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Intonation provides a means to convey information in speech that is independent of the words

and their sounds. Finding a way to automatically describe this non-verbal information is impor-

tant for developing sophisticated speech technology applications. One leading approach to model

intonation is using a superpositional approach that assume intonation has a hierarchical structure,

and models the intonation by decomposing it’s physical representative (F0 contours) into compo-

nent curves with simpler intonation patterns in multi-level manner. However, it is not clear what

the set of component curves should be, and how they can be defined with few free parameters,

that will allow them to be used in analysis and synthesis of English for a wide range of tasks.

The central objective of this thesis is to propose a generalized model for analysis and synthesis

of English intonation. Our model is a quantitative superpositional intonation model that estimates

F0 contour by decomposing it into two levels; a phrase curve for each intermediate phrase and an

accent curve for each foot. We keep the shape of the phrase curve as simple as possible to let

the accent curves capture the F0 dynamic patterns. Even though parameters of a specific accent

curve are proportional into a specific foot, we have the accent curve span across the entire phrase.

The formulation of component curves lets us to model the F0 contour with a very small set of free

parameters. Having a limited number of parameters and having all curves span across the entire

phrase facilitates us to optimize the parameters simultaneously to estimate the component curves.

We name this model GENIE: GENeralized Intonation model for English.

We investigated GENIE’s potential to accurately represent intonational characteristics of the

English language in both synthesis and analysis tasks through a variety of speech processing ap-

plications. In a direct comparison with the ToBI system, we showed that GENIE’s component

curves are able to capture the underlying patterns of English intonation. In order to test the abil-

ity of GENIE to synthesize high-quality and more natural sounding F0 contours, we created two



different approaches based on GENIE for generating F0 contours in a Text-to-Speech system. We

investigated the effectiveness of these approaches through objective and subjective evaluations. To

examine GENIE’s capability to be used as an analysis tool, we created two different approaches to

differentiate two speaker groups through their F0 dynamic differences. Due to the success of these

two studies, we proposed a speaker group classifier using the Non-negative Matrix Factorization

algorithm and the Gini coefficient. We evaluated our classifier in an English dialect classification

task. We also examined the ability of GENIE to adapt to new intonational patterns by performing

several perceptual tests with a variety of speech corpora and by creating an intonation adaptation

task to generate speaker-specific F0 contours. Thus, in this dissertation we examined the perfor-

mance of GENIE in two areas: 1) Predictiveness: does the model produce high-quality prediction

of F0 contours, while being linguistically descriptive? 2) Coverage: is the model flexible to subtle

intonational variations?



Chapter 1

Introduction

1.1 What is intonation?

The term intonation refers to the concept of conveying non-verbal information in speech. Intonation

is often considered the same as prosody; however, prosody is a more general term which in addition

to intonation also consists of rhythm (stress and timing patterns) and intensity patterns. These

non-verbal aspects usually can be distinguished as phonological features or acoustic features. Even

though there is some disagreement on which properties of spoken language are considered prosodic,

there have been many studies that show the presence of prosodic constituents through phonological

observations and acoustic measurements [115, 139, 23]. Figure 1.1 illustrates that prosody involves

many phonological features (e.g., pitch, stress pattern and loudness) and acoustical features (e.g.,

fundamental frequency, intensity, and duration).

Pitch is a perceptual feature, which allows for a listener to perceive how high or low someone

speaks. Similar to musical melodies, pitch changes over time during an utterance and it is closely

● Fundamental Frequency 
● Intensity
● Duration

Acoustical 

● Pitch
● Loudness
● Boundary phenomena

Paralinguistic  Features

● Stress
● Pitch accent
● Tone

Lexical   Features

Phonological 

Intonation

Figure 1.1: Within-group and between-group interaction of prosodic features.

1



CHAPTER 1. INTRODUCTION 2

correlated with duration and loudness patterns. The duration patterns or timing differ from

one language to another; for example in English, timing is related to the syllable stress and

pitch accents, which are two lexical features used to create prominence patterns of an utterance.

Loudness is another perceptual feature which allows for a listener to perceive how quiet or loud

someone speaks. These perceptual features cannot be measured directly. Instead, we can measure

the fundamental frequency (or F0 values) of the vocal cords during sound production (an acoustic

feature measured in Hz). The intensity of a speech signal is the acoustic equivalent of the perceptual

loudness feature. There is a strong correlation between all these prosodic features, which makes it

practically impossible to define intonation as only involving one of these features. Therefore, we will

use the term intonation in this thesis to refer to within-group interactions (e.g., relation between

pitch and loudness) between prosodic features in each aspect and between-group interactions (e.g.,

relation among pitch, stress pattern and F0) between all aspects.

1.2 How to Represent Intonation?

In spoken language, a speaker transfers a variety of information beyond lexical and syntactic

information to convey a specific meaning to a target audience. Prosodic features, such as pitch

patterns, prominence, timing, intensity, and phrasing give a speaker the ability to convey different

meanings without changing the context (the words that were said). These non-verbal cues in an

utterance are called intonation. This section is not intended to be a literature review, which is in

Section 2.2 and Section 2.3; rather, this section explains the complexity of intonation in a simple

example that starts with the simplest representation of intonation and progressively add more

information into it.

Consider an environment consisting of two speakers: A and B. Speaker B always says the

sentence “This is an expensive car” as an answer to speaker A’s question who inquires about

specific information available in the mentioned sentence. These questions are shown below:

Speaker A Speaker B

What did you say? This is an expensive car.

Is this an expensive house? This is an expensive car.

What kind of car is this? This is an expensive car.

Is this a cheap car? This is an expensive car.
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Even though speaker B says the same sentence in an answer to different questions, he/she puts

different levels of emphasis on different parts in the stream of speech to make them prominent,

which results in conveying different meanings. To answer “What did you say?”, certain stressed

syllables will be more prominent than others – using a so-called pitch accent or accent, in speaker

B’s response “This is an expensive car”. Small capitals indicate the locations of pitch accents in

the sentence:

Speaker A Speaker B

What did you say? This is an expensive car.

Is this an expensive house? This is an expensive car.

What kind of car is this? This is an expensive car.

Is this a cheap car? This is an expensive car.

Not all intonational information can be transferred through the locations of pitch accents, for

instance, speaker B might puts more emphasis on the word “car” to answer “Is this an expensive

house?” than when he/she emphasizes the word “car” in response to “What did you say?” By

increasing the pitch range on the word “car”, speaker B conveys more intonational information to

speaker A. Here, pitch range information is an effective intonation characteristic. In the second

through to the fourth responses where speaker B does emphasized a syllable, we represent it with

an underline:

Speaker A Speaker B

What did you say? This is an expensive car.

Is this an expensive house? This is an expensive car.

What kind of car is this? This is an expensive car.

Is this a cheap car? This is an expensive car.

Using English orthography (such as small capitals and underlining) to highlight important

intonational information has been part of English intonation analysis for a long time. In an English
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pronunciation lexicon, every word has a stressed syllable, and these syllables are more likely to

be prominent – having a pitch accent – than other syllables in an utterance. Putting a pitch

accent on every word of an utterance would make it sound unnatural to human ears. In general,

it is more likely that the stressed syllables in content words get a pitch accent (small capitals in

the example above). As mentioned previously, some intonational characteristics are produced by

speaker B to add more clarity to the answer according to the communication needs of speaker A

(underlined syllables in above example.) However, not all types of intonational differences can be

easily captured by English orthography. When speaker B puts more emphasis on the word “car”

in answer to “Is this an expensive house?” due to clarifying that this is a car not a house, he/she

does not adjust the amount of prominence in the other words. However, when the emphasis shifts

to the word “expensive” in response to “Is this a cheap car?”, speaker B will lower the amount

of emphasis on the word “car” to specify that new intonational information carried by the word

“expensive” is more important than intonational information carried by the word “car”. Speaker

B can convey this information by using two levels of tones, a high tone (H) and a low tone (L)

which correspond to either a peak or a dip in intonation. Additionally speaker B can produce a

sharp rise in intonation by combining these tones into a bitonal event (LH). These tones only get

assigned to the prominent syllables of the emphasized words (stressed syllables of pitch accented

words).

Speaker A Speaker B

What did you say?
This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

        H          H           H

        H          H           LH

        H          H           L

        H          LH         L

Is this an expensive house?

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

        H          H           H

        H          H           LH

        H          H           L

        H          LH         L

What kind of car is this?

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

        H          H           H

        H          H           LH

        H          H           L

        H          LH         LIs this a cheap car?

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

        H          H           H

        H          H           LH

        H          H           L

        H          LH         L

This representation brings out more information about intonational characteristics. The ac-

cented words before the most emphasis word (the word in focus) have the same tones as in the

neutral condition (compare the words “expensive” and “is” in the responses to these questions:

“What did you say?”, “Is this an expensive house?”). The accented words after the word in focus
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Figure 1.2: The F0 in weak syllables (between the two peaks) are derived using different functions.
A linear function like F0 = at + b for linear interpolation, and a parabolic function like F0 =
at2 + bt+ c for sagging interpolation. From [187]

have a low tone as opposed to having a high tone in the neutral condition (compare the word “car”

in the responses to these questions: “What did you say?”, “What kind of car is this?”). This also

helps to differentiate the answer of speaker B in response to “What kind of car is this?” from “Is

this a cheap car?”. Speaker B uses more emphasis on the whole word “expensive” in response to

“What kind of car is this?”. Therefore, the word “expensive” becomes the only part of the utterance

that contains new information. In contrast, in response to “Is this is a cheap car?”, speaker B can

place a sharp rise on the second syllable of the word “expensive” ; thus clarifying that this is indeed

an expensive car not a cheap one. Here, speaker B uses contrastive stress to not only convey more

information but also to correct the information (“cheap”) that was presented by speaker A.

The main drawback about this representation schema is that only obvious pitch movements

are translated and more subtle ones (e.g., syllables without stress) are ignored. The assumption

behind these models is that the pitch movement between the two tones are not meaningful (or are

not perceptible). This raises the question of how the pitch movement in the weak syllables (e.g.,

syllable “this” in our target sentence) can be modeled? To answer this question, researchers have

proposed different approaches, such as linear interpolation [157] or sagging transition [123]. These

theories are illustrated in Figure 1.2. They suggest that pitch movement between the two tones

is just a function of distance and can be modeled with any interpolation function. However, it

has been shown that listeners are sensitive to changes in F0 dynamics due to temporal alignment

changes [116]. This suggests that the pitch movements in weak syllables are not captured by a

simple interpolation between tones, and that they have certain patterns. Therefore, pitch move-

ment carries detailed intonation movements that cannot be captured only by static target tones

(L or H) [149]. One way to represent the pitch movement is to directly consider the physical



CHAPTER 1. INTRODUCTION 6

representation of intonation, which is known as the fundamental frequency (F0) contour.

Speaker A Speaker B

What did you say? This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

Is this an expensive house?

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

What kind of car is this?

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.
Is this a cheap car?

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

This IS an exPENsive CAR.

By looking at the F0 contours in the example above, it should be clearer how higher frequency

values are associated with more prominent stressed syllables, and how speaker B adjusts his/her

pitch range and pitch span to convey different intonational information. For instance, the word

“expensive” conveys progressively greater emphasis in response to each of the following questions:

“What did you say?”, “What kind of car is this?”, and “Is this a cheap car?.”

Through this short example, we pointed out the complexity and richness of English intonation

as represented by the F0 contour of an utterance. It should be noted that choosing F0 contours to

represent the intonation does not mean that we are ignoring other intonational features (such as

duration, pitch accent, lexical stress, etc.). As mentioned earlier, intonational features are closely

related to each other and one can not be considered in isolation from the others.

1.3 How to Model Intonation?

In the previous section, we discussed that the F0 contour of an utterance can be used to represent

the complexity and richness of English intonation. We have shown that representing intonation

by marking up text or by adding tone annotations can not fully convey complexity of English
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intonation; how can we model intonation quantitatively? We can use phonetic models, where into-

national features are represented numerically in terms of vectors of acoustic features or continuous

parameters. More specifically, they represent intonation as a sequence of pairs (time, F0). There

are two main categories of phonetic models: sequential and superpositional models. The sequen-

tial approach characterizes the F0 contour as a sequence of distinct intonational events that are

generated left to right. A widely used sequential intonation model is Taylor’s TILT model [157],

which considers the F0 contour as a sequence of intonational accents (rising and falling) with lin-

ear connections. Superpositional models, starting with the work of Fujisaki [41], posit that the F0

contour can be described as a superposition of several simpler component curves. Depending on

whether the model is sequential or superpositional, the F0 contour of an utterance results from

interpolation between the estimated intonational events or the superposition of components of

different temporal scopes.

An assumption behind sequential models is that F0 contours are directly determined by their

surface patterns in small phonological units (mainly at the syllable level). However, intonation

is a suprasegmental phenomenon which is influenced by factors at different levels of a hierarchy.

At the lowest level in the hierarchy, there are syllables, which are grouped together into prosodic

phrases, and eventually utterances. The resulting effect of the intonational hierarchical structure

on the F0 contour cannot be modeled by a sequential approach. For example, a stressed syllable

with a pitch accent with a certain amount of emphasis will result in different F0 values in different

parts of a prosodic phrase. Changes in F0 values are not only related to local factors in smaller

phonological units (such as stress at the syllable level or pitch accents at the word level), but also

to more global factors in higher phonological units (such as phrasing at the prosodic phrase level).

Characterizing the F0 contour at different phonological levels is crucial to the definition of

the superpositional approach. The superpositional approach characterizes the F0 contour as an

overlay (or superposition) of several component contours of different temporal scopes. Long scope

components represent the global patterns of F0 contour over the length of a prosodic phrase.

Shorter scope components represent local F0 contour changes associated with syllables (commonly

stressed accented syllables). Due to superpositional approach capturing the hierarchical structure

of intonation by estimating underlying patterns of the F0 contour in a multi-level manner, the

superpositional approaches are more suitable than the sequential approaches for analyzing and

synthesizing English intonation. This advantage leads us to the use of a superpositional phonetic

approach to model English intonation.
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1.4 Problems in Superpositional Approach

In modeling intonation, there are several theoretical and practical concerns due to two factors:

(1) the description of intonation, and (2) the approach used to simulate the described intonation.

Here, we narrowed down these concerns in the context of superpositional intonation models.

1.4.1 Theoretical Concerns

Using a superpositional approach to decompose an F0 contour into its component curves – where

each component is tied to a distinct phonological unit, leads to various theoretical concerns, which

can be summarized as follows:

Hierarchical dependency: Due to the hierarchical structure of intonation, there are multi-

level interactions between intonational features. In the superpositional approach each level

has its own unique patterns, and they are superimposed on top of each other to estimate

underlying patterns of the given F0 contour. Although various intonation theories agree

on the hierarchical structure of intonation, they differ in terms of how many levels should

be used to represent the multi-level interaction between intonational features. In general,

any superpositional approach should consist of at least two levels: one level for representing

global intonational patterns at a prosodic phrase level, and one level for representing local

intonational patterns at a shorter temporal scope. However, some theories suggest more than

two levels to represent the intonation hierarchy (e.g., three levels [41, 169, 106], more than

three levels [105, 151, 178], or even one level for each phonological unit [129].

Adaptive decomposition: Decomposing a F0 contour into its component curves is challenging

since there is no unique solution to the decomposition of a given F0 contour, because different

component curves can combine to produce the same sum curve, unless certain assumptions

are made. The way in which component curves are superimposed determines the outcome

of the model. For example, component curve estimated at the lower level in the intonation

hierarchy, associated with smaller phonological units (commonly syllables), should only be

concatenated together and then added to component curves at a higher level. Some overlap

can also be applied before adding them to the component curves at the higher level.

Relevancy of component curves: The relevancy of the component curves relies on the

purpose for intonation modeling. For instance, if the purpose is to have a generative model

to be used in a speech synthesis system (e.g., Text-To-Speech), having an accurate estima-

tion of the F0 contour is more important than knowing if the component curve shapes are
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linguistically meaningful or not. In contrast, if the purpose is to use the intonation model

as an analysis tool, then having linguistically meaningful component curves is the central

assumption. Ideally, we want to have linguistically meaningful component curves that can

be used to generate the same intonation characteristics that would be produced by a spe-

cific speaker. This leads us to the following question: which phonological units (syllable,

sequence of syllables, words, phrases, and utterances) are more relevant for capturing mean-

ingful intonational movements? This issue is referred to as the lack of reference in intonation

research [125, 124, 185]. Xu [185] suggested that the relevant unit for studying underlying

meaningful intonational movements is the syllable. However, as also pointed out by Xu,

for languages that are not lexically tonal languages, such as English, considering a specific

intonation movement per syllable might cause overfitting, but it does not necessarily mean

that intonation movements are unspecified in weak syllables (which usually is assumed in

phonological-based approaches). This suggests that for English, the relevant prosodic unit

should be syllable-based but not specifically limited to the boundary of one syllable. Such

a unit, which is known as the foot, was proposed by Abercrombie et al [1]. The reason the

foot is a more relevant prosodic unit than the syllable in English will be discussed in detail

in the next chapter.

1.4.2 Practical Concerns

In addition to the theoretical concerns, there are two concerns that are critical when it comes to

practical usage of the intonation model in different speech processing applications, namely: the

level of predictability of the intonation model, and the degrees of freedom of the model [185].

Predictability: Intonation can vary substantially across different languages, making it practically

impossible to have one intonation model which can achieve both high predictiveness and

high descriptiveness for every existing language. Therefore, depending on the problem, it is

important to assess the trade-offs between predictiveness and descriptiveness of the method.

Achieving better predictiveness while being linguistically descriptive could lead us to two

insights: 1) In the synthesis phase, it is important to not only test the similarity between

the natural and estimated F0 contour but also the intonation characteristics of the input

categories. 2) In the analysis phase, the model should be powerful enough to be used in

detection and classification of intonational characteristics. Therefore, the model should be

able to accurately reconstruct the F0 contour that makes it a useful tool for detecting prosodic

phrase boundary and pitch accent events. Going further, the model should also be able to
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capture hidden intonational characteristics of a speaker, which usually can not be easily

represented by a phonological-based approaches. This ability would make the model a useful

classification tool that covers a variety of cases: classification of individuals with dysarthria

vs. neurotypical individuals, clear vs. conversational speaking styles, dialect classification,

or differentiating any speaker groups regardless of speaking style, speech data, or any other

variation in patterns.

Degrees of freedom: The degrees of freedom of a model refer to the number of independent

free parameters that control the model for data estimation. If the number of independent free

parameters is too high then the model might become too complex and that causes overfitting

problems. If the number of independent free parameters is too low, then the model might

be too general and it might not capture the data distribution, which causes underfitting

problems. Therefore, the most important choice related to the degrees of freedom of the

intonation model is whether each parameter can be meaningfully justified. For example, for

a use-case with a small data size, using a simple model with only a few meaningful parameters

will be more beneficial than using a complex machine learning method which requires many

more parameters. In superpositional-based modeling, mainly two factors affect the degrees of

freedom of the model: the number of levels used for representing the hierarchical intonational

structure, and the number of parameters needed for each component curve.1

1.5 Thesis Problem

Superpositional approaches assume intonation has a hierarchical structure, and models the intona-

tion by decomposing it’s physical representative (F0 contours) into component curves with simpler

intonation patterns in multi-level manner. However, it is not clear what the set of component

curves should be, and how they can be defined with few free parameters, that will allow them to

be used in analysis and synthesis of English for a wide range of tasks.

1.6 Thesis Statement

In this thesis, we create a quantitative superpositional intonation model that provides the high-

quality prediction of F0 contours with few free parameters that the component curves are being

linguistically descriptive.

1Please note that due to the theoretical concerns there might be additional factors, such as the level of overlap
between component curves, association of the levels with phonological units, etc.
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Our model decomposes a given F0 contour into its component phrase and accent curves at

two levels: the prosodic phrase level (or intermediate phrase level) and the foot level. We used

two connected linear segments to model the phrase curve. We kept the shape of the phrase

curve as simple as possible to let the accent curves capture the F0 dynamic patterns. We used

a combination of the skewed normal distribution and a sigmoid function to model three different

types of accent curve. First, the skewed normal distribution is used to model rise-fall accents that

occur in non-final foot as well as in final foot for declarative utterances. Second, a sigmoid function

is used to model the rise at the end of yes-no question utterances. Third, the sum of the skewed

normal distribution and the sigmoid function is used to model continuation accents at the end of

a non-utterance-final phrase. Even though parameters of a specific accent curve are proportional

into a specific foot, we have the accent curve span across the entire phrase. This formulation of

component curves lets us to model the F0 contour with a very small set of free parameters. Having

a limited number of parameters and having all curves span across the entire phrase facilitates us to

optimize the parameters simultaneously to estimate the component curves. We name this model

GENIE (GENeralized Intonation model for English). We show the proposed method can be used

as an analysis and synthesis tool of intonational characteristics in a variety of speech processing

applications, and it can model real world variations, such as: different speaking styles, different

intonational functions, different speech data, etc.

1.7 Contributions of this Thesis

In this dissertation, we propose a generalized model for analysis and synthesis of the English in-

tonation. The proposed model is a superpositional-based model that decomposes a continuous F0

contour into its linguistically meaningful component curves. We propose several different frame-

works to examine the performance of the proposed model in terms of the objective of this thesis.

In Chapter 2 we presents the literature review. First, some definitions are discussed. Then,

fundamental and more recent intonational models will be reviewed. The rest of the chapter will

focus on the usage of intonation models in speech processing applications. In Chapter 3, we propose

the generalized intonation model for English language (GENIE). We present the methodology and

mathematical formulation of GENIE. In Chapter 4, we propose a framework which combines

GENIE with a regression-based duration model for detection of intonational events. In Chapter 5,

we propose two approaches – data-driven-based and neural-network-based – for generating F0

contours using GENIE in a TTS application. In the second part of this chapter, we propose a new

intonation adaptation method using GENIE to transform the perceived identity of a TTS system
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to that of a target speaker with a small amount of training data. This chapter tests predictability of

the model using both objective and subjective evaluations. In Chapter 6, we propose an approach

to perform speaker classification which exclusively uses features derived from the F0 contour by

using GENIE. A special aspect of our approach is the focus on F0 contour dynamics – often

underused in speaker group classification. Finally, the last chapter gives a summary of the main

findings of the research carried out in the scope of this dissertation. The dissertation ends with an

outlook on future work.
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Chapter 2

Literature Review

In this chapter, we present the literature review. In Section 2.1, we discuss the relationship between

intonation and several prosodic features that are used in this thesis. In Section 2.2, we discuss

relevancy of prosodic unit in English intonation. In Section 2.3, we review fundamental and more

recent intonational models. In Section 2.4, we focus on the usage of intonation models in TTS and

TTS adaptation. In Section 2.5, we discuss how intonational features are extracted for speaker

group classification tasks. Finally in Section 2.6, we discuss about evaluation metrics.

2.1 The Phonology of English Intonation

The previous chapter gave an introduction to what intonation consists of, and how we can visualize

and model it. It also drew attention to the aspects of prosody that are characteristic of the English

language. As can be seen in Figure 1.1 that it is also represented here as Figure 2.1, intonation

refers to within-group interactions between prosodic features in each aspect and between-group

interactions between all aspects. As discussed in the previous chapter, intonational features are

closely related to each other and one can not be considered in isolation from the others. A

comprehensive account of the relationship of intonation to other prosodic features lies outside the

scope of this thesis, but in this section we discuss the relationship between intonation and several

of prosodic features through each aspect: paralinguistic, lexical and acoustical.

From a paralinguistic point of view, intonation is defined as the interaction between pitch,

loudness and prosodic boundary phenomena. These paralinguistic features help listeners make

inferences about a speaker’s state or attitude, such as enthusiasm or friendliness and depression or

happiness. It also can help in regulating turn-taking in communication: a speaker can naturally

use an F0 pattern to prompt the listener that it is their turn, or that the speaker does not want

to be interrupted. For example, consider this sentence “Ava does not eat any burger” in reply to

13
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● Fundamental Frequency 
● Intensity
● Duration

Acoustical 

● Pitch
● Loudness
● Boundary phenomena

Paralinguistic  Features

● Stress
● Pitch accent
● Tone

Lexical   Features

Phonological 

Intonation

Figure 2.1: Within-group and between-group interaction of prosodic features.

“Why did she not eat her burger?” in the following two cases.

AVA doesn’t eat ANY burger AVA doesn’t eat ANY burger

H*                            H*+L         L% H*                            H*+L         H%
The response on the left, with a falling F0 at the end, indicates that Ava is a vegetarian and will

not eat any meat without exception. The response on the right, with a rising F0 at the end, means

that speaker is not done yet and wants to explain why Ava does not eat any burger and continues

to explain: “Ava is selective (or picky); she does not like just any burger”.

From a lexical point of view, intonation is defined as the interaction between stress pattern and

pitch accent. In English, listeners pay attention to the most prominent syllables to understand the

message. For example, the rhythmic pattern in word “identification” is identical to the phrase “we

took a vacation” since they both share the same stress pattern. Not all syllables are pronounced

with the same degree of force. For instance, stressed syllables of emphasized (or accented) words

are higher in energy, longer in duration, and have a greater change in F0 values compared to

stressed syllables of unemphasized words. Stress patterns of syllables in American English are

predetermined. For example, in the noun “present”, the stress falls on the first syllable (’pre sent).

As a verb, the second syllable of “present” carries the stress (pre ’sent). However, speakers choose

different intonation patterns to emphasize different words for conveying different meanings. For

example, in the following sentence “The boy was there when the sun rose,” every word (except

“the”) consists of one stressed syllable. In Figure 2.2 top plot, a speaker emphasizes the words

“boy” and “rose” to highlight new information in the conversation. In Figure 2.2 bottom plot,

in addition to emphasizing the words “boy” and “rose” also the speaker gives special emphasis
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Figure 2.2: An example that shows how a speaker emphasize different words to change the F0

contour dynamics of an utterance. Small capitals indicate stressed-accented syllables in each
utterance.

to more specific details (the words “there” and “sun”) to make the sentence clearer. Therefore,

utilizing the stressed syllable of an accented word (stressed-accented-syllable) is a key component

of a speaker’s ability to convey a subtle meaning.

The acoustical features of intonation are defined as the interaction between fundamental fre-

quency, duration and intensity. Among acoustic features, the fundamental frequency is mostly

considered as a primary physical-prosodical feature that can be measured. There is a periodic

pattern at the time-domain representation of a human speech waveform when a voiced sound (e.g.,

a vowel) is pronounced. Figure 2.3 shows periodic (voiced) and noisy (unvoiced) regions in the

word “easy”. Each peak in the periodic region is called a glottal pulse. The duration of one glottal

cycle is represented by the symbol τ . The fundamental frequency of a periodic signal is the inverse

of this duration (1/τ) and is measured in Hz. When a person produces a voiced sound, one’s vocal

folds produce a set of frequencies (fundamental and its harmonics). The fundamental frequency

is the lowest frequency (starting from zero) which is also perceived as the loudest frequency by

human ear. The fundamental frequency is usually referred to as F0. Many factors can affect the

F0 of someone’s voice, such as: age (usually kids have a high-pitched voice compared to adults),

gender (usually men speak in lower-pitched voice than women ), and emotion (people may use

high-pitched voice when they are angry or excited, or they may use low-pitched voice when they

are sad).
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(a) Waveform and spectro-
gram of /i:/

(b) Waveform and spectro-
gram of /z/

Figure 2.3: Waveform and spectrogram of a voiced and an unvoiced segment in the word “easy”.
Each red line represents a glottal pulse. The duration between two back-to-back glottal pulses is
represented by the symbol τ . There is no periodic pattern inside the/z/.

2.2 Intonation Segmentation into Prosodic Units

Meaningful prosodic movements can be perceived and expressed differently from one language to

another. In this thesis, we only focus on English (mostly on American English pronunciation).

In American pronunciation, every prosodic unit consists of at least one stressed-accented-

syllable. The largest prosodic unit that has one complete intonation pattern is called an into-

national phrase [125]. Every intonational phrase consists of at least one intermediate phrase and

every intermediate phrase consists of at least one stressed-accented-syllable (therefore every in-

tonational phrase does as well); However it is unclear which prosodic unit (syllable, sequence of

syllables, words, intermediate phrase, or intonational phrase) is more relevant for representing a

single meaningful intonational movements? Many studies used the syllable as the smallest prosodic

unit [185, 157]; their motivation was that the syllable is a smallest common prosodic unit across

languages (e.g., in Mandarin Chinese every syllable has a meaningful intonation pattern). As dis-

cussed in the previous chapter, considering a specific intonation pattern per syllable in English

is not necessary since weak syllables in English do not show strong intonation movements like

stressed-accented syllables.

After discussing the details of ToBI transcription system In Section 2.2.1, we then discuss its

view of the smallest prosodic unit. In Section 2.2.2 we discuses about different candidates for the
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Figure 2.4: Representation of the F0 contour (orange curve) with Bolinger’s notation (black words).

smallest prosodic unit in English. Then in Section 2.2.3, we show how total number of intonational

patterns in ToBI can be reduced under the smallest relevant prosodic unit2.2.3.

2.2.1 ToBI Transcription System

Bolinger proposed one of the first and simplest notations for prosody [14]. He aligned the word

sequences with their real F0 values (Figure 2.4, black words). It is much easier for readers to

capture intonation from this notation than from plaintext, but Bolinger’s notation requires hand

labeling; it is almost impossible to automatically analyze or synthesize it. Under the influence of

Pierrehumbert research [125, 123], autosegmental-metrical (AM) analysis framework became the

dominant in intonational research (for an introduction to AM and a critique see [78]). A modified

version of AM was proposed by Silverman and his coworkers [141] as, Tones and Break Indices

(ToBI), which is still commonly used.

The ToBI transcription system provides a set of symbolic labels (Table 2.1) for distinguishing

between all categorical intonation patterns. To achieve this aim, ToBI considers two aspects of

prosody:

1. Accent: contributes to the prominence of a word in an utterance

2. Phrasing: divides sentences into groups of words, which consists of four levels:

(a) First level: the word boundary within a phrase

(b) Second level: which is used to mark a mismatch
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(c) Third level: the end of an intermediate phrase

(d) Fourth level: the end of an intonational phrase

Symbol Description

H High tone is associated with pitch that occurs in upper part of a speaker’s pitch
range

L Low tone is associated with pitch that occurs in lower part of a speaker’s pitch range

* stressed-accented-syllable

- End of an intermediate phrase

% End of an intonational phrase

! Pitch movement that lowers F0 from any H tone into a downstep, which is not
necessary in the lowest part of the pitch range (not as low as L)

Table 2.1: ToBI symbols

ToBi annotation intonational phrase type

L-L% Statement sentence and Wh-question

L-H% Continuation

H-L% Listing and enumeration (or plateau contour)

H-H% Yes-No question

!H-L% Listing and enumeration (or calling contour)

!H-H% Continuation

Table 2.2: ToBI annotation for phrasal tone

There are two main levels of phrasing: the full intonational phrase level (intonational phrase,

fourth level), and the intermediate intonational phrase level (intermediate phrase, third level).

