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Abstract	

While	 recent	 advances	 in	 DNA	 sequencing	 have	 revolutionized	 clinical	

genetics,	 substantial	 challenges	 remain.	 Among	 the	 most	 pressing	 challenges	 are	

reliably	 and	 affordably	 discovering	 disease-causing	 variation	 in	 patients,	 and	

accurately	interpreting	the	functional	effects	of	detected	variation.	It	is	now	possible	

to	sequence	whole	human	genomes	in	a	matter	of	days,	and	at	a	cost	of	thousands	of	

dollars.	As	a	result,	there	has	been	a	staggering	accumulation	of	sequence	data	from	

healthy	 and	 affected	 individuals.	 However,	 we	 currently	 lack	 generally	 applicable	

methods	 for	 interpreting	 the	 functional	 consequences	of	 variation.	As	 long	as	 this	

problem	remains	unsolved,	we	will	be	unable	to	realize	the	full	potential	of	constantly	

advancing	DNA	sequencing	technologies.	One	solution	to	this	variant	interpretation	

problem	is	deep	mutational	scanning	(DMS),	a	novel	experimental	 framework	that	

enables	 the	characterization	of	 thousands	of	gene	variants	 in	parallel.	Here,	 I	have	

developed	and	implemented	a	DMS	platform	for	characterizing	the	phosphatase	and	

tensin	homolog	(PTEN)	gene,	which	is	a	tumor	suppressor	among	the	most	commonly	

somatically	mutated	genes	in	several	cancers.	Germline	PTEN	mutations	can	lead	to	a	

tumor	predisposition	syndrome	called	PTEN	Hamartoma	Tumor	Syndrome	(PHTS).	

Curiously,	some	individuals	develop	autism	spectrum	disorder	(ASD)	with	or	without	

accompanying	PHTS.	I	used	the	DMS	platform	to	measure	the	enzymatic	activity	of	

7,244	 variants,	 representing	 ~85%	 of	 all	 possible	 single	 amino	 acid	 variants.	 I	

confirmed	a	pre-existing	hypothesis	that	hypomorphic	PTEN	variants	(i.e.	those	that	

retain	 partial	 activity)	 associate	 with	 ASD,	 while	 completely	 abrogated	 variants	

associate	with	PHTS.	Around	the	same	time,	another	group	developed	a	platform	for	
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measuring	the	effects	of	PTEN	variation	on	protein	abundance.	In	order	to	maximize	

the	insights	from	these	two	complementary	datasets,	I	overlaid	them	with	the	largest	

cohort	of	well-phenotyped	PTEN	mutation	carriers	in	the	world.	From	this	confluence	

of	molecular	and	human	phenotypic	data,	I	establish	that	DMS	data	partially	explain	

quantitative	 clinical	 traits,	 identify	 pathogenic	 and	 benign	 variation,	 and	 define	

subgroups	with	distinct	cancer	susceptibility.	I	also	add	nuance	to	the	hypothesis	that	

hypomorphic	PTEN	 variants	 lead	 to	 ASD.	 In	 fact,	 variants	with	 any	 compromised	

activity	 equally	 increase	 the	 chances	 of	 developing	 ASD,	 while	 the	 chances	 for	

developing	PHTS	are	strongly	related	to	the	magnitude	of	variant	defect.	

In	 addition	 to	 interpretation	 of	 genetic	 variation,	 methods	 for	 discovering	

genetic	variation	 in	an	affordable	and	facile	way	remain	necessary.	One	successful	

approach	 has	 been	 targeted	 enrichment,	 in	 which	 sequences	 of	 interest	 are	

specifically	enriched	prior	to	sequencing.	Clinical	genetics	stands	to	gain	greatly	from	

targeted	enrichment	technologies.	This	is	because,	while	several	disorders	have	been	

linked	 to	a	 relatively	 small	number	of	 genes,	 it	 remains	 challenging	 to	 specifically	

sequence	 full	 genes.	Current	 targeted	enrichment	 technologies	suffer	 from	several	

disadvantages,	including	limited	flexibility,	GC-content	sequence	bias,	and	capturing	

only	the	coding	portion	of	the	genome.	Here,	I	describe	the	development	of	a	novel	

targeted	 enrichment	 technology	 that	 empowers	 flexible,	 low-bias,	 targeted	

enrichment	of	genomic	 loci	of	 interest.	The	technology	utilizes	 the	CRISPR-Cas12a	

system,	which,	similarly	to	CRISPR-Cas9,	enables	programmable	nuclease	activity.	In	

contrast	 to	 Cas9,	 Cas12a	 cleaves	 DNA	 to	 leave	 stereotyped	 single-stranded	

overhangs.	 I	 show	 that	 these	 overhangs	 can	 be	 specifically	 ligated	 to	 sequencing	
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adapters.	This	method	enables	~50-fold	enrichment	of	sequences	of	interest,	greatly	

reducing	 sequencing	 and	 associated	 costs.	 Overall,	 these	 advances	 can	 have	 an	

immediate	 impact	 on	 clinical	 discovery	 and	 interpretation	 of	 human	 genetic	

variation,	and	they	represent	progress	towards	fully	realizing	the	potential	of	human	

clinical	genetics.	
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Chapter	1.	Introduction	

1.1 Overview	and	rationale	
	

One	of	the	greatest	promises	of	the	genome	sequencing	revolution	is	the	ability	

to	predict	health	outcomes	of	 individuals	based	on	 their	genome	sequence.	Whole	

genome	sequencing	of	newborns	may	be	widespread	 in	the	not-too-distant	 future,	

and	the	accurate	prediction	of	health	issues	could	substantially	improve	the	quality	

of	life	of	patients,	save	time	and	resources,	and	simplify	clinicians’	decision	making.	

However,	 until	 we	 improve	 our	 ability	 to	 interpret	 genetic	 variation,	 the	 clinical	

usefulness	of	prospective	genome	sequencing	technology	will	be	severely	hampered.		

1.1.1	The	extent	of	human	genetic	variation	
	

The	original	draft	of	 the	human	genome,	 completed	 in	2001	by	 the	Human	

Genome	Project,	came	at	a	cost	of	billions	of	dollars	and	several	years	of	work	from	

labs	all	 over	 the	world1.	 Since	 then,	 advances	 in	DNA	sequencing	 technology	have	

enabled	the	relatively	facile	sequencing	of	human	genomes	in	a	matter	of	days	and	at	

a	cost	of	thousands	of	dollars.	Spurred	by	the	ease	of	genome	sequencing,	multiple	

consortia	have	 set	out	 to	 sequence	 thousands	of	human	genomes	with	 the	goal	of	

understanding	 human	 genetic	 variation	 and	 to	 create	 a	 framework	with	which	 to	

understand	human	disease.	One	of	 the	most	ambitious	efforts	 to	date	 is	led	by	the	

Genome	 Aggregation	 Database	 Consortium	 (gnomAD).	 This	 group	 has	 aggregated	

data	 from	 other	 studies	 representing	 125,748	 human	 exomes	 (protein-coding	

portions	of	the	genome)	and	15,708	human	genomes2.	An	important	finding	from	this	
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data	 is	 that	human	genetic	variation	 is	extensive;	7.9%	of	all	high-quality,	protein-

coding	 sites	 are	 multi-allelic	 (that	 is,	 different	 bases	 occur	 at	 these	 positions	 in	

different	people).	Strikingly,	it	is	estimated	that	each	person	carries	100-400	amino	

acid-altering	mutations	that	have	never	been	seen	before	in	the	clinic3.	

A	second	striking	finding	from	large	scale	sequencing	efforts	is	that	there	is	

extensive	 misclassification	 of	 disease-associated	 variation.	 On	 average,	 each	

individual	in	the	gnomAD	database	harbors	54	alleles	that	are	considered	Mendelian	

disease-causing	in	either	the	Human	Gene	Mutation	Database	or	ClinVar,	two	of	the	

most	widely	used	clinical	genetic	databases4.	While	it	is	possible	that	some	of	these	

alleles	 have	 low	 penetrance,	 it	 is	 likely	 that	many	 are	 misclassified.	 Additionally,	

when	considering	all	alleles	deposited	in	ClinVar,	over	half	are	considered	“variants	

of	uncertain	 significance”5.	 	Taken	 together,	 this	 suggests	 that	our	 classification	of	

alleles	as	disease-causing	is	generally	inaccurate.	

1.1.2	Historical	strategies	to	interpret	human	genetic	variation	
	

Over	the	years,	researchers	and	clinicians	have	developed	several	methods	to	

identify	 disease-causing	 variation.	 Segregation	 analysis	 describes	 a	 technique	 in	

which	an	allele	is	traced	through	a	pedigree.	If	the	allele	specifically	coincides	with	a	

positive	disease	outcome,	 it	can	be	presumed	that	 the	allele	 is	associated	with	the	

disease.	 However,	 this	 method	 is	 extremely	 low	 throughput	 and	 retrospective	 in	

nature,	and	limited	to	situations	in	which	full	pedigrees	can	be	traced.	Genome-wide	

association	studies	(GWAS)	and	expression	quantitative	trait	loci	(EQTL)	are	higher	

throughput,	and	have	been	effective	at	identifying	the	genetic	underpinnings	of	some	

diseases.	These	studies	rely	on	large	samples	of	affected	and	unaffected	individuals,	
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and	 seek	 to	 identify	 genotypes	 that	 occur	more	 frequently	 in	 affected	 individuals.	

However,	these	methods	are	only	sensitive	to	alleles	with	relatively	high	population	

frequency,	as	they	fundamentally	compare	outcomes	between	individuals	with	and	

without	any	given	allele.	Further,	due	to	linkage	disequilibrium,	it	is	often	challenging	

to	pinpoint	the	precise	variation	responsible	for	the	phenotype.	

An	 alternative	 approach	 seeks	 to	 leverage	 computation	 and	 informatics	 to	

predict	the	effects	of	mutations	in	silico.	An	obvious	advantage	of	this	approach	is	that	

it	 is	 widely	 accessible	 and	 extremely	 high	 throughput.	 Laboratory	 equipment,	

reagents,	and	expertise	are	not	needed.	Computational	predictors	rely	on	sequence	

features	at	the	DNA	and	protein	level	to	predict	the	functional	effect	of	variation.	Early	

algorithms	 sought	 to	 interpret	 variation	 in	 protein	 coding	 regions,	 leverage	

evolutionary	conservation,	biophysical	and	biochemical	properties	of	the	substituted	

amino	acids,	and	the	structure	of	the	protein	in	question.6,7	As	the	corpus	of	functional	

genomic	data	burgeoned	with	efforts	such	as	the	ENCODE	project8,	newer	methods	

sought	 to	 combine	many	 functional	 annotations,	 including	 regulatory	 information	

and	 transcription	 factor	 binding	 sites,	 along	 with	 predictions	 made	 by	 simpler	

models,	to	predict	variant	effects	in	both	coding	and	non-coding	regions.9	The	most	

recent	generation	of	in	silico	predictors	brings	to	bear	the	power	of	deep	learning	and	

massive	datasets	to	predict	mutation	effects.10	Unfortunately,		the	predictions	made	

from	these	models	are	generally	not	accurate	enough	to	be	useful	in	the	clinic.11	This	

stems	 from	 several	 reasons.	 First,	 many	 of	 these	 models	 use	 evolutionary	

conservation	 as	 a	 core	 predictive	 feature.	 This	 may	 work	 well	 for	 many	 genes,	

however	it	is	impossible	to	know	if	the	human	version	of	a	gene	has	evolved	human-
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specific	function	that	would	confound	traditional	evolutionary	conservation	metrics.	

Further,	 while	 our	 knowledge	 of	 protein	 sequence-function	 relationships	 is	

constantly	 improving,	we	 have	 still	 only	 sampled	 a	 very	 small	 fraction	 of	 protein	

sequence	 space,	 making	 the	 predictions	 of	 variant	 effect	 challenging.	 Finally,	 the	

majority	 of	 the	 genome	 is	 not	 protein-coding;	 it	 likely	 has	 some	 regulatory	 or	

structural	function.	However,	our	knowledge	of	the	function	of	non-coding	regions	of	

the	genome	is	especially	limited,	especially	considering	that	different	cell	types	and	

different	contexts	display	different	regulatory	activity.		

The	 other	major	 class	 of	methods	 for	 interpreting	 variant	 pathogenicity	 is	

functional	 assays.	 Generally,	 these	 are	 laboratory	 assays	 designed	 to	measure	 the	

functionality	of	a	mutated	form	of	a	protein.		A	simple	example	would	be	measuring	

the	catalytic	output	of	a	mutated	enzyme,	compared	to	the	wild-type	version.	While	

these	 assays	 represent	 the	 gold	 standard	 for	 variant	 interpretation,	 there	 are	

significant	challenges	in	scaling	up	to	large	numbers	of	assayed	variants.	Further,	and	

as	a	 result	of	 the	 low	 throughput,	 they	are	 typically	only	performed	 in	a	post-hoc	

manner	 after	 a	 variant	 has	 been	 identified.	 This	 can	 add	months	 or	 years	 to	 the	

diagnostic	odyssey.		

There	 are	 several	 factors	 that	 limit	 throughput	 for	 traditional	 functional	

assays,	 which	 generally	 stem	 from	 a	 requirement	 to	 physically	 compartmentalize	

individual	experiments.	The	generation	and	validation	of	variant	sequences	requires	

labor	 and	 reagents,	 and	 in	 most	 cases	 is	 impractical	 for	 more	 than	 hundreds	 of	

variants.	Further,	the	actual	assay	would	typically	be	performed	in	micro-well	plates,	
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testing	a	single	hypothesis	per	well,	which	limits	the	practical	scale	to	hundreds	of	

variants.		

A	striking	example	of	traditional	functional	assays	taken	to	the	most	extreme	

is	a	tour-de-force	experiment	measuring	the	functional	effects	of	all	possible	point-

mutation-accessible	(2,314)	single-amino	acid	substitutions	in	the	tumor	suppressor	

p53	in	a	serial,	96-well	format12.	While	invaluable,	this	study	was	extremely	laborious	

and	remains	a	unique	example	of	the	approach	nearly	20	years	later.	

1.1.3	 Deep	 mutational	 scanning	 as	 a	 solution	 to	 the	 variant	 interpretation	
problem	
	

Several	technological	advances	in	DNA	sequencing	and	synthesis	have	led	to	a	

new	 experimental	 paradigm	 for	 variant	 interpretation,	 known	 as	 deep	mutational	

scanning	 (DMS).	 The	 primary	 conceptual	 advantage	 over	 “traditional”	 functional	

assays	is	the	relaxation	of	the	

requirement	 for	 physical	

separation	 of	 individual	

hypotheses.	 The	 general	

approach	 involves	 making	

many	mutations	en	masse	(at	

the	 DNA	 level)	 to	 a	 gene	 of	

interest,	 expressing	 the	

mutated	forms	of	the	gene	in	

a	population	of	cells,	and	then	

placing	the	cells	in	a	selective	

1.	Generate	DNA-encoded	
protein	variant	library	

AAT	

CAT	

TAA	

AAT	

CAT	

TAA	

AAT	

CAT	

TAA	

2.	Express	in	cells;	select	
for	func>on	

AAT	

TAA	

AAT	

CAT	

TAA	

AAT	 AAT	

3.	High	throughput	sequencing	
Input	

…AAT...	
...AAT...	
...CAT...	
...CAT...	
...TAA...	
...TAA...	

Selected	

…AAT...	
...AAT...	
...AAT...	
...CAT...	
...CAT...	
...TAA...	

4.	Data	Analysis	

Variant	ID	
Input	
Counts	

Output	
Counts	 Ra>o	

var1	 2	 3	 1.5	
var2	 2	 2	 1	
var3	 2	 1	 0.5	
…	 …	 …	 …	

var10,000	 2	 4	 2	

Figure	 1.	 Overview	 of	 the	 deep	 mutational	
scanning	method.		

First,	 variants	 are	 constructed	 at	 the	 DNA	 level.	 Then,	 these	
variants	 are	 expressed	 in	 a	 cellular	 system	 and	 selected	 for	
function.	 DNA	 is	 collected	 from	 input	 and	 selected	 cells,	 and	
then	sequenced	to	tabulate	abundance	of	all	variants.	The	ratio	
of	variant	abundance	in	the	selected	and	input	pool	is	a	proxy	
for	variant	functionality.	
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environment	 which	 either	 selects	 for	 or	 against	 functional	 alleles13	 (Figure	 1).	

Selection,	in	this	sense,	can	take	many	forms.	Most	simply,	the	survival	of	cells	could	

be	 linked	 to	 the	 function	of	 the	gene	under	 study,	 in	which	 case	 functional	 alleles	

would	 enrich	 and	 non-functional	 alleles	 would	 deplete.	 Alternatively,	 functional	

alleles	 could	 drive	 expression	 of	 a	 fluorescent	 protein	 allowing	 for	 fluorescence	

activated	 cell	 sorting	 (FACS).	 Likewise,	 if	 the	 transcript	 were	 a	 variant-linked	

barcode,	this	could	be	detected	directly	by	RNA	sequencing.	Regardless	of	the	details	

of	 selection,	 a	 critical	 next	 step	 uses	 next	 generation	 sequencing	 techniques	 to	

measure	the	fitness	of	each	protein	variant	in	parallel	(Figure	1).	The	throughput	of	a	

DMS	experiment	is	no	longer	limited	by	the	need	for	physical	compartmentalization.	

Instead,	the	limits	are	imposed	by	the	number	of	cells	that	can	be	practically	cultured	

and	 the	 number	 of	 sequencing	 reads	 that	 can	 be	 practically	 afforded.	 In	 practice,	

single	 DMS	 studies	 have	 assayed	 the	 effects	 of	 hundreds	 of	 thousands	 of	 unique	

alleles.14		

Early	 studies	 leveraged	 DMS	 to	 understand	 fundamental	 biochemical	

properties	of	microbial	proteins,	such	as	thermodynamic	stability15	or	RNA	binding16.	

However,	 it	 later	 became	 apparent	 that	 DMS	 could	 be	 leveraged	 to	 measure	 the	

functional	impact	of	mutations	to	human	proteins,	and	potentially	offer	an	empirical	

and	accurate	solution	to	the	variant	 interpretation	problem.	There	are	several	key	

advantages	of	DMS.	First	and	foremost,	 the	parallelization	allows	a	single	study	to	

obtain	precise	measurements	for	hundreds	of	thousands	of	mutations	(likely	more	in	

the	 future),	which	 is	 a	 large	 enough	number	 to	 saturate	mutation	 space	 for	most	

genes.	 Second,	 since	 the	 measurements	 are	 done	 in	 parallel	 and	 in	 the	 same	
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conditions,	batch	effects	from	different	laboratories,	cell	lines,	technicians,	or	other	

uncontrolled	variables	can	be	avoided.	Third,	saturating	mutation	space	for	a	gene	

provides	an	extremely	information	dense	dataset	that	can	be	used	to	inform	deeper	

understanding	 of	 the	 form	 and	 function	 of	 the	 studied	 protein.	 Fourth,	 since	 all	

mutations	 are	 prospectively	 measured,	 individuals	 presenting	 with	 any	 possible	

mutation	can	be	treated	in	an	informed	way.	Finally,	DMS	datasets	can	be	aggregated	

and	 used	 as	 training	 sets	 for	 statistical	 models	 that	 could	 eventually	 predict	 the	

effects	of	mutations	in	other	genes	with	high	accuracy17.	

1.1.4	Technical	considerations	for	deep	mutational	scanning	experiments	
	

The	 first	 challenge	 in	 a	DMS	 experiment	 is	 the	 generation	 of	 the	 library	of	

variant	sequences	that	will	be	assayed.	There	are	several	approaches	to	make	many	

mutations	to	a	wild-type	sequence.	The	simplest,	but	generally	least	effective,	is	error	

prone	PCR.	This	approach	uses	low-fidelity	polymerase	or	PCR	additives	to	increase	

the	error	rate.	A	drawback	of	this	approach	is	that	it	generally	only	introduces	single	

nucleotide	changes,	limiting	the	available	mutagenesis	space.	Also,	it	is	challenging	to	

introduce	one	and	only	one	mutation	per	allele.	Another	set	of	approaches	attempts	

to	adapt	site-directed	mutagenesis	methods	to	introduce	mutations	at	many	different	

sites.	The	PFunkel	approach	uses	a	uracil-containing	circular	DNA	template,	to	which	

a	mutagenic	oligo	is	annealed	and	extended.	Further	processing	removes	the	wild-

type	strand	with	exonucleases	that	specifically	act	on	uracil,	yielding	a	mutagenized	

plasmid18.	A	common	challenge	for	this	type	of	approach	is	depleting	the	wild-type	

sequence.	 A	 different	 type	 of	 approach	 requires	 synthesis	 of	 short,	 mutagenic	

oligonucleotides	that	are	then	recombined	into	an	otherwise-wild-type	backbone19.	
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These	methods	are	more	 laborious	but	easier	 to	deplete	wild-type	 sequences	and	

achieve	balanced	representation	of	alleles.	Once	a	library	of	mutated	sequences	has	

been	 generated,	 these	 need	 to	 be	 introduced	 into	 a	 cellular	 model.	 Appropriate	

transformation	 approaches	 can	 be	 used	 for	 bacteria	 or	 yeast,	 and	 lentiviral	

transduction	can	be	used	for	human	cells.	In	most	cases	it	is	desirable	to	transduce	

only	one	variant	per	cell;	the	simplest	way	to	ensure	this	is	to	transform	or	transduce	

with	a	relatively	low	molar	ratio	of	DNA	vector	to	cells.		More	recently,	CRISPR-based	

systems	have	been	used	to	introduce	saturating	mutations20.	This	approach	has	the	

key	advantage	of	being	able	to	introduce	mutations	directly	into	the	genome	(instead	

of	a	plasmid).	

Once	a	library	of	variants	has	been	created,	the	most	critical	component	of	a	

DMS	 experiment	 is	 challenging	 the	 variant	 sequences	 in	 a	 way	 that	 stratifies	 by	

function	and	also	permits	sequencing	as	a	readout.	A	popular	and	simple	approach	is	

to	 express	 the	 variants	 in	 a	 cellular	 system	 whose	 survival	 or	 proliferation	 is	

dependent	on	the	 function	of	 that	gene.	Cells	 that	contain	a	 functional	variant	will	

increase	in	abundance	when	compared	to	cells	without	a	functional	variant,	and	the	

abundance	of	variants	can	be	measured	by	DNA	sequencing.	An	approach	that	doesn’t	

depend	on	selecting	for	fitness	involves	using	FACS.	For	example,	transcription	factor	

variants	 could	 be	 expressed	 in	 cells	 that	 also	 contain	 a	 fluorescent	 reporter	 gene	

downstream	 of	 that	 transcription	 factor’s	 binding	 site.	 A	 functional	 transcription	

factor	 variant	would	 drive	 higher	 levels	 of	 fluorescent	 protein	 production,	 which	

could	 be	 distinguished	 from	 low	 levels	 of	 fluorescent	 protein	 by	 FACS.	 Finally,	
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sequencing	could	be	used	to	detect	the	relative	abundance	of	all	alleles	in	the	high	

and	low	fluorescence	bins.	

Detecting	 variants	 by	 sequencing	 can	 become	 a	 challenge	 as	 the	 length	 of	

mutated	 sequence	 exceeds	 the	 length	 of	 reads	 supported	 by	 current	 sequencing	

platforms.	One	approach	to	get	around	this	is	to	incorporate	unique	DNA	“barcodes”,	

that	 is,	 a	 relatively	 short	 sequence	 of	 unique	 (often	 random)	nucleotides	 that	 are	

linked	with	a	variant21,	and	can	thus	be	used	to	identify	the	variant.	This	allows	the	

researcher	to	sequence,	for	example,	a	16	nucleotide	barcode	that	uniquely	identifies	

a	DNA	variant	sequence	that	could	be	1,000	nucleotides	in	length.	A	simpler	but	more	

laborious	approach	is	to	split	the	coding	sequence	of	the	gene	into	fragments	that	are	

shorter	than	the	maximum	read	length	of	the	sequencing	technology	in	use,	and	then	

perform	mutagenesis,	selection,	and	sequencing	in	parallel	for	all	fragments.	

Finally,	once	the	selection	experiment	has	been	performed,	sequencing	reads	

must	be	analyzed	in	order	to	attribute	functional	scores	to	variants	that	were	present	

in	the	experiment.	The	exact	methods	employed	here	will	depend	on	experimental	

design,	but	generally	either	the	actual	coding	sequence	or	a	variant-linked	barcode	

will	be	sequenced.	Either	way,	variant	sequences	are	 identified	and	tabulated,	 and	

relative	abundance	of	 the	variant	can	be	used	 to	 infer	 functionality.	The	wild-type	

sequence	is	typically	included	in	the	pool	of	variant	sequences,	and	this	can	act	as	a	

positive	 control.	 However,	 it	 is	 often	 desirable	 to	 have	 several	 different	

measurements	of	the	wild-type	function;	to	accomplish	this,	groups	often	identify	all	

variant	sequences	that	still	code	for	the	same	amino	acid	sequence	(i.e.	variants	with	

synonymous	variation).	This	allows	for	an	estimate	of	the	lower	and	upper	bounds	of	
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wildtype-like	functionality.	Likewise,	practitioners	often	use	the	population	of	early	

truncating	mutations,	which	are	presumed	to	be	null,	to	estimate	the	upper	and	lower	

bounds	of	null	mutations.	All	other	variants	in	the	experiment	can	then	be	interpreted	

by	comparing	to	the	wildtype-like	and	loss-of-function	distributions.	

1.1.5	Applications	of	DMS	for	interpreting	or	understanding	human	genetic	
variation	
	

One	of	the	first	DMS	studies	to	query	a	human	disease	gene/protein	was	an	

analysis	of	BRCA1	function22,	variants	in	which	can	strongly	predispose	for	breast	and	

ovarian	cancer.	The	authors	developed	two	different	DMS	assays	to	measure	BRCA1	

enzymatic	 capacity	 as	well	 as	 its	 ability	 to	 bind	 an	 important	 interacting	 protein,	

BARD122.	 This	 study	 resulted	 in	 two	 important	 advances	 for	 the	 field.	 First,	 the	

authors	 showed	 that	 predictions	 of	 variant	 effect	 derived	 from	DMS	 experiments	

could	perform	better	 than	 in	silico	predictors	of	variant	effect.	Second,	 the	authors	

demonstrate	that	probing	multiple	parameters	of	protein	function	results	in	better	

prediction	accuracy	than	probing	a	single	parameter	in	isolation22.	This	is	intuitive,	

as	 proteins	 exist	 in	 a	 complex	 molecular	 milieu	 and	 the	 full	 range	 of	 a	 protein’s	

function	 is	 not	 likely	 to	 be	 captured	 in	 a	 single	 assay.	 A	 key	 obstacle	 faced	 by	

researchers	 using	 DMS	 as	 a	 tool	 to	 prospectively	 assess	 variant	 effect	 is	 that	 the	

empirical	scores	need	to	be	cross-validated	with	human	clinical	data,	the	quality	and	

quantity	of	which	is	often	lacking.	For	example,	at	the	time	of	the	BRCA1	study,	only	

22	relevant	variants	had	been	classified	for	pathogenicity22.		

In	 a	 later	 study,	 nearly	 all	 missense	 variants	 in	 PPARγ	 were	 queried23.	

Mutations	in	this	gene	predispose	for	lipodystrophy	as	well	as	type	2	diabetes.	The	
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variant	library	was	expressed	in	cells	lacking	endogenous	PPARγ,	and	cells	were	FACS	

sorted	based	on	expression	of	CD36,	a	transcriptional	target	of	PPARγ.	A	conceptual	

advance	 made	 in	 this	 study	 was	 the	 authors’	 recognition	 that	 they	 could	 use	

mutations	found	in	population	sequencing	studies	as	putatively	benign	alleles.	This	

gives	practitioners	greater	power	to	assess	the	accuracy	of	their	empirical	scores.	

Finally,	 a	 recent	 series	 of	 yeast-complementation-based	 DMS	 experiments	

were	 used	 to	 demonstrate	 another	 critical	 advance.	 Due	 to	 various	 biochemical	

biases,	as	well	as	random	sampling	and	bottlenecking	during	the	library	generation	

process,	 it	 is	 difficult	 to	 generate	 a	 library	 with	 100%	 of	 all	 intended	 variants	

represented.	Weile	et	al.	showed	that	machine	learning	models	could	be	trained	on	

the	fraction	of	variants	that	were	measured,	as	well	as	evolutionary,	biochemical,	and	

biophysical	parameters,	to	impute	the	likely	score	of	variants	that	weren’t	measured	

in	the	study24.	This	means	that	researchers	can	design	experiments	that	seek	to	only	

saturate	a	certain	 fraction	of	all	possible	mutations	(e.g.	60-80%),	saving	time	and	

resources.	

While	 these	 studies	 set	 the	 stage	 for	 the	 expanded	 use	 of	 DMS	 for	 clinical	

variant	interpretation,	challenges	remained.	There	was	little	agreement	on	the	best	

approach	for	mutagenesis.	Likewise,	authors	generally	used	custom	and	inconsistent	

approaches	for	analyzing	DMS	data.	Finally,	for	any	given	gene,	it	is	critical	to	select	

an	experimental	model	that	will	report	on	the	most	clinically	significant	function	of	

the	gene.	This	can	be	particularly	challenging	 for	genes	with	multiple	 functions,	or	

that	 localize	 in	 different	 cellular	 compartments,	 or	 function	 in	 highly	 specialized	

physiological	niches	(i.e.	neuronal	synapse	or	muscle	fiber).	An	alternative	approach	
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would	probe	a	general	protein	feature,	such	as	steady	state	cellular	abundance	(see	

Chapter	3).	This	approach	can	be	applied	to	any	protein	but	will	not	report	on	specific	

functional	activities.		

1.2	PTEN	as	a	critical	challenge	for	clinical	genetics	

1.2.1	PTEN	biochemistry	and	cell	biology		

	
PTEN	was	discovered	and	identified	as	a	tumor	suppressor	mutated	in	several	

different	 types	 of	 cancers	 in	 199725,26.	 Biochemically,	 PTEN	 is	 a	 dual-specificity	

phosphatase,	 with	 activity	 towards	 both	 protein	 and	 lipid	 substrates.	 Specifically,	

PTEN	 dephosphorylates	 serine,	 threonine,	 and	 tyrosine	 residues	 of	 acidic	 protein	

substrates27,	as	well	as	position	3	of	the	inositol	ring	of	phosphatidylinositol	3,4,5-

trisphosphate	 (PIP3)28.	 The	 early	 observation	 that	 the	 oncogenic	 G129E	missense	

substitution	specifically	ablates	lipid	phosphatase	activity	while	preserving	protein	

phosphatase	 activity	 emphasized	 the	 critical	 importance	 of	 the	 lipid	 phosphatase	

activity29.	 Dephosphorylation	 of	 PIP3	 is	 a	 critical	 antagonist	 for	 the	

phosphatidylinositol	3-kinase	signaling	pathway28,30,	activation	of	which	leads	to	Akt-

mediated	 signaling	 through	several	downstream	effectors,	 leading	 to	 cell	 survival,	

growth,	 proliferation,	 and	 migration31.	 Experimental	 deletion	 of	 PTEN	 in	 mouse	

embryonic	stem	cells32,	mouse	brain33,34,	and	mouse	heart35	demonstrated	that	cells	

lacking	 PTEN	 exhibit	 increased	 PI3K/Akt	 signaling.	 This	 results	 in	 deregulated	

growth	 and	 activity,	which	 can	 eventually	 result	 in	hypertrophy,	 hyperplasia,	 and	

cancer	formation.	A	later	study	made	the	critical	finding	that	even	a	subtle	decrease	

in	PTEN	activity	can	increase	the	risk	of	cancer	development	in	mice36.	This	was	in	
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contrast	to	the	two-hit	cancer	model,	which	posited	that	loss	of	both	copies	of	a	tumor	

suppressor	gene	was	the	root	cause	of	cancer.	PTEN	became	the	paradigmatic	case	

for	 the	 continuum	model	of	 cancer,	 in	which	disease	 severity	 increases	as	activity	

level	of	the	tumor	suppressor	decreases37.	

