact solution convenient

for subsequent Fourier analysis, but otherwise does not affect the validity of the fun-

damental solution. The index j is to be understood as a label only and not as being

representative of any particular ordering of the random variables.

The solution to Eq.(9) is now of the form

00

n(x,t) = :E nj(x,t).
j --00

(IV.I0)

By defining the double convolution of two functions J(x,t) and g(x,t) as

00 00

JUg = f dvf dwJ(v,w)g(x-v,t-w),
-00 -00

Eq.(10) becomes

( 0 < x < Lz , t > T), (IV.11)
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where

00

Z+(x,t)= ~ [6(x-Xj)+6(x+Xj)] 6(t -tj)
j--oo

( Ix I <Lz ) (IV.12)

and

00

G(x,t) = (411"Dtt1/2 ~ (IV.13)
n--00

Note that the domain of definition for Eqs.(ll) and (12) is restricted. This also carries

through into the three dimensional formulation and is important when calcu~ating

several of the convolution products below. Ignoring these restrictions can lead to

divergences in otherwise apparently well behaved expressions. From an abstract

viewpoint Eq.(ll) is composed of periodic functions of x via Eq.(6). For a derivation

tha.t reflects this aspect see, e.g. reference 16]. However from a physical or probabilis-

tic standpoint the fluctuations must be restricted to the interval [0, Lz]. Interestingly

there appears to be only one derivation of Eq.(6), for the case of absorbing boundaries,

which assumes this probabilistic viewpoint 171.

Derivation of Eq. (!!l
00 t

Z+(x,t)**e-t/TG(x,t) = JdvJdw e-(t-W)/T G(x-v,t-w) Z+(v,w)
-00 -00 00

= Jdv Jdw {e-(t-W)/T [411"D(t-w) ]-1/2 :E e - (%-1I-2nL~ )2/4D(t-W)]}
n--oo

00

x{ :E 8(w-tj) [8(v-Xj) + 8(v+Xj)]}
j--oo

00 00
-(t-t ')/T

( )= L; e J nJ(x,t) = L; nj(x,t) = n x,t .
j--oo j--oo

Q.E.D.
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Eq.(13) is reducible to

G(x,t) = f(x) * F(x,t) (IV.14)

where

00

f(x) = b 6(x-2mLz) (IV.15)
m--oo

and

(IV.16)

All statistical information resides in Z+(x,t) as G(x,t) is a deterministic function.

Derivation of Eq. (.!il..
00

00

f(x) * F(x,t) = Jdv [ ~ 6(v -2mLz)]x[(411Dt(1/2 e-(x-v)2/4Dt]
-00 m--oo

= (411Dtt1/2 ~ e- \ --2m~zf/4Dt = G(x,t). Q.E.D.
m--oo

Using Eq.(14), (11) can be written

n(x,t) = 2;+(x,t) ** e-t/T[ [(1') * F(x,t)]. (IV.17)

By defining

00

Z.(x,t) = Z+(x,t) * f(x) = ~ Z+(x -2mLz, t) (IV.IS)
m--oo

Eq.(17) becomes

n(x,t) = Z.(x,t) **e-t/TF(x,t). (IV.19)

Note that Eq.(19), which is the bounded fundamental solution to Eq.(9), is cast in a
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form involving the unbounded solution F( x, t). This will substantially reduce the

complexity of later Fourier analysis.

Derivation of Eq. C!!!l.
00

z..(x,t)**e-t/TF(x,t) = Jdw JZ.(v,w)e-(t-w)/TF(x-v,t-w)dv
-00 -00

= JJ{~ Z+(v-2mLz'w) }x{ e-(t-W)/T[47rD(t-w) ]-1/2 e ~~(t~~); }dv dw
m

=J{~~ [c5( v -2mLz -Xj) + c5(v -2mLz +Xj)] c5(w -tj)}
m j

{
_(z-v)2

}X 1 e-(t-W)/T e 4D(t-w)

V 47rD(t-w)
-(z-2mLs+x,)2 - (z-2mLs-x,)2

= ~e -(t-tJ)/T[4nD(t-tj) ]-1/2{e 4D(t-tj) + e 4D(t-tJ) }m,J

= ~e -(t-tJ)/TnJ(x,t) = n(x,t).
j

Q.E.D.

The multidimensional formulation of the above equations is now developed.

Assuming a cartesian coordinate system, the three dimensional solution of the

diffusion equation

IS

where nJ(xj,t) is given by Eq.(6).

The multidimensional version of Eq.(9) is then

94

(IV.20)

(IV.21)

(IV.22)
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where

00 3

]Z+(x,t ) = L; 6(t -tj) n [6(xi -Xj;)+6(Xi +Xji) ,
j --00 i-I

(IV.23)

and

00

n (x,t) = ~ nj(x,t).
j--oo

(IV.24)

Eq.(24) can then be expressed as

n(x,t) = Z+(x,t) ** G(x,t) e-t/T, (IY.25)

where

3

G(x,t) = II G(Xi,t)
i-I

(IV.26)

and G(xi,t) is given by Eq.(13).

Derivation of Eg. (25)
Z+(x,t) **e-t/T G(x,t) =

t Li

J
3 00

dT n JdWi ~ 6(T-tj) [6(Wi-Xji)+6(Wi+Xji)] e-(t-T)/T
-00 i-I -L. j--oo

00 -(Zi-wi-2n,L,)2

x[ 411"D(t-T) ]-1/2 L; e 4D(t-T)

Eq.(26) is of the form

G(x,t) = f(x) *F(x,t), (IV.27)
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00 _
f( x) = E 6( x-2Lm ),

lit! - - 00
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(IV.28)

volume, and

Derivation of Eq.~
00

f(x) * F(x,t) = (471'Dt)~/2n. E f dVi 6( Vi -2niLi) e -(z.-IJ.)2/4Dt
i-I n.--oo -00

= (41rDtt3/2n. E e-(z.-2nL.)2/4Dt= G(x,t). Q.E.D.
i-I n.--oo

Combining Eqs.(25) and (27) yields

n(x,t) = Z.(x,t) ** e-t/T F(x,t),

where

Derivation of Eq. (31t
Z+(x,t) * f(x) =

{ E 6(t-tjLll[6(Xi-Xji)+6(Xi+Xjd]} * {n E 6(Xi-2niLd}
j--oo i-I i-I n.--oo

3 00

= :E [6(t -tj) II :E 6(Xi -Xji -2niLi)+6(xi +Xji -2niLi) ]
j i-I n .--00- .=EZ+(x-2Lm) = Z.(x,t) Q.E.D.

Iii'!

(IV.29)

(IV.30)

(IV.31)
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1. Summary of section B.

A model has been postulated for describing density fluctuations in a grand canon-

ical ensemble. The density fluctuations obey the stochastic differential equation

(IV.22)

where Z+(x,t) is an infinite sum of Poisson impulses. The solution to this equation is

compactly written

n(x,t) = Z.(x,t) ** e-t/r F(x,t), (IV.30)

where Z .(x,t) is a second set of Poisson impulses. The form of Eq.(30) will be useful in

the subsequent Fourier analysis where the spectral density function is derived. Before

proceeding to this it is necessary to develop further the statistics of Poisson impulses,

which is done in the following section. Finally it is noted that, in contrast to Eq.(30),

Bliek's proposed fundamental solution [3] is not correct as the boundary conditions are

not satisfied.
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c. Statistics of Poisson impulses.

A combination of defect adatom creation, diffuc;ion, and annihiL':n is postu-

lated as a physical mechanisI? for thermal field emission noise. The present stochastic

analysis, based on a Langevin-type diffusion equation, places surface density fluctua-

tions in a grand canonical ensemble. Specifically the total number of net r 'ine ada-

toms is allowed to fluctuate about a steady state value. The stochastic a, umption is

embodied in the sum of Poisson impulses Z+(x,t), Eq.(23), which is composed of

uncorrelated and uniformly distributed random variables Xj and tj. The uniformity

and uncorrelatedness of their distributions is an assumed property of the adatom crea-

tion process.

The purpose of this section is to derive the first and second order statistics of

Z+(x,t). The goal, as developed in the following section, is to calculate the spectral

density from Eq.(2). The calculational method used iu the present section is similar to

Rice's proof of Campbell's theorem [4].

The statistics of a one dimensional point process consisting of Poisson distributed

impulses are calculated first and t.hen the results are extended to the multidimensional

cases involving Z.,( x , l ) and Z+( x , t ). The technique is to first consider k events,

e.g. tk, in an interval [ -T /2, T /2] and averaged with respect to the uniformly dis-

tributed tk. The resultant quantity is then averaged with respect to the random vari-

able k, which by assumption has a Poisson distribution

(IV.32)

The term p( k) is the probability k events occur at a rate A in the interval of
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duration T. Later the interval is extended over the entire time axis. This is a stan-

dard method of Fourier analysis, however in the case of the Xj the interval will be

taken as the volume VpI which will in general remain finite.

Given exactly k events occur in [ -T /2, T /2] then define

k

Zj;(t) = 2; 8 (t -tj;)
j-I

(IV.33)

and average Eq.(33) with respect to the uniformly distributed tj;'S,

(IV.34)

Eq.(34) is now averaged with respect to the random variable k

It follows from the Poisson distribution, Eq.(32), that

Therefore

<Z(t» = A, (IV.35)

which is just a special case of Campbell's theorem. Papoulis has proved Eq.(35) by

another method [8].

To calculate the autocorrelation Rzz(tIlt2) = < Z(tI) Z(t2) > one starts by

assuming k events occur in the time interval [ -T /2, T/2 ]. Then it followsthat

j; k

< Zj;(t1)Zj;(t2)>'t = < [E 8( tI-tj )] [E 8 ( t2-tm )] >'t
j-I m-I
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T/2 T/2 T/2

= ~ J 6(tI-t)8(t2-t)dt+ (k2~k) J J 8(tI-s)8(t2-W)dsdw
-T/2 -T/2-T/2

i.e., the autocorrelation is

The second moment of k,

is calculated with Eq.(32) as distribution function, which means

Then the autocorrelation function is

(IV.36)

which is a special case of the second part of Campbell's theorem. Rzz is stationary

since Rzz(t}lt2) = Rzz{tI-t2)' Again an alternate method has been used by Papoulis

to prove this result [8].

