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Abstract. 

MicroRNAs (miRNAs) are small non-coding RNAs that are responsible for post-

transcriptional gene silencing. These miRNAs are associated with the RISC (RNA-

Induced Silencing Complex) that uses a seed sequence to target specific genes.  Both 

expression of miRNAs and genes within virus-infected cells provide independent data in 

identifying biological hypotheses concerning regulation changes during infection. To do 

this, three data types are available for integration: gene expression microarray, miRNA 

expression microarray and RISC-Immunoprecipitation (RISC-IP) microarray. RISC-IP 

data provides a look at what genes are associated with the complex during infection 

versus uninfected cells (mock). Incorporating three independent data types allows a more 

complete representation of host response to Flavivirus infection that is key to identifying 

miRNA regulators. This thesis integrates all three types of data for Flavivirus-infected 

cells using the statistical programming environment R to identify statistically enriched 

miRNAs regulating host response. First, the integration of gene expression changes and 

enriched RISC-associated genes identify significant miRNA regulators overlapping with 

miRNA expression data. Dengue gene expression was found to have a significant 

positive association with one or more differentially expressed miRNAs. More 

specifically, Dengue-infected cells’ up-regulated genes are significantly associated with 

down-regulated miRNAs. No significant associations were found in West Nile-infected 

cells. Results suggest evidence Dengue gene expression and miRNA expression are 

complementary and suggests that miRNAs and genes are being co-regulated during 

infection. Secondly, regulatory networks were built using differentially expressed genes 

as identifiers of statistically common miRNA regulators between West Nile and Dengue 
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network modules. Comparing all Dengue modules with all West Nile gene network 

modules, 20 of 114 comparisons contained miRNA regulators statistically significantly 

overlapping. Eight miRNAs regulate these modules: hsa-let-7b, hsa-miR-1, hsa-miR-124, 

hsa-miR-155, hsa-miR-16, hsa-miR-29c, hsa-miR-30, and hsa-miR-373. These miRNAs, 

common to both Dengue and West Nile regulatory networks, suggest co-regulation of 

genes that are changing during host response to infection. Focusing on more informative 

miRNAs, those regulating genes during infection, will direct experimental research 

efforts to key miRNAs for experimental validation with the end-goal of guiding gene 

therapy and non-viral drug development in hopes to reduce the number of Flavivirus 

induced deaths.   
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CHAPTER 1: Introduction 

The Flavivirus genus includes both West Nile and Dengue viruses, both of which 

cause severe human disease such as encephalitis and Dengue fever (1). However, the 

Center for Disease Control report about 90% of West Nile virus and 50% or more of 

Dengue cases are asymptomatic (2). West Nile and Dengue viruses are considered an 

endemic of some sub-tropical countries. Hundreds of thousands of deaths occur from 

Flavivirus infections each year because of the lack of antiviral drugs or vaccines (3). 

During infection, West Nile and Dengue viruses infect individuals primarily through 

mosquito bites. Treatment for infection of Flaviviruses such as West Nile and Dengue are 

needed in subtropical areas of the world where viral-infected mosquitoes are most 

prevalent. In order to understand the biology of Flavivirus infection to guide the 

development of antiviral treatment, the molecular mechanisms of the viruses must be 

explored. 

 The goal of this thesis is to associate one or more miRNAs with changes in host 

response to West Nile and Dengue viruses within networks by integrating three different 

data types. The research question that we are asking is: Which miRNAs regulate infection 

response in West Nile- and Dengue-infected cells? As a result of the research and 

fulfillment of the goals in this thesis, the integration of three independent data types can 

be achieved in order to create a more informative picture of Flavivirus infection. The 

miRNAs that regulate the response to infection, both from direct expression 

measurements and computational predictions based on published target genes, will allow 

for focused validation in-vitro. Understanding which miRNAs target transcripts changing 

in the cell after viral infection guides research of vaccine and gene therapy development 
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to specific miRNAs and their target genes. Rather than predicting miRNAs and their 

targets using sequence matching techniques, our approach incorporates several 

independent types of data during viral infection to identify key regulation within the cell 

which is imperative for developing vaccines or other gene therapy solutions in the 

interest of advancing research and reducing cost.  

 

Background. 

Members of the Flavivirus genus contain a positive sense single stranded RNA 

genome (4) and use host cellular machinery for genomic replication and produce progeny 

virions. One way that the host cell responds to invasion of a virus is through altering 

expression of gene transcripts in the cytoplasm. 

Post-transcriptional changes in gene expression can be controlled by microRNAs 

(miRNAs) which are small non-coding RNAs produced by the cell to silence gene 

expression (5). The precursors of miRNAs are longer RNA structures that fold back onto 

themselves and form a hairpin structure. This double-stranded RNA is then cleaved by 

Dicer in the cytoplasm into ~22 nucleotides (6). One strand is degraded while the other 

becomes associated with the RISC (RNA-induced silencing complex). To silence 

expression, miRNAs bind to target transcripts as part of the complex by complementarity. 

For silencing to occur, a six to eight nucleotide seed region most often found in the 3-

prime untranslated region (3’UTR) initiates binding between a particular miRNA with a 

target transcript (7). This process results in a considerable decrease in protein translation, 

thus turning off the gene. 

This process is better known as RNAi or RNA-interference, a conserved defense 
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mechanism that suppresses gene translation directed by either endogenous miRNAs or 

exogenous double stranded RNA(8). RNAi serves as a system to protect the cell from 

viral infection including strategies for regulating gene expression, occurring post-

transcriptionally to degrade mRNA transcripts (9). 

In response to infection, the host cell may initiate the use of one miRNA or a 

combination of miRNAs to target genes. One example of using miRNAs as an avenue for 

gene therapy in Flaviviruses is explained in a study from 2011 which investigated 

insertion of cell-specific miRNA targets in the Flavivirus genome as an approach to 

control pathogenesis and virus attenuation(10).  When response of the host to infection is 

understood, development of useful vaccines may be made possible for clinical cases.  