ToBI uses this symbol “-” followed by a tone to represent intermediate phrasal tone. The end of

one intonational phrase by default is aligned with the end of an intermediate phrase, therefore ToBI

categories intonational phrasing patterns through bitonal symbols; a tone plus symbol “%” followed

by an intermediate phrasal tone. There are four basic intonational phrasal tone combinations: L-

L%, L-H%, H-L%, and H-H%. Also a downstep1 can only happen in the first H tone of the following

1Downstep is a pitch movement that iteratively lowers F0 peaks of successive accented-syllable with a constant
proportion of the previous peak[78]. However this downstep never reaches the lowest part of pitch range (not
necessary as low as L tone).
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phrasal tones: H-L%, and H-H%. Therefore, there are two more phrasal tones to consider: !H-L%,

and !H-H% (Table 2.2). It should be noted that !H-H% is theoretically possible, but it is also hard

to distinguish from L-H%.

ToBI categorizes word pitch accents into five accent types. For each accent, the pitch movement

of the stressed-accented-syllable is illustrated with a starred tone. These accent types are: H*, L*,

L+H*, L*+H, and H+!H*. All high tone accents can be downstepped: !H*, L+!H*, and L*+!H.

However, these downstepped accents show the same pattern of their non-downstepped version.

In Figure 2.5 that adapted from [173] illustrates all 28 possible ToBI intonational patterns for

a phrase with single stressed-accented-syllable. Each cell illustrates an intonational pattern under

certain combinations of an accent tone and a phrasal tone. The theoretical pitch movement of a

target tone is illustrated with a horizontal solid line. The starred target tone (pitch movement

of stressed-syllable) is differentiated from other tones by a bold solid line. The dotted line shows

transition between tone targets.

Most phonological-based approaches (e.g., ToBI transcription system) use words with a pitch

accent as the smallest prosodic unit; the main drawback of these approaches is that the intonation

movement in unaccented words is unspecified. As we also discussed in the previous chapter, weak

syllables (either unstressed or stressed in unaccented word) have enough intonational movements

to be specified but also not strong enough to be individualized.

2.2.2 Candidates for Smallest Prosodic Unit in English

There is consensus that each stressed-accented-syllable needs to be specified in English. There are

some researchers that advocate that the smallest prosodic unit in English should consist of exactly

one stressed-accented-syllable [72, 168, 164, 188, 6], but there is uncertainty about its boundaries.

Are they tied to the stressed-accented-syllable boundaries or can they span multiple syllables (not

stressed-accented syllable)? For example, in the sentence “I am happy about improvement,” with

three stressed-accented syllables (represented by uppercase typeface), what is the smallest prosodic

unit that can convey meaningful intonation? A few examples are given next:

• Syllable: “I am hap py a bout im prove ment.”

• Word: “I am hap py a bout im prove ment.”

• Sequence of syllables:

– Right-headed: “I am hap py a bout im prove ment.”

– Left-headed: “I am hap py a bout im prove ment.”
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Figure 2.6: Foot structure in a statement utterance

– Both directions: there are many possibilities in this case

∗ “I am hap py a bout im prove ment.”

∗ “I am hap py a bout im prove ment.”

∗ ...

∗ “I am hap py a bout im prove ment.”

We use the definition of a left-headed prosodic unit to capture a meaningful prosodic movement

since English is a left-dominant language [50]; In English there is a tendency for the first syllable of

words to be strong and the remaining to be weak, that is, left-dominant. Therefore, the left-headed

prosodic unit preferred over the right-headed prosodic unit for English due to two main reasons.

First, multi-syllabic words with primary stress on the final syllable are less common than other

words of the same length [24, 20]. Second, most of the intonational function (such as focus) in

English have a post-effect rather than a pre-effect. For example it has been shown that if an initial-

stressed word in a sentence is focused, any unstressed syllables after the stressed-accented-syllable

of the first word will be assigned a higher pitch compared to when there is no focus [88].

The left-headed prosodic unit, which will be referred to as a foot, starts with a stressed-accented-

syllable and ends before the next stressed-accented-syllable or with a prosodic phrase boundary [1].

For example in Figure 2.6, each foot start with a stressed-accented-syllable with a H tone and ends

before the next one, or in Figure 2.7 the final foot in the first intermediate phrase start with a

stressed-accented-syllable with a H tone and ends with a intermediate phrase boundary with H

tone.
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Figure 2.7: Foot structure in a yes-no question utterance that consists of two intermediate phrases.

H* L-L% L+H* L-L%

Figure 2.8: Difference between H* and L+H* for the word “no”

2.2.3 ToBI Intonation Patterns under Foot Segmentation

In the previous section, we argued that the foot is a suitable prosodic unit for studying English

intonation patterns. In this section we investigate how ToBI intonation patterns can be categorized

using the foot structure. A core difference between an accent and a foot is that an accent is

defined as a word containing a prominent syllable and not necessarily as a (left-headed) foot,

which requires that the first syllable be the prominent syllable. Feet and accents have overlapping

but not necessarily matched boundaries. We will describe this difference through three examples.

First, consider a one-word single-phrase utterance with a stressed-syllable at the beginning, e.g.,

“no”. In this example, the foot and accent share the same boundaries and only three accent types

can occur (H*, L*, and L*+H). In the case of L+H*, because there is not a non-stressed syllable

preceding the stressed syllable, the unstarred tone (L) cannot occur. This accent is matched with

its monotone accent (H*). In Figure 2.8, one speaker produces the word “no” under two different

intonation patterns H* L-L% and L+H* L-L%. Since there are no unstressed syllables before the

prominent syllable, there is only a sharp rise from the mid-pitch range to a high F0 peak. In the
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H* L-L% L+H* L-L% H+!H* L-L%

Figure 2.9: Difference between two pairs (H* and L+H*) and (H* and H+!H*) for the word
“menomonee”. The red dots inside the light blue box show the F0 contour points for the appendix
“me-”

case of H+!H*, similar to the case of L+H*, this accent should also be matched with its monotone

accent (!H*). However, downstep cannot happen at the beginning of an intonational phrase, since

it is required to follow a high tone. Therefore, the accent type H+!H* cannot happen in this

situation.

Second, consider a one-word, single-phrase utterance with at least one unstressed syllable at the

beginning, e.g., “menomonee”. The segmentation for this utterance using three different prosodic

units (phrase unit, accent unit and foot) are given as follow:

• Phrase: me NO monee.

• Accent: me NO monee.

• Foot: me NO monee.

Accent boundaries are matched with intonational phrase boundaries, while the foot starts at the

stressed syllable “-no-” and ends at the end of the intonational phrase. According to the foot defi-

nition, intonational movement in phrase-initial unstressed syllables, which is called the “appendix”,

is not part of the foot (in this example, F0 contour points in the unstressed syllable “me-”).

Also in this example, only three accent types can occur (H*, L*, and L*+H) in the foot since in

case of L+H*, and H+!H*, the unstarred tone is not part of the foot (L in L+H*, and H in H+!H

are appendix). However, F0 contour points under these tones are still part of the intonational

phrase. In Figure 2.9, one speaker produces word “menomonee” under three intonation patterns

to differentiate between two pairs (H* and L+H*) and (H* and H+!H*) in a statement sentence.

Third, consider a multi-word, single-phrase utterance with at least two accented words (e.g.,

“I am happy about improvement.”). In this single-phrase example, the phrase starts with the

accented-stressed syllable “I”, and as such all unaccented syllables in this example are not considered

an appendix.
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• Intonational Phrase: I am hap py a bout im prove ment.

• Accent: I am hap py a bout im prove ment.

• Foot: I am hap py a bout im prove ment.

In the third accented word, “improvement,” there is a mismatch between the start point of the

accent and the foot. The third accent starts with the unstressed syllable “im-” while in the foot

segmentation this syllable belongs to the second foot. Therefore, in this situation, three accent

types can occur (H*, L*, and L*+H) in the foot. In the case of L+H*, and H+!H*, the unstarred

tone will move into the previous foot.

The three examples above show that in foot segmentation only three ToBI accent types can

occur (H*, L* and L*+H). The first advantage of ToBI under foot segmentation over the original

ToBI is that it decrease ambiguity in differentiating L+H* and H+!H* from H*. As we saw, there

is some similarity between H* and L+H* tones and between H* and H+!H* tones. Because of these

similarities, utterances often contain regions with more than one valid transcription which decreases

the reliability of annotations. ToBI is a qualitative model with low inter-annotator agreement even

for trained annotators, and this disagreement becomes even more extreme when ToBI annotations

are applied to expressive speech or spontaneous speech. The second advantage is that by using

foot segmentation, the total number of intonational patterns can be reduced to 16. Figure 2.10

illustrates these 16 intonational patterns for a single phrase with one stressed-accented-syllable.

Each cell illustrates an intonational pattern under certain combinations of an accent tone and a

phrasal tone. Since pitch transition between tones are more smooth in real speech, red curves

show more realistic F0 contours for each situation. In chapter 3 we show the proposed intonation

model is capable of capturing and predicting all intonation patterns mentioned in the ToBI system

(even F0 contour points in the appendix) by using only foot-based information and reduce the

total number of patterns from 24 to three.

2.3 Intonation Models

Intonation models can be distinguished in terms of phonetic vs. phonological models.

Phonological models: In phonological models intonation is considered as a sequence of distinc-

tive discrete tonal categories. Therefore, these models are qualitative and sequential. The

ToBI model plays an important role in the popularization of phonological models in intona-

tion description and analysis.
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H* L* L*+H

L-L%

L-H%

H-L%

H-H%

!H-L%

!H-H%

Figure 2.10: Total intonational patterns suggested by the ToBI system under foot segmentation.
Each cell illustrates an intonational pattern under certain combinations of accent tone and phrasal
tone in an one-foot intonational phrase. The theoretical pitch movement of a target tone is il-
lustrated by a short black horizontal solid line. The starred target tone (pitch movement on the
stressed syllable) is differentiated from other tones by a bold solid line. The red lines represent the
theoretical smooth pitch contour.
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The motivation behind the phonological-based approaches is that the current intonational models

can not precisely predict all intonational characteristics. Therefore it is beneficial to determine

the observed intonational characteristics of a given utterance as much as possible; however, a

drawback of the current phonological approaches is that they are not sufficient. Phonological-based

approaches cannot fully model the intonational properties due to their limitation to represent the

F0 contour changes between level tones. In this section we only focus on phonetic-based approaches.

Phonetic models: In phonetic models (which are also regarded as quantitative models), intona-

tional features are represented numerically in term of vectors of acoustic features or contin-

uous parameters. More particularly, they represent intonation as a sequence of (time, F0)

pairs.

In phonetic-based approaches, some reasonable disagreement stems from the fact that intonational

aspects are supra-segmental, which lead us into the second dimension:

Sequential vs. superpositional models: In sequential models, intonation is characterized as

a sequence of distinct intonational events or targets that are generated left to right. The

superpositional approach characterizes the F0 contour as an overlay (or superposition) of

several component contours of different temporal scopes. Longer scope components (such

as phrase curves ) model the global shape of F0 contour over length of an IP. The shorter

scope components (accent curves ) model local F0 contour changes associated with accented-

stressed syllables.

The phonetic models can be sequential that the F0 contour of an utterance results from interpola-

tion between the estimated intonational events, superpositional that the F0 contour of an utterance

results from superposition of the components of different temporal scopes, or even combination of

both.

In the following sections, Section 2.3.1 and 2.3.2 some basic theoretical assumptions underlying

the traditional and more recent models are presented.

2.3.1 Traditional Intonation Models

2.3.1.1 Tilt intonation model

The Tilt model is a widely used sequential phonetic intonation model [157, 158]. This model

considers the F0 contour as a sequence of intonational events (pitch accents and boundary tones)

with linear connections. Taylor proposed a continuous feature – tilt-value, which jointly uses

amplitude (A) and duration (D) of rising and falling pitch movements to model each rise-fall
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Figure 2.11: Example of five accent types with the continuous tilt-value ranging from +1 to -1

Figure 2.12: Block diagram of the Fujisaki model. From [40]

intonation event. Figure 2.11 shows an example of five pitch accents with continuous tilt-values

ranging from +1 to -1. The tilt-value is formulated as follows:

tilt =
|Arise| − |Afall|

2(|Arise| − |Afall|)
+

Drise +Dfall

2(Drise +Dfall)
(2.1)

2.3.1.2 The Fujisaki model

The Fujisaki model [41, 39, 40] is a superpositional phonetic model which is applied to the analysis

and synthesis of intonation of different languages. This model has three major components: a

baseline, a phrase, and an accent component (Figure 2.12). The baseline is equal to the minimum

value of the log F0 for the speaker. The phrase and accent components are modeled using second-

order linear filters. The F0 contour of an utterance results from the superposition (or sum) of the

phrase accent components and the baseline.

The Fujisaki model only explains F0 movements on "declining" utterances—those in which the

F0 contour starts at a higher value and gradually decreases during the phrase—while in some cases

a rise in tone happens at the end of a question utterance. The treatment of declination as a fixed

component of the model has been often criticized [54, 8], because declination is observed mainly

in laboratory recorded speech. However, the biggest disadvantage of the Fujisaki model that it is
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not entirely related to the linguistic structure. The phrase curve starts and ends with the start

and end of a prosodic phrase, and it is not affected by which syllables are accented. The accent

curves are not linguistically tied to a temporal scope since the starting point of an accent curve

coincides with the start of an accented syllable, but the end point does not necessarily correspond

to any syllable boundary.

2.3.1.3 The Generalized Linear Alignment Model (GLAM)

As previously mentioned the shared assumption in all superpositional approaches is that the F0

contours can be described as an overlay (or superposition) of component curves that belong to one

of several component curve classes. The General Superpositional Model (GSM) proposed by van

Santen [166] ties these components to specific phonological entities, namely phrases and left-headed

feet.

The definition of GSM can be formulated as follows where C corresponds to a set of curve

classes, c represents a particular curve class, k stands for an individual curve and ⊕ is an operator.

F0(t) = ⊕
c∈C

⊕
k∈c

fc,k(f) (2.2)

The ⊕-operator represents an addition-like (or in some cases multiplication-like) function of C.

Therefore, this operator can satisfy the usual properties of generalized addition (or multiplication),

such as monotonicity and commutativity:

monotonicity : if a ≥ b then

 a+ c ≥ b+ c

a× c ≥ b× c
⇒ a⊕ c ≥ b⊕ c

commutativity :

 a+ b = b+ a

a× b = b× a
⇒ a⊕ b = b⊕ a

From the theoretical GSM model came the implementation of the Generalized Linear Alignment

Model (GLAM) also developed by van Santen at Bell Labs [169, 164, 136]. This model considers a

phonetic superpositional approach to intonation modeling. In this model, the intonation contours

consist of three layers: phrase curves, accent curves and perturbation curves. For each layer, a

different component curve class was considered. The model was implemented into a multilingual

TTS system developed for English, French, German, Italian, Spanish, Romanian, Russian and

Japanese.

Phrase curve: Similarly to the Fujisaki model, the phrase curve represents the long-term shape

of the F0 contour. However, unlike the Fujisaki model, it does not have any fixed gradients and
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Algorithm 2.1 Accent curve generation algorithm for the linear alignment model
1: Determine the accent template type
2: Determine the F0 peak position
3: Get the anchor values TP
4: Calculate the anchor points TA
5: Calculate the frequency values PA corresponding to the TA
6: Apply linear interpolation between PA values
7: Return the interpolated curve multiplied by an amplitude parameter

Figure 2.13: Averages of Declarative, Continuation, and Yes/No contours. From [169]

therefore the model has more degrees of freedom compared to the Fujisaki model. Phrase curves

are modeled as piece-wise quasi-linear (or log-linear) curves consisting of a start point of the

intermediate phrase, an inflection point at the start of the syllable containing the nuclear pitch

accent, and an end point of the intermediate phrase.

Accent curve: Accent curves consist of pitch peaks and pitch movements associated with a foot

segmentation. It is modeled by parameterized time warps of an accent curve template.

Algorithm 2.1 shows the required steps to generate accent curves. The first step is to determine

the accent curve type based on the location of the foot in the intermediate phrase. The accent

curve types are declarative template, continuation rise template, and interrogative template (Fig-

ure 2.13). In the second step, a template accent curve is defined using a sequence of anchor values.

These values describe the archetypical shape of the associated template type. For example, for

the declarative template, which employs a rise-fall pattern, the value of the template might be as

follows:

Tp =< 0, 0.05, 0.2, 0.8, 0.9, 1, 0.9, 0.8, 0.2, 0.05, 0 >

The third step consists of determining F0 peak position using information related to the foot

duration and foot structure. This information includes: duration and phonetic composition of the
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Figure 2.14: Alignment parameters in the linear alignment model From [164]

accented syllable’s onset (Do and Co respectively), rhyme duration of the accented syllable (Drh),

and combined duration of the unaccented syllables (Drs). Peak location is calculated using the

equation below:

Tpeak = αCo ×Do + βCo ×Drh + γCo ×Drs (2.3)

The fourth step creates a number of anchor points to obtain a good approximation of the

accent curve shape (Algorithm 2.1). The Ath anchor point is located at a point on the time axis as

computed in Equation 2.4. The alignment parameters (α, β,and γ) are extracted from Figure 2.14.

TA = αCo,A ×Do + βCo,A ×Drh + γCo,A ×Drs (2.4)

The fifth step calculates the frequency points PA using a linear time-warp function considering

anchor points TA, and anchor values TP . A complete accent curve results from linear interpolation

between successive PA values. Finally, it is multiplied by an amplitude parameter that reflects the

degree of emphasis. Figure 2.15 shows the prediction of two different normalized accent curves for

two words “spot” and “noon” from one common template. The predicted normalized accent curve

can be viewed as a time-warped version of a common template.

Segmental Perturbation Curves: These are short-term curves associated with those parts of

the modeled F0 contour where segmental effects occur e.g., initial parts of a sonorant following a

transition from an obstruent.
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Template

“Spot”

Duration of onset = 150 ms
Duration of rhyme = 300 ms
Duration of rest = 0 ms

“Noon”
Duration of onset = 100 ms
Duration of rhyme = 350 ms
Duration of rest = 0 ms

Calculate anchor points

Calculate anchor points

Calculate the frequency values

Interpolation

Interpolation

Figure 2.15: The prediction of two normalized accent curves for the words “Spot” and “Noon”.

2.3.2 Recent Intonation Models

2.3.2.1 Quantitate target approximation

Quantitate target is a multi-language phonetic approach since it models the continuous F0 contour

with regards to intonational features at the syllable level [188]. However, it cannot be purely

categorized as a sequential or superpositional approach. It models the intonation (or tone in tonal

languages) as a sequence of target approximations (TA) which are syllable-synchronized. The F0

contour in each syllable is modeled using two curves. A base line which represents the pitch target

as a straight line with slope m and height b, and a combination of polynomial and exponential

curves for representing the dynamic pitch target (Equation 2.5). Therefore, this model could be

considered as a superpositional approach using a syllable segmentation (note that t in equation 2.5

is limited to a syllable). This model could also be considered as a sequential approach according

to the sequentiality and syllable synchronization assumption, as it processes a syllable at a time.

F0(t) = (mt+ b) + (c1 + c2t+ c3t
2)e−λt (2.5)

One of the advantages of this model is that the polynomial coefficients (c1, c2, and c3) are

not optimized as independent variables. They are a function of m, b, and λ. Therefore, this

model consists of three independent parameters per syllable. Therefore, this model has potential

to capture the F0 dynamics in syllables level with few parameters that makes it a suitable method

for analysis and synthesis of syllable-time languages (e.g., Mandarin Chinese). As we discussed in

the first chapter, English is a stress-time language and considering a specific intonation movement
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for weak syllables might cause overfitting.

2.3.2.2 Statistical phrase and accent models

Anumanchipalli et al. introduced the statistical phrase and accent model (SPAM) [7], which is based

on a superpositional approach that decomposes the F0 contour into phrase and accent components

(the residual of the F0 contour minus the phrase curve). They used an iterative Expectation

Maximization algorithm to train the phrase and accent components. The phrase component was

initialized by the minimum value of F0 over a syllable. They used the TILT representation for the

accent shape at the syllable level; the F0 is not modeled for unaccented syllables. Each accented

syllable is represented as a tuple of four values: peak location, amplitude, duration and tilt-value.

At each iteration, first, a decision tree (CART) is applied and K-means clustering performed for

modeling phrase and accent components, respectively. Second the F0 contour is estimated by

adding the phrase and accent curves together. Third, the residual of the real F0 contour and the

estimated F0 contour is added to the phrase curve. Finally, the residual of the real F0 contour

minus the updated phrase curve is used to update the accent estimations (TILT parameters). The

main purpose of this model is to synthesis a high-quality and natural sounding F0 contour.

2.3.2.3 F0 contour decomposition using discrete cosine transform

Teutenberg and colleagues [159] use the discrete cosine transform (DCT) to model the F0 contour.

They propose a two-level model, one level for estimating the general movement of the F0 contour

(phrase curve), and a second level for estimating the details of the voiced regions, which is equal

to the F0 contour minus the phrase curve. They use the mean (the first DCT coefficient) of each

voiced region’s signal (as the phrase curve value), and the sum of the weighted cosine functions

with zero phase for approximating the DCT. During analysis, they extract the DCT coefficients

from the F0 contour for voiced regions and apply a linear interpolation for filling in the unvoiced

regions. For synthesis, they apply the inverse-DCT at each level separately. The estimate of the

F0 contour is equal to the sum of the result of the inverse-DCT at the two levels. The disadvantage

of this model is that it does not consider textual information that affects the F0 dynamic range

(variance), such as lexical stress patterns in the current, previous, and next voiced regions, and

the length of voiced regions based on the number of syllables and phonemes. Furthermore, the

number of DCT coefficients is not fixed, and can be different for different speakers, which makes

the modeling more challenging.
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Figure 2.16: (adopted from [151]): Example of F0 decomposition using continuous wavelet trans-
form with 10 scales.

2.3.2.4 F0 contour decomposition using continuous wavelet transform

Continuous wavelet transform (CWT) decomposes the F0 contour into several frequency compo-

nents where each component is distinguished through a scale. Based on the application, different

number of scales are used for modeling the F0 contour. Ming et al. used a five-scale CWT to

model F0 contours for emotional conversion[105]. In [151] ten distinct scales are used to model F0

contours in different linguistic levels for synthesis purposes. The scales 0 and 1 correspond to the

phone level, scales 2 and 3 correspond to the syllable level, scales 4 and 5 correspond to the word

level, scales 6 and 7 correspond to the intonational phrase level, and scales 8 and 9 correspond

to the utterance level. Figure 2.16 shows an example of an utterance decomposition using this

method.

Ribeiro et al. [129] combined both DCT and CWT to explore a multi-level representation

of F0. The decomposition process can be summarized by the following steps: 1) A ten-scale

CWT-based decomposition approach (identical to [151]) is applied to decompose F0. 2) The

number of scales is reduced to five corresponding to different linguistic levels: phone, syllable,

word, intonational phrase and utterance level. 3) The contour in each scale is segmented by

considering the corresponding linguistic level, e.g., the contour in the third scale is segmented

at word boundaries. 4) For parametrizing each segment, an individual DCT is applied. Different

coefficients are used at different levels: 6, 6, 4, 4, 3 coefficients are used for the phone, syllable, word,

intonational phrase, and utterance level, respectively. Combining both DCT and CWT results in
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more contribution of the higher linguistic levels in the naturalness of the synthesized speech. The

successful use of this method in speech synthesis was the inspiration for other studies [105, 178, 92].

It is unclear if this method is suitable for analysis since these component curves were not meant

to be linguistically meaningful.

2.3.2.5 Gamma distribution based decomposition

This superpositional model [56, 138] decomposes the F0 contour into two component classes: the

phrase curve class and the accent curve class (called “atom” by the author). The phrase component

is the same as in Fujisaki’s model while the accent components are modeled using the gamma

distribution (Equation 2.6).

Gk,θ(t) =
1

θkΓ
tk−1e−t/θ, k = 2, θ = 1/α (2.6)

The phrase curve and accent curves are estimated through two separate processes. First, an F0

contour is decomposed into phrase and residual curve components using a greedy algorithm. Then,

the same greedy algorithm is applied on the residual to estimate the accent curve parameters.

2.3.2.6 Procedure for Representing Intonation in the Superpositional Model

Procedure for Representing Intonation in the Superpositional Model (PRISM) is a superpositional

phonetic model inspired by GLAM. PRISM decomposes a F0 contour into three components curves:

phrase curve, accent curve and perturbation curve [106].

Phrase curve: The Phrase curve is piecewise-linear, consisting of foot-length line segments. Com-

pared to GLAM’s phrase curve, this curve requires additional parameters (n + 1 compared

to GLAM’s three parameters per phrase curve containing n feet).

Accent curve: Accent curves in this model are a simplified version of accent curves used in the

GLAM model. This simplification is applied in two steps, calculating anchor values (TP ,

templates) and anchor points TA. Unlike GLAM, the anchor points TA are not extracted

using information related to the foot structure (they are not calculated through Equation 2.4).

Anchor points are n values sampled at equal time points (nine points was recommended by

the author). The template corresponding to a rise-fall pattern, continuation rise pattern,

and interrogative pattern are implemented by a Gaussian curve, summation of a Gaussian

curve and a rising exponential curve, and rising exponential curve, respectively.

Perturbation Curves: These curves are modeled by a negative exponential curve.
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Algorithm 2.2 PRISM two-phase decomposition algorithm
Phase 1: wavelet decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Smoothing the F0 contour
2: Phr ← Applying wavelet decomposition to the smoothed F0 contour
3: Res← F0 − Phr

Phase 2: template based decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4: Determine the Res peak position
5: for each foot do
6: RawAcc← get raw Res contour for current foot
7: Get the template curve with n point values
8: TmpAcc← maximum(RawAcc) ∗ template curve
9: EstAcc← apply n-point linear time-warp between TmpAcc and RawAcc

10: Segmental Influence curves are parameterized in a manner similar to accent curves
11: Apply optimizer on accent curves and Segmental Influence curves parameters

PRISM’s algorithm has two phases. In the first phase, a given F0 contour is decomposed into a

phrase curve and a residual curve using the discrete wavelet transform. The second phase consists

of template based decomposition of the residual into accent curves and segmental perturbation

curves. Algorithm 2.2 shows the steps required for F0 decomposition using PRISM.

Similar to GLAM, PRISM has three component curves where each of the component curves

is tied to a distinct phonological segmentation. There are certain aspects to PRISM that must

be examined more closely. First, PRISM allows negative accent curves to model F0 values that

fall under the phrase curve. American English generally does not have negative accents. Second,

PRISM uses nine parameters for estimating each accent, which, given the generally regular shapes

of local pitch excursions should not be necessary – fewer parameters, such as location, width, and

asymmetry, should suffice. Third, it uses n + 1 parameters to model phrase curve that undermine

the perceptual relevance of the phrase curve because there is no global declination. Fourth, PRISM

optimizes the phrase and accent curves separately, which is prone to local minimum problems.

2.4 Intonation in Text-To-Speech (TTS) Systems

The aim of TTS systems is to synthesize intelligible and natural sounding speech waveforms from

the input text. Most traditional TTS systems consist of two phases: a front-end, which converts the

input text into an abstract linguistic representation, and a back-end, which generates the speech

waveform along with the prosody of the sentence to be spoken using the linguistic information.

Figure 2.17 shows the general schema of a TTS system.

The objective of this section is not to provide a comprehensive account; rather it samples the
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Figure 2.17: Schematic diagram of a speech synthesis system

common prosodic features and models that are used in the back-end phase of TTS systems under

two categories: intonation synthesis and intonation adaptation.2

2.4.1 Synthesis

The methods for synthesizing F0 in speech synthesis are very diverse, ranging from rule-based

methods in older systems whereby F0 contours are generated by rule and then imposed onto

a concatenated sequence of stored acoustic units [146], to statistical parametric based synthesis

in which F0 is generated frame-wise in parallel with spectral frame generation and is, similarly,

imposed onto spectral frames [192], to unit selection systems where the database is sufficiently rich

that stored F0 can be used as-is [126].

Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs) were the two most

common acoustic models used in parametric TTS systems. However, their limitations, such as data

disjointness caused by decision-trees (which are used to represent complex, nonlinear relationships

between the input text and the acoustic features) have motivated researchers to use deep neural

networks (DNNs).

There are two main challenges when it comes to modeling F0 for synthesis purposes. The

first challenge is that there are only F0 observations within voiced speech regions. The question

is how F0 values in unvoiced regions should be represented. The second challenge is capturing

the suprasegmental properties in F0 movements. As we discussed in Section 2.2, considering a

phonological unit that is larger than the syllable but does not coincide with word boundaries is

more suitable for capturing the suprasegmental properties of F0 movements. However, most HMM-

based synthesizers predict F0 at the frame level using limited linguistic contextual information.

This frame-by-frame prediction of F0 results in an overly-smooth F0 contour that cannot properly

2A more comprehensive account is given in [71] which provided an overview of the evolution of the TTS system
from its early ages till today.
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Reference Unvoiced F0 representation Intonation model Model domain

[38] Random values generated from
a probability density function

(pdf) with large variance

continuous HMM Frame-level

[62] Zero continuous HMM Frame-level

[194, 195] Interpolated GMM Frame-level

[154] Interpolated + Low Pass Filter GMM Frame-level

[80, 128] Interpolated DCT Syllable-level and
phrase-level

[129] Interpolated CWT Syllable-level
word-level and
phrase-level

Table 2.3: A comparison of several approaches for F0 contour modeling of HMM-based TTS
systems. Approaches are classified into three categories: unvoiced F0 representation, intonation
model, and model domain

represent the suprasegmental properties of F0 movements. In our review of approaches, we will

focus on these two issues.

2.4.1.1 HMM-based approaches

Hidden Markov Models (HMMs) in synthesis are stochastic generative acoustic models that gen-

erate an observation sequence given a discrete hidden state sequence. Typically, the spectrum and

F0 are modeled in separate streams due to their different characteristics and time scales. To model

missing F0 values in unvoiced regions, multi-space probability distributions (MSD) are usually

used in HMM-based synthesis systems [160, 190, 101]. The MSD-HMM uses a discrete HMM to

model the F0 values for unvoiced frames and a continuous mixture HMM to model the F0 values

for voiced frames. The first limitation of this approach is that it is sensitive to voicing classification

errors. One solution to this is to assume that F0 is continuous in unvoiced regions as well [194].

The second limitation is that frame-by-frame prediction of F0 values results in overly-smooth F0

contours. In order to capture the prosodic patterns on a larger scale and to generate more natural

F0 contours, superpositional approaches are used[80, 129, 128]. Table 2.3 gives a summary of these

approaches.