The arguments are now repeated for the space-time Poisson impulse function

00 3

Z+(x, t ) = E 8 (t -tj) n [6 (xi -Xji) + 8 (xi +Xji)]'
j--oo i-I

(IV.23)

As before a time interval [ -T /2, T /2] is taken in which exactly k events occur,

although now in the volume V,
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Z+k(x,t ) = t 6 (t -tj) [6 (x-Xj) + 6 (X+Xj)]
)-1

Averaging over the uncorrelated tj and Xj yields

k

< Z+k(x,t ) >t].%]= E< 6(t -tj) > < [6 (x-Xj) + 6(x+Xj)] >
j-l

Note JdXj 6 (X+Xj)=0 , as this set of impulses lies outside the volume V"~Then

(IV.37)

The two point time delayed correlation is calculated in the same manner as for

the simpler case that led to Eq.(36). Starting from its definition as,

the first average is calculated by fixingk events in [ -T /2, T /2 ]

k

< Z+k(xlItl) Z+k(x2,t2)> Zto't= < {:E [6(xl -Xj) +6 (xl +Xj)] 6(tl -tj)} X
j-l

{~[6 (X2-X/)+6 (X2+X/)]6(t2-t,)] }>;tott1-1
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Recalling< 6(x +Xj )> =0, then

k< 6(x1-Xj) 6(X2-Xj) >~1 < 6(tl-tj) 6(t2-tj) >,}

+(k2-k)< 6(xl-x )o)>; < 6(tl-tj) >11 1

With this result Eq.(38) becomes

(IV.39)

by summing over the Poisson distributed k.

The first and second order statistics of Z+ ( X, t ), Eqs.(37) and (39), are checked

for consistency by combining them with the fundamental solution

n (x, t ) = Z+(X, t ) ** e-I/., G (x, t ). (IV.25)

The mean value of Eq.(25) is calculated using Eq.(37) and recalling that all statistics

reside in Z+( X, t ),

< n (x, t) > = < Z+(X, t ) > ** e-I/., G (x, t ). (IV.40)

Expanding the right hand side of Eq.(40)

L,3

< Z+(x,t) > *Ite-I/., G(x,t) = l f dT e-T/., II f dWi G( Wi' T),
V, 0 i-I -L.I

00

where the product form of G (x, t ), Eq.(26), is used. Combining this with Eq.p3)

leads to



00 3 ~
A f

00

= V, 0 dT e-T/T D (41rD T )-1/2 f d w L:; e-(w-2nL;)2/4DT.,-I -Li n--oo

By defining y = (w -2nLi )/4Dt, Eq.(41) becomes

(-2n+I)PI
00 3 00

8A JdT e-T/T n 7r-1/2 L:; f e-v2 dy,
V, 0 i-I n--oo -2nPi

where Pi = LJV4IH. Performing the T integration converts Eq.(42) to

3 (-2n+1)p,

<Z+(x,t»**e-'/TG(x,t)= 8AT/2 n f J e-V2dy.
V, r i-I n--oo -2np,

Now

00 (-2n+1)Pi

00 f dY} e-/l2
-2nn--oo

Pi (2n+l)p,

= {f dy + E f
o n-I 2np,

(2n-l)p,
00

dy - L:; f dY} e-/l2
n-I 2np,

P, (2n+l)Pi 2nPi
00

= {f dy + L:; f dy + f dY} e- /12
o n-I 2nPi (2n-l)p,

00

= f e-v2 d y = ~ \1;.o

Combining Eqs.(42) and (44),

103

(IV.41)

(IV.42)

(IV.43)

(IV.44)



fit

:

t

-.J
f

.

",. .
. :

.i~:- '

104

< Z+(X,t) > ** e-t/T G(X,t) = ~.t
(IV.45)

Comparing Eqs.(40) and (45) yields

<n >=AT/Vt, (IV.46)

whichagrees with the definition< N > =AT. Eq.(46) shows that fluctuations with

infinite lifetime in a finite size diffusive system do not lead to an equilibrium state.

For a fixed density < n > and rate Athere is a single lifetime T that will result in

equilibrium fluctuations. Until now no fluctuation theory based on the diffusion equa-

tion has included T-1 in the diffusion operator, Eq.(3). The present results demonstrate

the necessity of including this term.

The statistics of Eq.(39) are now checked by forming the two point density auto-

correlation from the fundamental solution, Eq.(25),

(IV.47)

The right hand side is calculated using Eq.(39),

= ; [6(XI-X2) 6(t1-t2) ** e-tJT G(x}Jt1)] ** e-tJT G(x2,t2)t
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A2~

** e-IJr G (X2, t2) + V,2

= ~
[

e-(Il-I~/r G (x. -x.' t -t ) ** e-tJr G (x. t ) ]+ <n >2 (IV 48)v: I 2' I 2 2' 2 .t

Substituting Eq.(48) into Eq.(2) results in

(IV.49)

~ lI dX'. dx. e-(t1-t~/T G (X'. -x. t - t ) ** e-tJr G (x. t )v: I 2 I 2. I 2 2' 2
t VI VI

Eq.(49) is the general form of the field emission autocorrelation function in the grand

canonical ensemble. It is stationary and hence consistent with the description of

equilibrium fluctuations.

The frequency domain analysis will result in a simpler integral equation to be

solved for the spectral density function. However the present line of derivation is con-

tinued further to demonstrate the consistency of the formalism and develop the total

noise power P for the case Vp = V"~which is derived by setting tl = t2 in Eq.(49),

R (0, Vp = Vt )/GFN =

~ Jdx2 [Jd xi G ( Xl - x2, 0)] ** e-t /r G (x2, t ).
t VI V,

(IV.50)

Noting that

transforms Eq.(50) to

R (0, Vt = V, )/GFN= ; I dX2 [1 ** e-t/r G(x2' t )]
t V,
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L
3 ·

= SAT Jd x2 [II JdWi g ( Wi , t ) ].
Vt V, i-I 0

(IV.51)

Substituting the results of the derivation of Eqs.( 43) and (44) into (51) yields

(IV.52)

Eq.(52) shows the construction involving the Poisson impulse functions is consistent

with the physical interpretation of

R (0, Vp = Vd = < (8N)2> = < N >. (IV.53)

The last equality assumes the adatoms behave ideally in the thermodynamic sense.

This holds for a dilute system, i.e. one at low coverage, and is consistent with

AT= < N >. However the relation between Rand < ( 8N)2 > in Eq.(53) is a com-

pletely general one and suggests an extension of the definition of A and Tso that

(IV.54)

which allows of the formalism to include fully interacting diffusive systems. This con-

jecture is tentatively assumed true. Calculation of the statistics depends on Xj and tj

being uniformly distributed and mutually uncorrelated. Therefore the conjecture

Eq.(54) requires the creation-annihilation process not to be correlated with diffusive

fluctuations in a fully interacting system. For this reason one expects that critical

fluctuations are. excluded in addition to the reasons given in chapter I. Otherwise fully

interacting noncritical systems can be incorporated within the domain of the present

theory. This procedure has been justified for the canonical ensemble using hydro-

dynamic fluctuation theory by Mazenko, Banavar, and Gomer [9].
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A difference between the canonical and grand canonical ensembles is manifested

by comparing Eqs.(I.34) and (53). In the canonical ensemble the noise power

P( Ap = A,) = 0, whereas Eq.(53) shows that the noise power is nonzero even when

the probed and net plane regions are equal. Physically this is because fluctuations are

caused by the creation -recombination mechanism even in the absence of diffusive

mass transport into and out of the probed region.

The final question to be discussed in this section is, to what degree will the

existence of absorbing as opposed to reflecting boundaries influence the spectral den-

sity function itself? For notational simplicity the following discussion is restricted to

the one dimensional case, which will sufficiently expose the salient points. The

bounded fundamental solution for a single particle with absorbing boundaries in one

dimension is denoted nJ(x,t). Its specific form is given by Eq.(6). Analogous to the case

of reflecting boundaries the general solution is written as a convolution product

where

3

Z_(x,t) = ~ 6(t -tj) n [6(Xi-Xjd - 6(xi+Xjd].
j i-I

(IV.56)

It is immediately apparent that the Poisson impulse functions Z+ and Z_ have identi-

cal first and second order statistics, i.e.

< Z+(x,t) > =< Z~(xJt) >

and

Rz)x,t) = RzJx,t).

Thus Eq.(55) is equal in the wide sense with the reflecting barrier solution. Therefore
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the particular boundary type can only affect the spectral density through A, T, or

< n >. The relationship of these three variables is now considered by calculating the

balance equation for the absorbing boundary, which is

L.

< N > Zbtk= < f nil ( X , t) dx > Zt,tk
o

(IV.57)

L.

~ f [
-(z-x,-2nL.)2

L.J e 4D(t-tJ)
n--oo 0

To solve Eq.(57) the integration is broken up as follows

00 (2m + l)L.

f nll(x,t)dx = f ntJ(x,t)dx
o 0

00

~ f n tJ (x,t ) dx.
m-l (2m-l)L.

(IV.58)

The second term on the right side of Eq.(58) is a series of integrals, each over a length

2Lz. To exploit this property note that nil ( x, t ) is a periodic function. This can be

shown by a severai methods. One is to express Eq.(6) in terms of Jacobi theta func-

tions [61

1
[ (

X -x. t -t.
) (

X +x . t -t.
) ]

n~ x t = - e ' , - e ' ,
,( ,) 2Lz 2Lz' 4Lz2 2Lz ' 4Lz2 .

(IV.59)

These functions have period 2Lz, hence

nJ{ x +2Lz , t) = nj( x, t) (IV.60)

Also they are uniformly convergent in [0, Lz], which allows summation and integra-

tion to be exchanged in Eq.(57) [101.Given nj( x, t) has periodicity 2Lz then for all
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m>l

(2m + l)L.

f nG(x,t) dx =0
(2m-l)L.

and so Eq.(58) reduces to

00

f n G (x, t ) dx = f n G (x, t ) dx.
o 0

Combining Eqs.(57) and (62) yields

~
oo

[ (
2nL +x .

) (
2nL -x.

