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Chapter 1

Introduction

Building machines that can understand spoken and written natural language remains

a hallmark goal of artificial intelligence. Science fiction characters from HAL 9000 to

Star Wars’ C3PO have depicted a future in which machine-human communication is not

only possible, but such interactions are as natural as speaking with another human. For

decades, a vast body of research spanning multiple disciplines is steadily turning these

science fiction dreams into reality. This thesis is one step towards that goal.

Natural language processing (NLP) and natural language understanding (NLU) are

two subfields of artificial intelligence where the research of this thesis is situated. Initial

work in these areas was popularized in the 1950s following Alan Turing’s challenge [172]

to create a computer program that can successfully impersonate a human during a real-

time conversation. Some progress has been made in the past 60 years towards solving the

Turing Test with programs such as ELIZA [177], Jabberwacky [27], and A.L.I.C.E [175],

but such programs achieve their success in superficial ways with very little “understanding”

of human language. Computational models to understand and generate natural language

as well as humans still remains an open problem, and introducing syntax may provide a

vital piece of information to better assist machines in conquering language.

With the advent of the Internet and the availability of large corpora and computing

resources in the 1990s, many in the NLP community have migrated away from hand-

crafted linguistic models of language to statistical models induced from data. Under

this paradigm, model parameters are learned from manually annotated data sets, which

(when made public) are ideal for comparing the utility of competing research methods.

1
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Statistical models trained from large corpora can also decrease development cost: hand-

crafted grammar development can take years to perfect (20 years in the case of Riezler

et al. [142]) compared to just minutes when induced from data. Although corpus creation is

also very resource intensive, once created it provides an experimental spring-board, where

evaluating the utility of a novel idea can be done quickly and efficiently. Statistical models

of natural language have also produced more accurate and robust algorithms for many

NLP applications, including speech recognition [138, 90], machine translation [163, 22],

and question-answering [59]. In this thesis, all of the models we present are trained from

data.

The standard for which a computer is deemed “language proficient” is difficult to

define and often ignored in the NLP community in favor of more attainable goals, such

as accuracy on standardized tasks. Some of these NLP tasks are end-to-end systems,

such as machine translation (translating text from one language to another) and question

answering (answering questions communicated in natural language), while other NLP

tasks are modular in nature and used in a processing pipeline to accumulate disparate

linguistic meta-information of the natural language input for down-stream processing.

Canonical examples of these latter NLP tasks can be seen in Figure 1.1, and include

part-of-speech tagging, noun-phrase chunking, dependency parsing, and constituent parsing.

Each task predicts a form of syntactic structure of the input sentence.

The first task, depicted in Figure 1.1a, is part-of-speech (POS) tagging, which assigns

a single POS tag to each word from a set of pre-defined tags.1 These tags disambiguate

the syntactic and/or morphological properties of each word as many words may serve

different functions in different contexts. For example, the word “box” can be a noun or a

verb depending on how it is used in a sentence. Labeling this information explicitly with

POS tagging can aid other NLP components in processing the text more accurately.

Figure 1.1b shows an example of the NLP task noun-phrase chunking (a form of shallow

parsing), which identifies selected constituent groups but does not specify their internal

structure or relation with other constituents within the sentence. The goal of this task is

1Throughout this thesis will be using the POS and phrase-level tags from the Penn Treebank [114]. A
complete list of tags and tag descriptions can be found in Appendix A
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to extract all noun-phrases from a given sentence, which, like POS tagging, is often am-

biguous given the nature of natural language. Correctly identifying noun phrases can be

critical for larger NLP tasks such as question answering, coreference resolution, and doc-

ument summarization. As we will see in Chapter 5, similar methods have been used in a

parsing pipeline to prune the search for full context-free grammar parsing. Such a pipeline

architecture is appealing because shallow chunking can be performed accurately and ef-

ficiently in linear time, and provide structural cues to prune the more computationally

intensive downstream constituent parsing task.

Figure 1.1c depicts the dependency structure for the example sentence. Dependency

parsing is a form of syntactic analysis that labels directed relationships between two words

in a sentence. The head of the dependency arc determines the syntactic category of the

child; the closer a word is to the root of the tree, the more syntactically important it

typically is. For example, the word “overreacted” is the main verb of the sentence and

drives the subcategorization structure. The bi-lexical arcs in Figure 1.1c can optionally

be labeled with a syntactic function, such as “noun modifier” or “verb’s subject”, but

unlabeled dependency parsing is also a well-studied task as the dependency arcs alone

provide significant syntactic disambiguation.2

Finally, in Figure 1.1d we see the constituent parsing structure for our example sen-

tence. Here, our task is to hierarchically label constituents (groups of words) with their

syntactic function. Prior work incorporating parse structure into machine translation [37]

and semantic role labeling [169, 137] indicate that such hierarchical structure can have

great benefit over shallow labeling techniques like chunking and part-of-speech tagging.

Constituent parsing is also valuable because once a parse tree is established, a number of

alternative linguistic forms can be derived: POS tags, noun-phrase chunks, and depen-

dency relations can all be extracted from a constituent parse tree with minimal effort.3 In

essence, solving the constituent parsing problem simultaneously solves a number of related

2Given the unlabeled dependency arcs and POS tags, labeling the dependency graph with syntactic
relationships is straight-forward and can be done with high accuracy. This is done as a post-processing
step in many dependency parsers [120].

3Projective dependency structure can be extracted from a constituent tree by way of head-percolation
rules as a post-processing step. For example, see [85].
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NLP tasks. What makes constituent parsing formidable is that the number of possible

derivations is exponential in the length of the sentence. Efficiently finding the most likely

constituent parse tree from this exponential set is the central theme of this thesis.

The algorithms we investigate are of wide utility to a range of important NLP ap-

plications. For example, machine translation decoding with hierarchical models centrally

involves parsing the source language string with a synchronous context-free grammar

[183, 52]. Context-free parsing is also used as a backbone to prune higher-complexity

grammar formalisms, such as tree adjoining grammar [75] and head driven phrase struc-

ture grammar [168]4. Within the biological literature, weighted grammars have been used

to successfully model the hierarchical folding patterns of protein [79]. The algorithms we

present in this thesis will lead to a direct efficiency improvement in each of these applica-

tions. More generally, any NLP pipeline where context-free parsing is the computational

bottleneck stands to gain significant improvement in the overall runtime of the system. As

we will discuss in Section 1.1 and demonstrate in Chapter 4, exhaustive parsing with large

grammars is currently prohibitive for real-time applications, such as re-ranking automatic

speech recognition results, or sentence boundary detection and punctuation prediction

over large word lattices. The methods we will present in this thesis increase the efficiency

of high-accuracy context-free parsing by up to three orders of magnitude over the CYK

algorithm, and are over an order of magnitude faster than state-of-the-art efficient search

methods, with no loss in accuracy, allowing rich syntactic information to be incorporated

into a number of NLP applications that were previously limited by computational speed.

1.1 Problem Statement

Since the inception of computational approaches to constituent-based parsing, both gram-

mars and search methods to find accurate parse trees have rapidly co-evolved. When

parsing with relatively small grammars, chart parsing with top-down filtering (as in the

Pearl parser [110]), or pruned shift-reduce parsing (as in the Marcus parser [113], the

4See Appendix B for more detail about these grammar formalisms and their relation to context-free
grammars.
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Core Language Engine [3], or the Fiddich parser [78]), were sufficient to retrieve syntactic

analyses in a timely fashion. But within the past 15 years, probabilistic context-free gram-

mars have grown to become more accurate and robust, increasing from a few thousand

productions to several million (or larger) via linguistically inspired nonterminal annota-

tion [86, 102], lexicalization [46, 32], and latent-variable techniques [116, 130] (we discuss

the evolution of context-free grammars in detail in Section 2.9). The resulting distribu-

tion over these large grammars is more sensitive to contextual factors, increasing accuracy

from approximately 70% to 90% on standard newswire parsing tasks. Unfortunately, this

gain in accuracy comes at the cost of parsing speed. Standard dynamic programming algo-

rithms, such as the CYK algorithm [43], reduce the search from exponential to polynomial

complexity, but even with this reduction in complexity, parsing is still too slow, requir-

ing as much as one minute per sentence [17]. Deterministic algorithms for dependency

parsing exist that can extract syntactic dependency structure very quickly [124], but this

approach is often undesirable as constituent parsers have been found to be more accurate

and more adaptable to new domains [131]. Furthermore, some applications, like machine

translation, rely on substring-oriented processing, which is not available with dependency

parse structure.

In order to apply constituent parsing to real-time applications or web-scale text with

high accuracy, efficient search though the solution space created by these large grammars

is vital. Present-day context-free parsers, such as the parsers of Collins [46], Charniak

[32], and Petrov and Klein [132], all employ approximate inference techniques – such as

best-first, beam, and coarse-to-fine search – to find reasonable solutions quickly (we dis-

cuss current methods for efficient inference in Chapter 3). Efficient search methods have

typically played second fiddle to accuracy gains; we observe that the prevailing paradigm

for context-free parsing research is to (1) create a high-accuracy grammar, and then (2)

apply algorithms to search the solution space efficiently in hopes that accuracy isn’t ad-

versely affected.5 Leveraging the efficient search methods listed above, these three parsers

perform inference at between 20 and 100 words per second. Although much faster than

5Step (1 1
2
) is to gloat about your 0.2 accuracy improvement over prior work at ACL.
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pure dynamic programming, these speeds are orders of magnitude slower than determinis-

tic shift-reduce parsers for dependency or low-accuracy constituent parsing [93, 124], and

we believe that inference for high-accuracy constituent parsing has significant room for

improvement.

Furthermore, current methods for efficient inference are sometimes approached in a

grammar-specific way. For example, coarse-to-fine pruning requires crafting a coarse gram-

mar from the target (fine) grammar such that it is both fast to parse with and effective for

pruning. Creating such a grammar is a non-trivial problem, driven in past work by gram-

mar knowledge and implementation convenience. Goodman [70] suggests using a coarse

grammar consisting of treebank non-terminals, such as np and vp, and then non-terminals

augmented with head-word information for the more accurate second-pass target gram-

mar. A similar approach is followed by Charniak [32] and Petrov and Klein [132], but

customized to their respective grammar representations. We find that grammar-specific

efficient search methods require unnecessary domain-specific or grammar-specific knowl-

edge and we aim in this thesis to propose new methods that are entirely grammar agnostic

and applicable to any weighted context-free grammar without customization.

A third problem we note is that context-free models have largely improved due to lexi-

cal (or lexical class) conditioning information, yet efficient search methods rarely leverage

this resource. Prior pruning work has instead relied on comparing local competitors (beam-

search) or the accuracy of an impoverished PCFG model (coarse-to-fine). Neither of these

techniques take advantage of the lexical information present in the input sentence, such as

subcategorization preferences or phrasal boundary cues, which can give vital indications

about the final parse structure. It is our hypothesis that leveraging this lexical informa-

tion prior-to and during the search for the optimal parse tree will add a new dimension

of knowledge to the search, allowing portions of the search space to be pruned with high

confidence. In addition, such methods would be orthogonal to prior pruning work and,

thus, efficiency gains should be additive.

In summary, this thesis will present novel efficient inference algorithms that both prune

and prioritize the search space, such that high-accuracy constituent parsing is an order of

magnitude faster than the current state-of-the art search algorithms, and adhering to the
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following aims:

• Applicable to all PCFG models, without grammar-specific knowledge;

• Directly condition the search on long-distance lexical information, opposed to inher-

iting it through the grammar;

• Present orthogonal approaches to current methods for cumulative efficiency gains;

• Efficiency is increased without compromising accuracy.

1.2 Thesis Overview

We address each of these above-mentioned aims in the remainder of this thesis. In Chap-

ter 2 we introduce notation, define the context-free grammar formalism, and discuss its

strengths and weaknesses compared to alternative grammar formalisms. We also discuss

the practical aspects of constituent parsing, including induction of a grammar from a tree-

bank, model smoothing, and the evolution of grammar induction methods over the past

two decades. In Chapter 3 we review current methods for efficient inference, including

graph-based search methods, coarse-to-fine search, and pipeline-constrained search, and

how they each relate to the efficient inference methods we present in this thesis. Metrics

for evaluating efficient search are also discussed, laying the foundation for comparisons of

prior work with the methods we present.

Chapters 4 through 7 encapsulate the novel contributions of this thesis. Chapter 4

presents multiple strategies for prioritizing the search space within graph-based parsing

architectures, building on the prior work of Charniak et al. [33]. We present an extension of

this prior work in addition to a novel prioritization method conditioned on expected lexical

boundary cues surrounding each constituent, and compare the effectiveness of each within

best-first and beam-search parsers. Chapter 5 extends work of Roark and Hollingshead

[145] to close portions of the dynamic programming chart using finite-state tagging models.

We complement this work by restricting the population of span-1 chart cells, providing a

framework for which the entire chart can be constrained. Results applying such constraints

on left- and right-binarized grammars for English and Chinese are also presented. Chapter
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6 is inspired by the prioritization methods of Chapter 4 and chart-constraining methods

of Chapter 5. Here, we introduce two classifications methods to constrain individual cells

in the dynamic programming chart, opposed to closing all cells starting or ending at a

word position (i.e., closing full diagonals in the chart) as is done in [145]. Our approach to

constraining the dynamic programming chart can alternatively be seen as predicting the

unlabeled constituent structure of the final parse tree. We conclude Chapter 6 assuming a

parsing architecture where constituents are prioritized at the span level and pruned with

a beam-search, and present a novel method to adapt the beam-search tuning parameters

to span-specific thresholds.

Chapter 7 unites the efficient search methods presented in Chapters 4, 5, and 6 and

evaluates their additive gains. Results are presented for community-standard parsing tasks

in English, Chinese, and German with decoding times over 1,500 words per second — over

12x faster than multi-level coarse to fine — at state-of-the-art accuracy levels. The source

code for all efficient search methods we present is publicly available to facilitate comparison

and replication of results. We conclude Chapter 7 with a synopsis of the our results and

a discussion of the additional efficient parsing optimizations present in our parser.

This thesis is a culmination and extension of previously published work. The relevant

publications by the author in collaboration with colleagues can be found in [16, 17, 18,

56, 57, 144].

1.3 Thesis Contributions

The seminal contributions of this thesis include four grammar-agnostic methods to sig-

nificantly increase parsing efficiency with large context-free grammars. These methods

include (1) extensions of constituent boundary prioritization, (2) finite-state unary con-

straints, (3) unlabeled constituent prediction, and (4) beam-width prediction. To our

knowledge, these methods have produced the fastest high-accuracy context-free parsing

speeds by over a factor of ten on standard English, Chinese, and German corpora. Specific

contributions from these methods include:

1. The use of best-first parsing techniques with very large grammars in a way that
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eliminates edge comparability issues by comparing only edges of the same span;

2. A novel decomposition of the Charniak and Caraballo boundary figure-of-merit [25]

for efficient estimation of the outside probability heuristic;

3. The first comparison of best-first and beam-search parsing across numerous gram-

mars and prioritization functions;

4. A finite-state tagging approach to prune unary production in span-1 chart cells,

complementing prior work by Roark and Hollingshead [145] to prune all cells in the

dynamic programming chart;

5. The first extensive evaluation of chart constraints to both left- and right-binarized

grammars, parsing Chinese, and integration with other efficient inference methods

such as best-first and coarse-to-fine pruning;

6. A generalization of chart constraints [145] to prune individual chart cells, opposed

to diagonals in the chart;

7. An adaptive algorithm to predict the beam-width during bottom-up beam-search

chart parsing, incorporating an asymmetric loss function to control for the imbalance

between over- and under-predicting the true value;

8. Introduction of efficient inference methods that do not rely on reference transcrip-

tions, providing a framework for optimal accuracy/efficiency tuning on domains with

no labeled corpora;

9. The fastest reported parsing time for high-accuracy English, Chinese, and German

constituent parsing, at over 1,500 words per second with no accuracy degradation

compared to the maximum likelihood solution, and over an order of magnitude faster

than multi-level coarse-to-fine pruning [132].



Chapter 2

Weighted Context-Free Grammars and

Parsing Preliminaries

People are remarkable at distinguishing syntactically valid sentences from those that are

not. For example, consider the following:

1. The Swiss Alps are not for the faint of heart.

2. The Swiss Alps not are the for faint heart of.

3. Traveling Zürich by train is.

4. Warm hats is wonderful.

Only the first sentence above is grammatical. Even without formal training, nearly all

English speakers know something is amiss when a sentence incorrectly ends on a linking

verb or has improper agreement. How the human mind determines the grammaticality

of language continues to be an open question, and also a topic beyond the scope of this

thesis. What we are concerned with here are formal systems of linguistic theory and

their relevance to NLP, including representative power, complexity of inference, model

construction effort, and parsing performance on well-defined tasks. Grammar formalisms

provide a basis for empirical evaluation of competing linguistic theories, each with their

own strengths and weaknesses for specific NLP objectives.

11
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2.1 The Chomsky Language Hierarchy

In 1956, Noam Chomsky presented a hierarchy of formal languages, describing generative

power of each [38]. Levels of the hierarchy are characterized by a single rewrite rule,

specifying the set of allowed terminals and non-terminals on the rule’s left-hand and

right-hand side. A language L is said to be of type X (i.e., context-free) if all strings in

the language can be generated by rewrite rules of type X. Each level of the hierarchy is

a proper subset of the next highest, more expressive level (i.e., all regular languages are

context-free, but not all context-free languages are regular).

The Chomsky Hierarchy is summarized in Table 2.1, where A is a single non-terminal,

B is 0 or 1 non-terminals, τ is a sequence of 0 or more terminals, α and β are sequences

of 0 or more terminals and non-terminals, and γ is a sequence of 1 or more terminals and

non-terminals. We also note the complexity of inference for each formalism with respect

to the length of the string, N , and recognize that the gains of additional expressive power

comes with the cost of a significant increase in worst-case efficiency.

Language Rewrite Inference

Regular A→ τB O(N)

Context-Free A→ β O(N3)

Context-Sensitive αAβ → αγβ NP-Complete

Recursively Enumerable α→ β Undecidable

Table 2.1: The Chomsky Language Hierarchy.

In 1985, Aravind Joshi introduced the notion of mildly context-sensitive languages

[89]. As the name implies, this formalism lives between context-free and context-sensitive

languages in the original Chomsky hierarchy. Mildly context-sensitive languages are mo-

tivated by favorable linguistic and computational properties, and are defined as:

• Containing all context-free languages;

• Admitting limited cross-serial dependencies;

• All languages are parsable in polynomial time;
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• All languages have constant growth.

Grammar formalisms such as Tree Adjoining Grammar and Combinatorial Categorial

Grammar are known to be mildly context-sensitive, while Lexical Functional Grammar

and Head-driven Phrase Structure Grammar are fully context-sensitive. We discuss the

modeling advantages of mildly and fully context-sensitive languages in Section 2.3.

2.2 Context-Free Grammar

In this thesis we focus on the Context-Free Grammar (CFG) formalism.1 CFGs are a

natural formalism to represent the constituency behavior of language, where a constituent

is defined as a sequential group of words functioning as a unit. For example, consider the

sentence in Figure 1.1d. The string “the real-estate market” functions as a complete unit

in the sense that it must remain together if moved in the sentence (i.e., “The real-estate

market, as usual, had overreacted.”) and the sentence is still syntactically valid if the

phrase is replaced by a alternative, but syntactically equivalent unit (i.e., “As usual, the

flesh-eating robot cyclops had overreacted.”). Within the formalisms we consider in this

thesis, constituents are hierarchically organized and labeled with their syntactic function,

and, as discussed in Chapter 1, are useful to many NLP applications.

Context-free grammars encode the set of grammatically valid constituent structures.

For example

s→ np vp

np→ dt nn nn

pp→ in adjp

dt→ the

nn→ market

. . .

where the production np→ dt nn nn indicates that a determiner (dt) followed by two

nouns (nn) can be grouped together to form a noun phrase (np). The remainder of this

1Context-Free Grammars are also known as Phrase Structure Grammars or Backus-Naur Form, after
the two scientists who independently discovered the formalisms soon after Noam Chomsky [5].
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chapter will present a formal definition of CFGs and probabilistic CFGs, and situate the

representative power of CFGs with respect to other formal language families.

A context-free grammar (CFG) is a set of production rules2 that describe how to

form syntactically valid sentences in a language. It is formally defined by a quadtuple

G = (V, T, S†, P ) where:

• V is a finite set of non-terminals, each representing a different type of phrase or

clause in the sentence (e.g., np, vp, . . . );

• T is a finite set of terminals, disjoint from V . This is the lexicon of the language

(e.g., market, the, usual, . . . );

• S† is a unique start symbol from V , of which all syntactically valid sentences are

derived. In this thesis we use the symbol root;

• P is a set of productions of the form A→ β, where A ∈ V and β ∈ (V ∪ T )∗. Note

that β may be the empty set (∅).

In addition, we define a derivation A ⇒ β as a sequence of one or more applications

of context-free rules, starting at non-terminals A and ending with a string (order lists

of of terminals), β, where context-free rules are applied by replacing the symbol on the

left-hand side of the production with those on the right-hand side. A language L is said

to be context-free if and only if all (possibly infinite) sentences in L can be generated by

a context-free grammar G from the start symbol S†:

L = {τ |τ ∈ T ∗ and S† ⇒ τ} (2.1)

A CFG is defined as proper if the following conditions hold:

• All non-terminals A ∈ V are derivable from S†;

• For all non-terminals A ∈ V , there exists some terminal t ∈ T such that A derives t.

2Also known as rewrite rules, grammar rules, derivation rules, or simply productions.
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All CFGs used in this thesis are induced from treebanks. Because each non-terminal in

the treebank is observed in a tree rooted by S† and derives some terminal symbol t ∈ T ,

all CFGs we consider are proper [36].

2.3 Limitations of CFGs

There are a number of limitations to the CFG formalism described above for capturing the

syntax of language. One shortcoming is that CFGs are not lexicalized. Pertinent syntactic

information, such as number agreement or subcategorization is dependent on the specific

lexical items of the sentence, but this information is not explicitly captured by the rewrite

rules of the grammar. For example, consider the following context-free grammar:

s→ np vp np

np→ Germans

np→ bratwurst

vp→ love

vp→ put

The grammar above derives both “Germans love bratwurst” and “Germans put bratwurst”,

considering them equally valid sentence in the language. Although transformations exist

to incorporate lexical information into CFGs (see Section 2.9), alternative grammar for-

malisms such as lexical functional grammars and head-drive phrase structure grammars

account for lexicalization directly.

Another concern when considering probabilistic CFGs (PCFGs; see Section 2.4 for

a formal definition) is that, when they are used as a basis for a probabilistic grammar,

the formalism encodes a bias towards smaller trees. This is because the probability of a

tree is the product of all production rules used to generate the tree. As all production

probabilities are less than one, the greater the number of production rules required to

derive a sentence, the less probable the overall parse tree is given the model. In addition,

it is irrelevant how the productions are ordered in the tree: the derivation process does

not affect the probability of the parse tree, only the set of productions used. But in

natural language there is no direct correlation between the size of the parse tree and the
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grammaticallity of the sentence. Hence, it has been argued that PCFGs are lacking when

used as the basis for a probabilistic model natural language syntax [112].

Perhaps the most limiting attribute of the CFG formalism from a linguistic perspec-

tive is that they are unable to encode aspects of natural languages that are known to be

non-context-free, such as as cross-serial dependencies in Dutch and Swiss-German [159]

and reduplication in Bambara [50]. This finding, coupled with other limitations discussed

above, has caused some computational linguists to argue that context-free grammars are

not the proper formalism to capture the syntax of language [2]. Alternative grammar

formalisms have been proposed to specifically address these concerns, including Tree Ad-

joining Grammar, Combinatorial Categorial Grammar, Lexical Functional Grammar, and

Head-driven Phrase Structure Grammar. Table 2.2 summarize two attributes of each for-

malism: its language class, which determines the expressive power of the formalisms, and

the upper bound on exact inference. We describe each of these methods in Appendix A,

including a brief discussion of their relationship to our work.

Grammar Formalism Language Class Inference

Constituent Phrase Structure Context-Free O(N3)

Tree Adjoining Grammar Mildly Context-Sensitive O(N5)1

Combinatorial Categorial Grammar Mildly Context-Sensitive O(N6)

Lexical Functional Grammar Context-Sensitive O(2N )

Head-driven Phrase Structure Grammar Context-Sensitive O(2N )

Table 2.2: A summary of grammar formalisms.

In this thesis we study the efficiency of inference with context-free grammars, as op-

posed to mildly or fully context-sensitive languages, for three reasons. First, there are

well-known O(N3) parsing algorithms for context-free grammars, providing very efficient

baseline performance when using this formalisms. Even with these efficiencies, O(N3)

parsing is still slow for long sentences and complexity of O(N5) or higher with context-

sensitive grammars presents significant problems. Second, the advantages of context-

sensitive formalisms, such as the ability to represent cross-serial dependencies, are not of

1Tree Adjoining Grammar can be parsed in O(N4) if the grammar is splittable [61].
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large practical benefit. These constructions are often rare or nonexistent depending on

the language or domain being processed, and modifications exist to augment CFG pars-

ing algorithms to handle a subset of cross-serial dependencies, which do not increase the

worst-case parsing complexity [174]. Finally, since the development of large treebanks

(i.e., The Penn English and Chinese treebanks [114, 180]), PCFG models have frequently

outperformed alternative formalisms on standardized constituent parsing tasks, despite

shortcoming such as the bias towards shorter derivations. Indeed, the Collins [46], Char-

niak [32], and Petrov [132] parsers, well known for high-accuracy inference, have all been

based on context-free grammars. Notable exceptions include Combinatorial Categorial

Grammar parsing by [41], and more recently, splittable Tree Adjoining Grammar parsing

by Carreras et al. [28]. The accuracy of the latter approach is very competitive with

state-of-the-art PCFG parsers, although the upper bound on inference is still O(N4).

We also believe that less expressive formalisms, such as finite-state approximations of

phrase structure grammars [127], or deterministic classification parsing algorithms [150]

– both which run in linear time – have serious promise for future research in efficient

constituent parsing. But for this present work, we concentrate on PCFG models due to

their superior accuracy and adaptability to new domains [131].

2.4 Probabilistic Context-Free Grammar

An unweighted context-free grammar is able to distinguish the grammaticality of a sen-

tence: a boolean value indicating if the sentence is derivable from the start symbol by the

CFG production rules. In practice, there is often more than one valid derivation according

to the grammar. In fact, the number of possible derivations is exponential in the length

of the string. In these cases, it is beneficial to know which derivation is most likely.

A probabilistic context-free grammar (PCFG) can be used to assign a probability to

each derivation (parse tree) in the language. A PCFG is defined as the tuple (V, T, S†, P, ρ),

where V, T, S†, and P follow the CFG formalism of Section 2.2, and ρ assigns a probability

to each production in P . Probabilities from ρ are often stored with the productions

themselves when the grammar is explicit, as can been seen in Table 2.3. Note that this
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1.0 s→ np vp np

0.2 np→ Germans

0.8 np→ bratwurst

0.5 vp→ love

0.5 vp→ put

Table 2.3: Toy example of a probabilistic context-free grammar.

example grammar is a PCFG as it is conditionally normalized such that
∑

β ρ(A→ β) = 1,

but such normalization is not required by definition for arbitrary weighted context-free

grammars.

Given sentence s and derivation t produced with a PCFG, we compute the joint proba-

bility of the derivation and the sentence by multiplying the set of production probabilities:

P(t, s) =
∏

A→β∈t
ρ(A→ β) (2.2)

Applying Bayes’ Rule and noting that P(s|t) = 1 because a parse tree t determines the

sentence s, we see that the joint probability of Equation 2.2 is identical to the probability

of the tree t:

P(t, s) = P(s|t)P(t) = P(t) (2.3)

Using the grammar of Table 2.3, the probability of the (only) derivation for “Germans

love bratwurst” is 1.0 x 0.2 x 0.5 x 0.8 = 0.08. Note that the order of the productions

is not considered in this equation. Two derivations containing the same productions but

in a different configuration – such as “Germans love bratwurst” and “bratwurst loves

Germans” will have the same probability.

2.5 Treebanks and PCFG Induction

Treebanks have revolutionized computational approaches to syntax. Before the availability

of these large, annotated corpora, linguists built grammars by hand requiring months –

sometimes years – of labor [44]. Due to the required effort, hand-crafted grammars were
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often tailored to specific domains and unable to handle ill-formed or unexpected strings.

For example, Black et. al developed a grammar over three years for sentences from a

computer manual domain and restricted to a vocabulary of 3000 words, but were still

unable to analyze 4% of unseen sentences in the same domain [11]. With the recent

ability to induce a grammar from data, advancements in PCFG modeling has rapidly

accelerated.

Assigning a probability or score to each production in a CFG has been done in a vari-

ety of ways including maximum likelihood estimation [30], maximum-entropy estimation

[136], neural networks [76], and discriminative training [134]. The equation for maximum

likelihood estimation is defined below. Given all productions extracted from a treebank,

the probability of non-terminal A producing β is equal to the normalized frequency of

occurrence:

P(A→ β) =
count(A→ β)∑
γ count(A→ γ)

=
count(A→ β)

count(A)
(2.4)

The process of treebank creation is itself very time consuming and error prone. Consis-

tency is not always maintained across annotaters or across time, but grammar induction

over a large corpus helps alleviate outlying conditions. Those creating treebanks must

also decide what syntactic information to encode, whether it be constituent or depen-

dency structure, specific grammatical categories such as tense, aspect, or gender, or sub-

categorization information. The second and third releases of the English Penn Treebank

[115] annotate forms of “deep” structure such as predicate/argument information. But

in practice, much of the “deep” linguistic information embedded in the Penn treebank is

removed before training or testing with CFG constituent parsers. The following is a list of

modifications commonly applied before grammar induction, although this process varies

among researchers:

1. Removal of empty nodes;

2. Striping functional tags and cross-referencing annotations;

3. Affixing a root unary production to the root symbol of the original tree;
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(b) Transformed parse tree

Figure 2.1: A parse with (a) the original WSJ treebank annotations and structure, and

(b) the same tree after processing.

4. Removing X → X unary productions for all non-terminals X;

5. Collapsing unary chains to a single (possibly composite) unary production [99];

6. Introducing new categories such as aux [31];

7. Collapsing of categories such as prt and advp [46];

8. Removal of quotation marks [14].

One motivation for the removal of empty nodes is that bottom-up parsers – a popular

parsing framework – do not easily support arbitrary insertion. Function tag removal or

collapsing multiple categories can be seen as a form of smoothing, while cross-referencing

annotations are sentence specific and have no generalization power without additional

processing. Unary transforms, such as (3) and (4) are primarily motivated by efficient
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processing and implementation simplicity. Because empty nodes and function tags are

not incorporated into the PCFG, parsing with grammars induced from these modified

treebanks does not provide this deeper level of syntactic analysis. Some research has been

done in past 10 years to recover empty categories, traces, and function tags from the

output of bottom-up CFG parsers [87, 54, 24], and such processes are equally applicable

to the output of the efficient inference methods we will present in Chapters 4 through 6.

In this thesis we apply transforms 1-3 above and otherwise leave the treebank in its

original form. An example of applying transforms 1-3 to a treebank tree can be seen

in Figure 2.1. These tree transformations have a large impact on the number and type

of productions in the treebank, especially unary productions, which we discuss more in

Chapter 5.

2.6 Dynamic Programming and CYK Parsing

In this section we examine the CYK dynamic programming algorithm, which will serve as

the baseline for efficient parsing experiments throughout this thesis. The CYK algorithm

requires a binarized grammar, which can either be done as a pre-processing step (Chomsky

Normal Form) or as an on-line process (dotted rules). We discuss binarization in Section

2.7.

Formally defined, the optimization goal of constituent parsing is, given an input sen-

tence s and a model θ over all possible syntactic trees, find the optimal parse tree t∗ from

among the set of all trees T :

t∗ = argmax
t∈T

P (t|s; θ) (2.5)

If the model θ is a PCFG, we can rewrite equation 2.5 using Bayes’ Rule, Equation 2.3,

and the observation that P(s) is constant for a given sentence and safely ignored during

the argmax operation:
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t∗ = argmax
t∈T

P(t|s) (2.6)

= argmax
t∈T

P(t, s)

P(s)
(2.7)

= argmax
t∈T

P(t, s) (2.8)

= argmax
t∈T

P(t) (2.9)

= argmax
t∈T

∏
A→β∈t

ρ(A→ β) (2.10)

Finding t∗ is a non-trivial problem as the number of possible trees is exponential in the

size of the sentence, and modern high-accuracy grammars induced from treebanks often

contain tens of thousands – even millions – of productions. In order to parse sentences

of reasonable length, efficient search through this space of exponential tree is essential.

Alternative optimization objectives have also been applied, such as Goodman’s max-recall

decoding [71] and Petrov’s max-rule decoding [132] that more directly optimize for the

common evaluation criteria of labeled F1. Both of these methods are run during a third

pass over the dynamic programming chart (following the standard inside/outside passes).

Although an analysis of various decoding methods is outside the scope of this thesis, we do

note that the efficient search techniques we will present improve the efficiency of computing

the initial inside scores of the packed forest. This indirectly prunes the subsequent outside

and final decoding passes and will thus improve the overall efficiency of context-free parsing

despite the optimization criteria used.

Dynamic programming methods to perform exact inference, such as the CKY algo-

rithm [43, 95, 182], take advantage of the large overlap in sub-structure shared between

the exponential number of solutions. A key efficiency of these algorithms rests on the

assumption that every grammar production has at most two children on the right-hand

side. It has been shown that any CFG can go through a process known as binarization to

transform the original grammar into a grammar with at most two right-hand side children,

while still being strongly equivalent (generating the same grammatical structure) [39, 83].

Given that the number of possible deviations (parse trees) is exponential in the sentence

length, finding the highest scoring derivation by enumerating each possible tree is not
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(b) Left-binarized parse tree

(c) Dynamic programming chart with binarized constituents

Figure 2.2: Parse tree and corresponding dynamic programming chart. Non-terminals

preceded with the symbol ‘@’ are created through binarization. Each cell in the chart

spans a unique substring of the input sentence.

practical. Doing this efficiently requires two key observations. First, although no one

derivation will be identical to another, many derivations will share identical sub-structure.
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For example, two parse trees may differ on prepositional phrase attachment, but contain

the same internal noun-phrase structure. The second observation is that probability of the

derivation can be decomposed into a product of its parts. Therefore, if multiple derivations

share identical sub-structure we only need to compute the probability of each sub-structure

once to be used by multiple trees. Because the complex problem of scoring all possible

trees can be broken down into smaller subtasks, context-free parsing can leverage dynamic

programming to find the highest scoring tree efficiency.