The	partial	crystal	structure	of	a	PTEN	construct	was	solved	in	199938.	This	

construct	lacked	the	7	residues	at	the	N-terminus,	49	residues	at	the	C-terminus,	and	

24	residues	in	an	internal	loop,	all	of	which	represented	unstructured	regions38.	The	

canonical	PTEN	protein	product	consists	of	403	amino	acids,	which	form	two	globular	

domains,	a	phosphatase	and	a	C2	domain,	which	closely	interact38	(Figure	2A-B).	The	

catalytic	 pocket	 of	 the	 phosphatase	 domain	 is	 larger	 than	 the	 pocket	 of	 VHR,	 a	

prototypical	dual-specificity	phosphatase,	which	accommodates	the	larger	lipid	head	

group38.	The	C2	domain	is	composed	mainly	of	beta	sheets,	and	functions	to	bring	the	

protein	 into	 close	 proximity	 to	 the	

inner	 leaflet	of	 the	plasma	membrane,	

positioning	the	phosphatase	domain	to	

dephosphorylate	 PIP338.	 C-terminal	 of	

the	 C2	 domain	 is	 an	 unstructured	

domain,	 commonly	 known	 as	 the	 C-

terminal	 tail.	 The	 function	 of	 this	

domain	was	discovered	to	play	a	role	in	

auto-regulation.	 Specifically,	 four	

serine/threonine	 residues	 are	

phosphorylation	 targets,	 and	 in	 the	

Phosphatase	 C2	 Tail	PDZ-BD	

185	 351	 400	 403	

A	

B	

Figure	2.	Structure	of	the	PTEN	protein.	
(A)	 Schematic	 diagram	 of	 PTEN	 in	 primary	
sequence.		

(B)	Crystal	structure	of	PTEN,	colored	as	in	A.	The	
tail	and	PDZ-BD	were	not	present	in	the	crystallized	
construct.	
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phosphorylated	 state	 they	 cause	 the	 tail	 to	 fold	 back	 and	 inhibit	 the	 activity	 of	

PTEN41,42.	This	provides	a	key	mechanism	for	regulating	the	activity	of	PTEN.	CK243	

and	GSK344	have	been	shown	to	phosphorylate	PTEN’s	tail,	and,	intriguingly,	the	tail	

can	be	dephosphorylated,	and	thus	the	enzyme	de-inhibited,	by	PTEN	itself45.	Finally,	

PTEN	contains	a	PDZ-binding	motif	at	the	very	C-terminus.	This	motif	is	critical	for	

several	 protein-protein	 interactions,	 which	 have	 been	 shown	 to	 modulate	 PTEN	

subcellular	localization,	as	well	as	forming	tightly	orchestrated	signaling	complexes46.		

Early	investigations	into	the	subcellular	localization	of	PTEN	led	to	the	idea	

that	PTEN	exists	primarily	in	the	cytoplasmic	compartment	of	cells,	and	transiently	

interacts	with	the	inner	leaflet	of	the	plasma	membrane,	where	it	could	interact	with	

the	 PIP3	substrate47,48.	 Later	 studies	 found	 evidence	 of	 PTEN	within	 several	 other	

cellular	compartments,	 including	the	endoplasmic	reticulum	and	mitochondria49,50,	

the	nucleus	broadly51,	as	well	as	nucleoli52.	The	proposed	functions	of	PTEN	at	these	

various	subcellular	loci	will	be	explored	in	section	1.2.2,	but	they	are	generally	poorly	

understood,	and	it	is	therefore	challenging	to	predict	how	specific	disruption	of	PTEN	

function	at	these	sites	would	affect	cellular	or	organismal	outcomes.		

Two	recent	discoveries	have	complicated	the	view	of	PTEN	form	and	function.	

First,	biochemical	 and	cell	biological	 evidence	 suggested	 that	PTEN	actually	 forms	

dimers	 and	 that	 the	 dimers	 are	 the	 catalytically	 active	 unit	 (see	 section	 1.2.6	 for	

further	discussion)53,54.	This	cell	biological	and	biochemical	evidence	dovetails	with	

findings	 in	 mice	 that	 some	 missense	 mutations	 (namely,	 those	 that	 completely	

abolish	 lipid	 phosphatase	while	 preserving	 stability)	 actually	 lead	 to	more	 severe	

tumorigenic	outcomes	than	mice	lacking	a	copy	of	PTEN55.	Therefore,	any	model	that	
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attempts	 to	 predict	 human	 clinical	 phenotype	 from	 PTEN	 genotype	 will	 need	 to	

potentially	take	dominant	negative	effects	into	consideration.	

Second,	recent	studies	have	shown	that	PTEN	can	be	translated	via	alternative,	

upstream	 start	 codons	 that	 lead	 to	 two	N-terminal	 extended	 isoforms.	 39,40	 These	

isoforms	have	been	reported	to	localize	in	the	mitochondria	and	the	nucleus,	but	a	

full	account	of	their	function	remains	elusive.	It	is	believed	that	one	of	these	isoforms	

can	be	secreted	from	cells	and	re-enter	other	cells56,	and	that	it	may	have	a	role	in	

mitochondrial	 bioenergetics39.	 Generally	 speaking,	 it	 is	 poorly	 understood	 how	

mutations	differentially	affect	 the	canonical	PTEN	versus	this	N-terminal	extended	

isoform.	This	will	likely	need	to	be	clarified	in	order	to	complete	an	accurate	PTEN	

genotype-phenotype	map.	

1.2.2	PTEN	noncanonical	functions			
	

Beyond	 PTEN’s	 vital	 role	 in	 antagonizing	 the	 PI3K/Akt	 signaling	 pathway	

through	 dephosphorylation	 of	 PIP3,	 several	 noncanonical	 functions	 have	 been	

described.	 First,	 PTEN	 has	 phosphatase	 activity	 towards	 protein	 substrates.	 An	

important	substrate	is	the	cluster	of	phosphorylatable	residues	in	PTEN’s	C-terminal	

tail45.	Additional	protein	substrates	include	focal	adhesion	kinase	1,	cAMP-responsive	

element-binding	protein	1,	proto-oncogene	tyrosine-protein	kinase	SRC,	and	insulin	

receptor	substrate	157–60.	While	these	molecules	exist	in	diverse	signaling	pathways,	

it	 is	 believed	 that	 the	 ultimate	 effect	 of	 PTEN’s	 activity	 towards	 these	 protein	

substrates	is	tumor	suppression61.	

Understanding	 the	 role	 of	 PTEN	 in	 the	 nucleus	 has	 received	 substantial	

attention.	 This	 is	 because	 some	 pathogenic	 mutations	 affect	 nuclear	 localization	
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without	overtly	compromising	lipid	phosphatase	activity	or	steady	state	stability62.	

In	fact,	a	recent	study	showed	that	forcing	mislocalizing	PTEN	missense	variants	to	

the	 nucleus	 actually	 rescued	 the	 cellular	 hypertrophy	 that	was	 observed	without	

forced	 nuclear	 localization63.	 These	 findings	 suggest	 that	 PTEN	 is	 playing	 an	

important	role	in	the	nucleus	and	disruption	of	this	function	could	have	an	effect	on	

human	health.	However,	 exactly	which	 roles	are	most	 important	 is	 as	yet	unclear.	

Proposed	 nuclear	 functions	 for	 PTEN	 include	 regulating	 ribosome	 biogenesis52,	

promoting	 genome	 stability64,	 regulating	 DNA	 replication65,	 and	 controlling	

chromatin	condensation	and	thereby	gene	expression66.		

1.2.3	PTEN	mutations	and	human	health	
	

PTEN	was	 originally	 identified	 as	 a	 tumor	 suppressor	 upon	 the	 karyotypic	

observation	 of	 recurrent	 deletions	 of	 chromosome	 10q23	 in	 multiple	 human	

cancers26,67,68.	Further	screening	demonstrated	extremely	high	mutation	 frequency	

in	 several	 types	 of	 human	 cancers,	 especially	 breast,	 thyroid,	 glioblastoma,	 and	

prostate	 (reviewed	 in	Sansal	et	al.,	 200469).	Besides	 somatic	mutation,	 it	was	also	

discovered	 that	germline	PTEN	mutations	 led	to	a	variety	of	 tumor-predisposition	

and	overgrowth	disorders.	Cowden	Syndrome	described	an	adulthood	presentation	

characterized	by	 tumors	of	 the	breast,	 thyroid,	 and	 skin,	 and	was	 found	 to	be	 the	

result	 of	 PTEN	 mutation70,71.	 Lhermitte-Duclos	 syndrome,	 characterized	 by	

gangliocytomas	of	the	cerebellum,	and	Bannayan	Riley	Ruvulcaba	Syndrome	(BRRS),	

which	 is	 characterized	 by	macrocephaly,	 lipomatosis,	 hemangiomas,	 and	 speckled	

penis,	 typically	 appearing	 in	 childhood72,	 were	 determined	 to	 be	 variable	

presentations	of	the	same	genetic	entity	as	Cowden	Syndrom72.	Another	phenotypic	
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outcome	 for	 PTEN	 mutation	 carriers	 is	 neurological	 disorders	 including	 autism	

spectrum	disorder	(ASD),	developmental	delay,	or	intellectual	disability.	Screening	of	

individuals	with	ASD	and	macrocephaly	revealed	a	subset	with	PTEN	mutations73.	A	

later	 study	 set	out	 to	establish	 the	prevalence	of	PTEN	mutation	 in	macrocephalic	

individuals	with	ASD	or	mental	retardation/developmental	delay,	and	found	it	to	be	

8.3%	and	12.2%,	respectively74.		

Since	 the	 discovery	 that	PTEN	mutations	 lead	 to	 diverse	 clinical	 outcomes,	

researchers	 have	 sought	 to	 clarify	 whether	 certain	 types	 of	 mutations	 are	 more	

strongly	associated	with	certain	clinical	outcomes.	Studies	attempting	to	link	the	type	

of	mutation	(i.e.	missense	vs.	nonsense,	or	mutations	in	different	exons)	with	specific	

cancer-related	outcomes	have	largely	been	unsuccessful75–77.	In	fact,	these	and	other	

studies	 have	 led	 to	 the	 prevailing	 belief	 that	 PTEN-related	 cancer	 predisposition	

syndromes	 are	 variable	 presentations	 of	 the	 same	 underlying	 pathobiology.	 Put	

another	way,	there	is	no	meaningful	difference	amongst	the	PTEN	mutations	that	lead	

to	PHTS	outcomes.	This	is	supported	by	observations	of	variable	PHTS	presentations	

within	a	single	family	that	share	the	same	PTEN	missense	mutation78.		

However,	 there	has	been	more	progress	 in	elucidating	genotype-phenotype	

relationships	with	respect	to	ASD	vs.	PHTS	outcomes.	In	2011,	a	study	emerged	that	

leveraged	a	humanized	yeast	model	 to	measure	the	catalytic	activity	of	a	series	of	

PTEN	 missense	 variants79.	 The	 humanized	 yeast	model	will	 be	 expanded	 upon	 in	

section	1.2.5,	and	is	used	as	the	experimental	model	in	Chapter	2.	The	results	of	the	

2011	study	suggested	that	PTEN	missense	mutations	associated	with	ASD	tended	to	

retain	 partial	 catalytic	 activity,	 while	 those	 associated	 with	 the	 overgrowth	



	

	 18	

phenotype	of	classical	PHTS	were	complete	loss-of-function79.	This	study	compared	

functionality	 of	 14	 ASD-associated	 variants	 and	 19	 PHTS-associated	 missense	

variants80.	 Further	 biochemical	 support	 for	 this	 hypothesis	 came	 from	 a	 study	 in	

2015,	in	which	PTEN	missense	variants	were	challenged	to	antagonize	Akt	signaling	

in	U87MG	breast	cancer	cell	line	which	is	PTEN-null80.	The	authors	found	that,	as	a	

group,	 the	 7	 ASD-associated	 PTEN	 mutations	 that	 they	 tested	 were	 destabilized	

compared	 to	 the	wildtype.	 Intriguingly,	when	the	variants	were	over-expressed	 to	

match	 the	 protein	 abundance	 of	 PTEN	 wildtype,	 the	 ability	 of	 the	 variants	 to	

antagonize	 Akt	 signaling	 was	 approximately	 equal	 to	 wildtype80.	 In	 further	

experiments,	it	was	shown	that	two	of	three	selected	ASD-associated	variants,	when	

expressed	 at	 wildtype	 levels,	 were	 able	 to	 rescue	 cellular	 defects	 in	 PTEN-null,	

primary	cultured	mouse	neurons.	Namely,	 they	rescued	soma	size,	dendritic	spine	

density,	 and	 dendritic	 spine	 length	 to	 comparable	 levels	 as	wildtype	PTEN80.	 In	 a	

biochemical	 study	 published	 the	 same	 year,	 Johnston	 and	 Raines	 measured	 the	

thermostability	 and	 enzymatic	 activity	 of	 three	 ASD-associated	 PTEN	 missense	

variants	 (H93R,	 E157G,	 and	Y176C).	 All	 three	mutations	were	 thermodynamically	

compromised	compared	to	wildtype,	however	E157G	and	Y176C	retained	substantial	

enzymatic	activity	(20-30%	of	wild-type)81.	

In	addition	to	the	biochemical	and	cell	biological	evidence	above,	there	also	

exists	human	genetic	data	that	support	less	damaging	PTEN	variants	leading	to	ASD	

while	more	damaging	 lead	to	PHTS.	Multiple	studies	have	reported	higher	rates	of	

missense	variants	in	PTEN-ASD	individuals	than	in	PHTS	individuals	(as	compared	to	

nonsense,	indel,	or	splice	site).	Frazier	et	al.	report	that	within	their	cohort,	51.6%	of	
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PTEN-ASD	individuals	had	missense	variants,	while	only	29.6%	of	PHTS	individuals	

had	missense	variants	82.	Spinelli	et	al.	aggregated	mutations	and	phenotypes	from	

the	 literature	and	came	upon	similar	numbers:	52%	of	PTEN-ASD	 individuals	had	

missense	 variants,	 while	 32%	 of	 PHTS	 individuals	 had	missense	 variants80.	 Since	

missense	variants	are	generally	 less	damaging	 than	other	 classes	of	 variation	 (e.g.	

nonsense,	indel,	or	splice	site),	this	suggests	that	hypomorphic	alleles	may	predispose	

for	ASD	while	highly	damaging	alleles	might	predispose	for	PHTS.	However,	this	data	

also	 emphasizes	 that	 any	 genotype-phenotype	 relationships	will	 not	 be	 clear	 cut,	

since	 nearly	 half	 of	 PTEN-ASD	 individuals	 have	 a	 nonsense,	 indel,	 or	 splice	 site	

mutation.	Further,	any	mechanistic	underpinning	for	the	hypomorphic	hypothesis	is	

totally	absent.	

1.2.4	PTEN	mutations	and	the	brain	
	

As	a	result	of	the	recurrence	of	PTEN	mutations	in	ASD,	intellectual	disability,	

and	developmental	delay,	there	has	been	a	strong	push	to	understand	the	effects	of	

PTEN	loss	in	the	brain	by	use	of	model	organisms.	Homozygous	germline	deletion	of	

PTEN	 in	mouse	 is	embryonic	 lethal83,	and	heterozygous	germline	deletion	leads	to	

widespread	 tumor	 formation84.	 Therefore,	 to	 specifically	 model	 PTEN	 loss	 in	 the	

brain,	most	groups	have	used	targeted	inactivation,	either	to	the	brain	generally	or	

neurons	specifically.	An	early	study	used	a	conditional	genetic	knockout	system,	in	

which	 Cre	 recombinase	was	 driven	 by	 expression	 of	 glial	 fibrillary	 acidic	 protein	

(GFAP)	in	mouse	to	exclusively	knock	out	PTEN	in	the	central	nervous	system.	Critical	

findings	 from	 this	 study	 include	 that	 PTEN	 conditional	 homozygous	 knock-out	

animals	had	progressively	larger	brains,	and	this	brain	overgrowth	led	to	tonic	clonic	
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seizures,	 eventually	 leading	 to	 premature	 death85.	 The	 larger	 brains	 resulted	

primarily	from	hypertrophic	neurons,	which	grew	increasingly	large	through	time	in	

a	cell-autonomous	and	Akt	dependent	fashion85.	The	impacts	of	this	cellular	growth	

was	clarified	over	the	next	decade.	A	neuron-specific	enolase-Cre	construct	was	used	

to	delete	PTEN	from	mature	neurons	in	the	cerebral	cortex86.	Overgrowth	of	neuronal	

soma	was	recapitulated,	and	further,	the	authors	demonstrated	that	neurons	lacking	

PTEN	produced	 dendritic	 trees	 that	were	 thicker,	 longer,	 and	 had	more	 dendritic	

spines	 than	 wildtype	 neurons86.	 It	 was	 later	 discovered	 that	 these	 overgrown	

dendritic	 arbors	 lead	 to	 increased	 excitatory	 drive87	 that	 can	 lead	 to	 epileptic	

seizures88.	 A	 critical	weakness	 of	 these	 studies	 (and	most	PTEN	 studies	 in	model	

organisms)	is	 that	 the	 investigators	knocked	out	a	copy	of	PTEN,	while	 the	human	

ASD/DD	 condition	 is	 predominantly	 caused	 by	 heterozygous	 missense	 mutations	

(this	will	be	expounded	upon	 in	 section	2.2.5).	One	 study	 that	did	 introduce	ASD-

associated	PTEN	missense	mutations	into	mouse	neurons	found	subtler	effects	than	

those	 induced	 by	 PTEN	 knockout89.	 This	 finding	 is	 consistent	 with	 the	 broader	

hypothesis,	supported	by	several	different	 types	of	data,	 that	PTEN	mutations	that	

lead	to	ASD	tend	to	be	hypomorphic.		

	

1.2.5	Humanized	yeast	assay	for	measuring	PTEN	catalytic	activity	
	

Because	 PTEN’s	 substrate,	 PIP3,	 is	 a	 lipid	 that	 resides	 within	 the	 cell	

membrane,	it	has	been	challenging	to	develop	in	vitro	assays	that	directly	monitor	the	

enzymatic	 activity	 of	 PTEN	 variants.	 Additionally,	 because	 differences	 in	 PTEN	

activity	cause	complicated	and	diverse	alterations	in	mammalian	cell	signaling,	it	is	
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difficult	 to	 isolate	 the	 direct	 effects	 of	 PTEN	 variation	 on	 enzymatic	 activity	 in	

mammalian	cells.	One	solution	to	these	issues	was	developed	by	Rodríguez-Escudero	

and	colleagues	in	2005.	Their	intuition	was	that	the	catalytic	subunit	of	PI3K	(p110α)	

could	be	expressed	 in	yeast,	 and	 this	 enzyme	would	phosphorylate	PIP2	 into	PIP3,	

which	would	eventually	deplete	the	PIP2	pool,	leading	to	growth-inhibiting	toxicity.	

However,	 PTEN	 expression	 could	 reverse	 this	 toxicity	 and	 rescue	 growth.	

Importantly,	the	ability	of	any	given	PTEN	variant	to	rescue	growth	was	related	to	the	

enzymatic	 activity	 of	 that	 variant.90	 Additionally,	 because	 PTEN	 and	 p110α	 are	

heterologous	to	yeast,	and	because	PIP3	is	generally	not	present	 in	yeast	cells,	 it	 is	

expected	that	PTEN	and	p110α	biochemical	activities	will	not	result	in	changes	to	the	

cellular	signaling	milieu.	Accordingly,	survival	and	growth	of	cells	is	directly	related	

to	the	enzymatic	capacity	of	the	PTEN	variant.	This	system	has	been	used	to	profile	

enzyme	 activity	 of	 ASD	 and	 PHTS-associated	 PTEN	 variants79,91,92,	 variation	 in	

p110α92,	and	even	variation	in	PI3K	regulatory	subunits93.	This	model	has	been	used	

to	generate	functional	data	on	~100	PTEN	variants,	but	the	necessity	for	individually	

generating	variant	sequences	and	compartmentalizing	experiments	has	precluded	a	

comprehensive	assessment	of	all	PTEN	variants.	

1.2.6	Evidence	for	and	implications	of	PTEN	mutations	with	dominant-

negative	effects	

While	PTEN’s	lipid	phosphatase	activity	at	the	cell	membrane	has	been	well	

established,	 it	 remains	 unclear	 exactly	 what	 form	 the	 catalytic	 unit	 takes.	 In	

particular,	as	alluded	to	earlier,	there	is	evidence	that	PTEN	forms	homodimers,	and	

these	homodimers	are	the	true	catalytic	unit.	Evidence	for	dimerization	in	cells	comes	
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from	 pulldown	 experiments,	 in	 which	 unlabeled	 PTEN	 can	 be	 pulled	 down	 by	

antibodies	specific	for	a	tagged	PTEN53,54.	It	has	also	been	observed	that	some	PTEN	

variants	display	dominant	negative	effects,	i.e.	that,	in	the	heterozygous	state,	a	PTEN	

variant	 can	 actually	 decrease	 the	 activity	 of	 the	 other,	 wildtype	 allele.	 This	

phenomenon	 has	 been	 observed	 on	 the	 organismal	 level	 in	 mouse,	 with	 some	

missense	variants	 leading	to	 increased	tumor	burden	compared	to	deletion	of	one	

allele.53,55	It	has	also	been	observed	in	mammalian	cells,	with	some	missense	variants	

leading	to	increased	Akt	signaling	compared	to	single	copy	deletion.53,94	There	remain	

important	 unanswered	 questions	 regarding	 PTEN	 dominant	 negativity.	 The	 most	

parsimonious	 interpretation	of	 these	two	observations	(that	PTEN	homodimerizes	

and	 that	 some	PTEN	missense	 variants	 are	 dominant	 negative)	would	 be	 that	 the	

dominant	negativity	results	from	mutant	PTEN	physically	interacting	and	interfering	

with	wildtype	PTEN.	However,	this	remains	unproven	and	there	are	other	possible	

explanations.	Additionally,	it	is	completely	unknown	how	common	PTEN	dominant	

negative	alleles	are,	and	what	role	they	play	in	determining	human	clinical	outcome.	

	

1.3	Targeted	enrichment	for	sequencing	

1.3.1	Targeted	enrichment	applications	

The	haploid	human	genome	consists	of	approximately	3	billion	nucleotides.	

However,	in	many	cases,	we	are	only	concerned	with	the	sequence	at	a	small	fraction	

of	 these	 sites.	 For	 example,	 there	 are	 vast	 stretches	 of	 the	 genome	 for	which	 the	

function	is	unknown	meaning	that	sequence	variation	detected	at	those	sites	is	not	
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informative.	 In	 order	 to	 save	 time,	money,	 and	 resources,	 technologies	 have	 been	

developed	which	allow	researchers	to	enrich	for	sequences	of	interest.		

In	 general,	 our	 understanding	 of	 genomic	 sequence	 is	 much	 greater	 for	

protein-coding	as	opposed	to	non-coding	regions.	Accordingly,	one	of	the	most	widely	

used	targeted	enrichment	strategies	is	exome	sequencing,	in	which	the	~1-2%	of	the	

genome	consisting	of	protein-coding	exons	are	enriched95.	Exome	sequencing	has	had	

tremendous	success	in	establishing	links	between	genes	and	Mendelian	disorders96	

as	well	as	diagnosing	disorders	in	individual	patients97.	

Another	 instance	 in	which	 targeted	 enrichment	 is	 valuable	 is	 disorders	 for	

which	 the	 genetic	 etiology	 is	 heterogeneous	 but	 at	 least	 somewhat	 understood.	

Several	 targeted	 enrichment	 panels	 have	 been	 developed	 for	 cancers,	 which	 are	

commonly	driven	by	mutations	in	known	genes.	It	is	commercially	feasible	to	make	

custom	 enrichment	 panels	 for	 cancer,	 because	 it	 is	 a	 common	 disease.	 However,	

biotechnology	 companies	 have	 made	 the	 calculation	 that	 for	 many	 other	 rarer	

diseases,	it	is	not	commercially	viable	to	create	custom	panels.	

1.3.2	Targeted	enrichment	approaches	and	technologies		

Historically,	 there	 have	 existed	 two	 general	 ways	 to	 enrich	 sequences	 of	

interest.	The	first	and	simplest	method	is	by	using	PCR	to	selectively	amplify	targets.	

This	approach	works	well	 for	small	numbers	of	 small	 targets.	However,	 as	 targets	

exceed	 several	 kilobases	 in	 length,	 it	 becomes	 challenging	 to	 find	 amenable	 PCR	

conditions.	Likewise,	as	the	number	of	amplicons	increases,	so	too	does	the	likelihood	

of	off-target	amplification	or	interference	between	primer	sets.		
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The	 most	 widely	 used	 approach	 for	 targeted	 enrichment	 currently	 is	

hybridization-based95.	In	this	type	of	approach,	RNA	or	DNA	probes	are	designed	to	

have	complementarity	to	regions	of	interest.	Then,	through	attachment	of	the	probe	

to	a	solid	state,	or	by	inclusion	of	a	moiety	such	as	biotin	on	the	probe,	target-bound	

probe	can	be	physically	 separated	 from	non-target	 sequence.	Many	contemporary	

exome	 or	 cancer	 panels	 use	 biotinylated	 probes	 in	 solution	 to	 capture	 regions	 of	

interest.	The	main	weaknesses	with	this	approach	are	high	cost,	GC	sequence-content	

bias,	and	requirement	for	microgram	scale	input	DNA.	The	prohibitive	nature	of	the	

high	 cost	deserves	emphasis:	 for	many	uncommon	diseases,	 it	 is	not	economically	

feasible	for	researchers	or	companies	to	create	custom	capture	panels.	

1.3.3	Whole-gene	sequencing	

Human	genes	are	typically	on	the	order	of	tens	of	thousands	of	basepairs	long,	

which	 makes	 capturing	 full	 genes	 a	 major	 challenge	 for	 existing	 technologies.	

Identifying	 pathogenic	 variation	 in	 individuals	 with	 Mendelian	 disorders	 is	 a	

significant	clinical	challenge,	with	the	diagnostic	rate	for	many	of	these	disorders	only	

~50%98.	 For	 example,	 PTEN	 pathogenic	 variants	 are	 found	 in	 only	 25-80%	 of	

individuals	with	a	Cowden	Syndrome	diagnosis99	(Cowden	Syndrome	represents	a	

subset	of	PHTS;	the	diagnosis	of	PHTS	is	given	only	if	a	pathogenic	PTEN	variant	is	

identified).	One	explanation	for	the	low	diagnostic	yield	is	that	technologies	focused	

only	 on	 the	 coding	 regions	 are	 missing	 pathogenic	 variation	 in	 the	 non-coding	

portions	of	genes	(i.e.	promoter,	introns,	or	5’	or	3’	untranslated	regions).	Whole	gene	

sequencing	can	be	especially	important	for	genetic	diagnoses	of	recessive	disorders,	
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because	a	diagnosis	requires	finding	likely	gene	disrupting	variation	in	both	copies	of	

a	single	gene.	

1.3.4	CRISPR-based	targeted	enrichment	technologies	

Clustered	 regularly	 interspersed	 short	 palindromic	 repeats	 (CRISPR)-Cas	

systems	have	emerged	as	biotechnological	tools	of	immense	value.	Cas	enzymes	are	

endonucleases	that	acquire	target	specificity	by	complexing	with	a	short	guide	RNA	

(gRNA)	that	is	complementary	to	the	targeted	DNA	sequence.	Originally	discovered	

as	 a	 form	of	 bacterial	 adaptive	 immunity	 toward	 bacteriophages,	 the	 system	was	

quickly	adapted	as	a	means	of	genome	engineering	or	editing100.		

More	 recently,	 several	 groups	 have	 demonstrated	 that	 CRISPR	 can	 be	

harnessed	as	a	 tool	 for	 targeted	enrichment	 for	sequencing.	A	conceptually	simple	

approach	involves	CRISPR-Cas9	cleavage	of	one	or	more	regions	of	interest	followed	

by	 size	 selection	 to	 isolate	 the	 target101,102.	 However,	 size	 selection	 is	 laborious,	

requires	 specialized	 equipment,	 and	 requires	 large	 amounts	 of	 input	 DNA.	 An	

alternative	 approach	 used	 CRISPR-Cas9	 cleavage	 followed	 by	 direct	 ligation	 of	

nanopore	 sequencing	 adapters,	 followed	 by	 nanopore	 sequencing103.	 Ligation	 of	

adapters	to	blunt-ended	Cas9	cleavage	products	(as	opposed	to	overhanging	cleavage	

products)	may	limit	efficiency,	and	the	nanopore	sequencing	platform	has	high	error	

rates	that	make	single	nucleotide	variants	hard	to	call.	Another	approach	involves	a	

catalytically	dead	version	of	Cas9,	so-called	dCas9.	Upon	RNA-directed	binding	of	the	

dCas9	 to	 the	 target,	 the	 whole	 complex	 can	 then	 be	 pulled	 down	 with	 an	

oligonucleotide	complementary	to	a	tail	on	the	guide	RNA.104		
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In	a	similar	vein,	I	here	develop	an	alternative	approach,	described	in	Chapter	

4,	which	leverages	CRISPR-Cas12a	(expanded	upon	in	1.3.5),	a	programmable	system	

that	leaves	single	stranded	overhangs	at	cleavage	sites	(as	opposed	to	blunt	ends).	

Compared	to	existing	methods,	this	approach	is	simple,	does	not	require	specialized	

equipment,	 flexible,	 and	 affordable.	 It	 should	 enable	 researchers	 with	 limited	

budgets,	 or	 those	 who	 study	 rare	 disorders,	 to	 design	 and	 implement	 targeted	

sequencing	experiments.	

1.3.5	Cas12a	biochemistry	
	

Cas12a,	 originally	 known	 as	 Cpf1,	 was	 discovered	 and	 characterized	 in	

2015105.	This	enzyme,	like	the	more	well-known	Cas9,	binds	to	a	gRNA,	which	then	

directs	 the	 enzyme	 to	 a	 double	 stranded	DNA	 target	 by	 base-pairing	 between	 the	

gRNA	and	the	DNA.	Cas12a	has	several	differences	from	Cas9,	though,	which	make	it	

uniquely	suited	for	certain	applications.	For	example,	while	Cas9	naturally	uses	two	

RNAs,	equaling	about	100	bases,	Cas12a	is	guided	by	a	single	RNA	that	is	only	about	

45	bases	in	length.	Further,	cleavage	of	target	DNA	occurs	in	a	different	location:	Cas9	

cleavage	 occurs	 proximal	 to	 the	 PAM	 site	 and	 non-homologous	 end	 joining	 often	

destroys	the	PAM	site.	 If	a	researcher	was	hoping	to	 introduce	a	genetic	 edit	with	

homologous	 recombination,	 this	 would	 be	 a	 negative	 outcome.	 In	 contrast,	 the	

cleavage	site	of	Cas12a	is	distal	to	the	PAM	site.106	This	suggests	that	even	if	a	Cas12a	

cleavage	 event	 didn’t	 result	 in	 homologous	 recombination,	 the	 enzyme	 could	 re-

cleave	the	same	target,	increasing	the	odds	of	successful	editing.	Additionally,	unlike	

Cas9,	 Cas12a	 cleavage	 results	 in	 symmetrical	 5’	 overhangs105	 (Figure	 3).	 This	 has	
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been	 recognized	 as	 a	 valuable	 characteristic;	 for	 example,	 methods	 have	 been	

developed	that	take	advantage	of	this	feature	for	molecular	cloning107.		

	 	

Figure	3.	Base-pairing	between	the	gRNA	and	genomic	DNA	directs	the	Cas12a	
enzyme	to	the	target.		

Cleavage	of	the	double	stranded	DNA	target	occurs	at	the	18th	and	23rd	position	downstream	of	the	
PAM,	resulting	in	cleavage	products	with	symmetrical	5’	overhangs.	

Because	overhanging	ends	are	better	ligation	clients	than	blunt	ends,	we	reasoned	

that	specifically	introducing	cleavage	events	at	targeted	genomic	loci	would	enrich	

ligatable	ends	at	those	loci.	Then,	a	simple	ligation	reaction	could	append	

sequencing	adapters	to	the	cleaved	ends,	resulting	in	enriched	sequencing	of	the	

regions	of	interest.	The	design	and	testing	of	this	method	are	presented	in	Chapter	

4.	