) ]}+ erf 1 _ erf 1 >.V4D (t -t .) V4D (t -t .)
ZJ,tJ

n-l 1 1
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(IV.61)

(IV.62)

(IV.63)

The next step is to average Eq.(63) with respect to tj. Each of the three terms on the

right side of Eq.(63) can be written in the form lim T1 9 ( r-1 ), where
T_oo

00

9 (r-1) = f e-tr1 erf( ~ V /3~/t ) dt
o

(IV.64)

and /3~ = (2nLz ::!:.xj)2/D. The function g(r-l) is a tabulated Laplace transform [11]

Combining Eqs.(63) and (65) yields,

(IV.65)

k 00

i~oo ; ~ < 1 - e-xJ/YDT+ ~ e-2nL./YDT [eXi/YDT - e-Xi/v7JT] > z , (IV.66)
j-l n-l J
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from which follows

00

<N > = AT< 1 - e-xi/V75T+ ~ e-2nL./V75T[eX}/VDT - e-X)VDT] >%1' (IV.67)
n-l

To complete the evaluation of Eq.(67) the terms above are averaged with respect to

the uniformly distributed Xj' These are of the form

where a = 1/Vl5T. Eq.(67) then reduces to

00

<N> = AT{I +(aLtl (e-aL -1) + (aLt1( eaL+ e-aL - 2)E e-2aL}. (IV.68)
n-l

00

Noting ~ xn = x transforms Eq.(68) toL..J I-x
n-l

< N > = AT( 1 - E ), (IV.69)

where

(IV.70)

Eq.(69) is the desired relation that distinguishes absorbing boundaries from reflecting

ones. It relates A,T,and < N > in a balance equation, which also involves the diffusion

coefficient D and sample geometry L. Several properties of this type of system are

revealed by considering its limiting forms. The first limit is

lim <N> = AT,
D 1«L2

which reduces to the expression found in the case of reflecting boundaries. This is rea-

sonable because here the standard deviation of the Brownian particle
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< %2>1/2 = 2D T is much smaller than the linear dimension L of the sample. Thus the

type of boundary is unimportant as on the average the particle never interacts with

it. The boundary type becomes more important in the second limit, which produces a

lower bound on < N >. For the absorbing boundary a restriction on the maximum

value of T appears

because the standard deviation can be no greater than the sample dimension. There-

fore

O.57AT< <N> < AT.

The influence of the boundary begins to be felt when D T ~ L2. Then there are two

possible situations. If < N > is somehow fixed the boundary type affects T.The follow-

ing sections show T influences the noise spectrum in the low frequency band. The more

likely situation is that AT is fixed, e.g. the systems are at constant temperature. Then

the boundary type will determine < N >, but otherwise has no affect on the noise

spectrum.

1. Summary of section C.

The density fluctuations in the grand canonical ensemble obey the stochastic

diffusion equation (22). The solution, Eq.(30), is written as a convolution product

involving the Poisson impulse function Z+(X, t). Section C has been devoted to the

calculation of the first and second order statistics of this function. To introduce the

calculational method the one dimensional case was considered first. This resulted in

special cases of Campbell's theorem, Eqs.(35) and (36). Rice's calculational method
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using the Poisson distribution is applied here in a similar fashion to find < Z ( t ) >,

which involves the uniformly distributed tj. Papoulis has derived these equations by

considering the derivative of Poisson increments [8],although this approach is not

readily extended to the multidimensional case that is of present interest. Another

approach is possible that exploits the uniformity of the individual tj and Xj' however

Rice's method is chosen as being more concise. The arguments are then repeated for

the four dimensional space-time Poisson impulse function, Eq.(23), which results in the

mean, Eq.(37), and two point autocorrelation, Eq.(39).

The statistics of Z+(?, t) were then checked by combining the previous results

with the fundamental solution n (x, t), Eq.(25). An important consequence of the

present system is that a finite lifetime T is required for equilibrium to be maintained.

This point has not been recognized by the two other studies of the grand canonical

ensemble, [2,3]. The influence T has on the spectral density is discussed in the follow-

ing sections.

Investigation of the two point density autocorrelation, Eq.(47), shows that it is

stationary, Eq.(49), and hence consistent with the equilibrium condition. Eq.(49) is

also the general expression for the field emission autocorrelation function. Unfor-

tunately its structure does not readily lend itself to further detailed study at this

time. Fourier analysis will reduce the degree of complexity by converting the convolu-

tion operation to multiplication. However the special case of the total noise power

with a probed region equal to the total net plane was evaluated. It was shown that

the construction of the Poisson impulses is consistent with the physical interpretation

of the noise power being proportional to < N >, which is true for a thermodynami-

cally ideal system. An extension of the definition ).T= < N > to ).T= < ( 8N)2 > is

therefore suggested, which encompasses fully interacting systems.
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It is also noted that the noise power does not approach zero as the probed region

equals the net plane, contrary to the canonical ensemble case. This is because fluctua-

tions occur not only by diffusive mass transport into and out of the probed region, but

also by the creation-recombination mechanism of defect vacancy-adatom formation.

Finally the question of the affect of the boundary type was discussed, i.e. whether

there are important differences between reflecting and absorbing barriers. It is argued

that this can only influence the solutions to the spectral density through the rate of

creation A, the average particle lifetime T, and the average number of adatoms on the

net plane < N >. This argument is based on the balance equation (69), which relates

these terms to sample geometry and the diffusion coefficient. Overall the type of

boundary is relatively unimportant as only Tcan actually influence the frequency

dependence of the spectrum and this occurs in the low frequency band as shown in the

next section.

D. The multidimensional version of Carson's theorem.

The multidimensional version of Carson's theorem [8,12,13] is required for the

spectral analysis of the field emission fluctuations. To begin it will be useful to define

definition

(IV.71)

combined with Eq.(30) becomes

(IV.72)
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Fr("x, t) = e-I/r F(x,t).

Then
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(IV.73)

(IV.74)

Eq.(48) and

That Eq.(74) can be written as a stationary function follows from the derivation of

where

Rz (x, t) = Rz (x, t) - )..2Iv,2.. +

Proof of Eg. (Z§l

RZ.(XI,tl;x2,t2)=< [Z+(xl,td * f(xl)] x [Z+(X2,t2) * f(x)] >
= Rz (xl - x2, tl - t2) ** f(xd f (x2)+

= ; <5( t I - t2) ~ J<5(s - 2 Em ) 6(xl - x2 --'S - 2 En ) ds +)..21 V,2
t 2 2

= Rz (Xl -x2, tl - t2) * f(x2) +).. IV,. Q.E.D..

Using the coordinate transformation (xl' t I) -+ e'( +x, fJ+ t ) and

( X2, t2) -+ e'(, fJ), Eq.(72) is transformed to

RZn(x,t)=Rz(x,t) ** Fr(x,t). .
and Eq.(74) becomes

The following convention will be used for Fourier transformations

00

F(s) = f F(v) e-iBlI dv
-00

(IV.75)

(IV.76)

(IV.77)

(IV.78)
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00

1 f
.

F(v) = - F(s) e"'l1 ds.211"
-00

Application of the Wiener-Khinchin theorem (see chapter I, appendix A) to the two

point time delayed correlation C( X, t) and Fourier transformation of Eq.(72) leads

respectively to

00 00

C( r , w ) = 2 J J C( x , t ) e -i (r.y +w t) dx dt.
-00 -00

(IV.79)

and

- -.-
RZ.n(k, w) = Rz.( k, w) Fr( k, w), (IV.80)

and F; denotes complex conjugation. Combining Eqs.(77), (79), and (80) results in

(
- - I -

12C k, w) = 2 Rz.( k , w) Fr( k , w) . (IV.81)

Fourier transformation of Eqs.(39) and (75) in conjunction with Eq.(81) yields

(IV.82)

Eq.(82) is the four dimensional space-time extension of Carson's theorem and refutes

Bliek's claim that the theorem cannot be applied to systems of finite size. The second

term on the right side of Eq.(82) will later be shown to cancel the constant factor

< (6N)2 > appearing in R( t) and has no affect on the spectral density itself.

Lighthill proves that there exists a unique Fourier series representation of any

periodic generalized function, which converges to the function, whose coefficients can

be determined, and which can be differentiated term by term [14]. Therefore the

Fourier series expansion of Eq.(28), given by
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3 00

f (x) = IT I:; On ei27rn,z./L.
i-I n.--oo

is well defined. Operating on this equation and Eq.(28) with JdXi e-i27rn,z./L, and then

equating the two expressions yields

Thus

3 00

f (x) = p L I:; e27rin,z./L..
.-1 · n.--oo

Fourier transformation of Eq.(28) then produces

3 00

f ( k ) = IT Z I:; 6 ( ki _ 1rni ).i-I · n --00 Li.

(IV.83)

This result is a variant of a three dimensional Poisson summation formula from which

the quantization condition

k. = n 1r/L.. . (IV.84)

is obtained. This differs from Bliek's study by a factor of 2, which can be traced to an

algebraic error in his proposed fundamental solution.

From Eq.(82) the two point frequency correlation is immediately obtained

(IV.85)

The spectral density of the field emission fluctuations is then
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(IV.86)

where C( xl - x, w) is given by Eq.(85). Precise calculation of this expression has

eluded me, however section E (uncorrelated volumes) provides an approximation

method for solving it, which is directed through k-space analysis. An important point

not realized by Bliek is that

1 J - -
C( x =0, w) = 3 C( k ,w) d k

(211")

gives the point-frequency correlation of the process, but is not the true spectral den-

sity, e.g. as given by Eq.(86). C( x =0, w) does not include the probe averaging effect,

represented by the double spatial integration, which is characteristic of any noise

theory based on a diffusion process. This aspect of the problem has been recognized by

VC.

Finally, a note on the general structure of Eqs.(82) and (86). In the one dimen-

sional version of Carson's theorem the power per unit frequency, i.e. the spectral den-

sity, is partitioned among the individual pulses due to their uncorrelatedness. Hence it

is possible to write S( w) as a product of a rate times the spectrum of an individual

pulse. In the case of a stochastic field comparison of Eqs.(82) and (86) reveals that

there. is a partioning of energy in k-space only. In analogy with the one dimensional

version the modes here are uncorrelated and hence there is no energy exchange

between them. I believe this is due to the linearity of the formulation. It is well

known, e.g. in turbulence theories, that nonlinearity in the Navier-Stokes equations

leads to energy cascades in k-space, which represent energy transfer from larger to

smaller eddies. A further exposition of this subject is beyond the scope of the present

work, except to note that in real space fluctuations decay with a spatial dependence
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due to the diffusive nature of the process and therefore one would not expect Eq.(86)

to exhibit such a partioning of the energy.

1. Summary of section D.

The k -correlated spectrum O(k, w), Eq.(82), has been derived. It is the exten-

sion of Carson's theorem to four dimensions and reflects the finite size of the system

by the k-space quantization condition ki = n 1r/Li' Eq.(84). This function will be used

in section F to calculate the point frequency correlation function

O( x =0, w) = 1 3 JO(k, w) dk. This is one of two major pieces upon which the
(21r)

noise spectrum B( w) is constructed. The next section provides the bridge between

C( x =0, w ) and B( w).
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E. The correlated volume concept.

The fluctuation theory of the present chapter is now to the point where an

integral equation for S( w) has been formulated, Eq.(86). This section presents an

approximation method for its solution. The result of the construction is a relation

between S(w) and the point-frequency correlation 0 ( x =0, w ). This relation is first

used to derive the spectrum excluding boundary effects SOO(w). The fluctuation life-

time T is shown to be an important factor in removing an apparent divergence in the

noise power integral that appears in VO's theory. The correlated volume construction

is also shown to be part of this problem. The section concludes by discussing a

method, which determines the diffusion coefficient D by measuring OOO(x =0 , w).