Dynamic programming for context-free inference generally makes use of a chart struc-

ture, as shown in Figure 2.2c. Each word w1 . . . wN of the length-N input sentence forms

the base of the chart. Each cell in the chart represents a collection of possible constituents

covering a specific substring, which is identified by the indices of the first and last words

of the substring. Thus, the cell identified with (b, e) will contain possible constituents

spanning the substring wb . . . we, where the span of a constituent or a chart cell is defined

as the number of words it covers, or e− b+ 1. In this thesis we will refer to span-1 chart

cells, meaning all chart cells covering a single word (the bottom-most row of cells in Figure

2.2c). Context-free inference has cubic complexity in the length of the string N , due to

the O(N2) number of chart cells and O(N) possible child configurations at each cell. As

an example, a cell spanning (b, e) must consider all possible configurations of two child

constituents (child cells) that span a proper prefix (b, m) and a proper suffix (m+1, e),

where b ≤ m < e leading to O(N) possible midpoints.

Context-free inference can be preformed bottom-up (building constituents from words

to the start symbol S†), top-down (expanding constituents from S† until they derive the

target sentence), or some combination thereof (e.g., left-corner [143]). The first two traver-

sal methods restrict the search in opposing ways by initially enforcing possible derivations

to conform to the lexical input (bottom-up) or global phrase structure (top-down). Note

that this traversal is independent of a depth-first verses breadth-first search order; we can

use either search strategy with bottom-up or top-down parsing [118]. For simplicity, we

will assume a bottom-up breadth-first derivation unless otherwise stated.

Given this assumption, the intuition of the CYK algorithm is that it builds longer-

span constituents by combining smaller span constituents, as allowed by productions in a
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Algorithm 1 Cyk(w1 . . . wn, G = (V, T, S†, P, ρ))

Input:

w1 . . . wn: Input sentence

G: PCFG in Chomsky Normal Form

Output:

α: Viterbi-max score for all non-terminals over every span

1: for s = 1 to n do . Span width: bottom-up traversal

2: for b = 1 to n− s+ 1 do . Begin word position

3: e← b+s−1 . End word position

4: for Ai ∈ V do

5: if s = 1 then . Special case for lexical productions

6: αi(b, e)← ρ(Ai → wb)

7: else

8: αi(b, e)← max
b≤m<e

(
max
j,k

ρ(Ai → Aj Ak) αj(b,m) αk(m+ 1, e)

)
9: for Ai ∈ V do . Add unary productions

10: υi(b, e)← max

(
αi(b, e) , max

j
ρ(Ai → Aj) αj(b, e)

)
11: α(b, e)← υ(b, e)

12: return α

context-free grammar. If we have a grammar production A → B C ∈ P , a completed B

entry in chart cell (b,m) and a completed C entry in chart cell (m+1,e), we can place a

completed A entry in chart cell (b, e). Such a chart cell entry is sometimes called an edge

and can be represented by the tuple 〈A→ B C, b,m, e〉.

Algorithm 1 contains pseudocode for the CYK algorithm, where the context-free gram-

mar G is assumed to be binarized. The function ρ maps each grammar production in P to

a probability. Lines 1-3 iterate over all O(N2) chart cells in a bottom-up traversal. Line 6

initializes span-1 cells with all possible part-of-speech tags, and line 8 introduces the cubic

complexity of the algorithm: maximization over all midpoints m, which is O(N). The

variable α stores the Viterbi-max score for each non-terminal Ai ∈ V at each cell (b, e),

representing the span’s most probable derivation rooted in Ai. Backpointers indicating

which argument(s) maximize each αi(b, e) can be optionally recorded to efficiently extract

the maximum likelihood solution at the end of inference, but we omit these for clarity;

they are easily recoverable by storing the argmax for each max in lines 8 and 10.
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We have also included pseudocode in Algorithm 1 to process unary productions in lines

9-10. Unary processing is a necessary step to recover the gold standard trees of the Penn

treebanks, but it is often ignored in the presentation of the CYK algorithm. Due to this,

implementation details sometimes differ from parser to parser. In Algorithm 1 we present

a simplified version of unary processing that only allows unary chains of length one per

span (excluding lexical productions). This approach is efficient and representative of the

observed unary productions in the treebank, and can be iterated for longer unary chains

as needed.3 Note that line 10 uses the temporary variable υ to store the accumulated

Viterbi-max scores α. This temporary variable is necessary due to the iterative nature in

which we update α. If we were to write the result of line 10 directly to αi(b, e), then the

subsequent maximization of αi+1(b, e) would use an unstable version of α, some of which

would already be updated with unary productions, and some which would not.

Computing the Viterbi-max scores (α) is sufficient when we are interested in the 1-best

derivation, but Algorithm 1 can be easily modified to compute the inside probability if

needed. The inside pass of the inside/outside algorithm is identical to the CYK algorithm

we have presented modulo changing the “max” operators in lines 8 and 10 to a sum.

This change accumulates all probability mass for all possible derivations of non-terminal

Ai covering span (b, e). When combined with the outside algorithm, the inside/outside

scores are useful for a number of tasks, including unsupervised grammar induction, pruning

(i.e., coarse-to-fine pruning) [70], or minimum Bayes risk decoding [71, 167].

2.7 Chomsky Normal Form and Dotted Rules

A key feature to the efficiency of the CYK algorithm is that all productions in the grammar

are assumed to have no more than two right-hand side children. Rather than trying

to combine an arbitrary number of smaller substrings (child cells), the CYK algorithm

exploits shared structure between rules and only needs to consider pairwise combination.

To conform to this requirement, incomplete edges are needed to represent that further

3The beam-search and agenda-based parsers presented in Chapters 4-6 allow unary chains of arbitrary
length.
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combination is required to achieve a complete edge. This can either be performed in

advance, e.g., by transforming a grammar into Chomsky Normal Form with “incomplete”

non-terminals, or performed on the fly by creating incomplete edges can be represented

through so-called dotted rules. Binarization via dotted rules is exemplified in the Earley

algorithm [58]. For example, if we have a rule production A→ B C D ∈ P , a completed

B entry in chart cell (b,m1) and a completed C entry in chart cell (m1+1,m2), then we

can place an incomplete edge A → B C · D in chart cell (b,m2). The dot signifies the

division between what has already been combined (left of the dot), and what remains to

be combined. Then, if we have an incomplete edge A→ B C ·D in chart cell (b,m2) and

a complete D in cell (m2+1, e), we can place a completed A entry in chart cell (b, e).

The second way to binarize the grammar is the off-line transformation into Chomsky

Normal Form (CNF), which converts rules with more than two children on the right-hand

side into multiple binary rules. Formally defined, a context-free grammar is in Chomsky

Normal form if and only if all productions p ∈ P conform to one of the following:

• A→ B C

• A→ a

where A,B,and C are non-terminals in V and a is a terminal in T .

When transforming a grammar into CNF, composite non-terminals are created to

represent incomplete constituents, i.e., those edges that require further combination to be

made complete.4 For example, if we have the production A→ B C D in the context-free

grammar, then a new composite non-terminal would be created, e.g., @A:BC, and two

binary rules would replace the previous ternary rule: A→ @A:BC D and @A:BC → B C.

The @A:BC non-terminal represents part of a rule expansion that needs to be combined

with something else to produce a complete non-terminal from the original set of non-

terminals.5 A visual example can be seen in the following figure.

4In this section we assume that edges are extended from left-to-right, which requires a left-binarization
of the grammar, but everything carries over straightforwardly to the right-binarized case.

5In this example, the symbol ‘@’ indicates that the new non-terminal is incomplete, and the symbol ‘:’
separates the original parent non-terminal from the children.
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Alternative binarization methods, such as head binarization [102], compact binariza-

tion [157], and learned (or “better”) binarization [164] have shown efficiency advantages

over standard left or right methods. In this thesis we focus on left and right binarization

only. It is our hypothesis that these alterative binarization methods see their largest ef-

ficiency gains when applied to exhaustive CYK parsing, and the relative speedup when

combined with the inference techniques we present in this thesis would be marginal.

We note that it is improper to use the term “Chomsky Normal Form grammar” as

we explicitly discuss unary productions of type A → B where B is a non-terminal, and

include these productions in our grammar. These productions violate the definition of a

Chomsky Normal Form grammar, and therefore we will use the term ‘binarized grammar’

for the remainder of the thesis to indicate a grammar in CNF with the addition of unary

productions. We will assume that all of our grammars have been previously binarized and

we define V ′ to be the set of non-terminals that are created through binarization, and

denote edges where A ∈ V ′ as incomplete edges. Note that categories A ∈ V ′ are only

used in binary productions, not unary productions, a consideration that will be used in

some of our efficient parsing algorithm.

2.8 PCFG Smoothing

Large grammars not only increase computational search requirements, but are also prone

to sparse data problems as probability estimates quickly become unreliable. If a grammar

rule is never observed in the training data, it receives zero probability. As a result, many
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Symbols Production Most Frequent

on RHS Count Production

1 1134416 dt → the

2 399840 pp → in np

3 125963 s → np vp .

4 39758 np → np , np ,

5 19463 s → pp , np vp .

6 5764 s → np , pp , vp .

7 3727 sinv → “ s , ” vp np .

8 618 np → np , np , np , cc np

9 320 np → np , np , np , np cc np

10+ 312 np → np , np , np , np , np ,

Table 2.4: Number of children per constituent for all constituents in WSJ Section 02-21.

Also included in the most frequent constituent for the indicated number of right-hand-side

(RHS) children (excluding productions with only punctuation).

unseen sentences may fail to find even one valid parse tree – even if the sentence is well-

formed – since a required production may not exist in the grammar.

Sparse data problems are typically addressed by smoothing the distribution of children

for each non-terminal [35]. Smoothing robs a small amount of probability from observed

grammar rules, and uniformly distributes that probability over unobserved rules, allowing

a class of unobserved productions to have some probability. PCFG smoothing can be

done in many ways; Charniak applies a backoff model to smooth bi-lexical conditioning

information [32], while Petrov et al. employ parameter tying in their latent-variable PCFG

[130].

A common smoothing approach applied during binarization is to create a Markov

model of right-hand side dependencies with each newly created binarized production.

The Penn treebank annotation guidelines encourage flat phrase structure, and hence the

number of right-hand side children observed per constituent is large, if reading productions

straight from the treebank. In fact, we see in Table 2.4 that 312 productions extracted

from the treebank are observed with 10 or more children on their right-hand side, one
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of which is a noun phrase spanning a list of 26 items each separated by commas for a

grand total of 51 children! One way to smooth the grammar so that we can generalize to

e.g., lists of 22 items, is to reduce the number of child categories annotated on our new

composite non-terminals introduced by binarization. For example, if instead of @A:BCD

we assign the label @A:B to our new non-terminal – with the semantics “an incomplete

A constituent with leftmost child B” – then the three rules that result from binarization

are:

A→ @A:D E

@A:D → @A:C D

@A:C → B C

This is known as Markov order-1 smoothing since a history of one non-terminals is

retained. Probabilistically, the result of this transformation is that B is conditionally

independent from D and E given A. This approach will provide probability mass to

combinations of children of the original category A that may not have been observed

together, hence should be seen as a form of smoothing. One can go further and remove

all child categories from the new non-terminals, i.e., replacing @A:BCD with just @A.

This is known as Markov order-0 smoothing. In each of these cases, new derivations

become possible that would not have been possible with the original unsmoothed grammar.

Examples of three levels of smoothing during binarization can be seen in the following

figure.

A

E@A:BCD

D@A:BC

CB

(a) Unsmoothed left

binarization

A

E@A:D

D@A:C

CB

(b) Markov order-

1 smoothing

A

E@A

D@A

CB

(c) Markov order-

0 smoothing

When parsing open-vocabulary domains, smoothing lexical production is also a good
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idea. Considering again the WSJ corpus, nearly 2.5% of the words in Section 23 are never

observed in all of Section 02-21 (including “Managed”, “blood-letting”, “254,280”, and

“snowball”). Without smoothing, sentences containing even a single new word would not

be derivable given the context-free model. Common heuristics used to smooth lexical

productions include text normalization (lower-casing, mapping numbers to a common

symbol, removing hyphens, etc.) and estimating the probability of unknown-word classes

given language-specific lexical cues. For example, if an unseen words end in the suffix “ly”

then we can leverage the distribution of all productions deriving words in the training

data that also end in “ly”. All grammars in our experiments have been smoothed using

both text-normalization and language-specific lexical cues.

2.9 The Evolution of PCFGs

As discussed in Section 2.3, modeling the context-sensitive and lexically-driven syntax of

language with a context-free grammar has its drawbacks. In this section we give a brief

overview of grammar induction techniques that overcome some of these issues while still

maintaining polynomial parsing complexity. These techniques alter PCFG probability es-

timation by splitting non-terminals into smaller classes and refining the conditional prob-

ability distributions over these new grammar productions to be more context-sensitive.

These new grammars can often be enumerated explicitly, as is seen in Table 2.3, but when

the space of possible conditioning information is too large (as it sometimes is for lexical-

ized grammars) then the conditional probabilities must be computed on the fly during

inference.

Following standard treebank pre-processing, as discussed in Section 2.5, we can induce

a grammar by extracting all productions observed in the treebank and assigning each the

maximum likelihood probability described in equation 2.4. Inducing such a grammar from

40,000 Penn WSJ treebank sentences6 creates a PCFG containing nearly 67,000 produc-

tions, 51,000 of which are lexical productions of the form A→ τ where τ is a terminal, and

16,000 phrase-level productions, where the right-hand side is one or more non-terminals.

6All sentences in Sections 02-21.
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Because lexical productions are restricted to span-1 chart cells and not considered during

the O(N3) “inner loop” of CYK parsing, we find it useful to distinguish the respective

sizes of these sets by |Glex| and |Gphrase|. Following the extraction of productions from

the corpus, right-binarization and Markov order-2 smoothing (see Sections 2.7 and 2.8)

decrease the size of |Gphrase| from 16,000 to 13,500 productions. Coupled with simple

unknown word smoothing, this is a particularly straight-forward grammar to induce from

a treebank. We call this a Vanilla PCFG and with exact inference methods, it achieves

labeled precision and recall scores of 74.7% and 69.0% respectively on Section 23. The

vanilla model can be written in terms of the conditioning information on production rules:

Pvanilla(A→ β) = P (β|A) (2.11)

To increase accuracy over the vanilla model, one popular modification to the original

treebank is parent annotation [86]. Johnson reports, for example, that the distribution of

non-terminals on the right-hand side under a verb phrase is highly influenced by the parent

node of the verb phrase. Standard PCFG induction from the WSJ Treebank disregards

parent information; only one distribution over children is estimated for each non-terminal.

To address this problem, Johnson suggests the following:

1. Replace all non-terminals in the training data with new non-terminals that explicitly

include the direct parent non-terminal,

2. Induce a PCFG from this context-enriched data; probabilities are now conditioned

on additional parent information:

Pparent(A→ β) = P (β|A, parent = X) (2.12)

3. Perform inference with this new model,

4. For evaluation, map the parent-specific non-terminals in the parse tree back to the

original non-terminal set and compute labeled precision and recall.

An example of a parse tree with parent-annotated non-terminals can be seen in Figure

2.3b. Adding the context of a parent label to each non-terminal potentially squares the
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(a) Original WSJ treebank non-terminals

S-ROOT

VP-S

...

NP-S

NN-NP
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NN-NP

real-estate

DT-NP

the

(b) Parent-annotation

S-overreacted

VP-overreacted

...

NP-market

NN-market

market

NN-real-estate

real-estate

DT-the

the

(c) Head lexicalization

S-0

VP-7

...

NP-6

NN-3

market

NN-2

real-estate

DT-8

the

(d) Latent variable annotation

Figure 2.3: Three annotation schemes used to increase the accuracy of context-free parsing.

number of non-terminals in the new grammar and significantly increases the number of

grammar rules. This idea can be pursued even further to include not just the constituent’s

parent information, but also grandparent or even great-grandparent when estimating pro-

duction probabilities. Although the complexity of exact inference remains at O(N3), the

run-time performance is severely impacted due to the true operating cost of O(|G|N3),

where |G| is the (constant) size of the grammar. Increasing the size of the grammar with

parent (or grandparent) annotation improves accuracy, but at the cost of speed.

As mentioned in Section 2.3, another modeling deficiency of vanilla PCFGs is their

independence from lexical and subcategorization information. Because the structure of

constituents is often governed by specific words (or word classes), conditioning the prob-

ability of productions on this information may also be helpful [10]. But conditioning on

all words in the phrase would lead to significant sparsity problems; plus, some words in a

phrase have more syntactic relevance than others. To combat both these issues, one can

condition on the head word (or word class) in a phrase, where the head is defined as the
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lexical item driving the syntactic structure [46]. In practice, the phrasal head is found by

way of if-then rules such as “If the constituent is a Verb Phrase then the head is the Verb”

and “If the constituent is a Noun Phrase then the head is the right-most noun”. Similar

methods are also used to convert constituent trees into dependency structure [85].

Applying the intuition above, we can induce a new grammar with productions con-

ditioned on the POS tag of the head word. This approach gleans the context of the

syntactic heads without incurring data sparsity problems found by conditioning on lexical

items directly. Such a model has the form

PheadPOS(A→ β) = P (β|A, headPOS = X) (2.13)

We can subsequently combine head-word conditioning with parent annotation:

PheadPOS+parent(A→ β) = P (β|A, headPOS = X, parent = Y ) (2.14)

In [102], Klein and Manning investigate 17 linguistically motivated non-terminal anno-

tations beyond the influence of constituent parents and head-words, in each case attempt-

ing to balance the addition of contextual information with over-splitting the training data.

In an effort to keep their grammar small, no open-class lexical items were used for condi-

tioning and only non-terminals benefitting from a specific refinement were kept, opposed

to the universal application style of parent annotation. With careful engineering, their

grammar achieves an impressive 85.7 F1 on WSJ Section 23 with a grammar size under

52,000 productions – orders of magnitude smaller than lexicalized grammars. Although

accuracy is not as high as the models of Charniak or Collins, Klein and Manning pro-

vide an interesting data point for which to compare hand-crafted refinements of standard

PCFG induction – most likely an upper bound on what humans can do with manual

non-terminal splits.

In the late 1990s, the constituent parsing community saw rapid evolution (and competi-

tion) of lexicalized PCFGs, achieving new levels of accuracy. Collins’ generative lexicalized

parsing [45] and head-driven models [47], Goodman’s probabilistic feature grammar [70],

Charniak’s parsing with word statistics [31] and maximum-entropy inspired parser [32] all
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leveraged specific lexical items during grammar induction. An example of a pre-processed

tree to include head lexiclaization annotations can be seen in Figure 2.3c. Because the fea-

ture space becomes so large with a lexicalized grammar, every model was heavily smoothed

so that generalizability could be maintained. In addition, searching for the head words

within the left and right child cells of Charniak and Collins bi-lexical models requires

an additional O(N2) processing component, increasing overall complexity to O(N5) (al-

though Eisner and Satta [60] provide alternative inference methods with O(N4) or, in

special cases, O(N3)). Even with these optimization, inference for each of the above lex-

icalized models required heavy pruning of the search space to maintain practical parsing

efficiency as exact inference was no longer possible.

More recently, Matsuzaki et al. [116] and Petrov et al. [130, 132] have introduced latent

variable grammars. Instead of manually refining the conditioning information of grammar

productions as was done previously, each non-terminal is annotated with a set of latent

variables (i.e., np-0, np-1, np-2, ...) and their distributions are estimated via expectation

maximization. Matsuzaki et al. set a fixed number of latent variables for all non-terminals,

achieving their best results with 16 latent annotations per non-terminal.7 Petrov et al.

allow the number of latent annotations to fluctuate on a per non-terminal basis, using

a split-and-merge technique, achieving significantly better parsing performance. Exact

inference with latent-variable grammars is NP-hard [116], but O(N3) approximations such

as Viterbi decoding, max-rule decoding [132], or variational approximation of the posterior

forest [116] exist that perform well in practice. Although these latent variable grammars

are large, they can be explicitly enumerated, facilitating easy distribution to others in the

research community. In this thesis we use the latent variable grammar of Petrov et al.

to perform high-accuracy parsing, allowing us to compare our efficient inference methods

with those of the Berkeley parser (which is multi-level coarse-to-fine pruning).

Table 2.5 summarizes the evolution of PCFGs over the past 15 years. The table

is formatted in three groups: grammars with manually-inspired annotations, lexicalized

grammars, and latent-variable grammars. Parsing performance is reported on Section

7Computational resources were exhausted at 16 latent annotations, inhibiting larger experiments.
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Grammar |Gphrase| LP LR F1

M
an

u
al

Vanilla 13,500 74.7 69.0 71.5

Johnson 1998 [86] 30,000 - - 78.6

Parent + Head POS 56,000 - - 80.8

Klein et al. 2003 [102] 52,000 86.3 85.1 85.7

L
ex

ic
a
l

Collins 1996 [45] - 85.3 85.7 85.5

Goodman 1997 [70] - 85.3 84.8 85.01

Charniak 1997 [31] - 86.7 86.6 86.6

Collins 1999 [47] - 88.1 88.3 88.2

Ratnaparkhi 1999 [141] - 87.5 86.3 86.9

Charniak 2000 [32] - 89.6 89.5 89.5

Gildea 2001 [68] - 86.6 86.1 86.3

L
at

en
t Matsuzaki et al. 2005 [116] - 86.1 86.0 86.1

Petrov et al. 2006 [130] 1,841,000 89.8 89.6 89.7

Petrov et al. 2007 [132] 1,841,000 90.2 89.9 90.02

Table 2.5: A comparison of the grammar size (|Gphrase|), labeled precision (LP), labeled

recall (LR) and F1 accuracy on Section 23 of the Penn WSJ treebank for various PCFG

models.

23 of the Penn WSJ treebank and the size of the grammar is documented if explicitly

enumerable. The general trend of Table 2.5 is that modest gains in accuracy require an

increase in grammar size and, consequently, a decrease in parsing efficiency. Unfortunately,

the true modeling power of the lexicalized and latent-variable grammars are difficult to

determine since exact inference is not performed (or possible), but the results in Table 2.5

show an interesting trend. Efficient PCFG parsing with high-accuracy grammars, such as

those listed here, is the primary concern of this thesis The next chapter outlines current

methods used for efficient inference, many of which are used by the parsers in Table 2.5.

1Goodman tested on sentences of length ≤ 40 words.
2Petrov et al. (2007) parse with the same latent-variable grammar as 2006, but improve the approximate

inference technique.



Chapter 3

Current Methods for Efficient Inference

Even with the computational advantages of dynamic programming, exhaustive exploration

of the entire search space may be infeasible when parsing with large grammars. For

example, CYK parsing with the latent-variable grammar of Petrov et al. [130] requires

over one minute of processing and 2GB of memory per sentence. Many methods for efficient

inference have been proposed in recent years to improve upon the baseline efficiency of

CYK parsing. We classify each method along two dimensions: exact versus approximate

inference, and pruning versus prioritization.

Exact inference methods find the globally optimal solution given a grammar. The CYK

algorithm is a classic example of exact inference as it computes the derivation probability

for all possible trees, returning only the globally optimal solution. But exhaustive search

over the entire solution space is not required for exact inference. As we will see later in this

chapter, admissible prioritization methods such as A* or restricted classes of pruning can

guarantee to find the exact inference solution without searching the entire space. More

recently, Lagrangian relaxation methods have been applied to NLP problems, including

parsing, with the ability to guarantee when the globally optimal solution is found [148, 29].

This does not guarantee that the exact solution will always be found, but in experiments

with machine translation and joint dependency/constituency parsing, exact solutions are

found on most data sets for over 98% of sentences [108, 147].

In contrast, approximate inference methods share no such formal guarantees. These

methods make hard search decisions often based on local information to constrain the

search space. The majority of efficient search algorithms we present in this thesis are ap-

proximate inference methods due to their typically superior performance on standardized

37
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tasks. But finding the globally optimal solution — as is guaranteed by exact inference

algorithms — has interesting theoretical advantages, such as the true modeling power of

the grammar or the density of the solution space around the globally optimal solution.

For example, the lexicalized grammars of Charniak and Collins are so large that encoding

the grammar rules is done implicitly and exact inference becomes infeasible (see Section

2.9). Unable to find the exact inference solution, it is impossible to know how well their

grammars truly model syntax or how their respective pruning strategies affect the search

for this globally optimal solution.

The second dimension we classify efficient parsing methods along is pruning verses

prioritization. Pruning methods make hard decisions during inference to exclude portions

of the search space entirely. Once a derivation has been pruned, no paths from the

pruned derivation will be extended for the remainder of inference. Pruning can either be

integrated directly into the search, eliminating paths as they are expanded (i.e., beam-

search), or pruning can be done by imposing constraints on the final search space via

earlier stages of a pipeline (i.e., coarse-to-fine pruning or POS tagging). Prioritization

methods never make hard, irreversible decisions to constrain the search space. Instead,

they prioritize the order of search so that promising derivations are pursued first. In the

worst case, all search paths may still be expanded before inference is complete, but given

an accurate prioritization function, much of the search space may safely be ignored and

significantly increase parsing efficiency.

In the following sections we discuss several influential methods for efficient parsing

with PCFGs and situate them in the taxonomy we have just described. We then discuss

the strengths and weaknesses of each search strategy and how our work in Chapters 4 - 6

address these problems.

3.1 Graph-Based Search

3.1.1 Best-First Parsing

Best-first parsers – also called agenda-based parsers – maintain a global agenda of edges

and explore the search space in a best-first traversal. At each iteration, the highest-scoring
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edge is popped off of the agenda and added to the chart. Edges are scored with a heuristic

function f(·) comprised of two components: a known cost g(·) from the start node to the

current position, and an unknown heuristic cost h(·) representing the remaining distance

from the current node to the goal. We write this formally with respect to the non-terminal

node A and the words wb . . . we derived by A in the sentence:

f(A,wb . . . we) = g(A,wb . . . we) + h(A,wb . . . we) (3.1)

With respect to PCFG parsing, g(·) is the accumulated Viterbi-max or inside score

readily available during bottom-up parsing, while the heuristic function h(·) is more open

ended, often crafted in a number of ways to suit domain-specific objectives. The most

basic heuristic function assigns each edge a score of zero, forcing edges prioritized by

f(·) to rely only on the inside score g(·). On the other hand, if h(·) assigned the oracle

remaining derivation for each edge, parsing would be extremely efficient and the best-first

parser would only consider the edges in the optimal parse tree. But knowing all oracle

derivations requires exhaustive parsing, which is exactly what we are trying to avoid.

Crafting the heuristic function is an art that often relies on grammar or problem-

specific knowledge. Two classes of heuristic functions exist: admissible and inadmissible.

Admissible heuristics guarantee that h(·) never overestimates the true distance to the goal.

From this restriction, it can be shown that best-first traversal with an admissible heuristic

will always find the globally optimal solution [149, 112]. Admissible best-first search has

been applied to constituent parsing and a number of heuristic functions proposed to ensure

optimal search [101, 126].

In practice, heuristic functions that never overestimate the true distance to the goal

and simultaneously provides effective ranking are difficult to engineer. An alternative

approach is to relax the admissibility criteria, allowing the heuristic function to more

closely approximate the true distance to the goal – sometimes underestimating and other

times overestimating. This is the approach taken by many best-first parsers, including

that of Kay [98], Shieber et al. [160] Bobrow [13], Magerman and Weir [111], Caraballo

and Charniak [25], Charniak et al. [33], and Hall [73].

In Chapter 4 we discuss the best-first parsing algorithm in detail, including practical
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modifications such as “over-parsing” [74] (the continuation of parsing after the goal node

is discovered to increase the density of the chart for n-best extraction or to find a more

optimal solution give an inadmissible heuristic) and memoization (recording agenda en-

tries for fast exclusion). Even with such modifications, best-first parsing can be relatively

inefficient due to the overhead of maintaining a sorted agenda and the cost of computing

complex prioritization values for each of an exponential number of constituents. Fur-

thermore, as discussed in Blaheta and Charniak [12], normalization of the prioritization

function for constituents spanning differing substrings is problematic within the global

agenda of best-first parsers.

In Chapter 4 we present solutions to the above problems and support our hypotheses

with empirical results. Specifically, we reduce the complexity of computing the boundary

tri-gram heuristic [25] from O(M2) to O(1) where M is the number of POS tags by

introducing a novel decomposition of the heuristic function. We also demonstrate the

problems with proper normalization of multiple prioritization functions and contrast that

to pruning methods such as beam-search where such normalization is irrelevant.

3.1.2 Beam-Search Parsing

Another popular efficient search method for PCFG parsing is beam-search. Beam-search

is a standard graph-based search algorithm that makes hard pruning decisions at each

span. In a bottom-up breadth-first traversal, all candidate derivations are sorted by a

heuristic scoring function and only the most promising candidates are retained. The size

of this set is determined by the beam-width, which has been defined in two ways [47, 185]:

1. A constant value K such that the K-best candidates are retained;

2. A constant threshold R between 0 and 1 such that all candidates with a heuristic

score greater than Rπ̂ are retained, where π̂ is the highest scoring local derivation.

There are two key points we wish to highlight when comparing the best-first and

beam-search algorithms. First, both algorithms sort edges in a priority queue within the

inner-most loop, increasing the complexity of both best-first and beam-search from O(N3)

to O(N3 logN). This increases the parsing complexity over the CYK algorithm, but in
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practice often decreases actual parsing time due to pruning or prioritization of the search

space. Within a best-first architecture, the global agenda potentially maintains a sorted

list of all O(N3|G|) edges, while beam-search parsing sorts at most O(N |G|) edges. As we

will see in Chapter 4, this has practical implications on the time and memory of parsing.

Second, it is clear that the same heuristic ranking functions can be used either within

the global agenda (best-first) or within the span-level agenda (beam-search). Although

heuristic ranking with beam-search is popular in speech-recognition [109, 123] and machine

translation [105, 125], it is much more common in the parsing community to apply heuristic

functions to best-first parsing. The utility of these heuristic functions to prune at a local

level has not been fully explored and many state-of-the-art parsing systems only use simple

heuristics when pruning at this level [70, 47]. Furthermore, when sophisticated techniques

have been used within the beam-search framework [179] it is unclear how they perform

relative to best-first architectures or if performance gains are tied to a particular grammar.

In Chapter 4 we present pseudo code for the beam-search algorithm and discuss it

in greater detail, especially with respect to the exhaustive CYK algorithm and best-first

discussed in the previous section. In We also empirically compare beam-search with best-

first search across many different heuristic ranking functions and grammars and discuss

their strengths and weaknesses with respect to PCFG parsing. To our knowledge, this

evaluation is the first extensive comparison of these two approaches for PCFG parsing.

3.2 Coarse-to-Fine Parsing

In addition to graph-based search algorithms, hierarchical search and pruning methods

for syntactic parsing, such as coarse-to-fine pruning, have also shown significant promise.

Coarse-to-fine parsing [70] utilizes the idea of first quickly searching with an impoverished

model, then using the posterior scores from preliminary search to prune (or guide) the sub-

sequent search in the full model space. Hierarchical search algorithms have proven to be ef-

fective in many domains, including image processing [62], speech recognition [53, 165], and

route planning [153]. Within context-free parsing, coarse-to-fine search is accomplished by

projecting the target grammar onto a reduced grammar space, collapsing context-specific
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rules into a less accurate model that is much faster to search. The scores of the projected

grammar can be created such that the search with the final model is still globally optimal

[15, 126], but this approach is often less effective than non-exact coarse-to-fine search. In

most cases, coarse-to-fine is used for approximate inference to favor efficiency over op-

timality [70, 34]. Coarse-to-fine inference can also be applied iteratively with multiple

grammars of increasing complexity [132].

Building a coarse grammar from a fine grammar is a non-trivial problem, and most

often approached with detailed knowledge of the fine grammar being used. For example,

Goodman [70] suggests using a coarse grammar consisting of treebank non-terminals, such

as np and vp, and then non-terminals augmented with head-word information for the more

accurate second-pass target grammar. Such an approach is followed by Charniak [32] as

well. Petrov and Klein [132] derives coarse grammars in a more statistically principled

way, although the technique is closely tied to their latent variable grammar representation.

The efficient optimization methods we present in Chapters 5 and 6 are specifically

designed to require no knowledge of the underlying grammar. This allows our algorithms

to be easily adapted to new languages or domains without the need to derive a suitable

coarse grammar. But if a coarse grammar exists, or a natural projection to a coarse

grammar space is available, the efficient search methods we will present later in this thesis

prune the search space in orthogonal ways compared to coarse-to-fine pruning and we

expect the efficiency gains to be additive.

As both the best-fist and beam-search algorithms are presented in Chapter 4, we have

also included pseudocode for two-level coarse-to-fine parsing in Appendix C for complete-

ness.

3.3 Pipeline Systems

Pipeline systems, in which data is processed in stages with the output of one stage provid-

ing input to the next [80], have also been applied to syntactic parsing. Coarse-to-fine prun-

ing – when seen as a chain of increasingly complex grammars – is an instance of pipeline

parsing, although traditional pipeline systems are often composed of significantly different
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architectures (i.e., finite-state tagger to context-free parser). Two common pipeline sys-

tems to increase the efficiency of PCFG parsing are (1) part-of-speech tagging to reduce

the number of paths from each start node [141], and (2) shallow chunking to constrain

constituent spans [69]. For example, consider shallow np chunking as a pre-processing

step to parsing. Given the constraints of where noun phrases can begin and end in the

dynamic programming chart, not only does this eliminate alternative np structure outside

these constraints, it also disallows all other constituent structure crossing brackets with

the proposed np structure.

Supertagging is another pipeline-pruning method that has gained popularity to de-

crease the typical-case runtime of LTAG parsing [7, 155] and CCG parsing [40]. Given the

surrounding context of each lexical item, supertagging limits the ambiguity of elementary

trees by pruning those that are unlikely to participate in a full derivation. This approach

is similar to pre-tagging the input with POS tags (1-best or n-best) to constrain the down-

stream parser, but operates on the larger set of possible elementary trees for each lexical

item instead of the set of possible POS tags.