Furthermore, the change in expression of transcripts provides information on 

which genes are changing in response to infection. Transcripts common to a pathway or 

more specifically, protein-protein interactions can enhance the comparison of West Nile 

and Dengue virus infections at a systems biology level. By using gene expression data of 

infected cells versus mock (uninfected cells), gene regulatory networks can be derived to 

model gene regulation within the cell. Viewing gene regulation within infected cells 

using a combination of different data types is key to understanding virus infection at a 

systems level because it creates a more complete picture of gene regulation as opposed to 

using one or multiple data types independently. 

 

Specific Aims/Thesis statement.  

 The goal of this thesis is to associate a miRNA or group of miRNAs with changes 

in viral host response networks. The aims for this research are: 1) Combine RISC-
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associated and differentially expressed genes to identify statistically enriched miRNAs 

regulating host response in West Nile and Dengue infections,  and 2) Build regulatory 

networks for West Nile and Dengue virus infections using differentially expressed genes 

to identify common miRNA regulators. 

 The research question behind the first specific aim is: Can we more accurately 

predict miRNA-mRNA interactions using RISC-associated genes and differentially 

expressed genes together? In other words: Do the genes that associate with the RISC 

complex and the genes up- and down-regulated in the cell tell us more than the two 

independently. We hypothesize that using both data types will be more informative than 

the two data types individually. The second aim asks the question: Do the miRNA 

regulators shared between West Nile and Dengue virus regulatory networks overlap 

significantly? The hypothesis is that there will be significant commonality between 

miRNA regulators. Both specific aims were tested using the methodology described in 

the next section. 
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CHAPTER 2: Methods 

Data. 

Fortunately, comparable data describing processes of both West Nile and Dengue 

virus during infection of host cells is available. Jay Nelson’s laboratory at Oregon Health 

and Sciences University performed analogous experiments using both viruses and 

collected three types of data: 1) gene expression microarray data, 2) RISC-IP microarray 

data, and 3) miRNA microarray expression data on both West Nile- and Dengue-infected 

cells versus mock (uninfected) cells. To address the aims described above, West Nile and 

Dengue virus data was analyzed according to data type (see Table 1 below for list of data 

types and platforms).  

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 Data type Platform Time  

(Hrs post-

infection) 

Gene expression Illumina human 

ref-8 

48  

RISC-IP Illumina HT-12v4 48 

 

 

Dengue 

miRNA expression miRCURY LNA 

miRNA array  

6th generation 

8,24,56 

RISC-IP used for Gene 

expression 

Illumina human 

ref-6 

48 

RISC-IP Illumina human 

ref-8 

48 

 

 

West Nile 

miRNA expression Illumina Human 

HT-12 

48 

Table 1. West Nile- and Dengue-infection experimental design, data types and platforms 

for data analyzed in this study   

 In order to address either of our aims, each of the data-sets had to be analyzed 

separately to identify differentially expressed genes (for the gene expression arrays), 

differentially expressed miRNAs (for the miRNA arrays) or enriched genes associated 

with the RISC complex (for the RISC-IP arrays). Microarray data was collected from 

Dengue- or West Nile-infected HEK-293 cells in comparison to mock-infected HEK-293 

cells and analyses were performed using the statistical programming environment R 
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(version 2.14.1). All of the datasets came from an Illumina platform, with the exception 

of the Dengue miRNA expression microarray. Illumina data was imported into R to be 

processed using the Lumi Bioconductor package (11). The R Bioconductor package 

Limma(12) was used to create linear models based on contrasts between infected cells 

versus mock-infected cells for gene expression data and for RISC-IP data to compare 

virus immunoprecipitation (IP) with virus total expression versus mock IP with mock 

total expression. In the Dengue miRNA expression dataset, there are multiple time points: 

8, 24 and 56 hours post-infection (see Table 1). The largest difference in infection time 

was included in our analyses: 56 versus 8 hours post-infection in virus-infected cells 

versus mock-infected cells.  

From Limma, we produced a table of top-ranked genes bases on significance 

specified by a false-discovery rate (FDR) adjusted p-value. The West Nile RISC-IP array 

was not done in duplicate samples and thus a statistical analysis could not be conducted 

for this data set. Instead, enriched genes were determined by a log2 fold change cutoff of 

0.58 which corresponds to a 1.5 fold change for non-log2 expression values. 

 

Flagging probes. 

Negative control probes were used within a data-set to control for background 

noise. A value representing the ninetieth percentile for log2 expression values of negative 

controls within each sample was used as a threshold for background noise. Any probes 

falling below this value were flagged with a ‘0’ and noted as potentially insignificant. All 

probes went through the linear model and those probes that may have been differentially 

expressed or enriched in the final probe list were labeled by either a flag ‘0’ for below 
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background noise or a flag of ‘1’ for passing the background filter. For data sets without 

negative control probes to control for background noise, probes expressed below the 

twenty-fifth percentile across all samples were labeled as potentially insignificant. 

 

Aim 1 Analyses: Associating two independent data types with differentially  

expressed miRNAs 

 The goal of the first aim is to identify association of mRNA gene expression, 

RISC-IP, and mRNA gene expression/RISC-IP, with differentially expressed miRNAs 

regulating host response in West Nile and Dengue infections. Analytical tools can be 

used to associate miRNAs with gene lists. Several tools are described in the literature 

(13) including Sigterms which consists of a set of Excel macros, MMIA (“MicroRNA 

and mRNA integrated analysis”) which is web-based (14)(15) and CORNA, an open-

source R package (13). Since the three data types are imported and processed within the 

statistical programming environment R, the CORNA package was originally chosen for 

the analysis. CORNA takes gene lists as input and analyzes significant miRNA targets 

using the seed sequence from miRBase and microRNA.org (16). Seed sequences are 

contained in the miRBase and miRNA databases within the listed websites and define 

how CORNA maps transcripts as targets of a particular miRNA through base 

complementarity. Although CORNA is a good tool for identifying potential gene targets 

for miRNAs, it does not restrict based on validated miRNAs from the literature. Instead, 

it includes predictions which may be based only on the seed sequence. As an alternative, 

TarBase was selected to map transcripts to miRNAs because it is based on confirmed 

target transcripts with their associated miRNAs from evidence through various biological 
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methods (17). TarBase provides a downloadable file that contains validated human 

miRNAs and the genes they target. Although this significantly lowers the number of 

genes and miRNAs that can be used in the analysis, the results are more biologically 

meaningful and reliable for modeling infection in the cell. 