To begin, the autocorrelation Eq.(2) is rewritten

R(t)/OFN=f f 0(rl-r2,t)drldr2-<Np>2.
v, v,

(IV.87)

Applying the Wiener-Khinchin theorem to Eq.(87) yields

So(w) = f f 0(71 -72, w) dr1 d72,
v, v,

(IV.88)

where So( w) ==S( w)/ 0FN - 47r < Np >2 6( w) and a factor of 2 is absorbed in

O( 7, w), see Eqs.(79),(81), and (82). It is shown below that there exists a length AT

and a frequency wo, such that 0 ( I71 - 721 < AT!w < Wo ) ~ 0 ( x =0 ,w), i.e. the

two point frequencycorrelation 0 (x, w) is independentof x. Assumingthis to be the

case Eq.(88) reduces to

(IV.89)
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where the notation Sc (w) indicates the condition 171 < AT is satisfied.

The next step is to couple the correlated spectrum Sc( w) to So( w). Then using

Eq.(89) a relation between So( w) and C( x =0, w) will be given. As C( x =0, w) can

be calculated the method then provides an expression for So( w) itself, which is the

experimentally accessible function.

To begin the probe current ip( t ), which is a fluctuating random variable, is

expanded as a Fourier series in the interval I t I < T/2

00

ip(t)= ~ a(wn)eiw.', (IV.90)
n--oo

where wn = 2 1rn/T and the statistics of a( wn) are left unspecified.

The probed region Vp is divided into Nc subvolumes vk so Nc vk = Vp. Then the

total current emitted from Vp is

N,

ip(t) = ~ ik(t),
k-I

(IV.91)

where

00

ik(t) = ~ ak( wn) ei(w.T+a.). (IV.92)
n--oo

The ok are uniformly distributed over the interval [ 0, 21r] and are uncorrelated

with ak' i.e. < I(ak) g(ok) > = < I(ak) > < g(ok) > for two functions I and g.

The spectral density is defined as (see appendix A, chapter I)

S ( w ) = lim 2 T < a( wn) a -( wn) >.
T-oo

(IV.93)

The following relation is obtained by combining Eqs.(90) and (92)
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Nc(w)

a( Wn ) = ~ ak(wn) eiOk.
k-l

(IV.94)

Substituting Eq.(94) into (93) gives

(IV.95)

where Sk( w) = lim 2 T < ak( wn) a;( wn) > and the cross terms of the summation,
T-oo

Eq.(94), drop out of Eq.(95) because < ei(Ok- (1) > = 0 for j yf k.

If the fluctuations were correlated over the entire volume Vp then Qk = Qj for

all k and j. The correlated spectrum Se( w) = S( w, Qk = Q j ,k yf j) is

(IV.96)

where Eqs.(93) and (94) are again used.

The desired result of the correlated volume construction is then derived by com-

bining Eqs.(89), (95), and (96)

(IV.97)

which allows the spectral density to be calculated from the point-frequency correlation

c(I-xI=o,w)= 13 Jdk C(k,w)
(211")

(IV.98)

The above derivation shows that a correlation length AT exists corresponding to

the distance over which the fluctuating current ik( t ) from the subvolume Vk has a

constant phase, Eq.(92). The nature of AT is further developed by considering the first

term on the right side of Eq.(82)



At present the influence of boundaries is ignored so that Eq.(99) reduces to

00 .,.. -1
1 (

.,..
) 1

2
Go (k, w) = 2 AV, Fr k, w .

Fourier transformation of Eqs.(29) and (73) converts Eq.(l00) to

C,~( t,w) = 2AV,-l[W' + (X~D k')'].

where X = r-1 and k2 = k; + kJl2+ kt Then by partial fraction expansion

whereXD= X/D, wD= wiD, z: =XD :j: i wD,and A = -B = i/2wD'

The two point frequency correlation can be expressed as

00

and x == I xl. Combining Eqs.(101-103)leads to

122

(IV.99)

(IV.loo)

(IV.10l)

(IV,102)

(IV.103)

The integrals are standard Fourier sine transforms

where w: = z,V2= (XD :j: i wn )1/2, which is multiple-valued. Let

'0
z:=re':i:, r =1 zl, and O:=Arctan(:j:wr).

(IV.105)
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Then w:t: = r1/2 ei6-J:!2 (r >0, -1f' < 0:t:< 1f'), where the principal branch has been

used.Becausew,T> 0 the restriction is really ( 0 < 0+< 1f'/2) and

( -1f'/2 < 0_ < 0). Define w:t:= ":t: + i v:t: = Pei~:J:.Then p = ( xZ + wZ )1/4and

4>:t:= 8:t:/2. Also

v = v+= psin4>+= -psin(- 4>-)= -v_,

which implies

W:t:= " :I:: i v.

Using the above notation and Eq.(I05) converts Eq.(104) to

c 000 ( x, w) =
!

A

]
e- U x sin (v x)

21f'V,Dw x
(IV.I06)

Note that

where A = V2 D/w is the correlation length defined by VO. Inspection of Eq.(106)

suggests modifying this definition of correlation (decay) length to

A -I A
T =" = 1/4 .

21/2[1 + (I/WT)2] cos (~ Arctan WT)

(IV.I07)

Noting lim " = v implies
WT » 1

lim AT = A.
WT»1

(IV. 108)
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Then Eq.(106) reduces to

lim COO(x,w) =
[

A

]
e-:z/A sin (x/A)

W1"»1 0 27rV,D wx'
(IV.109)

which can also be written

lim COO(x w) =
[

A

]
e-:z/A sin (x/A)

WT»1 0' 23/27r V, D3/2 wl/2 (x / A)

This latter expression is, up to a constant factor, equal to Eq.(5.9) obtained by VC.

The other limit case is

lim AT = VI5T,
wT«1

(IV.110)

which sets the upper bound on the correlation length when the lifetime or measure-

ment frequency is very small and boundary effects are insignificant. In this limit the

correlation length AT is equal to the standard deviation of the particle displacement.

Even without an explicit calculation of Co (x, w) the limit to a correlated fluctuation

in any single direction must be the sample dimension Lj if the boundary effect is

included. AT is the decay length for CoOO(x, w) and Fig.12 graphs its variation with

frequency.

The influence of the correlation length on the noise spectrum itself is demon-

strated by first considering the point-frequency correlation using the limit of Eq.(106)

COOO(x=0, w) = ( \/2uJ/2) [1 + (1/wr)2 ]1/4sin( 1. Arctan WT). (IV.11l)27rV,D 2

The long lifetime limit of Eq.(l1 1) is

lim COO(x =0 w) = A = ( A ) A
WT»1 0 , 23/27rVD3/2wl/2 47rV D2 '

I I
(IV.112)
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Fig. 12. Curve (a) is the correlation length Ar<w). Curve (b) graphs A =V2l57w.

The short lifetime limit of Eq.(I11) is

lim GOO(wr«l 0 x=O, w) = A r/241r V, D3/2
= ( A )

41r V, D2 Aro
(IY.113)
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Fig. 13. Log-log graph of the frequency dependent two point spectral density Coooexcluding
boundary effects. Curve (a) is A = V2 D /w. Curve (b) is Cooo(X =0, w).

Fig.13 shows how the lifetime T modifies Cooofrom having an overall w-I/2

behavior to one with a flat low frequency characteristic. This effect is carried over to

the noise spectrum itself. To demonstrate this and also clarify the nature of

Nc(w) = 11/2/g/vb where Ii is a linear dimension of the probed region Vp, four cases
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are delimited that relate Ar to Vp. A similar argument has been given previously by

VO. It is important to recognize that this discussion relates correlation length to

probe geometry and not to dimensions of the sample itself. In this section boundary

effects are ignored as is the case throughout the study by VO. Including this effect

influences C( x =0, w) as shown in the following sections.

Assuming 13< 12< II then three reference frequencies are defined wi = 2DIll

such that:

a) if w3 < w then Ar( w) < 13 and

(IV.114a)

b) if w2 < w < w3 then 13< ArCw) < 12 and

(IV.114.b)

(IV.114c)

(IV.114.d)

Fig.14 graphs the spectral density SOOO(w)= Vp2 COOO(x =0, w)INc(w), which

is produced by combining Eqs.(111-114). Note lim Sew) = constant whereas
1II<I/r

when w> lIT the graph is identical to Fig.7 of VO.

Two problems posed by VO can now be answered. The first is the theoreti-

cal justification of the spatial correlation exhibited by the function

Cooo( Ix I, w ). The derivation makes it apparent that it is simply due to the
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Fig. 14. Graph of SOOO(w) usingthe limitformsof Nc(w) discussedin the text, wi = 2D /It
Curve (a) is for a lifetime l/TIJ < wI' Curve (b) corresponds to lifetime WI < l/Tb < w2.
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diffusive motion of the fluctuation, in this case the adatom density. The second

more serious problem is with an apparent divergence in the total noise power

normalization for d < 3 dimensions. This occurs at three different points in the

analysis. Two of these are due to neglect of the finite lifetime factor T.YC actu-

ally state the normalization divergence problem occurs for d < 3. Fig.14 shows

this occurs for d = 3 also. To see this note wI = 2D /J'f. Now 13< 12< 11'

Assume 13and 12are fixed at some nonzero value and let 11-+-00. If T-+-OO,as in

their analysis, then the graph of Sooocorresponds to an infinitely long probe

region with rectangular cross section that has limSoo(w) = l/w. This is a d =3w-o

system, which yields a divergent noise power in the low frequency band

w2

P 00 '"'" J dw. The presence of the factor T imposes a lower limit, l/T, on the l/w
o w

portion of S( w) and removes the normalization problem here.