	 	

5’-TGAATTTTATCATTGCTCTCCATTTGTTTGCTTGTTCATT-3’
PAM	

5’-AATGAACAAGCAAACAAATGGAGAGCAATGATAAAATTCA-3’	

[crRNA]…UGUAGAUATCATTGCTCTCCATTTGTTgRNA	

5’-TGAATTTTATCATTGCTCTCCATTTGTTTG-3’	 5’-ACAAGCAAACAAATGGAGAGCAATGATAAAATTCA-3’	

gDNA	

5’-TTTGCTTGTTCATT-3’	5’-AATGAACAA	

Cas12a	
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2.1	Abstract	

Phosphatase	 and	 tensin	 homolog	 (PTEN)	 is	 a	 tumor	 suppressor	 frequently	

mutated	 in	 diverse	 cancers.	 Germline	PTEN	 mutations	 are	 also	 associated	with	 a	

range	of	clinical	outcomes,	including	PTEN	hamartoma	tumor	syndrome	(PHTS)	and	

autism	spectrum	disorder	(ASD).	To	empower	new	insights	into	PTEN	function	and	

clinically	 relevant	 genotype-phenotype	 relationships,	 we	 systematically	 evaluated	

the	effect	of	PTEN	mutations	on	lipid	phosphatase	activity	in	vivo.	Using	a	massively	

parallel	 approach	 that	 leverages	 an	 artificial	 humanized	 yeast	model,	 we	 derived	

high-confidence	 estimates	 of	 functional	 impact	 for	 7,244	 single	 amino	 acid	 PTEN	

variants	(86%	of	possible).	We	identified	2,273	mutations	with	reduced	cellular	lipid	

phosphatase	 activity,	 which	 includes	 1,789	 missense	 mutations.	 These	 data	

recapitulated	known	functional	findings	but	also	uncovered	new	insights	into	PTEN	

protein	 structure,	 biochemistry,	 and	 mutation	 tolerance.	 Several	 residues	 in	 the	

catalytic	 pocket	 showed	 surprising	 mutational	 tolerance.	 We	 identified	 that	 the	

solvent	 exposure	 of	 wild-type	 residues	 is	 a	 critical	 determinant	 of	 mutational	

tolerance.	 Further,	 we	 created	 a	 comprehensive	 functional	 map	 by	 leveraging	

correlations	 between	 amino	 acid	 substitutions	 to	 impute	 functional	 scores	 all	

variants,	 including	 those	 not	 present	 in	 the	 assay.	 Variant	 functional	 scores	 can	

reliably	discriminate	likely	pathogenic	from	benign	alleles.	Further,	32%	of	ClinVar	

unclassified	missense	 variants	 are	 phosphatase	 deficient	 in	 our	 assay,	 supporting	

their	 reclassification.	 ASD	 associated	 mutations	 generally	 had	 less	 severe	 fitness	

scores	relative	to	PHTS	associated	mutations	(p	=	7.16x10-5)	and	a	higher	fraction	of	

hypomorphic	mutations,	arguing	for	continued	genotype-phenotype	studies	in	larger	
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clinical	datasets	that	can	further	leverage	these	rich	functional	data.	 	
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2.2	Introduction	

Recent	large-scale	exome	sequencing	studies	have	highlighted	the	abundance	

of	 protein-coding	 variation	 in	 the	 human	 population.4	 It	 remains	 challenging	 to	

predict	 variant	 pathogenicity	 and	 clinical	 outcomes,	 especially	 for	 genes	 with	

pleiotropic	effects.	With	most	rare	variants	private	to	a	single	family	or	individual,	

using	traditional	approaches	to	establish	pathogenicity	such	as	variant	segregation	

within	a	pedigree	or	identification	in	independent	patients	is	infeasible.	Even	for	well-

studied	genes,	hundreds	of	 variants	are	 currently	defined	as	variants	of	uncertain	

significance	(VUS).	Moreover,	purely	computational	approaches	still	suffer	from	high	

false	positive	rates108	and	subjective	interpretations	that	limit	the	clinical	utility	of	

these	predictions.		

To	address	 these	 challenges	 for	genes	of	 clinical	 importance,	one	proposed	

approach	is	to	prospectively	measure	the	functional	effects	of	all	possible	mutations,	

allowing	these	empirical	data	to	be	integrated	into	the	clinical	assessment	of	novel	

rare	variants.5,11	Historically,	these	types	of	functional	assays	have	been	conducted	in	

a	serial	nature,	which	limits	scalability,	and	often	only	within	a	portion	of	the	protein	

of	 interest.	 While	 there	 are	 some	 notable	 examples	 of	 whole-gene	 brute	 force	

saturation	 mutagenesis,	 e.g.,	 TP53109	 (MIM:	 191170),	 new	 more	 scalable	

experimental	paradigms	are	being	developed	that	allow	the	functional	dissection	of	

the	effects	of	thousands	of	genetic	mutations	in	parallel.13	These	approaches	leverage	

recent	 advances	 in	 DNA	 synthesis	 and	 sequencing	 technologies,	 and	 have	 proven	

particularly	valuable	in	understanding	the	effects	of	mutations	in	cancer-associated	

genes.22,110		
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With	 these	 issues	 in	 mind,	 we	 have	 developed	 a	 saturation	 mutagenesis	

approach	to	comprehensively	assess	the	effect	of	nonsynonymous	mutations	on	the	

lipid	phosphatase	activity	of	phosphatase	and	tensin	homolog	(PTEN	[MIM:	601728]).	

PTEN	antagonizes	the	phosphoinositide	3-kinase	(PI3K)	signaling	pathway	through	

its	lipid	phosphatase	activity	toward	the	signaling	lipid	phosphatidylinositol	(3,4,5)-

trisphosphate	(PIP3).111,112	In	mice,	loss	of	this	activity	increases	tumor	susceptibility	

in	a	dose	dependent	manner.36	This	observation	led	to	a	continuum	model	for	PTEN’s	

role	in	cancer	development,	with	the	level	of	phenotypic	severity	tightly	coupled	to	

the	level	of	lipid	phosphatase	activity.37		

Germline	PTEN	mutations	are	associated	with	a	 range	of	 clinical	outcomes,	

including	 autism	 spectrum	 disorder	 (ASD	 [MIM:	 605309])73,74,113	 and	 tumor	

predisposition	phenotypes	collectively	known	as	PTEN	hamartoma	tumor	syndrome	

(PHTS).70,114,115	 Germline	 mutation	 carriers	 often	 share	 the	 common	 feature	 of	

increased	head	size	or	macrocephaly.116	However,	there	is	substantial	variability	in	

the	 neurological	 and	 tumor	 phenotypes	 present	 in	 these	 individuals.	 PHTS	 is	 an	

umbrella	 term	 that	 encompasses	 Cowden	 syndrome	 (MIM:	 158350),	 Bannayan-

Riley-Ruvalcaba-syndrome	 (MIM:	 153480),	 and	 PTEN-related	 Proteus	 syndrome	

(MIM:	 176920).117	 PHTS-affected	 individuals	 typically	 present	with	macrocephaly,	

hamartomatous	polyps,	and	have	an	extremely	high	life-time	risk	of	cancer.117	PTEN	

mutations	have	been	identified	in	macrocephaly	cohorts	of	individuals	with	formal	

ASD	 diagnoses	 or	 developmental	 delay	 (DD)/intellectual	 disability	 (ID)74,118,119	 as	

well	as	idiopathic	ASD.113,120,121	

It	is	currently	impossible	to	predict	the	phenotypic	outcome	of	a	given	PTEN	
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mutation.	Even	predicting	whether	a	PTEN	mutation	will	have	a	pathogenic	effect	is	

still	challenging.	This	is	exemplified	by	the	fact	that	a	majority	of	missense	variants	

(131/241,	54%)	in	ClinVar	are	considered	VUS	and	seven	additional	variants	have	

inconsistent	 pathogenicity	 reported	 across	 laboratories.	 Recent	 evidence	 from	

functional	 assays	 on	 a	 limited	 number	 of	 mutations	 and	 using	 diverse	 models,	

including	humanized	yeast,79	cultured	human	cells,80	and	 in	vivo	mouse	neurons,89	

suggest	 that	mutations	 identified	 in	 individuals	with	 ASD	 or	 DD	without	 obvious	

PHTS	 features	 tend	 to	 have	 hypomorphic	 lipid	 phosphatase	 activity,	 while	 PHTS-

associated	 mutations	 more	 frequently	 show	 complete	 loss	 of	 lipid	 phosphatase	

activity.	 Further	 supporting	 this	 hypomorphic	 hypothesis,	 the	 distributions	 of	

mutation	 types	are	 consistent	with	ASD	associated	mutations	being	generally	 less	

severe,	with	 reported	missense	mutations	 three	 to	 four	 times	 as	 common	 in	ASD	

compared	 with	 PHTS.80,122	 These	 findings,	 as	 well	 as	 the	 established	 genotype-

phenotype	 relationships	 for	 PTEN	 in	 cancer,	 led	 us	 to	 hypothesize	 that,	 at	 the	

population	level,	ASD-associated	PTEN	variants	are	hypomorphic	compared	to	PHTS-

associated	PTEN	variants.	

	 To	systematically	test	this	hypothesis	and	improve	our	ability	to	interpret	the	

functional	 effects	 of	 any	 PTEN	 mutation,	 we	 modified	 a	 previously	 validated	

humanized	yeast	model	for	massively	parallel	functional	testing	of	the	effects	of	PTEN	

mutations	 on	 lipid	 phosphatase	 activity	 in	 vivo.79,90	 Given	 that	 yeast	 do	 not	 signal	

through	 PIP3	dependent	 pathways,123	 this	model	 system	 challenges	 PTEN	 protein	

variants	to	act	on	their	preferred	substrate	in	a	cellular	environment,	but	removes	

the	 confounding	 signaling	 and	 regulatory	 milieu	 present	 in	 mammalian	 cells.	
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Accordingly,	 the	 model	 is	 more	 sensitive	 than	 in	 vitro	 assays	 in	 which	 PTEN	

dephosphorylates	 a	 water-soluble	 substrate.92	 The	 utility	 of	 the	 yeast	 model	 for	

measuring	 lipid	phosphatase	activity	has	been	demonstrated	through	validation	of	

mutation	 effects	 on	 downstream	 Akt1	 activation	 in	 mammalian	 cells,	 exhibiting	

complete	concordance	for	the	variants	tested.92	

	 With	this	system,	we	analyzed	the	functional	effect	of	86%	of	all	possible	

single	amino	acid	alterations.	Overlaying	these	data	onto	PTEN	secondary	and	

tertiary	structures	recapitulated	many	known	or	predicted	structure-function	and	

biochemical	relationships	but	also	revealed	surprising	patterns	of	mutational	

tolerance.	We	discovered	that	several	residues	within	the	catalytic	pocket	are	

surprisingly	tolerant	to	mutation	and	identified	residues	that	are	critical	for	

membrane	interaction.	Moreover,	we	demonstrate	these	functional	fitness	scores	

have	clinical	utility	by	showing	that	they	can	outperform	in	silico-based	approaches	

in	characterizing	likely	pathogenic	and	benign	variants.	Finally,	we	provide	

compelling	support	for	the	existence	of	germline	PTEN	genotype-phenotype	

relationships	that	should	be	further	explored	in	larger	longitudinal	clinical	cohorts.	

2.3	Materials	and	methods	

PTEN	saturation	mutagenesis		

We	 obtained	 wild-type	 PTEN	 sequence	 from	 GenBank	 (NM_000314.6).	 All	

protein	variants	are	reported	relative	to	the	corresponding	403	amino	acid	protein	

(GenPept:	NP_000305).	Our	mutagenesis	approach	was	similar	to	the	Mutagenesis	by	

Integrated	TilEs	(MITE)	approach.19	We	designed	a	series	of	DNA	“tiles”	 that	were	

complementary	to	wild-type	PTEN	except	for	one	codon	(Figure	S1A).	At	this	single	
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codon,	each	molecule	bore	a	substitution	to	the	yeast-optimized	codon	for	each	non-

wild-type	amino	acid,	 the	yeast-preferred	stop	codon,	or	an	 in-frame,	single	codon	

deletion.	Additionally,	each	set	of	“tiles”	contained	unique	DNA	adapters	on	either	end	

to	allow	PCR	retrieval	of	 individual	 tiles	 from	the	pool	(using	primers	with	prefix:	

PTEN_sliceprimer,	Table	S1).	These	DNA	tiles	were	synthesized	as	130-mers	(prefix:	

PTENTile)	as	part	of	a	12,000-feature	oligo	pool	by	CustomArray	(Bothell,	WA).	For	

each	tile,	we	designed	inverse	PCR	primers	that	linearized	the	pYES2-PTEN	wild-type	

sequence,	 excluding	 the	 portion	 encoded	 by	 the	 corresponding	 tile.	 Following	

amplification	 the	 tile	 PCR	products	were	 incorporated	 into	 the	 appropriate	 linear	

pYES2-PTEN	by	SLiCE	mediated	recombination.124	SLiCE	reactions	were	10	μL	and	

consisted	of	100	ng	of	linearized	vector	with	15	ng	of	tile	DNA,	along	with	1x	SLiCE	

buffer	 and	 1x	 SLiCE	 extract.	 SLiCE	 extract	 and	 buffer	were	 prepared	 as	 described	

previously.125	Reactions	were	incubated	for	60	minutes	at	37°C,	then	diluted	1:10	in	

water,	and	2.5	μL	used	to	electroporate	50	μL	of	NEB	10-beta	electrocompetent	E.	coli.	

Transformation	 reactions	 were	 plated	 on	 LB	 agar	 plates	 with	 100mg/mL	

carbenecillin	 (GoldBio)	and	grown	overnight	at	37°C.	Colonies	were	 collected	and	

plasmids	isolated	with	the	QIAprep	Spin	Miniprep	Kit	(Qiagen).	

Yeast	selection	experiments		

Plasmid	 libraries	 were	 normalized	 and	 pooled	 into	 four	 mega-pools,	 each	

representing	saturation	mutagenesis	for	one	quadrant	(quadrants	1-3	=	100	codons,	

quadrant	4	=	103	codons).	One	μg	of	 each	mega-pool	was	 transformed	 into	 the	S.	

cerevisiae	strain	YPH-499,	which	already	contained	YCpLG-p110α-CAAX,	using	the	Li-

Ac/SS	 carrier	 DNA/PEG	method.126	 More	 than	 50,000	 colony	 forming	 units	 were	
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generated	per	reaction.	Colonies	for	each	quadrant	were	pooled	and	grown	overnight	

in	SC-glucose	–leu	–ura	(synthetic	complete	medium	lacking	leucine	and	uracil,	using	

glucose	as	carbon	source),	pelleted	and	frozen	down	in	15%	glycerol	at	-80°C.		

Selection	experiments	began	with	overnight	outgrowth	of	frozen	stocks	in	SC-

raffinose	 –leu	 –ura	 (raffinose	 neither	 induces	 nor	 represses	 GAL1/10	 promoter).	

Following	outgrowth,	25	or	30	million	cells	(replicate	A	or	B)	were	pelleted	for	each	

quadrant	as	the	“input”	sample	and	frozen	at	-20°C.	Then,	25	or	30	million	cells	were	

seeded	into	three	cultures	of	50	mL	SC-galactose	–leu	–ura.	Cultures	were	incubated	

at	30°C	with	185	rpm	shaking.	After	24	and	36	hours	of	growth,	cell	concentrations	

were	measured	with	a	TC-20	Automated	Cell	Counter	and	20	million	cells	(for	each	

replicate)	were	passaged	into	fresh	medium.	At	48	hours,	samples	of	20	million	cells	

were	spun	down	with	13,000	x	g	for	30	seconds,	medium	withdrawn,	and	frozen	at	-

20°C.	

Library	prep	and	sequencing		

Plasmid	 DNA	 was	 isolated	 from	 pelleted	 cells	 (input	 and	 48	 hours)	 with	

Zymoprep	 Yeast	 Plasmid	 Miniprep	 II	 kit	 (Zymo	 Research).	 Stage-one	 PCR	 was	

performed	in	25	μL	reactions	using:	5	ng	of	plasmid	DNA,	primers	pYES2-PTEN_Q[1-

4][F/R]_S1	 (containing	partial	 Illumina	TruSeq	adaptors)	at	0.5	μM,	1x	KAPA	HiFi	

Hotstart	Readymix	(KHF),	and	1x	SYBR	Green.	Reactions	were	monitored	by	qPCR	

with	cycling	conditions:	[95°C	3	minutes	(98°C	20	seconds,	55°C	30	seconds,	72°C	15	

seconds,	plate	read,	72°C	8	seconds)	x	28-36	cycles].	Reactions	were	removed	during	

or	immediately	following	exponential	phase	of	amplification.	Stage-two	PCR	was	then	

performed	 in	25	μL	 reactions	using:	1	μL	of	uncleaned	stage-one	product,	 custom	
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Illumina	dual	index	TruSeq	primers	(prefixes:	S2,	i7)	at	0.5	μM,	1x	KHF,	and	1x	SYBR	

Green	(Table	S1).		Reactions	were	monitored	by	qPCR	with	cycling	conditions:	[95°C	

3	minutes	(98°C	20	seconds,	55°C	15	seconds,	72°C	15	seconds,	plate	read,	72°C	8	

seconds)	x	6	cycles].	Reaction	products	were	checked	on	a	1.5%	agarose	gel,	purified	

using	NucleoSpin	PCR	Clean-up	(Machery-Nagel),	and	concentrations	were	measured	

using	a	Nanodrop	1000	Spectrophotometer.	Samples	were	normalized	and	combined	

into	a	common	pool	that	was	sequenced	across	multiple	runs	using	paired-end	300	

base-pair	reads	on	the	Illumina	MiSeq	platform	(v3	reagent	kit).	

Sequencing	data	analysis		

Paired-end	reads	were	merged	with	PEAR127	and	common	priming	sequences	

were	trimmed	from	the	5’	and	3’	ends	using	cutadapt.128	For	each	quadrant,	a	purely	

wild-type	 sample	 was	 sequenced	 in	 order	 to	 identify	 sequencing	 error	 profiles.	

Counts	 of	 error	 reads	were	 normalized	 to	wild-type	 counts,	 then	 this	 normalized	

amount	of	reads	were	removed	from	all	experimental	samples.110	Sequence	variants	

were	identified	and	counted	with	custom	python	scripts.	These	raw	variant	counts	

files	were	analyzed	with	Enrich2	v1.2.0129	to	calculate	scores	and	standard	errors	for	

each	 variant.	 If	 the	 95%	 confidence	 interval	 (based	 on	 the	 standard	 error)	 of	 the	

fitness	 score	 was	 <=	 1,	 the	 variant	 was	 considered	 high-confidence.	 If	 the	 95%	

confidence	 interval	was	 >	 1	 but	 the	measurements	 from	 each	 biological	 replicate	

were	concordant	(both	lower	or	both	higher	than	the	95%	bound	of	the	synonymous	

distribution),	the	variant	was	also	considered	high-confidence.	
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2.4	Results	

Establishing	a	massively	parallel	functional	assay	for	PTEN	lipid	phosphatase	

activity		

												We	leveraged	an	artificial	humanized	yeast	model	in	order	to	assess	the	relative	

phosphatase	activity	of	PTEN	variants.79,90	In	this	system,	the	human	PI3K	catalytic	

subunit	p110α	(encoded	by	PIK3CA,	[MIM:	171834])	is	expressed	in	Saccharomyces	

cerevisiae	and	artificially	directed	to	the	membrane	by	a	C-terminal	prenylation	box	

motif.90	At	the	membrane,	p110α	is	able	to	catalyze	the	conversion	of	the	essential	

pool	 of	 phosphatidylinositol	 (4,5)-bisphosphate	 (PIP2)	 to	 PIP3,	 which	 potently	

inhibits	growth	through	cytoskeletal	disruption.90	Upon	induction	of	gene	expression,	

cells	proliferate	at	a	rate	that	is	proportional	to	the	ability	of	the	PTEN	variant	to		

Table	1.	Summary	of	PTEN	mutagenesis	and	high-confidence	effect	classifications.		

a	Numbers	in	parentheses	represent	the	fraction	of	designed	variants.	
b	Numbers	in	parentheses	represent	the	fraction	of	high-confidence	variants.	
c	 Total	 <	Wt=	 less	 than	wild-type;	 variants	with	 scores	 less	 than	 or	 equal	 to	 -1.11,	 the	 lower	 95th	
percentile	(two-tailed)	for	synonymous	variants.		
d	Trunc.-like=	truncation-like;	subset	of	less	than	wild-type	variants	with	scores	less	than	or	equal	to	-
2.13,	the	upper	95th	percentile	(two-tailed)	of	nonsense	mutations	at	positions	1-349.	
e	Hypo=hypomorphic;	subset	of	less	than	wild-type	variants	with	scores	between	-2.13	and	-1.11,	the	
upper	truncation	and	lower	synonymous	95th	percentiles	(two-tailed).	
f	Wt-like=wild-type	like;	variants	with	scores	between	-1.11	and	0.89,	the	95th	percentile	(two-tailed)	
of	synonymous	variants.	
g	>	Wt=greater	than	wild-type;	variants	with	scores	exceeding	0.89,	the	upper	95th	percentile	(two-
tailed)	of	synonymous	variants.	
h	48	of	these	truncating	mutations	fall	within	regulatory	tail,	positions	352-403.		
Abbreviations:	 A.A.	 del=	 single	 amino	 acid	 deletion;	 HC=	 high-confidence;	 Hypo.=hypomorphic;	
Mut.=mutation;	Trunc.=	truncation;	Wt=wild-type.	

	
Mutagenesis	Summarya	 HC	Classificationsb	

Mut.	
Type	

Design
ed	

Created	 HC	 Total	<	
Wtc	

Trunc.-
liked	

Hypo.e	 Wt-likef	 >	Wtg	

Missens
e	

7,657	 7,260	
(0.95)	

6,564	
(0.86)	

1,789	
(0.27)	

1,249	
(0.19)	

540	
(0.08)	

4,679	
(0.71)	

96	
(0.015)	

A.A.	del	 403	 377	
(0.94)	

340	
(0.84)	

193	(0.57)	 168	(0.49)	 25	
(0.07)	

144	(0.42)	 3	
(0.007)	

Trunc.	 403	 375	
(0.93)	

340	
(0.84)	

291	(0.86)	 284	(0.84)	 7	(0.02)	 49	(0.14)h	 0	(-)	

Total	 	8,463		 	8,012	
(0.95)	

7,244	
(0.86)	

2,273	
(0.31)	

1,701	
(0.23)	

572	
(0.08)	

4,872	
(0.67)	

99	
(0.014)	
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convert	PIP3	to	PIP2.92	Co-expression	of	wild-type	PTEN,	but	not	catalytically	dead		

mutants,	e.g.,	p.Cys124Ser,	catalyzes	the	reverse	reaction,	restoring	the	PIP2	pool	and	

allowing	the	yeast	to	grow	and	survive	(Figure	1A).	Moreover,	growth	rate	provides	

a	 quantitative	 surrogate	 of	 lipid	 phosphatase	activity	with	 partial	 loss	of	 function		

mutations	showing	intermediate	growth	phenotypes.79		

We	 made	 several	 modifications	 to	 this	 system	 that	 allowed	 for	 massively	

parallel	 testing	 of	 preprogrammed	 mutations.	 First,	 to	 allow	 for	 parallel	 testing,	

rather	 than	 serial	 plating	 of	 single	 mutations,	 we	 modified	 the	 assay	 to	 support	

complex	 populations	of	 PTEN-bearing	 yeast	 in	 liquid	 culture	 and	 sequencing	 as	 a	

readout	of	 growth	 (Figures	1B-C	and	S1).	We	then	 introduced	the	yeast-preferred	

codon	for	each	non-wild-type	amino	acid,	stop	codon,	and	single	residue	deletion	at	

all	PTEN	codons	en	masse,	utilizing	a	homologous	recombination-based	mutagenesis	

approach	(Materials	and	Methods,	Figure	1B	and	S2A,	Table	S1).19,124	To	allow	direct	

sequencing	of	each	mutagenized	region,	mutational	space	was	separated	into	~300	

base-pair	quadrants	(Figure	S2A).	

	 We	 transformed	 two	 independent	 yeast	 populations	with	 our	mutagenesis	

library.	 Sequencing	 of	 naïve	 yeast	 libraries	 indicated	 that	 95%	 of	 all	 intended	

mutations	 were	 present	 (Figures	 1B	 and	 S2A).	 No	 position	 had	 less	 than	 33%	

mutational	coverage.	Mutation	dropout	was	largely	confined	to	a	single	oligo	pool	in	

the	C2	domain	of	the	protein,	which	repeatedly	performed	poorly.	We	then	performed	

selection	experiments	on	these	two	independent	yeast	populations,	each	with	three	

selection	 replicates	 (Figure	 1B).	 We	 calculated	 natural	 log-scaled	 and	 wild-type	
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normalized	 fitness	 scores	 for	 each	 variant,	 along	 with	 standard	 error-based	

		

Figure	 1.	 A	 framework	 for	 massively	 parallel	 functional	 testing	 of	 PTEN	
mutations.		
(A)	Humanized	yeast	model	for	evaluating	the	effect	of	PTEN	mutations	on	lipid	phosphatase	activity.	
Exogenous	expression	of	the	catalytic	subunit	of	human	PI3K	with	a	membrane-targeting	prenylation	
box	motif	(p110α-CAAX)	in	yeast	is	toxic.	However,	co-expression	of	human	PTEN	wild-type,	but	not	
catalytically-dead	 PTEN	 p.Cys124Ser,	 can	 rescue	 growth.	 Both	 genes	 are	 under	 the	 control	 of	 a	
galactose	inducible	promoter	(GAL).		
(B,C)	Modifications	to	allow	massively	parallel	variant	assessment.		
(B)	We	generated	a	comprehensive	PTEN	allelic	series,	introduced	these	variants	into	yeast	en	masse,	
and	subjected	them	to	p110α-CAAX-mediated	selection	in	liquid	culture.	We	performed	two	biological	
replicates,	each	consisting	of	three	technical	replicates.		
(C)	We	collected	input	and	selected	timepoints	and	subjected	these	to	deep	sequencing.	We	used	read	
counts	to	calculate	fitness	scores	and	used	these	scores	to	highlight	structure-function	insights	as	well	
as	genotype-phenotype	relationships.		
	

confidence	 intervals	(Materials	and	Methods,	Figure	S2B).129	Score	estimates	were	

generated	 for	 8,012	 (95%	 of	 intended)	 PTEN	 nonsynonymous	 mutations	 and	
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between	mutational	 libraries	 fitness	 scores	were	 highly	 correlated	 (Pearson’s	 r	 =	

0.76,	 Tables	 1	 and	 S2,	 Figures	 S3A	 and	 S3B).	 The	 distribution	 of	 fitness	 effects	

illustrates	 two	major	populations	 corresponding	 to	 likely	damaging	and	wild-type	

like	mutations	(Figure	S3A).	Based	on	low	standard	error	or	replicate	concordance,	

scores	 for	 7,244	mutations	 (86%	 of	 intended)	 were	 classified	 as	 high-confidence	

(Materials	and	Methods,	Tables	1	and	S2,	Figure	S3C).	Mutations	were	classified	as	

wild-type	like	if	their	cumulative	fitness	score	was	within	the	95th	percentile	(two-

tailed)	of	observed	synonymous	mutations	(Figure	S3D).	We	identified	2,273	likely	

damaging	mutations	(31%)	and	4,872	wild-type	like	mutations	(67%)	(Table	1).	We	

also	observed	99	mutations	that	performed	better	than	wild-type	(1%),	which	was	

within	what	was	expected	due	to	chance	based	on	the	total	number	of	wild-type	like	

variants.	 Among	 the	 likely	 damaging	missense	mutations,	 1,249/1,789	 (70%)	 fell	

within	the	observed	distribution	for	programmed	premature	truncations	(excluding	

C	terminal	tail),	with	the	remainder	having	intermediate	phenotypes	in	this	assay.	

High-resolution	mutation	data	reveal	structure-function	insights	

Using	 the	 high-confidence	 data,	 we	 first	 analyzed	 structure-function	

relationships,	 including	 known	 or	 predicted	 functional	 domains.	 Our	 complete	

sequence	 function	map	 recapitulates	many	known	 features	of	PTEN	biochemistry.	

For	 example,	 early	 truncating	 mutations	 are	 uniformly	 damaging	 through	 the	

phosphatase	and	C2	domain,	but	are	tolerated	 in	the	regulatory	tail	 (Figure	2A).92	

Overlaying	the	median	fitness	score	of	each	position	onto	the	partial	crystal	structure	

of	 PTEN	 (including	 residues	 7-285	 and	 310-353)	 reveals	 strong	 intolerance	 of	

positions	 in	 the	 phosphatase	 domain,	 especially	 those	 positions	 near	 the	 catalytic	
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pocket	(Figure	2B).	The	median	fitness	scores	are	also	correlated	with	evolutionary	

conservation	(Spearman,	ρ	=	0.58,	Figure	S3E).	When	compared	to	positions	in	alpha	

helices	and	beta	strands,	unstructured	positions	are	very	tolerant	to	mutation	(Figure	

S3F).	

	

Figure	2.	High-resolution	map	of	the	functional	effects	of	PTEN	mutations.		

(A)	Heatmap	schematic	showing	high-confidence	fitness	scores	for	7,244	PTEN	missense,	nonsense,	
or	in-frame	deletion	mutations	(86%	of	possible).	Columns	are	each	protein	position	and	amino	acids	
are	listed	in	rows	ordered	according	to	biophysical	characteristics.	Variants	with	fitness	scores	within	
the	95th	percentile	(two-sided)	of	synonymous	wild-type	like	mutations	are	colored	gray.	Variants	with	
fitness	scores	lower	than	the	synonymous	distribution	are	colored	blue	while	variants	with	higher	
fitness	scores	are	colored	red.	The	major	protein	domains,	as	well	as	the	secondary	structure	features	
are	indicated	in	the	track	below	the	heatmap	(α-helices	as	yellow	rectangles	and	β-strands	as	green	
pentagons).		
(B)	Ribbon	diagram	of	PTEN	crystal	structure	with	residues	colored	by	average	fitness	score.	Darker	
purple	corresponds	to	more	damaging	scores.		
(C)	Ribbon	diagram	highlighting	the	crystal	structure	of	the	PTEN	catalytic	pocket,	composed	of	the	
WPD	(orange),	P	(green),	and	TI-loops	(salmon).		
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(D-F)	The	 fitness	 scores	 of	mutations	 at	 the	 residues	 composing	 the	 three	 catalytic	 pocket	 loops.	
Beneath	each	position	is	the	Consurf	grade	(Materials	and	Methods),	which	represents	the	relative	
evolutionary	conservation,	with	nine	being	the	most	conserved	and	one	being	the	least	conserved.		
	
The	catalytic	pocket	of	PTEN	is	composed	of	the	WPD,	P,	and	TI	loops	(Figure	2C).	

