# **POSITIONED IN** THE NON-DYSNORPHIC PELVIS?

Benjamin Watzig, OHSU School of Medicine Class of 2021

Department of Orthopedics and Rehabilitation

PI: Dr. Scott Yang

# POSTERIOR PELVIC RING FRACTURES

- Pediatric pelvic ring fractures are rare
- Historically treated Non-operatively
- Low Mortality
- Long term morbidity
  - Lumbar Pain
  - Trendelenburg Sign
  - Nonstructural Scoliosis







# PERCUTANEOUS SACROILIAC SCRE

- guided procedure
  - Inlet, outlet, and True Sacral lateral view
  - 2-D representations used to guide screw trajectory
- Technically challenging with 8% iatrogenic neurovascular injury (adult)
  - L5 nerve root and iliac arteries anterior
  - S1 nerve root posterior











### SAFE ZONE

- Osseous pathway from Ilium
  → Sacral ala → S1 Vertebral body
- Screw must be contained within
- Final trajectory confirmed on true lateral projection (sagittal)
  - Iliac cortical density is key anatomic landmark









Figure 4

# STUDY PURPOSE

Investigate whether the ICD is a safe and accurate guide for the trajectory of SI screws in the developing pelvis

Quantify any evolving relationship of the "safe zone" during development



## SUBJECTS

- Retrospective Review of CT scans (1/2015-6/2019)
- Patients divided into representative age groups
  - (0-2), (3-4), (5-7), (8-10), (11-13), (14-16)
- Exclusion criteria:
  - Pelvic trauma
  - Congenital defect
  - Pelvic dysmorphism
  - Neuromuscular disease
  - Non-ambulatory status







### Figure 6

### **CT MEASUREMENTS**

- CT formatted to a fluoroscopic equivalent true sacral lateral view
- 6 total measurements were taken at 3 locations along the S1 vertebral body
  - Caudal End plate to ICD
  - Caudal to Cranial end plate
- Measurements rounded to nearest .1mm





RESULTS



### Tables/Figures:

#### Table 1. Average S1 vertebral body and iliac cortical density height by location

|                      | Vertebral Height by Location, mm, mean ± sd |               |                |               |                  |                      |  |
|----------------------|---------------------------------------------|---------------|----------------|---------------|------------------|----------------------|--|
| Age Group            | Anterior S1                                 | Anterior ICD  | Midpoint S1    | Midpoint ICD  | Posterior S1     | <b>Posterior ICD</b> |  |
| 0-2 Years (n=30)     | $(10.0 \pm 2.2)$                            | $2.2\pm0.7$   | $10.9 \pm 2.3$ | $5.3 \pm 2.1$ | <b>8.9 ± 1.9</b> | $6.3 \pm 2.1$        |  |
| 3-4 Years (n=31)     | $14.4 \pm 1.7$                              | $4.2\pm1.7$   | $15.1 \pm 1.3$ | $7.9\pm2.2$   | $12.1 \pm 1.4$   | 9.1 ± 1.6            |  |
| 5-7 Years (n=30)     | 16.6 ± 1.9                                  | $5.8 \pm 1.8$ | $17.8 \pm 1.8$ | $10.5\pm3.1$  | $15.3 \pm 1.8$   | $12.2 \pm 2.5$       |  |
| 8-10 Years (n=30)    | $21.7 \pm 2.2$                              | ► 8.6 ± 1.6   | $21.7 \pm 2.1$ | $13 \pm 2.5$  | 18.6 ± 2.1       | ► 15.3 ± 2.8         |  |
| 11-13 Years (n=30)   | $25.7 \pm 2.3$                              | $12.82\pm2.0$ | $25.3\pm1.9$   | $16.8\pm2.8$  | $21.9 \pm 2.5$   | $19.2 \pm 2.9$       |  |
| 14-16 Years (n=30)   | 30.1 ± 3.2                                  | $16.7\pm2.5$  | 28.8 ± 2.8     | $19.9\pm2.9$  | 25.6 ± 3.2       | $) 22.5 \pm 3.6$     |  |
| ANOVA Between Groups | p < 0.001                                   | p < 0.001     | p < 0.001      | p < 0.001     | p < 0.001        | p < 0.001            |  |