In Chapter 5 we present an extension of the pipeline system of Roark and Hollingshead

[145, 146] to constrain context-free parsing by limiting all constituent beginning and ending

positions, as well as possible locations for unary productions. Our technique is inspired

by previous work to constrain portions of the dynamic programming chart via np-chunk

constraints, but generalized to limit the possible location of any multi-word constituent. In

Chapter 6 we continue with the theme of constraining cells in the dynamic programming

chart, but instead of restricting multi-word constituent start and end locations (diagonals

in the dynamic programming chart), we predict the unlabeled constituent structure by

classifying individual chart cells as open or closed to possible constituents.

Each of the pipeline systems discussed above are approximate inference search methods

as there is no guarantee that the globally optimal parse tree will not be pruned given the

pre-processing constraints. But as we will demonstrate in Chapters 5 and 6, some forms

of pruning may actually increase the accuracy of other objectives, such as constituent

precision and recall compared to a gold standard, if the pruning leverages additional

information not present in the grammar. In addition, we will show that our pipeline
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systems provide orthogonal efficiency gains to graph-based and coarse-to-fine pruning,

allowing significant inference speedups when these search techniques are combined [17].

3.4 Discriminative Parsing and Re-Ranking

In Section 2.9 we examined the evolution of PCFGs and the inclusion of additional condi-

tioning information within derivation rules. Although methods such as lexicalization allow

the grammar to be sensitive to subcategorization preferences, possible conditioning infor-

mation is limited to local features if we wish to take advantage of dynamic programming.

In order to score parse trees using non-local features – indeed, any arbitrary feature of the

input or parse forest – one can more naturally train a discriminative model to estimate

P (t|S) opposed to the joint distribution P (t, S). Unfortunately, the power of dynamic

programming is marginalized or often lost under this framework, and parsing efficiency

dramatically decreases due to the inability to decompose the total score of the tree into

the sum of its parts.

Approaches to handle the compromise between efficient training and inference with

possible feature representation fall into three categories. The first field of research, ex-

emplified by [166, 170], resign themselves to the limitation of efficiency and focuses on

discriminative parsing with short sentences (often less than 15 words). Even with state-of-

the-art accuracy on this sub-domain, parsing time is impractical for real-time applications

or web-scale corpora.

On the other extreme, only local features encapsulated within a PCFG are used to

maintain efficient training and inference, but the scores of each PCFG production are

trained discriminatively, maximizing the conditional likelihood of the data [100, 76, 134].

This approach is unable to incorporate additional non-local features into the grammar,

but the success of discriminative over generative training in other NLP tasks suggests that

accuracy may improve. Although training is still slow compared to generative approaches

(requiring expectations over all possible derivations in the training data), decoding remains

efficient as standard O(N3) algorithms can still be applied. Therefore, all efficient inference

methods we present in this thesis are applicable to parsing with these discriminatively
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Parser LP LR F1

Taskar et al. [166] (2004) 89.1 89.1 89.11

Turian and Melamed [171] (2006) 89.6 89.3 89.41

Collins [48] (2000) - - 89.7

Charniak and Johnson [34] (2005) - - 91.4

Huang [84] (2008) - - 91.7

Henderson [76] (2004) - - 90.1

Petrov and Klein [134] (2008) - - 88.3

Table 3.1: A comparison of the accuracy of three methods on WSJ Section 23: discrimi-

native parsing, discriminative re-ranking, and discriminative training of PCFG models.

trained PCFGs.

The third approach to discriminative parsing is to extract the k-best parse trees from

a generative parser and use discriminative re-ranking to re-score each of the k trees indi-

vidually [48, 34]. Because k is relatively small (often 50 or 100 trees), re-ranking is much

faster than full discriminative parsing and parsing time is dominated by the first-pass gen-

erative phase. Huang [84] presents an approximate algorithm to re-rank the entire forest

(i.e., set of all possible derivations) by factoring features into local and non-local sets. By

computing all local scores with dynamic programming and non-local scores on-the-fly, he

is able to discriminatively train his model using the entire treebank, achieving impres-

sive accuracy on the standard WSJ test set. The efficient parsing methods we present in

Chapters 4-6 are not in conflict with discriminative re-ranking paradigms; one can prune

the search space and still extract k-best trees or re-rank the entire forest.

Table 3.1 reports the accuracy of canonical examples of each of the three discriminative

parsing approaches on WSJ Section 23. Accuracy results are directly comparable for

the re-ranking and discriminative training of PCFG paradigms, but the test set for full

discriminative parsing is reduced to only include sentences of length less than 15 words.

Although we limit the application of our efficient optimization methods to generative

1Tested on sentences less than 15 words.



46

models in the remainder of this thesis, we emphasize that such methods can also be

used to improve the efficiency of n-best extraction for discriminative re-ranking as well as

parsing with discriminatively trained PCFGs.

3.5 Search as Classification

The efficient inference methods discussed in this chapter – and the new methods we will

present later in this thesis – are predicated on the assumption that the grammaticality

of language is modeled by a grammar formalism (PCFG, TAG, CCG, etc.) and we are

searching for the optimal parse tree given this model. Instead of inducing a grammar

from a treebank, an alternative approach to constituent parsing is to model the derivation

process explicitly. Here, the probability of a parse tree is the accumulation of parser

actions given the respective state:

P (t|S) =
∏

P (ai|si) (3.2)

where t is a parse tree, S is input sentence, and ai is the action taken by the parser at state

si. Each state si can incorporate any number of previous parser actions or elements of the

input sentence. One notable difference between PCFG parsing and classification-based

parsing is that of consistency. With a classification-based parser, there may be multiple

derivation sequences that derive the same final parse structure, but in no way are they

required to produce the same score. A PCFG model, on the other hand, will consistently

assign the same score to identical parse trees, even if how the parse trees are constructed

differs.

The majority of parsing by classification work follows a shift-reduce parsing paradigm

[113], where at each state, the parser chooses to push a new input word onto the stack

(shift), or reduce elements at the top of the stack according to rules in the grammar.

Predicting which action(s) to pursue is the learning goal, accomplished in the past by

a host of machine learning tools including neural networks [161], decision trees [77, 178,

93], and support vector machines [150]. Although accuracy has generally been lower

with classification-based parsers as compared to PCFG models on standardized tasks, the
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English WSJ Treebank

Parser LP LR F1 Words/Sec

Simmons and Yu [161] (1990) - - - -

Ratnaparkhi [140] (1997) 87.5 86.3 86.9 30

Hermjakob and Mooney [77] (1997) 84.91 84.61 84.81 -

Kalt [93] (2004) 77.2 75.9 76.5 33,560

Sagae and Lavie [151] (2006) Accurate 88.1 87.8 87.9 55

Sagae and Lavie [151] (2006) Fast 85.4 84.8 85.1 1,000+

Chinese Treebank

Parser LP LR F1 Words/Sec

Wong [178] (1999) 77.7 78.9 78.3 500

Table 3.2: Accuracy and timing comparison of classification-based shift-reduce parsers.

Timing results do not control for computer hardware or implementation details (including

programming language) and are only meant to give a general sense of parsing efficiency.

framework allows for very efficient O(N) runtime performance, and Kalt (2004) reports

parsing speeds of over 30,000 words per second [140, 93, 150]. The same framework has

also become popular for dependency parsing [181, 124], primarily due to the same O(N)

efficient decoding algorithms providing parsing speeds of over 10,000 words per second.

In Table 3.2 we list a number of prominent shift-reduce parsers that search via clas-

sification. When reported, we also list the labeled precision (LP), labeled recall (LR),

and words per second on WSJ Section 23, with the exception of Hermjakob and Mooney

[77] who evaluated on a smaller subset of the WSJ test set, and Wong [178] who report

results on the Chinese treebank. Timing results do not control for computer hardware or

implementation details (including programming language) and are only meant to give a

general sense of parsing efficiency.

We believe that deterministic parsing by classification algorithms such as those listed

in Table 3.2, as well as less expressive formalisms, such as finite-state approximations of

1Hermjakob uses non-standard subsets of the WSJ treebank for training and testing, with shorter
sentences on average.



48

phrase structure grammars [127] – both which run in linear time – have serious promise

for future research in efficient constituent parsing. But for this present work, we focus on

PCFG models due to their superior accuracy and adaptability to new domains [131].

3.6 Evaluation of Efficient Parsing Methods

In the following chapters, we compare our proposed efficient parsing methods with a selec-

tion of those described in the previous sections. Where possible, we compare competing

methods by running tests under identical conditions – using the same grammar models,

computer hardware, and programming language – such that we can isolate the contribu-

tion of the proposed algorithms in isolation. In some cases this is not practical and we

will match as many conditions as possible to make the comparison meaningful.1 We will

also apply our efficient search methods to PCFG decoding with grammars from multiple

languages in order to demonstrate that our algorithms are truly adaptable. Additionally,

we will also show that unlabeled constituent and beam-width prediction (Chapter 6) can

be adapted to a target domain even when labeled data is not present.

3.6.1 Languages, Grammars, and Data Sets

In this thesis we apply our efficient search algorithms to three languages: English, German,

and Chinese. Each of these languages has established treebanks from which it is common

to report parsing accuracy and efficiency statistics to facilitate comparison. In particular,

Petrov [129] has made high-accuracy latent-variable grammars publicity available for these

languages which allows direct comparisons between coarse-to-fine pruning and our methods

using the same grammar. Because our efficient search methods are entirely data driven, in

one respect it is irrelevant what languages we apply our methods to – our algorithms are

simply trying to search the exponential hyper-graph space in the most efficient manner.

But due to the extent that lexical information is used to direct the search, we hypothesize

that some languages may benefit more than others – both with respect to efficiency and

1For example, comparison with the Charniak parser and grammar model would require either (1) inte-
gration of our efficient search methods into the existing Charniak parser codebase or (2) re-implementation
of our BUBS parser in C++ with the same implicit grammar model.
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Sent Length

Treebank Partition Sent Words Mean SD

English WSJ [115] Train Sections 2-21 39,832 950,028 23.8 11.2

Dev Section 22 1,700 40,117 23.6 11.0

Test Section 23 2,416 56,684 23.5 11.1

Chinese [180] Train Articles 1-270,400-1151 18,086 493,708 27.3 19.4

Dev Articles 301-325 350 6,801 19.4 13.6

Test Articles 271-300 348 8,008 23.0 18.5

German [162] Train Sentences 1-18,602 18,602 328,418 17.7 11.2

Dev Sentences 18,603-19,602 1,000 17,165 17.2 11.4

Test Sentences 19,603-20,602 1,000 17,787 17.9 10.4

Table 3.3: Data sets used in this thesis

accuracy – due to the predictability of constituent boundaries within the language.

In Table 3.3 we list the treebanks and training, development, and testing set divisions

for each. We use these data sets and divisions for the remainder of the thesis and will refer

the reader back to this subsection at the appropriate time for clarification. Statistics for

each division of the data are also reported. The count, mean, and standard deviation are all

computed over tokens in the treebank, where a token is defined by the treebank guidelines.

In the case of English and German, tokens are closely related to white-space delimited text

with a few exceptions such as contractions and parenthesis [115]. In Chinese, where word

segmentation is unnatural due to the lack of word delimiters and infectional morphology,

tokens in the treebank are annotated based on syntactic independence (called a syntactic

atom) which include both simple words and compounds [180]. The listed token statistics

show inter-language and intra-language differences, which should be kept in mind when

comparing efficiency results and parsing complexity is polynomial in the sentence length

(number of tokens).

In Table 3.4 we list the grammar induction methods used throughout this thesis, as

well a short-hand label for each. Details on grammar binarization and markovization can
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Label Grammar Description

R0 Right-binarized Markov-order 0 grammar

R2 Right-binarized Markov-order 2 grammar

R2P1 Right-binarized Markov-order 2 grammar with Parent annotation [86]

L0 Left-binarized Markov-order 0 grammar

L2 Left-binarized Markov-order 2 grammar

L2P1 Left-binarized Markov-order 2 grammar with Parent annotation [86]

Latent Latent variable grammars trained with six split/merge cycles

for English and five for non-English. [133]

Table 3.4: List of grammars and short-hand label used in this thesis

be found in Section 2.7 and 2.8 respectively. The main impetus of evaluating our efficient

search methods across a variety of grammars is to measure the effects of grammar size and

structure (including modeling accuracy) within our efficient search framework. Questions

we will address are:

1. How are efficiency gains affected with respect to grammar size (number of produc-

tions)?

2. Can pruning or prioritizing the search directly on lexical information improve ac-

curacy of the final F1 objective over the maximum likelihood solution given the

grammar?

3. When lexical information is already present in the PCFG, can our efficient search

methods still improve accuracy?

3.6.2 Accuracy Evaluation

Parsing accuracy is reported using the standard PARSEVAL [1], which computes the

labeled precision and recall of constituents (also called brackets) between test and gold

parse trees. A constituent here is defined as a tuple (b, e, x) where b is the index of the left-

most word covered by the constituent, e is the right-most word covered by the constituent,

and x is the constituent’s label (i.e., np). To condense the accuracy into a single number,
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we also report F1, which is the harmonic mean between precision and recall. Note that

both POS constituent and the unary production with S† on the left-hand side are ignored

in this evaluation; POS accuracy is computed separately and all trees are labeled with a

root node, so using it during evaluation would artificially inflate the actual accuracy of

prediction. We also follow Collins [46] and collapse prt to advp during evaluation, but

retain this distinction during modeling and decoding.

Recall measures the number of constituents in the gold tree that were correctly iden-

tified, and precision measures the fraction of hypothesized constituents that were correct.

Assuming t is the hypothesized tree and t∗ is the gold tree, we compute precision, recall,

and F1 as follows:

Precision(t, t∗) =
Number correct constituents in t

Number constituents in t
(3.3)

Recall(t, t∗) =
Number correct contituents in t

Number constituents in t∗
(3.4)

F1(t, t∗) = 2 · Precision ·Recall
Precision+Recall

(3.5)

3.6.3 Efficiency Evaluation

We measure the efficiency of each method by reporting the number of words parsed per

second. All experiments are run on an Intel 3.00GHz processor with 6MB of cache and

16GB of memory. Multiple trials are timed over the same data set, and the trial with the

fastest recorded time (highest words per second) is retained. We keep the fastest time

— opposed to, say, the average time — because any increase in latency is not caused by

the algorithm, but rather the underlying state of the operating system, which we do not

have full control over. The fastest time represents the preferred state of the computer

and ignores inflated timings due to unrelated background processes or non-optimal cache

content.

We note that reporting words per second is not ideal due to the per-sentence processing
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of constituent parsing. Fifty one-word sentences will parse much faster than a single fifty-

word sentence due to the cubic complexity of the CYK algorithm. Because of this, we also

report the mean and standard deviation of sentence lengths for each data set in Table 3.3,

and plot the parsing speed as a function of the sentence length in many of our experiments.

We feel that modifying our efficiency measure to account for the length of each sentence

(such as normalizing by the sentence length) would unnecessarily obfuscate the data. In

addition, others in the parsing community (especially dependency parsing) also report

words per second on the same data set, thus making a direct comparison possible.



Chapter 4

Prioritization for Efficient Search

4.1 Introduction

We discussed in Chapter 3 how both the best-first and beam-search parsing architectures

can leverage a prioritization function f(·) to guide the local search towards paths that are

more globally optimal by considering information outside the constituent’s span. It has

been shown multiple times that a good prioritization function can significantly increase

parsing efficiency [104, 12, 33, 101, 126], but the application of these metrics are primarily

used in a best-first parsing architecture (also called agenda-based parsing). The transfer of

these techniques to beam-search inference is popular in fields such as machine translation

[105, 106], but has not “caught on” to the same extent for context-free parsing, despite past

work [70, 179], most likely due to a lack of empirical evidence supporting one method over

another. Furthermore, Caraballo and Charniak [25] note that comparing edges covering

different spans (as is done in a global agenda) is not always appropriate because it is unclear

that, e.g., non-terminal A1 spanning words w1 . . . w4 should be ranked higher or lower than

non-terminal A2 covering words w3 . . . w16, as each may be equally appropriate given their

respective context. Within a beam-search architecture, only constituents covering the

same substring (span) are compared, eliminating the problem of comparability inherent

in best-first parsers.1

In this chapter we investigate a representative set of prioritization methods and apply

1This is analogous to the problem solved by multi-stack decoder in the machine translation literature
[67].

53
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each to best-first and beam-search context-free parsing with grammars of different com-

position. We focus on two key contributions. First, we apply best-first prioritization to

beam-search parsing within a controlled environment and analyze the respective strengths

and weaknesses of each architecture. To our knowledge, this is the first extensive analysis

of these competing efficient search strategies for context-free parsing. Second, we introduce

two prioritization functions: the Constituent Boundary POS model and the Constituent

Boundary Lexical model. The former is an extension of Caraballo and Charniak [25]

that does not require gold part-of-speech tags. Instead, we follow [74] and apply the

forward-backward algorithm to compute probabilities over the ambiguous POS sequence

and efficiently store the boundary scores such that prioritization access is O(1). The latter

method computes transition probabilities from lexical items directly, which alleviates the

non-trivial forward-backward computation, but can encounter sparse-data problems with

large grammars. We find that clustering lexical items is an effective solution to alleviate

the large parameter space, increasing the accuracy when parsing with the latent variable

grammar so long as the number of clusters is sufficiently large (greater than 64 in our

experiments).

4.2 Prioritization Functions

We can prioritize best-first search given some function f(·) that assigns a score to any non-

terminal covering a substring of the sentence. Because sub-derivation scores are tabulated

while processing the CYK algorithm, partitioning f(·) into two components is a natural

decomposition, where g(·) is the exact model score from the initial-to-current position in

the derivation, and h(·) is a heuristic estimate of the remaining distance (i.e., model score)

from the current position to the end goal. Representing non-terminal A spanning words

wb . . . we as Ab,e, we can write:

f(Ab,e) = g(Ab,e)h(Ab,e) (4.1)

The true value of h(·) can be computed in O(N3) time using the outside algorithm

[6], but requires exhaustive inside/outside parsing which is exactly what we are trying to
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avoid during efficient inference. Instead, we wish to estimate the true outside probability

of constituents so that prioritization is both effective and efficient. Because the functions

g(·) and h(·) aim to represent the true inside and outside scores of a derivation in PCFG

parsing, we will interchangeably use g(·) with α and h(·) with β, and can rewrite Equation

4.1 as follows, where α̂ represents an estimate of the true value α and likewise for β:

f(Ab,e) = α̂(Ab,e)β̂(Ab,e) (4.2)

In what follows, we first introduce four distinct methods to estimate the outside prob-

ability β, and then proceed in Section 4.3 through 4.5 to analyze the merit of each within

a best-first and a beam-search framework.

4.2.1 Inside

The simplest method to prioritize constituents is to ignore the outside contribution entirely.

We call this method inside prioritization:

finside(Ab,e) = α(Ab,e) (4.3)

Note that the inside probability α is the exact inside score – not an estimate – as it

is naturally tabulated during bottom-up parsing. Because the outside contribution β is

constant, this prioritization function does not consider how well the constituent may fit

into the global parse structure required for a full derivation. The magnitude of the inside

score is also relative to the number of grammar productions in its derivation. Within a

best-first parser, this will bias the search to explore short substrings (even those with low

probability) before large substrings.

4.2.2 Normalized Inside

To combat the bias of short versus long derivations when prioritizing by the inside prob-

ability, we can normalize the inside score by the length of the substring. Caraballo and

Charniak [25] estimate the per-word inside probability by computing the geometric mean

of the original results:



56

fgeometric(Ab,e) = e−b+1

√
α(Ab,e) (4.4)

We find that computing the geometric mean skews the distribution of constituent

scores so that short constituents have a much larger dynamic range compared to longer

constituents. Said another way, the absolute difference between the largest and smallest

fgeometric scores for short spans is a much bigger than for long spans (see Figure 4.1b

for a visual example). When competing in a single global agenda, low scoring short

constituents are very unlikely to be placed in the chart without exhaustive parsing. This

normalization method thus has the opposite effect from the unnormalized inside score

in that longer constituents are preferred over shorter ones. To better control the bias

between constituents spanning shorter or longer substrings, we instead normalize the inside

probability as follows:

fλprod(Ab,e) = α(Ab,e)e
λ(e−b+1) (4.5)

We refer to this method as the Normalized Inside Product (due to its representation in the

log domain where we often operate in practice). Here, the tuning parameter λ allows us to

bias the agenda parser towards favoring shorter or longer constituents, while maintaining

the dynamic range of inside scores across all spans (Figure 4.1 visually depicts how these

two methods differ, which we will discuss at the end of this section). The exponentiation of

the span length is motivated by the nature of the bottom-up parsing traversal. In essence,

the dynamic range of the normalized scores are reversed compared to geometric mean

normalization — short spans now cover a smaller absolute range compared to longer

spans. But this is preferred in bottom up parsing as shorter spans must be added to

the chart first before they expand the frontier to larger spans. As we will later show,

this (tuneable) bias towards shorter spans leads to superior empirical results relative to

geometric mean normalization when used for best-first parsing.

A third method we investigate to normalize the inside score is the use of an n-gram

model to estimate the probability of the substring spanned by the constituent given the

remainder of the sentence, namely P (wb . . . we−1|w1 . . . wb−1, we . . . wn). We compute the
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Normalized Inside N-Gram estimate as follows:

fngram(Ab,e) =
α(Ab,e)∏

i∈b...e−1 P (wi|wi−1 . . . w0)
(4.6)

As usual, we approximate the true sequence probability with an Nth-order Markov ap-

proximation. Through experimentation, we found that higher order n-gram models do

not improve prioritization performance. Therefore, we use a unigram model in all re-

ported experiments due to its efficiency.

These three inside-score normalization methods are only useful within best-first parsers

as constituents covering all spans are prioritized together in a single global agenda. With

beam-search parsing, constituents are only compared locally, within a span-specific agenda.

Because the span length e − b + 1 and spanned substring wb . . . we are identical for all

constituents within a given chart cell, the prioritization order will remain identical and

applying the normalized inside prioritization function to beam-search parsing will have no

effect compared to using the inside score alone.

Figure 4.1 displays a visual representation of each inside normalization method. We ex-

haustively parse a single sentence and plot the normalized inside score for each constituent

given its span width. The constituents from the gold tree are drawn as red circles; all other

constituents are each a blue “x”. Constituents covering different substrings of the same

span-width are plotted together in these figures (for additional caveats, see Section 4.2.7).

It may be said that for each of these methods, we would expect to see more data points

in the lower right of each plot — poorer scores for derivations that span a larger portion of

the input string, due to being composed of other poorer sub-derivations. If we were to plot

all derivations possible given the input string and grammar, this indeed would be true.

But since our search of possible derivations uses dynamic programming, only the highest

scoring local derivation is retained for each non-terminal. This leads to each derivation

necessarily being composed of only locally optimal derivations of smaller spans, hence we

do not see the accumulation of poor derivations as these are, in essence, pruned.

Because a best-first agenda parser pursues frontier entries with the highest prioriti-

zation score, the absolute score for each constituent is important, regardless of its span
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(a) Inside Prioritization (b) Geometric Mean Normalization

(c) Normalized Inside Product λ = 4 (d) Normalized Inside Product λ = 7

(e) Normalized Inside Product λ = 10 (f) Normalized Inside N-Gram

Figure 4.1: Prioritization scores per span-width of all constituents during exhaustive pars-

ing of sentence 1 in WSJ Section 22 with the R2 grammar. Red circles indicate constituent

from gold parse tree.
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length. We can see in Figure 4.3a that the unnormalized inside prioritization function

is far from ideal. The final gold constituent covering the entire string has a (log) prior-

itization score of approximately -250. In order to pop this constituent from the global

agenda, all constituents with a higher prioritization scores must necessarily be processed

first. This requires processing all constituents with a span length less than 20, and the

majority of those over length 20. Although fewer constituents will be processed compared

to exhaustive CYK search, the total time-to-parse will be much greater due to the required

sorting of constituents in the global agenda.

In contrast to the unnormalized inside score, we see that the Geometric Mean, the Nor-

malized Inside Product, and the Normalized Inside N-Gram methods all alter the absolute

prioritization score of each constituent such that the bias towards shorter derivations is

lessened. The Normalized Inside Product method is also depicted at three different values

of λ, showing how the bias towards long or short spans can be controlled. But even in

the ideal case where the bias towards shorter spans could be ignored, the relative ranking

of the gold constituents (red circles) will never change within a chart cell for any of these

methods, and may only change across spans of the same width for the Inside N-Gram

method. In general, this leads to a poor local prioritization of constituents for both the

normalized or unnormalized inside prioritization functions. It is not until we supplement

the inside constituent score with a more sophisticated outside estimate that we will be-

gin to see significant improvements in local constituent ranking. The next three sections

discuss such methods.

4.2.3 Constituent Prior

The outside probability β represents the likelihood of non-terminal Ab,e participating in

the remaining parse structure covering words w1 . . . wb−1 and words we+1 . . . wn. Formally,

β(Ab,e) = P(w1...b, Ab,e, we...n) (4.7)

If we make the simplifying assumption that nonterminal A is independent of the words

in the sentence, we can reduce the outside probability β to the prior over non-terminal
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A participating in any parse tree [72]. We call this the constituent prior prioritization

function:

fprior(Ab,e) =
α(Ab,e)P(A)∏

i∈b...e−1 P (wi|wi−1 . . . w0)
(4.8)

Although the assumptions present in this model are far from realistic, computing the

prior probability over each non-terminal P(A) = count(A)
count(∗) , where count(∗) is the total

number of non-terminal instances in the training data, is trivial to estimate and can be

seen as a practical compromise between using the inside probability alone and the more

complex prioritization models we present in the following sections. Surprisingly enough,

we will see later in this chapter that the Constituent Prior model performs nearly as well as

its more complex counterparts when performing beam-search with small grammars. This

model provides significant computational advantages over the inside probability alone,

with very little added complexity.

4.2.4 Constituent POS Boundary

We can improve the outside estimate β to condition its estimate on more than the prior

probability over non-terminals. Caraballo and Charniak [25] (C&C) introduce the bound-

ary n-gram prioritization function (also known as a figure-of-merit), which relies on two

key factors: (1) an n-gram estimate of the probability of the unambiguous POS tag se-

quence P(t1 . . . tn), and (2) the probability that the non-terminal A will be situated in the

parse tree with POS tag tb to the left of its span and te to the right. Given unambiguous

POS tags t1 . . . tn, we write the C&C estimate as

fpos(Ab,e) =
α(Ab,e)P(A|tb−1)P(te|A)∏
i∈b...e−1 P(ti|tb−1 . . . t0)

(4.9)

C&C assume gold POS tags in their experiments, which simplifies the calculation of

their estimate. To accommodate parsing from lexical items without gold POS tags, we

can either tag the input sentence as a pre-processing step or leave the sequence ambiguous

and compute the forward-backward probability of each tag at each position, and directly

incorporate this information into the prioritization model. We note that Magerman and
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Weir [111], Collins [46], and Charniak [31] do not parse from pre-processed 1-best POS

tags due to significant F1 degradation ( 0.6 absolute from Collins). Instead, we follow Hall

and Johnson [74] and incorporate the forward-backward POS probabilities as follows:

fpos(Ab,e) = max
i,j

[
α(Ab,e)P(A|tib−1)P(tje|A)

fwd(tib−1 . . . t
j
e)bkwd(tib−1 . . . t

j
e)

] (4.10)

Instead of dividing the the forward-backward scores of the tag sequence spanned by

Ab,e, we can instead multiply by its complement – the forward score from the beginning

of the sentence to the beginning of the span, and the backward score from the end of the

span to the end of the sentence. A similar approach is taken by [74], but here we also

decompose β into a left and right component which can be independently computed:

βleft(Ab,e) = max
i

[fwd(t0 . . . t
i
b−1)P(A|tib−1)] (4.11)

βright(Ab,e) = max
j

[P(tje|A)bkwd(tje+1 . . . tn+1)] (4.12)

fpos(Ab,e) = α(Ab,e)βleft(Ab,e)βright(Ab,e) (4.13)

where fwd(t0 . . . t
i
b−1) computes the forward probability from a special start POS symbol

t0 to the tag ti at position b − 1, and bkwd(·) is computed similarly. Boundary transi-

tion probabilities P(A|tib−1) and P(tje|A) are computed from labeled data using maximum

likelihood estimation and smoothing with a uniform prior. Note that by decoupling the

outside estimate into left and right components, we can efficiently pre-compute the partial

boundary estimates βleft(A
k
b ) and βright(A

k
e) for all non-terminals Ak at all word positions

b and e, resulting in a constant-time lookup during parsing. To our knowledge, this is the

first time this decomposition has been presented, reducing the complexity of computing

fpos(Ab,e) on-the-fly from O(M2) to O(1), where M is number of POS symbols in the

grammar. Because this function is evaluated millions of times for a typical sentence, our

decomposition has great practical benefit.

4.2.5 Constituent Lexical Boundary

As it has become standard in the parsing community to parse directly from lexical items,

we should not assume that gold POS tags will be given as the input to our parser. The
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Constituent POS Boundary prioritization function discussed above can straight-forwardly

be adapted to a lexical boundary probability model by learning constituent boundary co-

occurrence statistics with lexical items instead of POS tags (for example, see the work of

Hall [73]). The advantage of using lexical items directly is that they are unambiguous,

thus alleviating the need to compute the non-trivial forward-backward probabilities over

all possible POS sequences given the input sentence.2 We define the Constituent Lexical

Boundary model as follows, where non-terminal A spans words wb . . . we, and the sentence

w0 . . . wn is padded by special begin and end symbols:

flex(Ab,e) =
α(Ab,e)P(A|wb−1)P(we+1|A)∏

i∈b...e−1 P (wi|wi−1 . . . w0)
(4.14)

The condition probability P(A|wb−1) is computed using the maximum likelihood estimate

c(A,wb−1)∑
v∈V c(v,wb−1) , where c(·, ·) is the observed co-occurrence counts in the corpus (from gold

labeled or maximum likelihood trees), and P(we+1|A) is computed likewise.

The disadvantage of computing lexical-to-non-terminal transition probabilities (op-

posed to POS-to-non-terminal transition probabilities) is the possibility of poor param-

eter estimation due to sparse data. With over 44,000 words in our vocabulary and over

1,000 non-terminals in the latent variable grammar, robust estimation of the left and right

boundary scores may be problematic given the size of our training corpus. In order to

more robustly estimate the boundary transition probabilities, we follow Koo et al. [107]

and cluster our vocabulary using Brown clustering algorithm [21]. The Brown clustering

algorithm is a bottom-up agglomerative clustering method which merges clusters that min-

imally increase the class bi-gram likelihood of the training data. The objective function

is
∏
i∈1...n P(wi|Φ(wi))P(Φ(wi)|Φ(wi−1)) where i iterates over all n words in the corpus

and Φ(·) is a mapping of words to clusters. The cluster-merging process from one-cluster-

per-word to all-words-in-one-cluster can be efficiently represented as a binary tree where

a depth of D represents the (at most) 2D word clusters. In practice, there are often fewer

instantiated clusters than possible clusters. Table 4.1 shows the correspondence between

D, the number of possible clusters, and the number of observed clusters in our data.

2In our experiments, computing the forward-backward scores over all POS tags takes 15-30% of the
total runtime, depending on the sentence length. See Figure 6.6 for details.
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D Possible Observed

4 16 16

6 64 54

8 256 166

10 1024 401

12 4096 725

18 262144 1000

Table 4.1: Number of possible and observed lexical clusters using the Brown clustering

algorithm [21] for a tree of depth D.

Given a mapping ΦD which maps a lexical item wi to a cluster cj , we can rewrite the

Constituent Lexical Boundary prioritization function as:

fΦ
lex(Ab,e) =

α(Ab,e)P(A|Φ(wb−1))P(Φ(we+1)|A)∏
i∈b...e−1 P (Φ(wi)|Φ(wi−1) . . .Φ(w0))

(4.15)

The off-line computation of lexical clusters for our domain will tie parameters of similar

functioning lexical items, but making hard clustering decisions could have an adverse

affect on parsing performance compared to the soft constraints of the Constituent POS

Boundary if the clusters are either too coarse (providing no useful information about the

boundary context) or too fine (overfitting to peculiarities of the training set). As this an

empirical question, we turn to Figure 4.2, which shows beam-search parsing results with

the Constituent Lexical Boundary model for multiple grammars and multiple clustering

granularities (i.e., values of D). For each cluster size, the beam-search pruning parameters

are varied from very loose (performance similar to CYK) to very restrictive such that

performance severely degrades.

Looking again at Figure 4.2, we see that the optimal number of clusters is dependent on

the grammar. For the R2 grammar (right binarized Markov order-2), the trend is straight-

forward – the more individual lexical items are clustered, the worse parsing performs,

especially at the most restrictive beam-search settings. The R2P13 and latent grammars

3R2P1 is a right binarized Markov order-2 grammar with parent annotation. See Section 3.6.1 for the
complete list.
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Figure 4.2: Results for Constituent Lexical Boundary prioritization function with different

cluster sizes.
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also see substantial degradation in performance when the number of clusters is lower than

100. This should be expected as limiting the number of possible lexical contexts restricts

the power of the model to distinguish probable from improbable contexts. What makes

the results different for these two grammars compared to the R2 grammar is that we see

a performance gain when 725 or 1000 clusters are used, over estimating the model from

lexical items directly. This confirms our hypothesis that smoothing the model by tying

similar functioning lexical items is effective when the parameter space is large.

4.2.6 Prioritization Models with Unlabeled Data

Standard estimation of the prior probability for the Constituent Prior model or the bound-

ary transition probabilities for either the POS or Lexical Boundary model is computed via

maximum likelihood counts from an annotated treebank. For example, the prior proba-

bility P (Ai) of observing non-terminal Ai would be the frequency of Ai observed in the

treebank divided by the total observed non-terminals. For the R2 or R2P1 grammars, the

Markovization and parent annotation is a deterministic grammar transform of the gold

treebank, and these modified non-terminal counts can be extracted after transformation.

But with a grammar such as Petrov and Klein [133] latent variable grammar, which is

estimated via expectation maximization, or the “unlexicalized” grammar of Klein and

Manning [102], which is non-trivial to reproduce, no such gold treebank is available with

the same non-terminal annotations for training prioritization models. More generally, if

we wish to train a prioritization model given any arbitrary PCFG – even a hand con-

structed grammar – we cannot assume to have access to a treebank annotated under the

same philosophy.