This	motif	has	sequence	homology	to	dual	specificity	protein	phosphatases,	especially	

within	the	signature	motif	(123-HisCysXXGlyXXArg-130).38	Arg130	is	a	hot-spot	for	

somatic	 cancer	 associated	 mutations	 with	 multiple	 different	 missense	 and	

truncations	frequently	reported.130	We	observed	this	critical	position	was	intolerant	

to	all	mutations	(Figure	2E).	Compared	to	other	phosphatases,	PTEN	also	has	unique	

sequence	 features	 in	 order	 to	 accommodate	 the	 highly	 acidic	 and	 bulky	 PIP3	

substrate.	Residues	His93,	Lys125,	and	Lys128	impart	a	basic	character	on	the			

pocket,38	the	importance	of	which	is	demonstrated	by	the	mutational	intolerance	at	

these	positions	(Figure	2D-E).	Asp92	is	a	critical	residue	for	PTEN	catalysis,	but	its	

exact	role	remains	uncertain.79,131	We	find	that	the	only	substitution	with	wild-type	

like	activity	is	asparagine.	Additionally,	the	PTEN	catalytic	pocket	is	larger	compared	

to	 other	 dual	 specificity	 phosphatases.38	 The	 Cowden-associated	 p.Gly129Glu	

mutation	 has	 been	 shown	 to	 abolish	 lipid	 phosphatase	 while	 preserving	 protein	

phosphatase	activity.29	Our	data	show	Gly129	is	intolerant	to	all	mutations	except	to	

alanine	 and	 serine,	 the	 two	 next	 smallest	 amino	 acids	 (Figure	 2E).	 Unexpectedly,	

despite	 their	presence	 in	 the	 catalytic	pocket,	 several	 residues	 in	 the	WPD	and	TI	

loops	 are	 highly	 tolerant	 to	 mutations	 (Figure	 2D-F),	 highlighting	 the	 power	 of	

functional	data	to	delineate	truly	 functional	 from	non-functional	alterations	within	

highly	conserved	protein	domains.		
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PTEN	associates	with	the	plasma	membrane	through	multiple	domains.	A	PIP2	

binding	motif	in	the	phosphatase	domain	(residues	6-15)	is	rich	in	positively	charged	

amino	 acids	 and	 allosterically	 promotes	 catalysis	 upon	 PIP2	 binding.132,133	 An	

additional	positively	charged	residue,	Arg47,	contributes	to	this	interaction.134	Our	

data	 suggest	 that	 Arg15,	 Lys13,	 and	 Arg47	 are	 the	 most	 critical	 of	 the	 positively	

charged	 residues	 in	 this	 motif	 (Figure	 S4A).91	 Additionally,	 an	 intramolecular	

regulatory	 interaction	between	 the	C-terminal	 tail	 and	 the	phosphatase	domain	 is	

controlled	by	phosphorylation	at	four	sites	in	the	tail,	in	mammalian	cells.41	We	find	

that	 individual	 phosphomimetic	 substitutions	 at	 these	 sites	 are	 insufficient	 to	

decrease	activity	in	our	assay	(Figure	S4B).	

	

	

Figure	 3.	 Hierarchical	 clustering	 reveals	 patterns	 of	 mutational	 tolerance	
among	protein	positions	and	amino	acid	substitutions.		
(A)	Hierarchical	 clustering	 of	 the	 326	 sites	with	all	missense	mutations	measured.	 Clustering	was	
performed	by	positions	and	amino	acid	substitutions	(positions	are	columns	and	amino	acid	positions	
are	rows).	Overlaid	on	this	heatmap	is	a	top	track	showing	the	solvent	exposure	of	each	position	in	the	
crystal	structure,	with	solvent	exposed	positions	colored	green,	intermediate	positions	orange,	and	
buried	positions	brown.	We	identified	two	major	clades,	which	partitioned	into	five	sub-clades	with	
prevailing	characteristics	indicated	and	represented	in	the	bottom	track.	We	further	divided	the	purple	
clade	to	reflect	major	differences	in	mutational	tolerance.		
(B)	Ribbon	diagram	of	PTEN	crystal	structure	with	residues	colored	according	to	clade	assignment.	
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Protein	positions	cluster	into	stereotyped	patterns	of	mutational	sensitivity		

In	order	to	identify	patterns	of	mutational	sensitivity	among	PTEN	positions	

and	amino	acid	substitutions,	we	performed	hierarchical	clustering	with	all	positions	

at	which	we	measured	effects	of	all	missense	substitutions	(including	high	and	low-

confidence,	n	=	326,	Figure	3A).	We	found	that	positions	clustered	 into	two	major	

clades,	 corresponding	 to	positions	broadly	tolerant/intolerant	 to	proline	or	highly	

sensitive	positions.	We	identified	solvent	exposure	as	a	highly	discriminatory	feature	

between	sensitive	and	tolerant	clades,	with	80/88	(91%)	positions	in	the	sensitive	

clade	being	in	buried	positions,	while	only	44/170	(26%)	are	buried	in	the	tolerant	

clade	(Figure	3A).	The	tolerant	clade	splits	into	two	major	groups	with	a	sub-clade	

broadly	tolerant	to	all	substitutions	(beige)	and	a	second	sub-clade	where	positions	

are	either	sensitive	to	proline	alone	or	proline	and	hydrophobic	residues	(purple).	

The	proline	sensitive	positions	generally	are	part	of	secondary	structures	that	are	not	

buried	in	the	hydrophobic	core	(Figure	3A).	The	sensitive	clade	positions	split	into	

three	groups	(green	shaded	sub-clades),	which	differ	in	their	tolerance	to	charged,	

polar,	 or	 hydrophobic	 residues.	 The	 dark	 green	 clade	 represents	 the	 most	

constrained	positions,	and	includes	positions	92,	123,	124,	and	130,	all	of	which	are	

in	the	catalytic	pocket	and	critical	for	catalysis.	Overlaying	the	sub-clade	assignment	

of	 each	 position	onto	 the	 crystal	 structure	 highlights	 the	 intolerance	of	mutations	

within	the	hydrophobic	core	of	the	phosphatase	domain.	Many	of	the	solvent	exposed	

positions	in	the	C2	domain	are	tolerant	to	mutation	(Figure	3B).	

	 Clustering	 by	 amino	 acid	 substitutions	 recapitulated	 known	 functional	

relationships	with	proline	correlated	poorly	with	other	substitutions	(Figure	3A).	We	
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sought	 to	 leverage	 these	 patterns	 of	 correlation	 to	 predict	 the	 fitness	 scores	 of	

mutations	 that	 were	 not	 present	 in	 our	 mutagenesis	 library	 or	 that	 were	 low-

confidence.24	We	developed	 a	 heuristic	 for	 using	 only	 the	most	 closely	 correlated	

observed	 substitutions135	 at	 the	 site	 of	 interest	 to	 compute	 an	 “informed	position	

average”	(Figure	S5A).	We	combined	this	with	several	other	prediction	based,		

Figure	 4.	 Fitness	 scores	 discriminate	 between	 likely	 pathogenic	 and	 benign	
variants	and	support	genotype-phenotype	relationships.		

(A)	Fitness	scores	for	missense	variants	considered	
pathogenic	or	likely	pathogenic	in	ClinVar	(orange)	
and	 putatively	 benign	 variants	 from	 gnomAD	
(green).	Dashed	curves	 represent	 truncation	 (left)	
and	synonymous	(right)	distributions.	Dashed	lines	
at	-2.15	and	-1	represent	the	approximate	95%	two-
tailed	distribution	of	truncations	(before	regulatory	
tail)	and	synonymous	mutations,	respectively.		
(B)	 Fitness	 scores	 of	 ClinVar	 VUS	 (purple),	 with	
truncation	and	synonymous	distributions	and	95%	
limits.		
(C)	 To	 test	 the	 ability	 of	 fitness	 scores	 to	
discriminate	 likely	 pathogenic	 from	 likely	 benign	
missense	 mutations,	 we	 calculated	 positive	
predictive	 value	 (PPV),	 sensitivity,	 and	 F0.5	 scores	
for	 our	 fitness	 scores	 (“<	 Trunc”	 represents	 the	
threshold	at	-2.15,	“<	Syn”	represents	the	threshold	
at	-1).	In	these	tests,	a	true	positive	represented	a	
ClinVar	pathogenic	allele	having	a	fitness	score	less	
than	 or	 equal	 to	 the	 threshold.	We	 compared	 the	
performance	 of	 the	 fitness	 scores	 at	 these	 two	
thresholds	 with	 in	 silico	 pathogenicity	 predictors	
for	 missense	 mutations	 using	 their	 default	
thresholds	(Materials	and	Methods).		
(D)	 Fitness	 scores	 of	 all	 curated	 mutations	
associated	with	the	indicated	phenotype	(Material	
and	Methods).	
(E)	 Fitness	 scores	 of	 only	 curated	 missense	
mutations	associated	with	the	indicated	phenotype	
(programmed	 truncations	 also	 shown	 for	 clarity).	
Abbreviations:	 ASD/DD,	 autism	 spectrum	
disorder/developmental	 delay;	 PHTS,	 PTEN	
hamartoma	 tumor	 syndrome;	 TCGA,	 The	 Cancer	
Genome	 Atlas;	 Onco-O,	 OncoKB	 mutations	
considered	“oncogenic”	or	“likely	oncogenic;”	Onco-
N,	OncoKB	mutations	considered	“likely	neutral.”	

	
evolutionary,	and	biophysical	features	to	train	and	test	a	random	forest	regression	

algorithm	on	 our	 high-confidence	measurements	 (Materials	 and	Methods,	 Figures	
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S5B-C,	Table	S6)24.	We	used	10-fold	cross	validation	to	confirm	that	this	approach	can	

predict	unseen	data	with	high	confidence	(Pearson’s	r	=	0.80,	Figure	S5E).	We	further	

performed	 a	 downsampling	 analysis	 to	 assess	 the	 expected	 accuracy	 of	 imputing	

scores	at	different	levels	of	saturation,	finding	that	reductions	of	10-20%	(65.8-74%	

of	 saturation)	 achieve	 similar	 performance	 (Figure	 S5F).	 Finally,	 we	 generated	

imputations	for	all	variants	that	were	absent	from	our	library	or	measured	with	low-

confidence	(Figure	S6	and	Table	S2).		

Fitness	scores	discriminate	between	likely	pathogenic	and	benign	alleles		

To	determine	 if	our	empirically	determined	fitness	scores	were	 informative	

for	 discriminating	 between	 germline	 likely	 pathogenic	 and	 benign	 alleles,	 we	

collected	germline	missense	mutations	reported	as	pathogenic	or	likely	pathogenic	

from	 ClinVar136	 and	 rare	 variants	 from	 gnomAD,4	 excluding	 p.Arg173His	 and	

p.Lys289Glu	that	are	reported	pathogenic	in	ClinVar	(Materials	and	Methods,	Tables	

S3	 and	 S4).	 Fitness	 scores	 alone	 discriminated	 pathogenic	 from	 benign	 germline	

alleles	(Figure	4A).	We	found	that	the	F0.5	score,	which	weights	predictive	value	(PPV)	

over	 sensitivity,	 reaches	 its	 maximum	 at	 a	 cutoff	 based	 on	 the	 synonymous	

distribution	(<=	-1,	~95th	percentile,	PPV	=	0.93,	sensitivity	0.83),	and	outperforms	

several	in	silico	mutation	effect	prediction	algorithms	(Figure	4C	and	S7).	PPV	was	

maximized	(0.98)	at	a	more	conservative	cutoff	based	on	the	95th	percentile	of	the	

truncation	 distribution,	 but	 with	 reduced	 sensitivity	 (0.60)	 (Figures	 4A	 and	 4C).	

Given	the	high	PPV	of	our	scores,	we	evaluated	distribution	of	fitness	scores	among	

ClinVar	 missense	 VUS	 (Figure	 4B).	 We	 found	 that	 21/127	 (17%)	 VUS	with	 high-

confidence	data	met	 the	 strict	 truncation-based	cutoff	 and	41/127	 (32%)	met	 the	
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synonymous	cutoff,	suggesting	that	fitness	scores	could	be	used	to	reclassify	a	major	

fraction	of	VUS.		

PTEN	 mutations	 are	 extremely	 frequent	 in	 somatic	 cancer.	 We	 extracted	

nonsynonymous	mutations	from	The	Cancer	Genome	Atlas	(TCGA)	and	observed	a	

multimodal	and	wide	distribution	of	 fitness	scores	(Figure	4D-E,	Table	S5).	This	 is	

likely	 due	 to	 the	 presence	 of	 both	 driver	 and	 passenger	mutations	 in	 these	 data.	

Similar	to	the	germline	analysis,	to	test	if	fitness	scores	could	discriminate	somatic	

mutations	 that	 are	 likely	 pathogenic,	 we	 evaluated	 mutations	 from	 Onco-KB,	 a	

precision	 oncology	 database	 with	 expert	 annotation	 of	 somatic	 mutations	 (Table	

S5).137	We	 found	 that	 fitness	 scores	of	PTEN	mutations	 considered	 “oncogenic”	or	

“likely	 oncogenic”	were	 substantially	more	 negative	 than	 those	 considered	 “likely	

neutral.”	Of	the	missense	likely	oncogenic,	86/124	(69%)	and	56/124	(45%)	were	

below	the	synonymous	and	truncation	thresholds,	respectively.	In	contrast,	of	the	8	

variants	considered	likely	neutral	(all	missense),	only	one	(p.Ala121Val)	had	a	fitness	

score	marginally	below	the	synonymous	cutoff	(fitness	score,	-1.3).	Taken	together,	

these	 findings	 emphasize	 the	 ability	 of	 empirically	 determined	 fitness	 scores	 to	

discriminate	between	pathogenic	and	benign	human	alleles,	in	both	the	germline	and	

somatic	setting.		

	 Finally,	 we	 evaluated	 potential	 genotype-phenotype	 relationships	 for	

germline	PTEN	mutations.	We	first	compared	the	fitness	scores	of	PTEN	mutations	

associated	 with	 various	 clinical	 presentations	 acquired	 from	 multiple	 sources	

(Materials	and	Methods,	Figure	4C,	Table	S5).	We	found	that,	as	a	population,	fitness	

scores	of	nonsynonymous	mutations	exclusively	reported	in	ASD/DD	cohorts	were	
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less	severe	 than	PHTS-associated	mutations	 (Mann-Whitney	U-test,	 two-sided,	p	=	

7.16	x	10-5).	Comparing	only	the	missense	we	found	that	this	significant	difference	

persists	 (Mann-Whitney	 U-test,	 two-sided,	 p	 =	 2.89	 x	 10-4),	 indicating	 that	 the	

mutation	 type	alone	does	not	drive	 these	differences.	We	 found	12/29	 (41%)	and	

21/105	(20%)	of	the	ASD	and	PHTS	missense	mutation	fell	within	the	hypomorphic	

activity	 range,	 respectively.	 Overall,	 these	 data	 provide	 strong	 support	 for	 the	

hypothesis	 that	 ASD/DD	 associated	 mutations	 often	 retain	 hypomorphic	 PTEN	

phosphatase	activity.		

2.5	Discussion	

Massively	multiplexed	 functional	 assays	 represent	a	promising	approach	 to	

understanding	 the	 effect	 of	 mutations	 on	 protein	 function,	 which	 can	 provide	

immediate	insights	into	structure-function	relationships	and	clinical	interpretation.	

Modifying	a	humanized	yeast	assay	that	uses	growth	to	read	out	relative	phosphatase	

activity,	we	were	able	to	assess	the	functional	effects	of	human	PTEN	mutations	on	a	

massive	scale.	Our	approach	yielded	high-confidence	measurements	of	86%	of	 the	

possible	 single	 residue	 nonsynonymous	 mutations.	 A	 limited	 number	 of	 human	

proteins	 have	 been	 subjected	 to	 full	 length	 massively	 multiplexed	 functional	

assessment	and	very	few	have	been	assayed	at	the	depth	we	achieved.22–24,110,138–141	

Similar	approaches	could	be	used	with	this	model	to	the	study	of	various	aspects	of	

the	PI3K/Akt	pathway	at	scale,	including	mutations	in	PIK3CA/B92	(p110α/β	(PIK3CB,	

MIM:	602925)),	PIK3R193	(p85α,	MIM:	171833),	and	AKT1142	(MIM:	164730),	as	well	

as	drug	screening	for	PIK3CA	inhibitors.143		
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Several	 features	of	 the	data	support	 the	validity	of	 these	 function	estimates	

and	 their	 relevance	 to	 human	 health.	 We	 observed	 high	 correlation	 between	

biological	 replicates	 and	 recapitulated	 known	 features	 of	 PTEN	 function.	 For	

example,	there	were	no	pathogenic	mutations	within	our	curated	clinical	dataset	in	

the	C-terminal	tail.	The	set	of	early	terminating	mutations	confirm	that	the	minimal	

catalytic	unit	includes	the	phosphatase	and	C2	domains,	but	not	the	C-terminal	tail.92	

Likewise,	we	 found	that	position	Cys124,	which	takes	part	directly	 in	phosphatase	

catalysis,	 and	 position	 Arg130,	 which	 is	 a	 hotspot	 for	 cancer	 mutations,	 are	

completely	mutation	intolerant.	Additionally,	we	found	that	mutations	are	not	well	

tolerated	within	the	loops	forming	catalytic	pocket	or	residues	mediating	interactions	

with	 PIP2.	 Finally,	 we	 found	 that	 proline	 was	 the	 most	 damaging	 substitution,	

consistent	with	a	recent	meta-analysis	of	massively	multiplexed	experiments135	and	

decades	of	biochemistry.144	

While	 the	 humanized	 yeast	 system	 faithfully	 reports	 on	 intrinsic	 lipid	

phosphatase	 activity,	 mutations	 that	 functionally	 disrupt	 protein-protein	

interactions,	 subcellular	 localization,	 post-translational	 modifications,	 or	 function	

through	a	dominant	negative	mechanism53	in	mammalian	cells	will	not	be	captured.	

We	observed	99	variants	with	greater	than	wild-type	like	activity,	none	of	which	were	

present	 in	curated	pathogenic	datasets.	While	it	 is	possible	some	of	 these	variants	

increased	PTEN	activity,	the	number	of	variants	of	this	class	does	not	exceed	what	we	

would	expect	under	the	null	assumption	of	wild-type	like	activity.	PTEN	has	relatively	

low	thermostability81	and	protein	destabilization	 is	a	known	mechanism	for	PTEN	

loss-of-function.80,145	A	concurrent	functional	screen	assaying	protein	stability	found	
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~1/4th	 of	mutations	 alter	 steady	 state	 stability.141	 Six	mutations	 that	 destabilized	

PTEN	in	breast	cancer	cell	lines	also	decreased	steady	state	abundance	in	this	yeast	

model,92	suggesting	that	mutations	affecting	thermostability	will	be	detected	in	our	

screen.	However,	our	sensitivity	to	detect	destabilizing	mutations	is	unknown,	as	is	

whether	 mutations	 specifically	 altering	 the	 rate	 of	 proteasome-mediated	

degradation146	will	 be	 reported	 on.	We	 believe	 that	 independently	 assaying	 these	

important	factors	at	similar	scale	would	provide	useful	complementary	insights	into	

PTEN	function.	

We	discovered	that	approximately	half	of	all	positions	in	PTEN	were	broadly	

tolerant	to	substitutions,	suggesting	that	they	are	not	required	for	lipid	phosphatase	

activity.	While	there	is	a	degree	of	correlation	between	the	median	fitness	score	and	

the	 evolutionary	 conservation	 of	 each	 position,	we	 identified	 positions	within	 the	

highly	 conserved	 catalytic	 pocket	 and	 elsewhere	 in	 the	 protein	 that	 are	 highly	

tolerant	 to	 specific	mutations.	 This	 is	 in	 apparent	 contradiction	with	 PTEN’s	high	

evolutionary	 conservation	 (99.75%	 identity	 between	 human	 and	 mouse122)	 and	

constraint	in	humans.4	This	suggests	that	many	PTEN	positions	are	potentially	under	

selection	due	to	phosphatase	independent	functions.	

	 Our	 high-resolution	 mutation	 data	 empowered	 unique	 insights	 into	 PTEN	

biochemistry	and	structure.	The	substitution	p.Gly129Glu	is	a	well-known	Cowden-

associated	 mutation	 that	 disrupts	 lipid	 phosphatase	 activity	 while	 maintaining	

protein	phosphatase	activity.29	We	found	that	substitutions	to	alanine	and	serine	are	

tolerated	 at	 this	 position,	while	mutations	 to	bulkier	 residues	 are	 damaging.	 This	

suggests	that	there	is	a	size	limit	for	the	amino	acid	that	occupies	this	position.	Asp92	
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matches	 the	 position	 of	 aspartic	 acid	 in	 the	WPD	 loop	 of	 PTP1B,	which	 acts	 as	 a	

general	 acid	 in	 the	 catalytic	mechanism.131	Asp92	 is	 a	 critical	 residue	 in	 the	PTEN	

catalytic	pocket,	but	its	role	in	the	reaction	mechanism	remains	uncertain.79,131,147	Our	

data	 support	 previous	 findings	 that	 all	mutations	 except	 p.Asp92Asn	 are	 strongly	

damaging.79	However,	the	p.Asp92Asn	mutation	has	been	reported	in	an	individual	

with	ASD	indicating	that	it	still	may	have	a	clinical	effect.148	Similar	to	our	findings,	

Rodríguez-Escudero	and	colleagues	found	in	the	yeast	assay	p.Asp92Asn	had	growth	

rescue	similar	to	wild-type,	but	partial	activity	relative	to	wild-type	using	an	indirect	

fluorescence	 indicator	of	PIP3	 levels	or	an	 in	 vitro	phosphatase	assay.79	 Combined	

these	data	are	consistent	with	the	p.Asp92Asn	mutation	retaining	partial	activity.	We	

propose	 that	 p.Asp92Asn	 could	 be	 showing	 wild-type	 like	 activity	 in	 our	 assay	

through	 asparagine	 deamidation,	which	 is	 a	 spontaneous,	 intramolecular	 reaction	

that	 can	 result	 in	 the	 conversion	 of	 asparagine	 to	 aspartic	 acid.149	 In	 biochemical	

systems	and	mammalian	cells,	this	spontaneous	conversion	may	not	be	sufficient	to	

fully	rescue	PTEN	activity.		

Similar	 to	previous	 studies,16,109	we	used	hierarchical	 clustering	 to	 look	 for	

patterns	amongst	 the	positions	and	amino	acid	substitutions.	We	found	that	PTEN	

positions	 fall	 into	 a	 few	 stereotyped	 patterns	 of	 mutational	 tolerance	 and	 that	 a	

critical	determinant	of	mutational	 tolerance	 is	 the	relative	solvent	exposure	of	 the	

position.	 These	 findings	 are	 consistent	 with	 a	 recent	 meta-analysis	 of	 similar	

experiments.17	We	leveraged	the	correlation	amongst	amino	acid	substitutions,	along	

with	several	other	features,	to	generate	a	random	forest	regression	model	that	could	

accurately	predict	the	fitness	scores	of	unseen	mutations	and	create	a	comprehensive	



	

	 53	

functional	 map	 encompassing	 the	 effects	 of	 all	 possible	 single	 nonsynonymous	

mutations.	To	guide	future	studies	of	similar	proteins,	we	performed	a	downsampling	

analysis	 of	 the	 training	 data	 and	 found	 that	 for	 similar	 accuracy,	~70%	mutation	

saturation	would	likely	be	sufficient.	Moreover,	proline	substitutions	predict	poorly	

and	should	be	directly	assayed.		

		 A	critical	hurdle	for	the	application	of	massively	multiplexed	functional	assays	

is	bridging	the	gap	between	molecular	phenotype	and	human	phenotype.150	We	found	

that	 fitness	 scores	 are	 able	 to	 discriminate	 between	 likely	 pathogenic	 and	 benign	

human	alleles	in	both	the	germline	and	somatic	condition.	On	this	basis,	we	expect	

that	these	scores	will	be	of	tremendous	clinical	value	for	reclassifying	VUS11	and	also	

predicting	the	effects	of	private	alleles	that	remain	to	be	identified.	A	major	question	

related	to	PTEN	genetics	 is	whether	genotype-phenotype	relationships	can	explain	

the	 heterogeneity	 in	 clinical	 presentation	 for	 carriers	 of	 germline	mutations.	 Our	

comprehensive	dataset	provides	strong	evidence	that	the	mutations	associated	with	

ASD/DD	are	hypomorphic	for	lipid	phosphatase	activity	and	are	significantly	more	

active	 than	 the	mutations	 that	 lead	 to	 PHTS.	 This	 suggests	 that	 distinct	 biological	

mechanisms	 underlie	 the	 differential	 presentations,	 and	 understanding	 these	

differences	will	be	critical	 to	 the	eventual	 treatment	of	 these	disorders.	While	 it	 is	

possible	 that	 these	different	mechanisms	are	the	direct	result	of	lipid	phosphatase	

activity	at	the	plasma	membrane,	ASD-associated	mutations	may	specifically	disrupt	

another	of	PTEN’s	cellular	functions.40,66	Supporting	this	idea,	some	ASD-associated	

mutations	are	excluded	from	the	nucleus	and	lead	to	neuronal	hypertrophy,	but	this	

phenotype	can	be	rescued	by	artificial	direction	to	the	nucleus.63		
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While	 massively	 parallel	 functional	 data	 is	 a	 significant	 advance	 for	

understanding	 function-specific	 mutation	 effects,	 further	 untangling	 complex	

genotype-phenotype	relationships	will	require	similar	advances	in	clinical	genetics	

databases	with	standardized	descriptors	of	clinical	presentations	and	symptoms.122	

Our	 study	 was	 limited	 by	 both	 the	 number	 of	 publicly	 available	 mutations	 and	

associated	clinical	information.	Since	there	are	no	coding	variants	considered	benign	

in	 ClinVar,	 we	 used	 PTEN	 variants	 in	 the	 gnomAD	 database	 as	 a	 proxy	 for	 likely	

benign	mutations.	While	these	mutations	are	on	average	wild-type	like,	we	recognize	

that	 this	 is	 an	 imperfect	 approach	 and	 it	 is	 possible	 that	 some	 of	 the	 variants	 in	

gnomAD	are	pathogenic.	We	excluded	variants	 that	were	only	 in	ClinVar	 from	our	

genotype-phenotype	 analysis	 because	 of	 their	 ambiguous	 annotation	 and	 lack	 of	

clinical	 data.	 For	 example,	 17%	 of	 the	 pathogenic/likely	 pathogenic	 mutation	

submissions	had	no	 indicating	condition	provided	and	36%	of	all	missense	entries	

use	 the	 ambiguous	 term	 “hereditary	 cancer-predisposing	 syndrome.”	 Requiring	

submitters	to	provide	more	information	in	a	consistent	way	will	maximize	the	utility	

of	 massively	 multiplexed	 functional	 data.	 Finally,	 it	 is	 still	 unclear	 if	 individuals	

ascertained	for	neurological	phenotypes	as	children	will	have	a	higher	risk	to	develop	

PHTS	 like	 or	 cancer	 presentations	 later	 in	 life.151	 Moving	 forward,	 large-scale	

sequencing	efforts	that	permit	longitudinal	assessment	as	well	as	patient	re-contact	

will	be	instrumental.	A	new	initiative,	SPARK,	aims	to	partner	with	50,000	individuals	

with	ASD	and	their	families	to	create	the	largest	genetically	characterized	ASD	cohort	

to	date.152	It	is	likely	that	hundreds	of	new	PTEN	mutation	carriers	will	be	identified	

in	SPARK	and	would	be	available	for	re-contact	and	detailed	prospective	study.		
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	 We	demonstrate	that	comprehensively	assaying	the	molecular	phenotypes	of	

thousands	of	mutations	to	a	human	protein	can	yield	clinically	relevant	insights,	even	

for	proteins	with	pleiotropic	effects.	Future	efforts	that	combine	multiple	functional	

modalities	 and	 rich	 clinical	 datasets	 may	 allow	 for	 the	 precision	 needed	 to	 fully	

realize	personalized	genomic	medicine.		
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Figure	S1.	Optimization	of	humanized	yeast	assay	for	liquid	culture	induction	
and	selection.		
We	performed	a	pilot	experiment	with	~400	variants	(single	tile)	to	determine	when	effect	size	was	
maximized	under	induction	conditions.	We	sequenced	the	input	library	(pre-induction)	and	p110α	
and	PTEN	induced	populations	at	indicated	time	points.	At	each	time	point,	five	million	yeast	cells	were	
passaged	to	fresh	induction	medium	and	the	remainder	used	for	DNA	extraction.	Displayed	are	the	
relative	read	counts	of	each	variant,	plotted	in	the	same	order	as	input.	Effect	size	reaches	a	plateau	at	
48	hours,	which	we	then	used	as	the	selected	time	points	for	the	rest	of	the	experiments	in	this	study.	
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Figure	S2.	Schematic	overview	of	mutagenesis	and	computational	workflow.		
(A)	 We	 generated	 a	 saturation	 mutagenesis	 library	 by	 incorporating	 single-mutation-bearing	
oligonucleotides	into	an	otherwise	wild-type	backbone.	Oligos	were	synthesized	on	solid-state	arrays	
(CustomArray)	in	31	individual	tiles/pools.	Oligo	tiles	were	PCR	amplified	separately.	Long	range	PCRs	
of	otherwise	wild-type	plasmid	with	custom	primers	 for	each	 tile	were	used	as	 template	 for	SliCE	
mediated	 homologous	 recombination.	 We	 divided	 the	 protein	 coding	 sequence	 into	 4,	 ~300	 bp	
fragments/quadrants	so	that	we	could	cover	each	entire	mutation-bearing	segment	with	2x300	base-
pair	(bp)	paired-end	sequencing	reads.	Mutagenized	plasmids	were	transformed	into	bacteria.	Clones	
from	individual	mutagenesis	tiles	were	pooled	by	quadrant	and	transformed	into	yeast	for	functional	
assays.		
(B)	Overview	of	the	computational	pipeline	for	processing	reads	and	obtaining	fitness	scores.	Variant	
predictions	 were	 considered	 high-confidence	 if	 passing	 a	 standard	 error	 (SE)	 filter	 or	 showing	
concordant	effects	between	two	biologic	replicates	(Materials	and	Methods).			
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Figure	 S3.	 Overview	 of	 PTEN	 saturation	 mutagenesis	 dataset	 and	 relative	
fitness	scores.		
(A)	Distribution	of	fitness	effects	for	all	high-confidence	variants	(7,244)	derived	from	two	biologic	
replicates,	with	three	technical	replicates	each.		
(B)	Biological	replicates	show	high	correlation	(Pearson’s	r	=	0.76).		
(C)	Distribution	of	standard	errors	for	measured	variants.	High-confidence	variants	to	the	left	of	the	
dashed	line	have	95%	confidence	intervals	less	than	or	equal	to	one	natural-log	fold	change.		
(D)	The	distributions	of	truncating	mutations	(excluding	those	in	the	regulatory	tail)	(red,	left)	and	
synonymous	wild-type	like	mutations	(green,	right)	are	shown.	Dashed	lines	indicate	the	two-tailed	
95th	percentile	limits	for	synonymous	and	truncating	variants.		
(E)	 The	median	 fitness	 score	 of	 all	 high-confidence	 scores	 at	 each	 position	 is	 correlated	with	 the	
evolutionary	 conservation	 at	 that	 position	 (Spearman	 ρ	 =	 0.58).	 Evolutionary	 conservation	 for	 all	
positions	was	 obtained	with	 ConSurf,	 using	 following	 options:	 “Amino-Acids”,	 “No	 known	 protein	
structure”,	“No	MSA”,	and	default	homolog	search	parameters.		
(F)	Comparison	of	median	fitness	scores	for	positions	in	alpha	helices,	beta	strands,	or	unstructured	
regions.	Alpha	helix	and	beta	strand	assignments	obtained	through	STRIDE	for	structure	PDB:	1D5R.	
Unstructured	positions	are	those	absent	from	the	crystal	structure	(1-13,	282-312,	352-403).	
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Figure	 S4.	 Evaluation	 of	 mutation	 effects	 within	 the	 PTEN	 predicted	 PIP2	
binding	motif	and	tail	phosphosites.		
(A)	Fitness	scores	highlighting	positively	charged	residues	in	PIP2	binding	domain	(Lys6,	Arg11,	Lys13,	
Arg14,	Arg15)	as	well	as	Arg47,	with	neighboring	residues.	Lys13,	Arg15,	and	Arg47	are	 the	most	
critical	in	our	assay.			
(B)	Fitness	scores	for	C-terminal	regulatory	tail	phosphosites	(Ser380,	Thr382,	Thr383,	Ser385)	and	
neighboring	positions.		
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Figure	S5.	Development	of	a	random	forest	algorithm	to	impute	relative	fitness	
scores	for	missing	data.		
(A)	We	used	correlation	coefficients135	between	amino	acid	substitutions	to	identify,	in	aggregate,	the	
number	of	most	closely	correlated	substitutions	that	maximized	accuracy	in	the	prediction	of	missing	
data.	To	generate	each	prediction	we	identified	the	n	most	closely	correlated	substitutions	that	were	
measured	with	high	confidence	at	that	positions,	and	calculated	the	average	weighted	by	the	standard	
error	of	each	substitution.	Box	plots	 represent	 the	squared	error	between	measured	value	 (in	our	
assay)	and	value	predicted	from	the	n	closest	substitutions	for	all	high-confidence	measurements.	We	
chose	to	use	five	for	subsequent	modeling,	and	define	this	value	as	“informed	position	average”.		
(B)	The	100	high-confidence	substitutions	that	were	predicted	most	poorly	by	the	five	most	closely	
correlated	substitutions,	which	show	strong	enrichment	for	proline.		
(C)	 We	 collected	 ~50	 evolutionary,	 predictor-based,	 and	 biophysical	 features	 describing	 each	
substitution	(as	in	Weile	et	al.,	2017).	Then,	we	trained	a	random	forest	model	(Scikit-learn	version	
0.19.0,	 sklearn.ensemble.RandomForestRegressor,	 n_estimators=500,	 criterion=	 “mse”,	
max_features=0.33,	 random_state=0,	 oob_score=True	 )	 and	 report	 here	 the	 relative	 increase	 in	
impurity	upon	random	permutation	of	each	feature,	which	is	a	surrogate	for	feature	importance.			
(D)	Then,	we	trained	a	model	using	“informed	position	average”	as	the	only	feature,	and	iteratively	
added	 features,	 in	 the	order	of	 importance	calculated	in	C.	Root	mean	square	deviation	 (RMSD)	of	
predictions	made	by	iteratively	adding	indicated	features	to	the	model	and	performing	10-fold	cross	
validation	are	shown,	and	we	stopped	adding	features	once	the	decrease	in	error	plateaued.	Color	of	
marker	indicates	the	type	of	feature;	brown	is	intrinsic	to	the	dataset,	green	is	structural,	purple	is	
predictor,	and	blue	is	biophysical.		
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(E)	We	used	the	15	features	in	D	to	train	a	final	model	(options	same	as	in	C)	and	performed	10-fold	
cross	validation	on	the	high-confidence	variant	set.	We	generated	predictions	for	all	high-confidence	
variants	and	plotted	the	observed	and	predicted	values	for	each	variant.	Pearson’s	r	=	0.80,	options	
same	as	above.		
(F)	RMSD	results	 from	downsampling	 to	 indicated	map	completeness.	We	downsampled	 from	our	
high-confidence	 dataset	 and	 retrained	 models	 at	 each	 indicated	 percent	 map	 completeness.	 The	
maximum	value	is	82.3%,	which	is	the	percent	map	completeness	that	our	high-confidence	missense	
dataset	represents.	5	replicates	were	performed	at	each	point	%	map	completeness.	Options	same	as	
above,	except	random_state=None.	
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Figure	 S6.	 A	 comprehensive	 functional	 map	 of	 predicted	 effects	 of	 PTEN	
mutations	using	imputed	scores.		
(A)	We	trained	the	random	forest	algorithm	on	6,300	missense	variants	that	were	measured	with	low	
standard	error	(95%	confidence	interval	<	1	fitness	score).	We	omitted	single	residue	deletions	and	
nonsense	mutations.	We	 then	predicted	 the	 fitness	score	of	 the	 remaining	1,357	variants.	 Imputed	
values	are	colored	according	to	their	fitness	score.	Variants	used	in	the	training	are	white.		
(B)	 Complete	 sequence	 function	map	with	 high-confidence	measurements	 in	 addition	 to	 imputed	
values.	
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Figure	S7.	Positive	predictive	value	(PPV)	and	sensitivity	(precision	and	recall)	
curves	for	fitness	scores	and	mutation	effect	predictors.		
PPV	 and	 sensitivity	 were	 calculated	 at	 200	 points	 between	 the	 minimum	 and	 maximum	 of	 the	
predictor’s	output.	Triangles	represent	the	cutoff	values	shown	in	Figure	4C,	based	on	default	setting	
(Provean=-2.5,	SIFT=0.05,	Polyphen-2=	0.15).	The	 two	blue	 triangles	correspond	 to	 the	 truncation	
(left)	and	synonymous	(right)	thresholds.	
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3.1	Prologue:	Massively	parallel	assay	for	PTEN	cellular	abundance.	