Let us now consider the part of the problem encountered by YC. Assuming

the system is two dimensional, k-space Fourier transformation of Eq.(101) yields

the corresponding two point spectrum, which is

27r 00

2AAt-I f fdk k ikrcosB 1 ,
Cooo("r, w) = (211")2 0 dB 0 e w2 + (X + D k2)"

(IY.lIS)

which reduces to

(IY.116)

where Jo is the zero order Bessel function. Combining Eq.(1I6) with the spatially

correlated noise power, defined as
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00

PeCr) == JcoooCr, w) dw,
o

yields

(IV.U7)

where Ko is the zero order modified Bessel function. Eq.(117) shows that a finite

value for ris necessary for a well behaved noise power since limKo(x) '" -logx.%_0

This is the second place where T is critical in preventing the divergent normaliza-

tion. However there is a third cause for the problem, which surprisingly lies hid-

den in the correlated volume construction. To see this first define x = r /rD in

Eq.(117). The correlated volume construction produces the proportionality

(IV.U8)

The total noise power

00

POoo(w) = f SOoo(w)dw
o

(IV.119)

combined with Eq.(118) then yields

POOO(w)'" limPe(r).r_O
(IV.120)

But by Eq.(117) this also leads to an infinity. The correlated volume construc-

tion requires a lower length scale cutoff because the r = 0 limit of Eq.(117)

implies

00

(IV.121)
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The presence of X = l/T prevents the integrand from diverging in the k = 0 limit

but the upper integration limit still produces a divergent integral. The conclud-

ing proof that the normalization problem is partially an artifact of the corre-

lated volume construction is shown by recalling

and hence for two dimensions

r. 00

POoo(w) I'V f d r r f COoo(~,w) d w,
o 0

which with Eq.(117) becomes

POoo(w) I'V f d r r Ko( r /TD) I'V constant.
o

Therefore the true noise power for a two dimensional system is finite and

proves the apparent normalization problem stated by va is due to assuming an

infinite lifetime for the fluctuations and to the correlated volume construction,

which must include a lower length cutoff when discussing C( k < w), i.e. a lower

limit must be placed on the size of an individual correlated volume. This is physi-

cally reasonable as a single fluctuation must have some spatial extent even if this

is just an atomic diameter. To consider a volume of spatial extent smaller than

this is to say that a single atom is not correlated with itself! This defect in the

initial construction of the correlated volume theory is subtle as it does not reveal

itself in Fig.14. The next section shows that an upper bound in k-space modifies

the high frequency portion of Co( x =0, w ).
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The structure of the correlation length and the two point spectral density

also suggests several novel methods for extracting the diffusion coefficient and

determining T. Define the fractional correlated noise power as the ratio

(IY.122)

Substituting Eqs.(109) and (112) into (122) results in

Pc ( X , w) = e-z /A sin ( x/A)
(x/A) . (IV.123)

Now consider an experiment with two probes separated by a distance x

detecting the flicker noise. To simplify the discussion the probes are assumed to

have negligible area. Then the two point power spectrum is proportional to

Pc ( x , w) and obtained by simply multiplying the two signals and passing the

output through a spectrum analyzer.

One possibility is to monitor a narrow frequency band centered at Wo > l/T

and plot Pc = Pc( x, Wo), as indicated in Fig.15 and note the point

Pc( Xo,wo ) ~ O. From this data the diffusion coefficient is obtained since here

D ~ (IV.124)

This depends on the assumption that Xo is greater than the resolution of the field

electron microscope ,...",20A . Assuming D ,...",10-12 em 2/ see and Xo ,...",100A then

A check on this data can then be made by plotting Xo = Xo ( w-1/2) as in

Fig.16. Here the diffusion coefficient is found from the slope since

(IV.125)
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Fig. 15. Graph of the fractional correlated noise power defined by Eq.(123).

Deviation from linearity marks the onset of the finite lifetime effect, see Fig. 12.

Now assume x = xI is fixed and monitor Pc = Pc( xI' w). Then measure the fre-

quency wI such that Pc( xI ,wI) = O. The diffusion coefficient is again obtained via

Eq.(117) with xI replacing Xo'

I< 1.0
X .......0.9

£:1 X(j) 0.8
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Fig. 16. Graph of probe separation Xo versus w-1/2.
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1. Summary of'section E.
'.

The principal goal of this section was to develop an approximation to the double

spatial integration in Eq.(88). This was carried out by Fourier analysis of the fluctuat-

ing probe current ip( t ) and by separately considering the individual current contribu-

tions ik( t ), which correspond to a portion of the probe volume Vp. The number of

these volumes is Nc( w) = VpfVk. From this decomposition a relation between the

experimentally observable noise spectrum So( w) and the calculable point-frequency

.~-.:.,

correlation function C( x =0, w) is obtained, Eq.(97). The proportionality

So( w) oc Nc-I( w) C( x =0, w ) has been previously stated by VC. The present deriva-
~,'

tion gives rise to a correlation length AT that measures the distance over which the

current fluctuations are in phase. The nature of this term is further developed by

'.
'I showing that it is the decay length appearing in C( x =0, w ), Eq.(l06). The influence

of the finite fluctuation lifetime Ton AT is given in Fig.12, which shows

lim AT = constant. The factor Thas a similar affect on the point frequency exclud-
IN < liT

ing boundary effects COOO(x =0, w ), Fig.13. Fig.14 is a graph of the corresponding

spectrum SoOO(w). The fluctuation lifetime produces a constant SoOO(w) for w < liT.

The various changes in slope of SoOO(w) are the result of the probe spatial averaging of

the diffusive random field.

An outstanding problem of equilibrium fluctuation theory for a grand canonical

ensemble posed by Voss and Clarke has been solved. This concerns an apparent diver-

gence in the normalization to the total noise power of the spectral density S( w). This

problem is shown to exist for d < 3 dimensions as posed by these authors, although it

was recognized by them as occurring only for d < 3. This problem is manifested in
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three places. The first is related to the d =3 construction of SOOO(w), see Fig.14 and

text, where the problem originates by not accounting for the T factor. Including this

term has already been shown to be a necessary condition for the maintenance of

equilibrium, section C.

For d < 3 the problem disappears from the Fig.14 construction even when the

appropriate length scale limits are taken, which makes the origin of the problem more

obscure. The k-space correlation function COOO(k, w) is used to analyze the situation.

The problem is twofold when considering the k -space integration of Eq.(llS). One

part of the divergence is removed by including T in the formulation. The second cause

of the divergence is due to the correlated volume approximation itself. The problem is

resolved by placing an upper bound on the magnitude of the k-vector. This means a

lower length scale in real space exists, which introduces in a natural way the resolu-

tion limit of the detector.

This section concludes by showing how a measure of the point-frequency correla-

tion COOO(x =0, w) can yield the diffusion coefficient D and the lifetime factor T.The

next step in the development is to include the sample boundary effect in Co( x =0, w).

This aspect of the theory was not considered by VC and is addressed in the next sec-

tion.
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F. The point-frequency correlation C (x = 0, w )

The point frequency correlation C( x =0, w) for a bounded volume must be

developed before the nature of the spectral density S( w) including finite lifetime,

probe spatial averaging, and sample geometry can be discussed. Then using Eq.(97)

and the correlated volume approximation S( w) can be constructed.

The probe spatial averaging over the detected volume Vp, which influences

Nc( w), was the only point where geometrical effects were considered by VO. On the

other hand Bliek included sample geometry in his calculation of G( x =0, w ). How-

ever he erroneously identified this last function as the spectrum S( w) and was also

beset by a divergent low frequency noise power, although not of the same origin as

VO's. This forced him into postulating the existence of "low frequency correlations"

that do not have any direct physical interpretation. In the present section it is again

shown that the problem is solved by including a finite fluctuation lifetime. Bliek also

used an erroneous fundamental solution, which introduces several algebraic problems

and necessitates an ad hoc derivation of G ( x =0, w). Therefore, until now, no com-

plete spectral analysis for this ensemble has been given.

To derive C( x =0, w) Eq.(82) is rewritten using Eq.(99) as

(IV.126)

where

... 2 >.2( 2 11')4 I ...
1

2 ...
G1( k,w) = ') FT( k, w) 8( k) 8(w).T/'.,

(IV.127)

That G1(k, w) has no influence on the spectral analysis can be proven by calcu-

lating its contribution to the total noise power with the help of Eq.(97)

(IV.128)

From Eq.(lOl)

(IV.129)

which by combining with Eqs.(127), (128), and the definition>. T= < N> leads to

(IV.130)

00

Evaluating the noise power. P = f Sf w) d w. 11!:;inu Rn (~~) vi..IA" p - P - D ...1..___



From Eq.(101)

1-+
) 1

2 2 ... IIFT( k, w = '>+ ( X + D k )

which by combining with Eqs.(127), (128), and the definition).. T= < N > leadsto

00
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(IV.128)

(IV.129)

(IV.130)

Evaluating the noise power, P = JB( w) d W,using Eq.(88) yields P = Po - PI> where
o

00

Po = Jdw J JCO("~l-T'"2' w) dT'"ldT'"2.Therefore
o

This completes the proof that Cl( X, w) has no influence on B( w).

By combining Eqs.(83), (99), and (129) the term Co( X, w) is rewritten

(IV.131)

,

_ 2~).. 3 00

Co( k I w) = - 1 II ,, (
1rn.

v,2 vi + (X + D k2)2. Li 6 kj - T)' (IV.132).-1 ni--oo 1

Eqs.(131) and (132) then result in

B( w)/CFN ~

(IV.133)

The goal now is to approximate the Eq.(133) summation by an integral for various
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ranges of frequency w.

As a consistency check and to make contact with the results of the previous sec-

tion it is noted that Eq.(133) yields

lim S( w)IGFN =
W > liT

00

E (IV.134)

Assuming L3 < L2 < Ll the summation can be approximated by a three dimensional

k-space integration for the limiting form

(IV.135)

where dk = n3 V,-1 drt and OJ = ,,(l-DILl The right side of Eq.(135) is also obtained

by combining Eqs.(97) and (112), which involves lim SOoo(w). That Eq.(135) can be
w>I/T

derived by two methods is because in both cases fluctuations do not have sufficient

time to diffuse to the boundary. For lim SOoo(w) this is simply because the bounded
w>liT

fundamental solution to the diffusion equation has not been used. And for lim S( w)
w>I/T

given in Eq.(135) the other limit there is equivalent to assuming A < L3, i.e. the corre-

lation length is smaller than the smallest sample dimension. Again this effectively

means the boundaries are not "felt" at this frequency.
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The consequences of keeping T finite are now investigated while still assuming

w> f2:3. Later this restriction is relaxed. In this case Eq.(133) becomes

00

AV2
f k2 d k

lim S(w)jCFN ~ -2 V N P(w) rJ [ 1 D k2 ]
2'

w > 03 7r t c 0 1 + _ + _
WT W

(IV.136)

By partial fraction expansion

--L:i:L
where q: = WT

Combining Eqs.(136) and (137)

lim S( w)jCFN ~
w> 03

_ j k2 dk

}
o q_ + D w-1k2 . (IV.138)

Evaluating the integrals leads to

(IV.139)

Eq.(139) is checked by taking

which is again Eq.(135) as it should be. In the short time limit the frequency depen-

denee of Eq.(139) reduces to

(IV.140)
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Eq.(140) shows that the presence of a finite lifetime T results in a fiat low frequency

spectrum. The above arguments also demonstrate the consistency of the partial frac-

tion expansion and the approximation method, which replaces the summation by

integration.

The next case to be dealt with is

~ < w < Og.