Given this scenario, we consider two options to automatically induce a labeled treebank

for training prioritization models. First, we can map each non-terminal in the target

grammar to corresponding non-terminals in the original treebank. This should not require

significant effort as such a mapping must already exist for evaluation purposes. A Prior

or Boundary prioritization model could then be estimated form the original treebank and

applied to the target grammar, effectively tying the parameter space of all non-terminals

mapped to a single treebank label (i.e., np). Our second option is to parse an arbitrary
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amount of text in a given domain with the target grammar and estimate the prioritization

model parameters from this generated treebank. This is similar in spirit to self-training

[119] – and to a lesser extent, co-training [154] – which both leverage unlabeled data to

improve the underlying PCFG. In our case, we do not alter the grammar, but instead train

a prioritization function to efficiently search the space created by the grammar. Under

this scenario, we should not expect the prioritization model to improve parse accuracy

above the maximum likelihood PCFG solution, as that is exactly what we are using to

train the model.

Training from unlabeled data has two advantages over mapping non-terminals to the

original treebank set. First, we can estimate prioritization parameters for all non-terminals

in the target grammar, opposed to the smaller set of those in the original treebank.

This allows our prioritization methods to better define the distribution of probable and

improbable outside contexts for each of the refined non-terminals. Second, it is well-known

that a PCFG trained from the WSJ treebank often overfits the data and does not generalize

well to new domains [68], and there is no reason to believe prioritization models trained

on the same data will not suffer from the same problem. With the ability to train from

unlabeled corpora, we can now adapt our prioritization functions to arbitrary domains such

that best-first and beam-search parsing can search the solution space effectively when not

parsing news-wire text. Given these advantages, we train the Constituent Prior, POS

Boundary, and Lexical Boundary prioritization models from maximum likelihood trees

when parsing with the latent variable grammar.

4.2.7 Analysis and Discussion

The true effectiveness of each prioritization function is how well it guides the search during

parsing, and ultimately, the possible accuracy/efficiency operatizing points when parsing

with the model. Before presenting such results, we can get a more comprehensive view

of how each function is affecting the search by looking at the five sub-figures of Figure

4.3. These figures plots the prioritization score of every constituent while parsing a single
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(a) Inside Prioritization

(b) N-Gram Normalized Inside (c) Constituent Prior

(d) Constituent POS Boundary (e) Constituent Lexical Boundary (no clustering)

Figure 4.3: Prioritization scores per span-width of all constituents during exhaustive pars-

ing of sentence 1 in WSJ Section 22 with the R2 grammar. Red circles indicate constituent

from gold parse tree. Sub-figures 4.3a and 4.3b are repeated from Figure 4.1 for compari-

son with the Constituent Prior and Boundary methods.
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example sentence;4 no pruning is applied. Each blue “x” is an individual constituent

and the red circles are the correct constituents given by the gold tree. An idealized

prioritization function would push all red circles towards positive infinity, while pushing

everything else towards negative infinity.

Consider, for example, a best-first parsing architecture with a global agenda. Under

this assumption, the constituent with the highest prioritization score is popped from the

agenda and placed in the chart. This is analogous to moving a horizontal line from the top

of each plot in Figure 4.3 to the bottom, and processing each red circle or blue “x” that

crosses the line until a full parse tree has been discovered (minimally when all red circles

have been popped from the agenda).5 Given this analogy, we can see how using the inside

score alone in Figure 4.3a to prioritize constituents is far from ideal. Because the inside

score is cumulative (in the log domain), there is an indirect correlation between the span

length and the inside score. Thus, the first constituent to span the entire input sentence

has a prioritization score of nearly -250, by which time all constituents of length 1 to 20

will have already been processed, whether or not they are likely given their context (see

further discussion in Section 4.2.2).

The remaining plots in Figure 4.3 show the prioritization of every constituent for four

different outside heuristics: N-gram normalized inside probability, the Constituent Prior

model, the Constituent POS Boundary model, and the Constituent Lexical Boundary

model (no word clustering is used when parsing with the Lexical Boundary prioritization

function in this example). Remember that these figures only plot the prioritization scores

of a single sentence and may not be representative of the behavior over the entire corpus.

Keeping this in mind, we see that the POS and Lexical Boundary prioritization functions

rank the gold constituents (red circles) higher than either the normalized inside or Prior

outside models. In particular, the Lexical Boundary prioritization function ranks the gold

constituents spanning the entire sentence (span-width of 37) very favorably compared to

all other constituents in the agenda. But the POS Boundary prioritization function will

4Sentence 1 in WSJ Section 22
5This analogy is not entirely correct since a constituent is only traversable once its children have been

discovered and although a parent constituent’s inside score is always less than its children, that is not
necessarily true for a parent’s prioritization score given an arbitrary prioritization function.
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require the least number of agenda pops to find the gold tree, primarily due to its superior

ranking performance on constituents spanning shorter substrings (length 1-10). We will

present performance statistics over the entire development set in the next section.

The plots of Figure 4.3 are informative when performing best-first parsing and all con-

stituents are prioritized together in a global agenda. But when a beam-search is employed,

such a global comparison is not helpful as constituents are compared only against others

spanning the same substring. In order to visualize the effectiveness of each prioritization

function within a beam-search parser, we turn to Figures 4.4 and 4.5. Here, we plot a

histogram of the rank of all gold constituents within each local agenda when performing

an unpruned beam-search (i.e., a beam-width of infinity). For example, if a constituent

from the gold parse tree spans substring wb . . . we and its rank in the local agenda for

chart cell Cb,e is four, then one instance would be observed in bin four of the plot. Chart

cells containing no gold constituents contribute no information to these figures. Aggre-

gating the results across all sentence in the development set, we can see the percentage

of gold constituents which are ranked first, second, third, etc. in the local agenda. The

bin labeled ”10+” in each plot represent any rank 10 or greater such that the cumulative

probability distribution – represented by the red dotted line – of all bins is 100 percent.

Setting a hard K-best beam-width of K=9 necessarily eliminates all constituents with

a local rank greater than nine. When prioritizing by the inside constituent scores using

a right-binarized Markov order-2 grammar (R2) as in Figure 4.4a, this would eliminate

approximately 50.5% of gold constituents from the search, significantly degrading accuracy.

The Prior, POS Boundary, and Lexical Boundary prioritization functions all fare much

better, pruning approximately 8.6%, 4.3%, and 4.7% of gold constituents respectively at

the K=9 threshold.6 Although the Constituent Prior prioritization function would prune

6We say “approximately” because only derivable constituents are added to the local agenda. When
enforcing a beam-width of K=9, this severely limits the number of derivable constituents and many
scenarios exist to either move the rank of the gold constituent closer to one (high-scoring non-gold edges
are no longer derivable) or eliminate the gold constituent from consideration (it is no longer derivable given
the pruned search space). Note that the rank of the gold constituent will never decrease when using hard
constraints compared to exhaustive beam-search, which is presented here. The true number of pruned gold
constituents can only be found via decoding with the specified parameters, and we report the accuracy
and efficiency tradeoff of each prioritization function in the next section.
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nearly twice as many gold constituents as the either of the Boundary models at this

threshold, it is surprisingly effective at ranking constituents compared to the inside score

alone given that only the prior probability for each non-terminal is used for the heuristic.

But as we will see next, the utility of the Constituent Prior model diminishes as the size

of the grammar – and the number of non-terminals – increases.

Figure 4.5 parallels Figure 4.4 by parsing with the same four prioritization functions,

but using the R2P1 grammar (right-binarized Markov order-2 parent annotation) instead

of the R2 grammar. The one exception to the direct comparison is that the Constituent

Lexical Boundary prioritization function does not apply word clustering with the R2 gram-

mar, but does when used with the R2P1 grammar due to improved performance on the

development set. Because the R2P1 grammar encodes additional contextual information

into each phrase-level non-terminal, the grammar contains more than twice the number of

productions as the R2 grammar and we do not expect the prioritization functions to be as

effective given the added ambiguity. Comparing parallel results from Figure 4.4 and 4.5,

we see that all four prioritization functions are less effective at correctly ranking the gold

constituent in the local agenda when using the R2P1 grammar. The number of gold con-

stituents ranked first drops from 10.1% to 4.2% when using the inside score alone; 62.3%

to 39.9% with the Constituent Prior function; 67.1% to 60.0% with the POS Boundary

function; and 65.7% to 60.7% with the Lexical Boundary function. The Constituent Prior

model suffers the biggest loss with the increased grammar size. This is not surprising as

the model is no longer relying on the prior probability difference between, say, a noun-

phrase and a coordinating conjunction in the R2 grammar, but instead is predicting the

non-terminal and non-terminal parent without any contextual information.

Also interesting is that the Lexical Boundary prioritization function outperforms the

POS Boundary model at ranking the gold constituent first in the local agenda when parsing

with the R2L1 grammar. It is our hypothesis that the Lexical Boundary function, with the

ability to condition its outside estimate on lexical items directly, has better discriminative

power than the POS Boundary model for lexical-to-non-terminal transitions that defy

their POS-to-non-terminal generalization. Conversely, the Boundary POS model should

perform better, on average, over all contexts given that the transition probabilities can
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(c) Constituent POS Boundary
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(d) Constituent Lexical Boundary (no clustering)

Figure 4.4: Histogram of the rank of all gold constituent in each span-specific agenda

during beam-search parsing with the R2 grammar. The red line is the cumulative dis-

tribution function. No pruning was applied during search (i.e., the beam-width thresholds

were infinity). No clustering was applied to (d) as this leads to the best results with the

R2 grammar.



72

1 2 3 4 5 6 7 8 9 10+0

10

20

30

40

50

60

70

80

90

100

Rank of Gold Constituent

Pc
t o

f T
ot

al
 C

on
st

itu
en

ts

 4.2  5.2
 3.1  3.3  2.8  4.5  5.3  3.5  3.9

64.4

(a) Unnormalized Inside Prioritization

1 2 3 4 5 6 7 8 9 10+0

10

20

30

40

50

60

70

80

90

100

Rank of Gold Constituent
Pc

t o
f T

ot
al

 C
on

st
itu

en
ts

39.9

20.7

10.9
 6.3

 3.7  3.0  2.1  1.7  1.2

10.5

(b) Constituent Prior

1 2 3 4 5 6 7 8 9 10+0

10

20

30

40

50

60

70

80

90

100

Rank of Gold Constituent

Pc
t o

f T
ot

al
 C

on
st

itu
en

ts

60.0

19.0

 6.1
 3.5  2.0  1.4  1.0  0.8  0.6

 5.5

(c) Constituent POS Boundary
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(d) Constituent Lexical Boundary (725 clusters)

Figure 4.5: Histogram of the rank of all gold constituent in each span-specific agenda

during beam-search parsing with the R2P1 grammar. The red line is the cumulative

distribution function. No pruning was applied during search (i.e., the beam-width thresh-

olds were infinity)
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be estimated robustly given fewer model parameters. This is confirmed in the data as we

see the cumulative percentage of gold constituents with rank K>1 is larger for the POS

Boundary model as compared to the Lexical Boundary model.

Extension of this analysis to the latent variable grammar would be interesting as

the number of non-terminals and productions is significantly larger. Unfortunately, such

experiments can not be performed under the same conditions as we do not have gold parse

trees labeled with the appropriate latent states (see discussion in Section 4.2.6). Instead,

we will compare the utility of each prioritization function by parsing unseen data and

analyzing the accuracy/efficiency trade-off of each, which is the most practical objective

when using syntactic structure for down-stream NLP applications.

4.3 Best-First Parsing

We begin our analysis of prioritization by evaluating each method within a best-first

parsing architecture. Algorithm 2 contains pseudocode for the best-first parsing algorithm.

A global priority queue, p, is initialized in line 1 by the target prioritization function,

by which will sort constituents. The agenda is first populated with lexical productions

Ai → wj where Ai is a POS tag. The algorithm then continues by popping the highest

scoring constituent from the agenda, adding it to the chart (α), and expanding the frontier

of possible constituents given this new entry. Parsing continues until the goal node is found

or the agenda is exhausted, indicating that no valid parse trees exist given the grammar.

Unary productions are included in the pseudocode of Algorithm 2, which allows arbitrary

length unary chains. Infinite-length chains are not a concern since α only stores the

highest-scoring entry for each non-terminal Ai.

With a good prioritization function, best-first parsing with a global agenda can signifi-

cantly decrease the number of constituents explored during search compared to exhaustive

parsing. Fewer processed constituents, though, does not imply faster parsing speed due to

the overhead of sorting all constituents by their respective prioritization score. Pushing a

new frontier item onto the agenda is an O(logM) operation, where M is the size of the

agenda – potentially tens of millions of entries.
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Algorithm 2 BestFirstParser

Pseudocode for the best-first parsing algorithm. Unary productions are included and the

Viterbi decoding is performed. Backpointer storage, memoization, and over-parsing are

omitted.
Input:

w1 . . . wn: Input sentence

G: Binarized PCFG

f : Prioritization function

Output:

α: Viterbi-max scores for all non-terminals over every span

BestFirstParser(w1 . . . wn, G = (V, T, S†, P, ρ), f)

1: p← PriorityQueue(f) . The agenda prioritized by f

2: for b = 1 to n do . Add lexical productions to agenda

3: for Ai ∈ V do

4: p.push({Ai → wb, b, ∅, b+ 1})
5: while p.size() > 0 and αS†(1, n) = 0 do

6: {Ai → β, b,m, e} ← p.pop() . Remove highest-priority edge

7: if m = ∅ then . If unary production

8: αi(b, e)← ρ(Ai → Aj) αj(b, e)

9: else

10: αi(b, e)← ρ(Ai → Aj Ak) αj(b,m− 1) αk(m, e)

11: for Ax ∈ V do . Possible unary expansions: X → Ai

12: p.push({Ax → Ai, b, ∅, e})
13: m← b

14: for b2 = 1 to m do . Possible binary expansions: X → Y Ai

15: for Ax ∈ V do

16: y ← argmaxy[ρ(Ax → Ay Ai) αy(b2,m) αi(m+ 1, e)]

17: p.push({Ax → Ay Ai, b2,m, e})
18: m← e+ 1

19: for e2 = m to n do . Possible binary expansions: X → Ai Z

20: for Ax ∈ V do

21: y ← argmaxy[ρ(Ax → Ai Ay) αi(b,m) αy(m+ 1, e2)]

22: p.push({Ax → Ai Ay, b,m, e2})

23: return α
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4.3.1 Agenda Memoization

To parse efficiently, we must aim to minimize the number of agenda push and pop opera-

tions. The prioritization functions presented in the previous section are one step towards

this goal, but even applying these to best-first search in a näıve fashion can be costly.

For example, when a new frontier edge (Ai → Aj Ak, b,m, e) is discovered (but not yet

added to the agenda) with an inside score α∗ and prioritization score π∗, we can first

verify that α∗ > αi(b, e) in the dynamic programming chart before adding it to the global

agenda, where α is the current Viterbi-max scores recorded in the dynamic programming

chart (see Algorithm 2). This is a straight-forward verification to eliminate a number

of unnecessary operations, but is limited to the current state of α at the time of frontier

expansion. What if a constituent (Ai → Ax Ay, b,m2, e) exist in the agenda with an inside

score α′ and prioritization score π′, but has not yet been added to the chart? Because

the outside estimate of each of the prioritization functions we consider is agnostic to the

internal structure of the partial derivation (i.e., the constituent’s child non-terminals or

midpoint), then it must be true that if α∗ < α′ then π∗ < π′ and we can be assured that

withholding this constituent from the agenda will have no effect on the final derivation as

it will never be added to the chart.

Searching the agenda before each push is not practical as it would requires a linear

traversal of the items. Instead, we memoize (record) the inside score of each pushed

edge in Mi(b, e) for comparison with each frontier edge before pushing onto the global

agenda. This optimization provides large efficiency benefits, especially when the prioriti-

zation function is poor, at the cost of potentially doubling the memory requirements (we

are essentially keeping two dynamic programming charts). This can been seen in Table 4.2

where we parse the development set with the R2 grammar both with and without mem-

oization. Results for the CYK algorithm are also presented for comparison. Note that

all three algorithms, when using the Inside prioritization function, optimize the search

function exactly finding the parse tree t that maximize P (t|w). The F1 score is slightly

different between the methods due to tie resolution differences based on traversal order.
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Inside POS Boundary

F1 W/S Pushes Pops F1 W/S Pushes Pops

CYK 72.2 97.1 14899833 72.2 97.1 14899833

Agenda 71.9 1.8 4296694 3974561 72.5 286.7 157996 6013

Memoization 71.7 13.5 397470 386889 72.6 335.9 40490 2248

Table 4.2: Comparison of accuracy, runtime, and constituents processed for a standard

best-first agenda parser (Agenda) and an agenda parser with memoization using the R2

grammar. “W/S” is words per second; “Pushes” and “Pops” are the average number of

agenda operations per sentence over the entire development set. Results from the CYK

algorithm are presented for comparison, where edges added to the chart are reported (no

agenda is used during CYK parsing).

We see in Table 4.2 that the näıve best-first agenda parser using the Inside prioriti-

zation function reduces the number of processed constituents by 71% compared to the

exhaustive CYK algorithm, yet the time-to-parse is much worse (1.8 words per second

versus 97.1 words per second). Pruning constituents using memoization provides an addi-

tional 10-fold reduction to the search space, but both methods still see a run-time slower

than CYK parsing. Applying a more accurate prioritization function, such as the POS

Boundary model, we see similar trends but to a lesser degree. Using memoization de-

creases the number of agenda pushes and pops by nearly 75%, translating into a 17%

increase in words per second. For the remainder of this thesis, all best-first results assume

a global agenda framework with memoization.

4.3.2 Over-parsing

Given an admissible prioritization heuristic, such as those found in A* search [126], one

can guarantee that the first parse tree discovered spanning the entire sentence will be

the maximum likelihood solution [149]. Each of the prioritization functions discussed in

Section 4.2 are inadmissible, meaning there are no constraints on how priority is assigned

and the first complete parse tree discovered may not be the optimal solution according to

the PCFG. Inadmissible heuristics are often used in NLP applications such as parsing [25]

and machine translation [176] in order to optimize efficiency over accuracy, but as we’ve
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already seen in Table 4.2, an inadmissible heuristic – such as the Boundary POS model –

can actually lead to more accurate solutions given a non-likelihood objective such as F1

or labeled bracket match. This is due to the complementary nature of the prioritization

function leveraging contextual information that is not directly encoded in the grammar.

In cases where our best-first search is guided by an inadmissible heuristic and we

prefer to find the maximum likelihood parse tree, we can employ a technique known

as over-parsing, which continues to add constituents from the agenda to the dynamic

programming chart after the first solution has been found [73]. A single parameter, η,

controls the degree of additional search such that if p constituents have been popped from

the agenda when the first complete parse tree is discovered, we do not terminate the search

until a total of η · p constituents have been popped. A value of η=1 returns the first parse

tree discovered with no additional processing; a value of positive infinity will continue to

parse until the agenda is empty.

Table 4.3 contains results showing the effect of over-parsing for three different Inside

normalization functions discussed in Section 4.2. Looking at the performance for η=1,

we see that each normalization function has a significantly different accuracy/efficiency

operating points for the first full parse tree returned. As the over-parsing value η in-

creases, we see that each method adds additional constituents to the chart and steadily

approaches the maximum likelihood solution. The number of pops for, say, η=4 is not

exactly four-times the value of η=1 due to the sentence-specific nature of over-parsing. If

the prioritization method is particularly poor for an individual sentence and a full parse

is not found until 85% of the agenda has been exhausted, doubling (or quadrupling) the

target number of pops has little effect given that parsing necessarily terminates once the

agenda is empty.

In Table 4.4 we apply the more complex Boundary POS model to best-first parsing

with the R2 and Latent grammars. Here we see that the first parse tree returned with the

prioritization function and the R2 grammar has a higher F1 than the maximum likelihood

solution obtained with exhaustive search (72.6 compared to 72.2). If we apply over-parsing

and continue to add constituents to the chart, F1 decreases while likelihood increases until

the optimal solution according to the PCFG is found. In this situation, it is better to
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Product λ=6 Geometric Mean N-Gram

η F1 W/S Pops F1 W/S Pops F1 W/S Pops

1 67.8 29.1 152757 37.4 248.7 24027 56.9 221.7 26334

2 70.5 21.0 243451 41.9 143.8 48054 63.9 117.6 52669

4 71.2 18.5 290173 46.4 78.7 95971 67.9 58.2 101682

8 71.5 17.5 312506 52.6 41.5 189761 70.5 33.5 172889

16 71.7 17.0 324333 59.1 21.8 346013 71.4 22.9 252126

32 71.7 16.8 329251 64.9 13.2 541215 71.7 17.5 320037

Table 4.3: Over-parsing with three inside probability normalization methods using the R2

grammar. “W/S” is words per second and “Pops” is the average number of agenda pops

per sentence over the entire development set.

terminate the search early and rely heavily on the prioritization method more than the

grammar if F1 is our true objective.

When parsing with the latent variable grammar in Table 4.4, we see that maximizing

the likelihood of the PCFG is more closely aligned with F1 than the first parse tree returned

by the prioritization function. Over-parsing by η=4 is necessary to achieve the accuracy

of exhaustive search, although this only increases the number of agenda pushes by roughly

50%. Note that the number of agenda operations is not proportional to the true parsing

speed (words per second); although the number of pushes is commensurate between the

two grammars, over an order of magnitude difference exists between the speed of parsing.

This is due to the difference in grammar size. When a constituent is popped from the

agenda and placed in the chart, all possible frontier expansions are considered according to

the grammar and the current chart population. But most candidates are not pushed onto

the agenda due to restrictions already in the chart (a constituent with higher likelihood

already exists) or is already in the agenda (see previous section on agenda memoization).

The iteration over this set of possible candidates is nearly two orders of magnitude larger

for the Latent grammar compared to the R2 grammar, hence the difference in parsing

speed. This is a key example of why we consider runtime performance a critical metric

when comparing efficient parse strategies.
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R2 + POS Boundary Latent + POS Boundary

η F1 W/S Pushes Pops F1 W/S Pushes Pops

1 72.6 336.7 40490 2248 87.7 15.7 52059 425

2 72.5 212.5 62232 4497 88.8 13.9 61937 851

4 72.2 138.4 90176 8994 89.2 11.4 77278 1703

8 72.1 90.9 122822 17988 89.2 8.6 101262 3406

16 72.1 63.3 158002 33798 89.2 6.1 138030 6812

Table 4.4: Over-parsing with the POS Boundary prioritization methods using the R2 and

Latent grammars. “W/S” is words per second; “Pushes” and “Pops” are the average

number of agenda operations per sentence over the entire development set.

4.4 Beam-Search Parsing

Beam-search is a standard graph-based search algorithm that makes hard pruning decisions

at each span. In a bottom-up breadth-first traversal, all candidate derivations are sorted

by a prioritization function and only the most promising candidates are retained. The

size of this set is determined by two tuning parameters, K and R, which we discuss later

in this section.

In Algorithm 3 we present pseudocode of a beam-search parser leveraging both pruning

parmeters. We see that the algorithm is very similar to exhaustive CYK parsing, with

the exception of keeping a local priority queue for each span (line 4). Each constituent

with the highest derivational score for each non-terminal Ai is added to the local priority

queue (lines 5-10) but only those edges satisfying the beam-search criteria are added to

the chart (i.e., stored in α). We also include pseudocode to process unary edges in lines

19-20. Unlike the implementation of unary processing for the CYK algorithm (see Alg.

1), this beam-search implementation can construct long unary chains within a single chart

cell. This is because unary edges are pushed to the same local agenda as binary edges,

and forced to compete under the same beam-search constraints. In theory, after a single

binary edge is added to the chart, a chain of K−1 unary edges may determine the optimal

derivation for the span, where K is the maximum number of constituents permitted in

the chart cell according to the pruning parameters.
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Algorithm 3 BeamSearchParser

Pseudocode for the beam-search parsing algorithm. Unary productions are included and

Viterbi decoding is preformed. Backpointer storage, failure recovery, and online pruning

has been omitted.
Input:

w1 . . . wn: Input sentence

G: Binarized PCFG

f : Prioritization function

K: Beam-width of at most K derivations per chart cell; K > 0

R: Maximum score differential from best local derivation; 0 < R ≤ 1

Output:

α: Viterbi-max scores for all non-terminals over every span

BeamSearchParser(w1 . . . wn, G = (V, T, S†, P, ρ), f, K, R)

1: for s = 1 to n do . Span width

2: for b = 1 to n− s+ 1 do . Begin word position

3: e← b+s−1 . End word position

4: p← PriorityQueue(f) . Local agenda prioritized by f

5: for Ai ∈ V do

6: if s = 1 then . Special case for lexical productions

7: p.push({Ai → wb, ∅})
8: else

9: j, k,m← argmax
b≤m<e

(
argmax

j,k
ρ(Ai → Aj Ak) αj(b,m) αk(m+ 1, e)

)
10: p.push({Ai → Aj Ak,m})
11: {Ai → β,m} ← p.pop()

12: π ← f(Ai, b, e)

13: Rb,e ← π ∗R . Lower bound on priority score

14: while p.totalPops() < K and π > Rb,e do

15: if m = ∅ then

16: αi(b, e)← ρ(Ai → Aj) αj(b, e)

17: else

18: αi(b, e)← ρ(Ai → Aj Ak) αj(b,m) αk(m+ 1, e)

19: for Ax ∈ V do . Add unary edges

20: p.push({Ax → Ai, ∅})
21: {Ai → β,m} ← p.pop()

22: π ← f(Ai, b, e)

23: return α
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There are two key points we wish to highlight when comparing the best-first and

beam-search algorithms. First, both algorithms sort edges in a priority queue within the

inner loop of the algorithm, increasing the worst-case complexity of both algorithms from

O(N3) to O(N3 logN). This increases the parsing complexity over the CYK algorithm,

but in practice often decreases parsing time due to pruning or prioritization of the search

space. Within a best-first architecture, the global agenda potentially maintains a sorted

list of all O(N3|G|) edges, while beam-search parsing sorts at most O(N |G|) constituents,

where |G| is the size of the grammar.

Second, because the agenda in a beam-search parser only compares constituents span-

ning the same substring, the normalization component of each of the prioritization func-

tions is unnecessary. Furthermore, the difficulties of comparing constituents spanning

different substrings, as is done in the global agenda of a best-first parser, is eliminated. As

we will see in the next section, this allows us to maximize the benefit of each prioritization

function and tighten the pruning parameters quite severely before accuracy degrades.

4.4.1 Relative and K-Best Beam-Width

The number of derivations retained in each cell during beam-search parsing has significant

impact on parsing performance, as cells spanning larger substrings need only consider

those entries that remain. Prior work has often focused on tuning a single beam-width

parameter — a constant number of entries per span [9, 128], or a constant probability

threshold from the highest-scoring local candidate [46, 143] — to optimize efficiency and

accuracy. We refer to these methods as beam-K and beam-R respectively. Beam-K is

guaranteed a fixed amount of work no matter the distribution of local constituents; even

if one constituent has far superior merit, that K highest ranking entries will be retained.

Beam-R only retains local candidates within a fixed-width probability window, where the

number of qualifying candidates may be as small as one, or as large as hundreds.

In order to compare the individual merit of each beam-search pruning method, we run

empirical trials with multiple grammars and prioritization functions. In Figure 4.6 we see

an individual subplot for each of the R2, R2P1, and Latent grammars with both the Inside

and POS Boundary prioritization functions. The values of K range from 2 to 100; the
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values of R range from 4 to 10 (in the log domain). The first column of subplots — Figures

(a), (c), and (e) — parse with the Inside prioritization function. Here we see that for all

grammars, accuracy quickly degrades with both the beam-K and beam-R methods. In

fact, no pruning configuration can both speed up parsing and maintain accuracy compared

to the exhaustive chart parsing, except the largest values of beam-K with the R2 grammar.

The second column of subplots applies the POS Boundary prioritization function to

parsing with each grammar, resulting in much more favorable accuracy/efficieny curves.

We see that both the beam-K and beam-R methods can independently increase the words-

per-seconds parsed by an order of magnitude over exhaustive parsing without compromis-

ing accuracy. And as we saw with best-first search, F1 accuracy increases with the R2

grammar over the maximum likelihood solution given the grammar. For both Inside and

Boundary POS ranking functions, the beam-R method degrades more gracefully than

beam-K. This should be expected as beam-R pruning takes the distribution of local can-

didates into account, and will retain a potentially large set of competitors even if the

pruning parameters are overly aggressive. But if F1 accuracy cannot be compromised,

then both pruning methods are equally effective at pruning the search space under this

constraint.

Unfortunately, the accuracy versus efficiency plots of Figure 4.6 do not tell the entire

story when using the Inside prioritization function. Because it is standard to ignore failed

parses when computing accuracy over a test set (and the default behavior of EVALB [1]),

F1 accuracy alone does not give a sense of parse failure rate with these methods. In

Table 4.5, we report the tuning value and number of failed parses along with the F1 and

words-per-second and from Figure 4.6. The tuning parameter for beam-K is simply the

number of local-agenda pops per chart cell. The tuning parameter for beam-R is the score

difference between constituents in the log domain. With this new information, it is clear

that a constant tuning parameter for either beam-K or beam-R is insufficient to find valid

parse trees effectively when prioritized by the inside probability. For example, a beam-K

value of K=50 with the R2 grammar searches the space well for many sentences, achieving

an F1 score of 72.5, but even with at this (relatively generous) pruning threshold, 27%

of the input sentences (464 of 1700) fail to find a single valid parse. With the Boundary
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R2 R2P1 Latent

Beam-K F1 W/S Fail F1 W/S Fail F1 W/S Fail

5 33.1 2,635.1 1445 15.8 2,244.2 1498 72.2 164.8 727

10 50.7 1,738.8 1160 26.8 1,369.9 718 79.8 108.0 285

20 64.0 932.9 968 43.1 651.6 361 84.1 61.7 104

30 67.8 593.4 716 55.7 367.5 123 85.8 41.7 52

50 72.5 316.1 464 66.4 181.1 48 87.3 23.6 23

100 72.8 129.5 157 74.1 67.2 23 88.6 10.3 11

Beam-R

4 44.7 2,857.1 1418 42.3 1,403.1 1469 85.8 133.3 293

5 57.6 1,854.2 1115 55.3 689.8 1137 87.1 79.2 142

6 65.5 991.1 678 66.2 252.5 643 88.1 45.0 50

7 68.3 319.6 262 71.7 100.0 278 88.6 24.7 25

8 70.4 160.5 122 74.6 48.2 107 88.9 10.7 7

10 71.5 56.9 36 77.1 17.1 29 89.0 4.3 2

Table 4.5: Beam-K and beam-R pruning with Inside prioritization. The beam-K tuning

parameter is the number of local-agenda pops per chart cell; the beam-R tuning parameter

is the prioritization score difference in the log domain.

POS prioritization function, every sentence in the development set receives a parse with

all three grammars, and therefore the graphs of Figure 4.6 are an accurate portrayal of

parsing performance.

4.4.2 Online Pruning and Bounded Priority Queues

We add two optimizations to beam-search parsing in Algorithm 3. The key motivation

stems from line 10, where the highest scoring backpointer for each non-terminal Ai is

pushed onto the local agenda with its prioritization score. Given fixed beam-K and beam-

R constraints, we can prune many of the entries before adding them to the local agenda,

saving the O(logN) operation. The first method we call online pruning, the second

leverages a bounded priority queue. Neither of these optimizations alter the complexity of

the algorithm, but both methods decrease parsing time in practice.
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(c) R2P1 grammar, Inside priority
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(d) R2P1 grammar, Boundary POS priority
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Figure 4.6: Adjusting the k-best beam-width (beam-K) and relative beam-width (beam-R)

independently using two prioritization functions with three different grammars.
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In line 9 of Algorithm 3 we find the highest scoring derivation rooted at Ai for all

possible child non-terminals and midpoints. This maximization is necessary to ensure we

find the optimal derivation, but the highest scoring derivation {Ai → Aj Ak,m} should

only be added to the local agenda if its prioritization score satisfies the beam-K and

beam-R constraints, namely:

f(Ai → Aj Ak, b,m, e) ≥ R · max
x,y,z,m2

f(Ax → Ay Az, b,m2, e) (4.16)

Unfortunately, we do not know the maximum prioritization value over all non-terminals

Ai until each has been processed. What is known at time i is the maximum prioritization

score for all non-terminals A0 . . . Ai−1, which can provide a monotonically increasing bound

on acceptable prioritization scores. This bound will never overestimate the true maximum

value of f(·) for all Ai and we can safely eliminate unnecessary candidates that fall below

the bound before adding them to the priority queue.

The second optimization we employ is replacing the priority queue in Algorithm 3

with a bounded priority queue, a data structure with an upper bound on the number of

queue elements. Given the beam-K constraint, we know that at most K constituents will

be added to the chart, and we can therefore discard all constituents with a priority score

below the Kth-ranked element. As with our online pruning criteria for beam-R, we do

not know the highest scoring K constituents a priori. Instead, our implementation of the

bounded priority queue continues to add entries into the agenda until K elements exist.

When subsequent elements are pushed, its priority is compared to the lowest scoring entry

in the agenda. If its priority score is lower, then the entry is discarded. If it is higher,

then the element is sorted, the lowest scoring entry is discarded, and a pointer to the new

lowest scoring entry is reassigned to the correct queue element. As discussed in [26], we

also find that using the bubble-sort algorithm [103] to order the elements is superior to a

tree-based bounded priority queue or a min-max heap [4] due to the small value of K in

our experiments.

Unless otherwise stated, all beam-search results in this thesis use both the online

pruning and bounded priority queue optimizations.
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4.4.3 Failure Recovery Strategy

Unlike best-first parsing, beam-search makes hard pruning decisions at a local level that

can not be reversed. If a sentence requires an atypical amount of the search space to

be explored before returning a valid parse tree, the best-first parser will continue to pop

constituents from the agenda until it is found. Within a beam-search framework, it is

possible for no valid solution to be found spanning the entire sentence, depending on the

beam pruning parameters.

Instead of returning a parse failure during beam-search parsing, we choose to auto-

matically loosen the pruning parameters and re-parse the input string. This allows the

beam-K and beam-R values to be set effectively for the majority of the development cor-

pus, yet if a small number of sentence fail to parse with the initial settings, they will be

re-parsed under a more lenient pruning paradigm, without forcing the remainder of the

corpus to follow suit. For all our experiments, when a parse failure is returned, we double

the beam-K and beam-R values and re-parse. If a failure still occurs, we again double the

parameters and re-parse. This continues until a valid parse tree is found, or a tunable

number of re-parses have been attempted (in case no valid parse tree can be found given

the grammar).