2.4.1.2 DNN based approaches

Many articles on speech synthesis report that the usage of deep learning techniques shows improve-

ment over HMM-based approaches in terms of naturalness, similarity, and quality of the generated
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Reference Unvoiced F0 representation Intonation model Model domain

[87, 86, 198] Undefined MSD Frame-level

[198] Interpolated [194] Frame-level

[91] Interpolated DNN applied on a
vector-space

representation of input
texts

Frame-level or
state-level

[68] Zero hybrid approach between
DNN and Gaussian

process based regression

syllable-level

[131] Interpolated SPAM + LSTM syllable-level

Table 2.4: A comparison of several approaches for F0 contour modeling of DNN-based TTS systems.
Approaches are classified into three categories: unvoiced F0 representation, intonation model, and
model domain.

speech [87, 91]. Some only apply DNN models on spectral modeling and keep the prediction of

F0 values identical to HMM-based approaches [86, 198], while others use DNN models directly

for predicting F0 contours [36, 91, 68]. Kang et al. used a deep belief network as a generative

model for the joint distribution of linguistic and acoustic features [68]. They suggested that the

low-dimensional F0 features are not modeled well when combined with high-dimensional spectrum

features. They used a combination of discriminative DNN and Gaussian process-based regression

to predict log F0 values. First, a DNN is trained to map linguistic feature to log F0 values. The

activations at the last hidden layer are then used as the input for the Gaussian process based

non-parametric regression. In [91], a DNN is trained on vector-space representations of linguis-

tic context. This vector-space representation was derived without using any linguistic resources.

In [131] a template-based approach was explored. A simplified LSTM classifier was used to predict

a template at the syllable-level using textual information. These templates are extracted using

the SPAM model (see Section 2.3.2.2) from training data. Table 2.4 gives a summary of these

approaches.

The main problem of statistical parametric TTS systems is that they are typically composed of

many domain-specific modules (e.g., a text analyzer, an F0 generator, a spectrum generator, etc.).

These modules usually are trained independently, so errors from each module may compound and

result in a complex TTS system [179, 153]. More resent methods use the sequence-to-sequence

deep learning technique to merge these internal modules into a single model that directly connects

the input text to the output audio (this technique is called end-to-end TTS). The end-to-end TTS

systems based on sequence-to-sequence techniques are commonly RNN-based [145]. However,
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due to RNN-based disadvantages (long-term dependencies, and CPU time consuming), attention-

based mechanisms [177, 83] and CNN-based learning models have been proposed [117, 42]. The

end-to-end TTS models obtained better performance over a statistical parametric speech synthesis

system in terms of naturalness; However, it still remains a challenge to control the synthesis model

to generate speech with desired intonational characteristics (e.g., emotion) [176].

2.4.2 Intonation Adaptation

In TTS adaptation, the aim is to transform the perceived identity of a TTS voice to that of another

speaker. To clarify, in the case of TTS, the source speaker is the speaker whose recordings were

used to generate the acoustic units (for unit selection approaches), acoustic inventory (for diphone

based synthesis), or acoustic features for HMM or DNN approaches. This speaker’s recordings may

also be used as training data for prosody mimic. Thus, the speech generated by a TTS system

generally sounds like the source speaker. For prosody mimic (intonation adaptation), the challenge

is to compute a transformation that, when applied to the speech data or to any representations

thereof, generates output speech mimicking a target speaker.

Most TTS adaptation papers are focused on spectral features, and they use trivial methods to

modify prosody [108, 182, 107]. Typically, F0 is represented by just its mean and the standard

deviation (SD); thus, during synthesis, the output utterance will match only these target speaker

features without attempting to capture the dynamic details of the speaker’s prosodic style [18].

In a more sophisticated approach, Chappell proposed a linear transformation that globally maps

mean and standard deviation of F0 values in utterance level [18]. Patterson went a step beyond

Chappell’s approach and used four types of data points in an utterance to represent F0 [119].

For given an utterance, they selected the sentence-initial F0, the sentence-final F0 values, all

the non-initial pitch accent peaks and all the post pitch accent valleys. The main drawback of

these mapping methods is that they cannot fully capture dynamic patterns of F0 contour. HMM-

based [155, 60] and superpositional [169, 37, 33, 172] approaches are potentially more accurate and

practical methods for capturing intonation.

Intonation can be transformed at different levels (listed is column in Table 2.5): frame [155,

18, 44, 35], tone [175] syllable [52, 90, 156, 60, 175, 59], word [3], sequence of syllables [60, 59, 61]

and sentence [18] with different methods (listed is column in Table 2.5). As mentioned, the most

common method to transform F0 is by globally matching the mean and SD of the target speaker’s

F0 contour. The mean and SD values of the source and target speaker’s F0 contours are used

to define a linear transformation that is applied to the source speaker’s F0 contour, typically in
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Approach Adaptation
method

Adaptation
domain

Intonation model model domain

[18] Linear Frame-level Average(mean
and SD) of raw
F0 contour

sentence-level

[18] Polynomial
conversion

Frame-level Scatterplot model
of mean F0

Phone-level

[44] Piecewise linear
mapping

Frame-level Pitch range model Accent-level
and

sentence-level

[156] Linear
modification

Syllable-level Raw F0 Syllable-level
and phrase-level

[156] GMM Syllable-level Pitch target
model

Syllable-level

[172] GMM Syllable-level DCT +
multi-level

dynamic features

Syllable-level
and phrase-level

[60] Data-driven F0

segment selection
Sequence of
syllable

MSD-HMM Syllable-level

[156] CART Syllable-level Pitch target
model

Syllable-level

[52] Codebook+CART Syllable-level DCT Syllable-level

[18] Contour codebook
+ DTW

Sentence-level Raw F0 Sentence-level

[155] MSD-MLLR Frame-level MSD-HMM Frame-level

[90] MLLR Syllable-level GMM Syllable-level

Table 2.5: A comparison of several prominent intonation transformation approaches. These tech-
niques are classified into four categories: adaptation method, adaptation domain, intonation model,
and model domain.

the log domain [18]. Extensions of this approach include higher-order polynomial [18], piecewise

linear transformation [44] and linear modification based on hand-labeled intonational (syllable-

phrase) features. Another class of methods predict intonation by modeling F0 and spectral features

jointly [93, 49, 184]. In cases where limited amounts of data are available, statistical techniques

are usually utilized to extract the mapping function. The most popular technique is based on

a Gaussian mixture model (GMM) [156, 172, 35, 59, 9]. Two other methods use F0 contour

codebooks [18] and parametrized codebooks [52, 59]. Weighting multiple contours has shown a

minor performance improvement [162]. Various other methods, such as hierarchical models [180],
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CART [52, 156] and MLLR [155, 90] are proposed.3 However, it still remains a challenge to

generate speech with intonational characteristics of the target speaker when data are limited.

2.5 Intonation in Speaker State Classification

The aim in speaker state classification (SSC) is to recognize the speaker’s state using paralinguis-

tic features (and/or linguistic features). Typical problems include the recognition of a speaker’s

emotion, age, gender, identity, and health. The process of this classification usually consists of

three steps: feature extraction, feature selection, and classification. We focus only on the feature

extraction step.

Most approaches in feature selection extract a large number of acoustic features from the

speech signal and use standard machine learning techniques as a black box often achieving good

classification accuracy. However, there are two drawbacks to this common approach. First, they are

often not informative for scientists working in the domain field (e.g., autism researchers), because

they are interested in finding which features are the most important ones for classification and

why. For example, just knowing that a classifier performs at 90% accuracy fails to answer these

questions. Of course, in certain industrial or governmental applications, classification accuracy is

the primary or even sole interest. Second, these approaches require that the recording conditions

– microphone, room acoustics, distance to microphone – are not in the least bit confounded with

the classes under consideration. The large number of acoustic features may capture differences in

recording conditions, so that the final classification result may have little to do with the classes

of interest. This is particularly dangerous in multi-site data collection efforts in which each site is

responsible for recording a specific class. To combat these issues, some researchers have turned to

the use of prosodic features, which is discussed next.

In the last two decades, the usage of prosodic features have shown an improvement in the

performance of classification systems. Prosodic features can be grouped with respect to two factors:

1. The temporal structure used for feature extraction: a distinction is drawn between short-

term and long-term temporal structures. The short-term features, which are also referred to

as segmental features, are extracted for every frame (typically 25ms in length). Long-term

features, which are also called suprasegmental features, are extracted at the utterance level

(or continuously voiced regions separated by a pause). However, other linguistic units (e.g.,

syllables) have gotten more attention in recent years (first two columns in Table 2.6).

3A more comprehensive account is given in [181].
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Features Level Low-Level-Descriptors
(LLDs)

Functional

segmental Frame Frame-energy,
Frame-intensity

suprasegmental Utterance F0, energy, intensity,
harmonics-to-noise ratio,

shimmer, jitter, normalized
amplitude quotient, duration

Extreme values (maximum,
minimum), mean, moments

(standard deviation,
variance, kurtosis, skewness),

percentiles of non-zero
frames, duration in seconds

Syllable F0, intensity, duration, F0

residual, F0 regression,
intensity regression

Extreme values (maximum,
minimum), mean, local range

(span), gradient,
voiced-unvoiced ratio

Table 2.6: Categorization of prosodic features in terms of the linguistic unit and parametrization.

2. The level of feature descriptors: the features can be in two levels: Low-Level-Descriptors

(LLDs), and functionals. LLD features consist of prosodic features at both the segmental

and suprasegmental level. The functional features are statistical features that are derived

from suprasegmental LLD features (last two columns in Table 2.6).

Table 2.6 summarizes categorization of common prosodic features according to the above factors.

As we discussed in Section 2.2 and Section 2.4, prosodic features (especially F0 contours ) have

suprasegmental properties and frame-level segmentation is too short for capturing these properties.

As in found in [186, 150], in order to produce the smallest meaningful F0 movement, a longer span

of time is required (in average 100ms). Even though short-term features cannot properly represent

the prosodic characteristics, these features could be effective when: large amounts of data are

available [2], they are combined with spectral features (especially in noisy conditions) [70], log F0

or normalized F0 are used instead of the raw F0 [69, 113, 144, 140].

It has been shown that the prosodic features (such as F0, intensity, and energy) are more

effective when they are extracted at the utterance level [140, 17, 67, 45]. However, utterance level

features listed in Table 2.6 cannot properly convey suprasegmental properties of prosody since

these statistics fail to capture local F0 dynamic changes (specifically in long duration utterances

with multiple pitch accents) [143]. Generally, researchers took two ways to face this issue. The

first one is to consider using features that represents local F0 dynamics, and the second one is to

consider analyzing prosody in linguistic units shorter than an utterance and longer than a frame

or phoneme (e.g., syllable).

When using short-term based techniques, adding the delta F0 can help capture some of the local
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(a) F0 regularization using a piecewise
linear model

(b) Piecewise linear model’s parameters

Figure 2.18: F0 regularization and feature extraction using a piecewise linear model in a long-term
segment (continuously voiced regions separated by a pause). From [143]

F0 dynamic information. When using long-term based techniques, several methods are used for

capturing local F0 dynamics. For example, in [2] F0 and energy trajectories are used to determine

the corresponding slope of the contour in the voiced region. (+ for rising and - for falling slope). For

each segment, F0 and energy symbols are joined together (e.g., ++, +-, -+, --, and uv for unvoiced

regions). Then, a sequence of these symbols are used to represent the long-term features. In [143],

first a regularization is applied on the F0 contour using a Piecewise Linear Model (see Figure 2.18a),

then Piecewise Linear Model features (segment median, segment slope, and segment duration) and

durational features (duration of the voiced segment and pause duration) are extracted from each

continuously voiced region (see Figure 2.18b).

Regarding the second solution, usually a segmentation method is applied on the F0 contour to

split the F0 contour into a sequence of smaller segmented F0 contours. Each segment is represented

by a set of features. Typically syllables are used as the segmentation unit. The most common way

to produce segmentation automatically is by using automatic speech recognition (ASR); however

due to ASR limitations in some areas, such as emotion and language classification, some ASR-free

approaches have been proposed. Segmentation into syllable-like regions is usually accomplished

with the knowledge of vowel onsets [100, 4, 98] or F0/energy contour valley points [26].

In recent years, there have been a number of studies on syllable-based analysis of prosodic

features. In [99], the author used Tilt parameters to represent the dynamics of F0 contours in

syllable-like regions. A total of seven parameters were used for each segment: mean value of

F0, peak F0, change of F0 (delta), distance of F0 peak to vowel onset, amplitude tilt, duration
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tilt, change of log energy (delta). A polynomial function is used to approximate F0 and energy

contours in syllable-like segments [26]. Each segment is represented by a feature vector consisting

of the polynomial coefficients (for both F0 and energy contours) and segment duration. The

same method is also used in [27] except that in this case the coefficients are time-normalized.

Raymond et al. have investigated a large set of prosodic features in syllable-like units [113, 112, 114].

These features consisted of F0, energy, and duration. In addition to the raw F0 and raw energy

contour, normalized, regression, and residual contours(where the phrase curve is subtracted from

the corresponding contour) were also included. Five features are extracted for each of the following

features of F0/energy: value in the syllable nucleus, maximum, minimum, range (or span) and

gradient. Three duration features are considered: the time interval between two neighboring

syllable nuclei, syllable duration, and the ratio between the length of the F0 contour and the

syllable duration. Figure 2.19 demonstrates these prosodic features.

2.6 Evaluation

Evaluation methods can be split into two categories: objective and subjective. Objective evaluation

in intonation measures the goodness of fit between estimated F0 contours and the original contours.

The root mean square error (RMSE ), which is known as the standard error, is a widely used

objective measure in intonation. Based on a rule of thumb, the lower the value the better the

model can relatively estimate the F0 contour. Objective measures are popular because they are

objectively unchangeable and easy to calculate; however, in intonation research it is important to

realize how these results are being interpreted.

RMSE can not explain type of measurement error. For example, if the RMSE is 15Hz, it

means the square root of the average squared difference between the estimated F0 contour and the

original one is 15Hz. RMSE does not clarify that it results from high error in few outlier points

(e.g., caused by halving/doubling error or gross error) or very small error across all points (e.g.,

random error), which both could have the same RMSE but might be perceptually quite different.

RMSE does not show relative values. For instance, a 15Hz difference is considered a bad fit

when studying a synthetic F0 contour of a male adult in read speech data, while a 15Hz difference

is considered a suitable fit when studying a synthetic F0 contour of a child in emotional-based

data. In other words, human ears are not sensitive to a 15Hz difference when the base frequency

is really high (e.g., a happy child).

In order to determine how the human ear can distinguish between frequencies, experts divide

the frequency range of human hearing (20-20kHz ) into eleven octaves. Octaves are not equally
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(a) Raw prosodic features at the syllable level

(b) Prosodic regression features at the syllable level

Figure 2.19: Representation of prosodic features at the syllable level for an example utterance.
From [114].

spaced in frequency. Lower octaves cover a narrower frequency range than higher octaves, since

the human ear can more easily distinguish between frequencies in lower frequencies (the human ear

is more sensitive to low frequency changes). This division is done in such a way that each octave

covers double the frequency range of the previous octave. To more closely match how humans

distinguish frequency, each octave can be split into 12 semitones. The human ear can distinguish

only one semitone differences. The semitone is formulated, as in Equation 2.7, using a baseline

frequency.

S : semitone = 12 ∗ log2(f/baseline) (2.7)

For example, if we are studying a male adult, the baseline is 50Hz, while the baseline is 300Hz in
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an happy child. The first semitone difference corresponds to a frequency differential of 3Hz, and

18Hz for a male adult and a happy child, respectively, as we will now show.

f0 = baseline (1.2)

∆S = Sn+1 − Sn = 1

12 ∗ log 2(fn+1/baseline)− 12 ∗ log 2(fn/baseline) = 1

log 2(fn+1/baseline)− log 2(fn/baseline) = 1/12

log 2(fn+1/fn) = 1/12

fn+1/fn = 21/12

fn+1 = 21/12 ∗ fn (1.3)

From Equation 1.2 and Equation 1.3 we can conclude that f1−f0 = baseline(21/12−1) . Therefore,

the smallest frequency difference perceivable by the human ear at the speaker’s baseline for:

• male adult is 50 ∗ (21/12 − 1) = 2.9731 Hz ≈ 3 Hz

• happy child is 300 ∗ (21/12 − 1) = 17.8389 Hz ≈ 18 Hz

Due to the above calculation, in many studies the use of log F0 is preferred over raw F0. The

RMSE provides a sense of how close (or far) estimated F0 values are from the raw F0; However

fails to clarify how well the model explains the shape of F0 contour. In this case, correlation

between estimated F0 contour and raw F0 contour can be used as an evaluating measure. In above

example, if the correlation is high (e.g., 0.8) regardless of RMSE value, then the model considered

as a good estimation of the F0 contour that explains 80% of the shape of F0 contour. The higher the

correlation value is, the more precise is the model. Furthermore, when dealing with the objective

evaluation of real speech data, it is important to either normalize the data before analysis or find

a reliable measure for comparison afterwards.

Another way to evaluate the effectiveness of a method is by using subjective evaluation ap-

proaches. These methods have been quite diverse, since subjective evaluation is subject to human

interpretation. Evaluating the naturalness of the estimated F0 contour has been the most fre-

quently used subjective evaluation approach. A common method is to ask subjects to listen to

a generated utterance and judge the naturalness of the utterance on a five-point scale (e.g., 1:
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bad, 2: poor, 3: fair, 4: good, and 5: excellent). Another method is to ask subjects to do an

A/B testing, when two systems are being tested against each other, to pick which of two is most

natural on a five-point scale (e.g., -2: definitely prefer the first utterance, -1: probably prefer the

first, 0: neither, 1: probably prefer the second utterance, 2: definitely prefer the second). Also we

could ask subjects questions to get at their understanding/interpretation of the utterance: “Is the

speaker sad?”, or “What word is most emphasized?”.

During subjective evaluation, it is important to control how subjects are being instructed. For

example, in evaluation of speech in a news-reading speaking style, asking the subjects to rate the

naturalness of an utterance is adequate, and further clarification may not be needed. However,

in evaluation of other types of speech (e.g., clear vs conversational speech, emotional speech), a

slight change in instruction (e.g., providing content of utterance with or without punctuations)

may result in different ratings. Although it is important to clarify the instructions given to the

subjects, it is unethical to lead them in a specific direction. For example, assume that we are

interested in evaluating the ability of our model to handle marked-up input to design a contrastive

emphasis test. The content of the utterance under test is “This is a cheap car”, where capitals

indicate an emphasized word according to a contrastive choice. It would be leading if the subjects

are asked to answer this question “Is the word “cheap” emphasized?” or “Is this utterance the

answer to: What kind of car is this?”. In the first question, we asked the subjects to pay particular

attention to the word “cheap”, therefore even a small emphasis on the word “cheap” would lead

the subjects to answer positively to the question. In the second question, we asked the subjects to

pay particular attention to the adjective, therefore any noticeable emphasis on the word “cheap”

would lead the subject to answer positively to the question. In both cases, a high rating suggests

that our model is emphasizing the word “cheap”, but does not indicate that our model correctly

puts contrastive emphasis on the word “cheap”.



Chapter 3

GENeralized Intonation model for

English (GENIE)

In this chapter, we propose a new generalized intonation model for English (GENIE).1 GENIE is

inspired by the General Superpositional Model (GSM) [169, 164, 136]. In Section 3.1, we explain

what the shared assumptions are between GENIE and GSM, and how it differs from GSM’s other

implementations (namely GLAM and PRISM). In Section 3.2, we present the details of GENIE.

GENIE like GLAM and PRISM is a superpositional intonational model that provides the high-

quality prediction of F0 contours, but unlike them it uses a very small set of parameters which are

optimized simultaneously, and it focuses not only on the synthesis of English intonation but also

on the analysis of English intonation. Finally, in Section 3.3 we use GENIE to show it can produce

accurate and linguistically meaningful results.

3.1 GENIE model properties

In Section 3.1.1, we summarize the underlying assumptions of GSM, which directly inspired the

creation of three models: GLAM, PRISM, and GENIE. Then, we discuss the shared assumptions

and differences between GENIE and its cousins. In Section 3.1.2, we introduce the additional

assumptions of GENIE.

3.1.1 Fundamental assumptions

GSM is a theoretical framework. It was developed by van Santen [164], which we discussed it in

details in Chapter 2. The idea behind GSM was that although there are several superpositional

1This chapter is based on work published in ICASSP [33].

48
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approaches with different assumptions, they are all part of one bigger family and they can be

represented by one single formula. GSM has two core assumptions:

Assumption 1: F0 contours can be described as an overlay (or superposition) of underlying

component curves that belong to one of several component curve classes

Assumption 2: Each class of curves corresponds to a distinct temporal scope.

Based on these GSM assumptions, the F0 contour of an utterance can be modeled using an overlay

of component curves that belong to one of several component curve classes where each corresponds

to a distinct temporal scope. This definition is sufficiently general to formulate any superpositional

model as follows where: C corresponds to a set of curve classes (e.g., phrase curve class and accent

curve class), c represents a particular curve class of C (e.g., accent curve class), k stands for an

individual curve of c’s class (e.g., rise-fall accent curve), and ⊕ is an operator.

F0(t) ≈ ⊕
c∈C

⊕
k∈c

fc,k(t)

This formula is very general and may not have obvious testable predictions. A successive narrowing

down would lead to such predictions.

The Generalized Linear Alignment model (GLAM) is the first direct implementation of GSM.

It was also developed by van Santen at Bell Labs [169, 164, 136]. The objective of GLAM was to

be used as a generative intonational model in a multilingual TTS system. We characterize GLAM

through an additional set of assumptions and compare them with GSM’s. GLAM has stronger

assumptions than GSM since it focuses on TTS applications, but is still general enough to cover

multiple languages.2

Assumption 1.1: This assumption refines Assumption 1 from GSM. An F0 contour — interpo-

lated in unvoiced regions — can be decomposed into component curves: a phrase curve (P (t)

in Equation 3.1) and a sum of one or more accent curves (A(t) in Equation 3.1).

F0(t) ≈ P (t) +A(t) (3.1)

Assumption 2.1: This assumption refines Assumption 2 from GSM. The Phrase class is tied to

an intermediate phrase (discussed in Section 2.2.1), and the Accent class corresponds to a

foot(discussed in Section 2.2.3), which is a shorter scope than an intermediate phrase and

consists of an accented-stressed syllable followed by with zero or more unaccented syllables.

2The validity of these assumptions has been tested in many research projects [164, 169, 166, 72, 136, 137].
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(a) Rise_fall accent curve (b) Yes-no question accent curve (c) Continuation accents

Figure 3.1: Three different accent categories
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Figure 3.2: Foot structure in a statement utterance

Assumption 3: The Phrase class should be smooth over long time stretches, which enables us to

determine the effect of intonational characteristics and functions on the component curves.

GLAM uses a phrase curve consists of two quasi-linear segments, the first from the phrase start

(ps) to the start of the final foot in the the phrase (generally associated with the nuclear pitch

accent, pf ), and the second from the latter to the end point of the last voiced segment of the phrase

(pe).

Assumption 4: Three different accent categories are used to estimate the three intonational

patterns: Rise-fall accent groups (e.g., H*L-L%, Figure 3.1a), yes-no question contours (e.g.,

L*H-H%, Figure 3.1b), and continuation contours (e.g., H*L-H%, Figure 3.1c). Rise-fall

accents occur in any non-final feet as well as in the final foot in an intonational phrase for a

statement utterance. Figure 3.2 shows occurrence of three rise-fall accents in an intonational

phrase. Continuation contours consist of a dual motion in which an early peak is followed

by a valley and a final rise. A continuation accent occurs at the final foot in an intermediate

phrase that is not aligned with the end of an intonational phrase. In Figure 3.3, the accent

curve in the final foot of the first intermediate phrase is a continuation accent. Yes-no

question accents occur on the final foot in an intonational phrase for a yes-no question and

consist of an accelerated decrease starting at the onset of the accented syllable, followed by

a steep increase in the nucleus (in Figure 3.3, the accent curve in the last foot).
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Figure 3.3: Foot structure in a yes-no question utterance that consists of two intermediate phrases.

Assumption 5: A specific accent curve cannot be assigned to phrase-initial unstressed syllables –

also called appendix – since these syllables are not part of any foot. In Figure 3.3, we can see

the appendix does not belong to any particular foot, but it is still part of the intermediate

phrase.

The Above assumptions were developed intentionally to make GLAM a suitable and flexible syn-

thetic intonational model. These assumptions are shared among GLAM and GENIE. Implementation-

wise GLAM has three more assumptions to make it suitable across languages. The rest of assump-

tions in this section are not part of GENIE’s shared assumption.

• Accent curves consist of pitch peaks and pitch movements associated with syllables (e.g., a

foot in English or one syllable in Mandarin). It is modeled by parameterized time warps of

an accent curve template.

• Overlap is allowed only between successive accent curves

• Segmental Influence Curves are also considered as a component class, which are added to the

Phrase and Accent class to estimate F0 contours

The first item was developed to give GLAM flexibility to consider all intonational patterns in

different languages. The second and third items were added to improve the voice quality of syn-

thesized speech. There are several drawbacks to these assumptions when it comes to real-world

cases. 1) Optimization of component curve parameters can not be done simultaneously since some

curves require independent preprocessing (pitch peak detection for accent curves and vowel onset

detection for segmental influence curves). 2) Beside the actual parameters, there are some hyper-

parameters that need to be tuned, such as the number of anchor points, and the degree of overlap
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between two successive accent curves.

The Procedure for Representing Intonation in the Superpositional Model (PRISM) was a second

direct implementation based on GSM. Like GLAM, PRISM is a synthetic intonational model

for a TTS system, but it only considered American English. PRISM adopted most of GLAM’s

assumptions, but differed from GLAM in terms of the following items:

• The phrase curve is piecewise-linear, consisting of foot-length line segments instead of the

two line segments allowed by GLAM. However, this introduces additional parameters in the

process (n + 1 instead of 3 parameters per prosodical phrase containing n feet), and may also

undermine the perceptual relevance of the phrase curve because there is no global declination.

• PRISM allows negative accent curves to model F0 values that fall under the phrase curve.

Generally, American English does not have negative accents.

3.1.2 GENIE’s additional assumptions

The word “General” in GSM denotes that its assumptions are general enough to define any su-

perpositional model for any language regardless of whether it is used for synthesis or analysis.

In practice, there might not be one model for solving every possible problem (based on the no

free lunch theorem). Intonation can vary substantially across languages. Probably, there is not

a single intonation model that can achieve both high predictiveness (used as a synthesis tool)

and high descriptiveness (used as an analysis tool) for every language. Therefore, depending on

the problem, it is important to assess the trade-offs. GENIE and GLAM define these trade-offs

differently. The word “Generalized” in GLAM denotes that its assumptions are general enough to

define any superpositional model across any language, but its assumptions were specified to make

GLAM a practical synthesis tool. The word “Generalized” in GENIE denotes that its assumptions

are intended to make it general enough to make GENIE a practical synthesis and analysis tool,

but its assumptions are specific only for the English language. GENIE (like GLAM) uses stronger

assumptions than GSM. Some of these assumptions are shared with GLAM, which we discussed in

the previous section. Some of these assumptions are specific to GENIE, which we discuss in this

section.

Assumption 3.1: This assumption refines Assumption 3 from GLAM. The shape of the phrase

curve should be kept as simple as possible. GENIE uses a phrase curve consisting of two

linear segments (not quasi-linear or log-linear segments like GLAM).

With regards to Assumption 3.1, a fundamental issue in superpositional-based approaches is that
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Meaningful decomposition

Figure 3.4: F0 contour decomposition example, comparing when the phrase curve is a horizontal
line versus when it has to capture the local minima. Each red curve represents a F0 contour of a
one-phrase utterance consisting of two feet, with different amounts of overlap. Green curves and
magenta curves represent phrase curves and accent curves, respectively.

there is no unique way to decompose a curve into its components curves. One reason for this

is that in real speech intonational movements are more complex than in theory. For example,

we are interested in decomposing a given F0 contour with two feet with rise-fall patterns into its

component curves. One common sense solution is that the F0 contour can be estimated by the

concatenation of two identical rise-fall patterns with a coinciding start and end point. Figure 3.4

bottom row shows this approach; however, in real speech there can be an overlap between successive

intonation movements (top and middle red solid curves).3 Figure 3.4 shows two different ways of

decomposition for three F0 contours (red solid curves). Both ways are mathematically valid since

the sum of the component curves in both ways results in a perfect fit to the F0 contour; we prefer

the first decomposition that by keeping the shape of the phrase curve as simple as possible lets the

accent curves capture the meaningful intonation patterns. As the second decomposition, the phrase

curve has to capture the local minima that prevents the accent curves from capturing meaningful

intonation patterns.

3The degree of overlap depends on many factors, such as the number of syllables, duration of syllables, level of
emphasis (or even focus), etc.
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Assumption 6: All accent curves of an intermediate phrase span the full length of the interme-

diate phrase.

GLAM allows an overlap only between successive accent curves but it does not clarify what the

extent of overlap allowed is. In some implementations based on GLAM, it was suggested that

non-phrase-final accents should have no more than 20% of the foot duration overlapped with the

next accent curve. Therefore, the amount of overlap is dependent on the foot duration and needs

to be determined individually for each accent. Defining the amount of overlap as a free parameter

results in an increase in the degrees of freedom of the model. In order to have overlap without

any changes to the degrees of freedom, the overlap has to be tied to a segmental unit. In GLAM,

the overlap can be tied to one of the following units, the syllable, foot, or intermediate phrase.

We suggest to tie the overlap to the intermediate phrase boundaries. Allowing accent curves to

span the full length of an intermediate phrase results in a bidirectional overlap between all accent

curves of the intermediate phrase. The advantage of this amount of overlap is as follows. First, it

allows a simpler mathematical formulation for analysis and synthesis. Second, the model is able

to account for the pitch movement in appendices, which we discuss next.

Assumption 7: F0 values in an appendix are predictable by the model.

The motivation behind Assumption 7 is that in ToBI it is uncertain whether L+H* and H* are

distinct phonological categories in English intonation patterns. By showing that this uncertainty

is not an issue in the proposed model, predictability of the F0 values in appendices is necessary.

With regards to the fifth assumption, an accent curve cannot be assigned to an appendix since

it does not belong to any particular foot, but it is part of the intonational phrase. Therefore,

recovering the pitch movement in an appendix would be possible by using information of both the

phrase curve and the first accent curve which falls into the appendix segment.4 Figure 3.5 shows

how bidirectional overlap enables the model to predict F0 values in an appendix.

Earlier in this chapter, we mentioned that our core goal for GENIE is that it be used as an

intonational analysis and synthesis tool for the English language. Therefore, for making GENIE a

practical tool, we consider two terms that are not assumption but are more like guiding principal.

• The number of parameters should be minimal, and each parameter should be meaningful.

The degrees of freedom of a model refers to the number of independent free parameters required to

control the model for data estimation. When considering a model that fits to data, it is common

4Even though all accent curves are contributed due to sixth assumption, but just the first accent curve has any
real influence.
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Figure 3.5: Letting an accent curve span the entire intonational phrase in both directions (bidi-
rectional overlap) results in more accurate estimation of F0 values in the appendix by GENIE.

practice to pay attention to three things. 1) Higher degrees of freedom implies better fit but de-

creases generalizability of the model. 2) If the size of the database is small, meaningful parameters

will be more beneficial. 3) Parameters should be independent (highly correlated parameters con-

tain redundant information). Building an efficient yet accurate and predictable parametric model

is not easy. If GENIE satisfies these conditions, it would make it a practical tool for synthesizing

English intonation.

• The model should be able to quantitatively capture all intonational patterns in English.