Here the n3 summation is negligible with respect to the other terms and is replaced by

a 6 -function, which gives

S( w)/CFN (IV.141)

Substituting Eq.(137) into (141) yields

S( w)/CFN =

-f
o

k dk

}
q_ + D w-1 k2 . (IV.142)

{

(I

i 1. k dk- 1m
2 (1-+00 [ q+ +Dw-lk2

(I

Evaluating the integrals converts Eq.(142) to

A V2 Arctan (WT)p .
S(w)/CFN = 471'VtNc(w)D L3w

(IV.143)

The limit forms of Eq.(143) are

[

A Vp2

]

w-l
}~m.!.S(w)/CFN = 25/271'Vt Nc(w)L3D

T

(IV.144)

and
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(IV.145)

The results assume ~ < w < 0:3with Eq.(145) applicable only if 02 < 1.. < 0:3. TheT

finite lifetime T again flattens the spectrum at low frequencies.

The next case is

Here Eq.(133) reduces to

The partial fraction expansion, Eq.(137), converts Eq.(146) to

[~}~f
4

-f
o

Evaluating the integrals results in

AV2p

B( w)/CFN = 8Nc( w) V, L2L3Dl/2 vJ/2 [

sin f
]

rl/2 .

The limiting forms of Eq.(148) are

Jiml B(w)/CFN =
[w>-

l'

(IV.146)

(IV.147)

(IV.148)

(IV.149)
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and

(IV.150)

Again the presence of T prod.uces a flat low frequency spectrum, Eq.(150), for the case

The next case is

Here Eq.(133) reduces to

(IV.151)

The limiting forms of Eq.(151) are

(IV.152)

and

(IV.153)

The final question that needs answering before putting together all of the results

is, what influence does imposing an upper limit in k-space have on S( w)? This effect

will be important at high frequencies where small length scales are involved. Recall

the existence of this limit arose from the correlated volume construction, whose origin

requires that an individual fluctuation be correlated with itself. Let this upper limit be

defined as ko = '!rID. In this case Eq.(133) becomes
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S( W)/CFN =

).. Vp2 ~ 1 . (IV.154). n2 n2 n2 2

4 Vt~Nc (w)vJ In. 5: LJ6 1 + [..L + D"r. ( -1 + -1-+ L~ )]
WT W LI L2 3

Again the summation is approximated by a k-space integration. As the affect of T

on the spectrum is now well documented and because only high frequencies are

influenced by the k-space limit, W> 1.. is assumed. Carrying out the integrationT

yields

[

1 I
[

x2 - 21/2x + 1

]

-I
[

21/2x

]
]

- og + tan ,
2 x2 + 21/2x + 1 1 - x2

(IV.155)

where x = ; V D/w. The high frequency limit of Eq.(155) is

(IV.156)

where °4 = 1rD2/8. The low frequency limit of Eq.(155) is

(IV.157)
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1. Summary of section F.

Table 1. Limit cases of Go( x =0, w)

W < liT w> liT

W< 01 ( 4A;2 ) (IV.153) ( --L ) W-2 (IV.152)4 V2I I

01 < w< ( A.,3/2 ) (IV 150) (7/2 A 1/2 ) W-3/2 (IV.149)16 V L L Dl/2 . 2 V,L2L3DI 2 3

<W< ( 41r D) (IV.145) ( A )-1 (IV. 144)25/21rV L D WI 3 I 3

< W< 04 ( Af/2 ) (IV.140) ( A ) -1/2 (IV.135)
4 1rV D3/2 23/21r V D3/2 WI I

W< 04 W > 04

( r /<5D2 ) (IV. 157) ( A1r ) w-2 (IV.156)
3 VI <53
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The limiting forms of the point-frequency correlation C ( x =0, w), which include

the boundary effects due to finite sample size are summarized in Table 1 where Eq.(97)

has been used, S( w) = Vp2C( x =0, w)1Nc(w). The results show that if w < 1IT then

C ( x =0, w) is constant, which proves that the finite fluctuation lifetime T removes,

in every case, a divergent lim S( w). These results are graphed in Fig.17, which is, to
w-+O

within scale factors, similar to that given by Bliek; except he has not provided the

correct low frequency functional dependence of C ( x =0, w) and has erroneously

identified this function with S( w) itself.

This section essentially completes the mathematical analysis required for formu-

lation of the diffusive theory of equilibrium fluctuations in the GCE. The following sec-

tion synthesizes these results in graphical form to produce the spectral density func-

tion S( w) in a form that can be compared to the experimental data. Various charac-

teristics of S( w) are discussed along with the physical interpretation of the pertinent

variables.
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G. The spectral density function S( w).

We have finally reached the point where the noise spectrum S( w) itself can be

discussed. The principal relation is Eq.(131), which is rewritten as

(IV.158)

The point-frequency correlation Co(x =0, w) was evaluated in the previous section

and found to contain the geometrical effects due to the sample itself. Its functional

form is graphed in Fig.17. The other major factor that influences S( w) is the

frequency-dependent number of correlated volumes Nc( w). It represents the spatial

averaging of the probe as shown in section E. For clarity its properties, given by

Eqs.(1l4a-d), are reproduced in Table 2.

Each frequency band is delimited by combination of the sets of characteristic fre-

quencies {Oi = ,,(2D/Li2} and {wi = 2D/li2} associated with the various limit forms

Table 2. The correlated volume number Nc(w), wi = 2D/ll

W3 < w Nc-l (2D/w)3/2/Vp

W2<W<W3 Nc-l (2D /w)/1112

w1<w<w2 Nc-l (2D /w)1/2/1l

w< wI Nc-l 1
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of Co(x =0, w) and Nc( w) given in tables 1 and 2. These sets are themselves defined

in terms of the probe (lvIz,13) and net plane (LvLz,L3) geometries and the resolu-

tion of the detector 6 = L4,which in the present case is the field emission microscope.

Therefore particular sets {OJ} and { Wj } determine S( w) to within scale factors, one

each for the ordinate and frequency abscissa. As a test of the theory thermal field

electron noise data is analyzed [11.These measurements provide the experimental

S( w) and the probe area Ap. This latter variable is derived from the Fowler-

Nordheim (FN) equation. The theoretical S( w) is fit to the experimental noise spec-

trum by setting the characteristic frequencies {Oi } and {wi} so that dS(w)/dw is

matched over the entire frequency range. Knowledge of Ap then automatically deter-

mines {Ii}' Once the S( w) curves are fit the {Oi } and {wi }, which correspond to

changes in dS( w)/ d w, are equated to the measured frequencies. From this comparison

the diffusion coefficient is obtained from every 0i and wi appearing in S( w) over the

measured frequency band. The minimum resolvable length 6 is also obtained given 04

can be identified. The finite lifetime T is found by identifying the frequency w = 1fT

where dS( w)/dw = O.

Before proceeding to the data analysis additional remarks are required concern-

ing the adatom creation rate A. A standard free energy minimization argument is fol-

lowed [151 to explain the Schottky-type lattice defect mechanism as depicted in Fig.lS.

It is assumed that the defect energetics are temperature independent and the eigenfre-

quencies of the lattice vibrations do not change significantly.

Given there exists m defect adatoms and M equilibrium sites then the system

entropy is

[

. M!

]S = k log (M _ m )!m! .
(IV.159)
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.
! (1)

t t t

LX

Fig.I8. Diagram of relevant parameters involved in the diffusion model. The defect adatom

vacancy formation energy Q and the diffusion activation energy ED are specified along with a

linear dimension of the net plane Lz and probed region 1%from which the fluctuating current
i (t) is collected.

The work required for diffusion of an atom reversibly far removed from the lattice site

is ED so the internal energy is

(IV.160)

and the Helmholtz free energy is

A = U - T S. (IV.161)
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Fig.19. Graph of the variation of the spectral density function S( f ) with frequency. Curve
(a) is at 905K and curve (b) is at 1318K. The sets of characteristic frequencies {OJ} and
{ wj} define the range over which dS( w)/ dW has the indicated slopes. The solid squares
correspond to the experimental measurements of ref.[l].
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(8A/8m h =0. (IV.162)

This condition coupled with Eqs.(159-161) yields

(IV.163)

where A= m v, v is the average vibrational frequency of the atom at a lattice site,

Ao= v N, and it is assumed that m « M.

1. Graphical Analysis.

Having completed the discussion concerning the general procedure for curve

fitting and the rate A it is now possible to proceed to specific cases corresponding to

different orientations of W(hkl) planes from which thermal field electron emission

noise spectra were measured [1].

i) W(l00).

Referring first to curve (a) of Fig.19, which is S( w) measured at 905K, the

characteristic frequencies that provide the best fit to the measured S( w) are

~ = 109Hz, 04 = 2x104 Hz, lIT = 50Hz

Fig.20 shows that there is no field induced buildup at 905K. It is therefore possible to

use the measured FN area as the probe area Ap = 1400 A 2. Curve (a) shows WI= w2

and thus 11= 12 = 37 A and Ig = 9 A is obtained from the ratio wg/w1. The diffusion

coefficient is then found from D = wj/j2/2 to be D(905K) = 2.8x10-10cm2/sec.
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Fig.20. Curve shows the variation of the voltage ratio required to maintain a constant probe

current ip emitted from a W(IOO) plane. Dashed line is due to thermal field buildup of the sur-
face. The graph is a reproduction of Fig.l of ref.III.

Using 0. = rD /62 the minimumlength6= 37 A I which gives the resolution of

the field emission microscope for this case. This value can be compared with the reso-

lution limit derived by Gomer who calculated it by considering the electron momen-

turn distribution transverse to the normal emission direction [16]. The expression

assumes a Fermi-Dirac distribution at OK and is given by
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(IV.164)

where /3 is the beam angular compression factor due to local demagnification of the

emitted electrons caused by electrostatic shielding of the emitter shank. It is calcu-

lated from /3= YAp /Ag, Ag is the geometrical or "apparent" area determined from

the emitter apex radius rt and the angle subtended by the probe hole in the anode. rt

is found from the slope of the FN plot, which also yields the field factor

k = V /Frt ~ 5. This term represents the reduction of the surface electric field F for a

given applied voltage V that is also caused by emitter-shank shielding. The term

a = (1- Y )1/2with y = 3.8x10-4 Fl/2/4> is the result of the image force reduction of

the field F, which appears in the FN equation [16].A value of a = 0.8 is assumed

throughout as this corresponds to fields F = 0.1-0.5 V / A and 4> = 4.52 eV. The

latter value is the average work function of tungsten [17]. Using the measured

rt = 610 A and 4>(100) = 4.62 e V yields fJ= 58 A , which is in reasonable agreement

with th~ value obtained from the noise theory. The length L3 = yr D /~ is calcu-

lated to be L3 = 166 A. While 13 = 9 A appears to be a reasonable value for the

depth of the probed region, here and in the following cases, L3 consistently is larger

than one might first expect. However this systematic overestimation results from the

resolution limit of the microscope. The smallest resolvable length scale is L4 = fJ and

by definition L3 > 6. Therefore a sample dimension can be estimated only if the

detector can resolve that particular length. That this is a reasonable conclusion is

partly corroborated by calculating the correlation length A( ~) = Y2D /~, which

yields A(~) = 75 A < L3' This says that the noise at ~ is not influenced by

increasing the sample depth beyond 75 A. The net plane area At was not measured

and cannot be evaluated here as 111and ~ do not appear in Fig.19. Typically
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L}lL2 » 8 is true and so the net plane area estimate will be accurate given these

characteristic frequencies appear in the measured S( w).