In	May	 of	 2018,	Matreyek	 and	 colleagues	 published	 a	work	 describing	 the	

effects	 of	 approximately	 half	 of	 all	 PTEN	 single	 amino	 acid	 variants	 on	 cellular	

abundance94.	This	experiment	was	performed	in	human	cells	(HEK293T),	and	used	

FACS	to	sort	cells	into	different	bins	corresponding	to	different	abundance.	Namely,	

a	PTEN-EGFP	fusion	protein	was	expressed	from	the	same	construct	as	mCherry.	Cells	

were	sorted	based	on	the	ratio	of	EGFP:mCherry.	The	strength	of	EGFP	signal	will	be	

related	to	the	steady	state	stability	of	the	fused	PTEN	molecule,	and	since	the	mCherry	

and	EGFP	are	expressed	from	the	same	construct,	the	mCherry	acts	to	normalize	the	

EGFP	signal.	One	strength	of	this	assay	is	that	it	is	done	in	human	cells,	meaning	that	

it	should	capture	reduced	abundance	due	to	reductions	in	thermal	stability	as	well	as	

reduced	 abundance	 due	 to	 active	 protein	 degradation	 mechanisms,	 such	 as	 the	

proteasome.	A	weakness	of	the	study	is	that	PTEN	is	fused	to	EGFP,	which	may	affect	

abundance	of	certain	variants.	Further,	while	the	assay	is	done	in	human	cells,	it	may	

not	capture	activity	dependent	or	cell	type	dependent	abundance	effects.	Further,	the	

assay	only	captures	about	half	of	all	possible	variation.	

3.2	Abstract	

Germline	variation	in	PTEN	results	in	variable	clinical	presentations,	including	

benign	and	malignant	neoplasia	and	neurodevelopmental	disorders.	Despite	decades	

of	research,	it	remains	unclear	how	PTEN	genotype	is	related	to	clinical	outcomes.	In	

this	 study,	 we	 combined	 two	 recent	 deep	 mutational	 scanning	 (DMS)	 datasets	
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probing	the	effects	of	single-amino	acid	variation	on	enzyme	activity	and	steady-state	

cellular	 abundance	 with	 the	 largest	 well-curated	 clinical	 cohort	 of	 PTEN-variant	

carriers.	We	sought	to	connect	variant-specific	molecular	phenotypes	to	the	clinical	

outcomes	of	individuals	with	PTEN	variants.	We	found	that	DMS	data	partially	explain	

quantitative	 clinical	 traits,	 including	head	circumference	and	Cleveland	Clinic	 (CC)	

score,	 which	 is	 a	 semi-quantitative	 surrogate	 of	 disease	 burden.	We	 built	 logistic	

regression	models	using	DMS	and	CADD	scores	to	separate	clinical	PTEN	variation	

from	 gnomAD	 control-only	 variation	 with	 high	 accuracy	 (AUC	 =	 0.908).	 Using	 a	

survival-like	 analysis,	 we	 identified	molecular	 phenotype	 groups	with	 differential	

risk	of	early	onset	as	well	as	lifetime	risk	of	cancer.	Finally,	we	identified	classes	of	

DMS-defined	variants	with	significantly	different	risk	levels	for	classical	hamartoma-

related	 features	 (odds	 ratios	 range	 of	 4.1-102.9).	 In	 stark	 contrast,	 the	 risk	 for	

developing	 autism	 or	 developmental	 delay	 does	 not	 significantly	 change	 across	

variant	classes	(odds	ratios	range	of	5.4-12.4).	Together,	these	findings	highlight	the	

potential	impact	of	combining	DMS	datasets	with	rich	clinical	data,	and	provide	new	

insights	that	may	guide	personalized	clinical	decisions	for	PTEN-variant	carriers.	

3.3	Introduction	

Germline	 mutation	 of	 the	 tumor	 suppressor	 gene	 phosphatase	 and	 tensin	

homolog	(PTEN	[MIM:	601728])	manifests	with	variable	and	complex	phenotypes,	

including	 macrocephaly	 (with	 increased	 occipital-frontal	 circumferences	 [OFC]),	

benign	 hamartomas	 affecting	 all	 three	 germ	 layers,	 malignant	 neoplasia	 across	

multiple	tissues,	and	neurodevelopmental	abnormalities,	including	autism	spectrum	

disorder	 (ASD).153,154	This	heterogeneity	 is	 reflected	 clinically	with	germline	PTEN	
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mutations	 found	 in	 variable	 subsets	 of	 defined	 syndromes,	 including	 Cowden	

syndrome	 and	 Bannayan-Riley-Ruvalcaba	 syndrome	 (CWS1	 and	 BRRS	 [MIM:	

158350]),	 as	 well	 as	 macrocephalic	 ASD	 (MAS	 [MIM:	 605309]),	 among	

others.70,73,114,154	Collectively,	these	syndromes	have	been	termed	PTEN	hamartoma	

tumor	syndrome	(PHTS)	when	a	germline	PTEN	variant	is	identified.153,154		

	 The	dramatic	variability	of	these	clinical	presentations	has	sparked	efforts	to	

correlate	PTEN	variants	with	clinically-relevant	phenotypic	classes.	However,	PTEN	

variants	 resist	 simple	 classification	 approaches	 based	 on	 secondary	 domain	

clustering	or	variant	type.	Recently,	the	mapping	of	a	limited	subset	of	germline	PTEN	

variants	 onto	 the	 three-dimensional,	 crystal	 structure	 failed	 to	 reveal	 a	 distinct	

pattern	of	distribution	between	ASD-	or	cancer-predisposition-associated	variants155.	

Classification	efforts	have	also	been	impacted	by	limited	sample	sizes	in	terms	of	both	

functional	data	and	PTEN	variant	 cohorts.80,156	Additionally,	 the	PTEN	protein	has	

multiple	functional	roles	in	the	cell	apart	from	lipid	phosphatase	activity,	which	may	

also	play	a	role	in	this	phenotypic	complexity.154,157,158	

	 These	challenges	have	prompted	recent	creative	high-throughput	methods	to	

functionally	measure	 the	molecular	 phenotypes	 for	 thousands	 of	 nonsynonymous	

PTEN	 variants,	 collectively	 termed	 deep	 mutational	 scanning	 (DMS).94,156	 We	

previously	reported	the	effect	of	nearly	all	PTEN	nonsynonymous	variants	on	lipid	

phosphatase	activity	by	utilizing	a	humanized	yeast	assay	where	lipid	phosphatase	

activity	 was	 linked	 to	 cell	 survival	 (so	 called	 fitness	 score).156	 These	 data	

demonstrated	 that	 the	 solvent	 exposure	 of	 a	 wild-type	 residue	 is	 a	 critical	

determinant	 of	 mutational	 tolerance	 for	 lipid	 phosphatase	 fitness,	 with	 solvent	
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exposed	 residues	 being	much	more	 tolerant	 to	mutation.	 As	 expected,	 PTEN	 lipid	

phosphatase	activity	was	generally	intolerant	to	mutation	in	the	catalytic	pocket	and	

phosphatase	domain,	though	not	without	exception.	Further,	in	line	with	suggestions	

from	prior	more	limited	functional	studies80,	PTEN	missense	variants	associated	with	

ASD	tended	to	retain	partial	lipid	phosphatase	activity.	156	

	 In	a	second	independent	study,	the	effect	of	~54%	of	all	PTEN	nonsynonymous	

variants	 on	 the	 steady-state	 cellular	 protein	 abundance	 were	 estimated	 using	

fluorescently	 tagged	 PTEN	 variant	 proteins	 (so	 called	 abundance	 score).	 It	 was	

observed	that	PTEN	abundance	is,	in	part,	explained	by	thermodynamic	stability	and	

cell-membrane	 interactions	 of	 a	 given	 variant.	While	 variant	 abundance	 inversely	

correlates	 with	 pathogenicity,	 notable	 exceptions	 are	 putative	 dominant-negative	

PTEN	variants,	which	are	highly	stable	but	catalytically	inactive.94	

	 While	these	two	DMS	studies	have	added	essential	insights	into	the	effect	of	

PTEN	variants	on	protein	function,	they	were	limited	in	their	clinical	analyses	as	both	

relied	on	previously	published	clinical	reports	and	ClinVar	database159	variants	with	

varying	degrees	of	 validation	and	phenotypic	description.	 In	 this	 study,	 to	 further	

uncover	PTEN	 genotype-phenotype	 relationships	and	clarify	patient	 risk	 for	 these	

diverse	 clinical	 presentations,	 we	 integrated	 these	 datasets	 with	 the	 largest,	

prospectively	accrued	and	comprehensively	clinically	characterized	cohort	of	PTEN	

variant-positive	 individuals	 (Cleveland	 Clinic	 [CC]	 cohort).	 These	 analyses	

demonstrate	 that	molecular	 phenotypes	 associate	with	 quantitative	 clinical	 traits.	

They	also	delineate	differential	lifetime	cancer	risk	and	indicate	unexpected	risk	ratio	

relationships	for	neurodevelopmental	and	hamartoma-associated	phenotypes.	
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3.4	Materials	and	methods	

PTEN	Variant	Function	Data	and	Imputation	

We	made	 use	 of	 two	 DMS	 datasets	 in	 this	 study.94,156	 Briefly,	 fitness	 scores	were	

previously	determined	by	assessing	a	PTEN	 variant’s	 ability	 to	 reverse	 toxicity	by	

means	 of	 phosphatidylinositol	 (3,4,5)-triphosphate	 (PIP3)	 dephosphorylation	 in	 a	

humanized	yeast	 system90	 that	 expresses	a	hyperactive	kinase.156	High	 confidence	

fitness	scores	were	previously	generated	for	86%	of	all	variants	and	a	random	forest	

algorithm	 was	 used	 to	 impute	 fitness	 scores	 for	 the	 remaining	 unmeasured	

variants.156	Abundance	scores	were	previously	determined	by	measuring	the	steady-

state	level	of	PTEN	variants	using	the	VAMP-Seq	assay	in	human	cells.94	Abundance	

scores	were	generated	for	54%	of	all	variants.		

Using	a	random	forest	framework	similar	to	what	was	used	to	impute	fitness	

scores,	here,	we	imputed	abundance	scores	for	the	remaining	unmeasured	variants	

(Figure	 S1).	 Modeling	 was	 implemented	 in	 Scikit-learn	 version	 0.19.0	

(sklearn.ensemble.RandomForestRegressor,	 n_estimators=500,	 criterion=	 “mse”,	

max_features=0.33,	 random_state=0,	 oob_score=True).	 We	 determined	 feature	

importance	by	training	random	forest	models	on	the	full	dataset	iteratively,	each	time	

randomly	permuting	a	feature.	The	increase	in	error	upon	permutation	of	a	feature	is	

related	to	the	importance	of	that	feature.		

Once	we	had	calculated	relative	feature	importance,	we	iteratively	performed	

10-fold	cross	validation,	i.e.	train	the	model	on	90%	of	data	and	test	on	the	remaining	

10%.	The	starting	model	used	feature	with	the	highest	importance,	position	average,	

i.e.	the	average	score	of	all	other	substitution	variants	at	that	amino	acid	position	and	
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the	n-1	and	n+1	positions.	If	there	were	no	measured	variants	at	the	n-1,	n,	or	n+1	

positions,	we	included	the	n-2	and	n+2	positions.	We	then	iteratively	performed	10-

fold	cross	validation	with	models	incorporating	features	in	decreasing	order	of	their	

importance	until	 the	Pearson	correlations	between	predicted	and	observed	scores	

plateaued.	The	final	model	was	again	assessed	using	10-fold	cross	validation	(Figure	

S1	and	Table	S1).	Finally,	we	used	the	final	model	trained	on	all	measured	abundance	

scores	to	predict	all	unmeasured	variants.		

	 We	classified	the	full	set	of	missense	protein	variants	(measured	and	imputed)	

as	wildtype-like,	hypomorphic,	or	 truncation-like	 for	 fitness	and	abundance	scores	

(Figure	S2,	Table	S1).	For	fitness	score,	we	considered	variants	wildtype-like	if	they	

were	 within	 the	 2.5	 and	 97.5	 percentile	 of	 synonymous	 wildtype	 fitness	 scores	

(Figure	S2C-D).	We	considered	variants	 truncation-like	 if	 their	 fitness	scores	were	

within	the	2.5	and	97.5	percentile	of	nonsense	variants	at	positions	1-350,	excluding	

the	regulatory	tail	because	nonsense	mutations	 in	 the	tail	are	not	damaging	 in	 the	

yeast	 assay.	 We	 considered	 variants	 hypomorphic	 for	 fitness	 score	 if	 they	 were	

between	the	wildtype-like	and	truncation-like	bounds.		

	 We	classified	wildtype-like	variants	similarly	for	abundance	score	with	a	slight	

adjustment	 to	 the	distribution	boundaries	 (Figure	S2C-D).	Because	 the	abundance	

score	distribution	tails	were	larger	than	the	fitness	score	distribution	tails,	we	defined	

the	 bounds	 as	 the	 5	 and	 95	 percentile	 of	 synonymous	 wildtype	 distribution.	We	

considered	variants	to	be	truncation-like	for	abundance	score	if	they	were	within	the	

5	 and	 95	 percentile	of	 nonsense	 variants	 at	 positions	 30-300,	 in	order	 to	 exclude	
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known	experimental	artifacts	of	variants	near	the	protein	termini	due	to	the	nature	

of	the	fusion	protein	used	in	the	experiments.94		

PTEN	Population	Variants	from	GnomAD	

Data	from	the	controls-only	subset	was	downloaded	from	gnomAD	v2.12	on	

January	 10,	 2019	 (Table	 S2).	 For	 the	 cancer	 incidence	 analysis	 and	 the	 clinical	

outcomes	 odds	 ratio	 analyses,	 we	 included	 all	 controls-only	 gnomAD	

nonsynonymous	 variants	 (e.g.,	missense,	 nonsense,	 and	 indel	 frameshift).	 For	 the	

pathogenic	vs.	benign	analysis,	we	considered	only	gnomAD	missense	variants	(i.e.	

we	excluded	frameshifting	or	truncation	variants)	with	the	exceptions	of	p.Arg173His	

and	p.Lys289Glu,	which	are	classified	as	pathogenic	or	likely	pathogenic	in	ClinVar.	

We	also	excluded	p.Asp268Glu,	which	occurs	at	a	frequency	greater	than	an	order	of	

magnitude	over	most	other	variants.		

Cleveland	Clinic	PTEN	Cohort	

This	 study	 was	 performed	 in	 accordance	 with	 the	 IRB#	 8458	 protocol	

“Molecular	Mechanisms	 Involved	 in	Cancer	Predisposition”	 substudy	PTEN,	which	

has	 been	 approved	 by	 the	 Cleveland	Clinic	 Institutional	 Review	Board	 for	Human	

Subjects’	Protection,	and	conducted	with	informed	consent	and	in	accordance	with	

the	World	Medical	Association	Declaration	of	Helsinki.	The	CC	cohort	consists	of	256	

prospectively	accrued	individuals	with	germline	PTEN	nonsynonymous	variants	(145	

missense	 and	 111	 nonsense	 variants)	 (Table	 1	 and	 Tables	 S3-S4).	 Genotype	

information	 concerning	 each	 patient’s	 germline	 PTEN	 variant,	 demographic,	 and	

clinical	data	were	also	included.	Collection	and	validation	of	clinical	phenotypes	were	

performed	 by	 experienced	 clinical	 personnel	 as	 detailed	 in	 a	 previous	 study.160	
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Demographic	information	includes	the	age	at	last	follow-up,	sex,	and	age	at	diagnosis	

for	 various	 clinical	 phenotypes,	 including:	 macrocephaly,	 neurodevelopmental	

pathologies	including	ASD	and	developmental	delay	(DD),	and	several	different	types	

of	benign	and	malignant	neoplasia.	Adult	individuals	in	the	cohort	were	assigned	a	CC	

score,	 which	 is	 a	 derived	 sum	 of	 the	 weights	 of	 specific	 neurological,	 breast	 and	

gynecological,	 gastrointestinal,	 skin,	 endocrine,	 and	genitourinary	 clinical	 features,	

assessed	by	clinical	specialists.	Both	benign	and	malignant	clinical	figures,	including	

age	 of	 onset,	 are	 factored	 into	 CC	 score.	 Moreover,	 CC	 score	 is	 a	 validated,	

individualized	 estimate	 of	 the	 pretest	 probability	 of	 having	 a	 germline	 PTEN	

mutation.	For	example,	a	score	of	15	indicates	a	10%	probability	of	mutation.	Given	

the	 methodology	 for	 calculating	 CC	 score,	 it	 also	 serves	 as	 a	 semi-quantitative	

measure	of	burden	of	disease	with	larger	scores	indicating	increasing	disease	burden	

and/or	younger	ages	of	onset.	However,	the	scoring	is	only	applicable/validated	for	

the	adult	population	(individuals	18	years	and	older).160	OFC	z-scores	were	calculated	

using	published,	age-indexed	tables.161		

An	individual	was	considered	ASD/DD	positive	if	they	presented	with	ASD,	DD,	

variable	delay,	or	intellectual	disability.	An	individual	was	considered	PHTS	positive	

if	they	presented	hamartomatous	features	including	any	of	the	following:	benign	or	

malignant	 tumors,	 mucocutaneous	 lesions,	 arteriovenous	 malformation,	 lipomas,	

goiter,	or	uncommon	skin	lesions.	Individuals	with	the	common	skin	findings	of	skin	

tags,	 café-au-lait	marks,	 or	 penile	 freckling	 in	 isolation,	meaning	without	 another	

hamartomatous	 feature,	 were	 not	 included	 in	 the	 PHTS	 group.	 Individuals	 who	
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displayed	both	the	neurodevelopmental	and	hamartomatous	features	were	placed	in	

the	ASD/DD	&	PHTS	grouping.	

Logistic	Regression	Modeling	for	Pathogenic	PTEN	Variation	

To	test	the	accuracy	of	models	with	all	combinations	of	features	(e.g.,	fitness	

scores,	abundance	scores,	and	CADD	scores),	the	optimal	regularization	parameters	

(L1	vs.	L2	regularization	and	regularization	strength)	for	each	feature	combination	

were	determined	using	the	GridSearchCV	function	within	scikit	learn.	We	assessed	

the	 performance	 of	 each	 model	 with	 10-fold	 cross-validation,	 i.e.	 we	 iteratively	

trained	models	on	90%	of	the	data	and	used	that	model	to	make	predictions	for	the	

outstanding	10%.	We	repeated	this	procedure	 in	order	to	make	predictions	 for	all	

variants.	Once	we	determined	that	no	multivariate	model	performed	better	than	the	

univariate	fitness	score	model,	we	re-trained	the	fitness	score	model	on	the	entire	set	

of	known	pathogenic	and	benign	variants.	The	optimal	model	used	L1	regularization	

with	strength	of	1.0.	We	then	used	this	model	to	predict	probability	of	pathogenicity	

for	all	single	amino	acid	PTEN	variants.	

Cancer	Incidence	and	Survival	Analysis	

For	 fitness	and	abundance	score	analyses,	we	classified	all	 individuals	 from	

the	 CC	 cohort	 and	 gnomAD	 into	 wildtype-like	 missense,	 hypomorphic	 missense,	

truncation-like	missense,	or	true-truncation	(i.e.	nonsense	or	frameshifting)	groups	

(Figure	S2).	For	the	combined	molecular	score	analysis,	we	used	the	hypomorphic	

cutoff	 to	 designate	 variants	 as	 fitness	 or	 abundance	 plus	 or	minus	 (i.e.,	 -1.11	 for	

fitness	score,	0.71	for	abundance	score).	We	assumed	the	gnomAD	individuals	were	

cancer	free.	The	observation	period	for	each	subject	was	set	from	birth	to	age	at	last	
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clinical	 follow-up/information.	 For	 26	 of	 the	 164	 gnomAD	 individuals,	 we	 could	

unambiguously	 determine	 their	 age	 range	 by	 linking	 to	 data	 provided	 in	 the	 full	

gnomAD	v2.1	variant	call	file.	Since	these	data	were	provided	in	five-year	increments,	

we	randomly	selected	a	single	year	from	this	range	for	each	individual.	For	the	rest	of	

the	gnomAD	control	cohort,	we	obtained	the	distribution	of	ages	from	the	gnomAD	

FAQ	page.	We	randomly	sampled	an	age	range	from	the	weighted	distribution	of	age	

ranges,	 and	 then	 randomly	generated	an	age	within	 that	 range.	The	 imputed	ages	

reflected	well	the	original	age	distribution	in	the	gnomAD	database	(Goodness-of-fit	

chi-square=	0.30,	df=12,	not	significant).	Differences	in	cancer	incidence	between	the	

genotype	groups	were	compared	using	the	Kaplan-Meyer	method	and	log-rank	test.	

Analyses	were	performed	 for	overall	 cancer	 incidence	and	 individuals	were	 right-

censored	at	age	at	cancer	or	age	at	last	follow-up.	Significant	group	differences	were	

then	examined	using	pair-wise	comparisons.	In	order	to	detect	potential	differences	

in	early	onset	cancer	incidence,	survival	curves	were	further	compared	at	age	35	with	

right-censoring	occurring	at	age	of	early	onset	(<35)	cancer	or	age	35	otherwise.	

Calculating	Odds	Ratios	for	Clinical	Outcomes	

Although	all	individuals	with	an	identified	germline,	pathogenic	PTEN	variant	

are	clinically	classified	as	belonging	to	the	overarching	classification	of	PHTS,	we	have	

developed	 clinical	 subgroupings	 with	 differing	 presentations	 in	 order	 to	 enable	

genotype-phenotype	 analyses	 in	 this	 study.	 All	 individuals	with	 frameshifting	 and	

nonsense	mutations	were	treated	as	true	truncations,	as	all	of	these	variants	occurred	

upstream	of	both	the	final	exon	and	the	C-terminal	tail.	We	used	IBM	SPSS	statistical	
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software	(version	25)	to	perform	logistic	regression	modeling	on	ASD/DD	or	PHTS	

outcomes	and	survival	analyses,	using	molecular	phenotypes	as	exposures.	

3.5	Results	

Distribution	of	Missense	Variation	across	the	Primary	and	Crystal	Structures	of	

PTEN	

In	 order	 to	 examine	 PTEN	 genotype-phenotype	 relationships,	 we	

prospectively	 accrued	 a	 cohort	 of	 individuals	 with	 germline	 nonsynonymous	

variation	 in	PTEN	 (Table	1).	Previously,	PHTS	has	been	used	as	an	umbrella	 term	

specifically	 for	 classically	 defined	PTEN-related	 disorders	 (e.g.,	 Cowden	 syndrome	

and	 Bannayan-Riley-Ruvalcaba	 syndrome).72	 Subsequently,	 as	 the	 phenotypic	

spectrum	 of	PTEN	 mutations	 expanded,	 PHTS	 became	 a	 descriptor	 for	 all	 clinical	

presentations	 associated	 with	 germline	 PTEN	 variation.154	 In	 order	 to	 explore	

potential	differences	between	ASD/DD	related	phenotypes	and	those	associated	with	

hamartoma/cancer	 phenotypes,	 we	 operationally	 grouped	 individuals	 with	 the	

classic	 hamartoma-related	 PTEN	 features	 as	 PHTS,	 while	 individuals	 with	 largely	

neurodevelopmental	 clinical	 features	 were	 designated	 ASD/DD	 (Materials	 &	

Methods).	Individuals	with	a	combination	of	neurodevelopmental	and	hamartoma-

related	features	were	designated	as	a	third	group,	ASD/DD	&	PHTS.		

	 The	 cohort	 recapitulates	 the	 previously	 observed	 relative	 enrichment	 of	

ASD/DD	phenotypes	among	those	with	missense	as	opposed	to	nonsense	variation	

(16%	vs	5%,	Table	1).122,151	As	a	comparison,	we	also	collated	mutation	data	 from	

control-only	individuals	in	gnomAD,	a	database	that	aggregates	sequencing	studies.2	

As	individuals	with	pediatric	disorders	are	excluded	from	gnomAD,	and	since	these		
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Table	1.	Cleveland	Clinic	cohort	of	individuals	with	germline	nonsynonymous	
variation	in	PTEN	

a	One	individual	did	not	have	qualifying	symptoms	for	any	phenotype	group.		

individuals	were	specifically	accrued	as	unaffected	controls,	they	were	assumed	to	be	

free	 of	 PTEN-related	 disorders.	 We	 categorized	 missense	 variants	 by	 associated	

clinical	 group	 and	 then	 mapped	 variants	 to	 the	 primary/functional	 domain	 and	

crystal	structures	of	PTEN,	including	the	variants	catalogued	in	gnomAD	(Figure	1A-

B).	 The	 clinical	 missense	 variants	 cluster	 most	 heavily	 in	 the	 dual-specificity	

phosphatase	 domain	 (residues	 1-178),	 and	 are	 depleted	 in	 the	 C2	 domain	 &	 tail	

(residues	179-403),	reflecting	the	 importance	of	 the	phosphatase	domain	to	PTEN	

function	 (Figure	 1A).	 Comparing	 all	 clinical	 variants	 with	 gnomAD	 variants	

demonstrates	 an	 enrichment	 of	 gnomAD	 variants	 in	 the	 C2	 domain	 &	 tail,	 as	

compared	 to	 the	 phosphatase	 domain	 (odds	 ratio	 =	 5.13,	 95%	 CI	 =	 2.5-10.8,	 p	 =	

1.6x10-6,	 Fisher’s	 exact	 test,	 Figure	 1B).	 In	 contrast,	 and	 consistent	 with	 similar	

studies,	the	distributions	of	variants	were	similar	across	clinical	outcomes	(p	=	0.78	

for	ASD/DD	vs.	PHTS,	p	=	0.71	for	ASD/DD	vs.	ASD/DD	&	PHTS,	p	=	0.42	for	PHTS	vs.	

ASD/DD	&	PHTS,	Fisher’s	exact	test,	Figure	1A).	In	3D	space,	gnomAD	variants	are	

significantly	more	solvent	exposed	(i.e.,	exposed	to	the	surface	of	the	protein)	than	

the	group	of	all	clinical	variants	(medians	of	87.4%	vs	7.8%,	p	=	1.28x10-18;	Mann-

Missense True Truncations Total 

Phenotype All 
N (%) % Male All 

N (%) % Male All 
N (%) % Male % 

Mis. 
All 145 (100) 40.7 111a (100) 49.5 256 (100) 44.5 56.6 

ASD/DD 23 (15.9) 78.3 6 (5.41) 100.0 29 (11.3) 82.8 79.3 
ASD/DD & 
PHTS 32 (22.1) 68.8 24 (21.6) 75.0 56 (21.9) 71.4 57.1 

PHTS 90 (62.1) 21.1 80 (72.1) 38.8 170 (66.4) 29.4 52.9 
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Whitney	U-test,	Figure	1B).	Variation	at	solvent	exposed	positions	is	generally	more	

tolerated	because	these	variants	are	less	likely	to	disrupt	protein	structure.162	

	

Figure	1.	Overview	of	the	datasets	used	in	this	study		
(A)	Diagram	of	PTEN	primary	protein	structure	with	locations	of	PTEN	missense	variants	found	in	the	
controls-only	gnomAD	population	or	associated	with	various	clinical	presentations	in	the	CC	cohort.	
The	major	protein	domains	and	secondary	structure	assignments	are	indicated.	Size	of	circle	indicates	
number	of	different	amino	acid	variants	at	that	position.	
(B)	 Diagram	 of	 PTEN	 3D	 crystal	 structure	with	 locations	 of	 PTEN	missense	 variants	 found	 in	 the	
controls-only	gnomAD	population	or	associated	with	various	clinical	presentations	in	the	CC	cohort.	
The	C-terminal	tail	was	not	solved	in	the	crystal	structure	and	therefore	variants	falling	in	this	region	
are	not	shown.	Color	of	spheres	indicates	same	groups	as	shown	in	(A).	
(C)	Lipid	phosphatase	fitness	scores	are	displayed	as	a	heatmap,	with	blue	corresponding	to	damaging	
variants	(i.e.	 low	lipid	phosphatase	fitness	or	 low	abundance),	gray	corresponding	to	wildtype-like,	
and	red	corresponding	to	putative	fitness	or	abundance	increasing	variants	(Materials	&	Methods).	
The	distributions	of	all	missense	variants	are	shown	as	smoothed	histograms	on	the	right.		
(D)	Cellular	abundance	scores	displayed	as	in	(C).	
	

