
Design of a List-structure Memory using
Parallel Garbage Collection

Mark H. Foster
B.A., Willamette University, 1983

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Master of Science
In

Computer Science & Engineering

September, 1985



The thesis "Design of a List-structure Memory using Parallel Garbage Collection" by

Mark H. Foster has been examined and approved by the following Examination

Committee:

Richard B. Kieburtz, Thesis Resea~ch Advisor
Professor and Chairman,
Department of Computer Science and Engineering

David Maier
Associate Professor,
Department of Computer Science and Engineering

Shreekant S. Thakkar
Assistant Professor,
Department of Computer Science and Engineering

'=

Will Clinger
Tektronix, Inc.



Acknowledgements

I would like to express my gratitude to Dr. Richard B. Kieburtz for his guidance

and encouragement during my study at the Oregon Graduate Center. It was the

formal insight and expertise of Dr. Kieburtz that permitted the extension of Ashoke

Deb's algorithm, and thus, the foundation of this project. He has been both a

tea-cher and a friend. Thanks are due Dr. Ashoke Deb, for without his algorithm

development and his advice, this project could not have commenced.

I wish to thank Dr. Shreekant Thakkar for his support and motivation during

the early stages of this project. Much gratitude is due to my thesis committee

members for their efforts, and especially to Dr. David Maier, an excellent teacher.

I gratefully acknowledge the Computer Research Lab, at Tektronix, for the

design and provision of the Magnolia workstation, on which most of the project was

initially developed. Thanks are due to Bruce Jerrick, for providing skillful technical

advice and for maintaining the development environment. I want to thank my

friend Richard Vireday for his support and assistance throughout my work at OGC.

III



Table of Contents

List of Figures v
Abstract vi

1. Introduction 1

2. History -- known and used techniques 4

3. A new collection algorithm 10

4. An application of the concurrent algorithm 22

5. Architecture for a dual-ported list-structure memory 27

6. Detailed simulation organization 36

7. Data generation and simulation results 59
8. Conclusion 70

References 74

Appendix A: Control and communication between components 76

Appendix B: Usage of the simulator 82

Biographical Note 86

IV

-



List of Figures

1.1 Example of garbage creation 1

3.1 Template of a graph node 12

3.2 A shared subgraph 19

5.1 Dynamic, list-structure memory components 28
5.2 A graph node and its successors 30

5.3 Memory Manager allocation frame structures 32

6.1 Datapaths: sockets used in the simulation 48

6.2 Control: signals used in the simulation :. 51
6.3 AANS, ACF, and Context Frames 54

6.4 CCFQ ... ... ...... 54

7.1 Relationship of root and non-root nodes 63

7.2 Distributions of mutator operations 65
7.3 Freelist size 67

7.4 Memory Manager backlog 67

7.5 Collection expense by node source 68

7.6 Memory Manager effectiveness 69

v



Abstract

Design of a List-structure Memory using
Parallel Garbage Collection

Mark H. Foster, M.S.
Oregon Graduate Center, 1985

Supervising Professor: Richard B. Kieburtz

Dynamic, list-structure memory provides direct hardware support for list-

processing systems; it facilitates concurrent evaluation and memory management

that requires little explicit cooperation between the evaluator and memory manage-

ment processors.

This thesis reviews the suitability of present concurrent garbage-collection

schemes, and introduces a new scheme that provides incremental, parallel collection.

A memory architecture to support the new algorithm is also described. A multi-

process simulation of the architecture and the new algorithm show that this model

will support intensive list-structure operations of applicative language evaluators

under development.

VI



1

1. Introduction.

Dynamic, list-structure memory is an architectural primitive of all abstract

machines that evaluate list-processing languages. Since the advent of list processing

systems, there has been demand for memory organizations specific to lists. Evalua-

tors for list processing systems make use of memory in a manner that emulates

dynamic, object-oriented storage. This technique can be observed in a variety of sys-

terns. Lisp [McC60], Prolog [WaP77], and Smalltalk-80™ [GoR83, KaK83] all use

list- or object-structure memory for the basic store model. Typical list-structure

memory consists of individually accessible nodes, each capable of storing two or more

data, which may be basic values or the addresses of other nodes. During the evalua-

tion of a list-processing program, new nodes are automatically supplied by the

memory system, while nodes no longer used are simply ignored.

Thus, as the evaluator creates, modifies, and discards lists of nodes, it both con-

sumes new nodes and produces garbage nodes. These so-called garbage nodes are the

memory components that are no longer accessed or used by the evaluator. A simple

example illustrates the creation of a garbage node.

(a) (b)

Figure 1.1. Example of garbage creation.

SmaJltalk-80 is a trademark of Xerox Corporation.



2

Given a list of data elements (Figure 1.1a), a typical operation on the list is to

remove the "head" of the list, leaving the rest of the list intact (Figure 1.Ib). Assum-

ing a single reference to the list, once the head of the list (Dl) is removed, the

storage for the head is no longer needed, and can be re-used for other data elements.

At this point, the storage for Dl is considered "garbage".

The detection and reclamation of unused store are the primary functions of

list-structure memory management. Once unused store is reclaimed, it can subse-

quently be re-used. Several fundamental approaches for handling unused store have

emerged. We outline them here, and discuss the nature of the techniques in more

detail later.

manual management: This method is programmer enforced. Some still consider

it useful for special-purpose applications, but it tends to be error prone and IS

not adequate for most applications. We will not return to this approach.

reference counting: This technique tallies the number of references to a cell,

and determines immediately when the cell is no'longer referenced. It cannot

collect cyclic structures, however.

copying, compacting: Memory space is divided into two or more workspaces,

where some of the workspaces are active and some are free. Periodically, cells

are copied from an active space into a free space; the active space is freed, and

the free space is considered active. Fragmentation is reduced during the copy-

mg process.

mark-sweep: Cells in the active store are marked, then the entire store is swept.

This two-cycle operation determines which cells can be accessed, and collects

the rest.



3

specific adaptations: These involve noting behavior of a particular computing

environment and tailoring the memory management to specific circumstances.

All of these techniques suffer from one or more significant drawbacks when extended

for parallel collection. As demand for large scale list processing and efficient func-

tional program evaluators increases, these drawbacks become major performance

issues in a functional language environment. By adapting a new, incremental gar-

bage collection scheme for execution in a parallel collection system, we establish an

approach that avoids these problems and shows promise for high-performance,

multi-processor, functional-language systems.

1.1. Outline of remainder.

In the following section, we overview the main features and drawbacks of esta-

blished techniques outlined above, thereby setting the stage for Section 3. Section 3

consists of a presentation of a new collection algorithm and an extension of the basic

algorithm for concurrent execution. Section 4 describes an application of the con-

current algorithm and desirable changes for a graph-reduction machine. The archi-

tecture for a relatively general-purpose dual-ported list-structure memory is provided

in Section 5. The simulation of the presented architecture, in terms of the graph-

reduction application, is detailed in Section 6. Section 7 reports the results of the

simulation. Conclusions and suggestions for further work are given in Section 8.



4

2. History --known and usedtechniques.

Several techniques for managing list-structure memory have been developed.

Many popular techniques are termed garbage collection, since unused storage is

allowed to accumulate, becoming garbage, before it is returned to the available store

pool. Garbage collection has received considerable attention in the development of

many large list processing systems [Mo074, Tei78]. Another approach, based on

reference count£ng, immediately deallocates storage once it is no longer needed.

Most of the current Smalltalk-80 systems use some form of reference counting

[KaK83]. In this section, we discuss the genera}! features of storage management

techniques that have been developed for list-structured memories and explain why

we feel none is completely satisfactory.

2.1. Mark-Sweep.

Two modes of mark-sweep garbage collection have been established. The stop-

and-collect approach allows the evaluation to proceed until there are no nodes avail-

able in the free-node pool. The parallel approach uses two processors: one for the

evaluation and one for concurrent garbage collection.

For the stop-and-collect mark-sweep technique, the evaluation is suspended

once the free pool is exhausted. Subsequently, the garbage collector is activated and

reclaims all unused, but not free, storage. The basic algorithm consists of two

phases:

1) Mark. Determine which nodes are still accessible (in the active graph).

2) Sweep. Create the free pool from nodes that are not accessible.

1. A rather thorough survey of classical and relatively recent storage management techniques is
presented by Cohen [CohB!].



5

Once the collector completes the sweep phase, evaluation restarts. The PrI-

mary disadvantage is that list processing must be suspended periodically, since the

same processor is used for both evaluation and for collection. Both the frequency

and the length of the suspension can be arbitrary.

In an attempt to eliminate the inherent wait cycle, a parallel, multi-processor,

algorithm can be developed from the stop-and-collect approach. This algorithm

reduces the in-line overhead of a stop-and-collect implementation, and reduces the

amount of time an evaluation must be suspended. Algorithms for multi-processor

collectors have been proposed and proyen correct [DLM78, Ste75]. The extension

requires particular exclusion and synchronization constraints between the evaluator

processor and the collector processor, and is defined by the combination of

(a) Low-level, hardware-supported synchronization of access to physical

memory.

(b) Producer-consumer synchronization for allocation requests made by the

evaluation process.

(c) The state of an evaluation process is periodically passed to the collector to

reveal the current roots of the active graph.

Another disadvantage is realized when the memory occupancy approaches 100

percent. In this situation, the collector is forced to make nearly two full passes

through the store in order to collect a small number of garbage nodes. Considerable

time may be expended just to discover there is not enough memory available. Furth-

ermore, the cost of the sweep phase increases as the total store increases. The

problem becomes acute as very large memory spaces become necessary.

Hickey and Cohen have uncovered some specific limitations in a recent analysis

of on-the-fly garbage collection [HiC84]. First, the freelist size is cyclical. This is



6

because many nodes may become garbage during a given cycle, but will have to wait

until the following cycle to be collected; the end result is that temporary storage is

the most expensive to collect! Second, this approach yields a maximum achievable

speedup of only about 1.5 over the sequential approach.

2.2. Copying, Compaction.

An alternative to mark-sweep collection is scaveng£ng [Bak78, LiH83, Ung84].

That is, memory is partitioned into two or more spaces. New nodes are allocated

from an active space until the space is full. A breadth-first traversal of the graph in

an active workspace copies reachable nodes into an available (free) workspace,

coalescing the active nodes into a contiguous block. After a scavenge, the former

workspace is freed. This approach avoids the costly sweep phase of mark-sweep, and

periodically eliminates fragmentation. Copying-compaction also has the advantage

that allocations of new nodes can be made in a very cheap fashion by simply incre-

menting an address pointer. However, only half the total address space is available

at a time: this effectively "wastes" 50 percent of usable storel.

As with mark-sweep collection, copying-compaction degrades as the memory

occupancy approaches capacity. This degradation is due to increased frequency of

copying nearly the entire active store to reclaim (perhaps) just a few nodes.

In terms of store accesses, the copying process incurs about twice the expense of

the marking phase of mark-sweep collection, and it is less amenable to parallel exe-

cution [Kie85a]. Node-level exclusion and synchronization is required while a node is

being copied. Furthermore, indirection overhead will be introduced whenever the

evaluation process accesses a node that has already been copied. This mechanism

1. Admittedly, if virtual memory is used, this is not a problem



7

requires a "fault" whenever an indirection pointer is encountered, and a retry on the

node that is pointed to.

2.3. ReferenceCounting.

The reference counting technique makes use of an additional field in each node

or equivalent space in an auxiliary table. A count of the number of inward arcs

(references to the node) is stored in this field. Operations on a pointer may either

increment the reference count when a pointer is copied, or decrement the reference

count when a pointer is overwritten or released. Whenever the reference count

reaches zero for a node, the node is returned to the pool of available nodes. This

technique benefits from the simplicity of implementation and the immediate availa-

bility of a node for reuse, once it is no longer used. There is also no reduction in

efficiency of memory management as the size of the active graph gets large with

respect to the available store. However, reference counting suffers from several

disadvantages:

. Cyclic graph structures are never reclaimed.

. Additional bits in each node must be devoted to memory management.

The number of bits is generally quite a few more that those needed for a

marking or copying scheme; plus, the count can overflow when the number

of bits is fixed.

. The average cost of a memory reference is increased by the in-line over-

head of maintaining reference counts.

Modified reference counting schemes have addressed some of these burdens. In

particular, an approach developed by Ashoke Deb uses reference counts to trigger

traversal of (possibly) cyclic structures [Deb84]. When the overhead of maintaining



8

reference counts is made negligible, there may be far more efficiency in this approach

than the marking or copying schemes. This topic will be expanded upon shortly.

2.4. Adaptations.

Many recently developed list-processing systems have employed specific adapta-

tions of general memory management schemes. These schemes typically are designed

around particular attributes of the evaluation system being used. Some examples

include:

Automatic memory reclamation, based on scavenging, was .first introduced by

Baker. Baker's semispace algorithm [Bak78] divides memory into two partitions and

scavenges all reachable objects from one partition to the other.. Lieberman and

Hewitt [LiH83] generalize Baker's approach by separating objects according to age;

young objects often become trash quickly while older objects are less likely to be dis-

carded.

A hybrid of reference counting and garbage collection is given by Deutsch and

Bobrow [DeB76]. Their notion is to primarily use a reference-counting approach.

They avoid in-line overhead by delaying the determination of the reference count

until just prior to collection. In addition, they rely on an eventual stop-and-collect

for self-referent structures.