In order to make GENIE a practical intonational analysis tool two goals must be satisfied at the

same time. First, GENIE’s component curves should be linguistically descriptive. The general

shape of GENIE’s component curves are adapted from GLAM, and their validity has been tested

in many research projects [164, 169, 166, 72, 136, 137]. Second, GENIE should decompose a

given F0 contour into linguistically meaningful component curves. As discussed above, not all

decomposed component curves are meaningful, even if they add up to a very accurate estimation

of the F0 contour. If GENIE satisfies these goals, it should be able to quantitatively capture all

intonational patterns in English, which makes it a useful tool for analyzing English intonation.

3.2 GENIE model methodology

In the previous section we summarized the underlying assumptions of GENIE that lead us to its

creation. In Section 3.2.1 we discuss the mathematics behind GENIE’s component accent and

phrase curves. Then in Section 3.2.2, we introduce a way to implement GENIE.
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Statements

Yes/No Question

Multi-feet phrase curveOne-foot phrase curve

Figure 3.6: Each green line represents a phrase curve which indicates the general underlying F0

contour for any type of utterance. Each black two-headed arrow shows how a specific parameter
can change while other parameters kept unchanged.

3.2.1 Component curve classes

The proposed GENIE model is a superpositional-based intonation model that decomposes a con-

tinuous F0 contour — interpolated in unvoiced regions — into two component curve classes: phrase

curve and accent curve classes.

Phrase curve class: a phrase curve consists of two connected linear segments, the first from the

phrase start (ts) to the start of the final foot in the intermediate phrase (tf ), and the second

from the latter to the end point of the last voiced segment of the intermediate phrase (te).

The phrase curve does not account for how the F0 changes to mark the end of the intermediate

phrase. For these three time points, we associate three parameters ps, pf , and pe to represent

the phrase curve value. The phrase curve is constructed by linear interpolation between the

three parameters (Equation 3.2). Please note that in an intermediate phrase with only one

foot the phrase curve can be calculated by linear interpolation between the two points (ps,

pe).

P (t) = interpolate(ps, pf , pe) (3.2)

This definition satisfies Assumptions 1-3, 1.1, and 3.1; however, in order to satisfy Assumption 7,

some limitations on phrase curve class parameters are required. The phrase curve class represents

the general underlying movement of the F0 contour: 1) in statements, the phrase curve is a

descending curve function. Therefore, ps ≥ pf ≥ pe. 2) In yes-no questions, the final phrase curve

is an ascending curve function. Therefore, ps ≤ pf ≤ pe. Figure 3.6 shows all possible movements

for the phrase curve parameters. Each plot represents how a specific parameter can change while

other parameters are kept unchanged. For example, the top-left plot shows that ps can have a

value equal or higher than pe. Therefore, the phrase curve is allowed to be either a horizontal

curve or a pure descending curve.

Accent curve class: Accent curves are described by certain parametric curves. In order to satisfy



CHAPTER 3. GENERALIZED INTONATION MODEL FOR ENGLISH (GENIE) 57

Assumptions 1.1, 2.1, 4, 5, and 7 and also motivated by the two guiding principles, we use a

combination of the skewed normal distribution and a sigmoid function to model three different

types of accent curves. First, the skewed normal distribution is employed to model rise-fall

accents that occur in non-final positions as well as in final positions in statements (f(t) in

Equation 3.3). Second, a sigmoid function is used to model the rise at the end of a yes-no

question (g(t) in Equation 3.4). And, third, the sum of the skewed normal distribution and

the sigmoid function is used to model continuation accents at the end of a non-utterance-final

intermediate phrase (h(t) = f(t) + g(t)).

f(t) = C
2

ω
φ(
t− ξ
ω

)Φ(α(
t− ξ
ω

)) (3.3)

g(t) = D
1

1 + e−β(t−γ)
(3.4)

In Equations 3.3 C, ω, ξ, and α represent the amplitude, scale, location, and skewness of the

rise-fall accent curve, respectively. In Equations 3.4 D, β, and γ indicate amplitude, slope, and

location of the yes-no question accent curve, respectively. Figure 3.7 shows the effect of a change

in one parameter on the shape of the rise-fall accent model (f(t)), while other parameters are kept

unchanged. In comparison, in each plot the darkest curve represents the normal distribution (by

setting C = 1, ξ = 0, ω = 1, and α = 0 in f(t)).

Since this model is a superpositional-based model, the F0 contour of a one-phrase utterance

results from an overlay of component curve classes (Equation 3.1). The accent curve class (A(t))

is formulated below in Equation 3.5 where n is the total number of feet in the intermediate phrase:

A(t) =

n∑
i=1

Ai(t) =

n−1∑
i=1

fi(t) +An(t) (3.5)

An(t) =


fn(t) statement

gn(t) yes-no question

fn(t) + gn(t) non-utterance-final intermediate phrase

(3.6)

Even though accent curve types are separated by their position i (in Equation 3.5) in an inter-

mediate phrase and intermediate phrase type (e.g., statement vs. yes-no question in Equation 3.6),

they are a function of t not a subsegment of t. This allows for bidirectional overlap between accent

curves. Therefore, the parameters of a specific accent curve are proportioned to a specific foot but

it spans across the entire intermediate phrase.
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Figure 3.7: Each plot represents the effect of changing a specific parameter of a rise-fall accent
curve while other parameters are kept unchanged. The darkest curve in each plot represents the
normal distribution.
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3.2.2 A Decomposition Implementation for GENIE

Decomposing an F0 contour into its component curves is core to any superpositional approach

including GENIE; however, there are many ways that this decomposition can be implemented.

Below, we outline two ways that an implementation can be done.

In general, every decomposition method is actually a curve fitting problem, in which a math-

ematical function (Y ) is constructed in such a way as to obtain the best fit for the data points

(F0).

F0(t) = Y (t) (3.7)

The simplest technique for solving this fitting problem is brute-force search (or exhaustive search).

This technique considers all combination of candidates (parameters of Y ) to check which combi-

nation results in an exact match. The brute-force search is very easy to implement, but it can be

a time-consuming process; given the length of the utterance, the number of solutions is probably

exponential.

In most speech processing applications, speed is more important than the simplicity of the

implementation. This leads us to look for an approximate solution instead (Equation 3.8).

F0(t) ≈ Y (t) (3.8)

One way to come up with an approximate solution is using an iterative approach, which consists of

the following steps: initializing the parameters of Y , and updating them in each iteration until there

is no significant improvement in a cost function. The root weighted mean square error (RWMSE)

is one way to compare the deviations between the observed F0 contour and the estimated one Y .

In Equation 3.9, F0(i) represents the continuous F0 contour with i frames, and w represents a

weight vector. The weight w is computed as the multiplication of the voicing flag and the signal

energy.

RWMSE(X,Y ) =

√∑
wi(F0(i)− Yi)2∑

wi
(3.9)

Below we discuss how we use above iterative approach to decompose an F0 contour for GE-

NIE. This decomposition requires the foot structure of the observed F0 contour, which includes

intermediate and intonational phrase boundaries, as well as the utterance type. By knowing the

foot structure we can constrain the parameters’ search boundaries.

A good initial guess for the parameters would speed up convergence to the optimal solution.
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In order to initialize the phrase curve’s three parameters, we use the actual F0 values as an initial

guess if the speech is voiced at two time points (ts, and tf ). If the start of the phrase is unvoiced,

the initial phrase start value is set to match the pf . The pe is set to match the minimum between

pf and the F0 value at the time point te. These points are adjusted downwards if there are any

F0 values falling under the phrase curve. This prevents optimization from being stuck in the local

minimum. Next, the initialized phrase curve (P0) is subtracted from the F0 contour to obtain the

initial values for the accent curves (Equation 3.10).

Raw accent : R(t) = F0(t)− P0(t) (3.10)

For example, to initialize a rise-fall accent, we compute the skewness (Equation 3.11), the mean

(Equation 3.12), and the variance (Equation 3.13) of the raw accent values (R) in a foot as the

initial values of the rise-fall accent parameters: α, ω, and ξ.

skewness ofR(t) =
4− π

2

(δ
√

2
π )2

(1− 2δ2

π )3/2
where δ =

α√
1 + α2

(3.11)

mean ofR(t) = ξ + ωδ

√
2

π
(3.12)

variance ofR(t) = ω2(1− 2δ2

π
) (3.13)

We use the LMFIT python library (Non-linear least-square minimization and curve-fitting

for Python) [111] to optimize GENIE’s component curves parameters while minimizing the cost

function (Equation 3.9). This library allows for the combination (adding or multiplying) of pre-built

model classes with basic algebraic operations. A python implementation of GENIE is available.5

In addition to this implementation, we have designed a GUI (Graphical User Interface) toolkit,6

that provides a framework for manipulating GENIE’s parameters and visualizing the effects.

3.3 Experiments to show the efficacy of GENIE

In this section, we examine GENIE’s potential to be used as both a synthesis and analysis tool

for English intonation through several experiments. In the first part, we discuss how GENIE can

reduce total number of intonational patterns defined by the ToBI system from 24 to three, and

5Add linke here ???
6Add linke here ???
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in the second part, GENIE is used for objective testing to show it can produce accurate and

linguistically meaningful results.

3.3.1 Linguistically meaningful

In this section, we want to show that GENIE is capable of capturing and predicting all intonation

patterns present in ToBI by only three different accent curves.

For an intermediate phrase consisting of one accented-stressed-syllable (a one-foot intonational

phrase), ToBI can describe 28 different intonational patterns (as described in Section 2.2.1). If our

model can fit accent curves to each of the 28 intonational patterns, while keeping the phrase curve

as a horizontal line equal to the minimum of the F0 contour, then we can claim that the component

curve classes are linguistically meaningful; in other words, GENIE can phonologically represent

English intonation patterns. In the second chapter, we showed that using foot segmentation, the

total number of ToBI intonational patterns can be reduced to 16. In Figure 3.8, we show how

theoretically these 16 intonational patterns can be decomposed into their component curves using

GENIE. Each plot under the “intonational pattern” column represents an individual intonational

pattern used by ToBI under certain combinations of accent tone and phrasal tone in a one-foot

intonational phrase. Each plot under the “component curves” column represents a decomposition

of the individual intonational pattern using GENIE. As we can see, by setting the phrase curve

(green line) to the minimum value of the intonational pattern, an accent curve can capture the

meaningful F0 dynamic pattern of the residual.

We previously discussed that the only concern about foot segmentation is that the appendix,

a sequence of phrase-initial unstressed syllables, is ignored under this segmentation, while in the

ToBI system the appendix is differentiated through a less prominent tone in a bitonal accent type

(e.g., an L tone in a L+H* accent tone). In Section 3.1.2, we argued that an appendix does not

show as much pitch movement in an accented-stressed-syllable, but that does not mean that the

pitch movement in an appendix is unspecified. According to Assumptions 5, 6 and 7, GENIE

predicts the pitch movement in the appendix without assigning a specific accent curve to it, and

it does it by allowing accent curves to span the full length of an intermediate phrase (Figure 3.5).

We show GENIE’s ability through the same two examples as in Section 2.2.3

First, consider a one-word single-phrase utterance with a stressed-syllable at the beginning,

e.g., “no”. In Figure 3.9, one speaker produces the word “no” under five ToBI accent types in a

continuation phrase (L-H%). As we discussed in Chapter 2, under foot segmentation only three

accent types can occur (H*, L*, and L*+H) since there are no unstressed syllables before the
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Figure 3.8: Decomposition of all intonation patterns used by the ToBI system under foot segmenta-
tion. In each intonational pattern, the theoretical pitch movement of a target tone is illustrated by
a short black horizontal solid line. The starred target tone (pitch movement of stressed-syllable) is
differentiated from other tones by a bold solid line. The red lines represent the theoretical smooth
pitch contour. Next to each intonational pattern, there are the theoretical component curve classes
of the proposed model: the green line represents the phrase curve and the magenta line represents
the accent curve.
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Figure 3.9: Decomposition of two words “meNOmonee” and “NO” for the five accent types in
a continuation phrase(L-H%). The red lines represent the estimated pitch contour, green lines
represent the estimated phrase curves, magenta lines represent the estimated accent curves. The
raw pitch is represented by blue dots.
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prominent syllable to carry the unstarred tone in two cases L+H* and H+!H*. Interestingly, all

these five different ToBI accent types can be represented by only a continuation accent type due

to the inherent flexibility of GENIE’s accent curve formulation that is based on skewed normal

distribution and sigmoid function.

Second, consider a one-word, single-phrase utterance with at least one unstressed syllable at

the beginning, e.g., “menomonee.” In this example, the foot starts at the stressed syllable “-no-”

and ends at the end of the intonational phrase, therefore again only three accent types can occur

(H*, L*, and L*+H) under foot segmentation. In Figure 3.9, the same speaker produces the

word “menomonee” under five different ToBI intonation patterns. As we can see, even though the

pitch values under the appendix are not part of the foot, GENIE can accurately predict them and

capture the F0 dynamics of the intonation pattern due to its strong assumptions. The same logic

can apply for the five other intonational phrase types (Figure 3.8).

In this section, first, we showed that GENIE is capable of capturing and predicting all intonation

patterns present in the ToBI system. Second we showed that GENIE can represent all 28 different

ToBI intonational patterns by only three different accent curves (in Equation 3.5) due two reasons:

1) flexibility of component curve to capture any F0 dynamics 2) extension of accent curves to

the full length of an intermediate phrase. This implies that considering 28 different intonational

patterns for an intermediate phrase consisting of one accented-stressed-syllable is not necesseray,

and they are all variation of three different accent curves. Further in Chapter 4 and Chapter 6, we

use GENIE’s ability of decomposing a F0 contour into linguistically meaningful component curve

as an analysis tool in variety of tasks.

3.3.2 Objective evaluation

We evaluated GENIE’s potential in producing accurate and linguistically meaningful results. First,

we start with the simplest scenario when the corpus contains only synthetically generated F0 curves.

Second, we consider a corpus of all-sonorant utterances. Finally, we consider a more challenging

scenario when the corpus contains recordings of one child spoken in four different emotions. The

Root Weighted Mean Squared Error (RWMSE) was extracted between the observed F0 values and

the estimated values. In experiments 2 and 3 we compared the performance of GENIE and PRISM

(on the corpora for which comparable data are available).
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3.3.2.1 Decomposing synthetic intonation contours

The first experiment with the implementation of GENIE was a proof-of-concept using synthetically

generated F0 contours. The contours were generated using a text-to-speech system that used

GLAM to generate F0 contours. We generated synthetic curves for 229 sentences present in the

CSLU Emphasis Protocol [110]. This protocol was designed to elicit F0 contours produced with

various linguistic and prosodic features. It prescribes which syllables are accented, where each foot

starts and ends, and where phrase boundaries occur. Finally, each utterance in the protocol has

a target word that is spoken with a prescribed degree of emphasis. The protocol systematically

varied the accent type (standard vs contrastive), the sentence type (declarative, wh-question, or

yes-no question), the number of syllables in the foot (1, 2, 3 or more), and the phrasal position of

the target word (initial, medial, or final). Here is an example with foot boundaries marked with

brackets and the target word marked in all-caps: [Will we] [really know] [MARIO], [when we’re

in] [Maine?]. For each F0 contour in the date, we apply the implementation of GENIE and then

calculate RWMSE between the F0 contour and the GENIE’s estimated F0 contour; it results in a

very small overall RWMSE of 1.4307 Hz for whole data.

While humans can hear very fine distinctions between two pure tones when listening to them

sequentially at a short time interval, in a longer sentence this type of error is not noticeable.

Klatt notes that subjects could hear a 0.3 Hz difference in a constant F0 contour, but when the

synthetic F0 contour is a linear descending ramp (32 Hz/sec) the just-noticeable difference slips

to 2.0 Hz [73]. Comparing perceived intonation in two sentences, ’t Hart [152] found that there

is significant variability in the subjects’ sensitivity to intonation differences. Some subjects are

able to perceive differences of 1.5 - 2 semitones where others were only able to hear differences

when the intonation was more than 4 semitones apart. They conclude that only differences of

more than 3 semitones play a part in communicative situations. As we discussed in Section 2.6,

semitones are measured on a perceptual scale and the actual frequency difference depends on the

frequency range. Suppose the base frequency is 200 Hz, then a 2 semitone difference corresponds

to a frequency differential of 24 Hz. But if the base frequency is really high, say 800 Hz, then the

same 2 semitone differential corresponds to a frequency differential of 97 Hz.

The slight discrepancy between the generated accent curves and the decomposed curves is due

to the fact that the accent curves generated by GLAM are asymmetric curves coupled together

via cosine interpolation, whereas GENIE uses a smooth skewed normal distribution. Not only do

we suspect that this discrepancy is inaudible, we also suggest that the skewed normal distribution

can provide accurate approximations to a broader range of curves.
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3.3.2.2 Decomposing all-sonorant speech

This experiment involves actual recordings using all-sonorant speech from the same CSLU Empha-

sis Protocol. One male speaker spoke a subset of 61 sentences in this protocol. The recordings are

forced-aligned to the phonemes using the CSLU Toolkit [57]. We used the YAAPT algorithm [197]

to extract F0 values. We applied linear interpolation between voiced areas to replace the unvoiced

areas. In this experiment, we compared the performance of GENIE with that of PRISM. The

RWMSE for decomposition using PRISM was 5.40 Hz [106]. We use a similar methodology as

in the previous section. The overall RWMSE for GENIE was 2.37 Hz. We applied a one-sample

two-tailed t-test to determine whether this difference was significant. The results showed that

GENIE performed significantly better than PRISM (t(60) = 4.21, p < 0.05).

3.3.2.3 Decomposing recordings with voiced and unvoiced speech sounds

In the previous experiments, F0 values were available for all frames in the speech recordings, so

that we could apply GENIE on continuous F0 contours. A challenge for intonation decomposition

of natural speech recordings is the presence of unvoiced regions and pauses where there are no F0

values, and segmental perturbations. A common way to solve this issue is to use linear interpolation

between voiced areas to fill in unvoiced areas. One side-effect of having unvoiced segments in speech

is that an unvoiced phoneme preceding a voiced phoneme can cause a segmental perturbation at

the start of the voiced phoneme, where the observed F0 values are slightly higher than they should

be [136]. Thus, linear interpolation will give suboptimal results. In order to test GENIE on a

speech corpus with voiced and unvoiced segments and compare it directly with PRISM, we use the

CSLU affect corpus [72]. This corpus was not specifically designed for synthesis purposes, but was

created to study different prosodic and spectral variations using the same affect-neutral text for

each sentence spoken in four different affects (Angry, Fearful, Happy, and Sad). One female child

actor reading a total of 24 sentences in each affect (96 utterances total). The sentences are fairly

short, consisting of a single phrase and 2-5 words in a phrase. The correct affect was prompted

by vignettes that preceded each sentence. For this particular speaker, the F0 ranges from 200-800

Hz.

Figure 3.10 represents the intonation decomposition of the sentence “She was taking a bath”

into the component curves for the four affect types based on the proposed model versus PRISM.

PRISM detects negative accent curves for two types of affects: Fearful, and Sad. The negative

accent in the first foot of the Fearful sentence makes it a slightly better fit between the actual

F0 values and the decomposed values. However, there are doubts regarding the use of negative
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Figure 3.11: The RWMSE of GENIE vs. PRISM in Hz.

accents in American English.

The RWMSE for GENIE and PRISM are shown in Figure 3.11. GENIE performs better than

PRISM for all of the affects. The average difference between the RWMSE of the two methods

is 9.16 Hz. We applied a one-sample two-tailed t-test to determine whether this difference was

significant. The results showed that GENIE performed significantly better (t(95) = 2.22, p =

0.027). The frequency range of the angry and fearful utterances cover the entire frequency range

of the speaker (200 Hz-800 Hz) and there are a few points specifically around each accent peak

that have more effect on the RWMSE. But since F0 perception does not follow a linear scale, F0

discrepancies at higher frequencies are likely to be less audible. Further in Chapter 5, we investigate

GENIE’s ability to decompose and generate high-quality F0 contour through several perceptual

studies.



Chapter 4

Intonation Annotation Using GENIE

In the previous chapter, we proposed GENIE, a foot-based superpositional analysis and synthesis

intonation model for English. We showed that the implementation GENIE was able to decompose

F0 contours accurately for a few different data sets using a limited set of parameters. In this chapter

we demonstrate the use of GENIE as an analysis tool to automatically detect the occurrence of

phrase boundaries and show that it can do so reliably.1

4.1 Motivation

Humans use phrasing to chunk speech into semantic or syntactic units, not only as a natural

by-product of how speech is “computed” by the brain or as a result of limitations of the speech

production apparatus (e.g., running out of breath), but also as a device to make it easier for the

listener to understand the message.

The acoustic-prosodic correlates of phrase boundaries involve both F0 and temporal features.

Phrase boundaries can be produced by, for example, final lowering of the F0 at the end of state-

ments, final rises at the end of yes-no questions, and continuation rises for non-utterance-final

breaks. In the temporal domain, phrase boundaries can be produced by, for example, the presence

of pauses or phrase-final lengthening.

As we discussed in Chapter 2, there are two levels of phrasing: the full intonational phrase

level (intonational phrase), and the intermediate intonational phrase level (intermediate phrase).

An intonational phrase is frequently followed by a pause and it is indicated by strong phrase-final

F0 changes and strong phrase-final lengthening. An intermediate phrase is not indicated by a

pause. The phrasing cues after an intermediate phrase are weaker than phrasing cues after an

intonational phrase.

1This chapter is based on work published in the 9th ISCA Speech Synthesis Workshop [30].

69
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Intonational phrase Intermediate phrase

ToBI tonal marking L-L%, L-H%, H-L%,
H-H%, !H-L%, and

!H-H%

L-, H-, and !H-

ToBI breaking index 4 3

Total Number of Intonational phrase 1 -

Total Number of Intermediate phrase 1 or more 1

Total Number of feet 1 or more 1 or more

Followed by pause Yes, PB+ No, PB− No, PB−

Phrasing cues Very strong Strong Less strong

Lo
ca
ti
on End of statement utterance Yes Yes No

End of Yes/No question utterance Yes Yes No

End of non-utterance-final phrase Yes Yes Yes

Table 4.1: Comparison between two levels of phrasing: intonational phrase and intermediate
phrase. The term “phrasing cues” associates with phrase-final F0 changes and phrase-final length-
ening.

While phrase boundaries involving pauses (PB+, intonational phrases) are relatively easy to

automatically detect, pauseless phrase boundaries (PB−, intonational phrases or intermediate

phrases) are much harder to detect [132]. The two main reasons why PB−s detection is a diffi-

cult task are: 1) F0 contours may pass entirely smoothly through the phrase boundary; and 2)

lengthening is difficult to assess because phoneme durations depend on many other factors besides

the presence of a phrase boundary. For example, a 120 ms schwa (/@/, as in the word “the”) is

relatively long while a 120 ms /aI/ (as in “by”) is relatively short [165].

In the ToBI annotation scheme, there are four break indices, where the two highest indices

indicate phrasing. An intermediate phrase (break index 3) is associated with a monotone boundary

tone (L-, H-, and !H-) while an intonational phrase (break index 4) is associated with a bitonal

boundary tone (listed in Table 2.2). An intonational phrase consists of one or more intermediate

phrases where each intermediate phrase consists of one or more feet. Table 4.1 summarizes the

differences between intonational and intermediate phrases.

As mentioned previously, it is not easy to detect phrase boundaries when they are not followed

by a pause (especially when dealing with intermediate phrases). Agreement among human labelers

or between the human and automated labelers is not very high for this task. This is less the case

for a phrase boundary involving a pause [132]. A common solution is to hire an expert to label the

data, but inter-rater reliability among experts might be low as different experts may use different



CHAPTER 4. INTONATION ANNOTATION USING GENIE 71

acoustic cues to decide on the labeling. One solution is to hire more experts and use their mutual-

agreement as ground truth; however, expert annotations are costly and time-consuming to collect.

It would be ideal if we had an automatic annotator that results in accurate correct prediction

regardless of speaking style. As we showed in previous chapter, the implementation of GENIE

results in highly accurate estimation of F0 contour; assuming the given inputs (foot structure,

phrase boundary, and raw F0 contour) are accurate. This led us to hypothesize that GENIE has

a potential to be used for this task in evaluating flexibility of GENIE in capturing meaningful and

underlying intonation patterns.

In order to use GENIE to determine the best phrase boundaries for a sentence, we could

generate all possible phrase boundaries for the sentence by considering occurrence/non-occurrence

of PB− after each word. We then could use GENIE to find which variation resulted in the lowest

error with respect to the model; however, considering all possible phrase boundaries results in an

exponential number of variations for a sentence.

Rather than solving this problem, in this chapter we are going to take a simpler approach. We

limit the search space of variations by using a labeling method that over generates PB− candidates

for a sentence. Then, we generate number of phrase boundaries for the sentence by considering

occurrence/non-occurrence each of those PB−s. For a better comparison, we use three labeling

methods to constrain the PB− search space.

The aim of this chapter is to use GENIE as an analysis tool to improve the detection of

pauseless phrase breaks by filtering out incorrectly placed pauseless phrase breaks by a labeler or

an automatic labeling system. As such, we are proposing a hybrid method that constrains the

PB search space, and filters out the false positives by using GENIE. We also investigate using a

duration model to further improve the results.

We propose a framework that combines GENIE with a duration model to improve the phrase

boundary assignment driven from a labeling methods. In Section 4.2, we use three labeling methods

to constrain the PB search space. Each method results in a phrase boundary assignment for a

given sentence, by determining which word in the sentence is followed by a phrase boundary. In

Section 4.3, we use GENIE to determine which phrase boundary assignment provides the best fit

of the model. In Section 4.4, we use a duration model that measures pre-boundary lengthening

by predicting the duration of a vowel based on all factors known to affect vowel duration, but

excluding boundary related factors. Then, we combine GENIE and the duration model to improve

the detection of PB−s. Finally, in Section 4.5, we introduce a method to derive a ground truth.
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4.2 Constraining the Phrase Boundary Search Space

In order to avoid the very large space of possible boundary assignments for a given sentence,

we limited the search space using three labeling methods: Expert, Festival, and a combination of

both. For each method, in addition to phrase boundaries, pitch accents have also been determined,

as they are used for creating foot structure which is needed in GENIE to model the surface F0

movements.

Expert: Two linguistically informed experts manually indicated phrase boundaries.2 They each

separately used Praat [13] for annotating pitch accent labels and phrase boundary labels.

They also had access to phonetic transcriptions and segmentation (e.g., phoneme, syllable,

and word boundaries). Then we used they mutual agreement on pitch accent labels and

phrase boundary labels as a final outcome of this method.

Festival: Festival was used to predict pitch accents and phrase boundaries. It predicts phrase

boundaries at the word level based on an algorithm presented in [11]. It also predicts pitch

accents at the syllable level. The pitch accent labels were moved to the word level, such

that if one syllable of a word is accented then the whole word is accented. Only textual

information was used for this prediction without any acoustic or prosodic information. We

placed a period after any word which was followed by a pause, before feeding text to Festival,

in order to have the same PB+ as the original speech.

Combination of Festival and Expert (Comb): We combined phrase boundary and pitch

accent labels from Expert and Festival by considering the union between the two. Our

objective behind this method is that by giving a bit more possible PB, we might reduce the

number of true negatives (present of PB that was missed by Festival or Expert method).

Pitch accent labels in this method are obtained via the union of Expert pitch accent labels

and Festival pitch accent labels. PB−s are also obtained via the union of the Expert PB−

labels and Festival PB− labels. These methods are different in terms of pitch accent labels

and the location of PB− labels but they all have the same PB+ labels.

4.3 Using GENIE to Filter out False Positives

In this section, we describe how we use GENIE as an analysis tool to select a specific boundary

assignment for each sentence. Before providing the method’s details, we recall a fact about GENIE

2Author of this dissertation and her adviser were the two experts.
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Algorithm 4.1 Usage of GENIE
Input
St← get Stress label of S from Dictionary
PB ← get Phrase Boundary labels from X
Acc← get Accent labels from X
phrase_boundary_assignments← All combinations of occurrence/non-occurrence PB

Output
Phrase break prediction by XF0

1: Index← 0
2: for PBA in phrase_boundary_assignments do
3: Feet← Get foot structure(PBA, Acc, St)
4: Fitted_F0 ← Fit the F0 model(Feet, Raw F0)
5: Error[Index]← RWMSE(Fitted_F0, Raw F0)
6: Index← Index + 1
7: Inx← Index of lowest Error
8: Report PBA[Inx]

from the third chapter; foot structure and phrase boundaries are GENIE’s requirement. A foot

starts with a stressed-accented-syllable and ends before the next stressed-accented-syllable or with

a prosodic phrase boundary. Therefore, GENIE depends on syllable stress, pitch accent, and

phrase boundary labels. Syllable stress labels are predetermined in English; however pitch accent

and phrase boundary are variable and based on the speaker’s style. Here, for a given sentence, S,

the syllable stress labels are dictionary-based while phrase boundary labels and pitch accent labels

come from each labeling method X (X = Expert, Festival, orComb) as described in Section 4.2).

Now by given the S and the labels from any labeling method in X, we use GENIE to filter out

incorrect occurrence of PB− and report the best phrase boundary assignment.

Algorithm 4.1 shows the required steps to detect PB−s using GENIE, given a sentence S along

with its prosodic labels from X. We illustrate the steps by an example. Consider the S, “I like

cooking rice and kids.”, which received two set of labels (phrase boundary labels and pitch accent

labels) from the Comb.

• Input Phrase Boundary labels (PB) from Comb: I like cookingPB
−
ricePB

−
and kidsPB

+

.

• Input Accent labels (Acc) from Comb: I like cooking rice and kids.

Using the labels, we consider all combinations of occurrence/non-occurrence of PB− labels. We

call these combinations for a given sentence phrase boundary assignments.

1. I like cookingPB
−
rice PB

−
and kidsPB

+

.

2. I like cooking ricePB
−
and kidsPB

+

.
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3. I like cookingPB
−
rice and kidsPB

+

.

4. I like cooking rice and kidsPB
+

.

Then for each assignment, we generate the foot structure with respect to the Acc labels and stress

labels.

1. [I like] [cooking]PB
−
rice PB

−
and [kids]PB

+

.

2. [I like] [cooking rice]PB
−
and [kids]PB

+

.

3. [I like] [cooking]PB
−
rice and [kids]PB

+

.

4. [I like] [cooking rice and] [kids]PB
+

.

Foot structure in the first assignment is not valid since it consists of a prosodic phrase with no foot

(rice PB−): we discard the first assignment. For the three remaining assignments (2, 3, and 4),

we apply GENIE and then calculate a Root Weighted Mean Square Error (RWMSE) between the

raw F0 and GENIE’s estimated F0 contour. At the end we determine the best phrase boundary

assignment using a goodness of fit measure (the lowest RWMSE). Let say the second assignment

results in the lowest RWMSE, it means using GENIE we determine that the Comb incorrectly

placed a PB− after the word “cooking” for the sentence S.

• Input Phrase Boundary labels (PB): I like cookingPB
−
ricePB

−
and kidsPB

+

.

• Output Phrase Boundary labels: I like cooking ricePB
−
and kidsPB

+

.