Visualization	and	Imputation	of	Molecular	Phenotypes	of	PTEN	

We	hypothesized	that	variant	level	molecular	phenotype	data	might	uncover	

new	genotype-phenotype	associations,	based	on	the	reasoning	that	protein	function	

data	should	correlate	better	with	clinical	outcome	than	variant	locations	in	primary	

or	tertiary	sequence	space.	We	aggregated	molecular	phenotype	information	derived	
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from	 recent	 DMS	 studies	 on	 the	 effect	 of	 thousands	 of	 variants	 on	 PTEN	 protein	

function,	including	inferred	lipid	phosphatase	activity	(i.e.,	fitness	score)	and	steady-

state	protein	stability	(i.e.,	abundance	score).94,156	Previously,	we	demonstrated	that	

by	using	a	random	forest-based	machine	learning	modeling	approach,	fitness	scores	

of	variants	withheld	from	model	training	could	be	imputed	with	high	accuracy.	The	

model	 incorporated	 the	 position	 average	 effect	 of	 variants	missing	 from	 a	 nearly	

complete	 DMS	 dataset	 (86%	 saturation)	 with	 biophysical,	 biochemical,	 and	

evolutionary	data.	Therefore,	using	the	imputations	from	this	model,	we	previously	

constructed	 a	 comprehensive	 lipid	 phosphatase	 functional	 map	 of	 fitness	 scores	

(Figure	1C).		

We	previously	 showed	by	down	sampling	 the	 fitness	dataset	 that	 a	 similar	

strategy	 could	 be	 used	 for	 less	 complete	 DMS	 datasets	 and	 still	 result	 in	 highly	

accurate	 predictions.156	We	developed	 a	 similar	modeling	 strategy	 for	 the	 protein	

abundance	DMS	dataset,	which	was	at	~54%	saturation.	Cross	validation	showed	the	

best	performing	model	could	accurately	predict	withheld	abundance	scores	with	an	

accuracy	similar	to	biologic	replicates	(Pearson	r	=	0.75,	Figure	S1).	Therefore,	using	

this	 approach,	 we	 imputed	 abundance	 scores	 for	 all	 missing	 missense	 variants	

(Figure	1D	and	Table	S1).	Combined,	these	complete	datasets	represent	estimates	of	

the	effect	of	any	given	PTEN	missense	variant	on	the	lipid	phosphatase	activity	and	

steady-state	 abundance	 of	 PTEN	 protein.	 All	 analyses	 presented	 here	 used	 the	
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combination	 of	 high	 confidence	 measured	 and	 imputed	 scores.	

	

Figure	2.	Relationships	between	molecular	phenotype	scores	and	quantitative	
clinical	traits	for	missense	variants	
(A)	Occipital	frontal	circumference	(OFC,	z-score)	plotted	as	a	function	of	continuous	fitness	score	or	
abundance	score	for	all	individuals	with	missense	variants.	Males	are	shown	as	orange,	females	are	
shown	as	maroon.	Vertical	dashed	lines	indicate	the	hypomorphic	and	truncation-like	cutoffs	at	-1.11	
and	-2.15,	respectively.	Horizontal	dashed	line	indicates	threshold	for	macrocephaly	(z-score	=	2.054).	
Solid	lines	indicate	logarithmic	curves	fit	to	the	data,	mean	squared	error	=	2.06	and	2.30	for	fitness	
and	abundance,	respectively.	
(B)	Box	plot	of	OFC	z-scores	for	all	individuals	with	missense	variants	with	fitness	or	abundance	scores	
in	the	wildtype-like,	hypomorphic,	or	truncation-like	ranges.	Fitness	scores:	Trunc.-like	vs.	WT-like,	
Cohen’s	r	=	0.35.	Hypo.	vs.	WT-like,	Cohen’s	r	=	0.40.	Abundance	scores:	Trunc.-like	vs.	WT-like,	Cohen’s	
r	=	0.24.	Hypo.	vs.	WT-like,	Cohen’s	r	=	0.22.		
(C)	CC	score	for	adults	with	missense	variants	as	a	function	of	continuous	fitness	or	abundance	scores.	
Analyses	are	restricted	to	adults	as	CC	score	is	not	valid	for	individuals	under	18.	Vertical	dashed	lines	
indicate	 the	 hypomorphic	 and	 truncation-like	 cutoffs	 at	 -1.11	 and	 -2.15,	 respectively.	 Solid	 lines	
indicate	linear	curves	fit	to	the	data.	
(D)	Box	plot	of	CC	scores	for	adults	with	missense	variants	with	fitness	or	abundance	scores	in	the	
wildtype-like,	hypomorphic,	or	truncation-like	ranges.	Fitness	scores:	Trunc.-like	vs.	Hypo.,	Cohen’s	r	
=	0.44.	Trunc.-like	vs.	WT-like,	Cohen’s	r	=	0.70.	Hypo.	vs.	WT-like,	Cohen’s	r	=	0.34.	Abundance	scores:	
Trunc.-like	 vs.	WT-like,	 Cohen’s	 r	 =	 0.42.	 Hypo.	 vs.	 WT-like,	 Cohen’s	 r	 =	 0.20.	 *p<0.05;	 **p<0.01;	
***p<0.001.	
	

Fitness	scores	are	modestly	correlated	with	abundance	scores	(Pearson’s	r	=	

0.43,	Figure	S2E),	suggesting	some	information	overlap	but	 that	each	assay	 is	also	

capturing	(and	failing	to	capture)	unique	variant	effects	on	protein	function.	We	used	

the	distribution	of	programmed	truncating	(nonsense)	and	synonymous	variants	in	

these	 assays	 to	 define	 truncation-like,	 hypomorphic,	 and	 wildtype-like	 missense	

variant	categories	(Materials	and	Methods,	Figure	S2A-D).	The	missense	variants	in	
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both	 datasets	 are	 bimodally	 distributed,	 with	 the	 majority	 of	 variants	 having	

wildtype-like	 scores	 (Figures	 1C-D	 and	 S2).	 We	 found	 that	 for	 both	 measures,	

variation	in	the	phosphatase	domain	was	generally	more	damaging,	i.e.	truncation-

like	or	hypomorphic,	than	variation	in	the	C2	domain	or	regulatory	tail	(fitness:	42%	

vs.	12%,	abundance:	50%	vs.	38%,	Figure	1C-D).	

Fitness	and	Abundance	Scores	Explain	Quantitative	Clinical	Traits	

In	an	effort	to	link	genotype	to	quantitative	clinical	phenotypes,	we	evaluated	

whether	fitness	and	abundance	scores	of	individuals’	PTEN	missense	variants	could	

explain	the	degree	of	macrocephaly	or	phenotype	burden.	Burden	was	assessed	by	

CC	 score,	 which	 takes	 into	 account	 neurological	 features	 as	 well	 as	 benign	 and	

malignant	 lesions	 of	 the	 body,	 for	 individuals	 over	 18	 (Materials	 and	 Methods).	

Molecular	phenotype	scores	were	evaluated	numerically	as	well	as	using	the	defined	

functional	 categories	 (e.g.,	 wildtype-like,	 hypomorphic,	 and	 truncation-like).	 We	

found	a	logarithmic	relationship	between	fitness	score	and	head	size	measured	by	

OFC,	 with	 z-scores	 plateauing	 around	 the	 hypomorphic	 cutoff	 (Figure	 2A,	 left).	

Accordingly,	 we	 found	 a	 significant	 difference	 in	 OFC	 between	 the	 population	 of	

wildtype-like	 variants	 and	 truncation-like	 as	 well	 as	 hypomorphic	 variants	 (p	 =	

4.3x10-5	and	6x10-4,	respectively,	Mann-Whitney	U-test),	but	no	difference	between	

hypomorphic	 and	 truncation-like	 variant	 fitness	 scores	 (Figure	 2B,	 left).	 We	 also	

observed	a	logarithmic	relationship	between	OFC	and	abundance	score	(Figure	2A,	

right).	Treating	abundance	as	a	categorical	variable	revealed	significant	differences	

between	wildtype-like	and	both	truncation-like	and	hypomorphic	variants	(p	=	0.02	

and	0.01,	respectively,	Mann-Whitney	U-test).	Similar	to	the	fitness	score,	there	was	
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no	difference	between	the	distribution	of	truncation-like	and	hypomorphic	variants	

(Figure	2B,	right).	

Figure	3.	Molecular	phenotypes	discriminate	
clinical	 from	 gnomAD	 missense	 PTEN	
variation		
These	 analyses	 are	 done	 at	 the	 variant	 level	 to	 prevent	
recurrent	 variants	 from	 biasing	 the	 results.	 Two	 known	
pathogenic	 variants	were	 removed	 from	 the	 gnomAD	 list	
(Materials	&	Methods).	
(A)	 Box	 plots	 comparing	 fitness	 scores	 between	 variants	
found	in	the	CC	cohort	versus	gnomAD.	Cohen’s	r	=	0.61.	
(B)	 Box	 plots	 comparing	 abundance	 scores	 between	
variants	found	in	the	CC	cohort	versus	gnomAD.	Cohen’s	r	=	
0.37.	
(C)	 Box	 plots	 comparing	 CADD	 scores	 between	 variants	
found	in	the	CC	cohort	versus	gnomAD.	Cohen’s	r	=	0.45.	
(D)	Receiver	operator	characteristic	curves	for	univariate	
models.	Feature	weights	reported	in	Table	S7.	

In	 our	 analysis	 of	 phenotype	 burden,	we	

found	 a	 significant	 linear	 relationship	 between	

missense	variant	fitness	score	and	CC	score	(p	=	

3.7x10-10),	 with	 fitness	 score	 explaining	 37%	of	

the	 variation	 in	 CC	 score	 (Figure	 2C,	 left).	

Similarly,	 treating	 fitness	 score	 as	 a	 categorical	

variable,	we	found	that	more	damaging	groups	of	

variants	had	distributions	shifted	toward	higher	

(more	 severe)	 CC	 scores	 (Figure	 2D,	 left).	 CC	

scores	 for	 truncation-like	 variants	 were	

significantly	 higher	 than	 those	 of	 hypomorphic	

variants	(p	=	2.5x10-4).	Additionally,	CC	scores	for	hypomorphic	variants	were	in	turn	

significantly	higher	than	those	of	wildtype-like	variants	(p	=	9.2x10-3).		
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Alternatively,	 for	 abundance	 scores,	 while	 a	 significant	 linear	 relationship	

exists	between	CC	score	and	abundance	score	(p	=	3.2x10-4),	it	explains	only	14%	of	

the	variation	in	CC	score	(Figure	2C,	right).	Likewise,	when	treating	abundance	score	

as	a	categorical	variable,	more	modest	trends	were	observed	compared	to	the	trends	

for	 fitness	 score.	 The	 abundance	 scores	 for	 truncation-like	 variants	 trend	 toward	

higher	CC	scores	than	hypomorphic	variants	(p	=	0.08),	while	hypomorphic	variants	

are	nominally	higher	than	wildtype-like	(p	=	0.045)	variants.	Truncation-like	variants	

are	significantly	different	from	wildtype-like	variants	(p	=	6.7x10-4;	Figure	2D,	right).	

Combined,	 these	 results	 underscore	 the	 potential	 for	 molecular	 phenotypes	 to	

partially	explain	clinical	outcomes.		

Molecular	 Phenotype	 Data	 Accurately	 Distinguishes	 Likely	 Pathogenic	 from	

Benign	Variation	

	We	 previously	 showed	 that	 fitness	 scores	 discriminate	 ClinVar	

pathogenic/likely	 pathogenic	 PTEN	 variation	 from	 gnomAD	 putatively	 benign	

variation.156	Here,	we	 examined	whether	molecular	phenotype	data	 could	 identify	

pathogenic	 variation	 in	 this	 set	 of	 alleles,	 and	 whether	 combining	 molecular	

phenotype	 data	 could	 improve	 performance	 compared	 to	 univariate	 approaches.	

Thus,	we	contrasted	the	CC	cohort	of	likely	pathogenic	PTEN	variants	to	putatively	

benign,	population	PTEN	variants	catalogued	in	the	gnomAD	control-only	individuals	

(Materials	 and	Methods,	 Figure	 3,	 Table	 S5).	We	 found	 that	 variants	 from	 the	 CC	

cohort	were	predicted	to	be	significantly	more	damaging	by	both	fitness	score	(p	=	

6.5x10-13,	Mann-Whitney	U-test)	and	abundance	score	(p	=	7.6x10-6,	Figure	3A-B).	As	

a	comparison,	CADD	scores9,163	are	also	more	damaging	for	the	CC	cohort	group	(p	=	
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6.5x10-8,	Figure	3C).	Of	these	three	predictors,	fitness	scores	demonstrate	the	highest	

area	under	the	receiver	operating	characteristic	curve	(AUC	=	0.908,	10-fold	cross	

validation,	Figure	3D).	While	 these	predictors	are	correlated,	 the	relationships	are	

modest	(Spearman	rho	=	0.52-0.59,	Figure	S3A),	suggesting	that	multivariate	models	

could	 yield	 improved	 performance.	 Therefore,	 we	 constructed	 logistic	 regression	

models	 using	 various	 combinations	 of	 the	 molecular	 phenotype	 data	 and	 CADD	

scores	to	find	the	model	that	most	accurately	discriminates	the	two	groups	(Figure	

S3B).	We	found	that	no	multivariate	model	performed	significantly	better	than	the	

fitness	score	univariate	model	(Figure	S3B).	Nevertheless,	the	substantial	increase	in	

predictive	 power	 of	 the	 fitness	 score	 model	 over	 the	 CADD	model	 highlights	 the	

power	of	empirical	molecular	phenotype	data	to	accurately	predict	pathogenicity.	

Molecular	Phenotypes	Identify	Subgroups	with	Distinct	Cancer	Susceptibility	

While	it	is	known	that	PTEN	mutations	dramatically	increase	the	lifetime	risk	

of	 developing	 specific	 cancers,	 we	 sought	 to	 understand	 whether	 molecular	

phenotypes	could	highlight	functional	classes	of	missense	variants	with	differences	

in	cancer	susceptibility	(Materials	and	Methods).	As	a	comparison	group,	we	included	

individuals	with	variants	that	are	predicted	to	be	truly	truncating	(e.g.,	nonsense	and	

frameshifting).	 Survival	 functions	 were	 first	 compared	 between	 all	 classes	 of	

missense	 fitness	 or	 abundance	 scores	 and	 the	 true	 truncations,	 with	 pairwise	

comparisons	of	survival	 functions	when	significant	differences	were	 found	(Figure	

4A-B).	In	this	analysis,	cancer	free	status	was	considered	as	the	survival	criterion.			
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Figure	4.	Effects	of	molecular	phenotype	on	cumulative	cancer	incidence		
(A)	Survival-like	analysis	of	individuals	with	different	fitness	score	classes	of	PTEN	missense	or	true-
truncation	(e.g.	nonsense,	frameshifting)	variants.	“Survival”	here	is	defined	as	being	cancer-free.	Ticks	
represent	 right-censored	 individuals,	 i.e.	 the	 age	 at	 last	 follow-up.	 n=204	 wildtype-like;	 35	
hypomorphic;	68	truncation-like,	114	true	truncations.		
(B)	Survival-like	analysis	of	individuals	with	different	abundance	score	classes	of	PTEN	missense	or	
true	truncation	(e.g.	nonsense,	frameshifting)	variants.	“Survival”	here	is	defined	as	being	cancer-free.	
Ticks	 represent	 right-censored	 individuals,	 i.e.	 the	 age	 at	 last	 follow-up.	 n=210	 wildtype-like;	 65	
hypomorphic;	32	truncation-like,	114	true	truncations.		
(C)	All	CC	cohort	and	gnomAD	individuals	plotted	as	a	function	of	fitness	and	abundance	scores.	Dotted	
lines	indicate	wildtype-like	thresholds	(-1.11	and	0.71	for	fitness	and	abundance	scores,	respectively).		
(D)	Survival-like	analysis	for	individuals	with	PTEN	missense	variants	falling	in	fitness/abundance	
quadrants	or	true	truncating	variants.	“Survival”	here	is	defined	as	being	cancer-free.	Ticks	represent	
right-censored	individuals,	i.e.	the	age	at	last	follow-up.	n=29	fitness(-),	abundance(+);	74	fitness(-),	
abundance(-);	23	fitness(+),	abundance(-);	181	fitness(+),	abundance(+),	and	114	true	truncations.	
	

For	fitness	scores,	survival	functions	were	significantly	different	(p	=	3.2x10-

24,	Log	rank,	Figure	4A	and	Table	S6).	Pairwise	comparisons	showed	that	all	of	the	

reduced	 fitness	score	 categories	survival	 functions	were	 similar	 to	each	other	and	

significantly	different	from	the	wildtype-like	survival	function	(Table	S6).	Based	on	

the	shape	of	the	survival	functions,	we	hypothesized	that	there	may	be	a	difference	in	

early	onset	risk.	Therefore,	we	conducted	a	subanalysis	with	right-censoring	at	age	
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35,	which	again	showed	significant	overall	differences	(p	=	3.0x10-6,	Log	rank).	Pair-

wise	comparisons	showed	that	these	differences	were	driven	by	truncation-like	and	

true	truncations	categories,	each	significantly	deviated	from	wildtype-like	variants	(p	

=	1.0x10-5	and	2.4x10-7).	The	hypomorphic	survival	function	appears	visually	to	be	

intermediate	between	the	groups.	However,	across	this	age	range	the	hypomorphic	

function	did	not	significantly	differ	from	the	wildtype-like	function	(p	=	0.35)	or	either	

of	the	truncation-like	or	true	truncation	categories	(p	=	0.155	and	0.122,	Figure	4A).	

Variant	classes	defined	by	abundance	scores	also	had	significantly	different	

survival	functions	(p	=	6.2x10-18,	Log	rank,	Figure	4B	and	Table	S6).	In	contrast	to	the	

fitness	scores,	pairwise	comparisons	revealed	a	step-wise	relationship	for	abundance	

scores,	with	hypomorphic	missense	variants	conferring	greater	lifetime	hazard	than	

wildtype-like	(p	=	1.3x10-4),	and	truncation-like	missense	conferring	greater	hazard	

than	the	hypomorphic	abundance	class	(p	=	0.024,	Figure	4B).	True	truncations	may	

confer	 greater	 hazard	 than	 hypomorphic	 missense,	 but	 this	 comparison	 was	 not	

significant	 (p	 =	 0.07).	 Right-censoring	 at	 age	 35	 identified	 significantly	 different	

survival	functions	for	the	abundance-defined	variant	classes	as	well	(p	=	1.1x10-5).	

Similar	to	the	fitness	score	analysis,	these	differences	were	driven	by	truncation-like	

and	true	truncations	functions	which	were	significantly	different	from	wildtype-like	

between	 birth	 and	 age	 of	 35	 (p	 =	 2.5x10-5	 and	 1.0x10-6,	 respectively).	 The	

hypomorphic	survival	function	was	visually	intermediate	between	wildtype-like	(p	=	

0.06)	and	the	truncation	groups	(p	=	0.15	and	0.20),	but	none	of	 the	comparisons	

were	significantly	different.			
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We	next	leveraged	the	two-dimensional	molecular	phenotype	data	to	separate	

missense	 variants	 into	 four	 categories	 based	 on	 deficiencies	 in	 fitness	 score,	

abundance	score,	or	both.	For	this	analysis,	hypomorphic	and	truncation-like	scoring	

variants	were	combined	as	 the	negative	group	for	PTEN	function	 for	each	score	 in	

order	to	keep	adequate	group	sizes.	Compared	to	CC	Cohort,	gnomAD	individuals	are	

enriched	 in	 the	 fitness	 positive,	 abundance	 positive	 quadrant	 (Figure	 4C).	 The	

survival	 functions	 for	 these	 combined	molecular	 phenotype	 defined	 groups	were	

significantly	 different	 (p	 =	 6.3x10-24,	 Log	 rank).	 Pairwise	 comparisons,	 showed	

variants	retaining	wildtype-like	fitness	(+)	and	abundance	(+)	have	the	lowest	overall	

hazard	and	have	a	survival	function	that	is	significantly	different	from	all	other	groups	

(Table	S6).	The	remaining	three	classes	are	deficient	for	either	fitness,	abundance,	or	

both	scores,	and	are	not	significantly	different	from	each	other	or	the	true	truncations	

(Figure	 4D).	 These	 data	 provide	 high	 resolution	 comparisons	 of	 cancer	 risk	 for	

different	variant	classes,	which	can	be	further	clarified	by	larger	sample	sizes.		

Molecular	 Phenotypes	 Identify	 Distinct	 Risk	 Profiles	 for	 ASD/DD	 and	 PHTS	

Subgroupings		

Understanding	the	molecular	differences	between	the	variants	that	associate	

with	ASD/DD	versus	PHTS	(especially	cancer	occurrence)	outcomes	is	a	critical	goal	

for	understanding	PTEN	pathobiology,	which	ultimately	guides	clinical	management.	

Consistent	with	our	and	others’	previous	findings,80,156	fitness	scores	of	individuals	in	

the	ASD/DD	group	are	less	damaging	than	the	PHTS	positive	groups	(p	=	5.5x10-3,	

0.011,	 Mann-Whitney	 U,	 for	 ASD/DD	 vs	 ASD/DD	 &	 PHTS	 and	 ASD/DD	 vs	 PHTS,	
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respectively,	 Figure	 5A).	 However,	 there	 is	 no	 difference	 in	 abundance	 scores	

between	the	clinical	phenotype	groups	(Figure	5B).	

Next,	 we	 tested	 whether	 the	 severity	 of	 variant	 molecular	 phenotype,	 as	

assessed	by	fitness	or	abundance	score,	affected	the	odds	of	developing	ASD/DD	or	

PHTS	 symptoms	 (regardless	 of	 presence	 or	 absence	 of	 the	 other	 qualifying	

symptoms).	We	included	all	members	of	the	CC	cohort	as	well	as	gnomAD	individuals	

(Materials	&	Methods).	Using	a	logistic	regression	model,	we	calculated	odds	ratios	

(OR)	for	ASD/DD	and	PHTS	as	a	function	of	fitness	or	abundance	scores.	Wildtype-

like	variants	were	used	as	the	reference	group.	For	both	molecular	phenotypes,	more	

severe	 missense	 variants	 do	 not	 significantly	 increase	 the	 odds	 of	 an	 individual	

developing	 ASD/DD	 (OR	 ranges	 =	 3.9-6.1	 and	 4.2-7.8	 for	 fitness	 and	 abundance,	

respectively).	 The	 odds	 for	 true	 truncation	 variants	 are	 marginally	 decreased	

compared	to	the	missense	variant	classes,	though	this	trend	is	not	significant	(Figure	

S4B).	 In	 contrast,	 for	 fitness	 and	 abundance	 scores,	 the	 odds	 of	 an	 individual	

developing	 qualifying	 symptoms	 for	 a	 PHTS	 classification	 increase	 as	 mutation	

severity	increases	in	a	stepwise	manner,	with	stronger	differences	in	risk	observed	

for	 the	 abundance	 score	 (OR	 ranges	 =	 20.4-51.3	 and	 5.1-28.7	 for	 fitness	 and	

abundance,	respectively,	Figure	S4B).	
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Figure	5.	Association	of	molecular	phenotypes	with	specific	clinical	outcomes	
(A)	Box	plots	showing	fitness	scores	of	PTEN	variants	occurring	in	individuals	in	gnomAD	or	different	
clinical	categories.	ASD/DD	vs.	ASD/DD	&	PHTS,	Cohen’s	r	=	0.36.	ASD/DD	vs.	PHTS,	Cohen’s	r	=	0.25.	
(B)	Box	 plots	 showing	 abundance	 scores	 of	PTEN	 variants	 occurring	 in	 individuals	 in	 gnomAD	or	
different	clinical	categories.	
(C)	PTEN	variants	plotted	according	to	fitness	and	abundance	scores,	colored	by	clinical	group.	Dashed	
lines	indicate	hypomorphic	cutoffs	(-1.11	for	fitness,	0.71	for	abundance).		
(D)	Odds	ratios	for	developing	ASD/DD	or	PHTS	symptoms	for	different	variant	classes.	Odds	ratios	
represent	 the	 comparison	 of	 that	 class	 with	 variants	 in	 the	 fitness	 positive,	 abundance	 positive	
quadrant	 (top	 right	 in	 C).	 Error	 bars	 represent	 95%	 confidence	 intervals.	 Odds	 ratios	 and	 95%	
confidence	intervals	reported	in	Table	S8.	*p<0.05,	**p<0.01.	
	

We	 next	 tested	whether	 two-dimensional	molecular	 phenotype	 data	would	

provide	additional	insights	into	the	risk	for	developing	ASD/DD	or	PHTS	symptoms.	

While	variants	from	the	control	individuals	from	gnomAD	clearly	cluster	in	the	fitness	

positive,	 abundance	 positive	 quadrant,	 the	 affected	 individuals	 populate	 the	other	

three	quadrants	(Figure	5C).	Interestingly,	compared	to	the	PHTS	positive	categories,	

the	ASD/DD	has	 a	 larger	 fraction	of	 individuals	 in	 the	 fitness	 positive,	 abundance	
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positive	 (30%	 vs.	 10%	 and	 20%	 for	 ASD/DD	 vs	 ASD/DD	 &	 PHTS	 and	 PHTS,	

respectively),	 and	 a	 smaller	 fraction	 in	 the	 putatively	 dominant	 negative	 fitness	

compromised,	abundance	positive	quadrant	(5%	versus	21%	and	25%	for	ASD/DD	

vs	ASD/DD	&	PHTS	and	PHTS,	respectively,	Figure	S4A).	

Again,	using	a	logistic	regression	approach,	we	generated	odds	ratios	for	the	

combined	 two-dimensional	 molecular	 phenotypes.	 We	 again	 observed	 no	 major	

differences	in	the	odds	for	developing	ASD/DD	in	any	missense	groups	or	the	true	

truncation	category	(OR	range	=	5.4-12.4).	In	contrast,	the	odds	for	developing	PHTS	

are	 highly	 dependent	 on	 the	 variant	 grouping	 (OR	 range	 =	 4.1-102.9).	 Missense	

variants	 that	maintain	 lipid	phosphatase	activity	but	are	 low	abundance	 show	 the	

lowest	odds	for	an	individual	developing	qualifying	symptoms	for	PHTS	classification	

(OR	=	4.1,	95%	CI	=	1.5-10.7,	Figure	5D).	Missense	variants	 that	were	 fitness	and	

abundance	negative	 showed	a	 significantly	different	 intermediate	 risk	 (OR	=	27.6,	

95%	CI	=	13.5-56.5).	Variants	that	have	wildtype-like	abundance	but	abrogated	lipid	

phosphatase	activity	(putative	dominant	negative	variants)	have	the	highest	odds	of	

an	 individual	developing	qualifying	symptoms	for	PHTS	classification	(OR	=	102.9,	

95%	CI	=	22.8-464.0),	though	not	significantly	different	from	variants	in	the	fitness	

negative/abundance	negative	or	true	truncation	categories	(Figure	5D).		

3.6	Discussion	

Despite	two	decades	of	effort,	we	still	lack	a	clear	understanding	of	how	PTEN	

genotype	affects	specific	clinical	phenotypes.	Recent	advances	in	DNA	synthesis	and	

sequencing	technologies	allow	a	new	experimental	paradigm	in	which	the	effects	of	

thousands	of	variations	on	protein	function	can	be	empirically	measured	in	parallel.	
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Two	 such	 experiments	 recently	 explored	 the	 effects	 of	 PTEN	 variation	 on	 lipid	

phosphatase	activity	(fitness	score)	and	steady	state	cellular	abundance	(abundance	

score).94,156	 Using	 imputation,	 we	 generated	 estimated	 functional	 scores	 for	 all	

possible	PTEN	missense	variants.	In	order	to	understand	how	molecular	phenotype	

data	relates	to	clinical	outcomes,	we	integrated	these	data	with	clinical	information	

from	 the	 CC	 cohort	 of	 PTEN	 mutation-positive	 individuals.	 These	 analyses	 have	

validated	 the	 clinical	utility	of	 comprehensive	multi-dimensional	 functional	scores	

and	have	uncovered	unexpected	insights	into	the	PTEN	genotype-phenotype	map.	

	 Our	 analyses	 demonstrate	 that	 molecular	 phenotype	 scores	 are	 correlated	

with	quantitative	clinical	traits.	Fitness	and	abundance	scores	showed	a	logarithmic	

relationship	 with	 the	 most	 penetrant	 PTEN	 phenotype,	 macrocephaly	 (~95%	 of	

PTEN	 patients).116	 In	 previous	 work,	 we	 designed	 an	 algorithm	 to	 determine	 a	

patient’s	a	priori	risk	for	having	a	germline	PTEN	mutation	(CC	score).	CC	score	is	also	

a	surrogate	measure	of	an	adult	patient’s	phenotypic	burden	accounting	 for	age	of	

onset.160	CC	scores	and	functional	scores	have	a	linear	relationship	with	more	severe	

phenotypic	burden	associating	with	worse	functional	scores.	We	then	demonstrated	

that	 molecular	 phenotype	 data	 can	 be	 used	 to	 model	 and	 thus	 predict	 likely	

pathogenic	 variants	with	 high	 accuracy,	 compared	 to	 CADD,	 a	 completely	 in	 silico	

approach.	

	 While	broadly	predicting	pathogenicity	has	value	in	a	clinical	setting	and	can	

help	resolve	PTEN	variants	of	uncertain	significance	(VUS),	we	were	also	interested	

in	exploring	if	these	molecular	phenotypes	could	provide	additional	insights	into	the	

diverse	 clinical	outcomes	associated	with	germline	PTEN	disruption.	Our	analyses	
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showed	that	molecular	phenotypes	can	define	subgroups	of	patients	with	common	or	

unique	age-related	cancer	hazard.	While	putative	true	truncating	variants,	such	as	

nonsense	mutations,	 showed	 high	 lifetime	 cancer	 risk,	 highly	 damaging	missense	

variants	as	defined	by	the	molecular	phenotypes	appear	to	be	at	least	as	impactful.	

Moreover,	our	data	from	single	molecular	phenotypes	show	truncation-like	and	true	

truncations	 survival	 functions	 separate	 from	wildtype-like	 functions	over	an	early	

onset	age	range.	Hypomorphic	functions	are	potentially	intermediate	over	this	early	

onset	 range	 but	 not	 yet	 significantly	 different	 from	 the	 wildtype-like	 functions.	

Combining	molecular	phenotype	scores	provides	further	granularity	for	these	cancer	

risks	and	identified	variants	that	are	lipid	phosphatase	active	(fitness	positive)	but	

unstable	 (abundance	 negative)	 as	 a	 potentially	 intermediate	 class	 of	 cancer	 risk	

variants.			

	 A	 growing	 number	 of	 studies	 have	 provided	 important	 insight	 into	 the	

question	of	genotypes	driving	diverse	phenotypic	outcomes	for	carriers	of	germline	

PTEN	variants.	However,	these	studies	have	generally	been	limited	by	small	sample	

sizes.	For	instance,	Spinelli	et	al.	(2015)	investigated	the	lipid	phosphatase	activity	

and	 protein	 stability	 of	 seven	 ASD-associated	 and	 five	 PHTS-associated	 PTEN	

missense	variants	using	virally	transfected	U87MG	cells.	They	found	ASD-associated	

variants	retained	partial	phosphatase	function	but	exhibited	dramatically	decreased	

stability,	whereas	PHTS-associated	variants	lost	phosphatase	function	but	exhibited	

relatively	 better	 stability.80	 These	 findings	 form	 the	 basis	 for	 the	 hypothesis	

formulated	by	Leslie	and	Longy	(2016),	in	which	ASD/DD	results	from	hypomorphic	

PTEN	 variants	while	 traditional	 PHTS	 (i.e.	 hamatomatous	 and	malignant	 growth)	
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results	from	more	damaging	variants.122	Our	previous	work	using	fitness	scores	(i.e.	

inferred	lipid	phosphatase	activity)	and	ASD/DD-	or	PHTS-associated	variants	from	

the	literature	lent	support	to	this	hypothesis.156		

	 Here,	using	the	largest	set	of	clinically	annotated	variants	examined	to	date,	

we	 strengthen	 these	 previous	 findings	 by	 showing	 that	 ASD/DD-associated	PTEN	

variants,	 on	 average,	 retain	 hypomorphic	 lipid	 phosphatase	 activity,	 while	 those	

associated	 with	 either	 ASD/DD	 and	 PHTS	 or	 PHTS	 alone	 are	 more	 damaging.	