To test the research question related to specific aim #1: Can we more accurately 

predict miRNA-mRNA interactions using RISC-associated genes and differentially 

expressed genes together? TarBase was utilized to test three separately generated gene 

lists for West Nile and Dengue independently. The first list of genes is comprised of the 

transcripts differentially expressed from the gene expression data. The second list 

contains genes significantly associated (enriched) with the RISC complex during 

infection from the RISC-IP data set. Those genes that are common to both of these lists 

were combined to create a third gene set. Additionally, lists were constructed using 

directionality in differential expression of genes. Biologically, genes that are 

differentially down-regulated are more likely associated with up-regulated miRNAs 

(18)and we hypothesize genes that are up-regulated are more likely associated with 

down-regulated miRNAs. Addressing direction of expression in both genes and miRNAs 

tests the hypothesis that miRNAs are regulating genes during infection. 

We examined the proportion of overlap of miRNAs via Fisher’s exact test in order 

to assess whether there is a positive association between the differentially expressed gene 

list and differentially expressed miRNAs. Level of significance for all tests was 0.05. 

Our hypothesis is that there is positive association between differentially 

expressed target genes who map to one or more miRNAs. Testing each gene list, we 

hypothesize that the genes that are both differentially expressed and enriched from the 
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RISC-IP (gene list #3) have a higher association with the differentially expressed 

miRNAs than the other two gene lists. Assuming the association is significant, the two 

data types are anticipated, when combined, to be more beneficial in analyzing viral 

infection processes than independently. To address directionality of the gene and miRNA 

expression, additional contingency tables were constructed. Target genes that are down-

regulated were tested to overlap significantly with miRNAs being up-regulated and 

similarly, target genes that are up-regulated were tested to significantly overlap with 

miRNAs that are down-regulated. Since the transcripts from the RISC-IP data are 

enriched genes only, they were tested to be positively associated with up-regulated 

miRNAs. To determine how to classify up- or down-regulated differentially expressed 

genes, a log2 expression fold change cutoff of +/- 0.58 was set. Genes that had a log2 

expression fold change of greater than or equal to 0.58 were categorized as up-regulated, 

and those with log2 expression values less than or equal to -0.58 categorized as down-

regulated genes corresponding to a 1.5 non-log2 fold change in expression. 

 

Aim 2 Analyses: Build regulatory using differentially expressed genes to identify  

common miRNA regulators 

The research question of specific aim #2 asks: Are the miRNA regulators shared 

between West Nile and Dengue virus regulatory networks? This aim uses the miRNAs 

mapped from differentially expressed genes from mRNA expression microarrays of West 

Nile and Dengue virus infections. Two interaction networks were created using protein-

protein interactions from the Pathway Commons database (19) which was incorporated 

into R using an interaction file of protein-protein interactions for genes in human. These 
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large protein-interaction networks were created for each virus independently. Input for 

the networks came from the differentially expressed genes for each virus and restricted 

the interactions to only those genes. The network was then broken into modules 

following the methods of (20). Modules are organized based on protein relationships in 

the form of an adjacency matrix of binary values made to represent the differentially 

expressed genes’ interactions with themselves where a ‘1’ indicates interaction between 

the two proteins and a ‘0’ indicates no interaction. This was then organized into 

hierarchical clusters and visualized by a dendrogram graph structure (see Appendix: 

Figure A-1) (21). Colors at the bottom of the dendrogram represent putative gene 

modules, whereas the grey represents genes not belonging to a specific module or genes 

that did not interact with any other genes in the list. Branches on the dendrogram are 

clustered groups of genes which can be detected through a variety of methods. The 

‘Dynamic Tree Cut’ (21), has been used in other species such as yeast (22) (20) and 

mouse (23) and uses a top-down algorithm to create clusters using the dendrogram and 

breaking them down and rebuilding until the cluster is stable and distinct from other 

clusters. Resulting modules within a network were used to define pathways in each virus 

for subsequent comparison.  

Just as used for testing specific aim #1, contingency tables were constructed to 

quantify the overlap of miRNAs within modules between West Nile and Dengue. 

Pairwise comparisons of genes within West Nile modules with genes in Dengue modules 

as well as similarly comparing the miRNAs from those target genes provide counts for 

the contingency tables. The significance of two modules overlapping was determined 

using the Fisher’s exact test such that the contingency table contained: 1) the number of 
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genes shared between a West Nile and Dengue module comparison, 2) the number of 

genes not in West Nile’s current module but in Dengue’s current module, 3) the number 

of genes not in Dengue’s current module but in West Nile’s current module, and 4) the 

number of genes that were in neither. The genes that comprised the fourth category 

(neither) are all remaining genes in the interactome used for the protein-protein 

interactions from Pathway Commons. All genes within the interactome were chosen to 

comprise the ‘gene universe’ or reference set, but also done similarly using genes for all 

differentially expressed probes as the reference set, and again using all probes that are 

shared on the Dengue and West Nile gene expression arrays. All three approaches are 

relevant and valuable for examining significance of gene overlap between Flavivirus 

module overlap. 

A similar approach was taken to compare the overlap of miRNA regulators by 

using the confirmed target genes within a module and mapping to miRNAs. The ‘miRNA 

universe’ was limited to confirmed target gene/miRNA pairs from TarBase. For both 

comparison of genes and miRNAs across modules, p-values were FDR adjusted. For 

those significant module comparisons between the two Flaviviruses, a list of miRNAs 

was found to regulate overlapping modules. Evidence for co-regulation of miRNAs was 

also explored. A table of miRNAs regulating the significant module comparisons was 

constructed to determine whether the same miRNAs regulate multiple modules. Modules 

were also overlaid with Gene Ontology (GO) ontologies for pathway annotation using 

CORNA, an R package (16). To visually represent the network overlap between a 

particular Dengue and West Nile module overlap, the software program Cytoscape 

v.2.8.3 was used to produce gene networks showing target genes and overlapping genes, 
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which were tested for GO enrichment using the BINGO plug-in (24). BINGO compared 

the overlapping genes with annotated Homo sapiens genes testing for enrichment using a 

Hypergeometric test, and adjusting for false-discovery rate. 
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CHAPTER 3: Results and Evaluation 

Aim 1. 