Each of these techniques has been shown to improve performance in the cases

they were designed to handle; the difficulty is that they are ad-hoc to some degree.

In particular, none provides a general scheme for memory management in a func-

tionallanguage evaluator. There is also little provision for reducing in-line overhead

through parallel processing.



9

2.5. Motivation for a new incremental approach.

Particular demands are placed on memory management for graph reduction

evaluators. Since expressions are created and represented by (possibly cyclic) graphs

during execution, there is need to provide a ready supply of fresh nodes without

impeding the evaluation process. In typical graph evaluation [JoA83, Kie85c, Sar84],

there are fewer cyclic graphs than acyclic graphs. Acyclic structures can be very

effectively collected using a reference counting scheme. With special components

(e.g., Wis85) to aid the in-line overhead of maintaining reference counts, this suggests

a highly efficient collection strategy for graph evaluators may be developed by aug-

menting reference counting with a graph-traversal scheme. While this approach is of

particular benefit to graph evaluation, it also provides a model from which a general

list-structure memory can be developed.



10

3. A new collection algorithm.

In this section, we review an incremental collection algorithm devised by Deb.

We then discuss the adaptation of this algorithm that permits execution in a multi-

process environment and provide an informal proof of the adaptation.

Deb's algorithm is attractive for a variety of reasons.

* The approach is incremental. It is important to distinguish our notion of incre-

mental from time-slice techniques [DeB76]. Previous incremental collection

approaches regularly use a small piece of the processing resources (e.g., time-

slicing) to perform part of a collection pass. Our approach is considerably

different, in that the average size of the passes is reduced, then each is run in

its entirety. The effect is that demand for collection is proportional to the

amount of garbage created, and that reclamation of unused nodes is step-wise.

* The cost per collected node is constant. The incremental strategy yields a fixed

average cost over all ratios of memory occupancy p. The costs of mark-sweep

and copy-compaction grow as ~ and ~, respectively.
I-p I-p

* The algorithm can be extended to allow parallel execution. By carefully apply-

ing limited synchronization constraints, and by adding an initialization traver-

sal, the elements of the sequential approach can be used to establish a con-

current algorithm.

* Unlike many other memory management algorithms based on reference count-

ing, cyclical structures are collectible.

Some particular drawbacks are inherited by the nature of reference counting.

* Reference counts require an extra field (i.e., extra bits). Moreover, reference

counts of fixed precision can overflow. Depending on the interpretation of



11

reference count overflow, this may also have the bad influence of making a node

uncollectible.

* There is in-line overhead for maintaining reference counts.

With special hardware, the latter problem can be avoided. A method and

architecture for handling this problem will be discussed shortly. First, though, we

present an interpretation of Deb's algorithm.

List-structure memory management.

In systems where explicit memory manipulation is allowed for the evaluator, a

very general reclamation algorithm must be used. Since there is little control over

how the evaluator uses memory, a specific protocol for the management of the

memory cannot be established.

At the other end of the spectrum, an evaluator that forms only acyclic graphs

could use reference counts effectively, since the major drawback of traditional refer-

ence counting techniques is the inability to collect cyclic structures.

A graph-reduction evaluator neither requires explicit manipulation of memory

representations nor forms exclusively acyclic graphs. As indicated by Kieburtz

[Kie85a], however, the incidence of cyclic graphs is much less than the incidence of

acyclic graphs. In this situation Deb's algorithm might be applied effectively.

3.1. Deb's modified reference counting algorithm.

The environment for collection consists of a rooted, reference-counted graph, a

process that traverses and possibly modifies the graph (mutator), and a process that

finds nodes no longer accessible from the root of the graph (collector). Figure 3.1

shows the template of a graph node. A brief description of each field follows.



12

pO indicates whether first data field is a pointer or simple data.

pI indicates whether second data field is a pointer or simple data.

P persistent (private use by memory manager).

A allocated/not-allocated (private use by memory manager).

C is collectible (private use by memory manager).

U permanently uncollectible (private use by memory manager).

V mutator-visit bit is set whenever the mutator changes data.

locJeLct local reference count (private use by memory manager).

ref_count reference count

thresh threshold defines a limit for pointers from a node's descendents.

data two 32-bit fields may hold pointer or simple data.

1111111

~
882

locJeI-ct I reI-count I I thresh

921 data92 data

Figure 3.1. Template of a graph node.

If it seems like there are quite a few bits allocated for the memory management

compared to bits used for data, consider this: In the past, use of available store was

minimized since memory was expensive, relative to cpu cycles. In modern designs,

though, available memory no longer needs to be a strict limitation. Not only have

dense memories become rather inexpensive, but for custom VLSI designs, memory is

the most regular circuitry, and therefore tends to be least expensive in terms of sili-

con real estate.



13

Deb's approach is based on the notion that only potentially collectible sub-

graphs are inspected. Whenever a pointer to a node is elided, the reference count of

the node is decremented, and the address of the node is put into the "Garbage Can".

At a convenient time, the mutator is stopped, and nodes pointed to from the Gar-

bage Can are examined to determine if they are collectible.

Any node whose reference count is zero can be collected immediately. When a

node is collected, the reference counts of the nodes it points to are decremented, and

entries for those nodes are placed in the Garbage Can.

Any node N having a non-zero reference count could be collectible, if it were

found that N is part of a cycle in which all the nodes reachable from N cannot be

reached from a node which is not reachable from N. This situation gives rise to con-

dition CI.

(C) Given a node R, root of a strongly-connected subgraph, R is part of an unrefer-

enced cycle if the reference count at each node in the subgraph is equal to the

number of edges incident from nodes within the subgraph.

To test condition C, it is sufficient to make two traversals of a spanning tree

through the graph rooted at R.

Traversal!: count local arcs.

The purpose of traversal 1 is to account for all the references to a node R from

nodes which are reachable from R. A field called the local reference count, is main-

tained for each node. At the start of the first traversal, assume that all local refer-

ence counts are zero. For each pointer encountered, the local reference of the node

it points to is incremented. To handle cyclic structures, we must discern if a node

1. Condition C integrates Deb's condition B [Deb84,page 71.



14

has been previously visited in the current tra versa!. If the node has not been visited,

its local reference count is is zero, otherwise it is non-zero.

At the conclusion of the first traversal of the subgraph R, the local reference

count for each node in the subgraph is exactly the number of edges incident from

within the subgraph.

Traversal2: collectibility.

The second traversal determines if the subgraph is collectible by comparing the

actual reference counts with local reference counts. During this traversal, two states

govern the collector's actions. We call these optimistic and pessimistic1. If a node is

encountered when optimistic, and if the local reference count equals the actual refer-

ence count, the node is marked as potentially collectible and the collector continues

to be optimistic. Otherwise, the collectible bit is cleared, and the collector is pes-

simistic while visiting all successors of the node. During this collectibility traversal,

the local reference count for a node is reset to zero the first time the node is encoun-

teredo To ensure a cycle is only traversed once, the local reference count is checked

whenever a node is visited; if the count is non-zero, the node has not yet been visited

during this traversal, if the count is zero, the node must have already been visited.

At the end of the second traversal, the local reference count of each node 1S

zero, and the collectible nodes will be exactly those that are both

i) marked as collectible, and

ii) reachable from R without traversing any node not marked as collectible.

1. In Deb's nomenclature, optimistic is called green and pessimistic is called red.



15

Traversal 3: collect.

The actual collection of nodes requires another traversal of the collectible sub-

graph rooted at R. This traversal de allocates nodes whose "collectible" bit is set.

The traversal does not descend below nodes that are not marked collectible, and

determines cycles by using the "allocated" bit. The "allocated" bit distinguishes

between nodes that are free and nodes that are allocated. This bit is also con-

venient to allow duplicate entries in the Garbage Can without risking multiple col-

lections of the same node. When a node is deallocated, its "allocated" bit is cleared.

On the surface, this approach may seem to imply considerable overhead, since

two full traversals are required to determine collectibility, and a third is required to

perform the actual collection. Closer observation shows, however, that this

approach is actually quite reasonable. The primary factor improving its efficiency is

that the collection strategy is incremental. Only those subgraphs rooted at a candi-

date node are inspected, rather than the entire allocated graph, as with mark-sweep

or copying-compaction. Since candidates are defined as nodes having an incident

edge deleted recently, these are the nodes (and likewise, subgraphs) most likely to be

collectible. The average size of individual subgraphs does not grow in proportion to

the total size of the active graph, given that the evaluator remains consistent. Also,

the average cost per node collected is independent of the memory occupancy.

Deb's sequential algorithm can readily be extended to provide the constraints

needed for a multi-processor environment. In this manner, a non-stop highly efficient

memory management mechanism can be developed.

3.2. A concurrentapproach.

The concurrent algorithm shares many traits of the stop-and-collect approach.



16

The step-wise, incremental features are retained. The fundamental components of

each pass are the same. And simulation results, to be discussed later, indicate that

the concurrent version also performs well. The most obvious difference is that the

mutator does not have to be interrupted to perform collection. The benefits of the

concurrent algorithm corne at the cost of added complexity to both the mutator and

the collector, plus an additional traversal through the candidate subgraph. Dijkstra

notes that developing the constraints for parallel garbage collection is a somewhat

tricky task {DLM78]. Deb's algorithm is no exception.

It is possible to develop scenarios in which the collection condition (C) appears

to apply, yet there remains a reference to the root node R from outside the

strongly-connected subgraph rooted at R. We say the condition "appears to apply"

because the condition can only be tested with a sequential algorithm. The condition

(C) is in fact the correct one; the difficulty, as indicated in [Kie85a], is formulating a

reliable way to test it.

An obvious problem arises when the action of the mutator causes modification

of the actual reference count of a node being inspected for collection. This problem

is solved by adding a mutator-visit bit to the set of node tags. This bit indicates

which process has most recently modified the node. The mutator-visit bit is only

cleared and set according to the following conditions.

(mv.a) The mutator-visit bit is cleared only by the memory manager in the initial

pass of the collection cycle.

(mv.l) The mutator-visit bit is set upon allocation of a node when its reference

count is zeroed, and set whenever the reference count is either incremented

or decremented.



17

If the mutator actions cause a 0-1 transition of the mutator-visit bit, the col-

lector detects this, and collection of the node is invalidated for the current collection

cycle. To detect the transition, the collector must test the bit during the collectibil-

ity pass.

A second problem is to provide a known state of the nodes being inspected for

collection. During the count local arcs pass described above, the local reference

count is assumed to start at zero. We could simply reset the count to zero at the

conclusion of inspecting the graph for collectibility. However, this approach is not

satisfactory. If in the course of executing 'the inspection algorithm, the actions of

the mutator disconnect a portion p of the subgraph R, the nodes in p may no longer

be reachable from the original root, leaving the memory manager unable to later

reset the local reference count of the disconnected node(s). In a similar manner, p

could be reattached to another part of R with non-zero local reference counts. These

actions could lead the memory manager to a faulty calculation of the local reference

counts, and thus, believe a subgraph to be collectible, when in fact, it is not.

To solve the second problem, the collection algorithm makes an additional

traversal through the subgraph being inspected. This traversal we call clear refer-

ence. It precedes the passes listed above, becoming pass a. In clear reference, the

local reference count is zeroed, and the mutator-visit bit is cleared. The test for first

visit to a node is that either one of these values is non-zero. Note that according to

(mv.a) and (mv.I), once a node has been visited with the clear reference pass, it can-

not be disconnected from the graph by mutator actions without causing the

mutator-visit bit of the node or one of its ancestors to be set.

Proposition l:t Following the initial pass, clear reference, either every node a in

t Both the theorem and proof are from the justification provided by Kieburtz in [Kie85a].



18

the graph rooted by R will have a local reference count of zero, or every path from

R to a will contain at least one node whose mutator-visit bit is set.

Proof: Given a graph G rooted on R, and a node b reachable from R: suppose

that, following the clear reference pass over G, the local reference count of a, a node

in G, is non-zero. Since the local reference count for a can only be modified by the

collector, it must be that the collector did not visit a during the pass. This situation

means that a was added to the graph during the pass. In order to add a, either

1) an edge leading from a node b to a has been added, or

2) some edge leading from b to an ancestor of a has been added.

In the first case, the mutator-visit bit for a will be set, according to (mv.O). In

the second case, the ancestor of a was not visited during the pass. The proof

follows by induction on the depth of the unvisited node.D

The count local arcs and collectibility passes follow the clear reference pass.

Both of the non-concurrent passes must be modified to operate properly.

Pass 1, count local arcs, must now consider whether it is the root node or a suc-

cessor being visited. In Deb's original version, the actual reference count of a Gar-

bage Can entry is not decremented until after collection scanning. In the concurrent

environment, actual reference counts are decremented immediately, just prior to

placement in the Garbage Can. Roots referenced by the Garbage Can will, in Deb's

approach, have reference counts which are one more than those in the concurrent

approach. Therefore, in the concurrent algorithm, count local arcs must not incre-

ment the local reference count of a root node R unless it is part of a cycle. Then,

only the incident edges from a successor of R are counted.

The collectibility pass also must be changed slightly. If, subsequent to pass 0,

the mutator actions cause the mutator-visit bit to be set for a node, the collector



19

i) becomes pessimistic,

ii) does not mark the node (potentially) collectible, and

iii) continues to be pessimistic for all successors of the node.

Initially, it might appear that the collector could avoid traversing below a node

with the mutator-visit bit set. This is not the case for shared subgraphs.

Figure 3.2. A shared subgraph.