Moreover,	the	fraction	of	missense	variants	and	the	distribution	of	variants	according	

to	fitness	and	abundance	scores	are	more	similar	between	the	two	PHTS	associated	

groups,	suggesting	that	they	are	in	fact	molecularly	similar.	We	made	the	surprising	

discovery,	 however,	 that	 risk	 for	 developing	 ASD/DD	 is	 not	 dramatically	 altered	

across	 different	 variant	 loss-of-function	 categories,	 while	 the	 risk	 for	 PHTS	 can	

increase	by	an	order	of	magnitude.	Thus,	 it	appears	that	while	all	 individuals	with	

pathogenic	PTEN	variants	are	at	substantial	risk	for	developing	ASD/DD,	the	risk,	and	

thus	 the	 subsequent	 penetrance,	 of	 PHTS	 symptoms	 (i.e.	 hamartomatous	 and	

malignant	 growth)	 is	 significantly	 greater	 for	 true	 truncations	 and	 truncation-like	

missense	 variants.	 These	 differential	 risk	 profiles	 would	 then	 explain	 the	 lower	

fraction	 of	 true	 truncations	 in	 cohorts	 recruited	 primarily	 based	 on	 an	 ASD/DD	

diagnosis.122,151		

	 The	biologic	basis	of	these	differential	risk	profiles	remains	unclear.	Retaining	

any	lipid	phosphatase	activity	of	the	variant	allele,	coupled	with	the	second	functional	

PTEN	allele,	may	be	sufficient	to	prevent	the	formation	of	hamartomas	in	some	cases.	

There	are	numerous	PTEN	functions	that	are	not	described	by	molecular	phenotypes	
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included	in	this	study.	Lipid	phosphatase	independent	functions	may	also	modulate	

risk.	For	example,	recent	studies	have	shown	a	potential	relationship	between	altered	

PTEN	subcellular	localization	and	clinical	outcomes,	where	PTEN	variants	showing	

aberrant	 nuclear	 depletion	 associated	 with	 ASD/DD.63,82,164,165	 Ideally,	 a	

comprehensive	 analysis	 would	 include	 the	 effect	 of	 variation	 on	 PTEN’s	 protein	

phosphatase	activity,	subcellular	localization,	nuclear	function,	and	protein-protein	

interaction.	New	high-throughput	 assays	may	make	 such	 datasets	 available	 in	 the	

near	future.		

	 Given	 that	 the	 majority	 of	 ASD/DD	 diagnoses	 are	 from	 children	 or	 young	

adults,	an	important	open	question	is	what	will	their	lifetime	risk	for	neoplasia	truly	

be?	Longitudinal	tracking	to	definitively	assess	neoplasia/cancer	risk	in	this	cohort	

will	improve	the	allocation	of	clinical	resources	and	guide	the	precision	delivery	of	

care.	 Our	 current	 data	 suggest	 that	 certain	 subsets	 of	 individuals	 with	 PTEN	

associated-ASD/DD	 are	 likely	 to	 have	 higher	 cancer	 risk	 than	 other	 subsets.	

Longitudinal	follow-up	with	these	individuals	or	new	prospective	recruitment	efforts	

will	be	needed	to	answer	this	question	definitively.		 	
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Figure	S1.	Imputation	of	missing	abundance	scores	
We	 used	 51	 evolutionary,	 biophysical,	 biochemical,	 or	 in	 silico	 variant	 effect	 predictors	 to	 train	 a	
random	 forest	machine	 learning	model	 to	 predict	 the	 effect	 of	 unseen	 variants	 (See	Mighell	et	 al.,	
2018).		
(A)	Feature	importance	of	all	features	(besides	position	average)	from	the	full	dataset,	calculated	as	
the	relative	increase	in	error	upon	random	permutation	of	each	feature.		
(B)	Pearson	correlations	between	predicted	and	observed	variant	scores.	The	first	model	includes	only	
position	average,	while	each	successive	row	includes	that	feature	as	well	as	all	 features	to	the	left.	
Features	 in	 order	 include;	 “Pos.	 Average”:	 average	 abundance	 score	 of	 other	 single	 amino	 acid	
mutations	at	that	position	or	neighboring	positions	(see	Materials	&	Methods);	“Solvent	Exposure”:	
calculated	with	GETAREA	web	tool;	“Provean”:	mutation	effect	predictions;	“Sec.	Struc.”:	secondary	
structure,	enumerated	with	STRIDE;	“Position”	:	position	in	primary	sequence;	“Consurf”:	evolutionary	
conservation;	 “SIFT”:	 mutation	 effect	 predictor;	 “Diff.	 Hydro”:	 difference	 in	 hydropathy	 between	
wildtype	and	variant	amino	acid;	“Grantham”:	Grantham	substitution	score;	“Diff.	Burial”:	difference	
in	burial	between	wildtype	and	variant	amino	acid;	“Diff.	Iso”:	difference	in	isoelectric	point	between	
wildtype	and	variant	amino	acid;	“Diff	pKaa”:	difference	in	amino	pKa	between	wildtype	and	variant	
amino	acid;	"Diff.	PKac":	difference	in	carboxyl	pKa	between	wildtype	and	variant	amino	acid;	"Diff.	
Incorp":	 difference	 in	 protein	 incorporation	 rate	 between	wildtype	 and	 variant	 amino	 acid;	 "Diff.	
Volume":	difference	 in	volume	between	wildtype	and	variant	amino	acid.	Note:	To	ensure	 that	our	
feature	 selection	 approach	was	 consistent	 across	 subsets	 of	 the	 data,	 we	 iteratively	 repeated	 this	
procedure	using	90%	subsets	of	the	data.	We	found	that	the	set	of	top	12	features	were	consistent	
across	all	 folds	and	that	the	median	ranking	of	features	across	the	folds	was	the	same	as	what	was	
originally	used	for	modeling.	
(C)	 10-fold	 cross	 validation	 demonstrated	 high	accuracy	 of	 the	 final	model,	 yielding	 0.75	Pearson	
correlation	between	predicted	and	observed	variant	scores.	
	
	 	



	

	 95	

	
Figure	S2.	Scaling	variant	functional	scores	for	integration		
(A-B)	Histograms	showing	distributions	of	fitness	scores.			
(A)	We	defined	variant	fitness	scores	in	relation	to	the	distribution	of	synonymous-wildtype	variants	
(green)	and	early	 truncating	nonsense	variants	 (red).	We	used	only	 truncating	variants	before	 the	
350th	position	(i.e.	excluding	the	unstructured	tail)	to	ensure	that	this	distribution	represented	true	
loss-of-function.	Solid	lines	are	Gaussian	fits	of	the	histograms.	We	drew	cutoff	 lines	(dashed	lines)	
corresponding	to	the	2.5	and	97.5	percentile	of	these	distributions.		
(B)	Fitness	score	distribution	(gray)	for	all	missense	variants,	including	the	high	confidence	measured	
and	imputed	scores,	were	compared	to	the	synonymous/truncation	cutoffs.	We	considered	missense	
variants	to	be	truncation-like	if	they	fell	within	the	95	percentile	bounds	of	the	truncation	distribution,	
and	 likewise	 for	missense	variants	within	 the	synonymous-wildtype	distribution.	Variants	 that	 fell	
between	these	two	distributions	were	considered	hypomorphic.		
(C-D)	Histograms	showing	distributions	of	abundance	scores.			
(C)	As	 in	 (A),	 variant	abundances	 scores	were	 coded	 according	 to	 their	 relationship	 to	 truncating	
nonsense	(red)	and	synonymous	wild-type	variants	(green).	Only	truncating	variants	between	the	30th	
and	300th	position	were	used	in	order	to	exclude	measurement	artifacts	at	the	termini.	Solid	lines	are	
Gaussian	fits	of	 the	histograms.	Further,	cutoff	 lines	 (dashed	 lines)	were	drawn	at	 the	5th	and	95th	
percentiles	because	the	tails	of	the	distributions	were	much	longer	for	abundance	scores	relative	to	
fitness	scores.		
(D)	 As	 in	 (B),	 abundance	 score	 distribution	 (gray)	 for	 all	 missense	 variants,	 including	 the	 high	
confidence	measured	and	imputed	scores,	were	compared	to	the	synonymous/truncation	cutoffs.	For	
abundances	scores,	we	considered	missense	variants	to	be	truncation-like	if	they	fell	within	the	90	
percentile	 bounds	 of	 truncation	 distribution,	 and	 likewise	 for	 missense	 variants	 within	 the	
synonymous-wildtype	distribution.	Variants	that	fell	between	these	two	distributions	were	considered	
hypomorphic.	
(E) Scatterplot of all missense variants plotted as a function of fitness and abundance scores. 
Pearson’s r = 0.43. 
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Figure	S3.	Logistic	regression	optimization	for	predicting	pathogenic	vs.	benign	
PTEN	variation		
(A)	Spearman	correlation	of	features	used	in	the	modeling.		
(B)	Receiver	operator	characteristic	curves	with	corresponding	area	under	the	curve	for	the	various	
models	tested.	Model	weights	reported	in	Table	S7.	

	 	

A B
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Figure	S4.	Risk	scores	for	fitness	and	abundance	exposures		
(A)	Variants	in	gnomAD	or	different	clinical	categories	occupy	different	fitness/abundance	quadrants	
(as	shown	in	Figure	5C).		
(B)	We	calculated	logistic	regression-based	odds	ratios	for	 individuals	to	develop	ASD/DD	or	PHTS	
features	as	a	function	of	exposure	to	hypomorphic	scoring,	truncation-like	scoring,	or	true	truncation	
variants.	Odds	 ratios	are	calculated	as	a	comparison	between	 the	 variant	 class	 of	 interest	 and	 the	
wildtype-like	 scoring	 variants.	 Odds	 ratios	 and	 95%	 confidence	 intervals	 reported	 in	 Table	 S8.	
*p<0.05,	**p<0.01.	
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Chapter	4.	CRISPR-Capture:	a	novel,	low-cost,	and	scalable	method	

for	targeted	sequencing	

2.1	Introduction	

While	advances	in	next	generation	sequencing	technologies	have	dramatically	

reduced	 the	 cost	 and	 effort	 required	 to	 sequence	 human	 genomes,	 there	 remains	

significant	 clinical	 and	 research	 benefits	 of	 targeted	 enrichment	 for	 sequencing.	

Restricting	genomic	interrogation	to	loci	of	interest	minimizes	sequencing	costs	and	

analytic	 labor,	 reduces	 data	 processing	 and	 storage,	 and	 abrogates	 ethical	 issues	

around	returning	incidental	genetic	findings	to	patients	and	families.	An	important	

application	of	targeted	enrichment	for	sequencing	is	identifying	pathogenic	variation	

in	Mendelian	disorders.	This	remains	a	significant	clinical	challenge,	as	the	diagnostic	

rate	for	many	disorders	is	only	~50%.98	Exome	sequencing	or	hybridization-based	

gene-panels	have	been	widely	used,	but	these	approaches	have	critical	weaknesses,	

including	sequence	bias,	limited	scalability,	high	DNA	input	requirements,	and	cost	

(especially	for	custom	applications).	Further,	in	most	cases	the	non-coding	regions	of	

gene	bodies	are	not	captured.	A	novel	technology	that	solved	these	problems	could	

have	major	benefits	for	clinical	and	research	applications.	

CRISPR-Cas	 systems	 have	 emerged	 as	 invaluable	 biotechnological	 tools	

empowering	 user-programmed	 nuclease	 activity.100,166	 These	 systems	 leverage	

target-specific	guide	RNAs	(gRNAs)	to	direct	Cas	endonucleases	to	specific	genomic	

loci.	 Several	 methods	 have	 taken	 advantage	 of	 CRISPR-based	 cutting	 for	 specific	

capture	and	sequencing	of	genomic	regions.	However,	most	of	these	rely	on	laborious	
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size	selection	steps	or	require	specialized	equipment	or	reagents.101,167,168	A	different	

set	of	approaches	take	advantage	of	the	Cas9-gRNA	ribonucleoprotein	(RNP)	affinity	

to	target	DNA	by	pulling	down	DNA-bound	RNP104,169.	Recently,	a	method	relying	on	

direct	adapter	ligation	to	Cas9	cleavage	sites,	followed	by	long-read	sequencing	with	

nanopore	 technology	 was	 demonstrated.103	 This	 method	 enables	 detection	 of	

structural	 variation,	 but	 suitability	 for	 calling	 single	 nucleotide	 variation	was	 not	

demonstrated.	

Here,	 we	 set	 out	 to	 design	 and	 implement	 a	 novel,	 low-cost,	 and	 scalable	

targeted	capture	technology	around	the	Cas12a	(also	known	as	Cpf1)	enzyme,	which	

cleaves	 target	 DNA	 in	 a	 staggered	 fashion,	 leaving	 four	 to	 five	 nucleotide	

overhangs.105	We	 reasoned	 that	 treating	 genomic	DNA	with	 Cas12a	 and	 a	 pool	 of	

gRNAs	would	result	in	enrichment	of	ligatable	overhangs	specifically	at	targeted	sites.	

To	validate	the	method,	we	designed	a	pilot	set	of	gRNAs	targeting	47	known	and	

candidate	genes	associated	with	Joubert	Syndrome	(JS),	a	genetically	heterogeneous,	

recessive	 ciliopathy	 that	 manifests	 with	 hindbrain	 malformations.	 We	 used	 the	

performance	of	the	guides	in	this	pilot	set	to	train	a	linear	regression	model	which	

learned	the	sequence	determinants	of	guide	performance.	We	then	used	this	model	

to	design	an	optimized	guide	set	for	a	subset	of	the	JS	genes.	The	method	is	currently	

compatible	 with	 Illumina	 sequencing	 platforms,	 as	 this	 is	 the	 gold	 standard	 for	

identifying	 single	 nucleotide	 variants	 and	 small	 indels.	 However,	 with	 minor	

modifications,	the	method	could	be	adapted	to	other	sequencing	technologies.	

2.2	Materials	and	methods	

Design	of	pilot	guide	set	



	

	 100	

We	obtained	RefSeq	hg19	genomic	coordinates	 for	 the	47	genes	 from	UCSC	

Table	Browser	as	a	bed	file.	Overlapping	intervals	were	merged	with	Galaxy	to	obtain	

a	single	interval	per	gene,	to	which	we	then	padded	with	3,000	basepairs	upstream	

and	500	basepairs	downstream,	in	hopes	of	capturing	promoters	and	3’	untranslated	

region	sequences.	Then,	we	used	FlashFry170	to	find	all	possible	Cas12a	target	sites	

(i.e.	the	presence	of	“TTTN”	PAM)	within	these	target	regions	and	to	report	the	copy	

number	 of	 each	 potential	 gRNA	 target	 sequence.	 We	 filtered	 out	 guide	 target	

sequences	that	had	copy	number	greater	than	one,	or	that	had	many	similar	off	target	

sequences	(>25	off	 targets	within	1	edit	distance,	or	>100	off	 targets	within	2	edit	

distance).	 We	 also	 filtered	 guides	 that	 overlapped	 a	 common	 single	 nucleotide	

polymorphism	(SNP,	minor	allele	fraction	>	0.1%,	dbSNP,	release	153).	Then,	for	each	

gene,	we	defined	targets	by	simply	enumerating	500	basepair	intervals,	and	selected	

the	gRNA	with	cut	site	closest	to	the	target.	This	resulted	in	7,176	guide	sequences.	

We	then	designed	DNA	oligo	sequences	that	contained	the	 following	 in	the	5’	 to	3’	

direction:	dial	out	priming	site,	T7	RNA	polymerase	priming	site,	crRNA	backbone,	

protospacer	sequence,	DraI	cut-site	(“TTTAAA”),	and	another	dial	out	priming	site.	

We	synthesized	these	gRNA	templates	as	99-mers	across	two	12,000-feature	oligo	

pools	from	CustomArray.	

Guide	amplification	and	in	vitro	transcription	of	pilot	guide	set	

We	used	PCR	to	amplify	 the	gRNA	templates	 from	the	oligo	pool.	Reactions	

contained	1x	KAPA	HiFi	Hotstart	Readymix,	10	ng	of	template,	0.5	μM	primers,	and	

1x	SYBR	Green.	Reactions	were	pulled	upon	completing	exponential	 amplification,	

which	occurred	at	19-22	cycles.	Agarose	gel	electrophoresis	confirmed	bands	of	99	
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basepairs.	We	purified	 reactions	with	NucleoSpin	 PCR	 cleanup	 columns	 (Machery	

Nagel).	Then,	we	treated	purified	products	with	DraI	restriction	enzyme	in	order	to	

remove	the	priming	site	downstream	of	the	gRNA	sequence.	Reactions	contained	500	

ng	of	PCR	product,	40	units	of	DraI	(New	England	BioLabs),	and	1x	CutSmart	buffer.	

Incubation	was	done	at	37°	and	proceeded	overnight.	Reactions	were	cleaned	up	with	

NucleoSpin	 PCR	 cleanup	 columns,	 and	 complete	 digestion	 was	 confirmed	 with	

agarose	gel	electrophoresis.	

		 We	 used	 MEGAscript	 T7	 Transcription	 Kit	 (Thermo	 Fisher	 Scientific)	 to	

generate	 gRNAs	 from	 the	 templates.	 Reactions	 contained	 ~60-130	 ng	 DNA	

(depending	on	recovery	from	previous	step),	and	were	incubated	at	37°	overnight.	

Following	 incubation,	reactions	were	treated	with	TURBO	DNase	and	 incubated	at	

37°	for	15	minutes.	Then,	RNA	Clean	&	Concentrator	(Zymo	Research)	columns	were	

used	to	purify	RNA.	We	quantified	RNA	with	Qubit	RNA	Broad	Range	Assay	(Thermo	

Fisher	Scientific)	and	diluted	to	10	μM.	

CRISPR-Capture	workflow	

For	a	detailed	protocol,	see	Supplementary	Note	1.	Briefly,	 genomic	DNA	 is	

treated	with	 phosphatase	 to	 enzymatically	 remove	 the	 terminal	 phosphates	 from	

genomic	 DNA	 molecules.	 Then,	 genomic	 DNA	 is	 treated	 with	 gRNA-complexed	

Cas12a,	which	 creates	overhangs	specifically	at	 targeted	 sites.	Custom	 i5	adapters	

that	contain	complementary	overhangs,	a	unique	molecular	identifier	(UMI),	and	5’	

biotin	modification	are	added	with	T4	ligase.	Then,	the	i7	adapter	is	added	through	

Tn5	tagmentation.	A	streptavidin-mediated	pulldown	step	purifies	those	molecules	

that	have	an	i5	adapter	(excluding	the	molecules	with	only	i7	adapters),	and	on-bead	
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PCR	 (followed	 by	 size	 selection/purification	 as	 necessary)	 generates	 ready-to-

sequence	libraries.	All	libraries	were	sequenced	in	paired-end	mode	on	the	Illumina	

NextSeq	 platform	 with	 Mid	 Output	 150	 cycle	 v2.5	 kits.	 Cycles	 were	 allocated	 as	

follows:	35	cycles	for	read1,	10	cycles	for	index1,	6	or	10	cycles	for	index2	(depending	

on	the	presence	of	unrelated	multiplexed	libraries),	and	113	or	118	cycles	for	read2.	

Sequencing	data	processing	and	analysis	

Our	custom	adapter	contains	a	UMI	in	place	of	the	i5	index.	The	first	step	of	

our	informatics	pipeline	is	appending	the	sequence	from	the	i5	index	read	to	the	end	

of	the	read	name	line	of	both	read	1	and	2	fastq	files	with	a	custom	python	script.	This	

is	 done	 for	 compatibility	 with	 UMI-tools171.	 Next,	 adapters	 are	 trimmed	 with	

cutadapt128	 and	 paired	 end	 reads	 are	 aligned	 to	 the	 hg19	 reference	 genome	with	

BWA-MEM172.	 Following	 paired	 end	 read	 alignment,	 duplicates	 are	 removed	with	

umi_tools	dedup.		

Modeling	sequence	determinants	of	guide	performance	

We	estimated	the	performance	of	guides	by	the	number	of	sequencing	reads	

that	aligned	to	the	predicted	cut	site.	Namely,	a	read	was	assigned	to	a	guide	if	the	

first	base	of	 the	read	was	within	the	16th	 to	26th	position	downstream	of	a	guide’s	

PAM.	An	 additional	pseudocount	 read	was	added	 to	all	 guide	 counts,	 enabling	 log	

transformation	of	all	read	counts,	which	we	used	as	the	dependent	variable.	We	then	

collected	667	sequence-based	features	as	in	previous	work173.	Four	bases	upstream	

of	the	PAM	and	six	bases	downstream	of	the	protospacer	were	considered.	Position-

specific	 nucleotides	 and	 dinucleotides	 were	 included	 (excluding	 the	 first	 three	

positions	of	the	PAM,	which	are	fixed	as	“T”),	as	well	as	two	features	relating	to	GC	
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content:	the	GC	imbalance	of	the	protospacer	(i.e.	how	far	the	actual	GC	content	was	

from	 50%),	 and	 the	 GC	 content	 of	 the	 predicted	 overhang	 (positions	 26-30).	

Additionally,	we	included	the	estimated	minimum	free	energy	of	the	RNA	molecule174.		

Feature	 selection	was	done	with	 the	elastic	net	procedure,	 implemented	 in	

scikit-learn	version	0.19.0.	We	found	optimal	hyperparameters	with	cross	validation	

(ElasticNetCV)	on	90%	of	 the	data	 (6,447	guides).	This	procedure	 resulted	 in	287	

features	with	non-zero	coefficients.	To	further	eliminate	inconsequential	features,	we	

trained	ordinary	least	squares	linear	regression	models	with	increasing	numbers	of	

features	(rank	ordered	by	elastic	net	coefficient	absolute	value)	and	made	predictions	

on	the	10%	(729)	fully	withheld	guides.	Prediction	performance	did	not	substantially	

improve	once	the	top	~100	features	were	added	(Supplementary	Fig.	2).	Therefore,	

we	 fit	 a	 final	 ordinary	 least	 squares	 linear	 regression	model	 to	 all	 available	 data	

(training	 and	 test),	 with	 the	 100	 selected	 features,	 which	 we	 then	 used	 to	 make	

predictions	for	the	optimized	guide	set.	

	

Design	of	optimized	guide	set	

We	used	the	same	procedure	as	for	the	pilot	guide	set	for	obtaining	padded	

genomic	 coordinates,	 identifying	 all	 possible	 Cas12a	 target	 sites,	 and	 excluded	

potential	guides	with	copy	number	>1	and	overlapping	SNPs	>0.001	allele	frequency	

(dbSNP	build	153).	We	used	a	restricted	list	of	34	genes,	representing	high	confidence	

JS	 risk	 genes.	 We	 also	 implemented	 a	 more	 sophisticated	 procedure	 for	 picking	

guides.	First,	we	designed	two	guide	sets,	one	targeting	the	forward	genomic	strand	

and	 one	 targeting	 the	 reverse	 genomic	 strand,	 such	 that	 consecutive	 guides	
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alternated	 orientation.	 After	 picking	 a	 guide,	 we	 defined	 the	 next	 target	 as	 250	

basepairs	 downstream	 of	 the	 predicted	 cut	 site.	 We	 established	 a	 set	 of	 criteria,	

prioritizing	high-scoring	guides,	guides	most	proximal	to	the	target,	and	guides	with	

a	 low	number	of	predicted	off	 target	sites.	Predicted	off	 target	sites	 for	each	guide	

were	 found	by	enumerating	all	possible	single	nucleotide	deletions	 from	the	guide	

sequence	and	finding	perfect	matches	for	these	in	the	genome.	If	there	were	no	guides	

of	the	correct	orientation	fulfilling	the	criteria	and	within	250	basepairs	of	the	target,	

we	broadened	our	search	to	guides	in	the	opposite	orientation.	If	there	were	still	no	

suitable	guides,	we	moved	on	without	choosing	a	guide.	Once	this	process	had	been	

completed	for	all	genes,	we	identified	all	“gaps”	(i.e.	no	guides	present)	of	greater	than	

600	 basepairs.	 We	 reasoned	 that	 flanking	 the	 gaps	 with	 guides	 in	 the	 optimal	

orientation	(i.e.	forward	guides	upstream	and	reverse	guides	downstream	of	the	gap)	

would	maximize	 our	 ability	 to	 obtain	 coverage	 in	 the	 gap	 regions.	 So,	 if	 correctly	

oriented	guides	were	present	within	100	basepairs	of	the	gap,	regardless	of	predicted	

performance,	we	additionally	picked	those	guides.	We	picked	a	total	of	11,438	guides	

for	the	optimized	set,	and	guides	were	synthesized	as	two	oPools	at	the	picomole	per	

oligo	scale	(Integrated	DNA	Technologies,	Supplementary	Table	7)	.	

Variant	Calling	

	 Base	 quality	 scores	 were	 recalibrated	 with	 GATK	 (version	 4.1.2.0,	 then	

variants	were	called	with	HaplotypeCaller	with	a	minimum	base	quality	score	of	20	

(-mbq	 20).	 Sample	 VCFs	 were	 compared	 to	 the	 “Platinum”	 variant	 calls20	 with	

hap.py.21	Single	nucleotide	variants	were	considered	separately	 from	insertions	or	

deletions.	
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2.3	Results	

Overview	of	the	CRISPR-Capture	method	

The	key	 intuition	of	 the	approach	 is	 that	

Cas12a-mediated	 genomic	 fragmentation,	

mediated	 by	 a	 pool	 of	 targeted	 gRNAs,	 should	

result	 in	 enrichment	 of	 ligatable	 overhanging	

ends	at	targeted	loci.	The	approach	is	made	ultra-

low	 cost	 by	 synthesizing	 pools	 of	 DNA	

oligonucleotides	 containing	 the	 gRNA	 sequence	

as	well	as	 the	T7	RNA	polymerase	priming	site,	

and	using	in	vitro	transcription	to	generate	pools	

of	 gRNAs	 (Fig.	1A).	 In	order	 to	reduce	 spurious	

ligation	 events,	 genomic	 DNA	 is	 enzymatically	

dephosphorylated	prior	 to	 incubation	with	the	

Cas12a-gRNA	 RNP	 (Fig.	 1B).	 Cas12a	 cleavage	

results	 in	 a	 5’	 overhang	 of	 four	 to	 five	

nucleotides.	 Therefore,	 we	 designed	 custom,	

biotinylated	adapters	containing	the	Illumina	i5	

flow	 cell	 and	 priming	 sequences,	 as	 well	 as	

overhangs	of	four	or	five	degenerate	nucleotides	(Supplementary	Table	1).	Following	

ligation	of	the	i5	adapter,	tagmentation	with	Tn5	transposase	adds	the	i7	sequencing	

adapter	 (Fig.	 1C).	 Finally,	 to	 enrich	 for	 molecules	 with	 a	 ligated	 i5	 adapter	 (and	

3’ 
3’ 
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Cas12a cleavage 
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Adapter ligation (i5) 

Tagmentation (i7) 
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Figure	 1.	 Overview	 of	 CRISPR-
Capture	

Genomic	DNA	is	dephosphorylated	and	then	
treated	 with	 Cas12a	 as	 well	 as	 a	 pool	 of	
gRNAs	 that	 cleave	 target	 sites	 to	 leave	
overhangs.	 A	 custom	 biotinylated	 adapter	
with	 degenerate	 overhangs	 is	 ligated	 to	 the	
cleaved	molecules,	then	the	other	adapter	is	
added	 with	 Tn5	 tagmentation.	 Finally,	 a	
streptavidin	 pulldown	 isolates	 library	
molecules	 which	 are	 amplified	 by	 on-bead	
PCR.		
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deplete	 molecules	 with	 two	 i7	 adapters),	 a	 streptavidin-mediated	 pulldown	 is	

performed,	followed	by	PCR	directly	on	the	streptavidin	beads		(Fig.	1D,	full	protocol	

can	be	found	in	Supplementary	Note).			

Design	and	performance	of	the	pilot	guide	set	

To	validate	the	method,	a	pilot	set	of	guides	was	designed	targeting	47	known	

and	 candidate	 genes	 associated	 with	 Joubert	 Syndrome	 (JS),	 representing	 3.5	

megabases	of	DNA.	The	design	tiled	7,176	guides	at	500	base-pair	intervals	and	did	

not	use	any	sequence-based	design	criteria	for	picking	guides	(besides	the	presence	

of	a	“TTTN”	protospacer	adjacent	motif	(PAM)).	DNA	oligonucleotides	encoding	the	

T7	RNA	polymerase	promoter,	Acidaminococcus	sp.BV3L6	(As)	Cas12a	constant	loop	

region,	 and	 target	 specific	 protospacer	 region	 were	 produced	 with	 array-based	

synthesis.	 Subsequent	 in	 vitro	 transcription	 produced	 mature	 gRNAs.	 Paired-end	

sequencing	 of	 CRISPR-Capture	 libraries	 prepared	 from	 the	well-studied	 NA12878	

reference	genome	resulted	in	5.9%	of	reads	on	target,	corresponding	to	a	52.4-fold	

enrichment.	While	 this	enrichment	was	encouraging,	we	sought	 to	understand	the	

source	of	off-target	reads.	As	the	primary	error	modality	of	array	synthesis	is	single	

base	deletions,	we	generated	a	predicted	off	target	list	by	aggregating	all	sites	in	the	

genome	 at	 which	 gRNAs	 with	 a	 single	 base	 deletion	 aligned	 (495,299	 sites).	 We	

observed	12.7%	of	sequencing	reads	aligned	to	these	predicted	off	target	sites,	which	

is	 substantially	 more	 than	 aligned	 to	 the	 same	 number	 of	 size-matched	 random	

genomic	 intervals	 (1.75%).	 Since	 Cas12a	 cleavage	 results	 in	 symmetrical	 5’	

overhangs,	 we	 expected	 that	 approximately	 equal	 numbers	 of	 reads	would	 result	

from	ligation	to	both	overhangs.	However,	this	was	not	the	case:	56%	of	guides	had	



	

	 107	

greater	 than	 10	 times	 more	 reads	 aligning	 to	 the	 enzyme-distal	 overhang	

(Supplementary	 Fig.	 1).	 This	 bias	may	 be	 due	 to	 Cas12a	 remaining	 bound	 to	 the	

enzyme	 proximal	 fragment175	 and	 sterically	 inhibiting	 ligation,	 though	 treatment	

with	SDS	after	cleavage	did	not	reduce	the	bias.		

Inspection	of	the	read	alignments	revealed	accumulation	of	the	first	read	at	

programmed	cut	sites,	consistent	with	ligation	of	the	i5	adapter	directly	to	the	cut	site	

overhang.	In	contrast,	the	second	read	was	scattered	across	the	inter-guide	interval,	

consistent	 with	 this	 adapter	 being	 appended	 by	 semi-random	 tagmentation	

(Supplementary	 Fig.	 1).	We	 reasoned	 that	we	 should	 be	 able	 to	 determine	which	

guide	led	to	any	given	sequencing	read.	In	fact,	we	found	that	the	first	read	of	92.6%	

of	on-target	read	pairs	began	within	5	bases	of	a	predicted	guide	cut	site.	Additionally,	

we	observed	that	the	starting	position	of	the	first	read	corresponds	to	the	expected	

cut	 sites	 of	 Cas12a	 (i.e.	 after	 the	 18th	 and	 23rd	 bases	 downstream	 of	 the	 PAM,	

Supplementary	Fig.	1).	We	used	the	number	of	reads	assigned	to	each	guide	as	a	proxy	

for	the	performance	of	that	guide.	Comparing	the	performance	of	capture	across	the	

full	 guide	 set	 revealed	 a	 thousand-fold	 difference	 between	 the	 best	 and	 worst	

performing	guides;	however,	49.3%	of	guides	performed	within	one	log10	difference	

(Fig.	2a).		