 The Dengue mRNA expression data-set contained 4,396 differentially expressed 

genes and the West Nile RISC-IP data-set used as a substitute for expression data 

produced 2,521 differentially expressed genes. Differentially expression was determined 

by the methodology explained in the Data section of Chapter 2: Methods. More 

specifically, Dengue differentially expression was defined by a Bonferroni adjusted p-

value of 0.05 while West Nile differential expression by an unadjusted p-value of 0.1. 

The only statistically significant association for each of the three gene lists in the 

Flaviviruses was for differentially expressed Dengue genes targeted by one or more 

differentially expressed miRNAs (p-value = 0.0268; Table 2A). Tables 3 and 4 shown 

below did not test significant for any association between differentially expressed and/or 

enriched genes being targeted by one or more differentially expressed miRNAs. 
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Genes	
  targeted	
  by	
  one	
  or	
  

more	
  DE	
  miRNAs	
  

	
  	
   A)	
  

Dengue	
  p-­‐value	
  =	
  0.0268	
  

	
  
Yes	
   No	
   Total	
  

Yes	
   96	
   129	
   225	
  	
  

Dengue	
  DE	
  genes	
  

	
   No	
   159	
   299	
   458	
  

	
   Total	
   255	
   428	
   683	
  

 

Genes	
  targeted	
  by	
  one	
  or	
  

more	
  DE	
  miRNAs	
  

	
  B)	
  

West	
  Nile	
  p-­‐value	
  =	
  0.9044	
  	
  

Yes	
   No	
   Total	
  

Yes	
   7	
   113	
   120	
  	
  

West	
  Nile	
  	
  

DE	
  genes	
  

	
  

No	
   53	
   544	
   597	
  

	
   Total	
   60	
   657	
   717	
  

Table 2. Contingency table for Dengue (A) and West Nile (B) showing the number of 

DE (differentially expressed) genes and non-DE genes that are targets of one or more DE 

miRNAs, or no DE miRNAs; Fisher’s exact test for positive association is significant in 

Dengue only.  
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Genes	
  targeted	
  by	
  one	
  or	
  

more	
  DE	
  miRNAs	
  

	
  A)	
  

Dengue	
  p-­‐value	
  =	
  0.9991	
  	
  

Yes	
   No	
   Total	
  

Yes	
   46	
   121	
   167	
  	
  

Dengue	
  	
  

enriched	
  genes	
  

	
  
No	
   212	
   313	
   525	
  

	
   Total	
   258	
   434	
   692	
  

  

Genes	
  targeted	
  by	
  one	
  or	
  

more	
  DE	
  miRNAs	
  

	
  B)	
  

West	
  Nile	
  p-­‐value	
  =	
  0.9980	
  

Yes	
   No	
   Total	
  

Yes	
   6	
   152	
   158	
  	
  

West	
  Nile	
  

enriched	
  genes	
  

	
  
No	
   54	
   476	
   530	
  

	
   Total	
   60	
   628	
   688	
  

Table 3. Contingency table for Dengue (A) and West Nile (B) showing the number of 

enriched genes  and non-enriched genes that are targets of one or more DE miRNAs, or 

no DE miRNAs; Fisher’s exact test for a positive association is not significant. 
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Genes	
  targeted	
  by	
  one	
  or	
  

more	
  DE	
  miRNAs	
  

	
  A)	
  

Dengue	
  p-­‐value	
  =	
  0.9688	
  	
  

	
   Yes	
   No	
   Total	
  

Yes	
   19	
   49	
   68	
  	
  

Dengue	
  

DE/enriched	
  

genes	
  

	
  

No	
   234	
   374	
   608	
  

	
   Total	
   253	
   423	
   676	
  

 

Genes	
  targeted	
  by	
  one	
  or	
  

more	
  DE	
  miRNAs	
  

	
  B)	
  

West	
  Nile	
  p-­‐value	
  =	
  0.9763	
  

Yes	
   No	
   Total	
  

Yes	
   1	
   40	
   41	
  	
  

West	
  Nile	
  

DE/enriched	
  

genes	
  

	
  

No	
   57	
   587	
   644	
  

	
   Total	
   58	
   627	
   685	
  

Table 4. Contingency table for Dengue (A) and West Nile (B) showing the number of 

DE/enriched genes and all other genes that are targets of one or more DE miRNAs, or no 

DE miRNAs; Fisher’s exact test for association is not significant. 

 Using directionality of expression in both the gene list and miRNA expression, 27 
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Dengue up-regulated target genes are significantly positively associated with one or more 

Dengue down-regulated differentially expressed miRNA (p-value = 6.906e-15; Table 

5A). On the other hand, only one of the 125 Dengue down-regulated target genes were 

found to be targeted by one or more up-regulated miRNAs and found to be 

insignificant(p-value: 0.5556; Table 5B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

 

Genes	
  targeted	
  by	
  one	
  or	
  

more	
  down-­‐regulated	
  

DE	
  miRNAs	
  

	
  	
   A)	
  

p-­‐value	
  =	
  6.906e-­‐15	
  

Yes	
   No	
   Total	
  

Yes	
   27	
   43	
   70	
  	
  

Dengue	
  

	
  up-­‐regulated	
  

DE	
  genes	
  

	
  

No	
   1	
   154	
   155	
  

	
   Total	
   28	
   197	
   225	
  

 

Genes	
  targeted	
  by	
  one	
  or	
  

more	
  up-­‐regulated	
  

DE	
  miRNAs	
  

	
  B)	
   	
  

p-­‐value	
  =	
  0.5556	
  

Yes	
   No	
   Total	
  

Yes	
   1	
   124	
   125	
  	
  

Dengue	
  	
  

Down-­‐regulated	
  

DE	
  genes	
  

	
  

No	
   0	
   100	
   100	
  

	
   Total	
   1	
   224	
   225	
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Table 5. Contingency table for Dengue up-regulated genes with down-regulated miRNAs 

(A) and Dengue down-regulated genes with up-regulated miRNAs (B); Fisher’s exact test 

for association is significant for up-regulated genes and down-regulated miRNAs only. 