Given the subgraph rooted at a (Figure 3.2), if node b is referenced by a node which

is not reachable within the subgraph, it could have its mutator-visit bit set following

traversal 1. Since there is no implicit forwarding of the update to b, none of the suc-

cessors of b will be considered invalid for collectibility during the current cycle. The

collector could (incorrectly) decide that all references to d have been accounted for,

and that the node is only reachable through a, thereby allowing d to be deleted. The

collectibility traversal must therefore propagate the mutator-visit information by

continuing, in a pessimistic state, to the successors of the invalidated node. This

method ensures that such successors are not marked as potentially collectible, and is

necessary for (01).



20

Proposition 2:t At the conclusion of the collectibility pass,

(CI) each node reachable from the root R along a path containing only nodes

marked as collectible is assured not to be reachable from any node of the active

graph, and

(C2) any node in the active graph having a successor whose local reference count is

non-zero either has its own local reference count non-zero, or has its mutator-

visit bit set.

Proof: Let GR be the maximal, strongly-connected graph rooted on R. (CI)

assumes the local reference count of every node visited in Traversal 1 was zero at

the start of the traversal, and that no node's pointer contributes to the local refer-

ence count of any other node unless both were present in GR at the start of Traver-

sail. Thus, the local reference count of each node at the end of Traversal I is less

than or equal to the number of references to the node from within the graph. If no

node of the graph has its mutator-visit bit set, then all will have been visited in

Traversal 1, and the local reference counts equal the number of references from

within GR. Thus, the nodes of GR are marked as collectible in Traversal 2 if and

only if Condition (C) holds. This establishes (CI). The proof of (C2) is analogous to

the proof of Proposition 1. []

Condition (CI) guarantees that only unreachable nodes will be collected. Con-

dition (C2) is sufficient to assure that at the conclusion of pass 0, every node reach-

able from a root R along a path containing no node whose mutator-visit bit is set

will have a local reference count of zero.

Some improvements and optimizations can be made to the algorithm if the

t Both the theorem and proof are from the justification provided by Kieburtz in [Kie85aj.



21

domain in which it is applied is restricted. Additional discussion regarding these pos-

sibilities is provided in Sections 4 and 8. The concurrent algorithm, as described, has

formed the basis of a fairly complete simulation of a sophisticated list-structured

memory design, to be discussed in Sections 6 and 7.



22

4. An application of the concurrent algorithm.

The concurrent algorithm presented in section 3 relies on the use of two proces-

sors. It also relies upon a list-structured "graph memory" that is shared between the

processors. Many machines could exploit list-structure memory. One architecture

that can readily make use of this arrangement is the G-Machine.

The G-Machine [JoA83, Kie85c] is a programmed graph-reduction processor. It

is designed to be a co-processor in a dual processor system with shared memory. The

memory management tasks are implemented with a minimum of cooperation from

the G-Machine. The G-Machine is able to view memory as an (unlimited) list-

structure store, implemented by the concurrent memory manager and memory con-

troller. This perspective can be helpful to the design and efficiency of list processors

such as the G-Machine. Two particular issues arise in a G-Machine application. A

concrete method for node allocation must be selected, and a mechanism for dealing

with memory references internal to the G-Machine must be established.

A general technique for allocation of new nodes is to maintain free nodes on a

one-way linked list (freelist). Deallocated nodes are added to the tail of the list,

nodes to be allocated are taken from the head of the list. This technique is attrac-

tive because it is both simple to implement and only requires producer-consumer con-

straints for concurrent access. It does, however, introduce fragmentation; this prob-

lem can be reduced, and a possible solution is referenced in Section 8.

The G-Machine uses a stack of pointers (P-stack) into the graph to locate func-

tion arguments. Operations on this stack can create or destroy copies of pointers

without actually altering the graph store. We do not want to burden the memory

management system with maintaining reference counts of nodes referenced by the

P-stack; this would require a reference-count processor somewhat faster than the G-



23

Machine itself. If a node referenced by the P-stack is never connected to the active

expression graph, it will never have its reference count incremented, and thus, would

be considered a temporary node.

A suitable technique for inspecting these temporaries for collection would be

modified stack deallocation. This technique is based on the notion of procedure con-

texts. A context is opened when a procedure becomes active, and is closed when the

procedure returns. While a context remains open, pointers to the nodes allocated

(and added to the P-stack) would be pushed onto a list (another stack) of nodes

pending inspectionjdeallocation. This list, caUed a Context Frame, would be exam-

ined following closure of the context. When the context closes, the G-Machine

removes from the P-stack all node references that were added to the P-stack during

the context. The only pointers to these nodes that might remain accessible to the

G-Machine are those that were written into the graph. These nodes are said to per-

sist following closure of the context. The Context Frame for the just-closed context

will consist of

(i) nodes with zero reference counts,

(ii) nodes with non-zero reference counts, but that are contained in a graph not

connected to the active expression graph, and

(iii) persistent nodes.

Nodes in group (i) could be deallocated outright (stack deallocation), since they

are no longer accessible via the P-stack and were never referenced by the active

graph. Nodes in group (ii) would have to be submitted to the modified reference

counting algorithm to detect cycles that might account for their non-zero reference

counts. Persistent nodes would be collected as described in Section 3, through the

Garbage Can.



24

To accommodate the persistence notion, an additional tag bit is associated with

each node. When a node is allocated (removed from the freelist), its persistence bit

is cleared, and a pointer to it is stacked on a list of nodes to be inspected when the

curren t con text closes.

When the collector examines nodes referenced by a closed Context Frame, it

will find each node to be either (1) immediately collectible or (2) persistent. If a node

Q is in group (i), it is added directly to the freelist. A node Q is in group (ii) if Q is

part of a cycle with the property that every node reachable from Q is referenced only

by nodes reachable from Q. If a node is neither in group (i) or (ii), then it must be

reachable from a node of the active expression graph, and therefore, is marked as

persistent. This situation, in turn, affects the conditions under which the nodes are

passed to the Garbage Can.

According to Deb's algorithm, whenever a node has its reference count decre-

mented, a pointer to the node is passed to the Garbage Can. With the use of per-

sistence, this rule does not stand. If the persistence bit is set for a given node, then

whenever the reference count for the node is decremented, a pointer to it is passed to

the Garbage Can. If the persistence bit is not set, then either (a) the node is part of

an open allocation context, or (b) the node is part of a closed allocation con text that

has not been fully inspected for collectibility.

Only under certain conditions of (b) should a poin ter to the node be passed to

the Garbage Can. If the node satisfies (a), then it may be referenced via the p-

stack, and will remain uncollectible until the context closes; subsequently it will be

inspected for collectibility via the closed context frame. However, when a reference

to a node satisfying (b) is deleted, and the node is pointed to by a closed Context

Frame, an entry for the node must be added to the Garbage Can. We can detect if



25

a node satisfies (b) by examining its mutator-visit bit.

Whenever a reference to a node is deleted, its mutator-visit bit is set (mv.I).

When a node is examined for collectibility, its mutator-visit bit is cleared (mv.a). If

at the time a reference to a node 0' is deleted, the mutator-visit bit for 0' is zero,

then the initial pass of collectibility scanning has visited 0'. In addition, if the per-

sistence bit for 0' is not set, then it is in a closed Context Frame that has not been

completely inspected. Thus, 0' satisfies (b), and a reference to it must be placed in

the Garbage Can.

The following scenario illustrates the problem incurred if we fail to add certain

nodes that are not persistent to the Garbage Can.

Given that a node n was allocated during an allocation context AC, assume

that AC has been closed. This means that all nodes referenced by AC, including n,

can be inspected for collectibility. Given that the active expression graph still con-

tains one reference to n, consider the following:

1. The Memory Manager performs clear local reference pass over n, zeroing the

mutator-visit bit and clearing the local reference count of n.

2. The Mutator deletes the edge leading from the active graph to n. This decre-

ments the reference count of n to zero, but since the persistence bit is not set, a

pointer to n is not placed in the Garbage Can. The mutator-visit bit is set.

3. The Memory Manager continues collection, but when testing for collectibility,

discovers the mutator-visit bit for n is set. The collection of n is thereby

disqualified, and the persistent bit is set.

Once the collection scan of AC completes, all references to n will have been dis-

carded. Since the frame in which n was allocated is no longer active and since the



26

active graph no longer contains any references to n, the node is both uncollectible

and unreachable.

Stack allocation with persistence, as described in this section, provides for sim-

pIe, dynamic allocation. The overhead of counting P-stack references has been

avoided by introducing the notion of persistence for non-temporary nodes. Thus, the

requirements of a list-structure memory mechanism for the G-Machine have been

established. The following section discusses the architecture of such a memory.



27

5. Architecture for a dual-ported list-structure memory.

Any system that has use for list-structured memory should be able to view

storage as an unlimited supply of nodes. This model, in fact, is what proposed "real

time" garbage collection [LiH83, Wad76] has attempted to provide. In these

approaches, the mechanisms used to provide the seemingly limitless supply require

multiple processors. Our approach, likewise, relies upon a separate processor to per-

form complex memory management activities. Also important to our design is a spe-

cial dual-ported memory that provides concurrent access and atomic manipulation of

tag fields. This section describes a macro organization of processors that provide

automatic, dynamic list-structure memory.

The design presented here is driven by two factors.

(1) The need to develop and evaluate a system that makes use of the parallel,

incremental garbage collection strategy described earlier.

(2) The requirements of the G-Machine [Kie85c] for a dynamic, list-structure

memory.

In the most general sense, our design provides a foundation for both. The fun-

damental processors of the design map well into components in a complete system

that contains a G-Machine co-processor. Furthermore, the top-level architecture is

compatible with processors other than the G-Machine that require list-structure

memory.

The memory system is embodied in three primary "processors"l, with two

simpler supporting processors. We call two of the main processors Memory Manager

1. We wiII use the term processor loosely in this section to represent a functional processor. Some
of the processors must be programmable machines, while others may be realized as sophisticated
hardwarewith embeddedlogic(e.g.,a hardware fifo).



28

and Collector and Mutator (Figure 5.1). In a typical arrangement, these two proces-

sors would correspond to the host and the co-processor, respectively.

Figure 5.1. Dynamic, list-structure memory components.

The Memory Manager is responsible for concurrent collection of garbage nodes while

the Mutator is a graph-operation engine. These two share the main store via the

third main processor: the Memory Access Controller (MAC). Part of the MAC is the

complete list store available to the Mutator. The MAC also provides high-level

operations at the node level.

CALL
...
,

Memory ManagerRETURN

and
GCAN-DEQALLOC

Collector,
.. ..

) ,
F ..

/'.1Io.
J

"11,/"

FEMPTY GEMPT.
,

FFULL GFULL

...

--,.

MAC
-

...FIFO GCAN
/

... ...
FIFO-ENQ GCAN-ENQ _

I' ,

"/"iIIo.

",..../"
.. ...

)
F

Mutator ...



29

AB a co-processor, the Mutator has local instruction and stack store. The

Memory Manager, or host, also has its own local store and provides access to secon-

dary store. The host provides user services, such as I/O, operating system software,

and initialization and control of the co-processor.

The three main processors are assisted by two hardware queues. The FIFO

provides a demand-driven stream of nodes from the freelist to the Mutator. The

Garbage Can buffers a list of nodes that are potentially garbage between the MAC

and the Memory Manager. The general tasks required of each processor are

described below. A detailed explanation of the inter-communication and signal

requirements is provided in Appendix A.

5.1. Duties of each component.

Each processor has a particular task assigned. The task may take the form of

a single operation or many operations. A processor repeatedly performs a sequence

of operations, unless interrupted to provide some alternate service. Once the the

alternate service has been provided, the process returns to its previous sequence of

operations.

5.1.1. Mutator

The Mutator accesses and modifies the graph (G-Memory). This manipulation is

done by one of the following operations.

1) Allocate a new node, to be added to the graph in a subsequent operation.

The FIFO is asked for the next available node. Allocation does not affect the

structure of the graph per se, however, it causes the number of unused nodes to

be reduced, and makes a node available for subsequent Read/Write operations.



30

2) Read the contents of a node.

Reading involves the retrieval of particular cell data in a given node. The

MAC is asked for the contents of a node. The state of the node accessed

remains unchanged.

3) The Trash operation. Write by Update.

The MAC is instructed to trash a node. Reference counts need to be adjusted

when a node is to be overwritten and the node contains pointers. The trash

operation immediately precedes a write to a node containing pointers. The rea-

son for Trash is two-fold. Trashing a node serves to simplify the write opera-

tion of the MAC. It also provides the possibility of overlapping Mutator pro-

cedures associated with a write of pointers with the MAC operations required

to maintain reference counts and tag bits.

n2

Figure 5.2. A graph node and its successors.

For example, given the nodes in Figure 5.2, if the MAC is told to Trash N, then

the Mutator-visit bit will be set and the reference count decremented for both

nl and n2.

4) Write the contents of a node.

The MAC is instructed to write data into a given node. The tag bits are

passed to the MAC to indicate the type of data (pointer or simple). The

Mutator-visit bit for the referenced node is set. If a pointer is being written



31

into a node, the destination of the pointer has its Mutator-visit bit set and its

reference count incremented.

5) Context switch.

. In addition to explicit graph operations, the Mutator enters and leaves con-

texts1. During a given context, the Mutator maintains pointers to nodes in the

graph memory and to freshly-allocated nodes (that may not have been written

to yet) on a local stack. When a context is closed, the Mutator removes the

pointers on its stack associated with the context, thereby releasing its internal

references to those nodes.