Modeling	CRISPR-Capture	performance	

	We	reasoned	that	we	should	be	able	to	use	the	pilot	data	as	a	training	set	to	

model	the	sequence	determinants	of	CRISPR-Capture	performance.	Toward	this	end,	

we	collated	667	sequence-based	features,	representing	position-specific	nucleotides	
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and	 dinucleotides,	 GC	 content,	 and	 gRNA	 folding.	 We	 modeled	 CRISPR-Capture	

performance	using	linear	regression	and	 implemented	elastic	net	regularization	to	

assign	hyperparameters	and	feature	coefficients173.	Hyperparameters	were	chosen	

PAM Protospacer Overhang d 

r = 0.79 

b 

c 

a 

Seed 

Figure	2.	Modeling	the	sequence	determinants	of	CRISPR-Capture	
performance	

(a)	Read	uniformity	for	guides	in	the	pilot	experiment.	Dashed	lines	indicate	a	log10	window	within	
which	49.3%	of	guides	performed.	
(b)	The	twenty	features	in	the	linear	regression	model	with	the	largest	positive	and	negative	
coefficients.	
(c)	Performance	of	the	linear	regression	model	on	fully	withheld	test	data.	
(d)	Feature	coefficients	of	individual	position-specific	nucleotides.	
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with	 nested	 cross-validation,	 and	we	 tested	 the	 resulting	model	 on	 fully	withheld	

data.	The	predicted	and	observed	scores	were	highly	correlated	(Pearson	r	=	0.79,	

Figure	2c).	Overall,	287	features	were	assigned	non-zero	coefficients,	and	based	on	a	

plateau	 in	 predictive	 performance	 we	 used	 the	 top	 100	 (Supplementary	 Fig.	 2).	

Consistent	with	previous	work,	 a	 “T”	at	 the	 fourth	position	of	 the	PAM	 is	strongly	

disfavored.	Other	 important	 features	are	related	to	GC	content,	with	GC	 imbalance	

being	 strongly	 disfavored	 and	 GC	 content	 at	 the	 overhang	 positively	 related	 to	

performance,	 likely	 due	 to	 increased	 ligation	 efficiency	 (Fig.	 2b).	 Inspection	 of	

contributions	from	single	position-specific	nucleotides	suggests	the	most	important	

positions	are	within	the	seed	and	overhang	regions	(Fig.	2d).		

Design	and	testing	of	optimized	guide	set	

We	 used	 a	 combination	 of	 predicted	 performance	 scores	 from	 our	 model,	

optimal	spacing,	and	number	of	predicted	off	target	cut	sites	to	generate	optimized	

guide	sets	for	34	high	confidence	JS	risk	genes	using	a	higher	fidelity	column-based	

synthesis	 platform	 (Materials	 &	 Method,	 Supplementary	 Table	 6).	 Due	 to	 the	

observed	biased	capture	efficiency	 from	enzyme	distal	versus	proximal	 fragments,	

we	designed	two	interleaved	pools,	one	targeting	the	forward	genomic	strand	and	the	

other	targeting	the	reverse	genomic	strand	(Supplementary	Table	7).	Following	an	

initial	guide	selection	step,	we	identified	gaps	(>600	basepairs	between	subsequent	

guides)	and,	when	possible,	picked	additional	guides	flanking	the	gaps	in	an	attempt	

to	capture	the	gap	sequence.	

Captures	with	the	optimized	guides	achieved	an	average	enrichment	of	64-fold	

(6.3%	of	reads	on	target)	using	NA12878	genomic	DNA.	Guide	uniformity	improved	
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modestly	 compared	 to	 the	 naïve	 guide	 set	 (54.0%	 of	 guides	 within	 one	 log10	

difference,	Fig.	3a).	While	cutting	at	predicted	off	target	sites	was	present,	it	made	up	

a	relatively	smaller	fraction	of	reads	compared	to	the	pilot	guides	(5.5%	of	reads).	

Observed	 guide	 performance	 correlated	 with	 predictions	 (Pearson	 r	 =	 0.38,	

Supplementary	 Fig.	 3),	 but	 this	 correlation	 was	 lower	 than	 the	 cross-validation	

results.	This	is	likely	due	to	the	optimized	guides	falling	within	a	narrower	range	of	

expected	 performance	 compared	 to	 the	 cross-validation.	 For	 example,	 when	 only	

considering	guides	above	 the	2.0	 threshold	used	 for	picking	optimized	guides,	 the	

cross-validation	 results	 in	 reduced	 correlation	 (Pearson	 r	 =	 0.61).	 Additionally,	 the	 pilot	

guides	were	subjected	to	PCR	amplification	and	restriction	enzyme	digestion	steps	prior	to	
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in	 vitro	 transcription	while	 the	optimized	guides	were	not.	These	additional	 steps	

could	introduce	biases	that	are	not	present	for	the	optimized	guide	set.	

We	examined	raw	coverage	of	the	target	region	at	different	levels	of	

downsampling.	With	20	million	read	pairs,	84.4%	of	bases	in	the	target	region	are	

covered	by	at	least	10	reads,	and	increasing	to	40	million	read	pairs	covers	92.8%	of	

bases	by	at	least	10	reads	(Fig.	3b).	Considering	only	those	bases	outside	of	

repetitive	elements	(as	defined	by	Repeat	Masker),	20	million	read	pairs	cover	

86.7%	of	bases	with	at	least	10	reads,	and	at	40	million	read	pairs	94.6%	of	bases	

are	covered	by	at	least	10	reads	(Supplementary	Fig.	3).	We	next	examined	GC	

Figure	3.	Performance	of	the	optimized	guide	set	

(a)	Read	uniformity	for	guides	in	the	optimized	experiment.	Dashed	lines	indicate	a	 log10	window	
within	which	54.0%	of	guides	performed.	
(b)	Per-base	read	coverage	across	the	full	target	with	downsampled	datasets.		
(c)	Coverage	of	bases	within	different	100	basepair	GC	content	bins.	
(d)	Precision	and	recall	for	single	nucleotide	variant	calling	of	NA12878	compared	to	the	“Platinum”	
variant	calls.	
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content	coverage	bias.	100	basepair	bins	with	extremely	low	(10-20%)	or	high	(80-

90%)	GC	content	have	median	coverage	of	46	and	18,	respectively,	while	the	40-

50%	bin	has	median	coverage	of	78	(Fig.	3c).	Finally,	we	performed	single	

nucleotide	variant	calling	with	the	downsampled	datasets	and	found	that	with	20	

million	read	pairs	we	achieve	high	precision	and	recall	(0.95	and	0.88,	respectively)	

compared	to	Illumina	platinum	calls	for	this	sample.	Increasing	to	40	million	read	

pairs	maintains	high	precision	and	boosts	recall	(0.94	and	0.93,	respectively,	Fig.	

3d).	Restricting	to	bases	not	Repeat	Masked	yields	slightly	improved	performance	

for	all	conditions	(Supplementary	Fig.	3).	

2.4	Discussion	

In	this	study,	we	demonstrate	and	evaluate	CRISPR-Capture,	a	novel	method	

for	 targeted	 enrichment	 of	 regions	 of	 interest	 for	 sequencing.	 This	 method	 takes	

advantage	of	the	unique	cleavage	pattern	of	Cas12a	to	introduce	ligatable	overhangs	

specifically	 at	 regions	 of	 interest.	 In	 a	 pilot	 experiment	 we	 measured	 capture	

efficiency	for	7,126	gRNAs,	chosen	without	any	sequence-specific	criteria,	and	used	

these	 data	 to	 model	 the	 sequence	 determinants	 of	 capture	 efficiency	 with	 high	

accuracy.		

Major	 strengths	of	 the	method	are	affordability	and	 flexibility.	 Synthesis	of	

gRNA-encoding	 DNA	 oligos	 is	 quick	 and	 affordable,	 and	 standard	 in	 vitro	

transcription	kits	can	generate	thousands	of	reactions	worth	of	gRNA	from	picomolar	

scale	 DNA	 template,	 effectively	 making	 the	 oligos	 a	 one-time	 cost.	 For	 ongoing	

studies,	 gRNAs	 targeting	different	genes	 could	easily	be	added	 to	an	existing	pool.	

Further,	there	is	no	requirement	for	specialized	equipment,	and	the	protocol	can	be	
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completed	in	a	single	day.	Though	not	implemented	here,	the	method	is	compatible	

with	 liquid	 handling	 robots	 that	 could	 dramatically	 increase	 throughput.	 CRISPR-

Capture	 is	 less	 susceptible	 to	 GC	 sequence	 content	 bias	 than	 hybridization-based	

approaches,	 and	 represents	 a	 substantial	 improvement	 in	whole	 gene	 sequencing	

compared	to	existing	technologies.		

A	 drawback	 of	 the	 method	 is	 the	 dependence	 on	 a	 PAM	 site	 and	 a	 target	

sequence	with	high	Cas12a	cutting	efficiency.	Efforts	are	under	way,	though,	to	find	

Cas12a	 variants	 with	 more	 flexible	 PAM	 requirements,176	 increased	 cutting	

efficiency,177	and	reduced	off-target	cutting.178	Additionally,	while	we	achieve	strong	

enrichment	of	targeted	regions,	the	majority	of	sequencing	reads	originate	from	off-

target	loci.	We	attribute	a	substantial	fraction	of	off-target	reads	to	synthesis	errors	

in	the	gRNA	encoding	DNA	oligos.	This	off-target	modality	could	be	reduced	by	higher	

fidelity	 synthesis,	 or	 oligo	 purification	 schemes	 that	 eliminate	 deletion	 errors.	 An	

improved	understanding	of	the	origin	of	the	rest	of	the	off-target	reads	could	lead	to	

substantial	 improvement	 in	 the	percent	of	on-target	 reads.	Finally,	we	observe	an	

imbalance	 in	 the	 capture	 efficiency	 for	 enzyme	 proximal	 versus	 enzyme	 distal	

cleavage	 product.	 It	 remains	 unclear	 what	 the	 source	 of	 this	 imbalance	 is,	 but	 a	

resolution	of	this	issue	could	improve	capture	performance.	

We	foresee	broad	utility	of	the	method	in	Mendelian	disease	genetics,	where	

it	can	be	valuable	to	sequence	the	full	bodies	of	custom	lists	of	genes.	However,	the	

method	is	compatible	with	any	DNA	genome,	and	could	have	utility	in	basic	research,	

diagnostics,	or	agriculture.		 	
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Figure	S1.	Performance	characteristics	of	CRISPR-Capture	

(a)	Histogram	of	position	of	first	base	of	read1	in	relation	to	the	end	of	PAM	(i.e.	the	start	of	the	
protospacer).	Reads	originating	from	the	Cas12a	proximal	and	distal	molecules	are	colored	
differently.	
(b)	Ratio	of	Cas12a	distal	to	proximal	reads	for	all	guides,	rank	ordered	by	magnitude	of	ratio.	
(c)	Coverage	of	bases,	from	read1,	as	a	function	of	distance	downstream	from	nearest	cut	site.	
(d)	Coverage	of	bases,	from	read2,	as	a	function	of	distance	downstream	from	nearest	cut	site.	
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Figure	S2.	Modeling	sequence	determinants	of	CRISPR-Capture	performance	

(a)	Models	were	iteratively	trained	with	more	features,	successively	adding	features	with	the	highest	
absolute	value	coefficient.	
(b)	Models	were	trained	with	varying	training	set	sizes.	
	 	

a b 
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Figure	S3.	Performance	of	optimized	guide	set	

(a)	Predicted	versus	observed	performance	(as	defined	by	assigned	reads)	for	the	optimized	guide	
set.	Pearson	r	=	0.39.	
(b)	Coverage	uniformity	for	all	bases	outside	of	repeats	(as	defined	by	Repeat	Masker)	for	various	
downsampled	datasets.	
(c)	Precision	and	recall	for	single	nucleotide	variants	at	different	downsampled	read	pairs.	
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Supplementary	Note:	CRISPR-Capture	Protocol	
	
CRISPR-Capture	Protocol	
	
Reagents	
	

• Shrimp	alkaline	phosphatase	(rSAP,	New	England	BioLabs,	Cat.	M0371)	
• Phosphate	buffered	saline	(PBS,	Thermo	Fisher,	Cat.	10010023)	
• 10x	Cas9	reaction	buffer	
• Alt-R	A.s.	Cas12a	(Cpf1)	V3	(IDT,	Cat.	1081068)	
• NucleoSpin	Gel	and	PCR	Clean-Up	(Takara,	Cat.	740609)	
• Custom	i5	adapter	(Supplemental	Table	X)	
• T4	DNA	Ligase	(New	England	BioLabs,	Cat.	M2622)	
• T4	DNA	Ligase	Buffer	(New	England	BioLabs,	Cat.	B0202)	
• TAPS	(Sigma	Aldrich,	Cat.	T5130)	
• Potassium	Acetate	(Sigma	Aldrich,	Cat.	P1190)	
• Magnesium	Acetate	(Sigma	Aldrich,	Cat.	M5661)	
• DMF	(Sigma	Aldrich,	Cat.	D4551)	
• Loaded	Tn5	transposase	(Picelli	et	al.,	2014.	Genome	Research)		
• Sodium	Dodecyl	Sulfate	(SDS,	Sigma	Aldrich,	Cat.	L3771)	
• Dynabeads	MyOne	Streptavidin	C1	(Thermo	Fisher,	Cat.	65002)	
• NaCl	(Fisher,	Cat.	M-11624)	
• Tris	(Fisher,	Cat.	T1503)	
• LiCl	(Sigma	Aldrich,	Cat.	L9650)	
• EDTA	(Sigma	Aldrich,	Cat.	E9884)	
• Tween-20	(Sigma	Aldrich,	Cat.	P1379)	
• KAPA	HiFi	Hotstart	ReadyMix	(Roche,	Cat.	KK2602)	
• Nextera	i7	indexed	primers	(Supplemental	Table	X)	
• Sera-Mag	Select	SPRI	beads	(GE	Healthcare,	29343045)	

	
Equipment	

• Magnetic	tube	rack	
• DNA	Engine	Tetrad	Thermal	Cycler	(BioRad,	or	other	thermal	cycler)	
• Thermomixer	(Thermo	Fisher,	Cat.	5382000015,	or	other	heat	block)	
• Illumina	sequencing	instrument	

Protocol	
	

1. Dephosphorylate	genomic	DNA		
a. Prepare	10x	Cas9	reaction	buffer	(can	be	done	beforehand)	

i. 200	mM	HEPES,	1μM	NaCl,	50	mM	MgCl2,	1	mM	EDTA,	pH	6.5	@	25°	
b. Combine	100	ng	genomic	DNA	(quantified	with	Qubit	fluorometer)	with	2	μL	

of	10x	Cas9	buffer,	2	μL	rSAP,	and	water	to	total	volume	of	20	μL.	
c. Incubate	at	37°	for	30	minutes.	
d. Incubate	at	65°	for	5	minutes.	

	
2. CRISPR	cleavage	of	genomic	DNA	

a. Dilute	Cas12a	to	1	μM	with	PBS.	
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b. Combine	7.5	μL	water,	1.5	μL	of	10x	Cas9	reaction	buffer,	2	μL	of	10	μM	
gRNA,	and	4	μL	of	1	μM	Cas12a.	

c. Incubate	at	room	temperature	for	10	minutes.	
d. Combine	the	gRNA	/	Cas12a	mixture	with	the	reaction	from	step	1.	
e. Incubate	at	37°	for	30	minutes.	
f. Incubate	at	65°	for	10	minutes.	
g. Purify	DNA	with	Nucleospin	columns;	elute	in	20	uL	of	buffer	NE.	 	

	
3. Ligate	i5	adapter	

a. Anneal	adapter	oligos	(can	be	done	beforehand	and	frozen).	
i. Combine	10	μL	i5_adapter_top,	5	μL	i5_adapter_bottom_4N,	5	uL	

i5_adapter_bottom_5N,	and	80	uL	TE.	
ii. Heat	to	95°	in	thermal	cycler,	then,	cool	at	a	rate	of	0.1°/second	until	

reaching	10°.	
b. To	the	eluate	from	step	2,	add	0.5	μL	water,	2.5	μL	T4	DNA	Ligase	Buffer,	1	

uL	T4	DNA	Ligase,	and	1	μL	of	10	μM	annealed	i5	adapter.	
c. Incubate	at	25°	for	30	minutes.	
d. Incubate	at	65°	for	10	minutes.	

	
4. Tagment	DNA	

a. Make	1	mL	fresh	4x	TAPS	buffer:	132	μL	of	1M	TAPS,	52.8	μL	of	5M	
potassium	acetate,	40	μL	of	1M	magnesium	acetate,	640	μL	of	100%	DMF,	
135.2	μL	water	

b. To	the	reaction	from	the	previous	step,	add	12.5	μL	4x	TAPS	buffer,	11.5	μL	
water,	and	1	μL	8	uM	loaded	indexed	Tn5	transposase.	

c. Incubate	at	55°	for	5	minutes.	
d. Transfer	to	ice.	
e. Add	5	μL	of	2%	SDS.	
f. Incubate	at	room	temperature	for	5	minutes	

	
5. Streptavidin	magnetic	bead	pulldown	

a. Prepare	following	buffers	(can	be	done	beforehand):	
i. LWB:	10	mM	Tris-Cl	pH	8.0,	1M	LiCl,	1mM	EDTA,	0.05%	Tween-20,	
in	water.	

ii. NWB:	10	mM	Tris-Cl	pH	8.0,	1M	NaCl,	1mM	EDTA,	0.05%	Tween-20,	
in	water.	

iii. TWB:	10	mM	Tris-Cl	pH	8.0,	0.5mM	EDTA,	0.05%	Tween-20,	in	
water.	

iv. 2x	NTB:	10	mM	Tris-Cl	pH	8.0,	2M	NaCl,	1mM	EDTA,	in	water.	
b. Warm	Dynabeads	MyOne	Streptavidin	C1	beads	to	room	temperature	for	30	

minutes.	
c. For	each	sample,	transfer	5	μL	beads	to	PCR	tube	in	a	magnetic	rack.	
d. Concentrate	beads	(until	supernatant	is	clear)	and	remove	supernatant.	
e. Wash	with	200	μL	TWB,	concentrate,	remove	supernatant.	
f. Resuspend	beads	in	110	μL	2x	NTB.	
g. Add	samples	to	beads;	shake	for	30	minutes	at	1,000	rpm	at	room	temp.	
h. Wash	1x	with	200	μL	LWB.	Concentrate	and	remove	supernatant.	
i. Wash	2x	with	200	μL	NWB.	Concentrate	and	remove	supernatant.	
j. Wash	2x	with	200	μL	TWB.	Concentrate	and	remove	supernatant.	
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k. Resuspend	in	PCR	mix:	12.5	μL	KAPA	HiFi	HotStart	ReadyMix,	0.5	μM	
custom	i5	primer,	0.5	μM	indexed	Nextera	i7	primer,	water	to	25	μL.	Ensure	
that	beads	are	dispersed	(i.e.	have	not	settled	to	the	bottom	of	tube).	

6. On-bead	PCR	and	cleanup	
a. Thermal	cycle:	72°	for	3	minutes,	95°	for	30	seconds,	repeat	15	total	times:	

98°	for	20	seconds,	60°	for	15	seconds,	72°	for	40	seconds.	
b. Concentrate	Dynabeads	and	transfer	supernatant	to	a	new	tube.	
c. Cleanup	PCR	with	Sera-Mag	Select	SPRI	beads,	at	a	0.8x	beads	to	sample	

ratio.	Check	size	distribution	with	preferred	method.	
7. Perform	paired	end	sequencing	on	an	Illumina	instrument	

a. Read	lengths	should	be:	
i. Read1:	35	cycles	
ii. Index1:	10	cycles	
iii. Index2:	6	cycles	
iv. Read2:	117	cycles	
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Supplementary	Table	1.	Primers	and	oligos	
Oligo	name	 Oligo	sequence	

i5_adapter_top	
/5'biotin/AATGATACGGCGACCACCGAGATCTACACNNNNDDACACTCTTTCCCT
ACACGACGCTCTTCCGATCT	

i5_adapter_botto
m_4N	 NNNNAGATCGGAAGAGCG	
i5_adapter_botto
m_5N	 NNNNNAGATCGGAAGAGCG	
i5_enrichment_p
rimer	 AATGATACGGCGACCACCGA		
i7_enrichment_p
rimer	(Nextera)	 CAAGCAGAAGACGGCATACGAGAT[10bp_index]GTCTCGTGGGCTCGGAGATG	
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Chapter	5.	Summary	and	Conclusions	

5.1	A	paradigm	shift	for	PTEN	clinical	genetics	

5.1.1	Defining	pathogenic	and	benign	PTEN	alleles	

Prior	to	the	work	outlined	in	this	dissertation,	there	was	no	accurate	method	

for	 discriminating	 pathogenic	 from	 benign	 PTEN	 variation.	 Based	 on	 the	 data	

presented	 in	 Chapters	 2	 and	 3	 of	 this	 work,	 I	 have	 demonstrated	 that	 the	 lipid	

phosphatase	fitness	scores	can	discriminate	pathogenic	variation	with	high	accuracy.	

The	strong	performance	of	the	fitness	scores	on	two	distinct	set	of	alleles	(ClinVar	

pathogenic	alleles	in	Chapter	2,	Cleveland	Clinic	cohort	variant	carriers	in	Chapter	3)	

strongly	 supports	 their	 broad	 utility.	 Further,	 the	 ClinGen	PTEN	Expert	 Panel	 has	

recommended	the	use	of	our	data	for	clinical	decision	making179.		

5.1.2	Different	PTEN	variant	classes	confer	different	cancer	risk	

Similar	 to	 the	 pathogenic	 vs.	 benign	 question,	 prior	 to	 the	work	 presented	

here,	there	was	no	accurate	way	to	predict	risk	of	neoplasia	based	on	PTEN	genotype.	

In	fact,	many	clinicians	treated	all	PTEN	variation	the	same.	The	data	presented	here	

is	the	first	to	demonstrate	that	different	variant	classes	confer	significantly	different	

risk	of	both	early-onset	and	life-time	risk	of	cancer.	This	information	will	be	useful	

for	clinicians	as	they	counsel	patients,	and	it	will	improve	our	ability	to	allocate	and	

steward	resources.	Additionally,	it	will	provide	patients	with	a	clearer	picture	of	what	

their	genotype	means.	It	is	reasonable	to	expect	that	increased	numbers	of	patients	

will	help	clarify	and	estimate	differential	cancer	risk	for	carriers	of	different	variants.	
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5.1.3	Refinement	of	PTEN	genotype-phenotype	relationships	

While	 the	 lipid	 phosphatase	 fitness	 scores	 can	 accurately	 distinguish	

pathogenic	variation,	 they	cannot	distinguish	variation	that	 leads	to	ASD	vs.	PHTS.	

The	data	presented	here	does,	though,	validate	the	pre-existing	hypothesis	that	ASD	

variants	are,	on	average,	less	damaging	than	PHTS	variants.	However,	in	Chapter	3	I	

add	significant	nuance	to	this	model	by	showing	that,	in	fact,	any	PTEN	variation	that	

compromises	lipid	phosphatase	fitness	or	cellular	abundance	increases	the	odds	of	

developing	ASD	to	a	similar	extent.	This	is	in	marked	contrast	to	PHTS,	for	which	the	

risk	of	developing	symptoms	is	strongly	related	to	the	severity	of	the	variant.	This	

risk	pattern	suggests	that	there	is	a	low	threshold	of	activity	compromise	that	confers	

ASD	 risk,	 and	 severity	 beyond	 this	

threshold	does	not	substantially	 increase	

the	 ASD	 risk.	 This	 reinterpretation	

clarifies	 several	 confusing	 observations.	

First,	 it	 helps	 explain	 why	 there	 is	 such	

extensive	 overlap	 in	 the	 distributions	 of	

ASD-	 and	 PHTS-associated	 fitness	 scores	

(Chapter	2:	Figure	4,	Chapter	3:	Figure	5).	

According	 to	 the	 original	 model,	 less	

severe	variants	led	to	ASD	while	more	severe	led	to	PHTS.	According	to	this	model,	

one	might	expect	individuals	with	more	severe	variants	to	have	both	ASD	and	PHTS	

phenotypes,	but	this	is	not	always	the	case.	

Risk of 
symptoms 

(penetrance) 

PHTS 
ASD 

PTEN activity wildtype	 null	

Figure	1.	An	updated	model	of	PTEN	
genotype-phenotype	relationships.	
The	risk	of	PHTS	increases	with	decreasing	
PTEN	activity	levels.	In	contrast,	there	is	a	
threshold	which	increases	risk	for	ASD,	and	
further	decrements	in	activity	do	not	further	
increase	risk.	
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	The	reinterpretation	outlined	here	helps	to	explain	why	many	PHTS	positive	

individuals	are	not	affected	with	ASD,	by	showing	that	the	risk	for	ASD	seems	to	be	

somewhat	independent	from	the	risk	for	PHTS.	Since	a	relatively	small	subset	of	PTEN	

variant	 carriers	 develop	 ASD,	 it	 appears	 to	 be	 the	 case	 that	 the	 PTEN	 variation	

sensitizes	 to	ASD,	 and	 then	 some	 other	 factor	 is	 required	 to	 cause	 symptoms.	 An	

important	next	step	will	be	determining	the	other	factors	involved,	which	may	involve	

PTEN	functions	not	captured	in	the	lipid	phosphatase	and	cellular	abundance	assays,	

genetic	background,	or	environmental	exposures.		

5.1.4	Outlook	for	deep	mutational	scanning	

The	 outlook	 for	 deep	mutational	 scanning	 as	 an	 approach	 for	 interpreting	

clinical	 variation	 is	bright.	As	of	2018,	over	200,000	variants	 in	protein-coding	or	

regulatory	regions	had	been	assayed180,	and	the	number	continues	to	grow.	Speaking	

to	the	promise	of	this	approach,	a	new	center	has	been	established	(the	Center	for	the	

Multiplex	Assessment	of	Phenotype,	based	at	the	University	of	Washington	and	the	

University	of	Toronto)	that	seeks	to	define	the	functional	effect	of	all	variants	in	the	

human	 genome.	 Due	 to	 the	 growth	 of	 the	 community,	 efforts	 are	 being	 made	 to	

harmonize	 and	standardize	 the	 design	 and	 reporting	of	 deep	mutational	 scanning	

data181.	 Further,	 clinicians	 are	 weighing	 in	 regarding	 the	 most	 informative	 and	

responsible	use	of	deep	mutational	scanning	in	the	clinic182.	Continued	success	of	the	

method	will	depend	on	freely	sharing	methods,	software	code,	and	data.	



	

	 124	

5.1.5	A	desperate	need	for	improved	clinical	genetic	databases	

Deep	 mutational	 scanning	 represents	 an	 extremely	 powerful	 method	 for	

profiling	the	functional	impacts	of	protein	coding	variation.	However,	well	annotated,	

standardized,	 and	 publicly	 available	 data	 is	 an	 absolute	 necessity	 in	 order	 to	

maximize	 the	utility	 of	 this	 data.	We	were	 fortunate	 that	 the	 Cleveland	Clinic	had	

ascertained	a	large	and	well-curated	cohort	of	PTEN	variant	carriers.	However,	this	

luxury	will	not	be	available	for	all	genes	or	disorders.	In	most	cases,	researchers	will	

have	to	rely	on	ClinVar136	to	identify	clinically	relevant	variation.	Unfortunately,	this	

database	 is	 replete	 with	 inconsistent,	 vague,	 or	 conflicting	 clinical	 descriptions.	

Efforts	like	the	UK	Biobank,	in	which	genomic,	deep	phenotypic,	and	lifestyle	data	is	

collected	prospectively,	will	be	invaluable	resources	moving	forward.	

5.2	Programmable,	whole-gene	sequencing	

5.2.1	 CRISPR-Capture	 is	 a	 novel	 method	 for	 programmable,	 whole-gene	

sequencing	

Due	to	the	length	of	human	genes,	which	is	often	greater	than	10	kilobases,	

existing	 technologies	 are	 not	 well	 suited	 to	 sequence	 full	 genes.	 A	 widely	 used	

technology	 relies	on	hybridization	of	biotinylated	probes	 to	 sequences	of	 interest.	

While	it	is	technically	possible	to	capture	whole	genes	with	this	method,	the	cost	of	

generating	 the	 number	 of	 biotinylated	 probes	 necessary	 is	 prohibitive.	 CRISPR-

Capture	enables	affordable	whole-gene	sequencing	by	leveraging	the	CRISPR-Cas12a	

system.	In	particular,	the	method	is	made	ultra-low-cost	by	synthesizing	DNA	oligos	

and	 then	using	 in	 vitro	 transcription	 to	 convert	 these	DNAs	 into	guide	RNAs.	This	
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process	enables	the	synthesis	of	microgram	quantities	of	RNAs,	which	corresponds	

to	hundreds	of	CRISPR-Capture	reactions.	

5.2.2	CRISPR-Capture	applications	and	use	cases	
	

Due	 to	 the	modularity	of	 CRISPR	 technology,	 the	 same	 approach	 described	

here	could	be	modified	for	use	on	any	animal,	plant,	fungus,	or	other	DNA	genome.	It	

could	 be	 valuable,	 for	 instance,	 to	 profile	 certain	 gene	 families	 important	 in	 crop	

abundance.	Also	due	to	the	modularity	of	the	approach,	individual,	optimized	guide	

sets	could	be	developed	and	commercialized	for	genes.	This	could	allow	researchers	

to	assemble	their	own	targeted	enrichment	panel	very	quickly	and	easily.	

5.2.3	Limitations	of	CRISPR-Capture	

One	limitation	of	CRISPR-Capture,	as	described	here,	is	that	current	versions	

of	the	Cas12a	enzyme	are	limited	to	targets	with	a	TTTV	protospacer	adjacent	motif.	

Therefore,	certain	regions	of	 the	genome	will	be	challenging	to	target,	particularly	

regions	depleted	of	T’s.	However,	efforts	are	underway	to	isolate	Cas12a	sequences	

from	different	strains,	which	may	have	different	PAM	requirements183.	Also,	efforts	

are	 underway	 to	 generate	 synthetic	 variants	 of	 Cas12a	 that	 have	 relaxed	 PAM	

requirements177.	

While	CRISPR-Capture	achieves	enrichment	of	targeted	sequence	on	the	order	

of	50-fold,	there	is	still	room	for	improvement.	Especially	for	panels	targeting	smaller	

sequence	 space,	 there	 is	 substantial	 room	 for	 improvement.	 There	 are	 multiple	

potential	contributors	to	the	limited	enrichment.	First,	as	demonstrated,	a	substantial	

fraction	 of	 off	 target	 reads	 result	 from	 synthesis-error	 related	 cutting.	 As	 DNA	
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synthesis	quality	improves,	this	off	target	contribution	could	be	mitigated.	Another	

potential	contributor	to	lack	of	enrichment	is	the	fact	that,	for	most	guides,	ligation	of	

sequencing	adapter	seems	to	only	occur	on	the	enzyme-distal	fragment	(See	Chapter	

4,	Supplemental	Figure	2).	This	may	be	due	to	Cas12a	remaining	bound	to	the	enzyme	

proximal	side175	and	sterically	inhibiting	adapter	ligation.	If	this	were	truly	occurring,	

then	 developing	 a	 method	 to	 dissociate	 the	 enzyme	 from	 the	 target	 DNA	 could	

improve	enrichment.	Additionally,	multiple	studies	have	demonstrated	that	Cas12a	

exhibits	 indiscriminate	 exonuclease	 activity	 towards	 trans	 DNA	 substrates	 while	

bound	to	gRNA	and	target	DNA184,185.	It	is	possible	that	upon	binding	and	cleavage	to	

target	sites,	Cas12a	is	actually	introducing	spurrious	overhanging	ends	by	degrading	

molecules	of	off	target	DNA	in	the	reaction.	
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