 

Aim 2. 

 Of the 2,521 genes in the West Nile network, 265 genes grouped into six modules 

and the remainder into the grey module. Sizes of the modules were between 24 and 79 

genes. Of the 4,396 genes in the Dengue network, 955 genes grouped into nineteen 

modules and the remainder into the grey module. Colored Dengue modules were between 

twenty and 110 genes. 
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(A) 
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(B) 

 

Figure 1. Dengue (A) and West Nile (B) gene networks using protein-protein 

interactions of differentially expressed genes from gene expression arrays. Module 

membership is represented by color. 

The modules produced by the Dynamic Tree Cut method were compared by both 

the common genes within modules and by the miRNA regulators of target genes within 

modules across Dengue and West Nile modules. Analyzing all pairwise comparisons 

across the viruses produced a total of 114 module comparisons (6 West Nile modules 

with 19 Dengue modules). 

 Using the interactome for the reference set, 11 pairwise module comparisons 
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tested significant and 12 pairwise comparisons were significant using all probes shared 

between Dengue and West Nile gene expression arrays as the reference set. Restricting 

the universe to only the differentially expressed genes for Dengue and West Nile, 12 

comparisons showed significant overlap. Comparison of the overlap among these three 

approaches is summarized in Table 6 below.  
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‘GENE UNIVERSE’ 
REFERENCE SET 

 

# significant pairwise module 

comparisons out of 114 

DE genes 

Differentially expressed genes in Dengue and West Nile 

networks 

 

12 

Shared probes 

All probes shared between Dengue and West Nile gene 

expression arrays 

 

12 

Interactome 

Genes in the interactome  

(Pathway commons interactions) 

 

11 

 # significant pairwise module 

comparisons overlapping 

DE genes + Shared probes 12 

DE genes + Interactome 11 

Shared probes + Interactome 11 

Table 6. Comparison of differences in significant module overlap by examining the 

genes utilized in the individual analyses 

Although it was decided to use the Interactome as the gene reference set, 

additional analyses using the other two reference sets was done for comparison to 

examine the effect of changing the ‘gene universe’ on the number of significant module 

comparisons. Table 7 shows the module overlaps between Dengue and West Nile that 

had a significant number of genes overlapping using the Interactome as the reference set. 



25 
 

 

The counts for the contingency tables are shown in bold: the number of common genes 

(Number common), number of genes in the Dengue module and not found in the West 

Nile module (denvYes_wnvNo), and number of genes in the West Nile module and not in 

the Dengue module (wnvYes_denvNo), and the number of genes in neither module 

(Neither). The last column shows the p-value, adjusted for false discovery rate (FDR). 

Denv	
  
Module	
  
size	
  

Wnv	
  
Module	
  
Size	
  

Number	
  
common	
   denvYes_wnvNo	
   wnvYes_denvNo	
   Neither	
   p-­‐value	
  

71	
   25	
   9	
   62	
   16	
   11184	
   1.22E-­‐12	
  
110	
   79	
   13	
   97	
   66	
   11095	
   2.54E-­‐11	
  
77	
   24	
   6	
   71	
   18	
   11176	
   3.56E-­‐07	
  
20	
   24	
   4	
   16	
   20	
   11231	
   2.10E-­‐06	
  
34	
   61	
   5	
   29	
   56	
   11181	
   2.26E-­‐05	
  
66	
   61	
   6	
   60	
   55	
   11150	
   2.76E-­‐05	
  
26	
   61	
   4	
   22	
   57	
   11188	
   0.000186	
  
66	
   79	
   5	
   61	
   74	
   11131	
   0.001333	
  
32	
   52	
   3	
   29	
   49	
   11190	
   0.00532	
  
68	
   61	
   4	
   64	
   57	
   11146	
   0.005696	
  
26	
   25	
   2	
   24	
   23	
   11222	
   0.016001	
  

Table 7. Modules where comparisons showed significant overlap of genes  

(FDR adjusted p-value ≤ 0.05) 

Using the miRNAs to test for significant overlap, 20 module comparisons were 

significant (false-discovery rate (FDR) adjusted p-value ≤ 0.05). Table 8 below 

summarizes the comparisons of miRNA regulators between modules shown to be 

significant and lists the size of the modules in number of genes. The counts for the 

contingency tables are shown in bold: the number of common miRNAs (Number 

common), number of miRNAs in the Dengue module and not found in the West Nile 

module (denvYes_wnvNo), and number of miRNAs in the West Nile module and not in 

the Dengue module (wnvYes_denvNo), and the number of miRNAs in neither module 

(Neither). The last column shows the p-value, adjusted for false discovery rate (FDR). To 
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calculate the miRNAs not found in either module, the miRNAs mapping to all 

differentially expressed target genes for both Dengue and West Nile networks was 

subtracted from the other three count values in the contingency table.  