Table 4.6 reports parsing statistics on the development set for re-parsing failure re-

covery. We adjust the beam-K parameter with the R2 grammar and Inside prioritization

function, which we showed earlier in this section to have a very high failure rate. After

re-parsing, we see that all sentences return a valid parse tree (no failures), and as expected,

the average number of required parses per sentence decreases as the initial beam-K value

increases. We also observe that the first parse tree found is not necessarily accurate under

the F1 objective, yet even a partially correct syntactic analysis can be beneficial, depending

on the downstream NLP application.

The reported “words per second” parse time in Table 4.6 accumulates the total time

from all failed and successful parse attempts. This correctly give an accurate description of

the true time-to parse under a re-parsing framework. Interestingly enough, the words-per-

second result is roughly constant when beam-K ranges from 5 to 20, and only moderately
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No recovery Re-parsing

beam-K F1 W/S Fail F1 W/S Fail Parses/Sent

5 33.1 2,635.1 1,445 58.1 116.6 0 3.14

10 50.7 1,738.8 1,160 62.2 110.6 0 2.46

20 64.0 932.9 968 67.2 100.5 0 1.98

50 72.5 316.1 464 70.7 87.7 0 1.40

100 72.8 129.5 157 71.7 74.5 0 1.13

200 72.6 57.6 58 71.9 48.7 0 1.04

Table 4.6: Parse recovery with failed beam-search parsing, using the R2 grammar and

Inside prioritization function on the development set of 1700 sentences. “Parses/Sent” is

the average number of times each sentence was parsed due to parse failures.

increases for larger pruning parameters. With an average number of parse attempts at

3.14 for K=5, this means the average sentence is parsed once at K=5, again at K=10,

and a third time at K=20. In the end, initializing K to 20 provides similar efficiency

results but with higher F1 due to the less restrictive initial pruning parameters.

4.5 Prioritization Results

We bring together all of the methods we have discussed in this chapter as compare best-first

and beam-search parsing frameworks across multiple prioritization functions in Table 4.7.

Tuning parameters have been optimized for each test such that efficiency was maximized

without significant loss in F1, compared to the maximum likelihood solution. Accuracy is

reported using labeled precision (LP), labeled recall (LR), and F1; efficiency is reported

in words per second (W/S). We also include results using the smaller R2 grammar as well

as the high-accuracy latent variable grammar to see the overall effects of grammar size.

As one might expect, best-first search with the Inside prioritization function is much

slower than even exhaustive CYK parsing, due to the overhead of sorting constituents in

the global agenda. Even a crude estimate of the outside score using the prior probability

of each non-terminal is not sufficient to out-perform exhaustive search when best-first

parsing. With the Lexical and POS Boundary prioritization functions, though, we do
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Alg Grm Priority Param LP LR F1 W/S

CYK R2 - - 74.8 69.6 72.1 82.5

BF R2 Inside - 74.4 69.2 71.7 13.5

BF R2 Prior OP=4 74.4 69.3 71.7 56.8

BF R2 POS Boundary OP=1 75.1 70.2 72.6 336.7

BF R2 Lex Boundary OP=1 Clust=None 74.3 69.2 71.6 522.3

Beam R2 Inside K=100 R=10 74.3 69.2 71.7 74.5

Beam R2 Prior K=15 R=7 75.1 69.9 72.4 589.3

Beam R2 POS Boundary K=5 R=2 74.8 70.3 72.5 1,448.2

Beam R2 Lex Boundary K=5 R=3 Clust=None 75.8 70.8 73.2 1,921.4

CYK Latent - - 89.1 89.2 89.1 5.7

BF Latent Inside - 89.1 89.2 89.1 0.3

BF Latent Prior OP=8 89.2 89.1 89.1 1.9

BF Latent POS Boundary OP=4 89.2 89.2 89.2 11.4

BF Latent Lex Boundary OP=2 Clust=8 89.3 89.0 89.1 13.6

Beam Latent Inside K=100 R=12 88.6 88.7 88.6 10.3

Beam Latent Prior K=50 R=8 89.0 88.9 88.9 15.9

Beam Latent POS Boundary K=30 R=8 89.0 88.9 89.0 33.8

Beam Latent Lex Boundary K=20 R=7 Clust=8 89.2 89.1 89.1 45.4

Table 4.7: All prioritization functions are normalized with the n-gram outside score for

best-first parsing. “OP” is over parsing; “K” and “R” are beam-K and beam-R tuning

parameters; “Clust” is the tree depth using Brown clustering for the Constituent Lexical

Boundary prioritization function.
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see a significant increase in parsing speed without accuracy loss for both the R2 and

latent variable grammars. Therefore, we find that best-first parsing only becomes a viable

alternative to exhaustive CYK parsing given a sufficiently accurate prioritization function.

This is in contrast to beam-search parsing, which sees roughly similar performance to CKY

parsing when using the inside prioritization function, and superior performance with the

Prior model.

We also see that the accuracy of the prioritization function has a direct affect on the

required tuning parameters. With best-first parsing, the more accurate the prioritization

function, the less over-parsing is required to achieve target F1 accuracy. Likewise with

beam-search, the more accurate the prioritization function, the more restrictive we can be

with the pruning parameters, decreasing K to as little as five-constituents per cell for the

R2 grammar.

Comparing parallel results for best-first and beam-search given each prioritization

function, it is always the case the beam-search is more efficient, and nearly always the

case that it is more accurate. Although parsing complexity remains the same, the general

trend of a three-fold increase in words-per-second has real-world implications when parsing

web-scale corpora or applying constituent parsing to real-time applications.

4.6 Conclusion

We have investigated the effects of multiple prioritization functions for context-free chart

parsing, and analyzed the empirical merit of each within a best-first and beam-search

framework. We have also introduced a novel prioritization function, the Constituent Lex-

ical Boundary model, which has been shown to effectively guide the search though large

model spaces, and with impoverished grammars, to even improve F1 accuracy. The Con-

stituent Boundary POS model of Caraballo and Charniak [25] has been adapted to the

typical-case scenario of non-gold POS tags, such that prioritization look-up scores are

O(1), opposed to O(N), where N is the length of the string.

We have also shown that under identical operating conditions, normalizing for com-

puter hardware, implementation language, grammar and prioritization models, we see
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that local prioritization with a beam-search parser outperforms best-first parsing with a

global agenda in nearly all trials. This is due to two key factors. First, when parsing

with large PCFGs, the size of the global agenda in a best-first parser grows so large,

that the benefit it provides is marginalized, especially with poor prioritization functions.

Beam-search, on the other hand, only maintains a local agenda of sorted entries and so

long as the hard pruning decisions are sufficient for the domain, leads to more accurate

and efficient search results. Second, as discussed by [12], normalization of the prioritiza-

tion function for constituents spanning differing substrings is problematic within a global

agenda. The same problem is present within decoding systems for machine translation

[67]. The prioritization methods we have presented in this chapter, as well as those by

Caraballo and Charniak [25], each normalize the prioritization scores using heuristic met-

rics and, as shown by empirical trials, require dampening the effect of normalization or

sufficiently over-parsing in order to maintain baseline accuracy levels. Beam-search, on the

other hand, alleviates this global normalization problem completely by only performing

local comparisons, leading to superior parsing performance.

When the parameter space of the prioritization model is sparse, such as with the latent

variable grammar, we have shown that the Lexical Boundary transition probabilities can

be estimated more robustly with a bottom-up clustering algorithm by tying parameter

of multiple lexical items. In this way, the prioritization function can be adapted to any

PCFG regardless of its size. In addition, when a supervised training corpus does not exist

labeled with trees from the grammar, we have shown that using maximum likelihood trees

to train the prioritization function is still effective at guiding the search in the target

grammar space.

Most importantly, we have the first empirical evidence to corroborate our thesis that we

can train models to prioritize and prune the solution space effectively given an arbitrary

PCFG by leveraging information from the unambiguous input sentence. Beam-search

parsing with the Constituent Lexical Boundary model is nearly 8x the speed of CYK

parsing with the latent variable grammar, and over 20x the speed with the R2 grammar,

each without any loss in F1 accuracy.



Chapter 5

Pruning with Finite-State Chart

Constraints

5.1 Introduction

Finite-state pre-processing for context-free parsing is very common as a means of reducing

the amount of search required during full inference. The Ratnaparkhi pipeline [141] used

a finite-state POS-tagger and a finite-state NP-chunker to reduce the search space at the

parsing stage, achieving linear observed-time performance. Other recent examples of the

utility of finite-state constraints for parsing pipelines include Glaysher and Moldovan [69],

Djordjevic et al. [55], and Hollingshead and Roark [82]. Note that by making use of pre-

processing constraints, such approaches are no longer performing full exact inference —

these are approximate inference methods, as are the methods presented in this chapter.

Using finite-state chunkers early in a syntactic parsing pipeline has shown both an

efficiency [69] and an accuracy [82] benefit for parsing systems. Glaysher and Moldovan

[69] demonstrated an efficiency gain by explicitly disallowing constituents that cross chunk

boundaries. Hollingshead and Roark [82] demonstrated that high precision constraints

on early stages of the Charniak and Johnson [34] pipeline achieved significant accuracy

improvements, by moving the pipeline search away from unlikely areas of the search space.

All of these approaches achieve improvements by ruling out parts of the search space, and

the gain can either be realized in efficiency (same accuracy, less time) and/or accuracy

(same time, greater accuracy).

91
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Rather than extracting constraints from taggers or chunkers built for different pur-

poses, in this chapter we train prediction models to more directly reduce the number of

entries stored in cells of a dynamic programming chart during parsing — even to the

point of “closing” chart cells to all entries. We demonstrate results using three finite-state

taggers that assign each word position in the sequence with a binary class label. The first

tagger decides if the word can begin a constituent of span greater than one word; the sec-

ond tagger decides if the word can end a constituent of span greater than one word; and

the third tagger decides if a chart cell spanning a single word should contain phrase-level

non-terminals, or only part-of-speech tags. Following the prediction of each word, chart

cells spanning multiple words can be completely closed as follows: Given a chart cell (b, e)

spanning words wb . . . we, we can “close” cell (b, e) if the first tagger decides that wb can-

not be the first word of a multi-word constituent or if the second tagger decides that we

cannot be the last word in a multi-word constituent. Roark and Hollingshead [145] have

shown in related work that completely closing a sufficient number of chart cells allows us

to impose worst-case complexity bounds on the overall pipeline, a bound that none of the

other above-mentioned methods for finite-state preprocessing can guarantee.

To complement closing multi-word constituent chart cells, our third tagger restricts

the population of span-1 chart cells. We note that all span-1 chart cells must contain at

least one part-of-speech (POS) tag and can therefore never be closed completely. Instead,

our tagger restricts unary productions with POS tags on their right-hand side that span

a single word. We term these single word constituents. Disallowing such constituents

alters span-1 cell population from potentially containing all non-terminals to just POS

non-terminals. In practice, this decreases the number of entries in span-1 chart cells by

70% during exhaustive parsing, significantly reducing the number of allowable constituents

in larger spans [18]. Because span-1 chart cells are the most frequently queried cells in

the CKY algorithm, minimizing the number of entries therein will lead directly to more

efficient context-free parsing.

The pre-processing framework we have outlined above is straightforward to incorpo-

rate into most existing context-free constituent parsers, a task we have already done for

several state-of-the art parsers. In the following sections we formally define our approach



93

to finite-state chart constraints and analyze the accuracy of each of the three taggers and

their impact on parsing efficiency and accuracy when used to prune the search space of a

constituent parser. We apply our methods to exhaustive CYK parsing with simple gram-

mars, as well as to high-accuracy parsing approaches such as the Charniak and Johnson

[34] parsing pipeline and the coarse-to-fine parser of Petrov and Klein [132, 133]. Various

methods for applying finite-state chart constraints are investigated, including methods

that guarantee quadratic or linear complexity of the context-free parser.

This chapter is an extension of previous work by Roark and Hollingshead [145, 146],

with additional original work for constraining unary productions in span-1 chart cells,

complementing finite-state constraints for cells spanning multiple words [18]. Some of the

results in this chapter have been previous published in [144]. In addition to constraining

unary productions in span-1 chart cells, the original contributions of this chapter include

(1) the first analysis of chart constraints on left- and right-binarized grammars; (2) the in-

troduction of global high-precision pruning with demonstrable accuracy gains over previous

work; (3) combination of chart constraints with beam-search and coarse-to-fine pruning,

which provides additive efficiency gains; and (4) the first application of chart constraints

to Chinese constituent parsing, which, to our knowledge, achieves the highest labeled F1

score on the Chinese Penn Treebank [180] to date.

5.2 Finite-State Chart Constraints

In this section, we will explicitly define our chart constraints, and present methods for using

the constraints within a context-free parser. We begin with constraints on beginning or

ending multi-word constituents, then move to constraining span-1 chart cells.

5.2.1 Constituent Begin and End Constraints

Our task is to learn which words (in the appropriate context) can begin (B) or end (E)

multi-word constituents. We will treat this as a pre-processing step to parsing and use

these constraints to either completely or partially close chart cells during execution of the

Cyk algorithm.
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First, let us introduce notation. Given a set of labeled pairs (S, T ) where S is a string

of n words w1 . . . wn and T is the target constituent parse tree for S, we say that word

wb ∈ B if there is a constituent spanning wb . . . we for some e > b and wb ∈ B otherwise.

Similarly, we say that word we ∈ E if there is a constituent spanning wb . . . we for some

b < e and we ∈ E otherwise. Recovery of these labels will be treated as two separate

binary tagging tasks (B/B and E/E).

While it may be obvious that we can rule out multi-word constituents with particular

begin and end positions, there may be incomplete structures within the parser that should

not be ruled out by these same constraints. Hence the notion of “closing” a chart cell is

slightly more complicated than it may initially seem (which accounts for our use of quotes

around the term). Consider the chart representation in Figure 5.1 with the following

constraints, where B is the set of words disallowed from beginning a multi-word constituent

and E is the set of words disallowed from ending a multi-word constituent1

B : {“usual”, “, ”, “real-estate”, “market”, “overreacted”}

E : {“, ”, “the”, “real-estate”, “had”}

Given the constraints above, suppose that wb is in class B and we is in class E, for

b < e. We can “close” all cells (b, i) such that i > b and all cells (j, e) such that j < e,

based on the fact that multi-word constituents cannot begin with word wb and cannot end

with we. In Figure 5.1 this is depicted by the black and gray diagonals through the chart,

“closing” those chart cells.

If a chart cell (b, e) has been “closed” due to begin or end constraints then it is clear

that complete edges should not be permitted in the cell since these represent precisely the

multi-word constituents that are being ruled out. But what about incomplete edges that

are introduced through grammar binarization or dotted rule parsing? To the extent that

an incomplete edge can be extended to a valid complete edge, it must be allowed. There

are two cases where this is possible. If wb ∈ B, then under the assumption that incomplete

1In this example we list the actual words from the sentence for clarity with Figure 5.1, but in practice
we classify word positions as a specific word may occur multiple times in the same sentence with potentially
different B or E labels.
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edges are extended from left-to-right, the incomplete edge should be discarded, because

any completed edges that could result from extending that incomplete edge would have the

same begin position. Stated another way, if wb ∈ B for chart cell (b, e) then all chart cells

(b, i) for i > b must also be closed. For example, in Figure 5.1, the cell associated with the

two-word substring “real-estate market’’ can be closed to both complete and incomplete

edges, since “real-estate” ∈ B, and any complete edge built from entries in that cell would

also have to start with the same word and hence would be discarded. Thus, the whole

diagonal is closed. However, if wb ∈ B and we ∈ E, such as the cell associated with

the two-word substring “the real-estate” in Figure 5.1, a complete edge — achieved by

extending the incomplete edge — may end at wi for i > e, and cell (b, i) may be open

(“the real-estate market”). Therefore, incomplete edges must be allowed in cell (b, e).

5.2.2 Unary Constraints

In addition to begin and end constraints, we also introduce unary constraints in span-1

cells. While we cannot close span-1 cells entirely because each of these cells must contain

at least one POS tag, we can reduce the population of these cells by restricting the type

of constituents they contain. We define a single-word constituent (SWC) as any unary

production A → B in the grammar such that B is a non-terminal (not a lexicon entry)

and the production spans a single word. The productions adjp → jj and vp → vbn in

Figure 2.2a are examples of SWCs. Note that top → s and jj →“usual” in Figure 5.2

are also unary productions, but by definition they are not SWC unary productions. We

train a distinct tagger, as is done for B and E constraints (see Section 5.3), to label each

word position as either in U or U , indicating that the word position may or may not be

extended by a SWC, respectively.

Because the search over possible grammar extensions from two child cells in the CYK

algorithm is analogous to a database join operation, the efficiency of this cross-product

hinges on the population of the two child cells that are intersected. We focus on con-

straining the population of span-1 chart cells for three reasons. First, the begin and end

constituent constraints only affect chart cells spanning more than one word and leave

span-1 chart cells completely unpruned. By pruning entries in these span-1 cells, we
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(a) Begin Constraints (b) End Constraints

(c) Unary Constraints (d) Joint Constraints

Figure 5.1: Constraints for the dynamic programming chart used to parse “As usual ,

the real-estate market had overreacted .” with a left-binarized grammar (See Figure 2.2).

Black denotes “closed” cells, white cells are “open,” and gray cells are only open to a

restricted population (gray cells closed by E constraints only allow incomplete edges; gray

cells closed by U constraints only allow POS tags).

complement multi-word constituent pruning so that all chart cells are now candidates for

finite-state tagging constraints. Second, span-1 chart cells are the most frequently queried

cells in the CYK algorithm. The search over possible midpoints will always include two

cells spanning a single word — one as the first left child and one as the last right child.

It is therefore important that the number of entries in these cells be minimized to make

bottom-up CYK processing efficient. Finally, as we will show in Table 5.1, only 11.2%

of words in the WSJ treebank are labeled with SWC productions. With oracle unary

constraints, the possibility of constraining nearly 90% of span-1 chart cells has promising

efficiency benefits to downstream processing.

To reiterate, unary constraints in span-1 chart cells never close the cell completely
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(b) Left-binarized parse tree

Figure 5.2: Unbinarized and left-binarized parse tree. Non-terminals preceded with the

symbol ‘@’ are created through binarization.

since each span-1 cell must contain at least one POS non-terminal. Instead, if wi ∈ U

then we simply do not add phrase-level non-terminals to chart cell (i, i). Similar to chart

cells spanning multiple words that cannot be closed completely, these span-1 chart cells

partially restrict the population of the cell, which we will empirically show to reduce

processing time over unconstrained CYK parsing. These partially closed chart cells are

represented as gray in Figure 5.1.

5.2.3 The Constrained CYK Algorithm

Our discussion of cell closing in Section 5.2.1 highlighted different conditions for closing

cells for complete and incomplete edges. We will refer to specific conditions in the pseu-

docode, which we enumerate here. The constraints determine three possible conditions

for cell (b, e) spanning multiple words:

1. wb ∈ B: cell is closed to all constituents, both complete and incomplete
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2. wb ∈ B and we ∈ E: cell is closed to complete constituents

3. wb ∈ B and we ∈ E: cell is open to all constituents

and two possible conditions for cell (i, i) spanning a single word:

4. wi ∈ U : cell is closed to unary phrase-level constituents

5. wi ∈ U : cell is open to all constituents

We will refer to a chart cell (b, e) that matches the criteria above as “case 1 cells”, “case

2 cells”, etc. throughout the remainder of this chapter. Figure 5.1 represents these five

cases pictorially, where case 1 cells are black, case 2 and 4 cells are gray, and case 3 and

5 cells are white.

Algorithm 4 contains pseudocode of our modified CYK algorithm that takes into ac-

count B, E, and U constraints. Line 4 of Algorithm 4 is the first modification from the

standard CYK processing as we now consider only words in set B to begin multi-word

constituents (for comparison, see Algorithm 1). Chart cells excluded from this criteria

fall into case 1 and require no work. Line 5 determines if chart cell (b, e) is in case 2

(partially open) or case 3 (completely open). If we ∈ E, then we skip to lines 16-17 and

only incomplete edges are permitted. Note that there is only one possible midpoint for

case 2 chart cells, which results in constant-time work (see proof in [144]) and unary pro-

ductions are not considered since all entries in the cell are incomplete constituents, which

only participate in binary productions. Otherwise, if we ∈ E on line 5, then the cell is

open to all constituents and processing occurs as in the standard CYK algorithm (lines

6-10 of Algorithm 4 are identical to lines 4-8 of Algorithm 1). Finally, unary productions

are added in lines 12-14, but restricted to multi-word spanning chart cells, or span-1 cells

where wb ∈ U .

5.3 Tagging Chart Constraints

To better understand the proposed tagging tasks and their likely utility, we will first

look at the distribution of classes and our ability to automatically assign them correctly.

Note that we do not consider the first word w1 and the last word wn during the begin-

constituent and end-constituent prediction tasks because they are unambiguous in terms
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Algorithm 4 ConstrainedCyk

Pseudocode of a modified CYK algorithm with constituent begin, end and unary con-

straints. Unary processing is simplified to allow only chains of length one (excluding

lexical unary productions). Backpointer storage is omitted.

Input:

w1 . . . wn: Input sentence

G: Left-binarized PCFG

V ′: Set of binarized non-terminals from V

B,E,U : Begin, End, and Unary chart constraints

Output:

α: Viterbi-max scores for all non-terminals over every span

ConstrainedCyk(w1 . . . wn, G = (V, T, S†, P, ρ), V ′, B,E, U)

1: for s = 1 to n do . Span width: bottom-up traversal

2: for b = 1 to n−s+1 do . Begin word position

3: e← b+s−1

4: if wb ∈ B or s = 1 then . Case 1 cells excluded

5: if we ∈ E or s = 1 then

6: for Ai ∈ V do

7: if s = 1 then . Add lexical productions

8: αi(b, b)← ρ(Ai → wb)

9: else . Case 3: cell open

10: αi(b, e)← max
b≤m<e

(
max
j,k

ρ(Ai → Aj Ak) αj(b,m) αk(m+ 1, e)

)
11: if s > 1 or wb ∈ U then . Case 5 for span-1 cells

12: for Ai ∈ V do . Add unary productions

13: υi(b, e)← max

(
αi(b, e) , max

j
ρ(Ai → Aj) αj(b, e)

)
14: α(b, e)← υ(b, e)

15: else . Case 2: closed to complete constituents

16: for Ai ∈ V ′ do . Only consider binarized non-terminals

17: αi(b, e)← max
j,k

ρ(Ai → Aj Ak) αj(b, e−1) αk(e, e)

18: return α
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Corpus totals Begin class End class Unary class

Strings Words B B E E U U

English

Count 39,832 950,028 430,841 439,558 223,544 646,855 105,973 844,055

Percent 49.5 50.5 25.7 74.3 11.2 88.8

Chinese

Count 18,086 493,708 188,612 269,000 165,591 292,021 196,732 296,976

Percent 41.2 58.8 36.2 63.8 39.9 60.1

Table 5.1: Statistics on extracted word classes for English (Sections 2-21 of the Penn WSJ

treebank) and Chinese (articles 1-270 and 400-1151 of the Penn Chinese treebank).

of whether they begin or end constituents of span greater than one. The first word w1 must

begin a constituent spanning the whole string, and the last word wn must end that same

constituent. The first word w1 cannot end a constituent of length greater than 1; similarly,

the last word wn cannot begin a constituent of length greater than 1. We therefore omit

B and E at these two word positions from prediction, leading to n−2 begin-constituent

and n−2 end-constituent ambiguous predictions for a string of length n.

Table 5.1 displays word statistics from the training sections of the Penn English tree-

bank [114] and the Penn Chinese treebank [180], and the positive and negative class label

frequency of all words in the data. From the nearly 1 million words in the English corpus,

just over 870 thousand are neither the first nor the last word in the string, therefore pos-

sible members of the sets B or E, i.e., neither beginning a multi-word constituent (B) nor

ending a multi-word constituent (E). Of these 870 thousand words, over half (50.5%) do

not begin multi-word constituents, and nearly three quarters (74.3%) do not end multi-

word constituents. The skewed distribution of E to E reflects the right-branching structure

of English. Finally, almost 90% of words are not labeled with a single-word constituent,

demonstrating the infrequency at which these productions occur in the English treebank.

The Chinese treebank is approximately half of the size of the English treebank in terms

of the number of sentences and word count. Again, we see a bias towards right-branching

trees (|B| > |E|), but the skew of the distributions is much smaller than it is for English.
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LEX ORTHO POS

τi τi, wi τi, wi[0] τi, ϕi

τi−1, τi τi, wi−1 τi, wi[0..1] τi, ϕi−1

τi−2, τi τi, wi+1 τi, wi[0..2] τi, ϕi−1, ϕi

τi−2, τi−1, τi τi, wi−2 τi, wi[0..3] τi, ϕi+1

τi, wi+2 τi, wi[n] τi, ϕi, ϕi+1

τi, wi−1, wi τi, wi[n-1..n] τi, ϕi−1, ϕi, ϕi+1

τi, wi, wi+1 τi, wi[n-2..n] τi, ϕi−2

τi, wi[n-3..n] τi, ϕi−2, ϕi−1

τi, wi ⊆ Digit τi, ϕi−2, ϕi−1, ϕi

τi, wi ⊆ UpperCase τi, ϕi+2

τi, wi ⊆ Hyphen τi, ϕi+1, ϕi+2

τi, ϕi, ϕi+1, ϕi+2

Table 5.2: Tagger features for B, E, and U . All lexical (LEX), orthographic (ORTHO),

and part-of-speech (POS) features are duplicated to also occur with τi−1; e.g., {τi−1, τi, wi}
as a LEX feature.

The most significant difference between the two corpora is the percentage of single-word

constituents in Chinese compared to English. Due to the annotation guidelines of the

Chinese treebank, nearly 40% of words contain single-word constituent unary productions.

Because these occur with such high frequency, we can assume that unary constraints may

have a smaller impact on efficiency for Chinese than for English, since an accurate tagger

will constrain fewer cells. We still have the expectation, though, that accurate tagging of

SWC productions will increase parsing accuracy for both English and Chinese.

To automatically predict the class of each word position, we train a binary predic-

tor from supervised data for each language/word-class pair, tuning performance on the

respective development sets (WSJ Section 24 for English and PCTB articles 301-325 for

Chinese). Word classes are extracted from the treebank trees by observing constituents

beginning or ending at each word position, or by observing single word constituents. We

use the tagger from [81] to train six log-linear models (three for English, three for Chinese)

with the averaged perceptron algorithm [49].

Table 5.2 summarizes the features implemented in our tagger for B, E, and U identifi-

cation. In the table, the ϕ features are instantiated as POS-tags (provided by a separately
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Markov order

Tagging Task 0 1 2

English

B (no multi-word constituent begin) 96.7 96.9 96.9

E (no multi-word constituent end) 97.3 97.3 97.3

U (no span-1 unary constituent) 98.3 98.3 98.3

Chinese

B (no multi-word constituent begin) 94.8 95.4 95.2

E (no multi-word constituent end) 96.2 96.4 96.6

U (no span-1 unary constituent) 95.9 96.2 96.3

Table 5.3: Tagging accuracy on the respective development sets (WSJ Section 24 for

English and PCTB articles 301-325 for Chinese) for binary classes B, E, and U , for

various Markov orders.

trained log-linear POS-tagger) and τ features are instantiated as B, E, and U class labels.

The feature set used in the tagger includes the n-grams of surrounding words, the n-grams

of surrounding POS-tags, and the B, E, or U tags of the preceding words. The n-gram

features are represented by the words within a five-word window of the current word. The

tag features are represented as unigram, bigram, and trigram tags (i.e., constituent tags

from the current and two previous words). These features are based on the feature set

implemented by [158] for NP chunking and can be extracted in constant time. Additional

orthographical features are used for unknown and rare words (words that occur fewer than

5 times in the training data), such as the prefixes and suffixes of the word (up to the first

and last four characters of the word), the presence of a hyphen, a digit, or a capitalized

letter, following the features implemented by [141]. Note that the orthographic feature

templates, including the prefix (e.g., wi[0..1]) and suffix (e.g., wi[n-2..n]) templates, are

only activated for unknown and rare words. When applying our tagging model to Chinese

data, all feature functions were left in the model as-is, and not tailored to the specifics of

the language.

We ran various tagging experiments on the development set and report accuracy results
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in Table 5.3 for all three predictions tasks, using Viterbi decoding. We trained models

with Markov order-0 (constituent tags predicted for each word independently), order-1

(features with constituent tag pairs) and order-2 (features with constituent tag triples).

In general, tagging accuracy for English is higher than for Chinese, especially for the U

and B tasks. Given the consistent improvement from Markov order-0 to Markov order-1

(particularly on the Chinese data), and for the sake of consistency, we have chosen to

perform Markov order-1 prediction for all results in the remainder of this paper.

5.4 Experimental Setup

In the sections that follow, we present empirical trials to examine the behavior of chart

constraints under a variety of conditions. First, we detail the data and parsers used in

these experiments.

5.4.1 Datasets

For English, all stochastic grammars are induced from the Penn WSJ Treebank [114].

Sections 2-21 of the treebank are used as training, Section 00 as held-out (for determining

stopping criteria during training and some parameter tuning), Section 24 as development,

and Section 23 as test set. For Chinese, we use the Penn Chinese Treebank [180]. Articles

1-270 and 400-1151 are used for training, articles 301-325 for both held-out and devel-

opment, and articles 271-300 for testing. Supervised class labels are extracted from the

non-binarized treebank trees for B, E, and U (as well as their complements).

All results report F1 labeled bracketing accuracy (harmonic mean of labeled precision

and labeled recall) for all sentences in the data set. Specifications for the computer

hardware used in the following experiments are consistent with all experiments in this

thesis and can be found, along with additional statistics for each corpus, in Section 5.4.

5.4.2 Tagging Methods and Closing Chart Cells

We have three separate tagging tasks, each with two possible tags for every word wi in

the input string: (1) B or B; (2) E or E; and (3) U or U . Our taggers are as described
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in Section 5.3.

Within a pipeline system that leverages hard constraints, one may want to choose

a tagger operating point that favors precision of constraints over recall to avoid over-

constraining the downstream parser. We have two methods for trading recall for precision

that will be detailed later in this section, both relying on calculating the cumulative score

Si for each of the binary tags at each word position wi, i.e., (using B as the example tag):

Si(B | w1 . . . wn) = log
∑
τ1...τn

δ(τi, B) eΦ(w1...wn,τ1...τn)·w (5.1)

where
∑

sums over all possible tag sequences for sentence w1 . . . wn; δ(τi, B) = 1 if τi=B

and 0 otherwise; Φ(w1 . . . wn, τ1 . . . τn) maps the word string and particular tag string

to a d-dimensional (global) feature vector; and w is the d-dimensional parameter vector

estimated by the averaged perceptron algorithm. Note that this cumulative score over all

tag sequences that have B in position i can be calculated efficiently using the forward-

backward algorithm [90]. We can compare the cumulative scores Si(B) and Si(B) to

decide how to tag word wi, and define the cumulative score ratio (CSR) as follows:

CSR(wi) = Si(B)− Si(B) (5.2)

If we want to tag B with high precision, and thus avoid over-constraining the parser, we

can change our decision criterion to produce fewer such tags. We present two different

selection criteria in the next two subsections.

To show the effect of precision-oriented decision criteria, Figure 5.3 shows the preci-

sion/recall tradeoff at various operating points, using the global high-precision method

detailed below, for all three tags on both the English and the Chinese development sets.

As expected, we see that that the English B curve is significantly lower than the English

E and U curves. This is due to the near-uniform prior on B in the data (E and U are

much higher-frequency classes). Still, we can achieve 99% precision for B with recall above

70%. We do much better with E and U and see that when precision is 99% for these two

tags, recall does not drop below 90%. For the Chinese tagging task, B, E and U all have
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Figure 5.3: Tagger precision/recall tradeoff of B, E, and U on the development set for

English (a) and Chinese (b).

similar performance as we trade precision for recall. Here, as with the English B tag, we

achieve 99% precision with recall still above 70%.

We can see from these results that our finite-state tagging approach yields very high

accuracy on these tasks, as well as the ability to provide high precision (above 99%)

operating points with a tolerable loss in recall. In what follows, we present two approaches

to adjusting precision: first by adjusting the overall precision and recall of the tagger

directly, as shown above; and second, by adjusting the precision and recall of tagging

results on a per-sentence basis. We then discuss how complexity-bounded constraints are

implemented in our experiments. In Section 5.5.1 we discuss empirical results showing

how adjusting the tagger in these ways affects parsing performance.

Global High Precision

Global high precision constraints (GHP) are implemented using the cumulative score ratios

directly to determine if wb ∈ B or B.2 Given the cumulative score ratio as defined above,

2In our experiments these scores range between ±103.



106

we define the set B under global high precision constraints as:

GHPλ(wi . . . wn) = {wi ∈ B : CSR(wi) > λ} (5.3)

The value λ=0 provides the highest tagging accuracy, but as mentioned in Section 5.4.2

we may want to increase the precision of the tagger so that the subsequent parser is not

over constrained. To do this, we increase the threshold parameter λ towards positive

infinity, potentially moving some words in the target sentence from B to B. The same

procedure is applied to E and U tags.

Sentence-Level High Precision

Global high precision constraints, as defined above, affect the precision of the tagger over

an entire corpus, but may or may not affect individual sentences. Because parsing operates

on a sentence-by-sentence basis, it may be beneficial to modify the precision of the tagger

based on the current sentence being processed. We call this approach sentence-level high

precision (HP).3

Intuitively, we close the k highest scoring word positions to begin or end multi-word

constituents, where k is determined relative to the number of word positions that remain

open given the global decision boundary when the posterior score of the tagger is zero.

More precisely, to increase tagging precision at the sentence level, we compute the cumu-

lative scores Si and the cumulative scores ratio (CSR) at all word positions as described

above. We next tag all word positions with a CSR(wi) score less than zero with B, and

rank the remaining word positions according to their CSR score. The lowest-ranking λ

fraction of this sorted list are tagged as B, while the rest default to B. When λ = 0,

zero percent of words are tagged with B, i.e., no constraints are applied; and when λ = 1,

100 percent of the words with CSR(wi) > 0 are tagged with B. This ensures that the

high-precision threshold is adapted to each sentence, even if its absolute CSR scores are

not similar to others in the corpus.