The design of the Mutator requires it to repeatedly modify the graph using one

of the operations described above. The Mutator is never interrupted and is only

delayed if there are no nodes available for an allocation operation.

5.1.2. Memory Manager and Collector

The Memory Manager coordinates the recovery of garbage nodes, and instructs

the MAC to add them to the unused node pool2, A record of nodes allocated during

active function contexts is maintained by an Active Alloc'd Nodes Stack (AANS),

with each set of nodes for a given context grouped into separate Context Frames

(Figure 5.3). An entry for each context frame is placed on the AANS. The nodes

"referenced" by the AANS entries represent all those possibly on the pointer stack of

the Mutator. A list of nodes that are potentially collectible is obtained from the

AANS: whenever a function call returns, the Memory Manager is notified, and pops

the reference to the Active Context Frame (ACF) from the AANS. Each of the

1. This corresponds to procedure caIls and exits.

2. The unused node pool represents nodes that are known to be available for use. One common
technique is to keep these nodes as a [reelist. We employ the freelist mechanism here for simplici-
ty. A potentially superior scheme is suggested later.



32

... .

(top)

CF 0

CF i-2

AANS CF i-I

Active Context
Frame

Figure 5.3. Memory Manager allocation frame structures.

nodes from this now-closed context frame is inspected for collection and is immedi-

ately collected, or is marked as not currently collectible.

In addition, the Memory Manager receives a list of roots of potentially collecti-

ble subgraphs from the Garbage Can. Each of these subgraphs are inspected for col-

lectibility. Any part of the subgraph that is collectible is collected.

A node from the Active Context Frame that is determined to be collectible is

passed to the MAC with the directive to add the node to the unused node pool.

Nodes that are not collectible are marked as persistent, and are left to be collected

by a different mechanism, through the Garbage Can (see the operations of the

MAC).

The duty of the Memory Manager then, comprises the following operations:



33

1) When a node is allocated, add it to the Active Context Frame.

2) When a CALL is signaled, push a pointer to a new ACF onto the AANS. Sub-

sequently allocated nodes are added to the new ACF until a RETURN.

3) When a RETURN is signaled, remove the AANS entry for t.he ACF, adding it

to the list of nodes to be inspected for collection. The previous Context Frame

on the AANS becomes the Active Context Frame.

4) When a node is available from the Garbage Can, add it to the list of nodes to

be inspected. Continually attempt to exhaust the list of nodes to be inspected

for collection.

5) When GFULL is signaled, the Garbage can is full, and must be (at least) par-

tially emptied.

5.1.3. Memory Access Controller (MAC)

The MAC provides "dual-port" access to the graph memory. The following

operations support the needs of the memory structure.

1) READ/WRITE a cell in a graph node. Some types of writes may be complex:

they may (implicitly) change a reference count and they may cause the node to

be a candidate for collection.

2) Maintain the unused node pool:

(i) preallocate nodes from the unused node pool into the FIFO,

(ii) add nodes to the unused node pool.

The unused node pool is kept as a freelist: a queue of pointers. The freelist

head and tail addresses are kept in special registers of the MAC. The Memory

Manager may detect a node in the graph is garbage and should be added to the

unused node pool (DEALLOCATE). Nodes pointed to by a collected node have



34

their reference counts decremented (and are not added to the Garbage Can)!.

Whenever possible, and until the FIFO is full, the MAC will preallocate nodes

by removing the head of the freelist, placing it in the FIFO. When nodes are

preallocated they are initialized.

3a) Make reference counting operations automatic: Increment and decrement refer-

ence counts when needed. This is decided based on the type of write the Muta-

tor requests, and the tags of both the existing and new data.

3b) Determine when a node is potentially collectible. A node may become garbage

whenever its reference count is decremented. When the reference count is

decremented, the value is compared with the threshold2 for the node.

i) If the reference count is zero and the persistent bit is set, the node IS

immediately collectible, and is added to the unused node pool.

ii) If the reference count is less than or equal to the threshold and the per-

sistent bit is set, the node is potentially collectible, and is passed to the

Garbage Can for collection scanning.

If the persistent bit is not set, there exists a pointer to the node in some frame

on the Active Alloc'd Nodes Stack, and will be subsequently inspected for col-

lectibility.

1. There is no need to consider putting the subordinate nodes in the Garbage Can, even though
the reference count is decremented. If they are garbage, the Memory Manager will detect this by
reaching them from the parent node, and will issue a subsequent DEALLOCATE. If they are not
collectible, then the Mutator still has access to them and can cause them to be added to the Gar-
bage Can by subsequent actions.

2. Systems that do not implement thresholding would consider a node to be potentially collectible
whenever the reference count is decremented See subsection 8.1, "Suggestions for additional
work" for details.



35

5.1.4. FIFO

The First In First Out queue contains preallocated graph nodes. The FIFO

receives node addresses from the MAC and, on demand, sends a node address to the

Mutator and Memory Manager. The status of the queue is returned to the MAC for

each address stored. If the queue is full, the MAC defers FIFO "filling" operations.

Upon receipt of the ALLOC signal from the Mutator, the head of the queue is sup-

plied to both the Mutator and the Memory Manager. If the queue is empty, and the

FIFO receives an ALLOC, the FIFO signals the MAC with FEMPTY, then awaits

delivery of a new node address. Once supplied by the MAC, dispatch of the node

address proceeds as if dequeued from the FIFO.

5.1.5. Garbage Can

The Garbage Can contains addresses of roots of potentially collectible sub-

graphs. The Garbage Can acts very much like the FIFO. Node addresses are

received from the MAC, and are placed in a local queue. The Memory Manager

requests addressed from the Garbage Can with GCANJ)EQ.

If the Garbage Can is allowed to fill, GFULL is sent to the Memory Manager

and the MAC. The Memory Manager then devotes as much resource as possible to

relieve the full Garbage Can. If another node must be sent to the Garbage Can dur-

ing the GFULL state, the MAC suspends until the Garbage Can can receive the

node. Note that with a hardware fifo, the Garbage Can can be read from and writ-

ten to simultaneously, as is allowed here, thus the lock-step nature of the GFULL

state is minimized.



36

6. Detailed simulation organization.

To evaluate the workability of the list-structure memory design, a simulation

has been constructed. The simulation incorporates the parallel version of Deb's algo-

rithm and a specific emulation of the proposed architecture. This Section provides a

discussion of the simulation implementation.

The simulation constructed provides for apparent concurrent functioning of

each of the components of the previously described macro architecture. The multi-

process capabilities of the UNIX 4.2bsdt operating system were exploited by a group

of programs. Each separate program, running as an individual process, represents

component of the architecture. In the process structure, an additional Parent pro-

cess is added to facilitate instrumentation, data collection, and simulation control.

As a consequence of simulation, some aspects of the original design of were revised to

arrive at the specification given in Section 5. Specifics of the simulation and how it

differs, in detail, from the architecture of Section 5 will be discussed shortly. First,

though, we describe the system facilities used.

6.1. Computing/utilityenvironment.

The simulation was developed on a variety of machines, each running UNIX

4.2bsd. The figures reported later are summaries from the final version of the simu-

lation, run on both a DEC VAX 11/780 and a VAX 11/750. Some preliminary ver-

sions of the simulator were also run on a high-performance 68000-based Tektronix

workstation (no data presented was generated on this machine, however). A variety

of machines was used to confirm that the real-time computations were not an aber-

ration of a particular host machine.

t UNIXis a trademark of Bell Laboratories.



37

Several features available in UNIX 4.2bsd were exploited. Multiple-process

capabilities were realized with fork(2) and exec(3). Inter-Process Communication

(IPC) employed the IPC utilities, including socket(2) and kill(2). A set of utilities to

provide simple byte-oriented sockets was developed1. For controlling activities of the

Mutator, pseudo-random sequence generation made use of the random(3) library. To

provide control of the comparative (real-time) activities of processes involved in the

simulation, an adapted profiling scheme was used. The application of these libraries

and utilities makes possible a fairly large-scale, informative simulation.

6.2. Profiling: control of comparative performance.

Traditionally, profiling has been used to discover inefficiencies or to track the

execution flow in a set of procedures. Our usage of profiling was to monitor real exe-

cution times for the various processes. The multiple-process nature of the simulation

required adaptation of the default profiler mechanism.

The execution profiler gprof [GKM82] and its associated libraries are designed

for single-process programs. The raw profiling data is placed in a file "gmon.out".

This file represents call counts and execution times for each profiled routine. To

examine the characteristics of a program, the "gmon.out" file is interpreted, using

the object code of the program. However, when multiple, concurrent programs are

being executed, more than one "gmon.out" file needs to be created.

A special-purpose object code editor was constructed to alter the executable

code for a given process and thereby, provide different ".out" files for each process.

The gprof utility could then be used to compare the "simultaneous" execution of mul-

tiple processes by separately examining an executable program and its associated

1. Specifically, the utilities used AF_UNIX domain, SOCICSTREAM style sockets.



38

".out" file. This information, in turn was used to monitor the effective time allowed

for both the Mutator and the Memory Manager, ensuring that the processor

resources given to each were equal. By assuming that the computing power of each

of the two processors is equivalent, we can readily compare the ability of one to

"keep up" with the other.

6.3. Modeling hardware characteristics.

Three basic characteristics of an actual implementation are modeled. Digital

logic, both programmed and hardwired, is provided by collections of procedures,

algorithms, and data structures designed to represent the logic behavior. Communi-

cation, or data transfer, is made possible by the use of sockets, an inter-process com-

munication facility. Asynchronous controls, interrupts, are provided by signals,

another component of the IPe facilities.

6.3.1. Processes: component to UNIX process mapping.

Each component of the macro architecture is simulated as a separate process.

This approach provides a model for concurrent operations, much as would be the

case in a hardware implementation. The functionality of a given component is

encoded into a set of procedures that compile into an almost stand-alone main pro-

gram1. A supervisor process, the Parent, initializes the multi-process environment,

then arranges for the execution of each of the other processes. In this manner, just

as with a hardware implementation, the system is initialized and booted.

Once all processes are running, communication channels are opened between

pairs of communicating processes. This sequence is done by a carefully synchronized

1. We say "almost" because each process relies on the proper establishment of communication
with other processes to become fully functional.



39

set of procedures that first create, then open, the communication link. At this point,

each process functions autonomously, much as multiple users seemingly operate

independen tly.

Synchronization occurs as a matter of data demand via the socket mechanism,

or via signals sent and received. Each of these mechanisms provides the functional

component interactions needed to make the system operate.

6.3.2. Data paths: sockets.

The communication paths between processes are treated analogously to a

data/address bus. Data is written by the sender to the socket and is read by the

receiver from the socket. The receiver can rely on one of three methods to acquire

the data.

i) poll. The receiver checks to see if there are any data to be read, without actu-

ally reading them. If data are available, reading can proceed when convenient.

ii) interrupt. The receiver is signaled when data become available to be read. If

this technique is used, the data should be read immediately to avoid overlap

with a subsequent signal on the same channel, and possible loss of data.

iii) block. Finally, the receiver may simply block on a socket. To block, the

receiver goes into a read-wait loop that continues until data become available.

Most data paths implemented i~ this simulation require the receiver either to

poll or to block. As it turns out, this approach may be somewhat inefficient for some

cases. The polling technique caused the Garbage Can, one of the least complex logic

components, to consume the largest amount of CPU cycles. See the "Simulation

Artifacts" subsection below.



40

By default, sockets are allowed to provide data buffering. Since a bus, itself,

does not provide data buffering, this characteristic is completely disallowed for the

simulation. This restriction requires careful checking of the status of a socket prior

to and following the data transfer. In some cases, two-way communication between

the sender and receiver provides the status information. This communication control

corresponds to a typical request/acknowledge handshake. The recipient of the data

transfer transmits a status word on the same socket once reading is complete. When

a process desires to write to a socket, it waits for the recipient to transmit receipt

status before it actually does the write. In summary, this method disallows the

writer on a socket to "runaway" until it reaches the socket buffer limit; rather, it

inhibits socket writes toa transaction-level (a few bytes), and thus more closely

simulates the operation of a bus.

The particular type of sockets used allow multiple simultaneous writers and

multiple simultaneous readers for the same socket, with no collision. The simulation

did not attempt to employ the multiple-users-per-socket scheme, however. One

socket is the endpoint for communication between exactly two distinct processes. By

applying this restriction, no special tagging or encoding of data is necessary; the

source and destination of a data transfer are unambiguous.

6.3.3. Control: signals.

Asynchronous control is implemented with signals. Signals provide 31 different

software interrupts, each with equal priority. Most signals are generated by condi-

tions in the operating system and run-time libraries. Four are left available to the

user. Several system-defined signals may be "aliased" for other uses, providing the

user ensures the aliased signal cannot be generated by the default mechanism.



41

Each process defines a set of procedures to handle signals it wants to accept.

When a process A sends a process B a signal, the procedure designated in process B

to handle that signal is invoked. Termination of the procedure returns process B to

the control state it was in immediately prior to the delivery of the signal. Side

effects are allowed, however, so global states may be altered by the signal handling

procedure.

To provide indivisible operations, a process B blocks all applicable signals. Dur-

ing the atomic operation, no other process may interrupt B with a signal. Once the

critical operations are complete, the process B unblocks the blocked signals. If sig-

nals are sent to a process while it is blocked, they are delivered once the process

unblocks them.