By applying GENIE to the Expert, Festival, and Comb assignments, we can in principle filter out

the incorrect PB−s. We call these methods: ExpertGENIE , FestivalGENIE , and CombGENIE .

4.4 Using a Duration Model to Filter out False Positives

As mentioned in Section 4.1, phrase-final lengthening is a well-established prosodic cue for phrase

boundaries, with some of the earlier work reporting lengthening at many types of boundary (e.g.,

[74]), not just at the boundaries considered by ToBI. We use a simple model from literature that

expressed vowel duration as a sum of product terms, with each component of a product depending

on a specific factor (e.g., stress, post-vocalic consonant) [74]. Special cases of the sum-of-products

model include the additive model (each product term has just one factor) and the multiplicative

model (a single product term containing all factors). Using this model, it was shown that phrase-

final lengthening is largely confined to phrase-final syllables, with much weaker lengthening for
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earlier syllables [165]. We therefore confine our duration modeling to vowels in phrase-final syllables

of each potential phrase boundary.

The duration of a vowel depends on many features in addition to the position in the phrase.

The sums-of-products model was used to take into account these factors in order to evaluate the

presence of lengthening. We fit the additive version of the model using the following features:

the current phoneme whose duration is of interest, next phoneme, previous phoneme’s stress label

(binary), current syllable’s stress label (binary), and current word’s accent label (binary). The key

is that we did not include position in the phrase as a feature in this prediction. Also note that we

exclude both sentence-initial and sentence-final vowels, since this would confound the parameter

estimates for the features included in the analysis.

By letting Di
Obs be the observed duration of the ith vowel in a sentence and Di

Pre the predicted

duration using the duration model, we define the ratio of the observed duration to the predicted

duration of the vowel as Ri = Di
Obs/D

i
Pre. Then, we extract a sequence of ratios, normalized per

sentence (Equation 4.1).

Sig=

{
Ri

Median{Rj |j /∈ PB}
| i ∈Sentence′s vowels

}
(4.1)

Thus, the sequence Sig is a vector that, by construction, provides hints about which vowels

may be lengthened, and thus about possible phrase boundaries. After extracting the Sig vectors

for all sentences for each of the six approaches (three labeling methods, and whether or not F0

information was used), a logistic regression model [122] is trained to predict the phrase boundary

assignments. In each case, we split the data into 10 partitions and applied 10-fold cross validation.

When we present the results in Section 4.6, we will distinguish methods that use this duration

modeling with the suffix “Dur”. We note, however, that the estimation of the duration parameters

and hence of Di
Pre was not part of the cross-validation procedure. However, given the extremely

small number of parameters compared to vowel tokens (30 compared to over 2,500), the risk of

over-training was minimal.

4.5 Ground Truth

As we discussed at section 4.1 it is difficult to come up with a correct phrase boundary assignment

for a corpus, which also makes it difficult to come up with the ground truth. For this chapter we

define ground truth in the following manner. We use a group of native speakers of English and

their majority vote as the ground truth. Our assumption – for preferring a group of speakers over
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an individual – is that if a pauseless phrase break cannot be perceived by majority of these native

speakers then it is not strong enough to be considered as a phrase break even though an expert

might argue that there is some evidence in occurrence of a pauseless phrase break.

We used Amazon Mechanical Turk [15] with native speakers of English (master participants

who have approval ratings of at least 95%). Their task was to determine the location of phrase

boundaries in a sentence, regardless of phrase boundary type. At any given trial, the turkers were

presented with the text displayed in normal, horizontal format, accompanied by a vertical list of

the words, displayed in the same order, and each word followed by a button. They also listened

to the audio of the text and had an option to replay. The task was to click on any words that the

turker thought that should be followed by a comma or period.

The reference phrase boundary assignment for a given sentence is calculated by majority vote.

A PB after a word in the sentence is included if more than half of turkers click on this word.

4.6 Experiments

In this section, we evaluate the potential of GENIE as an analysis tool to filter out false positives

in order to improve PB− detection. In Section 4.6.1, we introduce the corpora that we used.

This corpora consists of two types of speech data, read speech and prosodically rich speech. In

Section 4.6.2 we evaluate our assumption about generating the ground truth. We discuss in what

degree turkers were reliable by measuring how much agreement exists in the labels given by various

turkers. In Section 4.6.3, for each speaker, we extract phrase boundary assignments of each sentence

via each labeling method X (X = Expert, Festival, or Comb). Then, we filter out false positives

of these assignments using GENIE (XGENIE), the duration model (XDur), and GENIE and the

duration model (XDur
GENIE). In total, we compare 12 assignments with the ground truth for each

sentence.

One way to evaluate these comparisons is by reporting the percentage of correct predictions.

However, in this case the percentage of correct predictions is a biased measure since we are dealing

with an unbalanced database. The unbalanced data is when the positive cases (i.e., appearance of

a PB− after a word) are much lower than the negative cases since roughly 90% of words are not

followed by a phrase boundary. Analysis of the unbalanced data often results in a large number of

false positives, that is, words wrongly identified as a word followed by a PB−. Therefore, we use

the F1 score (Equation 4.2) as a performance measure, since it gives equal importance to precision

and recall. In addition, PB+s are not considered in the results of this study since the location

of all PB+s are the same for all methods (i.e., all the phrase boundaries involving a pause are
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correctly detected by all methods and turkers).

F1 = 2× precision× recall
precision+ recall

=
2TP

2TP + FP + FN
(4.2)

4.6.1 Corpora

Prosodically Rich Database (PRD): we used a prosodically rich database. In this corpus

100 sentences were selected from the AP Newswire (years 1988-1990), automatically were

annotated in terms of factors relevant for duration prediction [165] and greedy methods were

used to select text with maximal coverage of the resulting feature space [135]. These sentences

contained on average of 19 words. One female American English speaker, who is an experi-

enced voice talent, was given carte blanche as to how to read these sentences as long as her

utterances were affectively and prosodically meaningful, natural, and sounded exciting. All

sentence internal punctuation were removed, and the speaker was instructed to insert phrase

boundaries as judged appropriate; the speaker was not provided any instructions in terms

of whether phrase boundaries should contain pauses or involve specific intonational cues.

The recordings from the speaker were manually phonetically transcribed and time-aligned.

We then followed the exact same procedure for a second speaker except the recordings from

Speaker 2 were manually graphemically transcribed (i.e., slight deviations from the read text

were corrected) but were segmented automatically using the HTK toolkit [193]; no manual

corrections were made in the latter case.

CMU Arctic Speech Database: we also used the CMU Arctic speech database [75]. The

database was automatically labeled via CMU Sphinx using the FestVox labeling scripts. We

used speaker SLT, a US English female. To perform a fair comparison between CMU Arctic

and Prosodically Rich Database (PRD), we wanted to create a collection of sentences most

similar to PRD in terms of phoneme sequences. The CMU Arctic contains 1132 utterances

from speaker SLT. For each sentence in the PRD, we find the 10 best sentences from the CMU

corpus that are most similar in terms of their phoneme sequences using a standard string

alignment algorithm (using the Bio.pairwise2.align function from the BioPython library [21]).

Finally, from this collection of 100 × 10 sentences, which can include duplicates, we extract

one from each 10 best sentences that was most frequent in all 100 × 10 sentences. The

end-product is a set of 100 unique sentences.
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4.6.2 Reliability of the Ground Truth

In Section 4.5 we introduced our process of generating the ground truth; in this section we want

to measure the reliability of the ground truth. For any task in which multiple labelers are used,

labelers might disagree about the observed target (i.e., appearance of a PB after a word). In

order to reduce this issue, we took three precisive steps. First, as described in Section 4.5, we

hired master turkers, who have approval ratings of at least 95%, from Amazon Mechanical Turk.

Second, we randomly select three sentences to be annotated twice. A turker that did not have the

exact same annotation for these three sentences was excluded. Third, we hired 15 unique turkers

for each speaker (the two speakers in the PRD and SLT from CMU).

As described in Section 4.5, in each mode we use majority vote to determine the reference

phrase boundary assignment. For measuring how reliable these references are, we need to assess

the inter-labeler agreement. The inter-labeler agreement indicates the difficulty of the task.

There are a number of measures to estimate the inter-labeler agreement. We apply two of them

to ensure reliability of the ground truth. The simplest measure of agreement is Total agreement,

also known as Accuracy. Accuracy is the number of equally labeled words by different turkers,

divided by the total number of words. In our case, accuracy has a bias towards TN (True Negative,

a word that correctly not being labeled as a word followed by a phrase break). The value of TN

tends to be high since most words are not followed by a phrase break. The second measure is

Occurrence agreement which is not affected by TN .

Occurrence agreement =
TP

TP + FP + FN
× 100 (4.3)

Total agreement =
TP + TN

TP + FP + FN + TN
× 100 (4.4)

In order to assess the inter-labeler agreement, for each sentence, we split the group of 15 turkers

into all possible combinations of two groups with seven and eight members in each (Algorithm 4.2

steps 2-3). We computed the respective unions of the boundary assignments for each group (Al-

gorithm 4.2, steps 5-7), and then computed the group-wise agreement (Algorithm 4.2, steps 8-9)

for these unions measured using the Occurrence agreement (Equation 4.3) and Total agreement

(Equation 4.4). When the turkers are in perfect agreement, the percentage of group-wise agreement

is equal to 100%.

Results of group-wise agreement are presented in Table 4.2. The results show a high agreement

level on average in all five modes. The inter-labeler agreement is higher for the CMU database
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Algorithm 4.2 Intergroup raw agreement
1: for S in Sentences do
2: L← {l1,l2,...,l15}
3: A← all 7-combinations of the set L,

(
L
7

)
4: for subset in A do
5: subsetc ← L - subset
6: C(subset)←

⋃subset
i=1 li(S)

7: C(subsetc)←
⋃subsetc
i=1 li(S)

8: O ← Occurrence agreement(C(subset),C(subsetc))
9: T ← Total agreement(C(subset),C(subsetc))

10: report average of O and T

Total Occurrence

PRD Speaker 1 96.29 80.92

Speaker 2 89.40 79.22

CMU SLT 95.13 87.55

Table 4.2: Percentages of group-wise agreement

than the PRD database with respect to the occurrence agreement measure. One reason is that the

CMU database was used to create a TTS database and the speaker was instructed to pronounce

the sentences in a news reading style.

4.6.3 Results

In this section we give the results of using GENIE and the duration model to improve the phrase

boundary assignments driven from the three labeling methods. For each speaker, we extract phrase

boundary assignments of each sentence via each labeling methodX (X = Expert, Festival, orComb).

Then, we filter out false positives of these assignments using GENIE (XGENIE), the duration model

(XDur), and GENIE and the duration model (XDur
GENIE). In total, we compare 12 assignments

with the ground truth for each sentence. We compare 12 phrase boundary assignments with the

ground truth.

The median F1 scores of the three labeling methods, without use of GENIE or the duration

model, are summarized in top three rows in Table 4.3. In the CMU Arctic database we only

report Festival results, since the labeling results from Expert were identical to Festival. Based

on the results for the CMU Arctic database, we conclude that both Festival and Expert are highly

accurate in PB− detection due to high F1 measure (which also implies on reliability of the ground

truth). As for the PRD database, Expert performs better than Festival. This is undoubtedly due

to the experts having access to all the acoustic/prosodic/textual information. There is no surprise
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PRD CMU

Speaker 1 Speaker 2 SLT

Expert 0.68 0.64 –

Comb 0.40 0.50 –

Festival 0 0.34 0.98

ExpertGENIE 0.95 0.80

CombGENIE 0.50 0.42 –

FestivalGENIE 0.21 0.39 0.88

ExpertDur 0.68 0.50 –

CombDur 0.86 0.50 –

FestivalDur 0.67 0.45 0.5

ExpertDurGENIE 0.90 0.64 –

CombDurGENIE 0.90 1 –

FestivalDurGENIE 0.90 1 1

Table 4.3: This table summarizes median F1 scores for all 12 methods in comparison with
text+speech ground truth for the three speakers.

that Comb performed worse than Expert and better than Festival.

As we discussed in Section 4.3, we used GENIE to select a subset of the PB− to get the best

fit of the F0 contour. In Table 4.3, we can see an improvement on the F1 scores (ExpertGENIE >

Expert, FestivalGENIE > Festival), when the speakers were instructed to pronounce the sen-

tences in an exciting-sounding voice (Speaker 1 and Speaker 2), but it did not improve the perfor-

mance of the Comb method (CombGENIE w Comb). A reason for that is the implementation of

GENIE that we used is an optimization-based method. In the CombGENIE method, the number

of optimization parameters increased by combining PB− labeling of two methods (Festival and

Expert) which caused the model to be overfitted to the F0 contour.

As we discussed in Section 4.4, we used the duration model to select a subset of the PB− driven

from the three labeling methods. The ExpertDur performed worse than the Expert condition. In

the FestivalDur case, we see a significant improvement for the PRD (Speaker 1 and Speaker 2);

however, this improvement could not be found in the CMU Arctic database. A reason for that

might be the complexity of the PRD sentences compared to the CMU Arctic database.

While using GENIE and the duration model individually produced minor improvements, their
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Figure 4.1: This figure summarizes the F1 score of each labeling method X (X =
Expert, Festival, or Comb), and their combination with F0 and duration information (XDur

GENIE)
for the two speakers. Three different colors red, purple, and blue are used to represent results of the
Expert, Comb and Festival methods, respectively. Medians are represented by a solid horizontal
black line.

combination resulted in major improvements especially in the Comb and Festival cases, In Ta-

ble 4.3, compare the numbers in the following pairs: (Expert, ExpertDurGENIE), (Comb, CombDurGENIE),

and (Festival, FestivalDurGENIE). The experts (as well as Festival) are performing at 0.98 for the

CMU Arctic database, and this performance reaches perfection when GENIE and the duration

model were applied. This almost equality of performance with and without GENIE and the du-

ration model implies that the phrase boundaries of the CMU speaker matched the grammatical

phrase boundaries.

Side-by-side box-plots in Figure 4.1 show the distribution of the F1 score of each labeling

method X, and their combination with GENIE and the duration model (XDur
GENIE) for the two

speakers in the PRD database.3 We mentioned earlier that the higher number of PB− candidates

in the Comb method was the reason that Comb performed worse than Expert (in Figure 4.1a, and

4.1b, compare most left red bot-plot (Expert) with most left purple bot-plot (Comb)). However, in

CombDurGENIE , GENIE and the duration model appeared to filter out incorrect PB− assignments,

resulting in better performance by decreasing the False Positives (in Figure 4.1a, and 4.1b, compare

left purple bot-plot (Comb) with right purple bot-plot (CombDurGENIE)). There is no surprise in

Festival’s performance in PRD since only textual information was used for the Festival based

methods (in Figure 4.1a, and 4.1b, compare most left red bot-plot (Expert) with most left blue bot-

plot (Festival)). However, results for FestivalDurGENIE were as good as the results for CombDurGENIE

3We computed the F1 score for each sentence, and these boxplots are the distribution of these F1 scores.
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PRD CMU

Speaker 1 Speaker 2 SLT

(Expert, ExpertDurF0
) 0.007 0.733 –

(Comb,CombDurF0
) 0 0 –

(Festival, FestivalDurF0
) 0 0 0.154

Table 4.4: P-value of Exact Wilcoxon Test between (X,XDur
F0

)

which makes the impact of using GENIE and the duration model for filtering out incorrect PB−

assignments generated from Festival labels more interesting. This suggests that the proposed

model has the potential to detect PB− for a prosodically rich dataset (such as emotional speech)

using only textual information.

We employed the Exact Wilcoxon Test [55] to assess whether the following pairs -– (Expert,

ExpertDurGENIE), (Comb,CombDurGENIE), and (Festival, FestivalDurGENIE) — were from significantly

different distributions (the P-values are shown in Table 4.4). The reason we chose this statistic

over the standard t-test is that we did not meet the normality assumption for some cases. All

pairs are significantly different in term of F1 score distribution except the following two pairs:

(Expert, ExpertDurGENIE) in Speaker 2 and (Festival, FestivalDurGENIE) in CMU.

4.7 Conclusion

In this chapter, we discussed how prosodic information can be used for improving the detection of

pauseless phrase breaks. Pauseless phrase breaks associate with two surface phenomena: phrase-

final F0 changes and phrase-final lengthening. We used GENIE as an analysis tool to automatically

capture the phrase-final F0 changes and a duration model to capture the phrase-final lengthening.

We showed that using these models individually produced minor improvements, while combin-

ing them results in a higher agreement between the labeling method and the ground truth. In

prosodically rich speech, we improved the F1 measure by 0.68, 0.47, 0.10 in a paired comparison

for (Festival, FestivalDurGENIE), (Comb,CombDurGENIE) and (Expert, ExpertDurGENIE), respectively.

An interesting finding was that FestivalDurGENIE was as good as CombDurGENIE . This suggests that

with only textual information and using GENIE and the duration model we are able to filter out

incorrect pauseless phrase breaks for prosodically rich datasets (such as emotional speech, and

spontaneous speech).

The above approach, using GENIE and the duration model, has three advantages. First, it uses

very few parameters, making the method usable in cases where few samples are available. This is
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in particular the case when collecting speech data from special populations, such as dialect groups

or individuals with speech or language challenges. Second, it makes use of global as well as local

information available in an utterance. Third, it may allow us to “connect” this line of research

with linguistics research, because the models are grounded in such research. We will further use

the goodness of fit of the implementation of GENIE in the six chapter to differentiate one speaker

group from another.

We limited the search space by not considering the very large space of possible boundary

assignments for a given sentence. We showed using GENIE and the duration model resulted in

major improvements especially in the Festival, which implies that considering such large spaces

may not be needed after all.



Chapter 5

Intonation Generation and Adaptation in

TTS

In the third chapter, we introduced GENIE as an analysis and synthesis tool for English intonation.

In this chapter, we mainly focus on synthesis and discuss how GENIE can be used as an intonation

generator model for an English Text-To-Speech (TTS) synthesis system.1 In Section 5.2, we

propose two methods for generating intonation for English based on GENIE. The first method

is a data-driven foot-based intonation generator (“DRIFT”). The second method is a foot-based

neural network intonation generator (“FONN”) that maps foot-based features to GENIE’s accent

parameters using a simple Artificial Neural Network (ANN). We then turn to intonation adaption

in Section 5.3. We use GENIE as an analysis tool to extract underlying prosodic characteristic

of source and target speaker, then during test we use GENIE as an synthesis tool to generate

target-specific F0 contours. Finally, in Section 5.4, we give a summary of the main fundings of this

chapter.

5.1 Motivation

Research into the analysis and modeling of speech prosody has increased dramatically in recent

decades, and speech prosody has emerged as a crucial concern for Text-To-Speech (TTS) synthe-

sis. Every TTS synthesis system needs to model prosodic phenomena to provide both natural

and expressive speech. Hence, we want to investigate are the GENIE-based methods capable of

generating more natural-sounding speech compare to baseline; if yes, can we go further and show

the DRIFT method has potential to be used to generate expressing convincing speech.

1This chapter is based on work published in 3 papers [34, 29, 31].

84



CHAPTER 5. INTONATION GENERATION AND ADAPTATION IN TTS 85

The main challenge in generating natural sounding speech is capturing the suprasegmental

properties in F0 movements. For example, in English, standard L+H*L-L% rising peak accents

involve a smooth rise during the course of the accented syllable followed by a descent until the

next accented syllable or phrase boundary [169, 85, 78, 163]. A study by Anumanchipalli explicitly

addressed this issue [6] by considering various phonological units in a statistical parametric speech

synthesis framework, including the frame, syllable, word, accent group, phrase, and sentence.

“Accent group” was defined as a sequence of syllables containing an accented syllable and not

necessarily as a foot, which requires that the first syllable is accented. Anumanchipalli showed that

the best-performing phonological unit in his study was the accent group. However, most HMM-

based synthesizers predict F0 at the frame level using limited linguistic contextual information.

This frame-by-frame prediction of F0 results in an overly-smooth F0 contour that cannot properly

represent the suprasegmental properties of F0 movements. This motivated us to hypothesize that

GENIE has a potential to generate more natural sounding F0 contour than frame-based methods.

We examine this hypothesis in Section 5.2.

One challenge in generating expressive speech is how well an F0 generation method performs

when input text is marked up to create intonation patterns that are not present in the training

data. For example, suppose that one instructs the system, via markup, to convey strong contrastive

stress, can the system create compelling-sounding contrastive stress when the training data do not

contain any instances of contrastive stress? We address this issue in Section 5.2.4.4.

Going further, we also interested to see how GENIE can be used to transfer the perceived

intonational identity of a TTS voice to that of a target speaker? To clarify, in the case of TTS,

the source speaker is the speaker whose recordings were used to generate the acoustic units (for

unit selection approaches), acoustic inventory (for diphone based synthesis), or acoustic features

for HMM or DNN approaches. This speaker’s recordings may also be used as training data for

prosody mimic. Thus, the speech generated by a TTS system generally sounds like the source

speaker. For prosody mimic, the challenge is to compute a transformation that, when applied

to the speech data or to any representations thereof, generates output speech mimicking a target

speaker.

5.2 Proposing a F0 Generation Method for TTS Systems

There are different ways that we can use GENIE in F0 generation. So to be fair, we are ex-

ploring two different ways. After discussing details of the baseline in Section 5.2.1, we propose

two foot-based intonational approaches for F0 generation based on GENIE: DRIFT and FONN
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in Section 5.2.2 and Section 5.2.3, respectively. Then in Section 5.2.4, we compare F0 contours

generated by FONN with the baseline and with DRIFT in a subjective listening experiment with

stimuli created by imposing contours generated by the three methods onto natural speech. In

this test, we also explore the role of sparsity, by comparing test items whose constituent phoneme

sequences, stress patterns, and phrasal structures are well vs. poorly covered by the training data.

This exploration is based on the assumption that FONN and DRIFT are less sensitive to sparsity

than HTS. Since DRIFT uses templates associated with individual curves in the training data,

while FONN computes curves based on multiple observed curves in the training data, we expect

DRIFT to have a relative advantage over FONN in well-covered test data sets because such data

would provide ample stored templates that closely match the test context in terms of the selection

features, but we expect FONN to have a relative advantage over DRIFT in poorly-covered test

data. In a second experiment, we determined the ability of DRIFT to convey contrastive stress.

This served to demonstrate the ability of DRIFT to generate F0 contours from marked-up input

text.

5.2.1 Baseline: Model-driven frame-based intonation generator

Hidden Markov Model (HMM) is a statistical parametric speech synthesis that takes the linguistic

representation of a given text as input and outputs the acoustic features. We use a HMM-based

baseline that is a model-driven frame-based intonation generator for comparison purposes.

5.2.1.1 Intonation model

The multi-space probability distribution (MSD) HMM [102] is a special case of using HMMs to

model observed F0 values. MSD-HMM includes discrete and continuous mixture HMMs to model

F0. The state output probability is defined by an MSD, which is a joint distribution of discrete F0

values and voicing labels [196].

5.2.1.2 Training

We used the HTS toolkit (version 2.2) [199] to perform HMM-based TTS synthesis.2 HTS uses the

Festival speech synthesis architecture to extract a sequence of contextual and phonological features

at several levels, such as, for a given utterance, the phrase, word, syllable, phoneme, and frame

levels. As a result, there are many combinations of contextual features to consider when obtaining

2At the time this research was performed, HTS was the dominant method for statistical parametric speech
synthesis.
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models. HTS employs decision-tree (DT) based context clustering for handling a large number of

feature combinations. The left panel in Figure 5.1 shows independent DT-based context clustering

solutions for F0 and duration, respectively.

5.2.1.3 Synthesis

Synthesis consisted of these steps: A to-be-synthesized sentence was converted into a contextual

label sequence; the utterance HMM was constructed by concatenating the context-dependent state

HMMs given the label sequence; state durations of the utterance HMM were determined [191]; a

sequence of F0 values (one value per frame), including a voiced/unvoiced label, was generated given

the utterance HMM and the state durations.

5.2.2 Data-driven foot-based intonation generator (DRIFT)

In this section, we discuss how DRIFT generates a F0 contour given a text and its duration

information as an input. First in Section 5.2.2.1, we briefly review GENIE, which DRIFT is based

on. Then in Section 5.2.2.2, we describe how we train DRIFT. We build a inventory of parameter

vectors characterizing the individual shapes of GENIE’s component curves; these parameter vectors

are labeled in terms of basic linguistic features. Finally in Section 5.2.2.3, we describe DRIFT

synthesis a F0 contour. For a input text, we generate component curves by retrieving parameter

vectors whose linguistic labels match those of the test and use these vectors to generate F0 curves

with the same duration as those in the test.

5.2.2.1 Intonation model

GENIE was used to decompose a F0 contour. In GENIE, the phrase curve consists of two connected

linear segments, between the phrase start and the start of the final foot, and between the latter and

the end point of phrase, respectively. As we discussed in Section 3.2, GENIE uses a combination of

the skewed normal distribution and the sigmoid function to model three different types of accent

curves. GENIE allows for simple joint optimization of phrase and accent curve parameters using

fewer parameters.

5.2.2.2 Training

For each utterance in the training data (train and test set selection is explained in Sections 5.2.4.1

and 5.2.4.2), we do the following. First, we run Festival to generate accent labels, syllable labels,

and phrase boundaries. Second, we derive the foot structure. Third, we apply GENIE to compute
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the component accent and phrase curves. Fourth, the RWMSE between the accent curve and the

raw accent contour – defined as the raw F0 contour minus the phrase curve – is extracted for

each foot. We exclude any curve that does not meet a certain threshold on fitness error. Fifth,

We create two inventories, one for the accent curves and one the phrase curves, and each uses a

different set of features: FAcc and FPhr, respectively.

The accent curve inventory is created as follows. In contrast with HTS, which uses a large

number of features per frame, we only extract five features per foot: phrase type, foot position

in phrase, number of syllables in foot, onset duration of stressed-accented syllable, and rhyme

duration of stressed-accented syllable. We use the first three features for categorizing the accent

curves, and we will use the last two features later on in synthesis part for retrieving closest accent

curves. We store the vector comprising the estimated accent curve parameters and the values of

OD and RD in the inventory. The inventory contains twelve sub-inventories defined in terms of

the FAcc features AT, Pos, and SNum (middle panel of Figure 5.1). Because the data were not

tagged for yes-no (or any) questions, a yes-no question sub-inventory is not included.

FAcc =



AT : accent type (rise-fall, continuation)

Pos : foot position in phrase (initial,middle, final)

SNum : number of syllables in foot (1, 2, > 2)

OD : onset duration of stressed accented syllable

RD : rhyme duration of stressed accented syllable

The phrase curve inventory is created as follows. Two contextual features are extracted per

phrase: phrase type and number of foot in phrase. We store the vector consisting of the phrase

curve parameters (phrase start, the start of the final foot in phrase, and phrase end) is stored in

the inventory. Note that if a phrase contains just one foot, then the phrase is modeled by two pa-

rameters (phrase start and phrase end). The inventory contains four sub-inventories, differentiated

in terms of the FPhr features, PT and FNum.

FPhr =

 PT : phrase type (statement, continunation)

FNum : number of feet in phrase (1, > 1)

In order to determine wether the 12 sub-inventories differ from each other, we performed a

classification experiment. An RBF kernel based SVM [121] was used to classify each pair of

sub-inventories by using these features: all accent curve parameters plus OD and RD. The F1
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average over all inter sub-inventories for continuation- final is 0.4917. This low F1 score in case

of the continuation class indicates that the accent curve parameters in this category could not be

differentiated through SNum. Therefore, we could ignore SNum and merged the three continuation

sub-inventories into one. For rise-fall the average F1 score for initial, middle, and final were 0.8228,

0.8595, and 0.6325, respectively. These high F1 score show that accent curves varied systematically

as a function of the FAcc features. Therefore, we kept the nine sun-inventories under rise-fall as is.

5.2.2.3 Synthesis

In this method, we run Festival on an input sentence to generate accent labels, syllable labels, and

phrase boundaries. Then, we derive the foot structure, and determine AT, Pos, and SNum for

each foot. The values OD and RD are predicted using forced alignment [159] applied to original

test utterances3. A suitable accent sub-inventory is chosen for that foot by traversing the proposed

DT using the first three features: AT, Pos, and SNum (middle panel of Figure 5.1). We calculate

the Euclidean distance between the OD, and RD of the current foot, and the stored accent curves

in the chosen sub-inventory. The five candidate accent curves with the lowest distance in that

sub-inventory are retrieved. To minimize the differences between successive accent curve heights

in a phrase, we apply a Viterbi search to the sequence of candidate accent curves; the observation

matrix consists of the normalized duration distances and the transition matrix consists of the

normalized accent curve height differences.

For the current phrase, the suitable phrase sub-inventory is chosen by using these two features:

PT and FNum. We use the average of the stored phrase curves parameters in the chosen sub-

inventory as synthetic phrase curve parameters.

5.2.3 Foot-based F0 Generator using Neural Networks (FONN)

In this section, we discuss how FONN generates a F0 contour given a text and its duration informa-

tion as an input. Similar to DRIFT, we use GENIE to compute the component curves. Also we use

similar feature sets as in DRIFT for accent curves. Dissimilar to DRIFT which uses a structured

inventory of accent curve parameters, we use an ANN to compute accent curve parameters. We

describe training and synthesis steps in Section 5.2.3.1 and Section 5.2.3.2, respectively.

3To ensure that the comparison strictly focused on the quality of the F0 contours and was not affected by other
aspects of the synthesis process
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5.2.3.1 Training

Similar to the DRIFT model, for each utterance in the training data we do the following. First, we

run Festival to generate accent labels, syllable labels, and phrase boundaries. Second, we derive the

foot structure. Third, we apply GENIE to compute the component curves. Fourth, we calculate

the RWMSE between the accent curve and the raw accent contour. We exclude any curve that

does not meet a certain threshold on fitness error.

For the fifth step which differs from DRIFT, we store two vectors for each foot, an input and

a target vector. The input vector consists of the features from feature FAcc. We normalize the OD

and RD by foot duration. The target vector consists of the parameters of the accent curve. Before

storing the target vector, we normalize the parameters.

We use the input and target vector to train an ANN. The ANN consists of two layers as shown

in the right panel of Figure 5.1. The input dimension is 10 which represents the first three binary

features in FAcc and the last two features in FAcc. The output dimension is 7 which represents the

accent curve parameters. The hidden layer size is 200. The hidden layer uses a sigmoid activation

function and the output layer uses a linear activation function.

5.2.3.2 Synthesis

Like the DRIFT method (Section 5.2.2.3), an input sentence is segmented into phrases, each phrase

is segmented into a foot sequence, and for each foot the FAcc features are extracted. These feature

vectors are given to the trained ANN sequentially to predict accent curves parameters. We use

the predicted parameters to create accent curves for each foot. In order to create phrase curve, we

use the DRIFT’s phrase inventory by taking average over the stored phrase curves parameters in

the chosen sub-inventory.

5.2.4 Experiments

We ran two experiments to evaluate the performance of the three intonation generation approaches

subjectively: the first test measured the naturalness and the second test measured the ability to

convey contrastive stress. We used Amazon Mechanical Turk [15], with turkers who have approval

ratings of at least 95% and were located in the United States.