3Roark et al. referred to this approach as simply “high precision constraints” in [145, 146].
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Quadratic Bounds

Sentence-level high precision, quadratic bounds, and linear bounds are methods of adding

word positions to the set B and E originally introduced in [145, 146]. We include a

description of these methods here for completeness and to give context to the independent

contributions we present in this chapter. In [145], Roark et al. impose quadratic bounds

on context-free parsing by restricting the number of open cells (case 3 in Section 5.2.3)

to be less than or equal to λN for some tuning parameter λ and sentence length N .

They show that this constraint provably reduces the complexity of ConstrainedCyk to

O(N2). Imposing quadratic bounds only involves the sets B and E, as unary constraints

are restricted to span-1 cells. Given gold parse trees t∗ and a function T (B,E) to generate

the set of all valid parse trees satisfying constraints B and E, the optimal quadratically

bounded constraints are:

Quadλ(wi . . . wN ) = argmax
B,E

( max
t∈T (B,E)

F1(t∗, t) s.t. |C3| ≤ λN) (5.4)

i.e., the set of B and E constraints that maximize F1 under the limitation that the number

of C3 cells is less than λN . This equation is an instance of combinatorial optimization

and solving it exactly is NP-complete. Furthermore, access to gold parse trees t∗ is not

possible during parsing.

Instead, Roark and Hollingshead [145] rely on the posterior scores from the tagger as

a measure of tagging confidence, which they assume to be correlated with the true F1

accuracy, and use a greedy algorithm to approximate Equation 5.4. For every sentence,

they first sort both the B and E CSR scores for each word position into a single list. Next,

they assume all word positions are in B and E, then starting from the top of the sorted

list (highest posterior probability for set inclusion), they continue to add word positions to

their respective open set and compute the number of open cells with the given constraints

while |C3| < λN . By doing this, they guarantee that only a linear number of case 3 cells

are open in the chart, which leads to quadratic worst-case parsing complexity.



108

Linear Bounds

Imposing O(N) complexity bounds requires constraining the size of the set B such that

|B| ≤ λ for some constant λ (see proof in [144]). As with quadratic complexity bounds,

we wish to find the optimal set B to fulfill the following requirements:

Linearλ(wi . . . wN ) = argmax
B

( max
t∈T (B)

F1(t∗, t) s.t. |B| ≤ λ) (5.5)

Roark et al. again resort to a greedy method to determine the set B, as this optimiza-

tion problem is also NP-complete and gold trees are not available. B is constructed by

sorting all word positions by their CSR scores for B, and then adding only the highest-

scoring λ entries to the inclusion set. All other word positions are closed and in the set B.

Because this method does not consider the set E to impose limits on processing, it will be

shown in Section 5.5.2 that O(N) complexity bounding is not as effective (in isolation) as

compared to the quadratic complexity or high precision constraints presented above.

5.4.3 Parsers

We will present results constraining several different parsers. We first analyze exhaustive

parsing using both the Cyk and the ConstrainedCyk algorithms. We use a basic CYK

exhaustive parser, termed the BUBS parser,4 to parse with a simple PCFG model that uses

non-terminal node-labels as provided by the Penn Treebank after removing empty nodes,

node indices, and function tags. The results presented here replicate and extend the results

presented in [146], using a different CYK parser.5 The BUBS parser is an open-source

high-efficiency parser that is grammar agnostic and can be run in either exhaustive mode

or with various approximate inference options (detailed more fully in Section 5.6.1). It has

been shown to parse exhaustively with very competitive or superior efficiency compared

with other highly optimized CYK parsers [57].

4http://code.google.com/p/bubs-parser
5Note that there are several differences between the two parsers, including the way in which grammars

are induced, leading to different baseline accuracies and parsing times. Most notably, the parser from [146]
relied upon POS-tagger output, and collapsed unary productions in a way that effectively led to parent
annotation in certain unary chain constructions. The current results do not exploit those additional
annotations, hence the baseline F1 accuracy is slightly lower.
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In what follows, we present results with both left- and right-binarized PCFGs induced

using a Markov order-2 transform (L2 and R2, respectively)6, and also present results

for parsing Chinese. We will then present results applying finite-state chart constraints

to state-of-the-art parsers, and evaluate the additional efficiency gains these constraints

provide, even when these parsers are already heavily pruned. For simplicity, Section 5.5.1

focuses on parsing with the simple Markov order-2 grammars, and we then move to higher

accuracy parsers in Section 5.6.

5.5 CYK Parsing with Finite-State Chart Constraints

5.5.1 High-Precision Constraints

As mentioned in Section 5.4.2, we can adjust the severity of pruning to favor precision

over recall. Figure 5.4a shows parse time versus F1 labeled parse accuracy on the English

development set for the baseline (unconstrained) exact-inference CYK parser, and for

various parameterizations of global high precision (GHP), sentence-level high precision

(HP), and unary constraints. Note that we see accuracy increasing over the baseline in

Figure 5.4a with the imposition of these constraints at some operating points. This is

not surprising, though, as the finite-state tagger makes use of lexical information that the

simple PCFG does not, hence there is complementary information added that improves

the model. The best operating points — fast parsing and relatively high accuracy — are

achieved for GHP constraints at λ=40, for sentence-level HP at λ=0.95, and for unary

constraints at λ=40. These high-precision parameterizations achieve roughly an order of

magnitude speedup and between 0.2 absolute (for unary constraints) and 3.7 absolute (for

high-precision constraints) F1 improvement over the baseline unconstrained parser.

In order to analyze how these constraints affect accuracy with respect to sentence

length, we turn to Figure 5.4b. In this plot, F1 accuracy is computed over binned sentence

lengths in increments of ten. All sentences of length greater than 60 are included in the

final bin. As one might expect, accuracy declines with sentence length for all models since

the number of possible trees is exponential in the sentence length and errors in one portion

6Grammar induction is detailed in Section 2.7
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Figure 5.4: English development set results (WSJ Section 24) applying global high

precision (GHP), sentence-level high precision (HP), and unary constraints with the

ConstrainedCyk algorithm. We sweep over multiple values of λ in (a) and plot re-

sults in (b), (c), and (d) with the optimal value for each constraint found in (a). F1

accuracy in (b) is computed over binned sentence lengths. Figure (d) plots the same data

as (c), but zoomed in.
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of the tree can adversely affect prediction of other constituents in nearby structure. We

see that all constraints provide accuracy gains over the baseline at all sentence lengths,

but point out that the gains by GHP B and E constraints are larger for longer sentences.

As stated earlier, this is due to the model-correcting behavior of cell constraints: lexical

features are leveraged to prune trees that the PCFG may favor but are not syntactically

correct with respect to the entire sentence. Because longer sentences are poorly modeled

by the PCFG, cell constraints play a larger role in restricting the space of possible trees

considered and correcting modeling errors.

We can get a different perspective of how these constraints affect parsing time by

considering the scatter plots in Figure 5.4c and 5.4d, which plot each sentence according

to its length and parsing time at four operating points: baseline (unconstrained); global

high precision at λ=40; sentence-level high precision at λ=0.95; and unary at λ=40.

Figure 5.4c shows data points with up to 80 words and 400 milliseconds of parsing time.

Figure 5.4d zooms in to under 200 milliseconds and up to 40 words. It can be seen in each

graph that unconstrained CYK parsing quickly leaves the plotted area via a steep cubic

curve (least-squares fit is N2.9). Unary constraints operate at the same cubic complexity

as the baseline, but with a constant factor decrease in parsing time (least-squares fit is

also N2.9). The plots for GHP and HP show dramatic decreases in typical-case runtime

compared to the baseline. We again run a least-squares fit to the data and find that both

GHP and HP constraints follow a N2.5 trajectory.

The empirical complexity and run-time performance of GHP and HP is nearly identical

relative to all other chart constraints. But looking a little closer, we see in Figures 5.4c

and 5.4d that that GHP constraints are slightly faster than HP for some sentences, and

accumulated over the entire development set, this leads to both higher accuracy (75.1 vs.

74.6 F1) and faster parsing time (46 vs. 50 seconds).7 This leads to the conclusion that

when optimizing parameters for high-precision constraints, we can better tune the overall

pipeline by choosing an operating point based on the corpus-level tagger performance as

opposed to tuning for sentence-specific precision goals. Consequently, other than Table 5.4,

7See Table 5.4 for additional performance comparisons.
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Figure 5.5: The effects of tagger precision on parsing F1. B and E constraints are applied

in isolation; no other constraints are used during parsing. Results on the English develop-

ment set in (a) and Chinese in (b). Baseline unconstrained F1 accuracy is indicated with

the horizontal black line.

we only apply GHP constraints on test set results in the remainder of this chapter.

Although Figure 5.4a displays the constrained F1 parse accuracy as a function of

parsing time, one may also be interested in how tagger precision directly affects parse

accuracy. To answer this question, we apply high precision constraints to sets B and E in

isolation and plot results in Figure 5.5. Note that when only constraints on E are applied,

no chart cells can be completely closed and parsing time does not significantly decrease.

Likewise, when we apply constraints on B, a chart cell is either open to all constituents

(case 3) or closed to all constituents (case 1). When constraining either B or E, we are

predicting the structure of the final parse tree, which — as can be seen in Figure 5.5 —

has a large impact on parse F1 accuracy.

We point out in Figure 5.5 that to achieve optimal parsing F1, tagger precision must

be above 97% for both English and Chinese. For both languages, B constraints are more

forgiving and do not adversely affect parsing F1 as quickly as E constraints. These results

may lead one to tune two separate high-precision parameters – one to constrain B and

one to constrain E. We ran such experiments but found no significant gains compared to
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tying these parameters together.

5.5.2 Complexity-Bounded Constraints

Figure 5.6a plots F1 accuracy versus time to parse the entire development set for two

complexity bounded constraints: O(N2) and O(N). We also include the previously plotted

global high-precision constraints for comparison. The large asterisk in the plot depicts

the baseline accuracy and efficiency of standard CYK parsing without constraints. We

sweep over various parameterizations for each method, from very lightly constrained to

very heavily constrained. The complexity-bounded constraints are not combined with the

high-precision constraints for this plot (but are later in the chapter).

As can be seen in Figure 5.6a, the linear-bounded method does not, as applied, achieve

a favorable accuracy/efficiency tradeoff curve compared to the quadratic bound or high-

precision constraints. This is not surprising, given that no words are excluded from the set

E for this method, hence far fewer constraints overall are applied with the linear-bounded

constraints. In addition, we see in Figure 5.6b that unlike high precision and quadratic

constraints, the linear method decreases F1 accuracy on longer sentences over the baseline

unconstrained algorithm, notably for sentences greater than 50 words. We attribute this

to the fact that for longer sentences, say length 65, only λ=16 words are allowed in B for

linear constraints, which severely limits the search space for these sentences to the point

of pruning gold constituents and decreasing overall accuracy.

Next we turn to the scatter plots of Figures 5.6c and 5.6d. Fitting an exponential

curve to the data for each constraint via least-squares, we find that global high-precision

constraints follow a N2.5 trajectory, quadratic at N1.6, and linear at N1.4. It is interesting

that quadratic constraints actually perform at sub-quadratic run-time complexity. This is

because the quadric complexity proof assumes that the linear number of open cells each

process O(N) midpoints. But in practice, many midpoints are not considered due to the

heavily constrained chart, decreasing the average-case runtime of ConstrainedCyk with

quadratically-bounded constraints.

Also interesting is that linear constraints perform worse than O(N) at N1.4. We

attribute this to the nature of the data set. When parsing with linear constraints, we
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Figure 5.6: English development set results (WSJ Section 24), applying complexity-

bounding constraints with the ConstrainedCyk algorithm. We sweep over multiple

values of λ in (a) and plot results in (b), (c), and (d) with the optimal value for each

constraint found in (a). F1 accuracy in (b) is computed over binned sentence lengths.

Figure (d) plots the same data as (c), but zoomed in.
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see that for short sentences parsing complexity is actually cubic. Because we allow a

constant number of word positions in the open set B, sentences with length less than

λ are completely unconstrained and all chart cells remain open. In Figure 5.6d it looks

as if parsing becomes linear after the sentence length notably exceeds λ, around N=20.

Assuming our corpus contained a disproportionate number of long sentences, empirical

complexity of linear constraints should approach O(N), but due to the large number of

short sentences, we see an empirical complexity greater than O(N).

Three important points can be taken away from Figure 5.6. First, although we can

provably constrain parsing to linear speeds, in practice this method is inferior to both

quadratically-bounded constraints and high-precision constraints. Second, high-precision

constraints are more accurate (see Figure 5.6b) and more efficient (see Figure 5.6d)

for shorter strings than the quadratically-bound constraints; yet with longer strings the

quadratic constraints better control parsing time than the high-precision constraints (see

Figure 5.6c). Finally, at the “crossover” point, where quadratic constraints start becom-

ing more efficient than high-precision constraints (roughly 50-60 words, see Figure 5.4c),

there is a larger variance in the parsing time with high-precision constraints versus those

with quadratic bounds. This illustrates the difference between the two methods of select-

ing constraints: high-precision constraints can provide very strong typical-case gains, but

there is no guarantee of worst-case performance. In this way, the high-precision constraints

are similar to other tagging-derived constraints like POS-tags or chunks.

5.5.3 Combining Constraints

Depending on the length of the string, the complexity-bound constraints may close more

or fewer chart cells than the high-precision constraints — more for long strings, fewer for

short strings. We can achieve worst-case bounds along with superior typical-case speedups

by combining both methods. This is accomplished by taking the union of high-precision

B, E, and U constraints with their respective complexity-bounded sets.

When combining complexity-bound constraints with high-precision constraints, we first

chose operating parameters for each complexity-bounded method at the point where effi-

ciency is greatest and accuracy has yet to decline. These operating points can be seen as



116

Constraints F1 LP LR Seconds Speedup

R
2

G
ra

m
m

a
r

None (baseline CYK) 71.5 74.5 68.8 451

GHP(40) 75.3 78.6 72.3 46 9.8x

HP(0.95) 74.6 77.8 71.7 50 8.9x

Quad(4) 73.8 77.0 70.9 70 6.4x

Linear(12) 72.4 75.4 69.6 106 4.3x

Unary(40) 72.0 75.4 68.9 386 1.2x

HP(0.95) + Quad(4) 74.6 77.8 71.7 48 9.5x

HP(0.95) + Linear(12) 74.4 77.6 71.5 48 9.5x

GHP(40) + Quad(4) 75.3 78.5 72.3 45 10.0x

GHP(40) + Linear(12) 75.1 78.4 72.1 44 10.2x

GHP(40) + Unary(40) 75.7 79.4 72.4 34 13.4x

GHP(40) + Unary(40) + Quad(4) 75.8 79.5 72.4 33 13.9x

L
2

G
ra

m
m

ar

None (baseline CYK) 71.7 74.5 69.1 774

GHP(40) 75.4 78.5 72.5 66 11.2x

HP(0.95) 74.9 77.9 72.1 75 10.3x

Quad(4) 74.0 77.0 71.2 99 7.8x

Linear(24) 71.7 74.5 69.1 448 1.7x

Unary(40) 71.9 75.2 69.0 607 1.3x

HP(0.95) + Quad(4) 74.9 78.0 72.1 69 11.2x

HP(0.95) + Linear(24) 74.7 77.8 71.9 71 11.0x

GHP(40) + Quad(4) 75.4 78.5 72.5 62 12.6x

GHP(40) + Linear(24) 75.2 78.4 72.3 62 12.6x

GHP(40) + Unary(40) 75.7 79.3 72.5 37 20.9x

GHP(40) + Unary(40) + Quad(4) 75.7 79.3 72.5 37 20.9x

Table 5.4: English development set results (WSJ Section 24) for the ConstrainedCyk

algorithm with both left- and right-binarized Markov order-2 grammars (L2 and R2, re-

spectively) under various individual and combined constraints.
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the ‘knee’ of the curves in Figure 5.6a. For the quadratic complexity method, we set λ=4,

limiting the number of open cells to 4N . For the linear complexity method, we set λ=12,

limiting the number of word positions in B to a maximum of 12 members.

Table 5.4 displays F1 accuracy and parsing time in seconds for many individual and

combined constraints on the development set: unconstrained CYK parsing; unary con-

straints; global high-precision (GHP) constraints; sentence-level high-precision (HP) con-

straints; O(N2) and O(N) complexity-bounded constraints (Quad and Linear, respec-

tively). We present all parsing results in Table 5.4 using both a left- and right-binarized

Markov order-2 grammar so that the effects of grammar binarization on finite-state con-

straints can be evaluated. Pre-processing the grammar with a right or left binarization

alters the nature and distribution of child non-terminals for grammar productions. Be-

cause B and E constraints prune the chart differently depending on the grammar bina-

rization, we suspect that one method may outperform the other due to the branching bias

of the language being parsed. Note that the examples in this chapter have assumed a left-

binarized grammar. Applying chart constraints to a right-binarized grammar is identical

modulo the reversal of the B and E classes.

We find three general trends in Table 5.4. First, the efficiency benefits of combining

constraints are relatively small. We suspect this is because the dataset contains mostly

shorter sentences. Global high-precision constraints outperform the complexity bounded

constraints on sentences of length 10 to 50, which makes up the majority of the develop-

ment set. It is not until we parse longer sentences that the trends start to differ and exhibit

characteristics of the complexity bounds. Thus by combining high-precision and complex-

ity constraints, we attain the typical-case efficiency benefits of high-precision constraints

with worst-case complexity bounds.

Second, we see that the efficiency gain combining unary and high-precision constraints

is more than additive. Unary constraints alone for the right-binarized grammar decreased

parsing time by 1.3x, but in conjunction with high-precision constraints, parsing time is

decreased from 66 seconds to 37 seconds, an additional 1.8x speedup. We suspect that this

additional gain comes from cache efficiencies — due to the heavily pruned nature of the

chart, the population of commonly-queried span-1 chart cells have a higher likelihood of
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remaining in high-speed cache, decreasing overall parsing time — but we leave empirical

verification of this hypothesis to future work.

The third trend we see in Table 5.4 is that there are significant efficiency differences

when parsing with a right- or left-binarized grammar. The difference in baseline perfor-

mance has been previously studied [164, 56], and our results confirm that a right-binarized

grammar has superior efficiency for parsing the WSJ treebank due to the right-branching

bias of parse trees in this corpus. Furthermore, linear constraints are far less effective

with a left-binarized grammar, requiring a tuning parameter of λ=24 such that accu-

racy was not adversely affected (compare with λ=12 for right-binarized results). This

is also caused by the branching bias inherent in the treebank. For example, consider a

left-binarized grammar and linear constraints; in the extreme case where λ=0, only w1

will be in the open set B, forcing all constituents in the final tree to start at w1. This

results in a completely left-branching tree. With a right-binarized grammar, only the

last word position will be in E, resulting in a completely right-branching tree. Thus, an

overly-constrained linear-bounded parse will favor one branching direction over the other.

Because the treebank is biased towards right-branching trees, a right-binarized grammar

is more favorable when linear constraints are applied.

Finally, we note that after all constraints have been applied, the accuracy and efficiency

differences between the two binarization strategies nearly disappear.

To validate the selected operating points on unseen data, we present results on the test

sets for English in Table 5.5 and Chinese in Table 5.6. We parse individually with global

high-precision and unary constraints, then present the combined result as this gave the best

performance on the development set. In all cases, we see efficiency improvements greater

than 10-fold and accuracy improvements of 4.4 absolute F1 for English, and 8.4 absolute

F1 for Chinese. Note that these efficiency improvements are achieved with no additional

techniques for speeding up search. Other than our imposed chart constraints, the CYK

parsing is exhaustive and explores all possible category combinations from all open child

cells. Techniques such as coarse-to-fine, A∗ parsing, or beam-search are all orthogonal to

the current approach, and could be applied in conjunction to achieve additional speedups.

In the next section, we investigate the use of chart constraints with a number of
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Constraints F1 LP LR Seconds Speedup

R
2

G
ra

m
m

ar None (baseline CYK) 71.7 74.6 69.0 628

Unary(40) 72.1 75.5 69.0 525 1.2x

GHP(40) 75.8 79.0 72.8 75 8.4x

GHP(40) + Unary(40) 76.1 79.8 72.7 57 11.0x

L
2

G
ra

m
m

ar None (baseline CYK) 72.0 74.8 69.4 1,063

Unary(40) 72.4 75.8 69.4 910 1.2x

GHP(40) 76.1 79.3 73.2 106 10.1x

GHP(40) + Unary(40) 76.4 80.0 73.1 60 17.9x

Table 5.5: English test set results (WSJ Section 23) for the ConstrainedCyk algorithm

with both left- and right-binarized Markov order-2 grammars.

Constraints F1 LP LR Seconds Speedup

R
2

G
ra

m
m

ar None (baseline CYK) 60.5 64.6 56.9 157

Unary(20) 62.3 67.6 57.8 141 1.1x

GHP(20) 66.9 71.4 63.0 17 9.1x

GHP(20) + Unary(20) 68.9 74.4 64.1 15 10.2x

L
2

G
ra

m
m

ar None (baseline CYK) 60.4 64.5 56.9 269

Unary(20) 62.1 67.2 57.8 234 1.2x

GHP(20) 66.0 70.5 62.1 33 8.2x

GHP(20) + Unary(20) 68.0 73.5 63.2 23 11.7x

Table 5.6: Chinese test set results (PCTB Sections 271-300) for the ConstrainedCyk

algorithm with both left- and right-binarized Markov order-2 grammars.

high-accuracy parsers, and empirically evaluate the combination of our chart constraint

methods with popular heuristic search methods for parsing. These parsers include the

Charniak parser, the Berkeley parser, and the BUBS parser.
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5.6 High-Accuracy Parsing with Finite-State Chart Con-

straints

In this section we evaluate the additive efficiency gains provided by finite-state constraints

to state-of-the-art parsers. We apply B, E, and U constraints to three parsers, all of

which already prune the search space to make decoding time with large grammars more

practical. Each high-accuracy parser that we evaluate also prunes the search space in a

different way: best-first search, coarse-to-fine pruning, and beam-search. Applying finite-

state constraints to these three distinct parsers demonstrates how our constraints interact

with other efficient search algorithms we have discussed in this thesis. In what follows we

describe the pruning inherent in each of the three parsers and how we apply finite-state

constraints within each framework.

5.6.1 Parsers

Charniak parser: The Charniak [32] parser is a multi-stage, best-first parser that can be

constrained by pruning edges before they are placed on the agenda. The first stage of the

Charniak parser uses a global agenda, as described in Section 3.1.1, and a simple PCFG

to build a sparse chart, which is subsequently used to limit the search in later stages with

the bi-lexicalized PCFG model. We focus our description of the Charniak parser on this

first stage, since it is here that we will apply finite-state chart constraints. The edges on

the agenda and in the chart are dotted rules, as described in Section 2.7. When edges are

created, they are pushed onto the agenda. Edges that are popped from the agenda are

placed in the chart, and then combined with other chart entries to create new edges that

are pushed onto the agenda. Once a complete edge spanning the whole string is placed

in the chart, at least one full solution must exist. Instead of terminating the initial chart

population at this point, over-parsing is employed and edges continue to be added to the

chart (and agenda) until a parameterized number of additional edges have been added

(see Section 4.3.2). A small over-parsing value will heavily constrain the search space of

the later stages within the pipeline, while a large value will often increase accuracy at the

expense of efficiency. Upon reaching the desired number of edges, the next stage of the
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pipeline receives the chart as input and any edges remaining on the agenda are discarded.

See Section 3.1.1 for more details on over-parsing.

We constrain the first stage of the Charniak parser by restricting edges that can be

added to the global agenda. When an edge is created for cell (b, e), it is not placed on

the agenda if either of the following two conditions hold: 1) wb ∈ B; or 2) the edge is

complete and we ∈ E. With these constraints, a large number of edges that would have

previously been considered in the first stage of this pipeline will now be ignored. This

allows us to either reduce the amount of over-parsing, which will increase efficiency, or

maintain the over-parsing threshold and expand the search space in more promising direc-

tions according to the chart constraints. In this chapter we have chosen to do the latter.

Note that speedups are still observed, presumably due to the parser finding a complete

edge spanning the whole sentence more quickly, thus leading to slight reductions in total

edges added to the chart.

Berkeley parser: The Berkeley parser [132] is a multi-level coarse-to-fine parser that

operates over a set of coarse-to-fine grammars, G1 . . . Gt. At each grammar level, the inside

and outside constituent probabilities are computed with coarse grammar Gi and used to

prune the subsequent search within Gi+1. This continues until the sentence is parsed

with the target grammar Gt. The initial grammar G1 is a Markov order-0 grammar, and

the target grammar Gt is a latent-variable grammar induced through multiple iterations

of splitting and merging non-terminals to maximize the likelihood of the training data

[133]. This explicit target grammar is very large, consisting of 4.3 million productions, 2.4

million of which are lexical productions. We refer to Gt as the Berkeley grammar.

We apply chart constraints to the Berkeley parser during the initial inside pass with

grammar G1. Inside scores are computed via the ConstrainedCyk algorithm of Al-

gorithm 4 modulo the fact that the standard inside-outside sum over scores is used in

lines 10, 13, and 17 instead of the Viterbi-max. It is unnecessary to constrain either

the subsequent outside pass or the search with the following grammars G2 . . . Gt, as the

coarse-to-fine algorithm only considers constituents remaining in the chart from the pre-

vious coarse grammar. Reducing the population of chart cells during the initial G1 inside



122

pass consequently prunes the search space for all levels of the coarse-to-fine search. We

also note that even though there are t=6 grammar levels in our experiments with the

Berkeley parser, exhaustive parsing with G1 consumes nearly 50% of the total parse time

(Petrov, p.c.). Applying chart constraints during this initial pass is where we see the

largest efficiency gain — much more than when chart constraints supplement coarse-to-

fine pruning in subsequent passes.

BUBS parser: The bottom-up beam-search parser (BUBS) is a variation of the CYK al-

gorithm where, at each chart cell, all possible edges are sorted by a prioritization function

and only the edges satisfying the k-best and a relative probability difference constraints

are retained [17]. Pseudocode and analysis of beam-search parsing can be found in Sec-

tion 4.4. The following experiments use the Constituent POS Boundary prioritization

function detailed in Section 4.2. The BUBS parser is grammar agnostic, so to achieve

high accuracy we parse with the Berkeley latent variable grammar (Gt described in the

previous subsection), yet only require a single pass over the chart. The BUBS parser

performs Viterbi decoding and does not marginalize over the latent variables or compute

the max-rule solution as is done in the Berkeley parser. This leads to a lower F1 score in

the final results even though both parsers use the same grammar.

In this chapter, we apply finite-state constraints to the BUBS parser in a fashion almost

identical to the ConstrainedCyk algorithm. Because the BUBS parser is a beam-search

parser, the difference is that instead of retaining the max score for all non-terminals Ai at

each chart cell, we only retain the max score for those edges satisfying the beam-search

pruning criteria. Otherwise, B, E, and U constraints are used to prune the search space

in the same way.

5.6.2 High-Accuracy Parsing Results

Figure 5.7 displays accuracy and efficiency results from applying three independent con-

straints to the three parsers: high precision, quadratically bounded, and unary constraints.

We sweep over possible tuning parameters from unconstrained (baseline asterisk) to overly



123

100 200 300 400 500 600 700 80087

87.5

88

88.5

89

89.5

90

BUBS Parser

Berkeley Parser

Charniak Parser

Seconds to parse development set

F−
m

ea
su

re
 a

cc
ur

ac
y

 

 

Unconstrained Baseline
High Precision (HP)
O(N2) bounds (Quad)
Unary
HP + O(N2)
HP + O(N2) + Unary

Figure 5.7: English accuracy and efficiency results of applying high precision, quadratic,

and unary constraints at multiple values of λ to the Charniak, Berkeley, and BUBS parsers,

all of which already heavily prune the search space. For implementation reasons, we apply

HP constraints here instead of GHP.

constrained such that F1 accuracy is adversely affected. We also plot the optimal combi-

nation of high precision and quadratic constraints (diamond) and the combination of all

three constraints (circle) for each parser which was computed via a grid search over the

joint parameter space.

There are many interesting patterns in Figure 5.7. First, all three constraints inde-

pendently improve the accuracy and efficiency of all three parsers, with the exception

of accuracy in the Berkeley parser. This is a significant result considering each of these

parsers is simultaneously performing various alternative forms of pruning, which were (pre-

sumably) tuned for optimal accuracy and efficiency on this same data set. We also note

that the efficiency gains from all three constraints are not identical. In particular, high
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precision and quadratic constraints outperforms unary constraints in isolation. But this

should be expected as unary constraints only partially close O(N) chart cells while both

high precision and quadratic constraints affect O(N2) chart cells. Nevertheless, looking

at the optimal point combining all three constraints, we see that adding unary constraints

to begin/end constraints does provide additional gains (in both accuracy and efficiency)

for the BUBS and Charniak parsers.

The Berkeley parser realizes efficiency benefit from B and E constraints, but sees

almost no gain from unary constraints. The reason for this has to do with the imple-

mentation details of combining (joining) two child cells within the inner loop of the CYK

algorithm (line 8 in Algorithm 1). In bottom-up CYK parsing, to extend derivations of

adjacent substrings into new constituents spanning the combined string, one can either

iterate over all binary productions in the grammar and test if the new derivation is valid

(we call this “grammar loop”), or one can take the cross-product of active entries in the

cells spanning the substrings and poll the grammar for possible derivations (we call this

“cross-product”). With the cross-product approach, fewer active entries in either child

cell leads to fewer grammar access operations. Thus, pruning constituents in smaller-span

cells directly affects the overall efficiency of parsing. On the other hand, with the gram-

mar loop method there are a constant number of grammar access operations (i.e., the

number of grammar productions) and the number of active entries in each child cell has

little impact on efficiency. Therefore, with the grammar loop implementation of the CYK

algorithm, pruning techniques such as unary constraints will have very little impact on the

final run-time efficiency of the parser unless the list of grammar productions is modified

given the constraints. For example, alternate iterators over grammar productions could

be created such that they only consider a subset of all possible productions. If the left

child is a span-1 chart cell in U , then only grammar productions with a POS tag as the

left child need to be considered. Looping over this smaller list, opposed to all possible

grammar productions, can reduce the overall runtime. The Berkeley parser contains the

grammar-loop implementation of the CYK algorithm. Although all grammar productions

are iterated over at each cell, the parser maintains meta-information indicating where

non-terminals have been placed in the chart, allowing it to quickly skip over a subset of
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the productions that are incompatible with state of the chart. This optimization improves

efficiency, but does not take full advantage of restricted cell population imposed by unary

constraints, and thus does not benefit as greatly when compared to the BUBS or Charniak

parsers.

The second trend we see in Figure 5.7 is that F1 accuracy improves with additional

constraints. This is expected with the Charniak parser as we keep the amount of search

space fixed in hopes of pursuing more accurate global paths, but both the Berkeley and

BUBS parsers are simply eliminating search paths they would have otherwise considered.

Although it is unusual for pruning methods to lead to higher accuracy during search, it

is not wholly unexpected here as our finite-state tagger makes use of lexical relationships

that the PCFG does not (i.e., lexical relationships based on the linear string rather than

over the syntactic structure). By leveraging this new information to constrain the search

space, we are indirectly improving the quality of the model. We also suspect that the

Berkeley parser sees less of an accuracy improvement than the BUBS parsers because the

coarse-to-fine pruning within the Berkeley parser is more “globally informed” than the

beam-search within the BUBS parser. By leveraging the coarse-grained inside/outside

distribution of trees over the input sentence, the Berkeley parser can more intelligently

prune the search space with respect to the target grammar and may not benefit from the

additional information inherent in the finite-state tagging model.

The third observation we point out in Figure 5.7 is that we see no additional gains

from combining high-precision constraints with quadratic complexity constraints. With all

three parsers, high-precision constraints are empirically superior to quadratic constraints,

even though high-precision constraints come with no guarantee on worst-case complex-

ity reduction. It is our hypothesis that the additional pruning provided by quadratic

constraints for exhaustive CYK parsing is already removed by the internal pruning of

each of the three high-accuracy parsers. We therefore report testing results using only

high-precision and unary constraints for these high-accuracy parsers.

We apply models tuned on the development set to unseen English test data (WSJ Section

23) in Table 5.7, and Chinese test data (PCTB articles 271-300) in Table 5.8. For English,
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Parser F1 LP LR Seconds Speedup

BUBS (2010) 88.4 88.5 88.3 586

+ Unary(100) 88.5 88.7 88.3 486 1.2x

+ HP(0.9) 88.7 88.9 88.6 349 1.7x

+ HP(0.9) + Unary(100) 88.7 89.0 88.4 283 2.1x

Charniak (2000) 89.7 89.7 89.6 1,116

+ Unary(100) 89.8 89.8 89.7 900 1.2x

+ HP(0.8) 89.8 90.0 89.6 716 1.6x

+ HP(0.8) + Unary(100) 89.7 90.0 89.5 679 1.6x

Berkeley (2007) 90.2 90.3 90.0 564

+ Unary(125) 90.1 90.3 89.9 495 1.1x

+ HP(0.7) 90.2 90.4 90.0 320 1.8x

+ HP(0.7) + Unary(125) 90.2 90.4 89.9 289 2.0x

Table 5.7: English test set results (WSJ Section 23) applying sentence-level high precision

and unary constraints to three parsers with parameter settings tuned on development

data. For implementation reasons, we apply HP constraints here instead of GHP.

we see similar trends as we did on the development set results: decoding time is nearly

halved when chart constraints are applied to these already heavily-constrained parsers,

without any loss in accuracy. We also see independent gains from both unary and high-

precision constraints, and additive efficiency gains when combined.