Denv	
  
Module	
  
size	
  

Wnv	
  
Module	
  
Size	
  

Number	
  
common	
   denvYes_wnvNo	
   wnvYes_denvNo	
   Neither	
   p-­‐value	
  

77	
   24	
   5	
   3	
   0	
   36	
   0.00361	
  
53	
   24	
   4	
   1	
   1	
   38	
   0.00842	
  
66	
   61	
   4	
   4	
   0	
   36	
   0.01395	
  
77	
   61	
   4	
   4	
   0	
   36	
   0.01395	
  
110	
   79	
   4	
   1	
   3	
   36	
   0.02424	
  
71	
   61	
   3	
   2	
   1	
   38	
   0.02546	
  
110	
   61	
   3	
   2	
   1	
   38	
   0.02546	
  
34	
   79	
   3	
   0	
   4	
   37	
   0.02546	
  
66	
   24	
   4	
   4	
   1	
   35	
   0.02546	
  
66	
   52	
   4	
   4	
   1	
   35	
   0.02546	
  
53	
   61	
   3	
   2	
   1	
   38	
   0.02546	
  
29	
   24	
   3	
   1	
   2	
   38	
   0.02546	
  
72	
   79	
   3	
   0	
   4	
   37	
   0.02546	
  
77	
   52	
   4	
   4	
   1	
   35	
   0.02546	
  
77	
   25	
   3	
   5	
   0	
   36	
   0.03482	
  
71	
   24	
   3	
   2	
   2	
   37	
   0.04301	
  
71	
   52	
   3	
   2	
   2	
   37	
   0.04301	
  
110	
   52	
   3	
   2	
   2	
   37	
   0.04301	
  
53	
   52	
   3	
   2	
   2	
   37	
   0.04301	
  
56	
   61	
   2	
   0	
   2	
   40	
   0.04301	
  

Table 8. Modules where comparisons showed significant overlap of miRNA regulators 

(FDR adjusted p-value ≤ 0.05) 

 Of the thirteen miRNA regulators mapping to differentially expressed genes in 

Dengue and West Nile networks, eight mapped to genes from the twenty significant 

module comparisons: hsa-let-7b, hsa-miR-1, hsa-miR-124, hsa-miR-155, hsa-miR-16, 

hsa-miR-29c, hsa-miR-30, hsa-miR-373. Co-regulation of the miRNA regulators is 

shown in Table 9 below. Of the eight miRNA regulators, three were common to up-

regulated miRNAs in Dengue and one in common with West Nile differentially 
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expressed miRNAs.  

Denv	
  
Module	
  
size	
  

Wnv	
  
Module	
  
Size	
  

Hsa-­‐
let-­‐7b	
  

Hsa-­‐	
  
miR-­‐1	
  

Hsa-­‐
miR-­‐
124	
  

Hsa-­‐
miR-­‐
155	
  

Hsa-­‐
miR-­‐
16	
  

Hsa-­‐
miR-­‐
29c	
  

Hsa-­‐
miR-­‐
30	
  

Hsa-­‐
miR-­‐
373	
  

77	
   24	
     x	
   x	
     x	
   x	
   x	
     
53	
   24	
     x	
   x	
     x	
     x	
     
66	
   61	
     x	
   x	
   x	
   x	
         
77	
   61	
     x	
   x	
   x	
   x	
         
110	
   79	
   x	
   x	
   x	
   x	
           
71	
   61	
     x	
   x	
     x	
         
110	
   61	
     x	
   x	
   x	
           
34	
   79	
   x	
   x	
   x	
             
66	
   24	
     x	
   x	
     x	
     x	
     
66	
   52	
     x	
   x	
   x	
   x	
         
53	
   61	
     x	
   x	
     x	
         
29	
   24	
     x	
   	
  	
   	
  	
   x	
   	
  	
   x	
   	
  	
  

72	
   79	
   x	
   x	
   x	
             
77	
   52	
     x	
   x	
   x	
   x	
         
77	
   25	
           x	
   x	
   x	
     
71	
   24	
     x	
   x	
     x	
         
71	
   52	
     x	
   x	
     x	
         
110	
   52	
     x	
   x	
   x	
           
53	
   52	
     x	
   x	
     x	
     	
  	
     
56	
   61	
     x	
       x	
         

	
  	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

Table 9. Human miRNAs regulating significant module comparisons 
	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

 Genes from a significant overlap of modules between Dengue and West 

Nile was visualized in Cytoscape. It shows a Dengue network module consisting of 110 

genes overlapped with a West Nile network module of 79 genes (see Figure 2 below). 

The figure shows genes common between the two modules, and genes specific to either 

Dengue or West Nile with edges symbolizing protein-protein interactions. From Table 9, 

these two modules share four miRNAs: hsa-let-7b, hsa-miR-1, hsa-miR-124 and hsa-

miR-155. 
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Figure 2. Module for West Nile (yellow genes) overlapped with module for Dengue 

(pink genes). Green genes represent genes in common to the two modules. 

Table A-2 in the Appendix lists significantly enriched GO ontologies in the 

overlapping genes between Dengue and West Nile gene networks. Twenty-six GO 

categories were statistically enriched in the overlap. Both membrane-associated and 

“virus response” pathways were in the top results. 	
  

 

Discussion. 

For the first aim, one test out of six was significant: Dengue differentially 

expressed genes positively associated with one or more differentially expressed miRNAs 

(Table 2A, p-value = 0.0268). This may be because Dengue had a much larger number of 

differentially expressed genes that were useable in the analysis (4,396 DE Dengue genes 
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versus 2,521 DE genes in West Nile). Out of the DE genes, 225 Dengue genes are in 

TarBase and 120 West Nile genes. Only 7 genes in West Nile were found to be targeted 

by a differentially expressed miRNA compared with 120 in Dengue. The negative results 

in West Nile may be support for the hypotheses that West Nile infected cells do not use 

miRNAs to aid in the response to infection.  

Using directionality in gene and miRNA expression, Dengue tested significant for 

a positive association for up-regulated genes with down-regulated miRNAs (Table 5A, p-

value = 6.906e-15). Unfortunately we are limited by the number of up-regulated miRNAs 

in Tarbase that are usable in the analysis for association with down-regulated genes, 

given our requirement of experimental validation. In West Nile, the number of up- and 

down-regulated genes that are in Tarbase is zero and three genes respectively. The counts 

are too low to use in the statistical test for association. No tests could be done using up-

regulated miRNAs because none are in Tarbase for West Nile and only three for Dengue. 