Next consider curve (b) of Fig.19, which corresponds to thermal field emission at

1318K. The characteristic frequencies are

First note that wi(1318K) < wi(905K). SincedDIdT > 0 and wi = 2DIII this result

implies dlJ dT > 0, i.e. the probed volume has increased with temperature. This is

caused by an increase in the net plane area due to the buildup process, which in turn

increases the beam angular compression factor /3. Because the average emitter apex

radius r, remains unchanged the apparent area Ag is constant and the local

demagnification is directly related to Ap only [11. Evidence for the thermal field

buildup of the net plane is given in Fig.20. An irreversible change occurs at 1350K,

but note that by 1318K the voltage ratio required to keep the probe current constant

has increased significantly. This reflects a corresponding increase in the net plane

area.

Therefore the low temperature estimate Ap = 1400 A cannot be used as the case

at 905K. Instead the probed area is estimated as follows.

Because the net plane radius is proportional to the applied voltage the VIVo

curve shown in Fig.20 allows a linear dimension of the probed region to be approxi-

mated by

(IV.165)

in the intervall100K < T < 1350K. This is also based on the assumption that the

apparent area Ag is constant over this temperature range, which is true for the case
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discussed here. To find the empirical constant b other boundary conditions are

required for Eq.(165). This necessitates using Swanson's data from a different emitter,

labeled "0" in his study [1]. The reason for this is that the FN area Ap corresponding

to emitter "C" has been given for both the low temperature and built up W(lOO)

planes. This sets the initial and final values of Ij(1350K)/lo(llOOK) in Eq.(165), which

were measured as Ap(llOOK) = 1500 A2 and Ap(1350K) = 2.37xl06 A2 . These values

yield 11(1350K) = 1.5X 103 A and 11(llOOK) = 39 A and then b = 1.46 x 10-2 (K-1).

The interpolated value for the W(l00), Ap( 1318K) can now be found for emitter

"A", which corresponds to the measured S( w) plotted in Fig.19. For this emitter

/0= 37 A and hence 11= /2 = 892 A. The diffusion coefficient then directly follows,

D ( 1318K) = 1.2xl0-7 em 2/ see. From the values for D (905K) and D ( 1318K) the

corresponding activation energy is ED = 1.5eV.

The activation energy for vacancy formation Q is found by first noting from

Fig.19 that at I = 1KHz S(J) ocI-I in the range 905K < T < 1318K. Define

d InS( w)/d l/T = -Em/k. Then from Eq.(144), S( w) oc A/At D w, from which follows

(IV.166)

where the buildup energetics of At are .given by Eq.(165). The S( w, T) data of Fig.19

yields Em = 0.66 eV therefore the defect adatom vacancy formation activation energy

is Q =2.6eV.

Finally from 04 the resolution for the W(lOO) plane at 1318K is {;= 920 A.

Eq.(164) predicts {;= 1322 A. These large values are caused by large beam angular

compression due to W(lOO) net plane buildup.
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Fig.21. Graph of the variation of the spectral density function S( f) with frequency for

W(310) at 870K. The solid squares correspond to the experimental data of ref.III.
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ii) W(310).

Fig.21 graphs the thermal field noise spectrum B( w) from reference [1] measure-

ments along with the predicted B( w) and the sets of characteristic frequencies {11i }

and {wi} used for the curve fitting, which are

I/T = 200Hz, WI= % = ~ = 4x103Hz, w3= 2.6x104Hz, 114= 5xl04 Hz.

The probe area Ap = 1900 A2, was measured, which implies II = 12= 44 A , and with

W3/WI yields 13 = 17 A. The resolution given by 114is {)= 27 A while Eq.(164) gives

6 = 49 A , using fJ = 1.83,4> = 4.52 eV, and rt = 896 A. The diffusion coefficient is

then determined to be D( 870K) = 3.8xl0-IO cm2/sec.

Fig.22 graphs the measured noise data for W(31O) at 1318K along with the

theoretical B( w) and the corresponding sets {Oi } and {wi}, which are
t~

.
As with the W(100) plane the (310) exhibits thermal field facetting above l00QK,

which becomes irreversible above 14ooK, as shown in Fig.23.

A complication with the (310) plane not found with the (100) orientation appears

when comparing Figs.(20) and (23). From the FN measurements the (310) is known to

increase its surface area with increasing temperature, yet the voltage ratio shown in

Fig.23 actually decreases during the buildup process. Thus while the (100) buildup

process is directly related to the electric field reduction, as shown by the increase in

the voltage ratio V /Vo' the process is masked for the (310). There are two reasons

that might explain this behavior. The emitter used to produce the (310) data depicted

in Figs.(20) and (23) had a (100) on-axis orientation, which results in off-axis emission

from the (310). Also other low index planes are building up at a greater rate than this

surface. This could cause an increase in the local field above the (310) plane by placing

it at the edge of two larger low index planes. As Ap ( 1318K) cannot be determined by
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Fig.22. Graph of the variation of the spectral density function S( f) with frequency for
W(310) at 1318K. The solid squares correspond to the experimental data of ref.[l].
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Fig.23. Graph of the variation of the voltage ratio required to maintain ip = 4.0 nA on the
W(3l0) plane. Dashed line results from thermal field build up of the surface. The figure is a
reproduction of Fig.2 of ref.[l].

Ap = 890 A . Therefore the estimated area at 1318K is Ap ( 1318K) = 890 A

x1.95 = 1733 A. This value and Fig.22 imply II = 12= 42 A and 13= 35 A . The

resolution limit is 6 = 77 A . Eq.(164) predicts 6 = 64 A . The diffusion coefficient is

D(1318K) =6.1x10-IOcm2/sec. Combined with D(870K) this latter value yields an

activation energy ED = 0.1 eV. The defect activation energy cannot be calculated

because the net plane area energetics are unknown.

iii) W(112).

Fig.24 graphs the noise spectrum from a W(112) emitter at 905K. No higher tem-

perature measurement of S( w) was taken for this plane, which precludes a
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Fig.24. Graph of the variation of the spectral density function S( f) with frequency. The solid
squares correspond to the experimental data of ref.[!].
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determination of ED(1l2). The characteristic frequencies are

liT = 5xl02 Hz, f2:J= 103Hz, wI = 2x103 Hz,

W2= 3x103Hz, 04 = 6.5xl03 Hz, w3= 9xl03 Hz.

The %lw1 ratio indicates 11= 1.2/2, This may be evidence for a slight anisotropy

in the beam compression factor. The emitter used for the W(1l2) measurements had

a (310) on-axis orientation, which would be consistent with this hypothesis. Also of the

three planes, (310), (100), and (112), from which data was taken the (112) plane had

the largest FN area. Coupled with the relatively small anisotropy factor this would

explain why the effect is not seen on the other planes. The conclusion must remain

tentative until a more precise check of the accuracy of the theory can be made.

The FN area and Fig.24 also show that 11= 86 A, 12 = 71 A, 13= 54 A, and

11.4implies 8 = 106 A . Eq.(164)yields8 = 84 A . The diffusioncoefficientis

D( 905K) = 7.4x10-10cm2lsec.

2. Discussion.

The spectral analysis for the GCE developed in the previous sections has been

applied to thermal field emission noise spectra taken from W(lOO), W(310), and

W(1l2) planes at two sets of temperatures 870-905K and 1318K. The theory has

been able to reproduce each of the five measured B( w) spectra and accounted for tem-

perature, emitter geometry, and diffusivity effects. Specifically the increase in net (hkl)

plane due to thermal field buildup has been identified and distinguished from the tem-

perature dependent diffusion coefficient.
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Table 3. Summary of derived values for the W-thermal field emitter.

(a) This work

(b) From Eq.(32) of ref.[16]

(c) Orientation averaged, ref.[21].

Table 3 summarizes the quantities derived from this analysis. The diffusion

coefficient found for the (112) plane is in close agreement with values obtained from

two field ion microscopy (FIM) studies that were performed in the range

250K < T < 400K. The values obtained from these studies have since been shown to

W(I00) W(310) W(112)

T(K) 905 1318 870 . 1318 905

fi 2.6 60. 1.8 2.9 3.1

(a) 37 920 27 49 106

6 (A)

(b) 58 1322 77 64 84

D(cm2 /sec) 2.8xl0-10 1.2xlO-7 3.8xlO-lO 6.1xlO-lO 7.4xl0-10

2.8xl0-10 [18]

1.4xl0-10 [19]

ED(eV) 1.5 0.1

Q(ev) 2.6

c2.4
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be the result of a combination of single and pair adatom motion, which separately

have different diffusion coefficients [20]. Therefore it is likely that both single and

pairwise surface diffusion of tungsten adatoms also occurred on the thermal field

emitter surface. The defect formation activation energy for W(I00), Q = 2.6 eV, is

very close to the value derived by Bettler and Char bonnier in their study of the ther-

mal field induced buildup process [21]. Their value is the average contribution from

several (hk) planes, but since the W(llO) is the only bee plane more densely packed

than the W(I00) the agreement is not fortuitous as these planes are the rate limiting

regions for the buildup process.

The noise measurements occupy an intermediate position with respect to tem-

perature when compared with FIM and the buildup experiments. Furthermore both Q

and ED are obtained here whereas the other two methods find one but not both of
t

r
r

these quantities. The close agreement with the activation energies found by these

other methods provides strong support for the present theory especially when it is

recalled that the combined measurements occur over a 2000K temperature range, the

agreement between the diffusivities is on the order of 1 part in 1012,and the estimated

defect activation energies are within 10% of each other.

Another interesting development of this work is that the resolution of the field

emission microscope is derivable from the characteristic frequency 04 when it appears

in the measured S( w) curves. As shown in Table 3 there is generally quite good agree-

ment with the resolution estimate based on Eq.(164). The derivation of this equation

relies on a consideration of the energy distribution transverse to the normal emission

direction, which is governed by Fermi-Dirac statistics. It is curious that the fluctua-

tion theory presented here proceeds from a classical statistical viewpoint of density

fluctuations to derive the resolution whereas Eq.(164) is based on the quantum
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mechanical properties of the emitted electrons.