Signals may be missed if more than one signal of the same type is sent to a pro-

cess before it completes handling the first one. To help avert this situation, signal

handlers are kept fairly simple. Detection and correction of missed signals must still

be provided, though. Part of this need is due to the somewhat irregular mechanism

used by the operating system to deliver the signals; part of it is due to the inherent

complexity of some of the processing required of the signal handlers. See subsection

6.5, "Simulation artifacts and limitations", for further details.

6.4. Description of processes, dataflow, and control.

The functional characteristics of components of the system correspond closely

to the description given for each component in Section 5. However, there are some

differences in how the desired behaviors are achieved. These details are considered

to be implementation specific, but are important to the generation of the simulation

data. The following discussion separates implementation details into three areas:

process operations, communication between processes, and asynchronous control.



42

Within each of these areas, the changes and additions to the description in Section 5

a.re detailed.

6,.4.1. Process operations.

The behavioral characteristics are somewhat different for all components. An

a.dditional process, called the Parent process, is added for simulation setup, simula-

tion control, and data collection. Each architecture component described in Section

5 corresponds to a process.

Mutator. For convenience, we review the possible actions'of the Mutator. An

ALLOC causes the allocation of a new node, to be subsequently added to the active

graph. A READ simply examines the contents of a node at a specified address.

WRITE provides data and tags to be stored in a particular node; the tags distin-

guish "simple" and "pointer" data. The TRASH operation is used immediately

p'ceceding the WRITE of pointer data. Finally, context switching is defined by CALL

and RETURN. When a context is closed, the Mutator discards references to nodes

that are not in the active graph.

There are two significant changes to the Mutator. The cycle of operations of

the Mutator does not correspond to a sequence of instructions performing useful

graph operations; rather, the cycle is pseudo-random and insensitive to particular

sequences of graph operations. In addition, the destinations for particular graph

writes are sometimes provided by the Mutator and sometimes come from a node list

maintained by the Memory Manager.

The chain of operations performed by the Mutator is driven by a pseudo-

random sequence with parameterized, discrete distribution. The actions are con-

trolled as follows.



43

For each Mutator operation, a given desired frequency is assigned. The fre-

quency is unconditional on previous operations, and is expressed in terms of total

Mutator operations. For example, in a particular simulation we could specify an

ALLOC rate of 1/10. This means that one ALLOC would be performed for approxi-

mately every ten Mutator operations. The relative frequencies are mapped into dis-

joint ranges across a scale of 0-99, where the range for each operation represents the

frequency. A pseudo-random number generator (modulo 100) is used to probe the

scale. The Mutator operation that covers the range probed is selected. Thus, a wide

range gives higher occurrence frequency, a narrow range yields lower frequency. This

technique hopefully provides statistical properties of a most general set of graph

operations without relying on explicit evaluation of particular algorithms. Also, this

approach allows us to "tweak" the allocation rate back and forth to examine just

how much allocationldeallocation the collection mechanisms can handle.

For each operation executed, the Mutator "visits" a node of the graph. The

recursive traversal of the graph is preorder. The recursion ends once a cycle is com-

pleted, a NIL pointer is encountered, or non-pointer value is encountered. Traversal

proceeds until all nodes in the graph have been visited. Upon completion of a traver-

sal, a new traversal commences at the same root. During each traversal, an explicit

stack of the edges leading from the root to the present node is maintained. This

stack is used both for the traversal mechanism and for generation of destinations on

some graph writes.

Whenever a pointer is written into a node of the graph, its target is either a

newly-allocated node or is a node already in the graph. In an actual implementa-

tion, the pointer to a node already in the graph would be held within the Mutator's

own local store. This structure could take the form of a stack of pointers into the



44

graph [Kie85c, Sar84].

Graph writes may create cycles in the graph. To ensure the generation of a

new cycle, a pseudo-random probe is made of the traversal stack. The resultant

address is used as the destination of a pointer. This mechanism is used in conjunc-

tion with another tactic that does not necessarily produce cycles, but still allows

creation of pointers back into the graph.

A stack of references to nodes allocated is kept by the Memory Manager. We

call this the Active Alloc'd Nodes Stack (AANS). Each time the Mutator needs a

pointer to a node already in the graph, it makes a request to the Memory Manager.

The Memory Manager responds with a node selected from the AANS. The node is

guaranteed to be in the graph already.

Thus, two mechanisms provide creation of arcs that lead back into the graph,

and thereby allow some control of both the incidence of cycles and of shared sub-

graphs in the active graph.

Memory Manager. The Memory Manager interacts differently with the

Mutator and with the Garbage Can. First, as described above, the Memory

Manager handles requests from the Mutator for addresses of nodes guaranteed to be

in the graph. These are called Active Node Requests. Whenever the Mutator

receives an active node request, it uses a pseudo-random number generator to probe

the nodes referenced by the Active Alloc'd Nodes Set. Since these nodes are part of

open contexts, they are guaranteed either to already be part of the graph or to be

presently uncollectible (being in open Context Frames), so can safely be destinations

of active graph nodes. An additional communication path is added between the

Memory Manager and Mutator to return the selected address, and an additional sig-

nal allows the Mutator to request a node address asynchronously.



45

Secondly, the interactions between the Memory Manager and the Garbage Can

are modified in detail from that described in Section 5. The Memory Manager regu-

larly queries the socket from the Garbage Can. If an address is available, the

Memory Manager "reads" the socket and places the address in a queue of nodes to be

inspected. If no address is available, the Memory Manager proceeds with other tasks

without reading the socket.

Memory Access Controller. Contrary to the description in Section 5, the

MAC does not add nodes to the freelist immediately upon detecting them to be

unreferenced. This difference is viewed as an optimization at the cost of complicat-

iog the control logic of the MAC. Our intention in the design of the MAC process

was to attempt to keep it simple and fast. This notion is important since the MAC

is shared by both the Mutator and the Memory Manager and is not intended to be a

"programmed" machine, and because the MAC consumes real time in the simulation.

Other changes to the MAC involve how it interacts with the FIFO and the Garbage

Can; these changes are described below.

Fifo. The FIFO does not receive or send signals regarding its state. Instead, it

uses a handshake with the Memory Access Controller. If a node address sent by the

MAC causes the FIFO to be full, the status returned to the MAC is "fifo full". Other-

wise, the status returned is "ok". If the MAC receives "fifo full" status reply, it

suspends filling, then regularly checks the status of the fifo. Only once the status is

"ok" does it resume FIFO filling.

Garbage Can. Unlike the description in Section 5, the Garbage Can receives

and sends no signals. Rather, it uses handshaking and polling protocols. Whenever a

node address is passed to the Garbage Can from the Memory Access Controller, it is

enqueued, as before. In addition, if the Memory Manager has "read" the previous



46

node placed in the MMGR - GCAN socket, the head of the Garbage Can queue is

dequeued and placed in the socket. If the Garbage Can queue becomes full, the

return status to the MAC is "full", and the MAC does not attempt to enqueue addi-

tional nodes until the status is "ok". Both the checking for Memory Manager reads

and the return status to the MAC are handled as special codes passed through the

respective socket, rather than as signals or control line levels.

6.4.2. Process datapath interconnect.

The communication channel provided by sockets is used to transfer data,

addresses, processor directives (analogous to instructions), and to return event

status. Each of the sockets used in the simulation is described by name below and is

labeled in Figure 6.1.

mac-+fifo Carries addresses of preallocated nodes from the MAC to the FIFO.

The MAC gets a response for each address sent to the FIFO. Both

the node address and the response are passed through the same

socket.

mac-+gcan Provides transfer of candidate node addresses from MAC to Garbage

Can. Similar to mac-+fifo, the MAC gets a response for each address

sent to the Garbage Can. Both the node addresses and the response

are passed through the same socket.

mmgr-fifo When an new node is actually requested by the Mutator from the

MAC (see the signal ALLOC), the address is sent to both the Mutator

and the Memory Manager. This procedure allows the Memory

Manager to maintain the Active Alloc'd Nodes Set. This socket pro-

vides the data path from the FIFO to the Memory Manager for the



47

address. The Memory Manager "read" of this port is triggered by the

ALLOC signal.

mmgr+-gcan Provides transfer of candidate node addresses from Garbage Can to

Memory Manager. The Garbage Can gets a response for each address

sent to the Memory Manager. The Memory Manager polls this socket

to see if an address is available. The response simply indicates that

the previous address in the socket has been "consumed", and another

may be dequeued and placed in the socket. Both the node addresses

and the response are passed through the same socket.

mmgr+-mac The data and tag fields requested are transferred through this socket.

The MAC "writes", the Memory Manager "reads".

mmgr-+mac A directive, node. address, write mask, and associated tags are

transferred. A directive in this context defines the type of data

transfer to or from Graph Memory. Directives specified in Section 5,

under "Communication Interfaces", for :MMGR +-+ MAC are used.

The mask defines which parts of the tags are stored. The tags may be

the local reference count, or the mutator-visit bit. Return status from

the MAC is used to enforce unbuffered transfer. For a directive and

associated data, the Memory Manager "writes", and the :MAC "reads".

For status, the MAC "writes" and the Memory Manager "reads".

mmgr-+mut An Active Node Request signal to the Memory Manager generates a

node address. This address is transmitted back to the Mutator. This

socket is an artifact of the simulation implementation.

mmgr-+mut2 A backlog estimate of nodes to be collected, a current value for the

context frame, and the total number of actual deallocations are



48

Figure 6.1. Datapaths: sockets used in the simulation.

mmgr-mut3

mmqr-mut2

mmqr-mut L Memory Manager
r

and mmgr+-gcan
A

mmgr+-fifo
/

" Collector '\
\ ...

/
I'

/""

mmgr+-mac
mmgr-mac

""........./7

""',/7

mac-fifo mac-gcan
JI " JI "

V \ MAC / \
FIFO r\ / \. / GCAN

... v ... V

..e./' ""

mut-mac

mut+-mac

""'........./7

"
\
/

II'

mut+-fifo Mutator



49

transferred from the Memory Manager to the Mutator. This transfer

only happens during a snapshot. These values are used by the Muta-

tor to monitor possibly missed signals and to control Mutator opera-

tion distribution during (early) simulation stages before the desired

memory residency is reached. This socket is an artifact of the simula-

tion implementation.

rnmgr-mut3 The actual context level of the Mutator associated with each ALLOC

rnut-fifo

rnut-mac

mut-+mac

is passed to the Memory Manager. The value is used by the Memory

Manager to monitor possibly missed ALLOC signals. This socket is an

artifact of the simulation implementation.

When an new node is actually requested by the Mutator from the

MAC (see the signal ALLOC), the address is sent to both the Mutator

and the Memory Manager. This socket provides the data path from

the FIFO to the Mutator for the address. The Mutator "read" of this

port immediately follows the emission of the ALLOC signal and blocks

until the address is available.

Data and tags associated with Mutator directives to the MAC are

returned. The MAC "writes", the Mutator "reads".

A directive, node address, and associated tags are transferred. A

directive in this context defines the type of data transfer to or from

Graph Memory. Directives specified in Section 5, under "Communica-

tion Interfaces" for Mutator --. MAC are used. The tags may be the

pointer bits, reference count, or the mutator-visit bit. Return status

from the MAC is used to enforce unbuffered transfer. For a directive

and associated data, the Mutator "writes", and the MAC "reads". For



50

status, the MAC "writes" and the Mutator "reads".

6.4.3. Process control, signals.

The control of various asynchronous events for each of the processes is provided

by signals. Each of the signals used in the simulation is described below and is

labeled in Figure 6.2.

There are two types of signals transmitted and handled in the simulation. Glo-

bal signals are transmitted by the ParentI to all the other processes. Local signals

are point to point. For each signal, there is precisely one sender, and for all but two,

there is precisely one receiver . We first describe the Global signals.

SNAPSHOT This signal controls the collection of data and is generated at regular

intervals. Each process writes summary information about its present

state to an individual snapshot file. The snapshot interval is meas-

ured by the UNIX 4.2bsd interval timer. The length of interval is a

run-time parameter. All processes are synchronized at the conclusion

of the snapshot period to ensure that no process gets restarted until

all have completed snapshot procedures. The synchronization allows

for varying costs of summarizing data without skewing the run time

charged to the simulation proper. This step is especially important,

since snapshots are allowed to interrupt nearly any activity of a pro-

cess.

SIGTERM The termination signal is sent at the conclusion of a simulation. A

run-time parameter controls how many snapshots are taken before the

1. Actually. many global signals could also be transmitted by the run-time environment or operat-
ing system. We will not discuss any signals in this set since none of them are explicitly handled or
caught by simulation processes other than the Parent.



51

Figure 6.2. Control: signals used in the simulation.

simulation is scheduled to end. Other conditions that may arise dur-

ing simulation can also cause the Parent to send SIGTERM. If avail-

able graph memory is exhausted, if deadlock (accidently) occurs, if a

process dies, or if a run time error jinterrupt is detected by the

Parent

SNAPSHOT,SIGTERM

ANREQ

CALL
Memory ManagerRETURN

and
ALLOC'

...Jo Collector

1
,

AL
FIFO FEMPT'( MAC GCAN

Mutator
r--



52

Parent, the simulation will be terminated. Each process then outputs

summary information and terminates.

The Local signals correspond very closely to the signals described in Section 5.

Some of the signals previously described are not used. In particular, some of the

FIFO and Garbage Can signals were not implemented; polling and handshake

mechanisms were used instead. An additional signal "ANREQ" has been added.