West Nile also had only two down-regulated miRNAs in Tarbase, therefore we were also 

limited by not being able to test West Nile for association between up-regulated genes 

with down-regulated miRNAs. This limitation on target genes and miRNAs 

experimentally validated does not allow the interpretation of the directionality of 

expression in infected cells as well as anticipated. The use of predictive target genes may 

be an alternative to future study. This would depend on the sequence of the miRNA seed 

sequence only and therefore be solely predictive. Another limitation with that approach is 

that a large number of genes would be potential targets of a single miRNA and thus may 

be a confounder in the relationship of expression between target genes and the associated 

miRNAs. 
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In the second aim, of the thirteen miRNAs that mapped to all differentially 

expressed genes in Dengue and West Nile, eight miRNAs were found to regulate the 

significant module overlaps from aim #2. Hsa-miR-1, hsa-miR-124 and hsa-miR-16 were 

found to target the most module comparisons with 18, 17 and 14 of them targeted by 

these three miRNAs. These three miRNAs have not been shown to be associated with 

viral infection in the literature until now. 

For the second aim, several options were available to select a reference set when 

testing whether a Dengue module significantly overlapped with a module of West Nile. 

All three options: Interactome genes (those genes in Pathway commons), differentially 

expressed genes in Dengue and West Nile, and all genes shared on the two viruses’ 

expression arrays were viable in testing the hypothesis. The first option, genes in the 

Interactome, was chosen because it allows for the best biological interpretation of 

whether two modules’ genes and miRNA regulators are significantly associated 

compared to all other genes that interact with one another in Pathway Commons and also 

was chosen because does not limit or bias genes used as a reference set.  

When selecting modules to be compared, the methodology used compares all 

colored modules in Dengue with all colored modules in West Nile. The grey modules 

(see Appendix: Figure A-1) produced in both viruses were not used in the analysis for 

comparison because they contained genes that did not interact with any other 

differentially expressed genes in the set based on protein-protein interactions. This may 

indicate an additional limitation with regard to interaction annotation. 

Table 6 summarizes the number of module comparisons that tested significant out 

of the total 114 possible comparisons. Although using the Interactome as the ‘gene 
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universe’ did not produce the most number of significant comparisons between modules 

(11 significant comparisons) compared to the other two reference sets (12 significant 

comparisons in both from Table 6), it contains all significant comparisons that the 

differentially expressed genes reference set contained. The high overlap between these 

two options provides even more confirmation that this was a good choice in how to limit 

the genes to be compared in the analysis. In other words, limiting the reference set to just 

differentially expressed genes in Dengue and West Nile only eliminated one overlapping 

module. 

Gene Ontology (GO) ontologies were obtained for pathway annotation on the 

overlap of the Dengue and West Nile networks. Twenty-six GO categories were 

statistically enriched in the overlap and particularly “virus response” (Table A-1) was of 

interest and validates the view that the networks represent the response to viral infection 

in both Flaviviruses. 

When examining the module overlap from Figure 2, 45 GO categories were found 

to be statistically enriched. Several binding GO categories were enriched, and particularly 

the GO category “virion binding” may be relevant to the infection process in both 

Dengue and West Nile shown within these two overlapping modules. Both modules 

contain genes that are statistically enriched for this pathway and show that the cell may 

be responding to the virus particles being formed by binding to the virion. This evidence 

to suggest infection response in both Flaviviruses justifies follow up experiments and 

validation of key genes and miRNA regulators. 
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CHAPTER 4: Conclusion and Future Work 

Summary and Conclusion. 

 The proposed work to associate miRNAs with changes in viral host response 

networks was accomplished and shown in the Results section of this thesis. As a result of 

this work we now know that, based on the data, Dengue gene expression is significantly 

positively associated with the expression of miRNAs in infected cells versus mock-

infected cells. Dengue down-regulated genes are significantly associated with up-

regulated miRNAs. This is evidence that the Dengue gene expression and miRNA 

expression are complementary to one another and suggests that miRNAs and genes are 

being co-regulated during infection. There is no evidence to suggest that the down-

regulated genes are associated with up-regulated miRNAs, but this is because of limiting 

findings to only confirmed target genes and their miRNAs. Making use of another data 

source for miRNAs and their target genes other than TarBase such as prediction based 

databases may be an option for more exploratory avenues. To answer the research 

question from the first aim, combining two different data types does not predict miRNA-

mRNA interactions better than the two independently given the data and the approach. 

This was an unexpected conclusion but not surprising taking into account the data was 

restricted to confirmed miRNA-mRNA relationships. 

 From the second aim, several cellular pathways have been identified based on 

protein-protein interactions of differentially expressed genes in Dengue and West Nile 

independently. Of all comparisons, twenty pathway modules’ miRNA regulators were 

found to be significantly associated in the Dengue and West Nile modules. The answer to 

the second aim’s research question: Do the miRNA regulators shared between the West 
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Nile and Dengue virus regulatory network overlap significantly?, is yes, 8 significant 

miRNA regulators provide a precise list of potential miRNAs that are responsible for 

targeting common Flavivirus pathways changing during infection. We expected that 

miRNAs would significantly overlap between networks but not as defined. These 

miRNAs provide potential in our own validation and pursuit of a direct approach rather 

than discovery for miRNA regulators of the viral response in both Flaviviruses. 

 

Implications of Research: 

For our collaborators (Dr. Jay Nelson’s lab), several forms of experimental data 

had existed for both West Nile and Dengue. What was not known is what all three of the 

data types mean together in terms of complementarity and biological meaning. 

Synchronizing information from miRNA activity, gene expression and RISC-associated 

genes allows for an exciting and new interpretation of viral infection. Connecting miRNA 

expression and gene regulation between viruses of the same genus better predicts what 

regulatory modules are being changed in response to infection. These results provide 

initial predictions for experimental validation and follow-up.  Incorporating the 

experimental data for viral infection can serve as a model for other related virus families 

and guide the development of non-viral drugs and gene therapy for treatment of infected 

individuals in hopes of reducing the number of deaths per year. 
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Appendix: 