5.2.4.1 Database

We use the CMU Arctic speech database [75]. The database was automatically labeled via CMU

Sphinx using the FestVox labeling scripts. We use speaker SLT, a US English female. This corpus
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Algorithm 5.1 Automatic selection of test data
1: for 2000 iterations do
2: A← Choose 50% of database randomly for training set
3: for each token in A do
4: Frq[token]← Extract the frequency of token
5: B ← database - A
6: for S in B do
7: C ← Replace tokens of the S with number from Frq)
8: x1← median of the C divided by maximum of the C
9: x2← number of zeroes in the C divided by totall number of tokens in the S

10: DisWell← Euclidean((1,0)(x1,x2))
11: DisPoor ← Euclidean((0,1)(x1,x2))
12: Well← Choose 50 sentences with lowest DisWell
13: Poor ← Choose 50 sentences with lowest DisPoor
14: wellSET ← Choose 50 more frequent sentences from Wells
15: poorSET ← Choose 50 more frequent sentences from Poors
16: randomSET ← Choose 50 sentences randomly from remaining data
17: trainSET ← remaining data

contains 1132 utterances, which are recorded at 16bit 32KHz, in one channel.

5.2.4.2 Set coverage

In data driven approaches, data sparsity is a pervasive challenge [135]. We want to evaluate the

impact of sparsity on the three methods by using a test data selection algorithm. We create three

test sets that differ in terms of how they are covered by train set. Units used to compute coverage

included the diphone, which is commonly used as a feature for set coverage [79] because it does

not have sparsity of triphone and context independency of phonemes. They also included prosodic

context via syllable (lexical) stress and word accent labels. Thus, each sentence was represented

as a sequence of diphone/stress/accent tokens. We are interest to investigate the effect of whether

train and test set are matched in terms of coverage of those tokens. We created four subsets of

data: trainSET, containing training data; wellSET, containing test data that are well covered by

trainSET ; poorSET, containing test data that are poorly covered by trainSET ; and randomSET,

a random selection from the test data.

We create an algorithm (Algorithm 5.1) to select the four subsets. We randomly select half of

database as a train set (A), and we calculate and store the occurrence frequency of each token.

(Algorithm 5.1 step from 2 to 5). Then, for each sentence in the remaining data (B) we do

followings. First, we replace each token in the sentence with its occurrence frequency value in

A or with zero. Second, we calculate two distance metrics, DisWell and DisPoor, to measure

the sentence coverage by A (Algorithm 5.1 step from 7 to 10). For example, if the sentence is
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well covered by A, we expect to have low DisWell value and high DisPoor value, and vice-versa.

Lower a distance the stronger evidence that how the sentence is covered by A. Third, we choose

50 sentences with lowest DisWell value and 50 sentences with lowest DisPoor value for well test

set and poor test set (Algorithm 5.1 steps 12 and 13).

Since a randomization is involved, we need to repeat the process several times in order to lend

credibility of the data selection. At the end of iterations, we select more frequent sentences of each

sets from all iterations as the final sets (Algorithm 5.1 step from 14 to end).

5.2.4.3 Naturalness test

We ran three separate tests to compare each pair of three synthesis methods (HTS vs. DRIFT,

HTS vs. FONN, and DRIFT vs. FONN). For each pair, we used a comparison test to evaluate the

naturalness of the F0 contours synthesized by the two methods. In this test, turkers heard two

stimuli with the same content back-to-back and then were asked which they prefer using a five-

point scale consisting of -2 (definitely First one), -1 (probably First one), 0 (unsure), +1 (probably

Second one), +2 (definitely Second one). We randomly switched the order of the two stimuli. The

experiment included 50 utterance pairs for each of the three test sets (total 150 pairs). Three

control utterance pairs, which were trivial to judge, were added to the experiment to filter out

unreliable turkers. Each turker only judged pairs from one test set (i.e., poorSET, randomSET,

and wellSET ). We employed a total of 150 turkers.

We evaluated the two approaches by imposing the F0 contours generated by the two approaches

onto recorded natural speech, thereby ensuring that the comparison strictly focused on the quality

of the F0 contours and was not affected by other aspects of the synthesis process. To ensure that the

F0 contours were properly aligned with the phonetic segment boundaries of the natural utterances,

the contours were time warped such that the predicted phonetic segment boundaries corresponded

to the segment boundaries of the natural utterances. Note that the predicted phonetic segment

boundaries were the same for the two approaches. To compute the segment boundaries of the

natural utterances, we used the HTS state durations and phoneme durations. Finally, we used

PSOLA to impose the synthetic contours onto the natural recordings.

Figure 5.2 shows the results of the pairwise comparisons between the naturalness of the F0 con-

tours synthesized by the two configuration pairs (HTS-DRIFT, HTS-FONN, and DRIFT- FONN).

In general, perceptual results indicated superior performance of DRIFT and FONN over HTS.

DRIFT performed better than FONN in random and well coverage cases.
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Figure 5.2: Each of the group bars (poor, random, and well) represent the histogram (in percentage
(left y-axis)) of the related preference points: The five-point scale consists of -2 (definitely first
version), -1 (probability first), 0 (unsure), +1 (probability second), +2 (definitely second). The
dotted line and the confidence intervals correspond to the values (right y-axis) computed via
Equation 5.1.
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HTS vs. DRIFT HTS vs. FONN DRIFT vs. FONN

Poor
t-test t(49) 7.9034 6.7803 -0.6974

p-value *** *** -

Randomization mean 1.3277 0.4120 -0.8512
SD 1.2454 1.2189 0.8353

Random
t-test t(49) 5.9978 5.7140 -2.2792

p-value *** *** *

Randomization mean 1.1718 0.2137 -0.1916
SD 1.0709 1.1669 0.9297

Well
t-test t(49) 4.9139 2.0512 -2.3892

p-value *** * *

Randomization mean 0.6584 0.5868 -0.1571
SD 1.4475 0.9291 1.0863

– p > 0.05 * p < 0.05 ** p < 0.01 *** p < 1.0e-10

Table 5.1: Results of one-sample t-tests [t-value(df), p-value], and mean and standard deviation
(SD) of the randomization-based t-statistic distribution for three pairwise comparisons in three
test sets that vary in how well they are covered by the training data.

For significance testing, we first computed a score for each utterance using Equation 5.1, and

then, separately for each test set, applied a one-sample t-test (Results are summarized in Table 5.1).

In Equation 5.1, j, n, m, and Cji stand for thejth utterance in the current test set, the number of

listeners, the number of utterance in the current test set, and the rating of the ith listener for the

jth utterance, respectively, and || indicates the absolute values.

scorej =

n∑
i=1

(Cji|Cji|)
m∑
j=1

(
n∑
i=1

(|Cji|))
, Cji ∈ {−2,−1, 0, 1, 2} (5.1)

Conventional t-test results for the first and second comparisons (Table 5.1, first and second

rows) show that the scores for DRIFT and FONN are significantly better than those for HTS for

all test sets. The third comparison (Table 5.1, last row) indicates that the scores for DRIFT and

FONN differed significantly from each other for two test sets (random and well), but were the

same for the poorSET. The superiority of FONN over HTS, but not that of DRIFT over HTS, was

reduced in the wellSET.

In order to show the robustness of the t-test results, we also performed a randomization test

for each comparison in each test set. We randomly changed the signs of all ratings, computed

the scores for each utterance, and then calculated the t-statistic. We repeated these steps 2000

times. The means and standard deviations of the resulting distributions are reported in Table 5.1,

confirming the conventionally obtained significance levels. For example, the t-value of the first



CHAPTER 5. INTONATION GENERATION AND ADAPTATION IN TTS 96

comparison (HTS-DRIFT) for the poorSET is far from chance (e.g., 7.9034 deviates by 6.5757

standard deviations from the randomization mean of 1.3277, for a normal t(49) distribution with

mean 1.3277 and SD of 1.2454, this yields a chance level less than 1.0e− 10).

In another experiment, we performed a test in which we compared the systems based on the

impact of coverage. We first computed a difference score for each utterance, defined by the differ-

ence between the scores for the two approaches, and subsequently performed a two-sample t-test

comparing these difference scores between the poorSET and wellSET data. We only found sta-

tistically significant results for the HTS-FONN comparison (t(49) = −3.5675, p = 2.8036e − 4,

one-tailed; these results were again confirmed using a randomization test). This result showed a

powerful significant trend for the impact of coverage to be stronger for the HTS approach than for

FONN. Figure 5.2 (gray curve, right y-axis) also showed the results of comparing the two systems

in terms of the impact of coverage of each test set by the trainSET.

5.2.4.4 Testing the ability to synthesize text marked up for contrastive stress

To evaluate the ability of DRIFT to handle marked-up input, we created a contrastive emphasis

test. First, we selected 22 sentences from the test data that contained a pair of noun-adjective

words for which contrastive stress is meaningful. Then, for each of these sentences, we generated

two utterances such that in each utterance one of the two words was emphasized. For example,

for the sentence “This is a red house”, with capitals indicating stress, we considered “This is a

RED house” and “This is a red HOUSE”. We used DRIFT for generating the F0 curves, and then

implemented a simple rule whereby we increased and decreased amplitudes of the accent curves

associated with the emphasized and non-emphasized words by multiplication with factors of 3 and

0.5, respectively.

In the perceptual test, each turker was asked to imagine the following situation: “Two people,

John and Mary, are having a dialogue; unfortunately, John is not a good listener so that Mary has

to repeat what she just said, emphasizing the word that John— apparently —got wrong. Your

task is to figure out which word John got wrong.” The experiment was administered to 50 turkers

with each turker judging 44 (22 × 2) sentences. The percentage of emphasized words conveyed

correctly was 84.85%. We also applied the same test for a recorded natural voice (female native

American English speaker) for the 44 sentences, and obtained a nearly identical accuracy of 85.15%.

We concluded that DRIFT’s ability to convey contrastive stress is comparable to that of natural

speech.
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5.3 Proposing an F0 Adaptation Method for TTS Systems

In this section, we propose a new intonation adaptation method to transform the perceived in-

tonational identity of a TTS voice to that of a target speaker with a small amount of training

data. For modeling intonation, we use GENIE that captures F0 contours with a small number of

parameters at two levels: the foot level and the phrase level. For generating F0 contours, we used

the DRIFT method which is based on GENIE. Because the number of parameters to be estimated

is relatively small, it is feasible to adapt the speaking style using any mapper function, such as the

Joint distribution Gaussian mixture model (JDGMM). We compare our proposed method with

a baseline adaptation method in which the source F0 contour is transformed linearly such that

the per-utterance mean and variance of the target F0 contour is unaltered; yet, this generated

F0 contour still has the dynamics of the source F0 contour. Thus, in this part we address two

questions. First, is adapting just the mean and SD enough? And, if not, does DRIFT succeed in

capturing extra, dynamic information that is lost in the linear transformation approach?

In Section 5.3.1, after introducing the baseline we briefly review JDGMM. Then in Section 5.3.2,

we discuss how we train the JDGMM mapper, and how we use this mapper on the estimated

source and target component curves derived from DRIFT to generate target F0 contour. Finally,

in Section 5.3.3, we ran two subjective listening experiments (speech similarity and speech quality)

to study the performance of the two methods for two male target speakers.

5.3.1 Intonation Mapping

5.3.1.1 Baseline: Mean-Variance Linear Mapper

In Voice Conversion (VC) and TTS literature, it is often assumed that the F0 mean and stan-

dard deviation (SD) are adequate to capture prosodic style [148]. The most common method for

transforming F0 values is to globally match the average mean and SD of the target speaker’s F0

contour, while maintaining the dynamic intonation pattern of the source. With this assumption,

intonation can be transformed by mapping log − F0 using a linear transformation, where µ and σ

represent the average mean and SD of the log − F0 of the training set [18].

Fmimicked =
σtarget
σsource

(Fsource − µsource) + µtarget (5.2)

For the baseline method, we used a slightly different linear transformation in which the baseline

does not have a training stage. Therefore, in the baseline method µ and σ represent the mean

and SD of the original utterances of the test set. This assumption gives the linear model a strong
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opportunity to overfit the target speaking style in a given sentence, making it in principle more

effective than the average-mean-and-SD linear mapper.

5.3.1.2 Joint Distribution GMM Mapper

In this section, we present a brief overview of the GMM mapping function [63]. Let X = x1, ..., xn

and Y = y1, ..., yn be sets of parameters vectors for n segments (foot or phrase in the case of

mapping accent parameters or phrase parameters, respectively) from the source and target model.

Note that each vector is normalized using the maximum and minimum values of X and Y . Let

Z = [X,Y ] be the joint source-target parameters vector. A GMM represents the distribution using

M multivariate Gaussians;

P (z) =

M∑
m=1

αN(z;µm,
∑
m

)

where N(z;µm,
∑
m) is a normal distribution with mean µm and covariance

∑
m of component m.

The prior probability of the component m is represented by αm. The parameters of the GMM are

calculated using the Expectation Maximization (EM) algorithm on the joint vector Z.

During transformation, for each component, we estimate the weighted mixture of the maximum

likelihood estimator of the target vector given the source vector for each component;

ŷi(xi) = E[Y |X = xi] =

M∑
m=1

ωxm(xi)[µ
y
m−

xy∑
m

xy−1∑
m

(xi− µym)]

where ωxm(xi) is a posterior probability that the segment xi belongs to the class described by the

component m.

ωxm(xi) =

αmN(xi;µ
x
m,

xx∑
m

)

M∑
k=1

αkN(xi;µxk,
xx∑
k

)

5.3.2 Intonation Adaptation

5.3.2.1 Mapper Training Procedure

The aim of F0 adaptation is to predict the intonation style of the target speaker with a small

amount of parallel training data, since otherwise one might just as well obtain a complete set of

speech recordings of the target speaker and avoid the transformation process all together. We

randomly select a small set of recordings (section 5.3.3.1, 28 parallel utterances) from the source
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and target speakers. For each utterance, we apply GENIE to decompose the F0 contour of the

utterances into component accent and phrase curves. We use the estimated source and target

accent curve parameters to train a JDGMM mapper with two components (M = 2). This process

is performed similarly for phrase curve parameters. Thus, the mapper operates in the parameter

space defined by the DRIFT model and indirectly mapped source F0 contours onto target F0

contours (Top block-diagram in Figure 5.3a).

5.3.2.2 Adaptation Procedure

Similar to the DRIFT model, for an input sentence we do the following. First, we run Festival to

generate accent labels, syllable labels, and phrase boundaries. Second, we derive the foot structure,

and determine AT, Pos, and SNum for each foot. Third, we predict the values of OD and RD

using forced alignment applied to the original utterance [10]. Forth, we retrieve the five candidate

source accent curves with the lowest distance in the selected sub–inventory.

For the fifth step which is not part of DRIFT, we apply the accent mapper to each of those five

candidates to predict five transformed accent curves per foot. At the end similar to the DRIFT

model, we apply a Viterbi search to minimize the differences between successive transformed accent

curve heights in a phrase.

For the current phrase, the FPhr features are extracted. Parameters of the source phrase

are predicted by calculating the average of the stored phrase curves parameters in the selected

sub-inventory. Transformed phrase parameters are estimated by applying the phrase mapper to

predicted source phrase parameters. (Figure 5.3b)

5.3.2.3 Synthesis Procedure

During synthesis, for an input sentence we do the following. First, we apply the mapper to the

source speaker’s DRIFT model parameters (i.e., the parameters that would be used to generate TTS

output during normal operation, see bottom block diagram in Figure 5.3a) to generate predicted

target speaker DRIFT parameters (described in Section 5.3.2.2). Second, we use these predicted

parameters to generate the accent and phrase curves, which are added together to generate a target

F0 contour. Finally, we use this target contour in the process of generating output speech.

5.3.3 Experiments

We ran two tests to perform a subjective evaluation of the intonation generation performance of

the two approaches: the first test measures speech quality and the second test measures speech
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similarity between a stimuli and the target speaker. We used Amazon Mechanical Turk with

turkers who have approval ratings of at least 90% and were located in the United States.

In each test, we evaluated the two approaches by imposing the F0 contours generated by the two

approaches onto recorded natural speech, thereby ensuring that the comparison strictly focused on

the quality of the F0 contours and was not affected by other aspects of the synthesis process. To

ensure that the F0 contours were properly aligned with the phonetic segment boundaries of the nat-

ural utterance, the contours were time warped so that the predicted phonetic segment boundaries

corresponded to the segment boundaries of the natural utterance. To compute the segment bound-

aries of the natural utterance, we used the phoneme durations predicted by forced alignment [10].

Finally, we used PSOLA to impose the synthetic contours onto the natural recordings.

5.3.3.1 Databases

For the TTS adaptation experiment, we use the CMU Arctic database [75] as in Section 5.2.4.1.

We consider the speaker SLT as the source speaker and two male speakers (English speaker: BDL,

and Scottish speaker: AWB) as the target speakers. Utterances of SLT and BDL were recorded in

a sound proof room while AWB’s utterances were recorded in a quiet office.

We use two training sets for the subjective evaluation: a large set, which included 566 training

utterances, and a small set, which included 28 (5% of the large set) training utterances. We use

the large set for training the source model and the small set for training the mapper. A set of 150

utterances is selected randomly for test purposes.

5.3.3.2 Speech Quality Test

We used a comparison test to evaluate the quality of the F0 contours synthesized by the two

approaches. In this test, turkers heard two stimuli with the same content back-to-back and then

were asked which they preferred using the same five-point scale as in Section 5.2.4.3. We randomly

switched the order of the two stimuli. Three trivial-to-judge utterance pairs were added to filter

out unreliable turkers. Each turker judgs 50 utterance pairs. We ended up with judgements from

150 turkers in total.

Figure 5.4a shows the results for the test sets for two target speakers. For significance testing,

we first computed a score for each utterance using Equation 5.1, and then, separately for each test

set, we applied a one-sample t-test.

Conventional t-test results show that the scores of the two methods differed significantly from

each other for AWB (first two rows of Table 5.2). We also performed a randomization test for the
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(a) Quality

(b) Similarity

Figure 5.4: Speech quality and similarity test. Dashed curves correspond to the values computed
via Equation 5.1

same difference by randomly changing the signs of all ratings 2000 times, computing the scores

for each utterance, and calculating the t-statistic. (This randomization test is more conservative

than the conventional t-test.) The means and standard deviations of the resulting distributions are

summarized in Table 5.2, and yield conclusions similar to those based on the conventional t-tests.

For speaker BDL, the baseline worked as well as our proposed method. This suggests that both

the source (SLT) and target (BDL) have similar intonation patterns: matching the mean and SD

appeared sufficient.

5.3.3.3 Speech Similarity Test

To evaluate speaker mimic accuracy, we ran a speaker similarity test. In this test, turkers heard

three stimuli. First, a natural recording of the target speaker to convey the target speaking

style. Second, two stimuli with the same content (but contents differing from that of the natural

recording) back-to-back. They were then asked which of these two stimuli provided the best mimic
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Linear vs. Adapt (Quality) Linear vs. Adapt (Similarity)

AWB
t-test t(149) 5.7749 8.8257

P-value *** ***

Randomization Mean 1.5082 2.0077

SD 2.0859 3.2153

BDL
t-test t(149) 0.4874 1.9756

P-value - *

Randomization Mean 0.6518 0.7022

SD 0.6406 1.0415

– p > 0.05 * p < 0.05 ** p < 0.01 *** p < 1.0e-10

Table 5.2: Quality and similarity experiment results: one-sample t-tests [t-value(df), p-value], and
mean and standard deviation (SD) of the randomization-based t-statistic distribution comparing
the linear and Adapt methods, for two speakers (AWB and BDL)

Linear vs. Natural Adapt vs. Natural

Mean of F0 SD of F0 Mean of F0 SD of F0

AWB t(149) -0.5502 -2.5262 -11.4206 -13.3240

P-value - ** *** ***

BDL t(149) -0.1684 -1.2474 -10.7368 -7.9373

P-value - - *** ***

– p > 0.05 * p < 0.05 ** p < 0.01 *** p < 1.0e-10

Table 5.3: Differences in mean and SD between transformation methods and natural target speech:
one-sample t-tests [t-value(df), p-value]of two speakers (AWB and BDL) for two pairwise compar-
isons of linear and Adapt methods with Natural method.

of the target using the same five-point scale as in Section 5.2.4.3. We randomly switched the order

of the two stimuli. The experiment was administered to 150 turkers, with each turker judging 50

utterance pairs. Three trivial-to-judge utterance pairs were added to the experiment to filter out

unreliable turkers.

Figure 5.4b shows the results for the test sets for two target speakers. Our proposed method

was clearly superior for speaker AWB, and marginally superior for BDL (last column of Table 5.2).

Interestingly, for both speakers, our proposed method produced means and SDs that differed

far more from those of the target speaker than the linear method (Table 5.3). For example in

first row, the small t-value of the mean of F0 comparison in linear vs. natural indicates that the

mean difference between linear and natural is insignificant. In case of adapt vs. natural, the high

t-value indicates that the mean difference between adapt and natural is highly significant. By
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Natural Linear Adapt

AWB Mean of F0 150.2694 149.0506 131.3975

SD of F0 57.5239 47.2186 17.7554

BDL Mean of F0 126.5171 126.3289 117.3713

SD of F0 23.0289 21.0202 11.7965

Table 5.4: Mean of the mean and standard deviation (SD) of F0 of two speakers AWB and BDL
from linear, Adapt, and Natural speech.

looking at the actual mean of the mean and standard deviation of F0 in Table 5.4, we can see that

means and SDs of linear method is very close to those form natural speech. Even though there is a

significant difference between means and SDs of our proposed method and natural speech, yet, for

both speakers, our proposed method was perceived as producing a significantly better mimic than

the linear method. Apparently, copying the mean and SD of a target speaker is neither sufficient

nor necessary for prosody mimic.

5.4 Conclusion

In the first half of this chapter, we proposed two foot-based intonational approaches for F0 gen-

eration: DRIFT and FONN. The key characteristics of DRIFT are as follows. During training, it

creates two structured inventories of component accent and phrase curves using GENIE. During

test, it retrieves component curves from those two structured inventories. The accent curves are

selected based on (1) the distance in a low-dimensional feature space between a foot in the to-be-

synthesized sentence and the feet associated with the accent curves in the inventory and (2) height

differences between successive accent curves. Third, usage of a superpositional model in which

selected accent curves are added to a phrase curve. The phrase curve is created by taking average

over the stored phrase curves parameters in the chosen sub-inventory. The key characteristics of

FONN are as follows. First, like DRIFT, FONN uses GENIE to compute the component curves.

Second, it uses similar feature sets as in DRIFT. Third, unlike DRIFT which uses accent curve

parameter templates, it uses a trainable parametric method to compute accent curve parameters.

Both FONN and DRIFT methods result in F0 curves that are guaranteed to have the desired

smooth suprasegmental shapes and are well-suited to handle sparse training data. Perceptual

results indicated superior performance of FONN and DRIFT compared to a frame-based approach

(HTS). Using our test data selection algorithm, we show that FONN and DRIFT outperform HTS

across all the three test sets. This shows the usefulness of GENIE for speech synthesis. As we
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predicted, FONN handles impact of sparse training data in poorSET better than DRIFT. We also

showed that DRIFT can generate compelling contrastive stress via markup.

We surmise that, for speech synthesis, template based approaches, such as DRIFT that cre-

ate accent curves that inherently preserve natural detail are to be preferred over approaches that

compute accent curves. It remains to be seen, however, whether FONN may nevertheless outper-

form template based approaches in exceptionally sparse data conditions where several slots in the

template tree are missing.

In the second half of this chapter, our proposed intonation adaptation method showed promise

as a way to capture the dynamics of the F0 contours of a target speaker. Whether it performs

better than a much simpler linear transformation of the source speaker’s F0 contours depends on

the degree and type of differences between the source and target contours. Given the pronounced

intonation differences between the North American and (Glasgow) Scottish dialects [85, 22], it is

perhaps no surprise that the linear model fared less well for speaker AWB. We need to take into

account that the linear model as applied in this study did not accurately reflect its actual use

in synthesis, in which the per-token mean and SD are — obviously — not given and where thus

estimates need to be used. Thus, we do now know whether the linear model as used in practice

might have produced significantly worse results than our proposed method for speaker BDL, and

not only, as was the case in the linear method employed in this study, for speaker AWB. Finally,

our results may have implications for the role in speaker mimic of copying the mean and SD, or,

in fact, of any approach based on copying statistical moments of the F0 distribution and that does

not take dynamic patterns into account.



Chapter 6

Towards Intonation Based Classification

6.1 Motivation

Speaker (or speaker state) classification covers a variety of cases: emotion classification [147, 81],

speaker verification [183], classification of individuals with autism spectrum disorder vs. neu-

rotypical individuals [170], classification of individuals with dysarthria vs. neurotypical individ-

uals [43, 174], clear vs. conversational speaking styles, dialect classification[48], etc. In general,

speaker classification involves using spectral and prosodic features extracted from the speech.

Typically, these studies extract a large number of acoustic features from the speech signal and

use machine learning in a standard train and test classification paradigm, often achieving good

accuracy of classification.

There are two drawbacks to these general approaches. First, they are often not informative for

scientists working in the field in question (e.g., autism researchers), because they are interested in

which features are the most important ones for classification and why. Just knowing that a classifier

performs at 90% accuracy hardly serves their scientific enterprise. Of course, in certain industrial

or governmental applications, accuracy of classification is the primary or even sole interest. Second,

these approaches require that the recording conditions – microphone, room acoustics, distance to

microphone – are not in the least confounded with the classes under consideration. The large

number of acoustic features may capture differences in recording conditions, so that the final

classification result may have little to do with the classes of interest. This is particularly dangerous

in multi-site data collection efforts in which each site is responsible for recording a specific class. In

fact for the VoxForge database of languages and dialects, researchers have achieved high accuracy

classification using only one second of silence [47].

Our proposed approach to speaker classification exclusively uses features derived from the

F0 contours. A potential advantage of this is that these contours are generally less sensitive to

106
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recording conditions than spectral features, unless these conditions are so poor that for some classes

the F0 contours are systematically more inaccurate than for other classes. However, this problem

can be addressed by verifying that no systematic differences between classes exist in the quality of

the F0 contours, either by manually inspecting sufficiently large subsamples or by automatically

measuring typical manifestations of pitch tracking errors, such as doubling, halving, or values

outside of some reasonable range. A special aspect of our approach is the focus on F0 contour

dynamics – often underused in speaker group classification, which typically focuses just on basic

features, such as utterance-level mean and standard deviation.

In chapter 3, we proposed a generalized intonation model (GENIE), and in Section 3.3.1 we

showed that GENIE’s component curves are linguistically meaningful. Having this ability gives

us an advantage to investigate the prosodic features in a more relevant prosodic structure. This

could be very suitable for classification purposes especially when there are no speech intelligibility

differences between the speaker groups under classification, the speaker groups are not different in

terms of basic common prosodic features, or the spectral features are not reliable.

In this chapter, we focus on answering the following question: Can F0 dynamics differences

between two speaker groups be used to differentiate one from another? In section 6.2 we show

that statistically there are differences between F0 dynamics of participants with Parkinson’s Disease

(PD) and healthy control participants. In addition, we show that GENIE was better in bringing out

these F0 dynamic differences than raw F0 contours and other less sophisticated baseline methods.1

In section 6.3, we investigate F0 dynamic differences between clear speech (CLR) and conversational

speech (CNV). We show this differentiation is attributed to F0 dynamics and is independent of

utterance duration and F0 range. Finally in section 6.4, we propose a new prosody based approach

to classify at least two speaker groups. This classification uses the assumption that two speaker

groups can be differentiated through their F0 dynamic differences.

6.2 F0 Dynamics in Hypokinetic Dysarthria

Hypokinetic dysarthria (Hd), which often accompanies Parkinson’s Disease (PD), is characterized

by hypernasality and by compromised phonation, prosody, and articulation. In this section, we

propose automated methods for the detection of Hd. Whereas most such studies focus on measures

of phonation, the focus of this section is on prosody, specifically on F0 dynamics. Intonation

in Hd is clinically described as involving mono pitch, which has been confirmed in numerous

1This section is based on work published in 2014 IEEE Spoken Language Technology Workshop[28].
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studies reporting reduced within-utterance pitch variability; However, past work has failed to

quantitatively measure it.

In terms of GENIE, reduced variability could result from atypical values of multiple compo-

nents. First, there could be a reduced slope of the phrase curve: whereas in typical speech, there

generally is a declination in F0, perhaps the underlying factor for reduced within-utterance vari-

ability in PD is the lack of such declination. Second, there could be reduction in the number of

feet (or in other words, fewer words receiving emphasis). Third, reduction in the height of either

all accent curves or specific (e.g., phrase-initial, final) accent curves. To assess these components,

we defined four explicit F0 methods in Section 6.2.1. In Section 6.2.1.2, we compute statistical

features from each methods and use them to distinguish participants with Hd from healthy con-

trols. In Section 6.2.2, We show a new measure of F0 dynamics, based on GENIE, which performs

Hd vs. Control classification more accurately than simpler versions of the model or conventional

variability statistics.

6.2.1 Method

Baseline, Global Pitch Method: We use the per-utterance mean and standard deviation (SD)

of the raw F0 values as features.

Local Pitch Method: We define Local Pitch Method as a superpositional approach, where the

phrase curve is discontinuous, consisting of linear segments that each have a zero slope. In

other words, the frequency value of the phrase curve in each foot is equal to the minimum F0

value in a foot (Figure 6.1b). The accent curves are obtained by, for each foot, subtracting this

phrase curve from the F0 values (Figure 6.1d). This method is used to assess the importance

of a sloping, continuous phrase curve.

Raw Accent Method: The Raw Accent Method is similar to the Local Pitch Method in that

accent curves are obtained by subtraction of a phrase curve from the raw F0 curve; what

differs is the phrase curve shape (Figure 6.1e), which we use GENIE to estimate the phrase

curve.

Weighted Raw Accent Method: The Weighted Raw Accent Method is similar to the Raw Ac-

cent Method in that accent curves are obtained by subtraction of a phrase curve from the raw

F0 curve; what differs is that we apply a weight to each frame obtained by the multiplication

of the voiced/unvoiced flag and the energy. We use GENIE to estimate the phrase curve.

GENIE Accent Curve: We use GENIE for modeling F0 contours. In GENIE, the phrase curve
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(a) Raw F0 contour

(b) Phrase curve used in the Local Pitch Method

(c) Phrase curve used in the Raw Accent Method, the Weighted Raw Accent Method, and GENIE

(d) Accent curves of the Local Pitch Method

(e) Accent curves of the Raw Accent Method

(f) Accent curves of GENIE

Figure 6.1: Example F0 decomposition contours of a 49 year old female in the Control group using
three F0 models. Decomposition applied to a sentence with foot boundaries marked with brackets
“[All are be][lieved to be][embassy emplo][yees].”
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consists of two connected linear segments, between the phrase start and the start of the final

foot, and between the latter and the end point of the phrase, respectively (Figure 6.1c). We

use a combination of a skewed normal distribution and a sigmoid function to model three

different types of accent curves (Figure 6.1f).