ALLOC When the Mutator wants a fresh (preallocated) node, it sends the

FIFO this signal. The Mutator then blocks until the FIFO transmits

the node address. Once the Mutator has the node address, it sends

this signal to the Memory Manager, to indicate a new node is avail-

able on the FIFO port. This delayed signal (indicated in Figure 6.2 as

ALLOC') avoids the need of the Mutator to retransmit the ALLOC

signal to the Memory Manager if it must wait for a node (the FIFO is

empty) and protects against the loss of the signal if the freelist is

empty.

ANREQ An Active Node Request is used by the Mutator to request an address

of a node that is certain to be in the graph (allocated and referenced

in an open context). The Memory Manager uses a pseudo-random

probe into the AANS to get the address. This signal is most certainly

a simulation artifact.

CALL The Mutator indicates to the Memory Manager whenever a new con-

text is opened. This signal instructs the Memory Manager to create a

new Active Context Frame and push it onto the Active Alloc'd Nodes

Stack.



53

FEMPTY When the FIFO has received an ALLOC, and it is empty, this signal is

sent to the MAC. The MAC preallocates a node from the freelist and

passes it to the FIFO. The FIFO, in turn, passes the node to the

Mutator.

RETURN The Mutator indicates to the Memory Manager whenever a context is

to be closed. This instructs the Memory Manager to close the Active

Context Frame, enqueue it onto the Closed Context Frame Queue,

and re-establish the previous context frame on the Active Alloc'd

Nodes Stack as the Active Context Frame.

6.4.4. Important data structures.

There are several crucial data structures supported by the Memory Manager.

These provide useful constructions for handling allocated nodes and nodes that are

candidates for collection.

Two structures have already been described to some extent. These are used for

handling of nodes allocated during contexts that are still open. The Active Alloc'd

Nodes Set (AANS) and the Active Context Frame (ACF) are used together. During

a given context, references to all nodes allocated are put in the ACF. The top of the

AANS references the ACF. When a new context is opened, the ACF becomes merely

an open "Context. Frame", a new ACF is established, and the reference to the new

ACF is pushed onto the AANS.

Another structure, somewhat analogous to the AANS, is the Closed Context

Frame Queue (CCFQ). The CCFQ has references to Context Frames that have been

closed. When an open context is closed, the ACF is popped from the AANS and

enqueued onto the CCFQ. The previous Context Frame on the AANS then becomes



54

AcUve CoD~ex~

Frame

Figure 6.3. AANS, ACF, and Context Frames

the ACF.

CCFQ

CCFj

Figure 6.4. CCFQ

The CCFQ, then, comprises the set of nodes from allocation frames to be

inspected for collection. An additional queue of nodes, the Candidate Queue, func-

tions in parallel to the CCFQ. The Candidate Queue is contains nodes that are pro-

vided by the Garbage Can. The Memory Manager rotates its collection energies

through these two queues of collection candidates.



55

6.5. Simulation artifacts and limitations.

There are several elements of the simulation that either would not exist or

would be somewhat different in a concrete implementation. All of these factors

affect the outcome of the data; some more seriously than others. None causes the

results to be more optimistic than an actual implementation, but they should be

used as "seasoning" with the data presented in Section 7.

Data noise reduction.

The multi-user environment used for simulation can, at times, introduce

adverse effects in the generation snapshot output data. If during the course of a

simulation the load factor of the time-shared host computer changes drastically,

either a "flat area" or a "steep slope" could be effected in the overall performance of

each of the processes. To avert this, multiple runs using the same run-time parame-

ters are averaged together to generate characteristic data. In addition to data

averaging, the profiling mechanism previously described is used to verify consistency

between separate runs.

Handling lost signals.

Another artifact of the environment used is the ability to "lose" signals. Once a

signal is sent to a process, if another signal of the same type is sent to the same pro-

cess before it has completed handling of the original signal, the second signal could

be missed. This situation is analogous to missing hardware interrupts.

A recovery mechanism was used for detecting and handling certain critical sig-

nals. Specifically, signals from the Mutator to the Memory Manager for manage-

ment of the Active Alloc'd Nodes Set must be accounted for in precisely the order in

which they occur. The recovery mechanism is ad-hoc, to some extent. Whenever the



56

Memory Manager receives one of ALLOC, CALL, or RETURN, it resolves any out-

standing (previous) changes that have been specified. This procedure is performed by

having the Mutator transmit its current context level to the Memory Manager for

each node allocated. Thus, the socket from the FIFO and a socket from the Muta-

tor to the Memory Manager are parallel; one has allocated nodes, the other has the

context level at which the node was allocated. If, during the "resolution" procedure,

the Memory Manager discovers the allocation context level to be inconsistent with

its own notion, it performs processing to adjust its internal context level as if it had

received signals to make the adjustment.

Other signals that may be missed are the global signals. Since these are only

for simulation data collection and termination, a time-out mechanism is used. Once

the Parent broadcasts a global signal, it sets a timer. Each of the processes responds

once it has received the signal. If all processes do not respond by the time the timer

expires, the Parent assumes an uncorrectable problem has arisen and terminates the

simulation. The assumption in this approach is that if one of the global signals can-

not be received by a process, either the process has crashed or deadlock exists. The

time-out mechanism is a suitable approach for handling these conditions.

Mutator model.

The Mutator model may predict rather pessimistic Memory Manager perfor-

mance compared to that of an actual graph evaluator. The model provides for

memory operations only. That is, there is no I/O idle time. The model essentially

creates a worst case scenario, since it effectively asserts that the Mutator has a 100

percent graph memory duty cycle. Previous simulations show that a significant por-

tion of the graph evaluation time is spent on internal storage manipulation and com-

putation with data other than pointers [Sar84].



57

Outright bugs or errors.

Currently, several features of the simulation result in extra work for both the

Memory Manager and the Memory Access Controller. In general, the existence of

these anomalies can be attributed to oversights during the simulation development.

Most were not discovered until late analysis of data from the simulation and

profiling.

. The MAC queues Garbage Can overflow, if any. This procedure is less a bug

than an implementation shortfall. The signal mechanisms described in Section

5 should have been used. In practice, this problem contributes no anomalies to

the simulation, since the size of the Garbage Can queue is made sufficiently

large to avoid back-flow into the MAC.

. Nodes that are immediately collectible are passed to the Garbage Can anyway.

If the reference count of a given node reaches zero, it could be immediately

appended to the freelist, and its descendents, if any, could have their reference

count automatically decremented. Depending on the sophistication of the

MAC, this action could be feasible. However, it was deemed rather expensive

(especially if it causes recursive deletion of a particular structure). The

mechanism actually simulated only makes it slightly more expensive to collect a

node whose reference count has already reached zero.

. Data transfers from the MAC could be limited to needed data. Presently, most

transfers between the Memory Manager and the MAC consist of the data fields

and most of the tag fields of a node. Unused components are simply discarded.

A more efficient mechanism would transfer only the needed information. In a

bus-based implementation, where a complete transfer of all data could take

place in a single bus cycle, this problem would not be an issue. However, in the



58

socket-based mechanism used in the simulation, this increases the number of

bytes which must be transferred through the (byte-oriented) socket.

. Perhaps the most significant bug in the simulation is the inclusion of an extra

subgraph traversal during the collection scanning of a closed context frame.

Each node referenced by an entry in a closed context frame must be inspected

for collectibility. Tests must include the possibility of .the node being part of a

cycle. However, the entire graph rooted at the node being inspected need not

be evaluated for collectibility. The oversight of this fact causes approximately

a 30 percent increase in the number of nodes the Memory Manager must exam-

ine for collectibility scanning of the closed context frames.

Summary of affects on data.

In general, the simulation artifacts and bugs yield a performance penalty for

the Memory Manager. This situation means that the reported data tend to examine

a "worst case" environment. Some of the analysis on the impact of these deficiencies

indicates that the effectiveness of the Memory Manager may be reduced by as much

as 20 percent. This bias may not, in fact be detrimental, since it helps set a lower

bound on the simulated performance capabilities.



59

7. Data generation and simulation results.

Ai:, outlined in previous sections, a multiple process simulation has been con-

structed to represent the functional characteristics of a parallel, list-structure

memory management system. The simulation was designed for several purposes.

First, it provides an implementation of the parallel version of Deb's modified

reference-counting algorithm. Second, it allows generation of data based on a

dynamic, stochastic simulation of a defined architecture. Finally, the data permit

the evaluation of the characteristics and effectiveness of the parallel algorithm.

These are considered to be useful both for further development of the G-Machine

project and to the implementation of a list-structure memory.

The generation of raw data was made possible by careful instrumentation,

simulation (run-time) parameters, and a periodic data collection mechanism. The

instrumentation and parameters used for this section are described below. For each

set of parameters, several identical simulations were run. The data for a given set

was then averaged to generate "characteristic" data sets.

This section describes the observed characteristics in terms of the instrumenta-

tion and parameter sets used. Graphs of averaged data indicate the effectiveness of

the memory management design and pinpoint its performance limits.

7.1. Data generation mechanisms.

Two elements of the simulation affect the generation of data. Several parame-

ters are used to control the activity of various processes. These parameters are set

on initialization of a process and, in general, do not change during execution. The

data are gathered by periodically requesting all processes to dump particular facts

about their present state. Essentially, the parameters represent a given simulation's



60

characteristics. The collective state snapshot provides a means of viewing those

characteristics.

1.1.1. Parameters affecting the simulation.

Those parameters that were used to control the simulation are described below.

In the actual simulation, many controls are provided. Only the ones which were

varied or were fundamentally necessary for the data reported are discussed.

Graph store size. The total number of nodes available in the graph store was

kept at 2K for all simulations. This value affects the ultimate size of the active

graph.

Initial graph. For each simulation, an initial graph was created before the

actual simulation commenced. A wide range of parameters control the initial graph

styles. The initial graph is first constructed as a tree, then edges are introduced to

create cycles 'and shared subgraphs. Parameters are used to control the balance and

depth of the tree. The percentage of edges that create shared subgraphs can be con-

trolled. Finally, the number of cycles, and the degree of multi-cycles (cycles within

cycles) can be adjusted. The run-time graph alterations of the Mutator are not

nearly as finely controlled as the construction of the initial graph. However, the

characteristics of the initial graph do impact the simulation, since the nodes in the

initial graph are never collected. For the simulations used to generate the data

reported here, an initial graph size of approximately 300 nodes was used. The depth

of the pre-graph tree was set at 10, the tree was approximately balanced, about 20

percent of the edges created shared subgraphs, and multi-cycles were limited to a

fa.ctor of two.

Percent of store active. The percent of store active is represented by the



61

number of allocated nodes divided by the total number of nodes in the graph store.

For the data reported here, the steady state threshold was set for a memory

residency of 80 percent (::I:8 percent).

Mutator instruction mix. Explicit control over the rate of allocations and

the rate of context switching is provided. Both are specified in terms of total

number of Mutator operations. That is, a value of 1/5 means that the specified

operation will be performed once approximately every five operations. The term

"approximately" is used here, since the value is used to define a distribution scale

that corresponds to the desired frequency. The remaining operations are given equal

distribution over the remaining distribution scale (e.g., if the specifications of the

context switching rate and allocation rate together used 25 percent of the scale, the

remaining operations would be assigned equal partitions of the remaining 75 per-

cent). For the set of data that shows the ability of the memory management scheme

to keep up, a context switch rate of 1/30 and allocation rate of 1/12 was used. For

the set of data that shows performance failure of the system, a context switch rate

of 1/15 and allocation rate of 1/12 was used. These numbers were established some-

what arbitrarily, through repeated adjustments and simulations.

The context switch rate provides control over the duration of a given context,

and thereby control over the size of the context frames. The allocation rate defines

the fixed demand for new nodes once the specified memory residency is reached.

Context depth. The number of open contexts is limited by the context depth

parameter. For simulations reported here, a value of 5 is used.

Snapshot interval. To perform actual data collection, the Parent process

interrupts the other processes after a timer set for the snapshot interval expires.

The elapsed time is measured in real time. For all simulations, the length of a



62

snapshot interval was specified as 10 seconds. In reality, the time averaged from 10

to 12 seconds because of the signal delivery mechanism used by the operating system

interval timer.

Total snapshots. Each simulation is allowed to run for a specified number of

snapshots. This parameter permits a consistent mechanism by which to terminate a

simulation. Each simulation used to generate reported data ran for 1000 snapshots.

7.1.2. Key states gathered.

During the course of a simulation, many states of each process are kept. These

states are either recorded each snapshot or are recorded upon termination of the

simulation. The records can be used to contrast and compare events during the

simulation. States that were used to generate the graphs below are defined here.

Freelist size. The number of nodes in the freelist is calculated and recorded

by the Memory Access Controller during each snapshot.

Memory Manager nodes visited. In the process of scanning nodes for collec-

tibility, the Memory Manager examines nodes from two origins. The nodes from the

FIFO are in Closed Context Frames. The nodes from the Garbage Can are in a

local queue1. Each of these lists is actually treated as a list of roots of subgraphs.

Thus, there are four "types" of nodes the Memory Manager may inspect:

1) context frame (roots)

2) context frame (non-root nodes)

3) garbage can queue (roots)

4) garbage can queue (non-root nodes)

1. In the simulation, this queue is called Candidate Queue.



63

The relationship between root nodes and non-root nodes is displayed in Figure 7.1

Closed Context
Frame

Garbage Can queue

/ \ / \

rn root node

rn non-root node

Figure 7.1. Relationship of root and non-root nodes.