Applying chart constraints to Chinese parsing in Table 5.8 gives substantially larger

accuracy and efficiency gains than English for both the BUBS and Berkeley parser. In

particular, the accuracy of the BUBS parser increases by 2.3 points absolute (p=0.0002),

and the Berkeley parser increases by 0.8 points absolute to 84.7 (p=0.0119), the highest

accuracy we are aware of for an individual model on this data set.8 These increases relative

to English may be surprising as chart constraint tagging accuracy for Chinese is worse

8Significance was tested using stratified shuffling. Zhang et al. [184] reports an F1 of 85.5 with a k-best
combination of parsers, and Burkett et al. [23] reports an F1 of 86.0 by leveraging parallel English data
for training, but our model is trained from the Chinese treebank alone and is integrated into the Berkeley
parser, making it very efficient.
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Parser F1 LP LR Seconds Speedup

BUBS (2010) 79.3 79.5 79.1 169

+ Unary(50) 80.7 82.1 79.4 153 1.1x

+ HP(0.8) 81.1 81.5 80.7 75 2.3x

+ HP(0.8) + Unary(50) 81.8 83.1 80.5 44 3.8x

Berkeley (2007) 83.9 84.5 83.3 141

+ Unary(50) 84.5 85.9 83.0 125 1.1x

+ HP(0.7) 84.5 85.1 83.8 64 2.2x

+ HP(0.7) + Unary(50) 84.7 86.1 83.4 57 2.5x

Table 5.8: Chinese test set results (PCTB articles 271-300) applying sentence-level high-

precision and unary constraints to two parsers with parameter settings tuned on develop-

ment data.

than English (see Table 5.3). We attribute this large gain to the lower baseline accuracy of

parsing with the Chinese treebank, allowing our method to contribute additional syntactic

constraints that were otherwise unmodeled by the PCFG.

5.7 Conclusion

We have presented a comprehensive analysis of the finite-state pre-processing methods in

[145, 146] to constrain context-free parsing that reduce both the worst-case complexity

and overall run time. In this chapter we have extended prior work by constraining unary

constituents in span-1 chart cells, which demonstrably improves parsing efficiency and

presents a cohesive paradigm to constrain all cells in the dynamic programming chart.

In Section 5.4.2 we introduced global high-precision constraints, which provided superior

performance in empirical trials over sentence-level high-precision constraints presented

in [145]. Together, applying begin, end, and unary constraints to context-free parsing

increases efficiency by over 20-times for exhaustive CYK parsing, and nearly doubles the

speed of the Charniak and Berkeley parsers — both of which have been previously tuned

for optimal accuracy/efficiency performance. The combination of chart constraints with

coarse-to-fine pruning also produces the highest labeled F1 accuracy to date on the Penn
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Chinese Treebank [180]. We have shown that our methods generalize across multiple

grammars and languages, and that constraining both multi-word chart cells and single-

word chart cells produces additive efficiency gains.

In the next chapter we present additional methods to constrain the dynamic program-

ming chart by taking into account the population and structure of chart cells at a finer

level. For example, the B and E constraints presented here do not consider the height

of the constituent they are predicting, but instead open or close entire diagonals in the

dynamic programming chart. We will show that opening and closing chart cells on a

cell-by-cell basis — in effect, predicting the unlabeled constituent structure — can pro-

vide even further stand-alone efficiency benefit for context-free parsing than what we have

presented above. The combination of the two methods, which we demonstrate in Chapter

7, has complementary pruning performance and the methods together provide superior

efficiency gains relative to each in isolation.



Chapter 6

Unlabeled Constituent and Beam-Width

Prediction

6.1 Introduction

Using a tagger within a parsing pipeline to prune the the search space of downstream

context-free inference is an effective approach to efficient parsing. In Chapter 5 we pre-

sented finite-state pre-processing methods to close portions of the dynamic programming

chart during parsing. This was accomplished via three O(N) taggers to classify each word

in the input string as either beginning or ending a multi-word constituent, or allowing

unary productions in span-1 chart cells. By restricting an individual word position to be-

gin or end any constituent, finite-state chart constraints are effectively closing diagonals

in the dynamic programming chart cell. Put another way, if no constituent is allowed to

begin at word wb, then all chart cells (b, e) will be closed for values e > b.

In the Ratnaparkhi pipeline [141], an np-chunker was used to identify continuous noun

phrases within the input sentence as a pre-processing step to full context-free parsing.

Given the identified noun phrases, the exact chart cells (i.e., substring spans) are identified

where np constituents may be placed and only grammar productions headed by np need

to be considered. Furthermore, assuming an np constituent spans the substring wb . . . we,

all chart cells (i, j) and (j, k) can be closed where i < b < j < e < k. These are the chart

cells that would cross brackets with the identified noun phrase, and since the final parse

tree must conform to the pre-processing constraints including the location of the identified

noun-phrase, then any tree with constituents in these cells can be pruned.

129
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The chart constraints method we presented in the previous chapter is a generalization

from np phrases to all unlabeled constituents in the final parse tree. But by classifying

possible beginning and ending positions independently, we can not prune as much of the

chart space as if we knew the exact substrings spanned by possible constituents (i.e., as

is known for noun phrases in the Ratnaparkhi pipeline). For example, consider Figure

6.1, where chart cells have been fully (black) and partially (gray) closed with finite-state

chart constraints. If we can predict that a constituent spans “the new savings-and-loan

bailout agency”, then all spans that cross brackets with this substring can be closed

(since constituent parse structure can not have overlapping spans). We indicate these

cells that can be safely closed with red, many of which are open or partially open given

finite state chart constraints. Furthermore, we observe that sentence-final punctuation

most often attaches directly to the constituent spanning the entire sentence. Because this

lexical item necessarily ends a constituent, under the chart constraints paradigm all chart

cells spanning (i, n) for i < n are open to ending a constituent (some may be closed if not

allowed to being a constituent). If we instead predict where the sentence-final punctuation

will attach, we can close all other cells along this diagonal.

Zhang et al. [185] independently recognized this problem and proposed a solution called

“level tagging.” Instead of predicting a binary class label to determine if a constituent

may begin or end at a given word position, level tagging uses a multi-class classifier to

predict the span width of a constituent beginning or ending at a given word position,

where a span-width of zero restricts constituents of any length. In practice, the number of

classes was restricted to K=4 and only a marginal efficiency improvement (from 33.9 to

34.9 sentences per second) was observed over binary classification within the CCG parser

of Clark and Curran [42].

In this chapter, we introduce two novel methods to classify each chart cell as either open

or closed to all, or a restricted set of constituents. Given features extracted from the chart

cell context — e.g., span width, POS-tags and words surrounding the boundary of the cell

— we train a log linear model to, in essence, predict the unlabeled constituent structure

of the final parse tree. Given these constraints, we can restrict context-free inference to

a much smaller portion of the dynamic programming chart, greatly increasing parsing
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Figure 6.1: Example of finite-state chart constraints restricting the population of chart

cells. Black cells are completely closed, gray cells are partially closed. Blue cells highlight

the span of the proposed noun phrase; red cells highlight chart cells that can be closed

assuming this noun phrase exists, many of which are open or partially open under chart

constraints.

efficiency. This approach can be seen as a generalization of finite-state chart constraints

presented in Chapter 5, as well as the work by Roark and Hollingshead [145, 146], where

O(N2) predictions are made to classify each chart cell individually, as opposed to O(N)

classifications of each word position. As we will show in Section 6.4, cell classification

time is dwarfed by the later O(N3) context-free inference and the additional constraints

provided by cell-by-cell classification is empirically justified.

The second major contribution of this chapter is beam-width prediction. As discussed

in Chapter 4, beam-search parsing relies on two tunable parameters to control the amount

of search space pruned in each chart cell, which we call beam-K and beam-R. Traditionally,

these parameters are tuned to a single constant that optimizes accuracy and efficiency

performance over a given development corpus [46, 143, 9, 128]. But as we will see in Section

6.3, a constant value for each beam-width parameter is necessarily set conservatively to

ensure that outlier sentences — sentences where the prioritization function is less accurate
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– are not pruned too severely. If we instead adapt these beam-search parameters to each

sentence, or even each chart cell, we can significantly improve the efficiency of context-free

inference without compromising accuracy.

We combine cell closure prediction and beam-width prediction into a single model

where a beam-width of zero indicates that the cell is closed, otherwise the population of the

cell is restricted by the predicted beam-width. As with finite-state chart constraints, high-

precision classification for cell closure, as well as a measured bias towards over-predicting

the beam-width is desirable so that context-free inference is not overly constrained to

the point of accuracy degradation. To accomplish this, we introduce an asymmetric loss

function during optimization to penalize under-predicting the beam-width more severely

than over-predicting.

Another key feature of our approach is that beam-width prediction does not rely upon

reference syntactic annotations when learning to search. Rather, the model is trained to

learn the rank of constituents in the maximum likelihood trees.1 We will illustrate this by

presenting results using a latent-variable grammar, for which there is no “true” reference

latent variable parse trees. We simply parse unlabeled sentences from the target domain

and train our search models from the output of these trees, with no prior knowledge of

the non-terminal set or other grammar characteristics to guide the process. Hence, this

approach is broadly applicable to a wide range of scenarios, including tuning the search

to new domains where domain mismatch may yield very different efficiency/accuracy op-

erating points.

6.2 Open/Closed Cell Classification

6.2.1 Constituent Closure

We first look at the binary classification of chart cells as either open or closed to full con-

stituents, and predict this value from lexical and syntactic features of the input sentence.

1Note that we do not call this method “unsupervised” because all grammars used in this paper are
induced from supervised data, although our framework can also accommodate unsupervised grammars.
We emphasize that we are learning to search using only maximum likelihood trees, not that we are doing
unsupervised parsing.
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This is the same problem we addressed in Chapter 5 with chart-constraints; however,

where there we classify lexical items as either beginning or ending a constituent, here we

classify individual chart cells as open or closed, an approach we call Constituent Closure.

Although the number of classifications scales quadratically with our approach, the total

parse time is still dominated by the O(N3|G|) parsing complexity and we find that the

added level of specificity reduces the search space significantly.

To learn to classify a chart cell spanning words wi+1 . . . wj of a sentence S as open or

closed to full constituents, we first map cells in the training corpus to tuples:

Φ(S, i, j) = (x, y) (6.1)

where x is a feature-vector representation of the chart cell and y is the target class 1

if the cell contains an edge from the maximum likelihood parse tree, 0 otherwise. The

feature vector x is encoded with the chart cell’s absolute and relative span width, as well

as unigram and bigram lexical and part-of-speech tag items from a four-word window (one

word position to the left to two words positions to the right). POS features are computed

using the 1-best path from an order-2 hidden Markov model. The complete set of features

is listed in Table 6.1.

Given feature/target tuples (x, y) for every chart cell in every sentence of a training

corpus τ , we train a weight vector θ using the averaged perceptron algorithm [49] to learn

a binary decision boundary to classify each chart cell as open or closed:

θ̂ = argmin
θ

∑
(x,y)∈Φ(τ)

Lλ(H(θ · x), y) (6.2)

where H(·) is the unit step function: 1 if the inner product θ ·x > 0, and 0 otherwise; and

Lλ(·, ·) is an asymmetric loss function, defined below.

When predicting cell closure, all misclassifications are not equal. If we leave open a

cell which contains no edges in the maximum likelihood (ML) parse, we incur the cost

of additional processing, but are still able to recover the ML parse tree. However, if we

close a chart cell which contains an edge from the ML Tree, we will no longer be able to

recover the target parse due to search errors. To deal with this imbalance, we introduce an
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Feature Description

ti−1 One left of outside left boundary POS tag

ti Outside left boundary POS tag

ti+1 Inside left boundary POS tag

ti+2 One right of inside left boundary POS tag

ti ti+1 Joint left boundary POS tags

tj−1 One left of inside right boundary POS tag

tj Inside right boundary POS tag

tj+1 Outside right boundary POS tag

tj+2 One right of outside right boundary POS tag

tj tj+1 Joint right boundary POS tags

wi Outside left boundary lexical entry

wi+1 Inside left boundary lexical entry

wi wi + 1 Joint left boundary lexical entries

wj Inside right boundary lexical entry

wj+1 Outside right boundary lexical entry

wj wj+1 Joint right boundary lexical entries

Φ(j − i) Absolute span-width bins of 2, 3, 4, 5, 10, 20, 30, 40, 50

Ψ((j − i)/n) Relative span-width bins of 0.2, 0.4, 0.6, 0.8, 1.0

Table 6.1: Features used for classification of chart cell spanning wi . . . wj . Entries t and w

are POS tags and words, respectively; Φ and Ψ bins are triggered accumulatively, meaning

a span-width of 7 has a binary feature of one for span-width bins 2,3,4, and 5 and zero for

all others.

asymmetric loss function Lλ(·, ·) to penalize false-negatives more severely during training.

Lλ(h, y) =


0 if h = y

1 if h > y

λ if h < y

(6.3)

We found the value λ = 102 to give the best performance on our development set, and we

use this value in all of our experiments.

Figures 6.2a and 6.2b compare the pruned charts of Chart Constraints and Constituent
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Closure for a single sentence in the development set. Note that both of these methods

are predicting where a complete constituent may be located in the chart, not partial

constituents headed by factored nonterminals within a binarized grammar. Depending

on the grammar binarization (right or left) we can infer chart cells that are restricted to

only edges with a factored left-hand-side non-terminal. In Figure 6.2 these chart cells are

colored gray. We see that constituent closure does indeed close or partially close many of

the chart cells highlighted red in the example of Figure 6.1. Unfortunately, due to the right-

branching nature of trees in the treebank, many chart cells spanning substrings ending

with “thrift” in Figure 6.2b are classified as open, forcing most cells in the chart to be

partially closed (only open to factored non-terminals) opposed to fully closed. In Section

6.4 we analyze the effects of constituent closure and chart constraints on downstream

parsing speed and accuracy.

6.2.2 Complete Closure

Alternatively, we can predict whether a chart cell contains any constituent from the bi-

narized target tree, either a partial or a full constituent. We call this approach Complete

Closure. This is a more difficult classification problem as the constituent boundary con-

text of partial constituents may be significantly different than that of full constituents.

Nevertheless, predicting both complete and incomplete constituents directly allows us to

close a large number of chart cells, since no additional cells need to be left open to partial

constituents. The learning algorithm is identical to Equation 6.2, but training examples

are now assigned a positive label if the chart cell contains any edge from the binarized

maximum likelihood tree. Figure 6.3 gives a visual representation of complete closure for

the same sentence; the number of completely open cells increases somewhat, but the total

number of open cells (including those open to factored categories) is greatly reduced.

Table 6.2 records the percentage of open, closed, and partially closed cells over the en-

tire development Section 22 for three chart-closing methods: chart constraints, constituent

closure, and complete closure. The precision of each classifier was tuned by adjusting the

classification boundary such that downstream parsing accuracy was maintained. For con-

stituent and complete closure, we also tuned the loss function to λ = 102 on heldout data
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(a) Finite-State Chart Constraints

(b) Constituent Closure

Figure 6.2: Comparison of Finite-State Chart Constraints (Chapter 5) with Constituent

Closure for a single example sentence. Black cells are closed to all edges while grey cells

only allow factored edges (incomplete constituents).
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(Section 24). Note that 6.7% of all open cells in Table 6.2 are span-1 chart cells which we

do not attempt to classify for any of the three methods.2

We see that chart constraints has a near-uniform distribution of cell types, with each

receiving close to one-third. Constituent closure, although reducing the percentage of open

cells from 33.5% to 28.5%, also decreases the total number of closed cells. It is unclear

whether this shift to favor partially open chart cells will results in better downstream

parsing. Since nearly half of the 1.7 million binary productions in the Berkeley latent

variable grammar are headed by factored non-terminals, these “partially open” chart cells

are far from empty. Yet, as was shown in Chapter 5, partially open cells only require

finding the highest-scoring derivation given a single midpoint, which reduces the work

required in these chart cells from O(N) to O(1), where n is the length of the sentence.

Thus, the merit of each approach must be measured empirically, which we address in

Section 6.4.

Complete closure, on the other hand, is most certainly superior to both chart con-

straints and constituent closure given the statistics of Table 6.2. The percentage of open

cells increases 1.2% absolute from chart constraints, and 6.2% absolute from constituent

closure, yet there are no partially open chart cells. A large portion of the cells previously

classified as partially open have been completely closed, and because no work is required

for closed chart cells, the number of chart cells requiring processing with complete closure

is nearly half that of chart constraints and constituent closure.

Constraint Method Open Partially Open Closed

Chart Constraints 33.5% 33.3% 33.2%

Constituent Closure 28.5% 44.5% 27.0%

Complete Closure 34.7% 0.0% 65.3%

Gold 4.5% 2.5% 93.0%

Table 6.2: Percent cells open, cells restricted to only incomplete constituents (partially

open), and closed for all of WSJ Section 22 for three methods of cell closing.

2In Chapter 5 we consider restricting the population of span-1 unary productions, but this addition is
not used for computing the values in Table 6.2.
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Figure 6.3: Visualization for Complete Closure for a single example sentence. Black cells

are closed to all constituents; white cells are open to all constituents.

The three cell-closing methods we have discussed thus far — chart constraints in

Chapter 5, constituent closure, and complete closure in the previous sections — each

make binary decisions to either open or close portions of the dynamic programming chart.

Because constraints are placed on the chart structure itself, these pruning methods can

be used to improve the efficiency of any parsing architecture that leverages the same

dynamic programming structure. This implies that not only can we speed up exhaustive

CYK parsing, but these methods can also be combined with orthogonal pruning methods

such as coarse-to-fine pruning, best-first search, and beam search. In the next section we

discuss the combination of complete closure with beam-width prediction and show how

these methods prune complementary portions of the search space.
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6.3 Beam-Width Prediction

6.3.1 Motivation

When parsing with a beam-search, finding the optimal beam-width threshold(s) to balance

speed and accuracy is a necessary step. As mentioned in Section 4.4.1, two variations of

the beam-width are often considered: a fixed number of k-best constituents per cell, or a

relative probability difference from the highest scoring local edge. We showed in Chapter

4 that both methods perform similarly, and for the remainder of this chapter choose to fix

the relative probability threshold for all experiments and focus on adapting the number of

allowed constituents per cell. We will refer to this number-of-allowed-constituents value

as the beam-width, notated by b.

The standard way to tune the beam-width is a grid search over possible values until

accuracy on a heldout data set starts to decline. The optimal point will necessarily be very

conservative, allowing outliers (sentences or sub-phrases with above average ambiguity) to

stay within the beam and produce valid parse trees. Many chart cells may require much

fewer than b entries to find the maximum likelihood (ML) edge, yet, constrained by a

constant beam-width, the cell will continue to be filled with unfruitful edges, exponentially

increasing downstream computation.

To illustrate this point, we turn to Figure 6.4 which plots the rank of the target

edge in each chart cell over the entire development set (Section 22). Results in Figure

6.4a are computed using the Constituent POS Boundary prioritization function and R2

grammar, for which the Markovization is a deterministic grammar transform of the gold

treebank, and thus we can compute the appropriate chart cell containing each markovized,

binarized constituent. But when parsing with i.e., a latent variable grammar estimated via

expectation maximization, or the “unlexicalized” grammar of Klein and Manning [102],

which is non-trivial to reproduce, no such gold treebank is available with the same non-

terminal annotations for judging the utility of the prioritization function as is done in

Figure 6.4a. In these situations, we resort to parsing the development set exhaustively

to find the maximum likelihood (ML) solution, and then using it as a proxy to the gold

tree. Figures 6.4b and 6.4c each plot the rank of the ML constituents in each chart cell
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(a) R2 grammar, gold constituents
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(b) R2 grammar, ML constituents
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(c) Latent grammar, ML constituents

Figure 6.4: Histogram of the rank of target constituents in each span-specific agenda

during beam-search parsing. The red line is the cumulative distribution function. No

pruning was applied during search (i.e., the beam-width thresholds were infinity)

using the R2 and latent grammar respectively, as well as the Constituent POS Boundary

prioritization function. Comparing the ranking of the R2 grammar with the gold and ML

trees, we see a bias towards higher rankings with the ML trees. This should be expected

because one significant component of the prioritization score of each constituent is the

probability of the inside derivation given by the grammar.

Figure 6.4c results are computed using the POS Boundary prioritization function and

the Berkeley latent variable grammar, for which we have no true reference parse trees.
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Although no gold parse trees exits with latent annotations for which to compare the max-

imum likelihood results, it is still very useful to compare the rank of the ML constituents

with the beam-width tuned to optimize accuracy. For example, a grid search of possible

beam-width values in Chapter 4 indicates that we can reduce the global beam-width b to

15 constituents in each cell before accuracy starts to decline. However, from Figure 6.4c

we find that 75.3% of the ML edges are ranked first in their respective cell and 94.4%

are ranked in the top three. Thus, for nearly three-fourths of chart cells visited during

parsing Section 22, an additional 14 constituents are unnecessarily added to the chart.

Not only does this effect the efficient of the given cell, but also exponentially increases the

number of possible constituents that may be built in longer spans. Clearly, it would be

advantageous to adapt the beam-width such that it is restrictive when we are confident in

the prioritization of constituents in a given cell and more forgiving in ambiguous contexts.

6.3.2 Prediction Model

To address this problem, we learn the optimal beam-width for each chart cell directly. We

define Ri,j as the rank of the maximum likelihood (ML) edge in the chart cell spanning

wi . . . wj . If no ML edge exists in the cell, then Ri,j = 0, indicating that the cell should

be closed. Given a global maximum beam-width b, we train b different binary classifiers,

each using separate mapping functions Φk, where the target value y produced by Φk is 1

if Ri,j > k and 0 otherwise.

The same asymmetry noted in Section 6.2 applies in this task as well. When in doubt,

we prefer to over-predict the beam-width and risk an increase in processing time opposed

to under-predicting at the expense of accuracy. Thus we use the same loss function Lλ as

in Equation 6.2, this time training several classifiers:

θ̂k = argmin
θ

∑
(x,y)∈Φk(τ)

Lλ(H(θ · x), y) (6.4)

Note that in Equation 6.4 when k = 0, we recover the open/closed cell classification of

Equation 6.2, since a beam width of 0 indicates that the chart cell is completely closed.

Hence, this can been seen as a generalization of the chart-closing methods of Chapter 5,
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as well as prior work [144]

During inference, we assign the beam-width for chart cell spanning wi+1 . . . wj given

models θ0, θ1, ...θb−1 by finding the lowest value k such that the binary classifier θk classifies

Ri,j ≤ k. If no such k exists, R̂i,j is set to the maximum beam-width value b:

R̂i,j = argmin
k

θk · xi ≤ 0 (6.5)

In Equation 6.5 we assume there are b unique classifiers, one for each possible beam-

width value between 0 and b − 1, but this level of granularity is not required. Choosing

the number of classification bins to minimize total parsing time is dependent on the pri-

oritization function, the grammar, and properties of the input. Using the POS Boundary

prioritization function, the latent variable grammar, and Section 22 of the WSJ corpus,

97.3% of the ML edges have a local rank less than five and we find that the added cost

of computing b decision boundaries for each chart cell is not worth the added specificity.

Results showed that training four classifiers with beam-width decision boundaries at 0,

1, 2, and 4 is faster than 15 individual classifiers and more memory efficient, since each

model θk has over 800,000 parameters. All beam-width prediction results reported in this

chapter use these settings.

Figure 6.5 is a visual representation of beam-width prediction on a single sentence of

the development set using the latent-variable grammar and POS Boundary prioritization

function. In this figure, the gray scale represents the relative size of the beam-width:

white being the maximum beam-width value, b, shades of gray indicating a beam width

of 4, 2, and 1, and black implying the chart cell is closed to all constituents. We can see

from this figure that few chart cells are classified as needing the full 15 constituents, apart

from span-1 cells which we do not classify.

6.4 Results

We run all experiments on the WSJ treebank [115] using the standard splits: Section

2-21 for training, Section 22 for development, and Section 23 for testing. We preprocess

the treebank by removing empty nodes, temporal labels, and spurious unary productions
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Figure 6.5: Visualization of Beam-Width Prediction for a single example sentence. The

grey scale represents the size of the predicted beam-width: black is 0 (cell is skipped) and

white is the maximum value b (b=15 in this example).

(X→X), as is standard in published works on syntactic parsing and detailed in Section

2.5.

The pruning methods we present in this chapter can be used to parse with any gram-

mar. To achieve state-of-the-art accuracy levels, we parse with the Berkeley SM6 latent-

variable grammar [133] where the original treebank non-terminals are automatically split

into subclasses to optimize parsing accuracy. This is an explicit grammar consisting of 4.3

million productions, 2.4 million of which are lexical productions. Exhaustive CYK parsing

with the grammar takes more than a minute per sentence.

Accuracy is computed from the 1-best Viterbi (max) tree extracted from the chart.

We also ran experiments using the inside score (sum), but results were no better. Alter-

native decoding methods, such as marginalizing over the latent variables in the grammar

or MaxRule decoding [132] are certainly possible in our framework, but it is unknown how
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Figure 6.6: Timing breakdown by sentence length for major components of inference.

effective these methods will be given the heavily pruned nature of the chart. We leave

investigation of this to future work. We compute the precision and recall of constituents

from the 1-best Viterbi trees using the standard EVALB script [46], which ignores punc-

tuation and the root symbol. Accuracy results are reported as F1, the harmonic mean

between precision and recall.

We ran all timing tests on an Intel 3.00GHz processor with 6MB of cache and 16GB of

memory. Our parser is written in Java and publicly available at http://code.google.com/p/bubs-

parser/. We discuss additional elements of the parser in Section 7.2.

We empirically demonstrate the advantages of our pruning methods by comparing the

total parse time of each system, including all stages of the parsing pipeline. The one

exception being the parse times reported for Chart Constraints do not include begin, end,

or unary constraint tagging times as this was computed offline with a previous setup,

but tagging all of Section 22 takes less than three seconds and we choose to ignore this

contribution for simplicity.

To understand the processing time required by each component of our parser as a

function of sentence length, we turn to Figure 6.6. Here we see a breakdown of the
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Figure 6.7: Time versus accuracy curves comparing beam-search, beam-search with chart

constraints, and beam-search with beam-width prediction.

three components of our final parser: prioritization initialization (including the forward-

backward algorithm over ambiguous part-of-speech tags), beam-width prediction, and the

final beam-search, including 1-best extraction. We bin these relative times with respect

to sentence length to see how each component scales with the number of input words. As

expected, the O(N3|G|) beam-search begins to dominate as the sentence length grows, but

the initialization of the prioritization model is not cheap, and absorbs, on average, 20%

of the total parse time. Beam-width prediction, on the other hand, is almost negligible

in terms of processing time even though it scales quadratically with the length of the

sentence.

We compare the accuracy degradation of beam-width prediction and chart constraints

in Figure 6.7 as we incrementally tighten their respective pruning parameters. We also

include the baseline beam-search parser with POS Boundary prioritization function in

this figure to demonstrate the possible accuracy/efficiency trade-off of adjusting a global

beam-width alone. In this figure we see that the knee of the beam-width prediction

curve (Beam-Width Prediction) extends substantially further to the right before accuracy

declines, indicating that our pruning method is intelligently removing a significant portion

of the search space that remains unpruned with Chart Constraints. Furthermore, using a
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Parser W/S F1

CYK 0.335 89.4

CYK + Constituent Closure 0.493 89.3

CYK + Complete Closure 0.723 89.3

Beam + Inside Prioritization (BI) 5.9 89.2

BI + Constituent Closure 11.6 89.2

BI + Complete Closure 15.0 89.3

BI + Beam-Predict 20.0 89.3

Beam + POS Boundary Priority (BB) 72.4 89.2

BB + Constituent Closure 84.6 89.2

BB + Complete Closure 118.6 89.3

BB + Beam-Predict 165.0 89.3

Table 6.3: Section 22 development set results for CYK and Beam-Search (Beam) parsing

using the Berkeley latent-variable grammar.

beam-search alone can achieve efficiency levels similar to chart constraints if some degree

of accuracy loss (here, 1-2% absolute) is tolerable.

In Table 6.3 we present the accuracy and parse time for three baseline parsers on the

development set using the latent variable grammar: exhaustive CYK parsing, beam-search

parsing using the Inside prioritization function, and beam-search using the POS Boundary

prioritization function. We then apply our two cell-closing methods, Constituent Closure

and Complete Closure, to all three baseline parsers. As expected, the relative speedup of

these methods across the various baselines is similar since the open/closed cell classification

does not change across parsers. We also see that Complete Closure is between 22% and

31% faster than Constituent Closure, indicating that the greater number of cells closed

translates directly into a reduction in parse time. We can further apply beam-width

prediction to the two beam-search baseline parsers in Table 6.3. Dynamically adjusting the

beam-width for the remaining open cells decreases parse time by an additional 25% when

using the Inside prioritization function, and 28% with the POS Boundary prioritization



147

Parser W/S F1

CYK 0.363 88.7

Berkeley CTF MaxRule 110.1 90.2

Berkeley CTF Viterbi 112.8 88.8

Beam + POS Boundary Priority (BB) 70.2 88.6

BB + Chart Constraints 96.2 88.7

BB + Beam-Predict 187.7 88.7

Table 6.4: Section 23 test set results for multiple parsers using the Berkeley latent-variable grammar.

function.

We apply our best model to the test set and report results in Table 6.4. Beam-width

prediction, again, outperforms the baseline of a constant beam-width by a factor of 2.7 and

the open/closed classification of chart constraints by nearly doubling the efficiency while

maintaining F1. We also compare beam-width prediction to the Berkeley Coarse-to-Fine

parser. Both our parser and the Berkeley parser are written in Java, both are run with

Viterbi decoding, and both parse with the same grammar, so a direct comparison of speed

and accuracy is fair.3

6.5 Conclusion

We have introduced three new pruning methods: (1) constituent closure, (2) complete

closure, and (3) beam-width prediction, the best of which (beam-width prediction used

in conjunction with beam-search and POS boundary prioritization) unites constituent

prioritization metrics used heavily in agenda-based parsing, local pruning from beam-

search parsing, and unlabeled constituent structure prediction from chart constraints.

Furthermore, we have shown that pruning models trained using only maximum likelihood

trees is possible, which allows tuning to specific domains without labeled data. Using

3We run the Berkeley parser with the default search parameterization to achieve the fastest possible
parsing time. We note that 3 of 2416 sentences fail to parse under these settings. Using the ‘-accurate’
option provides a valid parse for all sentences, but decreases parsing time of Section 23 to 80.1 words per
second with no increase in F1. We assume a back-off strategy for failed parses could be implemented to
parse all sentences with a parsing time close to the default parameterization.
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this framework, we have shown that parsing time can be reduced by 65% over a standard

beam-search without any loss in accuracy, and our framework is significantly faster than

both the Berkeley coarse-to-fine parser and a beam-search parser using chart constraints.

Interesting directions for future work include combining beam-width prediction with

other forms of efficient search, such as coarse-to-fine pruning. The two methods prune

the search space in very different ways and may prove to be complementary. On the

other hand, our parser currently spends 20% of the total parse time computing forward-

backward scores used as features for cell clarification, and adding additional preprocessing

costs, such as parsing with a coarse grammar, may not outweigh the benefits gained in the

final search. In the next chapter we investigate the integration of beam-width prediction

with chart constraints of Chapter 5, which results in substantial additive efficiency gains

over the respective methods in isolation.



Chapter 7

Putting It All Together

7.1 Combination of Efficient Search Methods

In this section we combine optimal models from each of the efficient search methods

discussed in this thesis to analyze their potential in additive efficiency gains. Specifically,

we apply the POS Boundary prioritization function from Chapter 4, begin, end, and unary

chart constraints from Chapter 5, and beam-width prediction from Chapter 6. Recent

work by Dunlop et al. [57] to efficiently store and access the grammar in a sparse matrix

encoding has also been incorporated, increasing the baseline CYK parsing efficiency by

nearly an order of magnitude. This optimization was not applied to the results in Chapters

4 through 6, hence, the following results will not be identical to those previously discussed.

We restrict parsing to a single thread and do not parallelize it in any other way so that

comparisons with other efficient parsing algorithms can be conducted, but such methods

are indeed possible within our framework and prior work has found near optimal latency

reductions as the number of cores increases [57]. We discuss other optimizations of our

parser, including the sparse matrix encoding of our grammar, in the following section.

Table 7.1 contains parsing accuracy and efficiency results for English, computed on

WSJ Section 23. We compare our parser (BUBS) with the Charniak [32] and Petrov

and Klein [132] parsers — two well-known state-of-the-art parsers. A direct comparison

of accuracy and efficiency with the Charniak parser is not valid as the Charniak parser

searches the solution space provided by a different (lexicalized) grammar compared to the

latent-variable grammar used by both the Petrov and BUBS parsers; is also is implemented

in C++ opposed to Java, further obfuscating relative efficiency gains. Results from the

149
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Charniak parser are only shown here to put the contributions of this thesis in perspective

with more well-established research in the NLP community.

The first observation we point out in Table 7.1 is the efficiency difference between

a typical CYK implementation that loops over a list of grammar rules during grammar

intersection (BUBS CYK) and the matrix-encoded grammar encoding of Dunlop et al.

[57] (BUBS Matrix-encoded CYK). We see over a 10x speedup by using this encoding,

due primarily to two factors: (1) a reduction in the number of grammar access operations,

and (2) more efficient usage of the cache. A detailed analysis of these efficiencies can be

found in [56, 57]. Impresivly, this 10x speedup is carried throughout all results in Table

7.1, where we see nearly a 10x speedup of e.g., beam-width prediction coupled with the

matrix-encoded grammar, compared to the beam-width prediction results in Chapter 6

which looped over the list of grammar rules. Although the labeled precision and recall are

identical for the BUBS CYK and BUBS Matrix-encoded CYK solutions — both of which

find the maximum likelihood 1-best Viterbi parse tree — this is not necessarily the case

as multiple derivations may have identical likelihood scores and differences in tie-breaking

may lead to differences in 1-best solutions between the two parsers.

We apply each of our efficient search methods, in turn, to incrementally improve parsing

speed. First, a standard fixed-beam-width beam-search is applied with local prioritization

using the POS Boundary function, with a beam-K value of 30 (maximum number of

constituents) and a beam-R value of 8 (delta log score from best scoring local candidate).

We see a slight degradation (0.3 absolute) in F1 here, but of course the beam-width can

be adjusted to favor accuracy over efficiency if desired. Next, we apply begin-constituent,

end-constituent, and unary chart constraints. As observed in Chapter 5, we also see an

increase in parsing accuracy due to the elimination of globally poor candidates in the

search space. Chart constraints provides a sizable efficiency gain when applied to beam-

search parsing, increasing parsing speed from 279 words per second to 753. But when

beam-width prediction is used instead of chart-constraints, we see an even larger gain

from 279 words per second to 1,131.