6.2.1.1 Participants and data preparation

Participants were ten individuals with PD (age 42-80) and ten healthy controls (age 49-71). The

average ages did not differ significantly (t(18) = 1.08, p > 0.25). Participants were selected to

have good speech intelligibility. And indeed, the average Speech Intelligibility values, as measured

via Yorkston and Beukelman (1996)’s Sentence Intelligibility Test [189], were 96.3 and 97.4 in the

PD and control groups, respectively (t(18)=1.21, p>0.2, two-tailed). Thus, these were groups

whose speech problems, if present at all, were subtle and hence pose a challenging test for any

classification algorithm. Using greedy text selection methods [167], we selected 37 sentences from

the Gigaword Corpus [46] to maximally cover a (symbolic) feature space defined by features known

to affect F0, such as predicted sentence and word stress, sentence length, and word length [168].

We used the YAAPT algorithm [197] to extract F0 contours. We applied linear interpolation

between voiced areas to replace the unvoiced areas. Roughness, hoarseness, and breathiness,

typical not only in Hd but also more generally in older individuals [134] increases F0 halving and

doubling [25]. Therefore, we manually corrected the extracted F0 curves, blind as to diagnostic

status (PD vs. Control). Finally, we converted the F0 values into a logarithmic scale to reduce the

impact of the unequal gender distributions in the two groups.

We used Festival toolkit [11] to extract syllable stress, pitch accent, and phrase boundary labels

for each sentence. We used these labels to generate foot structure which is GENIE’s requirement.

6.2.1.2 Feature extraction

In this section, we computed features for each extracted accent curve (via the four methods), dis-

tinguishing between feet in phrase-initial (first foot in an intermediate phrase), phrase-final (last

foot in an intermediate phrase), and phrase-medial (i.e., neither initial nor final) position. We

refer to this variable that says whether a foot is initial, final or medial as Pos. We computed

four statistical features per extracted accent curve in each foot: 1) Location (loc): location of

the peak normalized by foot duration. 2) Magnitude (mag): the amplitude of the accent curve.

3) Weighted temporal standard deviation (WTSD): the WTSD of the accent curve’s distribu-

tion (Equation 6.1). In equation 6.1, ti and xi are the ith sample of time and accent curve value. x̄t
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is the weighted average of time computed by
∑
tixi/

∑
xi. 4) Weighted temporal skewness (WTSk):

the WTSk of the accent curve (Equation 6.2).

WTSD =
√∑

xi(ti−x̄t)2/
∑
xi (6.1)

WTSk =

∑
xi(ti−x̄t)3/

∑
xi

WTSD3
(6.2)

To explore the discriminatory power of each feature, we applied t-tests to the per-speaker means

of these accent features.

For SVM based classification we used larger sets of features, which also included per-speaker

standard deviations (SD). Set1 was used for the Global Pitch Method and Set2 for the other

methods, where:

•Set1 =

 (Per-speaker)median of pitchmean, SD

(Per-speaker)SD of pitchmean, SD

•Set2 =


Pos

(Per-speaker)median of loc,mag,WTSD,WTSk

(Per-speaker)SD of loc, mag,WTSD,WTSk

6.2.2 Experiments

6.2.2.1 Performance of the Global Pitch, Local Pitch, and Raw Accent methods.

For the Global Pitch Method, we extracted two commonly used prosodic features, the mean and

SD of the F0 curve for each utterance (37 utterances for each speaker), and four features (loc,

mag, WTSD, and WTSK) for the Local Pitch and Raw Accent methods, for each foot of each

utterance (ranging from 96 to 118 feet per speaker).

Before applying the classification, we first want to determine whether there is some significant

differences between two groups (PD vs. Control) in terms of the extracted features or not. We

applied two-group, two-tailed t-tests (PD vs. Control) to these features. For the Global Pitch

Method features, no significant differences were found. The third and fourth rows in the Table 6.1

evaluate the features derived from the Local Pitch and Raw Accent methods, and present some

marginally significant results. Interestingly, only the phrase-initial feet seem to matter.

We next employed an RBF kernel based SVM using the scikit-learn toolkit [120] to classify

PD vs. Control for each method. We set the gamma and C SVM parameters to 10−1 and 105,
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Figure 6.2: Fitted curves for two 66-year old male participants.

respectively. We used Set1 for the Global Pitch Method and Set2 for the other methods. We used

accuracy and F1 measures to evaluate the SVM results. The accuracy is the average of the true

positive (TP , the percentage accurate classification of participants with PD) and true negative

(TN , the percentage accurate classification of control participants) rates; F1 is computed from

Equation 6.3.

F1 =
2TP

2TP + FP + FN
(6.3)

where FP is the false positive rate (100− TP ), and FN the false negative rate (100− TN). Ta-

ble 6.2 shows for each method the averages over all selections of two held-out participants.Based

on the t-test results, features extracted from the Global Pitch Method essentially yield chance per-

formance (with 52% accuracy in classification). In contrast, features extracted from the two other

methods perform better than chance. This suggests that foot-based features are more informative

than global, whole-phrase features.

6.2.2.2 Performance of the GENIE Accent Curve

We now turn to the GENIE Accent Curve. To ensure that any results are not due to a better model

fit in one group, we applied a t-test to the per-participant means of the root mean square (RMS)

deviation of the predicted and observed F0 values. No significant difference between the groups

was found, with the RMS values for the PD and control groups at 0.82 and 0.88, respectively.

Figure 6.2 shows an example of F0 decomposition of the sentence “Afghan government officials

were not immediately available to confirm the decision” into accent curves and phrase curve for
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GENIE Accent Local Pitch Raw Accent Weighted Raw Accent

Fo
ot

po
si
ti
on

(P
os
)

In
it
ia
l Feature loc WTSD loc WTSD loc WTSD

MeanPD 0.677 29.627 0.688 24.247 0.669 24.074

MeanControl 0.629 25.395 0.643 21.218 0.630 20.800

P-value 0.008 0.080 0.060 0.100 0.100 0.090

M
ed
ia
l Feature loc WTSK – – WTSK

MeanPD 0.435 0.108 – – 0.239

MeanControl 0.462 0.053 – – 0.143

P-value 0.080 0.090 – – 0.100

F
in
al

– – – –

Table 6.1: P-values and means for two-group, two-tailed t-tests (PD vs. Control) as a function of
Pos, method, and feature; p-values larger than 0.1 are omitted.

Method TN(%) TP (%) Accuracy (%) F1(score)

Global Pitch 30 75 52.5 0.612

Local Pitch 70 62 66.0 0.646

Raw Accent 62 61 61.5 0.613

Weighted Raw Accent 58 68 63.0 0.645

GENIE Accent 74 69 71.5 0.708

Table 6.2: Classification performance for each method
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Figure 6.3: Reliability of the classification’s result

two 66 year old male subjects in each group. We note the difference in the shape of the accent

curves (e.g., location of the peak, skewness and SD), especially for the phrase-initial foot.

After extracting the four standard features from the estimated accent curves (i.e., loc, mag,

WTSD, and WTSK), we applied t-tests in the same way as was done for the other models

(Table 6.1, row labeled “Modeled Accent”). Results indicate that the groups differed significantly

in the peak location of phrase-initial feet. We next employed an RBF kernel based SVM to classify

PD vs. Control. Table 6.2 illustrates that the features (Set2) extracted via the GENIE Accent

Curve yielded the highest F1 score, accuracy, TN , and TP values of all methods.

In order to determine the significance of the classification result, we performed a randomization

test in which the diagnostic status of the 20 participants was randomized 100 times and the SVM

training and test procedures were applied to each randomization. Figure 6.3 shows the histogram

of the randomized SVM results and the observed results; we display these histograms to show

that the distributions resulting from randomization are well-behaved, lending credibility to this

significance testing method. The histograms show that the observed results are far better than can
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be expected by chance for the GENIE Accent Curve, with marginally significant results for the Raw

Accent Method. (We used a randomization test because the assumptions underlying conventional

statistical methods, such as Hotelling’s T 2 test are unlikely to be met.)

6.2.2.3 Improving the Raw Accent Method using Frame Weighting

As described in Section 6.2.1.1, we applied linear interpolation between voiced areas to replace the

unvoiced areas. This might causes some disadvantages for the Raw Accent Method since there may

be regions that, while not fully voiceless, are nevertheless low in sonorous and thus may contribute

minimally to perceived pitch and/or may include substantial segmental perturbations that are

not modeled by accent curves. To address this, we compared results of the Weighted Raw Accent

Method with the Raw Accent Method using the four features (loc, mag, WTSD, and WTSK).

We applied the t-test on these four features (Table 6.1, last row). We found marginally significant

results not only on phrase-initial feet but also on phrase-medial feet. We next employed an RBF

kernel based SVM to classify PD vs. Control. The results are slightly more accurate (Table 6.2):

The Weighted Raw Accent Method with the features (Set2) improved the F1 score and accuracy

0.03 points and 1.5 percent compared to the Raw Accent Method. Yet, the results are still not as

good as for the GENIE Accent Curve.

6.3 F0 Dynamics in Clear and Conversational Speech

In perceptually difficult environments, speakers naturally and spontaneously tend to speak in a

speaking style that will be perceived more easily and clearly by their targeted audience. Such a

speaking style is referred to as clear speech (CLR). In contrast, the speaking style that speakers use

to casually communicate with a normal listener in a quiet environment about an understood topic

is referred to as conversational speech (CNV). Factors affecting the perception of speech and thus

the invocation of a clear speech speaking style involve the presence of background noise, whether

the listener has a hearing impairment, the age of the listener, or whether the listener is a native

speaker of the language.

Previously, it has been shown that compared to CNV speech, CLR speech can be characterized

by the following acoustic-prosodic features: a decrease in speaking rate, and an increase in the

number of accented words, number of pauses and prosodic phrases, and range and mean of F0

contour, [142]. Motivated by these acoustic-prosodic characteristics of CLR speech, researchers

have attempted to find out how they can modify CNV speech to make it more intelligible like CLR

speech. Liu and Zeng in [89] examined whether speech intelligibility improved by modifying the
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rate of speech in CNV speech or not. For the same sentences spoken in both CNV and CLR styles,

authors used the pitch-synchronous overlap and add method to decrease the speaking rate in CNV

speech by increasing silent gaps (pauses) between phonetic segments to match the duration of the

CLR speech. They did not find statistically significant improvement in speech intelligibility. In

series of articles, Kain and his colleagues [5, 65, 66, 64, 77, 109] examined the contribution of a

variety of acoustic features to improve intelligibility of speech. In parallel recordings of CNV and

CLR speech, they replace a combination of acoustic features of CNV speech with those extracted

from CLR speech, to generate a synthesized CNV speech. Then using perceptual experiments,

they examine the intelligibility of the unmodified and transformed speech. Results indicated that

transformed CNV speech with acoustic-prosodic features (the pausing patterns, F0, and energy

were extracted from CLR speech) does not improve the speech intelligibility over unmodified CNV

speech. These are both important and interesting findings, given that unmodified CNV and CLR

speech differed in speech intelligibility that were characterized by acoustic-prosodic features. These

results motivated us to further investigate which prosodic features between CLR and CNV speech

are more relevant to these characteristics. If we find a prosodic feature that can differentiate CLR

speech from CNV speech, it might be the feature that is responsible for improved intelligibility

CLR speech over CNV speech. In our first experiment (section 6.3.3), we show that two common

prosodic features (F0 range and F0 mean) at the utterance and phoneme level do not differentiate

CLR from CNV speech. In the previous section, even though participants with Parkinson’s Disease

and healthy control participants did not differ in terms of F0 range and F0 mean, we found there

are differences between F0 dynamics of the groups. This led us to hypothesize that the prosodic

characteristics of CLR speech are attributed to F0 dynamics and are independent of speaking rate,

F0 range and F0 mean.

The objective of this section is to show an increase in the number of prosodic units (number of

feet) in CLR speech is attributed to F0 dynamics and is independent of speaking rate, F0 range

and F0 mean. To address this, we use the similar methodology as in the Chapter 4 (section 6.3.1).

In Section 6.3.2, we describe details of two data sets used in both experiments. In the second

experiment (section 6.3.4), we investigate F0 dynamics differences that are due to different prosodic

structure between CLR and CNV speech, to find out whether the increase in number of feet in

CLR speech is independent of the F0 range and duration of the utterance.
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6.3.1 Using GENIE to Find the Best Foot Structure

In order to investigate whether CNV and CLR speaking styles can be differentiated by their F0

differences due to different prosodic structures (different foot structure and number of feet) or

not, we use a similar methodology as in Chapter 4. In Chapter 4, to determine the best phrase

boundaries for a sentence, we generated a number of phrase boundaries for the sentence. We then

used GENIE to find which variation resulted in the lowest error with respect to the model. In this

section, we generate all possible foot structures of each sentence and use GENIE to find the best

one.

Before explaining our method in details, we illustrate how different foot structures and the

goodness-of-fit measure are related in an example. Figure 6.4 represents the F0 decomposition of
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(a) Example F0 contour and GENIE’s estimated F0 contour for a sentence with foot boundaries
marked with brackets “The [boy was][there,] when the[sun][rose].”
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(b) Example F0 contour and GENIE’s estimated F0 contour for a sentence with foot boundaries
marked with brackets “The [boy was there,] when the sun [rose].”

Figure 6.4: Example F0 contour and GENIE’s estimated F0 contour using two different foot
structures. The raw F0 values are represented by the blue dotted line and GENIE’s estimated F0

contour is represented by the red dotted line. Each magenta region represents one foot. In 6.4a,
GENIE’s estimated F0 contour is much closer to the raw F0 contour of the utterance than in 6.4b.

an utterance: “The boy was there, when the sun rose.” into component curves. In this example,

two different foot structures are examined by GENIE. Foot boundaries are being represented by

the magenta regions in the figure and the stressed-accented-syllables are marked in bold. In 6.4a,



CHAPTER 6. TOWARDS INTONATION BASED CLASSIFICATION 118

GENIE’s estimated F0 contour is much closer to the raw F0 contour of the utterance than in

6.4b. This indicates that the given foot structure, in Figure 6.4a, is close to the actual foot

structure of the utterance. Therefore, GENIE generates a more accurate estimation of the F0

contour than when the given foot structure is far removed from the actual foot structure of the

utterance (Figure 6.4b).

We use GENIE for this study as follows. For each sentence, the syllable stress labels are

extracted from a pronunciation lexicon. In order to determine the accent labels, we consider

all combinations of occurrence/non-occurrence of the accent label, only for the stressed syllables

(since only stressed-accented syllable can signal the start of a new foot). Using the stress label, the

generated accent labels, and the phrase boundaries label, we generate all possible foot structures.

We call these foot structures for a given sentence foot assignments. For each foot assignment,

we apply GENIE and then calculate in a Root Mean Square Error (RMSE) between the raw F0

and GENIE’s estimated F0 contour. A decrease in RMSE should indicate a closer correspondence

between the foot assignment and the actual foot structure of the utterance. Ideally, in comparison

between the foot assignment relevant to the lowest RMSE in CLR and CNV styles, we want to

show the foot count in the CLR foot assignment is higher than in CNV.

A problem with above methodology is that there is an overfitting issue, which is RMSE continues

to decrease as number of foot increases in foot assignments. Therefore using the lowest RMSE as

a comparison measure may not result in differentiating CLR style from CNV style based on their

foot structure. To address this issue, after calculating all the RMSEs that each has a specific foot

assignment, we sort these RMSEs based on foot count in their foot assignment. Then we compare

the results of the RMSE in both CLR and CNV styles with respect to the foot counts.

6.3.2 Speech Corpus

Following Kain and et al [66], we use two types of sentence sets in the two experiments in sec-

tion 6.3.3 and section 6.3.4. In the first set, 70 phonetically balanced sentences were extracted

from the IEEE Harvard Psychoacoustic Sentence Set (database H) [133]. These sentences are

syntactically and semantically normal (e.g., Cars and busses stalled in snow drifts). In the second

set, 70 sentences were generated by randomly exchanging words in the first set (e.g., Slide the cars

through a stray blue lake). Therefore, in the second set, sentences are syntactically correct but

semantically anomalous (database A) [171].

One male native speaker of American English was asked to record 140 sentences (from both

data sets) in two speaking styles (CNV and CLR) to create a total of 280 recordings. When
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recording CNV speech, he was instructed to speak in the way that he used to communicate in

his daily life. When recording CLR speech, he was instructed to speak clearly as he would when

communicating with hearing-impaired listeners.

Earlier in section 6.3, we discussed several of Kain’s research projects; one of them investigated

the relationship between different acoustic features and the intelligibility properties of CLR speech

for the speaker in both data sets [66]. The results indicated that for database H, using acoustic-

phonetic features can improve the speech intelligibility of the synthesized CNV speech over original

CNV, while using acoustic-prosodic features did not improve the speech intelligibility. For database

A, considering different combinations of acoustic-phonetic and acoustic-prosodic features did not

result in any significant intelligibility improvements.

6.3.3 Experiment 1: Differences in F0 mean and range at the utterance

and phoneme levels

In this experiment, we focus on answering this question: Can we differentiate CLR speaking style

from CNV speaking style by using two common prosodic features (F0 range and F0 mean) at the

utterance and phoneme level? We compared the F0 mean and range differences between CLR and

CNV speaking styles using three scales: Hertz (Hz), Logarithmic (Log), and normalized, and at

two levels: the utterance level and the phoneme level. The results from the Hertz scale did not

differ from the Logarithmic scale, therefore we ignored the results of the Hertz scale in this study.

The normalized scale was created by subtracting the F0 minimum of the whole utterance from the

raw F0 values and dividing by the F0 range of the whole utterance to minimize the effect of pitch

range. At the utterance level, the mean F0 of the whole utterance was calculated by taking the

average over all voiced regions, while at the phoneme level, the average was calculated over the F0

values of vowels and diphthongs.

We extracted 560 F0 mean values (140 utterances and 4 conditions: two scales in two levels) for

both CNV and CLR. Then, we performed a paired t-test to determine whether the F0 mean values

of the two populations differed significantly. We also performed a paired t-test for the F0 range

values. The results of these p-values are shown in Table 6.3. As can be seen, at the utterance level,

we found no significant difference between CLR and CNV in terms of the F0-mean (except for

database A on the normalized scale). The effect of the F0-range was minimized on the normalized

scale. At the phoneme level, CLR and CNV styles are significantly different in terms of F0 mean

and F0 range for database A. For database A, the F0-mean was not significantly different on the

normalized scale.



CHAPTER 6. TOWARDS INTONATION BASED CLASSIFICATION 120

F0 mean F0 range
Utterance level Phoneme level Utterance level Phoneme level

Log Normalized Log Normalized Log Normalized Log Normalized
Data A – ** *** *** ** – *** ***
Data H – – *** – *** – *** ***

– p > 0.05 * p < 0.05 ** p < 0.01 *** p < 1.0e-10

Table 6.3: Results of paired t-test between CLR and CNV speech in terms of F0 mean and F0

range. Comparisons were made in six conditions by considering two F0 scales (Logarithmic (Log),
and normalized) and two levels (utterance and phoneme).

6.3.4 Experiment 2: F0 dynamic differences due to different prosody

structures

In Section 6.3.1, we described how we can use the goodness of fit of the implementation of GENIE

to show that more feet are needed in CLR style than in CNV style. In other words, speakers

who speak in a CLR speaking style emphasize more words than in CNV style. In this section, we

describe how we use the proposed method on both data sets A and H.

We first illustrate the process for this sentence “The fish twisted and turned on the bent hook.”

First, we extract the syllable stress labels and the phrase boundaries from Festival. Then, we

consider all combinations of occurrence/non-occurrence of an accent label, only for the stressed

syllables. Using these labels, we generate all possible foot assignments. For each foot assignment,

we apply GENIE and then calculate RMSE between the raw F0 and GENIE’s estimated F0 contour.

Then we sort the RMSEs based on foot count in their foot assignment in both CLR and CNV

styles. Figures 6.5a shows the distribution of the RMSEs in CLR (blue box-plots) and CNV(red

box-plots) styles for different foot counts. As we can see, the blue box-plot is above the red box-

plot, across all numbers of feet. This implies CLR speech requires more feet than CNV in foot

assignment to achieve a lower RMSE. For instance, in Figure 6.5a, to archive a fit with 0.06 RMSE

(on Log scale) CLR style needs five or four feet while CNV style can be modeled with two feet

with the same RMSE.

From the above, can we conclude that the RMSE difference between the two styles is because

of the foot structure differences? The answer is not yet. In the previous experiment, we showed

that the F0 range of utterances in CLR style is significantly higher than CNV style. Therefore,

there is a chance that the RMSE difference between the two styles is caused by F0 range differences

and not by foot structure difference. Thus we want to minimize the F0-range difference: we apply

our process to the normalized F0 scale as well. As can be seen in Figure 6.5b, even though the

normalized scale decreased the gap between the distributions of the RMSEs in CLR and CNV,

still the mean of the distribution of the RMSEs in CLR is higher than the mean of the distribution
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Figure 6.5: Distribution of the RMSEs in CLR (blue box-plots) and CNV(red box-plots) styles for
different foot counts for this sentence “The fish twisted and turned on the bent hook.”
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of the RMSEs in CNV, across all numbers of feet. This implies more feet are needed in CLR style

than in CNV style, and this increase in foot count is independent of the F0-range of the utterance.

For instance, in Figure 6.5b, to archive a fit with 0.06 RMSE (on normalized scale) CLR style

needs five feet while CNV style can be modeled with four feet with the same RMSE.

From the above, can we conclude that the RMSE difference between the two styles is because of

the foot structure differences? The answer still is not yet. It has been noted in many studies [142,

104, 76] that speakers usually significantly reduce their speaking rate in the CLR speaking style. It

also has been shown that durations increase when more words are accented – durations are longer

for phonemes in accented words regardless of whether they are stressed or not [161, 165, 16].

Therefore, there also is a chance that the above results are correlated with speaking rate. The foot

count increase in the CLR style might be attributed to utterance duration and not a characteristic

of the CLR style. In order to minimize the effect of duration, we repeat the above experiment

except we sort RMSEs based on the foot count divided by the utterance duration. In Figures 6.5c,

as expected, the results of the CLR style are compressed in x-axis and shifted to the left side due to

longer utterance durations compared to CNV speech, but still the lowest RMSEs in CLR (blue line)

is higher than the lowest RMSEs in CNV (red line), across all numbers of feet that are adjusted

by the utterance duration. This implies not only that more feet are present in the CLR style than

in the CNV style, but also that this increase of the number of feet is independent of speaking rate

and the F0-range of the utterance. For instance, in Figure 6.5c, to archive a fit with 0.06 RMSE

(on normalized scale) CLR style needs 1.5 feet while CNV style can be modeled with 1.2 feet

with the same RMSE. To measure the overall difference between the two styles, we calculated the

area under the lowest RMSEs curve in CLR (SCLR = 0.094) with in CNV (SCNV = 0.074) and

used their ratio as the comparison measurement Ratio = SCLR/SCNV = 1.28. The higher ratio

the strongest evidence that the two curves are separable. In Figure 6.6 the SCLR and SCNV are

differentiated with two colors red and blue, respectively. Each datapoint represents an individual

RMSE with a specific foot assignment. Solid lines represent the lowest value of RMSE in CLR and

CNV.

From the above, can we conclude that the RMSE difference between the two styles is because

of the foot structure differences? Yes, we can conclude that CLR speech can be characterized

by an increase in the number of feet for the sentence “The fish twisted and turned on the bent

hook.” Also by minimizing the effect of utterance F0-range and duration, we showed that this

characteristic is caused by F0-dynamic changes, and it is independent of F0-range and speaking

rate. We repeat this process for each sentence spoken in the CNV and CLR styles in both data

sets H and A.
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Figure 6.6: Each dot represents an individual RMSE with respect to GENE for this sentence “The
fish twisted and turned on the bent hook.” with a specific foot assignment. These RMSEs are
sorted based on foot count divided by the utterance duration. Solid lines represent the lowest
value of RMSE. CLR and CNV data are differentiated with two colors red and blue, respectively.

Figure 6.7 shows the distribution of the Ratio = SCLR/SCNV for both data sets in three

conditions: log, normalized, and normalized scale adjusted duration (Norm_Dur). In Log and

normalized scale the mean of the ratio distribution is higher than 1.0 (black dashed line) for both

data sets. It is interesting to note that the effect of minimizing F0-range is more aggressive on

database H compared to database A. The same conclusion can be made for the effect of minimizing

duration: is more aggressive on database H compared to database A.

For database H, when minimizing the effect of utterance F0-range and duration in normalized

scale adjusted duration the mean of the ratio distribution is higher than 1.0. This reveals not only

that more feet are present in the CLR style than in the CNV style, but also that this increase

of the number of feet is independent of speaking rate and the F0-range of the utterance. These

results are consistent with those of Krause [76] that the speaking rate alone is not fully responsible

for differentiating the two styles. Similar to Smiljanić et al [104, 142] we show that CLR speech

can be characterized by enhancing prosodic structure, but also we show that this characteristic

is caused by F0-dynamic changes and not only by speaking rate. For database A, the mean

of the ratio distribution is slightly above one. Therefore, the results for database A are not

stronger than database H. In order to demonstrate whether these RMSE differences are significant

or not for both data sets, we took the following steps. For each sentence, we calculated the

Ratio = SCLR/SCNV . We used a one-sample one-tailed t-test to perform statistical comparisons

of these values.2 The Table 6.4 shows RMSE values are significantly higher in CLR style for all

2We use a one-tailed t-test, because we want to show that the number of feet is different in CLR and CNV styles,
but also to show that in CLR style more feet are needed.
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Figure 6.7: Side-by-side box plots showing the distribution of the ratio for both data in six condi-
tions. The term “Norm_dur” stands for normalized scale, adjusted duration.

Ratio = SCLR/SCNV

Log scale Normalized scale Normalized scale, adjusted duration

Data A ** ** –
Data H *** *** **

– p > 0.05 * p < 0.05 ** p < 0.01 *** p < 1.0e-10

Table 6.4: Results of one-sample one-tailed t-test between CLR and CNV speech in terms of foot
count adjusted by utterance duration.

comparisons for database H. The sentences in database H are syntactically and semantically normal;

now we focus on database A that consists of syntactically correct but semantically anomalous

sentences.

After minimizing the effect of utterance duration in our experiment we did not find significant

differences between the two styles on the normalized scale adjusted duration in database A (in

Table 6.4, and also in Figure 6.7, the purple box plot under the Norm_Dur condition), while in

Log and normalized scales the result of this condition was significant. This suggests that for a

semantically anomalous sentence, the speaker uses similar prosodic structure (similar foot structure

and similar number of feet) in both styles, and only talks slower in CLR style. These results are

consistent with those of Kain [66]. For database A, they did not find any significant difference

between CLR and CNV styles, and they suggested that this lack of significance may be caused by

difficulty to understand semantically anomalous sentences.
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6.4 Intonation Based Classifier

Earlier in this chapter, we showed that F0 dynamic differences between two speaker groups can be

used to differentiate one from another. Also, we showed that GENIE was better in capturing these

F0 dynamic differences than the baseline methods. Motivated by these findings, we propose a new

intonation based approach to classify at least two speaker groups. Our assumption is that two

speaker groups can be differentiated through their F0 dynamic differences. We apply this speaker

classification framework to intonation-based classification of dialects of English. A dialect of a

language is defined as “a pattern of pronunciation and/or vocabulary of a language used by the

community of native speakers belonging to some geographical region” [84]. Dialect classification is

a special case of speaker (or speaker state) classification.3

During training, we apply the DRIFT training phase that is based on GENIE (described in

Section 5.2.2) to F0 contours in each dialect group. This allow us to produce a structured inventory

of GENIE’s component accent and phrase curves parameters for each dialect. During testing, for

a given test F0 contour and dialect, we determine which dialect’s inventory of phrase and accent

curves best account for a sentence by using Non-negative Matrix Factorization (NMF) and a

sparsity measure.

In Section 6.4.1, we propose a group classifier that combines the NMF algorithm and a sparsity

measure. Then in Section 6.4.2 we show how the DRIFT’s training phase and the new classifier can

combine to classify dialect groups using their F0 dynamic differences. In Section 6.4.3, we compare

out proposed classifier against DRIFT’s testing phase on an F0 reconstructing task and find out

that the proposed method reduces the RMSE by 50%. Finally in Section 6.4.4, we compare our

proposed classifier against a baseline on a dialect classification task.

6.4.1 Group Classification Using NMF and a Sparsity Measure

NMF is a popular algorithm for feature extraction in machine learning, computer vision, and signal

processing. One reason for this popularity is that NMF naturally favors sparse representations.

This inherit ability of NMF lead us to combine it with a sparsity measure in the context of group

classification. In rest of the section, we first review the NMF algorithm. We then discuss how we

combine NMF with a sparsity measure. Finally, we discuss our training and test procedures of the

proposed classifier.

3In this section, we did not distinguish among dialects within a country. For example American eastern and
western dialects are considered as American dialect.
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Figure 6.8: NMF schema

6.4.1.1 Non-negative Matrix Factorization

NMF is a well-known source decomposition algorithm [19]. Given a non-negative matrix V , this

algorithm [82] factorizes the matrix Vn×m (n and m are the sample size and number of data

samples, respectively) into two non-negative matrices Wn×r and Hr×m (r is equal to number of

chosen basis vectors, Figure 6.8). This non-negativity has two advantages. First, it makes the

matrices W and H easier to understand. Second, it is suitable for cases that non-negativity is

inherent to the data (e.g., intonation analysis).

V ≈ V̂ = WH W,H > 0 (6.4)

The matrix W (we also refer to it as a dictionary) and the matrix H (we also refer to it as a

weight vector) can be considered as a collection of basis vectors and a stack of weights corresponding

to each basis vector, respectively. If the basis inW were optimized to approximate V linearly, then

each column in Equation 6.4 can be rewritten as v ≈ v̂ = Wh. This equation suggests that each

data sample vn×1 in V is a linear approximation of columns of W weighted by hr×1. It has been

shown that a good approximation of v is guaranteed if W consists of the hidden structure of the

data [82]. The standard NMF algorithm consists of the following steps: initializing the matrices

W and H, and updating them in each iteration until there is no significant improvement in the

cost function (Equation 6.5).

Cost(v, v̂) =

n∑
k=1

(vklog
vk
v̂k
− vk + v̂k) (6.5)

Randomly generating the matrix W and the vector h is a simple way of initializing them;

however, advanced initialization strategies can be developed for improving fitness of the NMF
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Algorithm 6.1 Non-negative Matrix Factorization (NMF) algorithm
INPUT:
v . A given non negative vector

1: W ← Dictionary
2: W ← Normalizing W based on v . optional step
3: h← Random vector (r) . r is equal to number of bases in dictionary
4: while there is improvement in cost(v, v̂) do
5: for α in h do
6: hα ← hα

∑
i
Wiαvi
Wiαh∑
kWkα

7: v̂ ←Wh

algorithm with fewer iterations or for extracting sparse features.

NMF does not provide a straightforward control over W in its update process. In some use

cases, one might need to force the basis vectors to follow certain shapes or patterns based on

domain knowledge. Imposing the constraints in the NMF algorithm is not straightforward. A

modification of the NMF algorithm is to keep W constant and only update h. The W matrix can

be filled with any method, which suits the use case. Also, updating only one factor (vector h)

instead of two factors (matrix W , and vector h) reduces the algorithm complexity. The steps of

the algorithm are shown in Algorithm 6.1.