Abbreviations: ICD, iliac cortical density



|                      | ICD / S1 Vertebral Height Overlap Ratio, %, mean ± sd |                 |                |  |  |
|----------------------|-------------------------------------------------------|-----------------|----------------|--|--|
| Age Group            | Anterior                                              | Midpoint        | Posterior      |  |  |
| 0-2 Years (n=30)     | $22.2 \pm 5.5$                                        | $47.3 \pm 13.7$ | $69.7\pm13.8$  |  |  |
| 3-4 Years (n=31)     | $28.8\pm9.6$                                          | $52.6\pm11.8$   | $74.8\pm8.3$   |  |  |
| 5-7 Years (n=30)     | $34.7\pm8.1$                                          | $58.4\pm14.3$   | $79.5\pm10.1$  |  |  |
| 8-10 Years (n=30)    | $39.5\pm6.9$                                          | $60.3 \pm 12.0$ | $81.9\pm10.1$  |  |  |
| 11-13 Years (n=30)   | $49.2\pm7.0$                                          | $66.2 \pm 8.7$  | $87.3\pm6.9$   |  |  |
| 14-16 Years (n=30)   | <b>55</b> .2 ± 5.4                                    | 69.1 ± 6.0      | $88.1 \pm 7.0$ |  |  |
| ANOVA Between Groups | p < 0.001                                             | p < 0.001       | p < 0.001      |  |  |

Table 2. Proportion of vertebral height overlapped by the iliac cortical density at three locations

Abbreviations: ICD, iliac cortical density









# DISCUSSION

- Complex 3-D anatomy using 2-D landmarks for proper screw trajectory
- Paucity of investigation in assessment of adult landmarks during development
- The ICD can be reliably applied to the pediatric pelvis
- Unrecognized relationship is crucial for operative decision making in the pediatric pelvis, especially in the youngest age groups
- Progressive increase in "safe zone height" and proportional overlap of S1
  - Translates to relative expansion of the safe zone across age groups
  - Variation in regional growth patterns



# LIMITATIONS

- Clinical software
- Human error in manual distance measurement
- CT resolution quality
  - Softening of osseous edges



# CONCLUSIONS

- 1. ICD is present and reliable landmark in pediatric pelvis
- 2. Vertical clearance of safe zone increased at all 3 locations across age groups
- 3. Proportional coverage of vertebral body increased across age groups
- 4. Decreased margin for error and and increased risk of iatrogenic injury in youngest groups
  - Consider alternative technique such as CT or computer guidance







# FIGURE REFERENCE

- Figure 1. Operative treatment for Unilateral complete disruption posterior arch through ilium. site name. Accessed June 11, 2020. https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/pelvic-ring/unilateral-complete-disruption-posterior-arch-through-ilium/operative-treatment
- Figure 2. Fig. 4. Percutaneous fixation of the iliosacral screw. (A) The tip of... ResearchGate. Accessed June 11, 2020. https://www.researchgate.net/figure/Percutaneous-fixation-of-the-iliosacral-screw-A-The-tip-of-the-guidewire-should-be\_fig4\_274980835
- Figure 3. MIO Iliosacral screw for sacrum for SI-joint fractures. site name. Accessed June 11, 2020. https://surgeryreference.aofoundation.org/orthopedictrauma/adult-trauma/pelvic-ring/si-joint/mio-iliosacral-screw-for-sacrum
- Figure 4. Shrestha D, Dhoju D, Shrestha R, Sharma V. Percutaneous Ilio-Sacral Screw Fixation in Supine Position under Fluoroscopy Guidance. *Kathmandu Univ Med J*. 2015;13(1):56-60. doi:10.3126/kumj.v13i1.13754
- Figure 5-7. Watzig BF, Peterson DF, Thompson AR, Friess DM, Working ZM, Yang SS. Is the iliac cortical density similarly positioned in the non-dysmorphic developing pelvis? *J Orthop Trauma*. Under review. Submitted 11 May 2020.