Most impressively, when all three methods are combined, parsing efficiency increases

to 1,581 words per second. This is a 14x increase over the coarse-to-fine pruned parser of
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Petrov and Klein, with identical Viterbi F1 accuracy. One may be surprised by the addi-

tional gains when combining chart constraints with beam-width prediction, as both close

portions of the dynamic programming chart, especially since beam-width prediction does

so at a finer granularity than chart constraints — closing individual chart cells instead of

diagonals. Chart constraints, despite lacking the sensitivity to span-specific classification

decisions, does provide three additional modes of pruning that beam-width prediction does

not. First, unary productions in span-1 cells can be pruned with high precision, whereas

beam-width prediction does not distinguish between lexical and single-word constituent

unary productions. Second, because chart constraints close entire diagonals in the chart,

it is provable that only a single midpoint needs to be considered for case-2 cells and that

the set of productions to consider can be restricted to those with a binarized non-terminal

on the right hand side (see Section 5.2.3 for details). In contrast, beam-width prediction

iterates over all midpoints where both child cells remain open, and does not distinguish

between binarized and non-binarized productions. Finally, the finite-state tagging model

used to label each word in the input sentence as in B or B, E or E, and U or U computes

the forward-backward posterior scores over all possible tagging paths in the input. These

scores essentially condition the classification of each tag to be globally plausible with re-

spect to the distribution of other tags in the sequence. Beam-width prediction (as well

as the constituent and complete closure methods of Chapter 6) classify individual chart

cells as open or closed in isolation, with no explicit enforcement of global consistency.

Given these differences, it is not surprising that we see additional efficiency when chart

constraints and beam-width prediction are combined.

In Figure 7.1 we plot the total parse time per sentence as a function of sentence

length for the fastest parser in Table 7.1 (beam-search, POS Boundary prioritization, chart

constraints, and beam-width prediction). We roughly see a one-word-per-millisecond ratio

of sentence length to parse time as the sentence length increases. Fitting an exponential

curve to the data via least squares results in a N1.5 trajectory (plotted), which is far

1The Charniak parser searches the solution space provided by a different grammar compared to the
Berkeley and BUBS parsers; is also is implemented in C++ opposed to Java, so a direct comparison
of accuracy or efficiency is not applicable. Results with the Charniak parser are shown here to put the
contributions of this thesis in perspective with more well-established research in the NLP community.



152

F1 LP LR W/S

Charniak [32] 89.7† 89.7 89.6 50.8†

Petrov and Klein [132] Coarse-to-Fine MaxRule 90.2 90.3 90.0 110.1

Petrov and Klein [132] Coarse-to-Fine Viterbi 88.8 88.9 88.8 112.8

BUBS CYK Viterbi 88.7 88.8 88.5 0.4

BUBS Matrix-encoded CYK Viterbi [57] 88.7 88.8 88.5 5.8

+ beam-search + POS Boundary prioritization 88.4 88.5 88.3 279.2

+ chart constraints 88.6 88.8 88.3 753.3

+ beam-width prediction 88.6 88.7 88.6 1,331.4

+ beam-width prediction + chart constraints 88.8 89.0 88.6 1,581.0

Table 7.1: English test set results (WSJ Section 23) for all efficient parsing methods

discussed in this thesis in conjunction with matrix-encoded grammars [57].

superior to the cubic complexity of CYK or even the N2.6 and N1.6 observed respective

complexity of high-precision and quadratic chart constraints discussed in Section 5.5.2.

In Tables 7.2 and 7.3 we apply each of our efficient search methods to the task of parsing

Chinese and German. As with English, we see consistent independent and combined

efficiency gains with all three methods. Here, we include only the parsing results of Petrov

and Klein’s coarse-to-fine parser and reiterate that both their parser and the BUBS parser

are decoding with identical grammars (i.e., searching for the shortest path within the same

implicit hypergraph). Comparing absolute efficiency figures across languages, we note that

parsing the German NEGRA corpus [162] is significantly faster than both the English and

Chinese corpora. This can be attributed to two facts. First, the average sentence length is

the German test set is 17.9 words per sentence compared to 23.0 and 23.5 word per second

for the Chinese and English tests sets respectively. Given that our observed complexity

is O(N1.5), shorter sentences will produce faster efficiency statistics when measured in

words per second. Second, the size of the grammar, and consequently the size of the

search space, is much smaller for German in our experiments. The German latent variable

grammar contains approximately 0.6 million phrase-level productions, while the Chinese
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Figure 7.1: Scatter plot of parse time per sentence in milliseconds as sentence length

increases for all sentences in WSJ Section 23.

and English latent variable grammars contain 1.1 and 1.8 million productions respectively.

As was demonstrated in Chapter 4, the size of the grammar has a direct impact on parsing

speed. Consequently, parsing this German test set of shorter sentences with a smaller

grammar leads to faster context-free parsing. We also note that we were unable to apply

chart constraints to parsing the German corpus for reasons beyond our control, but assume

that similar efficiency gains combining all of the efficient search methods we present would

be seen on this corpus as well.

Apart from the average words per sentence difference between English, Chinese, and

German, there are other notable differences between these languages that would provide

accuracy and efficiency differences in parsing performance. We observe in Chapter 5 that

the distribution of production types — in particular, unary productions in span-1 chart

cells — is significantly different. Sentences from the Chinese treebank contained span-1

unary productions in nearly 40% of span-1 cells; the English treebank contained only 11%.

It is difficult to tease apart the exact factors that lead to this difference. Much of it can

be attributed to syntactic differences between the languages, where in Chinese a single
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F1 LP LR W/S

Petrov and Klein [132] Coarse-to-Fine MaxRule 83.9 84.5 83.3 56.8

Petrov and Klein [132] Coarse-to-Fine Viterbi 80.7 81.0 80.3 58.2

BUBS CYK Viterbi 79.3 79.5 79.1 0.2

BUBS Matrix-encoded CYK Viterbi [57] 79.3 79.5 79.1 14.2

+ beam-search + POS Boundary prioritization 80.1 80.1 80.1 203.2

+ chart constraints 81.0 82.3 79.8 776.0

+ beam-width prediction 80.0 79.9 80.0 1,124.9

+ beam-width prediction + chart constraints 81.1 82.3 80.0 1,168.9

Table 7.2: Chinese test set results for all efficient parsing methods discussed in this thesis

in conjunction with matrix-encoded grammars [57].

token is more likely to represent a stand-alone constituent than in English. Of course,

assumptions were made in the tokenization of this treebank and as such the annotation

guidelines also play a part, hence the difficulty in separating one factor from the other.

Comparing our optimal configuration with that of the Petrov and Klein parser, we see

a 20-fold increase in words-per-second for Chinese over the coarse-to-fine Viterbi decoding

baseline, and a 0.4 absolute increase in F1. When parsing German, we observe a 12-fold

increase in parsing efficiency, with a degradation of 1.4 absolute F1.

All parsing results for the Petrov and Klein parser have been reproduced using the

publicity available code at http://code.google.com/p/berkeleyparser/. Accuracy results

may differ slightly from previously published works due to discrepancies in treebank pre-

processing, which, in turn, leads to differences in labeled precision and recall evaluation.

We report our in-house accuracy results here for both parsers to ensure that our evaluation

methods are consistent across all algorithms.

7.2 The BUBS Parser

The BUBS parser is a collaborative parsing framework incorporating all of the efficiencies

discussed in this thesis, as well as matrix-encoded grammars, low-level parallelization, and
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F1 LP LR W/S

Petrov and Klein [132] Coarse-to-Fine MaxRule 80.1 80.0 80.2 189.2

Petrov and Klein [132] Coarse-to-Fine Viterbi 78.4 78.1 78.7 198.7

BUBS CYK Viterbi 77.3 77.0 77.7 3.2

BUBS Matrix-encoded CYK Viterbi [57] 77.3 77.0 77.7 36.8

+ beam-search + POS Boundary prioritization 77.0 76.3 77.4 751.6

+ beam-width prediction 77.2 77.0 77.3 2,423.6

Table 7.3: German test set results for all efficient parsing methods discussed in this thesis

in conjunction with matrix-encoded grammars [57]. Chart constraints were not applied.

other research conducted by the Natural Language Processing group at Oregon Health and

Science University. The parser is available to the public at http://code.google.com/p/bubs-

parser/ under the GNU Affero General Public License.

Recent work by Dunlop et al. [57] has shown many advantageous properties of encoding

a PCFG in sparse matrix form for constituent parsing, where rows are index by each parent

non-terminal and columns are indexed by the tuple of the two child non-terminals. Such

a representation allows refactoring the CYK algorithm with two beneficial properties:

(1) the number of expensive grammar intersection operations is reduced from O(N3) to

O(N2); and (2) since grammar intersection is reduced to a set of matrix operations, the

resulting algorithm is amenable to fine-grained parallelization. This grammar refactoring

method, as well as prior work encoding the grammar as a finite state automaton [99] and

prefix compacted tries [122] all demonstrate that model encoding can lead to significant

efficiency gains in parsing. No approximations are made with these alternate grammar

encodings and efficiency is gained without compromising search.

The BUBS parser contains multiple grammar storage and access methods, including

the sparse-matrix encoding discussed above. In Section 7.1 we saw that this grammar

encoding strategy alone can provide up to a 10x reduction in parsing time over alternative

grammar encoding methods. Coupled with the efficient search techniques discussed in this

thesis, the BUBS parser is the fastest high-accuracy constituent parser to date, and an

ideal tool for both commercial applications and future research in the syntactic analysis
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of natural language.

7.3 Conclusion and Future Work

In this this thesis, we have investigated multiple methods to improve the efficiency of con-

stituent parsing with large context-free grammars. All of the models we have presented are

grammar agnostic, requiring no knowledge of the underlying linguistic principals govern-

ing either treebank generation or non-terminal annotation. Our methods are completely

data driven and we have shown that they are effective across multiple languages and can

be trained from maximum likelihood parse trees with minimal loss in F1 accuracy com-

pared to hand labeled treebanks. Furthermore, each of the models we have presented rely

on direct lexical cues from the input sentences to prioritize or prune the search space –

information that is not present in unlexicalized grammars and only partially available in

bi-lexical grammars conditioned on constituent head words.

In Chapter 4 we discussed models to prioritize constituents at a local level in a beam-

search parser, as well as global prioritization within a best-first parser. We introduced the

Lexical Boundary prioritization function and showed how sparse data problems estimating

lexical-to-non-terminal transition probabilities for large grammars can be alleviated with

agglomerative clustering in the lexical space. We also discussed the disadvantages of

a best-first parsing architecture, namely the inability to compare constituents spanning

different substrings and the prohibitive overhead of sorting a large number of constituents

in a global agenda. Beam-search, on the other hand, has the disadvantage of making

local pruning decisions that are irreversible, but in empirical trials performed superior to

best-first search with multiple grammars and prioritization functions, providing between

an 8x and 23x speed improvement over exhaustive parsing depending on the size of the

grammar.

In Chapter 5, we extended prior work by Roark and Hollingshead [145] to prune unary

productions in span-1 chart cells, providing a cohesive framework for which to prune

all spans in the dynamic programming chart under a single finite-state pre-processing
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paradigm. Additionally, we presented the first results comparing multi-word and single-

word chart constraints to left- and right-binarized grammars. Our results confirmed past

work on the efficiency advantages of right-binarized grammars for parsing language with a

bias towards right-branching syntactic trees [56, 164], but even more interesting was that

the application of chart constraints eliminated these efficiency differences due to pruning

portions of the chart that may be locally productive according to the grammar, but globally

inconsistent according to the input sentence. Chapter 5 also contained the first analysis

of parsing Chinese with chart constraints, as well as the integration of chart constraints

with coarse-to-fine pruning, which produced the highest labeled F1 results to date on the

Chinese Penn Treebank. It was shown that constraining multi-word constituents with

begin and end constraints increased parsing speeds by a factor of 10x, and the addition

of unary constraints increased this to a factor of 20x over unconstrained CYK parsing.

When applied to the Charniak, Petrov, and BUBS parsers — all of which are already

heavily pruned — we see an addition 2x reduction in latency.

Chapter 6 introduces three separate models: complete and constituent closure, which

classify individual chart cells as either open or closed to a set of constituents, and beam-

width prediction, which adapts the pruning parameters of beam-search at a cell-by-cell

level. It was shown that opening and closing chart cells individually, opposed to allowing

word positions to begin or end a constituent as is done in chart constraints, prunes a larger

portion of the search space without compromising accuracy. Specifically, the complete

closure model was able to completely close 65% of spans compared to the 33% closed by

begin and end chart constraints. When we prune the search space with a beam-search

and adapt the beam-search parameters with our beam-width prediction model, we see

nearly a 500x decrease in parsing time compared to exhaustive CYK parsing with the

same grammar.

Results combining each of the methods in Chapters 4 through 6 to the task of parsing

English, Chinese, and German were presented in Chapter 7. There we saw large additive

efficiency gains for all three languages. With the additional optimization of sparse-matrix

encoded grammars, our final efficiency results are over and order of magnitude faster than

the coarse-to-fine parser of Petrov and Klein when parsing with the same latent variable
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grammar, and maintain — and in the case of Chinese, improve — the labeled F1 accuracy

over the maximum likelihood solution. The combined parsing algorithm has an empirical

complexity of O(N1.5), providing superior performance for both long and typical-length

sentences.

There are many interesting avenues for potential future work. First, both the con-

stituent and complete closure methods of Chapter 6 predict the unlabeled constituent

structure of the final parse tree, but these methods make the false independence assump-

tion that each constituent can be predicted in isolation. Future work will explore the

possibility of predicting this structure satisfying global conditions that the chart cells

open to constituents must be combined to form a valid tree structure. One method of

incorporating this information would be to use the output of a dependency parser in a

multi-stage pipeline to constrain the structure of the dynamic programming chart. Similar

work has recently been done using dependency parsing to constrain decoding with Tree

Adjoining Grammars [28] and we believe applying this method to constituent parsing will

provide additional efficiency gains.

Second, the size and structure of the grammar is the single largest contributor to parse

efficiency. In contrast to the current paradigm of designing a context-free grammar for

optimal accuracy and then applying methods to effectively search the space created by

the grammar, we plan to investigate new algorithms that jointly optimize accuracy and

efficiency during grammar induction, leading to more efficient decoding. Furthermore,

labeling a sentence with its constituent structure is rarely an end goal; it is used to provide

syntactic information to downstream NLP applications. When the end goal is known, we

can optimize the accuracy and efficiency of the grammar directly on the target task, which

has the potential for dramatic efficiency gains over optimization of labeled constituent

precision and recall on newswire text. For example, consider the latent variable grammar

of [133] where groups of non-terminals are split and merged. Under this framework we

may need to only refine a small subset of the original treebank non-terminals — and

possibly collapse similar functioning treebank tags, such as the standard, comparative,

and superlative adjectives (jj, jjr and jjs) — without reducing accuracy on the end task.

Such a reduction in grammar size may lead directly to substantial efficiency gains.
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Finally, we suspect the efficiency gains for bottom-up context-free parsing with large

grammars may begin to saturate as pruning or prioritization methods improve over those

presented in the thesis. In particular, the search space is drastically pruned by beam-width

prediction, often leaving only a single binary constituent in each span. Without inducing

grammars that are optimized for efficiency, as was previously discussed, we see significant

potential in the greedy shift-reduce architectures used for both dependency [181, 124] and

constituent [93, 150] parsing, with linear complexity and reported speeds of over 30,000

words per second. Indeed, the space of possible parse trees explodes with the array of

non-terminal annotations present in many of the high-accuracy context-free grammars, all

of which are removed for evaluation. We believe that the upper bound on efficient parsing

with such shift-reduce or state transition parsers may be much higher than that of parsing

with large context free grammars, although it has yet to be shown that the accuracy or

domain-adaptability of these models can reach the same levels of context-free grammar

parsing.
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POS Tag Description POS Tag Description

CC Coordinating conjunction TO to

CD Cardinal number UH Interjection

DT Determiner VB Verb, base form

EX Existential there VBD Verb, past tense

FW Foreign word VBG Verb, gerund/present participle

IN Preposition/subord conjunction VBN Verb, past participle

JJ Adjective VBP Verb, non-3rd ps. sing. present

JJR Adjective, comparative VBZ Verb, 3rd ps. sing. present

JJS Adjective, superlative WDT wh-determiner

LS List item marker WP wh-pronoun

MD Modal WP Possessive wh-pronoun

NN Noun, singular or mass WRB wh-adverb

NNS Noun, plural # Pound sign

NNP Proper noun, singular $ Dollar sign

NNPS Proper noun, plural . Sentence-final punctuation

PDT Predeterminer , Comma

POS Possessive ending : Colon, semi-colon

PRP Personal pronoun ( Left bracket character

PP Possessive pronoun ) Right bracket character

RB Adverb ” Straight double quote

RBR Adverb, comparative ‘ Left open single quote

RBS Adverb, superlative ” Left open double quote

RP Particle ’ Right close single quote

SYM Symbol ” Right close double quote

Table A.1: The Penn Treebank POS tagset
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Syntactic tag Description

ADJP Adjective phrase

ADVP Adverb phrase

NP Noun phrase

PP Prepositional phrase

S Simple declarative clause

SBAR Clause introduced by subordinating conjunction or 0

SBARQ Direct question introduced by wh-word or wh-phrase

SINV Declarative sentence with subject-aux inversion

SQ Subconstituent of SBARQ excluding wh-word or wh-phrase

VP Verb phrase

WHADVP Wh-adverb phrase

WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

Table A.2: The Penn Treebank syntactic tagset

Null tag Description

* “Understood” subject of infinitive or imperative

0 Zero variant of that in subordinate clauses

T Trace—marks position where moved wh-constituent is interpreted

NIL Marks position where preposition is interpreted in pied-piping contexts

Table A.3: The Penn Treebank Null tagset
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Alternative Grammar Formalisms

B.1 Tree Adjoining Grammar

Tree Adjoining Grammar (TAG) was formalized in 1975 by Joshi et al. [88]. The primary

data structure of TAG is the tree, rather than the rule, as is used in context-free grammars,

and therefore considered a structure binding formalism opposed to structure changing

formalism [90]. There are two types of trees in TAG: initial trees representing simple

sentential structures, and auxiliary trees used to add recursion into the formalism. In

addition, two operations are used to combine these tree structure into a final derivation:

substitution and adjunction. An example of two trees joined via substitution can be seen

in Figure B.1a, where the parent non-terminal of one tree is substituted for the equivalent

child non-terminal in a second tree. The process of adjunction can be seen in Figure B.1b,

and joins the two trees into a new derivation for the sentence “John really likes Lyn”.

The adjunction operation allows TAG to become mildly context-sensitive; opposed to

context-free rules A → β, TAG supports auxiliary trees that specify a right and/or left

context: xAy → xβy. Furthermore, agrement can be enforced through the specification of

feature-rich initial trees (see Figure B.1c) and subcategorization can be implemented via

trees anchored in a single lexical item and containing appropriate frames. For example,

in Figure B.1d we see that the word “tell” requires a subject, indirect object, and direct

object noun phrases before participating in a full derivation.

When elementary trees are associated with lexical items, as in the example above, the

grammar formalisms is referred to as Lexicalized Tree Adjoining Grammar (LTAG). LTAG

parsing naturally proceeds in two steps: first selecting the set of lexical structure associated

163
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(a) Substitution (b) Adjunction

(c) Agreement (d) Subcategorization

Figure B.1: Examples of substitution and adjunction operations, and agreement and sub-

categorization structure for Tree Adjoining Grammar. Figure adapted from [139].

with the input, and second, applying standard polynomial parsing algorithms resolve

the remaining ambiguity [156]. CYK dynamic programming and Early-style top-down

filtering approaches can both been used for LTAG parsing [156], but a straightforward

implementation is O(N6), where N is the length of the sentence. Harbusch introduces an

O(N4 logN) approach by first parsing with a projected context-free grammar to constrain

subsequent TAG operations, while still performing exact inference [75]. More recently,

supertagging has become a widely used pre-processing step to decrease the typical-case

runtime of LTAG parsing [7, 155]. Given the surrounding context of each lexical item,

supertagging limits the ambiguity of elementary trees by pruning those that are unlikely
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to participate in a full derivation. This approach is similar to pre-tagging the input with

POS tags (1-best or n-best) to constrain the downstream parser, but operates on the larger

set of possible elementary trees for each lexical item instead of the set of possible POS

tags.

B.2 Combinatorial Categorial Grammar

Combinatorial categorial grammar (CCG) is a proof-theoretic formalism that encodes pos-

sible grammatical derivations as attributes of the lexicon. Binary rules such as application,

composition, and substitution determine how these lexical categories combine to form a

parse tree. For example, one form of the transitive verb “loves” is represented in the

lexicon as

indicating that a sentence (s) can be formed if one noun phrase (np) is found to the left

of the word, and one to the right (the direction of the slash represents the direction of

the required argument). Provided with noun phrases to the left and right, we join lexical

items into phrases through iterative functional evaluation:

In [173], Vijay-Shanker and Weir proved that CCGs generate exactly the same class of

strings as Tree Adjoining Grammars, and are therefore weakly equivalent. Both formalisms

are mildly context-sensitive, with the ability to represent cross-serial dependencies, dis-

tinguishing them from context-free grammars. But in [63], Fowler and Penn show that a

number of CCGs used in practice, including that of Clark and Curran [42] are actually

strongly context-free. Nevertheless, all CCGs – including those outside the definition of
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context-free – are parsable in polynomial time, and due to the binary nature of derivation

rules, easily amenable to chart-based parsing techniques such as the CYK algorithm.

As with TAG, the efficiency of CCG parsing has recently been improved with an

adapted version of supertagging [40, 41], a preprocessing step to limit the amount of am-

biguity in lexical items given the context of the sentence.1 In 2011, Zhang and Clark

showed that recent efficiency benefits from dependency parsing via a shift-reduce frame-

work could also be adapted to CCG parsing with measurable success [186]. Although

accuracy parsing standard corpora with CCGs has not yet attained the level of lexical-

ized or latent-annotated context-free grammars [63], it remains a viable and interesting

grammar formalism for computational linguists.

B.3 Lexical Functional Grammar

Lexical functional grammars (LFG) are an extension of unification theory, developed by

Bresnan and Kaplan in the 1970s [94, 20]. LFG structure is composed of two independent

syntactic components, each with its own rules: feature structure, which represents the

organizational structure of the sentence, including subject-object relations and predicate-

argument structure; and constituent structure, the hierarchical structuring of words into

phrases [51]. This decomposition into feature and constituent structure differs from trans-

formational grammar formalisms by focusing on the structure and function of the lan-

guage independently instead of one producing the other. LFG also differentiates itself

from Chomskyan grammar traditions by encoding phenomena, such as passivization, in

the lexicon rather than treating it as a transformation [44].

The constituent structure of LFG has the form of context-free phrase structure trees,

while feature structures are sets of attribute/value pairs. Attributes may be features, such

as tense and gender, or functions, such as subject and object. The constituent and feature

structure can be encoded simultaneously in a PCFG where ↑ and ↓ are commonly used to

denote the feature structure of the parent/child relationship. For example, in Figure B.2,

1Supertagging was originally proposed for lexicalized tree adjoining grammars by Bangalore and Joshi
in [7], and adapted to CCGs by Clark and Curran.
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↑ subj =↓ indicates that the subject of the parent (s) is the child.

Figure B.2: Parsing “U.N. sign treaty” with the LFG above produces both the feature

structure and constituent structure pictured. Figure adapted from [92].

The constituent and feature structure of the grammar provide complementary con-

straints. Parsing with such a grammar requires satisfying both sets of constraints, but

can be implemented in two distinct steps. For example, one may first find all possible

constituent structures via the CYK chart-parsing algorithm, and then resolve the feature

structure constraints given this reduced set. Resolving feature structure constraints is an

exponential operation, but efficiencies such as packed feature representations [117], dy-

namic programming [66], and lazy evaluation [19] have been presented to decrease the

run-time in practice.

LFG can encode long-distance dependencies through reentrancies in its feature struc-

ture, and unlike TAG and CCG, can also represent cross-serial dependencies, such as

those found in Dutch [20]. This representative power makes LFG a fully context-sensitive

formalism.

B.4 Head-driven Phrase Structure Grammar

Head-driven Phrase Structure Grammar (HPSG) is another unification-based formalisms

that has recently been adopted by computational linguists [135]. The phrasal head, is

considered the most important element in the phrase and other elements inherit its prop-

erties during unification. For example, the verb is often considered the head of a sentence
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as it drives much of the grammatical structure. HPSG builds on the previous work of

Generalized Phrase Structure Grammar [65] and is, in turn, a non-derivational formalism,

meaning that one form of structure or representation can not be induced from (or implied

by) another. Instead, HPSG imposes a set of constraints on the input sentence which

must be satisfied through unification, similar to CCG.

As with LFG, HPSG extends unification-based grammars by enforcing typed feature-

structure such that features and values assigned to a word are appropriate given its syntac-

tic function [90]. For example, the gender attribute may not be assigned the nonsensical

value three. But unlike LFG (and TAG), HPSG incorporates the phrase-structure in-

formation directly into the feature terms.

Figure B.3: HPSG tree structure for the sentence “John seems to leave”. Figure adapted

from [91].

An example of an HPSG tree structure can be see in Figure B.3. The head attribute

represents the syntactic features of the head word (similar to a POS tag), while subcat

encodes the subcategorization information. Boxed numbers are used for feature sharing

(i.e., pointers) and the H and C labels on arcs indicate which structure is the head, and

which are the complement(s).

Similar to LFG, HPSG is fully context-sensitive and requires exponential time to parse.

To increase the efficiency of HPSG parsing, Kasper et al. proposed a compilation algo-

rithm to convert HPSG to LTAG. The precompilation process identifies substructure of
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the HPSG that is not context-dependent. This substructure can be parsed with standard

chart-based algorithms and used as a backbone to the remaining context-sensitive disam-

biguation [96, 8]. Similar methods, such as CFG filtering, have been proposed converting

HPSG to CFG to constrain the search space of possible HPSG unifications [168]. Note that

all of these methods still perform exact HPSG unification – only ungrammatical structure

is eliminated during pruning.

B.5 Dependency Grammar

Dependency parsing is a form of syntactic analysis that labels directed relationships be-

tween two words in a sentence (bi-lexical relationships). The head of the dependency arc

determines the syntactic category of the child; the closer a word is to the root of the tree,

the more syntactically important it is. Figure B.4 depicts the dependency structure for

the example sentence where the word “overreacted” is the main verb of the sentence and

drives the subcategorization structure. The bi-lexical arcs in Figure B.4 can optionally

be labeled with a syntactic function, such as “noun modifier” or “verb’s subject”, but

unlabeled dependency parsing is also a well-studied task as the dependency arcs alone

provide significant syntactic disambiguation. Furthermore, given the unlabeled depen-

dency arcs and POS tags, labeling the dependency graph with syntactic relationships is

straight-forward and can be done with high accuracy. This is done as a post-processing

step in many dependency parsers, such as McDonald [120].

Figure B.4: Unlabeled dependency grammar structure for an example sentence.

Dependency parsing has recently received significant attention, most notably due to the

efficient decoding algorithms of Yamada and Matsumoto [181], Nivre [124], and McDonald

[120] and their utility within NLP applications. Nivre [124]’s word investigated the impact



170

of various constraints on the space of possible dependency grams – requiring each word

to have a single head or that the graph be acyclic – and how these constraints affected

coverage and the number of candidate edges. His results found that constraining the degree

of allowed non-projectivity can greatly reduce the number of arcs that must be considered

during search, and, as long as some degree of non-projectivity is allowed, coverage is

minimally impacted. In the work of McDonald et al. [121] it was shown the total absence

of projectivity constraints allows for the use of spanning tree algorithms that can be

quadratic complexity for certain classes of statistical models, so the ultimate utility of

such constraints varies depending on the model being used.

Dependency parsing has been shown to increase the accuracy of machine translation

by transferring lexical relationships from the source language to the target language, espe-

cially for translation between English and Subject-Object-Verb languages such as Japanese

and Turkish [97, 64]. Research has also been done using dependency structure to constrain

higher-complexity parsing within a pipeline, such as with the HPSG and TAG formalisms

[152, 28]. With these recent successes to NLP applications and the development of O(N)

decoding algorithms, dependency parsing is an attractive alternative to context-free pars-

ing as it can be very efficient – similar to speeds of finite-state tagging algorithms. It has

been shown that dependency structure extracted from context-free parses with PCFGs

produces superior accuracy and adaptability to new domains, compared to the O(N) or

O(N2) algorithms of Nivre [124] and McDonald [120], but it remains an open question as

to how such a difference in accuracy or adaptability affects downstream NLP applications

leveraging such syntactic information.
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Coarse-to-Fine Parsing Algorithm

In Algorithm 5 we present pseudocode for two-level coarse-to-fine parsing. Given a pre-

defined mapping of fine-to-coarse non-terminals Φ, we first compute the inside/outside

scores of each constituent over every span given the coarse grammar.1 We assume these

values are normalized by the probability of the sentence. Next, we proceed exactly as done

in the CYK algorithm – iteration over each nonterminal in the target grammar at every

span – with the exception of skipping non-terminals that, when projected to the coarse

grammar space, have an inside/outside score less than some set threshold λ. The variable

λ can be tuned on held-out data for optimal accuracy and/or efficiency performance. The

presentation of coarse-to-fine in Algorithm 5 is an approximate inference algorithm as

there is no guarantee that the projected grammar scores are an upper bound on the true

target-grammar derivation. Although the inside/outside scores perform well in practice,

we may inadvertently prune the globally optimal derivation during parsing.

1For a presentation of the inside/outside algorithm, see e.g. Manning and Schütze (1999) pg. 400 [112].
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Algorithm 5 CoarseToFineParser(w1 . . . wn, Gcoarse, Gfine = (V, T, S†, P, ρ), Φ, λ)

Input:

w1 . . . wn: Input sentence

Gcoarse: Binarized Coarse PCFG

Gfine: Binarized Target PCFG

Φ: Maps non-terminals from Vfine to Vcoarse

λ: Coarse-To-Fine pruning threshold; 0 ≤ λ < 1

Output:

α: Viterbi-max scores for all non-terminals over every span

1: γcoarse ← InsideOutside(w1 . . . wn, Gcoarse)

2: for s = 1 to n do . Span width: bottom-up traversal

3: for b = 1 to n− s+ 1 do . Begin word position

4: e← b+s−1 . End word position

5: for Ai ∈ Vfine do

6: if γcoarseΦ(i) (b, e) > λ then

7: if s = 1 then . Special case for lexical productions

8: αi(b, e)← ρ(Ai → wb)

9: else

10: αi(b, e)← max
b≤m<e

(
max
j,k

ρ(Ai → Aj Ak) αj(b,m) αk(m+ 1, e)

)
11: for Ai ∈ V do . Add unary productions

12: if γcoarseΦ(i) (b, e) > λ then

13: υi(b, e)← max

(
αi(b, e) , max

j
ρ(Ai → Aj) αj(b, e)

)
14: α(b, e)← υ(b, e)

15: return α



Bibliography

[1] S. Abney, S. Flickenger, C. Gdaniec, C. Grishman, P. Harrison, D. Hindle, R. In-

gria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos, B. Santorini,

and T. Strzalkowski. 1991. Procedure for quantitatively comparing the syntactic

coverage of english grammars. In Proceedings of the workshop on Speech and Natu-

ral Language, HLT ’91, pages 306–311, Association for Computational Linguistics,

Stroudsburg, PA, USA.

[2] J. Allen. 1995. Natural language understanding. Benjamin/Cummings series in

computer science. Benjamin/Cummings Pub. Co.

[3] Hiyan Alshawi, editor. 1992. The Core Language Engine. MIT Press, Cambridge,

Massachusetts.

[4] M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. 1986. Min-max heaps

and generalized priority queues. Commun. ACM, 29:996–1000.

[5] John W. Backus. 1959. The syntax and semantics of the proposed international

algebraic language of the Zurich ACM-GAMM Conference. In IFIP Congress, pages

125–131.

[6] James K. Baker. 1979. Trainable grammars for speech recognition. In Speech Com-

munication Papers for the 97th Meeting of the Acoustical Society of America, pages

547–550.

[7] Srinivas Bangalore and Aravind K. Joshi. 1999. Supertagging: An approach to

almost parsing. Computational Linguistics, 25:237–265.

[8] Tilman Becker and Patrice Lopez. 2000. Adapting hpsg-to-tag compilation to wide-

coverage grammars. In In Proc. of TAG+5, pages 47–54.

[9] Steven Bird. 2002. Nltk: The natural language toolkit. In In Proceedings of the ACL

Workshop on Effective Tools and Methodologies for Teaching Natural Language Pro-

cessing and Computational Linguistics. Philadelphia: Association for Computational

Linguistics.

173



174

[10] Ezra Black, Fred Jelinek, John Lafferty, David M. Magerman, Robert Mercer, and

Salim Roukos. 1993. Towards history-based grammars: Using richer models for

probabilistic parsing. In In Proceedings of the 31st Annual Meeting of the Association

for Computational Linguistics, pages 31–37.

[11] Ezra Black, John Lafferty, and Salira Roukos. 1992. Development and evaluation

of a broad-coverage probabilistic grammar of english-language computer manuals.

In In Proceedings of the 30th Annual Meeting of the Association for Computational

Linguistics, pages 185–192.

[12] Don Blaheta and Eugene Charniak. 1999. Automatic compensation for parser figure-

of-merit flaws. In Proceedings of the 37th annual meeting of the Association for

Computational Linguistics on Computational Linguistics, ACL ’99, pages 513–518,

Association for Computational Linguistics, Stroudsburg, PA, USA.

[13] Robert J. Bobrow. 1990. Statistical agenda parsing. In DARPA Speech and Language

Workshop, pages 222–224.

[14] Rens Bod. 2003. An efficient implementation of a new dop model. In Proceedings

of the tenth conference on European chapter of the Association for Computational

Linguistics - Volume 1, EACL ’03, pages 19–26, Association for Computational

Linguistics, Stroudsburg, PA, USA.

[15] Nathan Bodenstab. 2006. Coarse-to-fine efficient viterbi parsing. Research Profi-

ciency Exam, Oregon Health and Science University.

[16] Nathan Bodenstab, Aaron Dunlop, Keith Hall, and Brian Roark. 2010. Exponential

decay pruning for bottom-up beam-search parsing. In Pacific Northwest Regional

NLP Workshop (NW-NLP 2010).

[17] Nathan Bodenstab, Aaron Dunlop, Keith Hall, and Brian Roark. 2011. Adaptive

beam-width prediction for efficient context-free parsing. In Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics, Association for

Computational Linguistics, Portland, Oregon.

[18] Nathan Bodenstab, Kristy Hollingshead, and Brian Roark. 2011. Unary constraints

for efficient context-free parsing. In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics, Association for Computational Linguis-

tics, Portland, Oregon.



175
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