3. The "ideal" 1/1 spectrum.

The nature of 1/1 noise spectra has remained a subject of fascination for more

than thirty years continuing to the present as a perusal of the literature will show.

Of course it is well known that a spectral density function cannot be purely 1/1 since

it results in logarithmic divergences of the noise power in both the low and high fre-

quency limits. Nonetheless a considerable effort has been spent to understand what are

the causes of such a spectrum and why it appears in so many systems. Here I specu-

late on why this is so and give the conditions that yield the largest frequency band,

within the limits of the diffusion model for the GCE, leading to S( I) ex 1/1.

Since S( w) ex C( x =0, w) N;I( w), for any w-1 region to appear the minimum

conditions are that 11..z< ~ and 11..z< Wv refer to Fig.17 and Table 2. The latter ine-

quality implies 11< 1rL2/V2. A large S( w) ex w-1 band appears when 11..z« Oa, i.e.

I

when L2 »L3. In physical terms the w-1 region is extended when D « wminL2'

where wminis the smallest measured frequency. The band is further increased if

WI ~ Oa and w2 > 04. For this case S( w) ex w-1 in the broadest possible frequency

band, which is [11..z,°4]. The ratio 04/11..z= (L2/6)2 50 the band is four decades wide

if L2/6 ~ 100, which for a field emitter only requires a net plane diameter of 2,500 A .

These geometrical limits are sketched in Fig.25. The broadest frequency band

resulting in S( w) ex w-1 occurs with a large thin rectangular or square sample and a

rectangular parallelepiped with small cross section of the order of the smallest sample
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Fig.25. Diagram of the probe-sample geometry that produces a broad band spectrum of the

form S( w) OCw-1.

dimension whose length does not exceed 2L2/Vi.

It is now hypothesized that the prevalence of II f spectra is due to the detector

interacting with relatively small portions of an essentially planar geometrical region

coupled with an appropriate diffusion coefficient. As an example consider current

noise produced at semiconductor contacts as a representative class of systems that

exhibit this behavior, see chapter I references for a partial list of these studies.
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Assuming Voss and Clarke's explanation that resistor flicker noise is induced by equili-

brium temperature fluctuations [2] and also that the boundary of a metal-

semiconductor system has a higher resistivity than the bulk regions then it follows

that temperature fluctuations in this boundary region will be the dominant factor

influencing fluctuations in charge transport. The noise is detected when current passes

through the contact. Given good mechanical contact occurs within the boundary

region over relatively small areas where the semiconductor metallization exists then

the current will pass primarily through these areas. Hence the probed region will be

much smaller than the planar region throughout which the temperature-resistance

fluctuations are occurring. This corresponds to the situation described in Fig.25 there-

fore leading to broadband l/w noise.
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H. Summary of chapter IV.

The starting point for equilibrium field emission noise theory is the corresponding

autocorrelation function

(IV.1)

which relates the current noise to surface density fluctuations 6 n( 7', t ). The difference

between chapter I and the present one is in the method of evaluating this fluctuation.

Here the density fluctuation satisfies a stochastic diffusion equation of the Langevin

type

(IV.22)

which allows for fluctuations in the total number of adatoms on a net plane. This pro-

perty distinguishes the model from chapter I where the net plane adatom number is

constant. The resulting difference in the mathematical formalism is considerable.
.~

The solution to this differential equation was written in the compact form of a

convolution product that includes a consideration of the finite size of the net plane,

n(x,t) = Z.(x,t) **e-t/TF(x,t). (IV.30)

This was a nontrivial task as the bounded fundamental solution to the diffusion equa-

tion is composed of an infinite series of terms. The utility of a convolution product

solution becomes evident when the solution to Eq.(10) is Fourier transformed to get

the corresponding spectral density function S( w).

The local time dependent density is composed of the unbounded solution to the

diffusion equation and a special set of Poisson impulse functions that appear in
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Eq.(30). The statistics of these impulses are calculated so that the principal statisti-

ca.l functions R( t) and S( w) themselves can be computed. A method similar to one

developed by Rice is used to calculate the Poisson statistics. Several standard results

are derived by a different route. More importantly balance equations are derived by

calculating the mean value of the density. The most significant aspect of this part of

the work is that a finite lifetime T must be imposed on the fluctuations for equilibrium

to be maintained. This is the first time the necessity of including this factor has been

fully appreciated. It also has important consequences for the subsequent spectral

analysis. It was also shown that the type of boundaries, i.e. reflecting or absorbing,

plays only a secondary role in determining the nature of the noise spectrum.

The correlated volume concept suggested by Voss and Clarke is placed on a firm

foundation by a separate Fourier analysis of the fluctuating probe current. This idea

is crucial in providing an approximation to a double spatial integration of the point

frequency correlation C( I xl - x21 , w). The result is

(IV.97)

which expresses the noise spectrum in terms of the calculable number of correlated

volumes Nc( w) and C( IXl - x21 , w). It is stressed that the probe spatial averaging

influences the former term while the sample boundary effect is contained in the latter.

The finite fluctuation lifetime produces a zero slope low frequency: correlation

length A" point correlation C( x =0, w}, and spectral density S( w). These observa-

tions coupled with a detailed investigation of Nc( w) also resolves an outstanding prob-

lern stated by Voss and Clarke concerning the appearance in their theory of a diver-

gent noise power integral. A somewhat different divergence encountered by Bliek is
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also removed by the presence of T.

Out of the analysis of the correlated volume construction comes a potentially

even more interesting result. There it was demonstrated that removal of the diver-

gence requires introducing a lower length scale for distinguishing fluctuations. This

introduces in a natural manner the resolution limit of the detector, which in the

present case is the field emission microscope. Later comparison with experimental

noise data proved it could indeed by measured and the values obtained were in good

agreement with the theoretical prediction based on the transverse energy distribution

of the field emitted electrons. One therefore has the interesting possibility of measur-

ing detector resolution from spectral analysis of the current fluctuations.

Several methods are suggested for extracting the diffusion coefficient from spatial

correlation measurements. However the more direct method is to evaluate S( w) itself.

The frequency dependence of S( w) is delimited by two sets of characteristic frequen-

cies {OJ = r D / Lj2} and {Wj = 2D /lj2}, which are respectively functions of net plane

and probe geometry. These sets are used to curve fit the various theoretical S( w)'s to

measured W - thermal field noise spectra. The procedure results in a determination of

the diffusion coefficient, its corresponding activation energy, the activation energy for

defect adatom formation, and the elucidation of the net plane buildup affect on this

data. Close agreement with derived values for these quantities obtained by other tech-

niques lends strong support to the validity of this construction.

As a final note the conditions for the broadest band S( w) oc w-1 possible within

the diffusion model are given and a hypothesis is presented on the reasons for the ubi-

quitous nature of this type of spectra.
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Conclusion

"What I tell you three time8 i8 true. "

Lewis Carrol The Hunting of the Snark

Noise power spectra have been derived for both adsorbate covered and clean field

electron emitters. The current noise probes emitter surface density fluctuations and.

provides a measure of adatom static and dynamic properties. Previously unidentified

adsorbate phase transitions have been detected. In the case of thermal field emission

the spatial resolution of the detector can be determined. Formally the analysis is

related to the general theory of 1/ f noise governed by diffusive equilibrium fluctua-

tions.

In the case of adsorbate covered emitters, corresponding to a canonical ensemble,

the most general classical expression for the field emission autocorrelation function has

been derived and shown consistent with the first one derived by Gomer. The first

correct spectral density function has also been derived for this case. For unbounded

diffusion, i.e. no net plane boundary effect, it is analogous to one derived by Burgess to

explain contact noise in semiconductors. It also corresponds to Gomer's autocorrela-

tion function. The first closed form solution of the spectral density has been derived

that includes net plane boundary effects.

Thermal field emission noise has been placed in the context of a grand canonical

ensemble and density fluctuation dynamics are described by a diffusion equation with

stochastic inhomogeneous source term. Subsequent analysis yields the first divergence

free spectral density function than incl~des net plane boundary, probe spatial averag-

ing, and finite fluctuation lifetime effects. Balance equations required for maintaining
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equilibrium are also developed. Details of experimental noise spectra are explained.

Surfa,ce diffusion coefficients, defect vacancy activation energies, and the resolution of

the field emission microscope are all derived from the spectral density functions. A

hypothesis is also put forth explaining the frequent occurrence of 1/ f type spectra for

diffusive equilibrium systems and the broadest band purely 1/ f spectra is stated in

terms of probe-system geometry.

The fundamental dynamical quantity derived from analysis of the time variation

of the noise is the density dependent diffusion coefficient. Field emission noise experi-

ments measure equilibrium density fluctuations and so are placed in the same category

as neutron scattering of liquids and light scattering by dilute suspensions. The

diffusivities derived from this type of studies is compared to one derived from macros-

copic decay of a density gradient involving irreversible thermodynamic relations and

with ones obtained from Monte Carlo computer simulations, which model all of the

above. The issues discussed can be stated as three related questions. One is, when does

the diffusivity obtained in a nonequilibrium experiment equal that obtained by

measuring equilibrium fluctuations? Two, under what conditions can it be ensured

'i'

that irreversible thermodynamics is equivalent to microscopic equilibrium fluctuation

theory? And three, under what conditions can the stability of a nonlinear partial

differential equation be guaranteed and hence ensure a unique solution? As discussed

in chapter II a truly comparative diffusion study of the density dependence of the

diffusion coefficient has yet to be done. Theoretically the implications of nonequili-

brium thermodynamic stability theory have yet to be completely elucidated as its

range of validity is not completely clear for diffusive systems.

The relation between static and dynamic properties of a two dimensional system

undergoing a phase transformation has been touched on within the context of field
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emission noise studies. A number of experimental data are reinterpreted. Kinetic

expressions included in the diffusion coefficient have been evaluated by a two level

thermodynamic model.

Two of possibly the most interesting experiments that should be investigated

concern the determination of the virtual source size of a thermal field emitter from

the resolution estimate obtained from the spectral density function, and secondly

extension of the noise analysis to liquid metal ion sources, which are of current

research and technological interest.

The present work provides a framework for further experimental tests and ext en-

sion in the abovementioned directions. A direct measure of the virtual source would

be of use to those involved with electron optical problems. This work also firmly

places field emission noise in the context of the general theory of diffusion mediated

flicker noise and resolves several mathematical problems found there. Detailed

fluctuation analysis and experiment presents a most sensitive probe of the internal

dynamic mechanisms of the system under investigation.
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