This breakdown is made for two reasons. One, it allows us to compare the rela-

tive efficiencies of the memory management system: how much effort is spent collect-

ing temporary allocation frame nodes compared to collecting subgraphs that have

had references deleted? Two, it distinguishes between the roots inspected and the

descendents of those roots. This provides values from which a backlog estimate can

be made (see "backlog" below). Each of these categories is accumulated throughout

the simulation and recorded during each snapshot.

Memory Manager nodes collected. A total of nodes actually de allocated is

maintained throughout the simulation and recorded during each snapshot. As with

nodes inspected, two categories are kept to distinguish between the nodes from con-

text frames and the nodes from the Garbage Can.

Memory Manager backlog. An estimation of the number of nodes waiting to



64

be scanned for collection and that are in fact collectible is made during each

snapshot. This figure represents latent free list nodes - that is, nodes that are no

longer used but have not yet been returned to the freelist. The value is calculated

by empirical evidence. The Memory Manager keeps track of the number of nodes

actually deallocated and the number of roots and root-descendents inspected. The

number of roots and root-descendents already inspected can be used, along with the

actual number of roots still to be inspected, to estimate the total number of nodes

yet to be inspected. Once the Memory Manager has deallocated some nodes, it can

use the relationship between the nodes deallocated and total nodes inspected to esti-

mate the number of nodes which await inspection and are actually collectible.

Mutator model evaluation. A total of the number of times each Mutator

operation was performed is maintained throughout the simulation and recorded dur-

ing each snapshot. These values allow us to examine the nature of the Mutator

model and the apparent distribution of the operations performed.

7.2. Summary of results.

The following graphs and data display specific characteristics of the simulated

memory management system. These graphs include examples of the system just

keeping up with allocations, the system failing to keep up, and comparative collec-

tion costs between context frames and garbage can nodes. All graphs were gen-

erated from averages of multiple simulation runs with the same parameters. The

fundamental characteristic of the system was that it is "steady state". That is, the

demand for new nodes and the creation of garbage are balanced.

To simulate a steady state system, some parameters are dynamically adjusted

until the specifiedmemory residency is reached. In particular, the allocation rate is
. 1



65

state. This period is noticeable in most of the graphs as an initial interval of rapid

change. For the graphs given, approximate residency is reached shortly after 400

snapshots; actual equilibrium at the specified residency is typically reached by 700

snapshots. In all graphs, the x-axis represents cumulative snapshots.

- - - --------------.--.

writes

reads

al/ocs
context

snapshots 1000

Figure 7.2. Distributions of mutator operations.

7.2.1. Mutator model.

The graph in Figure 7.2 shows the relationship of a s~t of mutator operations.

Each operation is expressed as a percentage of total mutator operations for a given

period between snapshots. Notice that graph writes comprise a significant majority

of the operations. Most of this imbalance is attributed to the method of selecting

Mutator operations, and thus, is an artifact of the simulation. This graph displays

the memory-intensive duty cycle maintained by the Mutator.

enc:
.Q-
as
Q)
a.
0
0-as-:J
as-0-

0
/

0



66

7.2.2. Memory manager capacity.

The ability of the memory management system to keep up can be shown with

two sets of data. Given a fixed allocation rate, when the freelist size does not go to

zero and the Memory Manager backlog is near zero, the management system is keep-

ing up. However, if the backlog is somewhat more than zero and the free list size

drops to zero, this situation is an indication that the Memory Manager is saturated.

Figures 7.3a and 7.4a together show the inability to maintain the desired residency

at an allocation rate of 1/11. Figures 7.3b and 7.4b show the ability to just main-

tain the desired residency at an allocation rate of 1/12.



o
o
CD

~

-
(/)
0)

'C
o
.E-
O)
o

:s2
o
as.0

o
/

o snapshots

(a)

1000

67

oo
CD

--- --------- -

-
(/)
0)

'C
o
c:-
CI
o

:s2
o
as.0

o
/

o snapshots 1000

(b)

Figure 7.3. Freelist size.

o
o
o
C\I

-
(/)
0)

'C
o

.E-
O)
N

"0-
.!!2
a;
0)...-

snapshots 1000

(a)

ooo
N

.- -. ------

-
(/)
0)

'C
o
c:-
0)
N

"Ci)-
.!!2

G)
Q)...-

o
/ o snapshots 1000

(b)

Figure 7.4. Memory Manager backlog.



68

7.2.3.Expense of collecting long- and short-lived nodes.

The graph in Figure 7.5 shows the comparative effort spent by the Memory

Manager for quantities of persistent versus short-lived nodes. The values represent

the expense of scanning both root and non-root nodes from allocation Context

Frames and from the Garbage Can. CRE and CNE represent the Context frame

Roots Examined and Context frame Non-roots Examined, respectively. Likewise,

GRE and GNE represent Garbage Can Roots Examined and Garbage Can Non-

roots Examined.

ooo
It)
~

CNE- -.--- --_._-

CRE

GRE
GNE

snapshots 1000

Figure 7.5. Collection expense by node source.

7.2.4. Memory manager effectiveness.

In Figure 7.6, the percentage of nodes actually collected in terms of the nodes

inspected shows the amount of "wasted" effort. The upper line represents

effectiveness of inspecting nodes from the Garbage Can. The lower line represents

inspection of nodes from the Context Frames. This graph shows that approximately



69

40 percent of the nodes from the Garbage Can inspected were, in fact, collectible,

while only about 20 percent of the nodes from the Context Frames were actually col-

lectible.

------_._--- -----------_.-----

-
"C
Q)-
o
Q)
c.
(I)
c

;::::.
"C
Q)-
Q)

Q)

:E.
(I)
Q)

"C
o
C

gcan

context
frames

o

/0 snapshots 1000

Figure 7.6. Memory Manager effectiveness.



70

8. Conclusion.

The design and simulation of a dynamic list-structure memory has been

described. A concurrent algorithm and an architecture-level simulator have been

developed. This simulator was used to demonstrate the feasibility and effectiveness

of both the proposed architecture and the concurrent algorithm.

We have examined a variety of memory management approaches. These

include popular techniques such as reference counting and mark-sweep collection.

Previously established techniques either require severe synchronization constraints in

a parallel application or are not sufficiently powerful for graph-reduction engines.

A concurrent adaptation of a new modified reference counting technique has

been shown to perform effectively, given direct "hardware" support of particular

operations. Traditional performance penalties of in-line reference counting are

removed by an intelligent memory controller. The ability to collect cyclic structures

is provided by subgraph traversal of potential cycles.

The simulation results pinpoint a lower bound on the performance limits of our

implementation. We have shown that allocation of 1 node every 12 operations is

achievable, while 1 node every 11 operations is not. This statistic compares favor-

ably with the high demands of present systems. For example, Berkeley Smalltalk

averages 1 object creation per 80 instructions [Ung84, UBF84].

It is important to point out that the mean object size for Berkeley Smalltalk is

70 bytes, while the node size used in our system is just over 11 bytes. For com-

parison, this means Berkeley Smalltalk places demands for new memory equivalent

to about 1 node every 12.5 operations. Admittedly, this is a rather coarse com-

parison, since a bytecode is not the same as a Mutator operation; they are con-

sidered to be roughly equivalent for this comparison, however.



71

8.1. Suggestions for additional work.

There are several areas of the architecture that were not evaluated. The

Memory Access Controller may be a bottleneck if not carefully designed to provide

high-speed dual-port access. Analysis of memory contention in the developed system

model would be useful to define the performance limits and to suggest a likely dual-

port mechanism. Furthermore, the details of the Memory Access Controller archi-

tecture have not been defined.

In the simulation, the Memory Access Controller was assumed to contain

embedded logic to make reference counting atomic. It may be possible to avoid the

added complexity by requiring the host (Memory Manager) to maintain the reference

counts. This adjustment may make particular sense, as it is really only the Memory

Manager that must resolve the reference counts to determine collectibility. Some

type of sequential (reference count) transaction file, similar to the approach In

[DeB76] may be sufficient to determine reference counts.

Section 4 introduced some adaptations to the concurrent algorithm for a

graph-reduction engine such as the G-Machine. An additional improvement that has

been suggested by Kieburtz [Kie85a, section 2.1, and, Kie85b] takes advantage of

sophisticated compiler technology. In this technique, a threshold field is associated

with each node. The threshold is used to reduce the number of references passed to

the Garbage can. The mechanism relies on the compiler successfully identifying all

node allocations that may be roots of cyclic graphs, and thereby, bounding the max-

imum number of cycles (threshold) that could close a node. When a node is allo-

cated, it is assigned a threshold value. When the reference count of a node is decre-

mented, it is considered for placement in the Garbage Can only if its reference count

is less than or equal to the threshold. This strategy is claimed to decrease nearly to



_ __ u _

72

zero the probability that a node is put in the Garbage Can when it cannot be col-

lected. Adding this enhancement to the simulation would necessitate a somewhat

more sophisticated mechanism for graph manipulation than the pseudo-random

operations of the Mutator.

The allocation scheme used for the simulation does not provide a mechanism

for memory compaction. When nodes are re-linked into the freelist, no address

reordering occurs. As a result, we can expect the arrangement of addresses in the

freelist to become random. This action has the bad effect that locality of reference

is not maintained as new nodes are allocated from the freelist. One type of remedy

involves the use of "buddy system" allocation [Knu75]. Kieburtz [Kie85a] and Baker,

et al., [BCW85] have proposed variants of the buddy system that are designed to

reduce fragmentation associated with standard freelist allocation. These strategies

organize memory as a tree of blocks. Allocations and deallocations are localized

within a range of blocks, and thus, reduce non-local references due to the allocation

technique.

The present design has only considered a dual-processor system. Given the

commercial availability of general-purpose multi-cpu machines, it is practical to con-

sider a system based on many processors. One approach would consider memory as

"distributed". Store would be logically partitioned. Each partition would be

assigned to a given memory manager; a memory manager could include the combina-

tion of the duties of both the Memory Access Controller and the Memory Manager

as described in this thesis. Alternatively, the MAC and Memory Manager could be

separated, if some degree of custom hardware support for the MAC were available.

Nodes could be allocated to a requesting "mutator" by any memory manager. The

synchronization constraints provided by the "mutator-visit" bit would continue to



73

function properly. A major stumbling block in this approach results from the

mechanism used to handle temporaries. Separate context frames would need to be

kept for each of the mutators serviced by a given memory manager. A protocol

would need to established to determine when a given mutator changed context.

Further analysis of both the architecture and the presented algorithm can be

performed using the simulator. Elementary use of the simulator is described in

Appendix B. Some analysis can be done by simply adjusting run-time parameters.

The modified buddy allocation system should be added and, once refined, additional

support for multiple processors should be investigated.



References

[BCW85]

[Bak78]

[Coh81]

[Deb84]

[DeB76]

[DLM78]

[GoR83]

[GKM82]

[HiC84]

[JoA83]

[KaK83]

[Kie85a]

[Kie85b]

[Kie85c]

[Knu75]

[LiH83]

[McC60]

[Moo74]

74

Baker, B. S., Coffman, E. G. and Willard, D. E., Algorithms for Resolving
Conflicts in Dynamic Storage Allocation, J. ACM 8£, 2 (Apr. 1985), 327-
343.

Baker, Jr., H. G., List processing in real time on a serial computer,
Comm. ACM £1,4 (Apr. 1978), 280-294.
Cohen, J., Garbage Collection' of Linked Data Structures, Computing
Surveys 18, 3 (Sep. 1981), 341-367.
Deb, A., An Efficient Garbage Collector for Graph Machines, Tech. Rep.
CS/E-84-003, Oregon Graduate Center, Beaverton, OR, 1984.
Deutsch, L. P. and Bobrow, D. G., An Efficient, Incremental, Automatic
Garbage Collector, Comm. ACM 19, 9 (Sep. 1976), 522-526.
Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S. and Steffens,
E. F. M., On-the-Fly Garbage Collection: An Exercise in Cooperation,
Comm. ACM £1,11 (Nov. 1978),966-975.
Goldberg, A. and Robson, D., Smalltalk-80: The Language and its
Implementation, Addison-Wesley, May 1983.
Graham, S. L., Kessler, P. B. and McKusick, M. K., gprof: a Call Graph
Execution Profiler, Proceedings, ACM SIGPLAN Notices '8£ Symposium
on Compiler Construction, June 1982.
Hickey, T. and Cohen, J., Performance Analysis of On-the-Fly Garbage
Collection, Comm. ACM £7, 11 (Nov. 1984),1143-1154.
Johnsson, T. and Augustsson, L., The G-Machine -- an abstract
architecture for graph-reduction, Department of Computer Sciences,
Chalmers Univ. of Technology, Gothenburg, 1983.
Kaehler, T. and Krasner, G., LOOM -- Large Object-Oriented Memory
for Smalltalk-80 Systems, in Smalltalk-80: Bits of History, Words of
Advice, G. Krasner (ed.), Addison-Wesley / Xerox, 1983,251-270.
Kieburtz, R. B., Incremental memory management for dynamic, list-
structure memories, Tech. Rep. CSjE-85-008, Oregon Graduate Center,
Beaverton, OR, Mar. 1985.
Kieburtz, R. B., When chasing your tail saves time, research notes,
Oregon Graduate Center, Beaverton, OR, 1985.
Kieburtz, R. B., The G-Machine: A fast, graph-reduction evaluator,
research notes, Oregon Graduate Center, Beaverton, OR, Jan. 1985.
Knuth, D. A., The Art of Computer Programming, Vol. 1, Addison-Wesley,
Reading, MA, second edition 1975.
Lieberman, H. and Hewitt, C., A Real Time Garbage Collector Based on
the Lifetimes of Objects, Comm. ACM 26, 6 (June 1983), 419-429.
McCarthy, J., Recursive functions of symbolic expressions and their
computation by machine, Comm. ACM 8,4 (Apr. 1960), 184-195.
Moon, D. A., MACLisp reference manual, Project MAC, M.LT.,
Cambridge, MA, Apr. 1974.