 total expectation observation hypergeometric fisher description 

GO:0004984 378 71 1 1 2.45E-29 olfactory receptor 

activity 

GO:0004930 760 143 37 1 4.03E-27 G-protein coupled 

receptor activity 

GO:0050896 543 102 20 1 2.56E-23 response to stimulus 

GO:0007186 913 172 76 1 1.31E-16 G-protein coupled 

receptor signaling 

pathway 

GO:0004871 1037 196 101 1 1.14E-13 signal transducer 

activity 

GO:0030968 82 15 48 3.30E-12 1.32E-12 endoplasmic reticulum 

unfolded protein 

response 

GO:0006987 64 12 39 1.54E-10 7.69E-11 activation of signaling 

protein activity 

involved in unfolded 

protein response 

GO:0005604 86 16 43 7.08E-08 3.81E-08 basement membrane 

GO:0005783 1002 189 266 4.96E-07 4.57E-07 endoplasmic reticulum 

GO:0016021 4599 868 729 1 4.78E-07 integral to membrane 

GO:0005764 190 36 69 8.45E-06 5.60E-06 lysosome 

GO:0005794 975 184 251 2.26E-05 2.14E-05 Golgi apparatus 

GO:0042470 89 17 39 3.42E-05 2.46E-05 melanosome 

GO:0005789 640 121 175 3.54E-05 3.72E-05 endoplasmic reticulum 

membrane 
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GO:0009615 151 28 52 0.00141 0.001259 response to virus 

GO:0008285 361 68 101 0.003968 0.004877 negative regulation of 

cell proliferation 

GO:0000139 427 81 115 0.006358 0.00698 Golgi membrane 

GO:0030433 30 6 15 0.018418 0.016952 ER-associated protein 

catabolic process 

GO:0060337 65 12 25 0.024109 0.024918 type I interferon-

mediated signaling 

pathway 

GO:0002237 9 2 7 0.027497 0.025279 response to molecule of 

bacterial origin 

GO:0004185 5 1 5 0.028809 0.026703 serine-type 

carboxypeptidase 

activity 

GO:0005624 564 106 141 0.021841 0.026703 membrane fraction 

GO:0006488 32 6 15 0.031621 0.030153 dolichol-linked 

oligosaccharide 

biosynthetic process 

GO:0043687 169 32 51 0.029333 0.034212 post-translational 

protein modification 

GO:0005788 104 20 35 0.028809 0.034212 endoplasmic reticulum 

lumen 

GO:0018279 87 16 30 0.039108 0.043522 protein N-linked 

glycosylation via 

asparagine 

Table A-1. Enriched GO ontologies common between Dengue and West Nile gene 
networks  
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GO-ID p-value corr  

p-value 

Description 

48471 6.78E-05 3.14E-02 perinuclear region of cytoplasm 
30433 1.71E-04 3.18E-02 ER-associated protein catabolic process 
70013 5.96E-04 3.18E-02 intracellular organelle lumen 
5793 6.40E-04 3.18E-02 ER-Golgi intermediate compartment 
43233 6.68E-04 3.18E-02 organelle lumen 
31247 7.31E-04 3.18E-02 actin rod assembly 
60904 7.31E-04 3.18E-02 regulation of protein folding in endoplasmic reticu-

lum 
43153 7.31E-04 3.18E-02 entrainment of circadian clock by photoperiod 
31974 7.49E-04 3.18E-02 membrane-enclosed lumen 
16023 9.53E-04 3.18E-02 cytoplasmic membrane-bounded vesicle 
16363 9.69E-04 3.18E-02 nuclear matrix 
31988 1.06E-03 3.18E-02 membrane-bounded vesicle 
31410 1.18E-03 3.18E-02 cytoplasmic vesicle 
34399 1.19E-03 3.18E-02 nuclear periphery 
31982 1.38E-03 3.18E-02 vesicle 
5788 1.43E-03 3.18E-02 endoplasmic reticulum lumen 
21577 1.46E-03 3.18E-02 hindbrain structural organization 
21589 1.46E-03 3.18E-02 cerebellum structural organization 
6987 1.46E-03 3.18E-02 activation of signaling protein activity involved in 

unfolded protein response 
50961 1.46E-03 3.18E-02 detection of temperature stimulus involved in sensory 

perception 
50965 1.46E-03 3.18E-02 detection of temperature stimulus involved in sensory 

perception of pain 
3723 1.51E-03 3.18E-02 RNA binding 
48770 1.99E-03 3.38E-02 pigment granule 
42470 1.99E-03 3.38E-02 melanosome 
51208 2.19E-03 3.38E-02 sequestering of calcium ion 
16048 2.19E-03 3.38E-02 detection of temperature stimulus 
71318 2.19E-03 3.38E-02 cellular response to ATP 
32075 2.19E-03 3.38E-02 positive regulation of nuclease activity 
5736 2.19E-03 3.38E-02 DNA-directed RNA polymerase I complex 
9648 2.19E-03 3.38E-02 photoperiodism 
30662 2.48E-03 3.63E-02 coated vesicle membrane 
12505 2.51E-03 3.63E-02 endomembrane system 
32069 2.92E-03 3.94E-02 regulation of nuclease activity 
42149 2.92E-03 3.94E-02 cellular response to glucose starvation 
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51082 2.98E-03 3.94E-02 unfolded protein binding 
6360 3.65E-03 4.33E-02 transcription from RNA polymerase I promoter 
50951 3.65E-03 4.33E-02 sensory perception of temperature stimulus 
51787 3.65E-03 4.33E-02 misfolded protein binding 
43008 3.65E-03 4.33E-02 ATP-dependent protein binding 
3676 4.13E-03 4.60E-02 nucleic acid binding 
46790 4.38E-03 4.60E-02 virion binding 
4887 4.38E-03 4.60E-02 thyroid hormone receptor activity 
9649 4.38E-03 4.60E-02 entrainment of circadian clock 
43161 4.47E-03 4.60E-02 proteasomal ubiquitin-dependent protein catabolic 

process 
10498 4.47E-03 4.60E-02 proteasomal protein catabolic process 

Table A-2. GO ontologies for Figure 2 overlapping turquoise genes 
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(A)

(B)

Figure A-1.  Dendrogram of Dengue (A) and West Nile (B) virus infections using 

protein-protein interactions of differentially expressed genes from gene expression arrays 

and the Dynamic Tree cut method. Modules are shown in colored bands and the grey 

module represents unassigned genes. 
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Figure A-2. Graphic showing 14 of the 45 GO biological processes statistically enriched 
in overlapping genes from Figure 2 