6.4.1.2 Combining NMF with a Sparsity Measure

NMF has an inherent linear property; It makes it possible to approximate each column in V

by columns of W weighted by rows in H. This property makes NMF a suitable algorithm for

sparse coding that models a signal (e.g., column v in V ) as linear combination of a few basis

vectors [53, 95, 96, 51]. More specifically, the approximation of v (≈ v̂ = Wh) is achievable

by finding few columns in W associated with high weight that minimize error between v and v̂.

Therefore if W consists of the hidden structure of v, then inspection of learned h may show that

it is sparse. This motivated us to use the NMF algorithm for a group classification task; having a

sparse learned h suggests that v is quite similar to at least one basis vector in a given group, and

thus – by analogy to nearest-neighbor clustering – may in fact be a member of that group.

We propose to use the Gini coefficient to measure the sparseness of vector hi. Although the

Gini coefficient is mainly used for measuring income inequality, it also has been used as a measure

of sparsity [130] in other tasks. It has been proven that the Gini coefficient was able to satisfy all

reasonable sparsity criteria (like cloning, which does not affect sparsity) [58]. The Gini coefficient,

computed in Equation 6.6, has a value between 0 and 1, with zero representing total equality

between all values (i.e., high density), and 1 representing highest inequality (i.e., high sparsity).



CHAPTER 6. TOWARDS INTONATION BASED CLASSIFICATION 128

Build
Dictionary

Gini

Comparison

Inventory 1

Input signal

Build
 Dictionary

Gini

Build
 Dictionary

Gini

...

...

NMF NMF NMF

W1 W2 Wk

h1 h2 hk

G1 G2 Gk

Pitch 
tracker 

Feature 
extraction

In
to

na
tio

n 
ba

se
d 

di
al

ec
t c

la
ss

ifi
ca

tio
n

G
ro

up
 c

la
ss

ifi
ca

tio
n 

Gini

Comparison

Gini Gini...

NMF NMF NMF

W1 W2 Wk

h1 h2 hk

G1 G2 Gk G
ro

up
 c

la
ss

ifi
ca

tio
n 

Input signal
Inventory 2 Inventory k

Figure 6.9: Proposed test schema of the speaker group classification using NMF and Gini

Gi =

∑r
p=1

∑r
q=1 |hip − hiq|

2r
∑r
p=1 h

i
p

(6.6)

6.4.1.3 Training and test procedures

To use NMF with the Gini sparsity measure as a classifier, we propose the following. During

training, a dictionary is built for each group, i, which contains basis “templates” that represented

the individual training data items. A user can fill these dictionaries by any method that suits

the users task, such as chunks of real signal, syntacticly generated templates, or parametrically

learned templates from training data. At test time as shown in Figure 6.9, for each given input,

the NMF algorithm is used to decompose the input signal using the respective dictionaries of each

group (W i), resulting in weight vectors (hi). Then, the Gini coefficients are computed for each hi

vector. At the end for classification, the group with the largest Gini coefficient is chosen, which is

the weight vector that is the sparsest.

6.4.2 Using NMF and Sparsity for Intonation Based Dialect Classifier

In this section, we show how the classifier proposed in the previous section can combine with the

DRIFT’s training phase for dialect classification.

During training we follow the same methodology that we used in Section 5.2.2.2 for DRIFT’s

training phase (this step does not involve NMF algorithm). For each utterance in each dialect

group we do the following. First, we run Festival to generate accent labels, syllable labels, and

phrase boundaries. Second, we derive the foot structure. Third, we apply GENIE to compute

the component curves. Fourth, we store component curve parameter vectors where each vector is

associated with prosodic labels and component curve parameters. Specifically, phrase curve vectors
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Figure 6.10: Proposed test schema of combination of the DRIFT method and the proposed speaker
group classification.

are labeled in terms of the number of feet in the phrase and accent curve vectors in terms of position

of the foot in the phrase and the number of syllables in the foot. Therefore, for each dialect, we

produce a structured inventory of GENIE’s component accent and phrase curves parameters.

During testing we need to take into account that test speech signals vary in duration and

number of feet. Therefore, we have to build a dictionary with templates that match the duration

of the input F0 contour, and whose prosodic labels match those of the test signal. First, we run

Festival to generate accent labels, syllable labels, and phrase boundaries. Second, we derive the

foot structure and determine prosodic labels: accent type, foot position in the phrase, and number

of syllables for each foot. Third, we use these prosodic labels and inventory from dialect group

i, to construct an matrix W i whose columns correspond to vectors in the inventory for dialect

group i that have the same prosodic labels as the input signal, and consist of generated accent and

phrase curves from these parameter vectors (we discuss details of this step next). After generating

W for each group, we follow the steps described in Section 6.4.1 to classify the input signal (see

Figure 6.10).
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Figure 6.11: Proposed NMF schema. Vector v is the F0 contour of a phrase unit with two feet.

6.4.2.1 Building the Dictionary

As mentioned above, the size of both dictionaryW and weight vector h are changed based on the F0

contour length and feet numbers of each test sample. Please note that we use the same inventories

that are created using the DRIFT method during training, but different size of dictionaries. For

example, for a test sample with three feet and a test sample with two feet, the total number of

generated templates are different for each dialect. The jth test sample and ith dialect is represented

as W ij , and hij , but for ease of notation, we drop the index j, unless explicitly specified.

Algorithm 6.2 shows the required steps to build the dictionary (W ), given a vector v along

with its prosodic labels l and inventory of dialect group i (Inventoryi). We now give an example

to illustrate how the algorithm works. Referring to Figure 6.11, we assume that the given vector

v has two feet and there are nine component curve parameters vectors stored in Inventoryi (Al-

gorithm 6.2, input), which are extracted by applying DRIFT on the training F0 contours. Four

accent curves that appear only in the first foot within a phrase unit, two accent curves that appear

only in the last foot of a phrase unit, and finally three phrase curves. Since in Inventoryi, we only

stored the normalized parameters, we need to regenerate the component curves w.r.t the given

vector v and its prosodic labels l. For each foot in v, we generate all relevant accent curves using

Inventoryi (Algorithm 6.2, steps 4 to 8). For example, for the first foot, four accent curves with

length n are generated (red curves in Figure 6.11). Similarly, for the second foot, two accent curves

with length n are generated (blue curves in Figure 6.11). Note that regenerating a stored accent

curve in a length different from its original length does not affect shape and peak location of the

generated accent curve. Finally (Algorithm 6.2, steps 9 to 11), we generate all of the relevant

phrase curves using Inventoryi, and store them in matrix W i (green curves in Figure 6.11).



CHAPTER 6. TOWARDS INTONATION BASED CLASSIFICATION 131

Algorithm 6.2 Building the dictionary
INPUT:
Inventoryi . Inventory of component curves parameters of group i
v . Input F0 contour
l . Prosodic labels of v
OUTPUT:
W i . Dictionary of group i

1: n← Length(v)
2: W i ← Empty matrix (n, r)
3: k ← 0
4: Feet← Extract all feet of v using l
5: for f in Feet do
6: A← Generate curves (Inventoryi, f , l, ’accent’, length=n)
7: for acc in A do
8: W i[:, k]← acc, k ← k+1
9: P ← Generate curves (Inventoryi, v, l, ’phrase’, length=n)

10: for phr in P do
11: W i[:, k]← phr, k ← k+1

6.4.3 Experiment 1: Validating the Use of NMF

As we discussed in Section 6.4.1, NMF favors a sparse representation of the input signal if W

consists of the hidden structure of the input data. In this section, we investigate how well NMF

can generate an approximation of input F0 contour by finding few columns in W associated with

high weight. In order to do so, we use NMF to decompose an input F0 contour using pre-computed

templates in matrix W , which are generated using DRIFT’s training phase. We choose DRIFT’s

training phase to fill the matrix W (as in 6.4.2.1) since we have shown in the last few chapters

that GENIE’s component curves can capture underling intonational patterns.

We compare our proposed method against DRIFT’s testing phase on an F0 reconstruction task.

We choose this task to show that : 1) our proposed method results in a better fit than DRIFT’s

testing phase, 2) our proposed method favors a sparse representation, and 3) the retrieved template

curves follow the principle of GENIE’s estimated component curves.

6.4.3.1 Corpus

For this experiment, we use the CMU Arctic database [75] as in Section 5.2.4.1. We use speaker

SLT. Utterances were recorded in a sound proof room. This corpus contains 1132 utterances; we

randomly chose 90% of the utterances for training and the remaining 10% for testing.
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Methods RMSE (Hz) Sparseness

Proposed 5.92 0.82

DRIFT 11.12 –

Table 6.5: Comparison between two methods: the proposed method and DRIFT on CMU Arctic
data. The second column shows the average RMSE between the predicted F0 contour with each
method and the original F0 contour. The third column shows the average sparseness of vector h
using the Gini coefficient .

6.4.3.2 Baseline

We used the DRIFT method from section . During training we generate an inventory of estimated

accent and phrase curves parameters.

During testing, given an unseen F0 contour of an utterance from the test set, we run Festival

to generate the required textual information and with that information we determine the prosodic

event units (phrase and foot). For each prosodic event textual features are extracted from text

data. We search for stored, fitted accent curves associated with feet that optimally match to-be-

synthesized feet in the feature space, while minimizing differences between successive accent curve

heights. Similar searches are done to find suitable phrase curve parameters in the phrase inventory.

6.4.3.3 Using NMF as a F0 contour generator

For using NMF as a F0 contour generator, we follow the same methodology as discussed in Sec-

tion 6.4.2. Note that the training part is identical to DRIFT’s training phase. During test, after

deriving the weight vector h, instead of using it for classification, we use it to retrieve component

curves from the matrix W associated with weight higher than 0.9. Then, the estimated F0 contour

is calculated by adding the retrieved component curves.

6.4.3.4 Results

We used 10% of the CMU Arctic database for test purposes. We reconstruct each F0 contour using

two methods: the proposed method and the baseline method.

As shown in Table 6.5, our proposed method reconstructs the F0 contours better than DRIFT in

terms of average RMSE. Our proposed method achieved a fitting error of about half the magnitude

as the DRIFT method. Then we calculate the sparseness of the weight vector h using Gini for each

utterance and compute the average, resulting in a score of 0.82 (last column in Table 6.5). This

high sparseness suggests that our proposed method chooses few templates to estimate an input F0.
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Going further, we investigate how much our proposed method’s retrieved component curves are

correlated to GENIE’s estimated component curves. For each test sample, after we derive the foot

structure, we do the followings. First, we apply GENIE to compute the component accent curve

(Ai) for each foot fi and the phrase curve (P ). Second for each fi, we consider all accent curves

from the matrix W that are associated with fi and have a weight higher than 0.9. Third, we add

up those curves together to produce an accent curve (A
′

i). Fourth, we retrieve all phrase curves

from the matrix W associated with weight higher than 0.9 and add them together to produce a

phrase curve (P
′
). Fifth, we calculate the correlation between GENIE’s component curves (Ai and

P ) and our proposed method’s component curves (A
′

i and P
′
). This gives us an average of 0.81.

This high correlation suggests that the component curves estimated using the proposed method

have very similar patterns compared to their corresponding curves using GENIE.

These results show that our proposed method is able to estimate F0 contours better the DRIFT

method.

6.4.4 Experiment 2: Pairwise Dialect Classification

The purpose of this experiment is to distinguish between speaker groups, which are speaking differ-

ent dialects, using the proposed method. We report the results of pairwise comparison individually.

6.4.4.1 Corpus

There are two commonly used corpora for dialect classification. The National Institute for Standard

in Technology (NIST) 2008 Speaker Recognition Evaluation Series (SRE; [97]) database consists

of 12 languages with 14 dialects. The NIST 2008 SRE a suitable database for foreign accent

recognition and language recognition studies. However, there are only two dialects for English

(General American and Indian English) and it was unspecified whether the speakers were native

or not, which makes it less suitable for dialect classification.

VoxForge [47] is a publicly available speech corpus4 and consists of recordings in 18 languages

and multiple dialects for some of the languages. Furthermore, each speaker is identified as a na-

tive or non-native speaker. Unfortunately, as we discussed in Section 6.1, it has been shown that

applying accent classification to only one second of silence from utterances belonging to the Vox-

Forge database without using any speech information can already reach a high accuracy [12]. This

suggests that since VoxForge did not have control over the recording conditions (most participants

used their own headsets), the quality and channel properties might differ between speaker groups,

4http://voxforge.org/
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Train data Test data

#Speakers #Feet #Speakers #Feet

D
ia
le
ct

gr
ou

p
s American 712 29959 73 3048

Australian 224 9595 25 1016
British 607 23878 69 2744

Canadian 278 10870 31 1240
Indian 206 8636 23 785

Total 2027 82938 221 8833

Table 6.6: The total number of speakers and feet in each dialect group for train and test data.

which may cause the classification algorithms to learn channel characteristics. In our study since

no spectra-related features are used, this should not affect our results – in fact, this makes the case

for using just prosodic information.

We used a total of 2248 male English speakers from the VoxForge corpus with five different

dialects: American (Am), Australian (Au), British (Br), Canadian (Ca), and Indian (In). In

Table 6.6, we have summarized the details of the corpus in terms of the number of speakers, and

the number of feet per group. There is no overlap between train and test speakers. We labeled the

database with the phoneme transcription via Kaldi [127] trained on the Librispeech corpus [118].

Since acoustic features extracted from the VoxForge corpus are not reliable for classification, it

is our concern to check the reliability of prosodic features (F0 contours). After extracting the F0

contours, we used the robust standard deviation method to filter out corrupted F0 contours. We

removed a sample if any point of its F0 contours (voiced segments) was outside of its F0 mean±20%

of its F0 standard deviation.

6.4.4.2 Baseline

We need to select a baseline system that uses intonational features but not spectra-related features

as we discussed above.

We first tried to used a number of simple F0 features: mean, standard deviation, and skewness

across the utterance. We calculated these features from all the F0 contours in the training data.

We then trained various classifiers (e.g., SVM and logistic regression) on these features and used

them for pairwise classification. The resulting classifiers performed at chance level, showing that

these commonly used features were not effective for distinguishing between dialects; we attribute

this to the failure of these features to capture local F0 dynamic changes. Generally, there are

two ways to address this issue. The first one is capturing underling intonational patterns, as our

proposed method does. The second one is to use features that represents local F0 dynamics better
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Figure 6.12: Pairwise accuracy plot. Each row shows side-by-side the average detection accuracy
per speaker for both methods for a dialect pair.

than the simple F0 features. Although no one have done this for dialect classification, Ma et al. [94]

used such features for emotion recognition. Hence, we are using it as our baseline.

In Ma’s method, for a pair of emotions, logistic bayesian regression is used to learn a binary

classifier. In the original article, a combination of spectral and prosodic features from the INTER-

SPEECH 2010 feature set was used. To make this method comparable with our proposed method,

we only used prosody related features from the INTERSPEECH 2010 feature set.

6.4.4.3 Results

For each pair of dialect, we trained two classifiers using both the baseline and our method with

the same training data. Then we test the two methods using the same test data. For each speaker

in test data, we used all of their utterances to decide which dialect the speaker belongs.

Figure 6.12 shows the pairwise comparison results for all ten dialect pairs between our classifier

and baseline method. Each row is an individual group pair with the baseline results displayed in

the left side and our classifier’s results in the right side. The average accuracy of correct detections

per speaker for each pair is reported on each row. From the figure it is easy to see that our classifier

does much better than the baseline. We achieved an average accuracy of 85%, while the baseline

achieved an average accuracy of 55% which is almost at chance. These finding are interesting in

the following manners. 1) Even though the features set used in the baseline consists of a variety of

prosodic features (e.g., jitter and shimmer) that are meant to represent the F0 dynamics in both
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short-term and long-term intervals, this large features set is ineffective in distinguishing dialects.

This ineffectiveness indicates the difficulty of the dialect classification task. 2) Achieving high

accuracy using our classifier validates our assumption of using NMF with sparsity measure. 3)

Since W consists of templates that are based on GENIE’s component curves, we can conclude that

GENIE can capture F0 dynamic differences between different English dialects. 4) English dialects

can be distinguished by their F0 dynamic differences. These results are consistent with our finding

in clear vs. conversational and individuals with dysarthria vs. neurotypical individuals studies.

There are probably many other classification tasks that can make use of F0 dynamic differences.

Looking at individual pairs, our classifier performs worst for American English vs. Indian

English, 64% of American speakers were correctly identified and 63% for the Indian speakers.

One explanation is that Indian English speakers have shown frequent use of continuation rises or

question rises in statements [103] instead of rise-fall patterns as in American English. This behavior

violates GENIE’s fourth assumption in Chapter 3. In this case, our classifier, which uses templates

that are based on GENIE, attempts to fit a rise-fall accent curve into a raising intonational pattern

in Indian dialect which results in inaccurate estimation during training and testing.

Even though the accuracy is not very high for American English vs. Indian English pair,

our classifier does not have a bias unlike the baseline. In this pair, the baseline method was

able to correctly detect 95% of all American English speakers, while it failed to correctly detect

a single Indian English speaker. Therefore by misclassifying all the In speakers as American

English speaker, the baseline method showed strong bias towards the American English dialect. In

order to visually represent the classification bias between the proposed and baseline methods, we

calculated the total number of prediction for each dialect in each pairs. The results are illustrated

in Figure 6.13, where the ideal case represents the results of a perfect classification between two

groups. Therefore, the closer the boundary between the light cyan bar and dark cyan bar is to the

red dashed line, the fairer the classifier is. For example in the top row of Figure 6.13, our classifier

fairly distinguishes between the two groups American English and Australian while the baseline is

biased to classify all speakers in this pair as American English. The baseline has a strong bias to

choose the American and British groups over other groups. Our classifier does not have a strong

(or any) bias in any classification, and shows a small amount of bias towards Australian English

in the (Australian, British) pair.

The above results suggest that extracting large sets of prosodic features (which used by most

studies in this area of research) not only leads to inaccurate classification, but also may result in

a strong bias in classification. In order to improve the performance of classification systems is it

essential to use a more effective way to represent the prosodic characteristics of dialects. Achieving
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Figure 6.13: Pairwise bias plot. Each row shows side-by-side the classification bias for both methods
for a dialect pair.

high prediction with low bias indicates that our classifier can differentiate between two speaker

groups by only capturing their prosodic characteristics differences.

6.5 Conclusion

In this chapter we wanted to determine whether we can use F0 dynamics differences between two

speaker groups to differentiate one from another. In order to make this determination we performed

an investigation on F0 dynamics differences between two pairs of speaker groups:

F0 dynamics in hypokinetic dysarthria: The results suggest that modest levels of classifica-

tion accuracy are obtained with a model based approach. Even if the accuracy is definitely

too low for any practical use, the results are statistically highly significant. This is both

important and surprising, given that the groups did not differ in speech intelligibility. Im-

portantly, GENIE accent curve results were better than the conventional baseline method,

which uses global statistics – mean and standard deviation, or coefficient of variability. In

addition, GENIE accent curve results were also better than those of less sophisticated meth-

ods, such as the raw accent method. Very broadly speaking, this could mean that it is in the

fine details of F0 dynamics that very mild forms of dysarthria first become visible.

F0 dynamics in clear and conversational speech: By investigating F0 dynamics differences

between CLR and CNV speech, we showed that the speaker uses more feet (i.e., emphasizes

more words) to increase the clarity of an utterance. We also showed that this increase of the
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foot count is independent of theF0 range and duration of the utterance. Results for database

H were statistically significant, but not for database A. The lack of significance between F0

dynamics differences of CLR and CNV for database A shows that the speaker uses the same

number of feet in CNV speech as in CLR speech. Even though the features used in each

study are different, our results are consistent with the results of the following studies : 1)[76]

CLR and CNV speech can be differentiated independently of speaking rate. 2) [142] more

prosodic units are present in CLR speech than CNV. 3) [65] a significant difference between

CLR and CNV for database A was not shown. Therefore, we can conclude that for this

speaker the proposed method is a robust method.

Due to success of the first two studies in differentiating two speaker groups through their F0

dynamics differences, we conducted the third study. In section 6.4, we used the NMF algorithm

and the Gini coefficient to perform a group classification. We applied this method to intonation

based English dialect classification. In a pairwise comparison framework, we showed that our

proposed classifier has less bias and more accurate results compared to a baseline method; the

latter had a strong bias toward American and British dialects. These results suggest that the

“templates” that are based on GENIE carry more prosodic characteristics of dialects than the

baseline large feature set.



Chapter 7

Summary and Future Directions

7.1 Discussion of Contributions

The main focus of this dissertation was the development of a quantitative superpositional into-

nation model for American English to be used as an analysis and synthesis tool of intonational

characteristics in a variety of speech processing applications. As discussed in the first chapter,

the purpose of this thesis was to examine the performance of the proposed model in the following

aspects:

1. Generating high-quality prediction of F0 contour, while being linguistically descriptive using

a limited number of variables.

2. Modeling real world variations, such as: differences in speaking style, intonational functions,

speech data, etc.

In the third chapter, we proposed a quantitive superpositional-based intonation model to estimate

F0 contours using syllable stress, pitch accent, and prosodic phrase boundary labels. We explained

what the shared assumptions were between the proposed model and GSM, and how it differed

from GSM’s other implementations. According to our model, the F0 contour for a single-phrase

utterance can be defined as the sum of a phrase curve and any number of accent curves, one

for each foot. Two log-linear curves are used to model the phrase curves, and a combination

of the skewed normal distribution and a sigmoid function is used to model three different types

of accent curves. First, the skewed normal distribution is employed to model rise-fall accents

that occur in non-phrase-final positions as well as, in statements, in utterance-final positions.

Second, a sigmoid function is used to model the rise at the end of a yes-no question utterance.

And, third, the sum of the skewed normal distribution and the sigmoid function is used to model

continuation accents at the end of a non-utterance-final phrase. The parameters for all functions

139
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were optimized simultaneously in one pass. Next, we presented the methodology of the proposed

method in section 3.1. Finally, in section 3.3 we examined the proposed method potential to be

used as both a synthesis and analysis tool for English intonation through several experiments.

In the first part, we discussed that the proposed model follows the prosodic structure of English

pronunciation. We showed that the model can capture all intonational patterns categorized by the

ToBI system. Therefore the proposed model quantitatively decomposes any F0 contour into its

intonational patterns using a limited set of component curve classes, where each class corresponds

to a phonological entity. In the second part, the model was used for objective testing to show it

can produce accurate results in comparison with GSM’s other implementation (PRISM). We refer

to the proposed model “GENeralized Intonation model for English language” (GENIE). In view of

the findings discussed here, we can formulate the following finding:

GENIE: is a generalized superpositional intonation model for the English language that has the

potential to be used for synthesis and analysis use-cases

In this dissertation, we have provided several frameworks to evaluate the performance of GENIE in

term of predictiveness. As proof-of-concept of predictiveness, in the third chapter, we showed that

GENIE estimates the F0 contours of synthetically generated data with very low fitting error which

was imperceivable for human ear (overall RMSE was lower than two semitones). We achieved the

same results (the overall RMSE lower than two semitones) for both all-sonorant speech data and

kid emotional data. For showing that GENIE is capable of generating high-quality F0 contour,

in the fifth chapter, we provided two intonation generation methods: one data-driven based and

another neural networks based. Both methods resulted in F0 curves that were guaranteed to have

the desired smooth suprasegmental shapes, and were well-suited to handle sparse training data as

well. Perceptual results indicated superior performance of both methods compared to a frame-

based approach. Therefore, we can conclude that GENIE can be used for high-quality intonation

generation; however, as it was mentioned in the first chapter, in higher level of predictiveness, it

is unavoidable for the model to not be linguistically descriptive as well. For showing that GENIE

can be used to achieve high-quality prediction of F0 contour, we provided a intonational classifier

in the sixth chapter. The assumption behind this classifier was that two speaker groups can be

differentiated through their differences in F0 dynamics. This assumption was examined through

investigating the F0 dynamics differences between two pair of speaker groups. Even though there

was no speech intelligibility difference between the speaker groups in both pairs, GENIE was able

to tell speaker groups apart in a statistically significant manner. We believe the reason behind this

ability is that the component curves of GENIE are linguistically meaningful.
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After showing that the F0 dynamics differences between two speaker groups can be used to

differentiate one from another, we proposed to use NMF algorithm and Gini coefficient to perform

a speaker group classification. During training, the data-driven intonation generator was applied

to F0 contours in each speaker group, producing a library of parameter vectors characterizing the

individual shapes of each component curves; these parameter vectors were labeled in terms some

linguistic features. During test, for a given test F0 contour, we created a “dictionary” of template

curves by retrieving parameter vectors whose linguistic labels matched those of the test contour

and used these vectors to generate curves with the same duration as that of the test contour.

Then the NMF algorithm was used to decompose the input F0 contours using the dictionary for

each speaker group, producing a weight vector for each group. Classification was based on the

largest Gini coefficient value of these weight vectors. It should be noted that this classifier does

not use any common machine learning method for classification. We evaluated this classifier in a

dialect classification framework. We concluded that GENIE can be used to predict a F0 contour.

In the fourth chapter, we showed how GENIE can be used to encode a given F0 contour in terms

of intonational event (e.g., pause-less phrase boundary), then we used this ability (of GENIE to

encode F0 contour) to distinguish between two speaker groups in sixth chapter (differentiating

CLR vs CNV speech.) In view of the findings discussed here, we can formulate following finding:

GENIE: provides the high-quality prediction of F0 contours with few free parameters, while being

linguistically descriptive.

To evaluate GENIE’s ability to model subtle intonational variation, several frameworks proposed.

In the fifth chapter, we performed a perceptual test to examine the ability of GENIE to generate

F0 contour with specific intonational function using marked-up input. We showed that GENIE’s

ability to convey contrastive stress was comparable to that of natural speech. Also we provided a

framework for intonation adaptation which uses GENIE to generate speaker-specific F0 contour.

We showed that the proposed intonation adaptation method shows promise as a way to capture

the dynamics of the F0 contours of a target speaker. Through this dissertation, we examined the

performance of GENIE on a variety of data: from synthetically generated data, to more varied

and spontaneous (hence less structured) data with a variety of speaker (state) cases. This leads

us into the last finding:

GENIE: models real world variations, such as: differences in speaking style, intonational func-

tions, speech data, etc.
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7.2 Future Work of Thesis Contributions

As the contributions of this dissertation, we developed a generalized model for English intonation,

and it can be broadly used in speech analysis and synthesis applications. However, there still

remain some challenges – which have not been investigated in the scope of this study. Some future

works for the contributions of the dissertation are listed below:

• Intonation annotation: Usage of GENIE requires detection of foot and intonational phrase

boundaries. In chapter four, we showed that GENIE can be used for detection of pause-

less phrase boundaries using the goodness-of-fit of the model. Also in the sixth chapter,

we showed that this goodness-of-fit of the model can be used to detect the original foot

structure of the speaker. Foot boundary detection depends on syllable stress and pitch

accent labels. Syllable stress labels are predetermined in English; however pitch accent are

variable and based on the speaker’s style. Hence, we suggest exploring the ability of GENIE

to detect pitch accent label in the same way it was used for tracking down the foot structure.

One use-case of this approach could be in stylized speech data which speakers usually do

not follow the pitch accent patterns of news-read data – such as emotion data, or patients

with speaking disorders. In automatic speech recognition application, this approach could

be incorporated with any stress detection method for pitch accent and intonational phrase

boundary detection.

• Intonation generation and adaptation: In the fifth chapter, we proposed an intonation gen-

erator approach for TTS. This approach, via markup, can generate compelling contrastive

stress (contrastive stress is an intonation function which is one type of focus). We generated

this intonation function simply by multiplying the accent curve under focus with positive

value (increasing the amplitude parameters); however as discussed in the first chapter, dif-

ferent types of focus result in different F0 movements. For example a narrow focus can be

better modeled by changing skewness and scale of the accent curve rather than only chang-

ing the magnitude. A possible next step is to study the possible relationship of intonational

functions (e.g., focus) with component curve parameters. The use-cases of this approach are

listed as follow:

– Stylizing a TTS system which it is trained on news-read data

– Increasing clarity of a TTS system by applying more emphasis on certain words

∗ Useful for children learning

∗ Useful for hearing-impaired listeners
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– Clarifying spoken utterance of a patient suffering from a speaking problem by transform-

ing the perceived identity of the clarified TTS system (previous item) to the patient.

• Intonation classification: in the sixth chapter, we proposed an intonation-based classifier

which uses the NMF algorithm for classification. In the proposed method we only used

the NMF algorithm for test purposes and not for training (the matrix W , dictionary, was

generated using the DRIFT method). However, we believe there is a possibility to use the

NMF algorithm for training purposes (to build the dictionary) as well. The suggested steps

are as follow: 1) initializing the matrix W with all possible component curves that can

be generated by changing GENIE’s parameters. 2) For each F0 contour in training data,

applying the NMF algorithm while only updating matrix H. 3) Applying a threshold 1 on

matrix H to pick the most weighted component curves from the matrix W . Furthermore:

– This approach can be used to filter out similar templates (component curves with very

close dynamics) in the matrixW , if we have filled the matrixW using DRIFT’s inventory

in the initialization step. It is similar to implementing a decision-tree but instead of

using a GMM as a representative of component curves in each leaf (last sub-inventory),

we use the NMF algorithm to compress the matrix W as a representative of all the

component curves in the inventory.

– This approach can be used for investigating the similarity between two speaker groups.

Hypothesized steps are as follow: 1) Generating the matrix W from the first speaker

group using DRIFT’s inventory. 2) Compressing the matrix W of the first speaker

group (as described above). 3) Applying the NMF algorithm on the second speaker

group’s data, while using the compressed matrix W of the first speaker group. 4) In

the end applying a threshold on matrix H to pick the most similar component curves

shared between two speaker groups.

• Database issue: In some of the frameworks proposed in this dissertation, we used databases

containing limited amount of data. Specially in the case of the clear vs conversational speech

classification which recordings of a single male speaker were used. Therefore, for being

confident about generalization it is important to use more diverse databases.

1

– Defining a threshold might be as easy as determining a fixed value (e.g., all value above 0.5 are eligible), or a
more complex measure (e.g., Gini measure).
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• Implementation improvement: In the third chapter, for modeling the continuation accent at

the end of a non-utterance-final phrase, we proposed using the sum of the skewed normal

distribution and the sigmoid function (Equation 3.6) which has seven parameters. The two

parameter sets {C, ω, ξ, α} and {D, β, γ} indicates {amplitudes, scale, location, skewness}

of the skewed normal distribution, and {amplitudes, slope, location} of the sigmoid function.

It is possible to decrease GENIE’s degree of the freedom by one point. This can be done

by defining the slope (β) of the sigmoid function in terms of the scale and skewness of

the skewed normal distribution. One solution is using skew normal cumulative distribution

function (Equation 7.1). However, it should be investigated that this decrease in the degree

of the freedom does not effect the flexibility of GENIE on capturing various accent curve

types.

g(t) = D(Φ((
t− γ
ω

)− 2T (
t− γ
ω

, α)) , where T is Owen’s function (7.1)
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