75

[Sar84] Sarangi, A. G., Simulation and Performance Evaluation of a Graph
Reduction Machine Architecture, Master's Thesis, Oregon Graduate
Center, Beaverton, OR, July 1984.

[Ste75] Steele, Jr., G. L., Multiprocessing Compactifying Garbage Collection,
Comm. ACM 18, 9 (Sep. 1975), 495-508.

[Tei78] Teitelman, W., Interlisp Reference Manual, Xerox Corp. and Bolt,
Beranek & Newman, third edition 1978.

[Ung84] Ungar, D., Generation Scavenging: A Non-disruptive High Performance
Storage Reclamation Algorithm, Proceedings of Symposium on Practical
Software Development Environments, Apr. 1984, p. 157.

[UBF84] Ungar, D., J3lau, R., Foley, P., Samples, D. and Patterson, D.,
Architecture of SOAR: Smalltalk on a RISC, Proceedings, 11th Annual
International Symposium on Computer Architecture, June 1984, 188-197.

[Wad76] Wadler, P. L., Analysis of an Algorithm for Real Time Garbage
Collection, Comm. ACM 19, 9 (Sep. 1976), 491-500.

[WaP77] Warren, D. H. and Pereira, L. M., Prolog -- The Language and Its
Implementation Compared to Lisp, Proceedings of Symposium on
Artificial Intelligence and Programming Languages, 1977.

[Wis85] Wise, D. S., Design for a Multiprocessing Heap with On-board Reference
Counting, Tech. Rep. 163-Revised, Indiana University, Bloomington, IN,
July 1985.



76

Appendix A: Control and communication between components.

This appendix provides a detailed description of the signals and data passed

between components of the list-structure memory. Refer to Section 5 for a general

functional description. The reader may find it useful to refer to Figure 5.1 while

reading this appendix.

A.I. Signallnterraces.

Signals are implemented as a state ("line high" or line low") or as a strobe

(in~errupt). The present definition of interrupts use a single level of priority. Table

A.l dl'scribes the senders, receivers, and operations of each signal.

Table A.I. Signal Functions

Signals Sender Receiver(s) Function and Results

ALLOC Mutator FIFO, "Allocate" a new node. Aqdress of an

M1v1GR initialized node (pre allocated from unused

node pool) is presented to Mutator and

Memory Manager. The Mutator uses the node

as desired (purpose of request), the Memory

Manager adds the node to its current Active

Stack Nodes Set. If the node is not

immediately available, the Mutator blocks

until it becomes available. Only once the

Mutator receives the node is the ALLOC

signal is transmitted to the Memory Manager.



CALL

FEMPTY

FFULL

Mutator MMGR

FIFO

FIFO

FIFO-ENQ MAC

MAC

MAC

FIFO

77

Signals entry into a new context. A new

Active Context Frame (ACF) is created, and is

pushed onto the Active Alloc'd Nodes Stack

(AANS).

FIFO underflow: a request for a node has come

in and the queue is empty. This signal is a

priority request to the MAC. The unused node

pool is pre allocated by the MAC until a

READ/WRITE request from the Mutator (or

Memory Manager) or FFULL response from

FIFO.

If the FIFO becomes full, it signals the MAC

to defer fur.ther preallocations. The MAC will

not preallocate untill<1<'ULL.

When the MAC pre allocates nodes, it sends

the address to the FIFO. This action

effectively removes the node from the freelist,

but makes it available for an immediate

ALLOC from the FIFO.



GCAN.J)EQ MMGR GCAN

GCAN-ENQ MAC GCAN

GFULL GCAN MMGR,

MAC

RETURN Mutator :MMGR

78

The Memory Manager signals the Garbage

Can when it wants another candidate node.

The Garbage Can dequeues the head of its

local list and sends it to the Memory Manager.

The MAC indicates to the Garbage Can when

there is a candidate node available. The

Garbage Can enqueues the address for a

(subsequent) GCAN.J)EQ request.

Garbage Can full: instructs the Memory

Manager to spend as much resource as

necessary emptying the Garbage Can.

Indicates to MAC that it must block on the

next write to the Garbage Can until the

condition is relieved.

Signals return the current context. All nodes

in the current ACF are included in a list of

"nodes to be checked for collection", the AANS

is popped.

A.2. Communication Interfaces.

Channels of communication are needed to pass directives, addresses, status, and

data values between the functional units.



79

Descriptions of the interprocess communications follow. "Action name" may be

(i) a DIRECTIVE or (ii) a (SIGNAL). A directive may be thought of as an

instruction. Directives are passed in parallel with data. Signals are as described

earlier, and are included here since they result in some data transfer activity.

Processor path
Action name Description

Mutator+--+MAC

READ Mutator sends READ + Address + Cell to MAC. Node and tag data

for the specified cell are sent from the MAC to the Mutator. The

Mutator suspends until the data is returned.

WRITE Mutator sends WRITE + Address + Cell, and Tags + Data to MAC.

If tags indicate Data is a pointer, the MAC increments destination's

reference count sets its Mutator-visit bit. The Mutator-visit bit of

Address is also set.

TRASH Mutator sends TRASH + Address to MAC. The MAC decrements the

reference count of the nodes currently pointed to by the node at

Address (possibly adding those nodes to the garbage can). The

Mutator-visit bit is set for the de-referenced nodes and for Address. An

immediately following pair of WRITE directives for the node's cells is

expected.

Mutator-FIFO

(ALLOC) The Mutator receives a node address from the FIFO as result of the

ALLOC signal. This address is simultaneously sent by the FIFO to the

Memory Manager. The node is used for subsequent WRITE/UPDATE

operations.



80

MMGR-MAC

CREAD The Memory Manager sends CREAD + Address + Cell to MAC. Node

data and tags for the cell are sent from MAC to Memory Manager.

The Memory Manager suspends until the data is returned.

DEALLOC Memory Manager sends DEALLOC + Address to MAC. The node

specified by Address is appended to the freelist by MAC. Reference

counts are decremented for nodes pointed to by this node.

CWRITE Functions similarly to Mutator WRITE, however, the cell data cannot

be altered. Memory Manager sends CWRITE + Address and Tags to

MAC. The Mutator-visit bit may be reset, and the Collector local-

reference count may be altered.

MMGR-FIFO

(ALLOC) Memory Manager receives a node address from FIFO as result of

ALLOC signal. The address is stored in the current Active Alloc'd

Nodes Set.

MMGR-GCAN

GCANJ)EQ The Memory Manager sends the Garbage Can the GCANJ)EQ

directive, indicating the head of the Garbage Can is to be passed on.

The Memory Manager copies the address into local storage. This

address is a pointer to node which is a candidate for collection.

MAC-FIFO

(FEMPTY) If the FIFO underflows (receives ALLOC when empty), the MAC

receives an FEMPTY signal. The MAC then tries to fill the FIFO until

another (higher priority) service is requested.



81

FIFO-ENQ MAC sends preallocated node addresses to FIFO (nodes are initialized).

The FIFO status is either FIFOFULL or NOTJ'IFOFULL. If the

FIFO is full, the MAC leaves the node at the head of the freelist, and

retries later.

MAC+-+GCAN

GCAN-ENQ MAC sends potentially collectible node addresses to the Garbage Can.

The Garbage Can status is either GFULL or NOT_GFULL. If GFULL,

the MAC suspends on a subsequent GCAN-ENQ until the status

returns to NOT_GFULL.



82

Appendix B:Usageof the simulator.

This appendix gives a terse discussion of the filesystem organization and usage

of the list-structure memory simulator. The reader is expected to be familiar with

UNIX 4.2bsd and its utilities.

Directory structure.

The simulation directory is in an expiremental arrangement. The source code,

executables, and special utilities all share a directory tree with the control and data

files.

The "root" or "home" of the simulation directory contains the C source code

and Makefile necessary to reconstruct the executables. This directory also contains

the executables that comprise the simulator. Each executable corresponds to one of

the processes described in Section 6.

filo The FIFO process. Provides preallocated node addresses from the MAC

to the Mutator.

gcan The Garbage Can process. Buffers node addresses between the MAC and

the Memory Manager.

mac The Memory Access Controller. Provides dual-port access to the malO

graph store. Contains the graph store, itself.

mmgr The Memory Manager and Collector. Contains the parallel, incremental

garbage collection algorithm. Provides collection of allocation frames.

mutator The Mutator walks the graph in the gstore, performing graph-modifying

operations. A Mutator operation may be one of ALLOC, READ, WRITE,

TRASH, CALL, or RETURN.



83

parent The Parent process is used to get all the other executables started, and

to control the snapshot period.

In addition to the source and executables, there are several subdirectories.

ctl The control directory is used frequently du.ring the simulation. Zero-

length control files are placed here. The AF_UNIX domain sockets

appear here, as a side effect of the filesystem. While no data is actually

stored, inodes are allocated. In addition to the sockets, several

synchronization or "lockout" files are created during initialization, during

snapshots, and upon termination.

data.in The parameter files that are used to control elements of the simulation

are kept here. There are three files: graph. style, mutator.params, and

parent.params. Each of these contains a description of, and the actual

values used for the parameters.

data.out The snapshot files, and the summary output files are created here

automatically during the simulation. Each process is given a unique

process id. The process name and its id are used to create a unique name

for the output file. The simulator also generates output on the stderr

and stdout file descriptors; it may be useful to redirect these into a file in

the data.out directory.

utils This directory contains source code and scripts useful to both the

creation of executables and the processing of raw data. See "Utilities"

below for more details.

Generation of data.

To generate additional data, the user needs to set the desired parameters in



84

each of the "data.in" parameter files. If profiling is desired, the macro MONFLAG in

the Makefile should be set to "-pg", and the executables recreated. The user must be

in the "home" directory of the simulation, since it relies upon the arrangement of the

various subdirectories during execution. It is then simply a matter of giving the

UNIX command:

% parent

The parent process begins executing, initializes the environment for each of the other

processes, then starts them executing.

Several caveats are in order if modifications are made. It is possible that

certain sets of parameters will yield undesirable results. Because of the mechanism

used to converge to equilibrium quickly, it is fairly easy to saturate the Memory

Manager. Careful adjustment of the allocation rate, the context switching frequency

and the context depth must be used. Furthermore, the signal mechanisms and the

ipc mechanisms of UNIX 4.2bsd are rather fragile; this is especially the case with

processes that may receive a rapid sequence of identical signals. This problem can

cause a simulation that "has always worked before" to throw up its hands and

terminate. Finally, a close eye must be kept during the execution of a simulation. If

a run-time error occurs in one of the children processes (those spawned by the

Parent), and it is not explicitly handled in the code, the process may inexplicably die,

without announcement and without being detected until the end of a snapshot.

Utilities.

Once a simulation has completed, the raw data must be reduced to a palatable

form. Several utilities, which are setup to be easily customized for each set of data

have been created. A general utility "smooth" takes a list of data, and smooths the



85

nOise by averaging across a window of data. More particular utilities are prefixed

with "plotcmd. II These various shell scripts extract fields from particular data files,

pass them through graph(l), and then to plot(l) for display.

If profiling is being used, it is important to ensure different "gmon.out" files are

produced for each executable, and to retain the executables used to generate the

*.out files.

The creation of a *.out file specific to the executable is provided by "monfilter".

This program is a specialized binary editor that replaces occurrences of "gmon.out"

with the first four letters of the executable file name followed by ".out" (it could have

been done more easily, but this was a good solution at the time!). The Makefile

automatically takes care of using monfilter. If profiling has not been specified,

monfilter has no effect on the object code.

The *.ou t files that result from a simulation with profiling should be moved to

the data.out directory. Copies of the executables used to generate the *.out files

should also be put in the data.out directory. This approach allows complete

examination of the data from a given simulation following subsequent

simulations/changes. The gmon(l) utility can be used to examine the profiling

characteristics of the system.



86

Biographical Note

The author was born 5 May 1961, in LaGrande, Oregon. In 1968, he moved to

Madras, Oregon and graduated from Madras Senior High School in 1979. He entered

Willamette University with Honors and received a: Bachelor of Arts degree in

Computer SciencejMathematics May 1983.

During his first two years at Willamette University, the author worked as an

Assistant System Manager for the Willamette University Computing Center. During

his second two years, and for the summer following graduation, the author worked as

a Software/Hardware Consultant for Northwest Computer Communications

Associates, Inc.

The author began study at the Oregon Graduate Center in September 1983.

During the summer of 1984, the author participated in a Summer Student/Intern

program at the Computer Research Lab of Tektronix. The author also helped teach

the VLSI Design course at OGC during the fall quarter of 1984.

The author completed the requirements for the degree Master of Science in

September 1985. In October 1985, he accepted a position at the Graduate Center as

a Software Systems Engineer in the Computer Science and Engineering Department.




