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1. Abstract 
 

The post-translational modifier, ubiquitin, controls many aspects of eukaryotic cell biology, 

including key aspects of both innate and adaptive immune signaling. Remarkably, despite having no such 

system of their own, viruses and bacteria have evolved strategies to manipulate ubiquitin signaling of 

the host cell to support infection. A common strategy to both pathogens is the adaptation of specialized 

proteases, termed deubiquitinases, that can remove host ubiquitin signals. Though the current body of 

work suggests that the removal of host ubiquitin signals is a common strategy for virulence, the 

identification of novel deubiquitinases has been impeded by significant differences in primary sequences 

that likely indicate an evolutionary convergence in function. Since development of deubiquitinases 

typically derive from structural mimicry, this allows for diversity in the primary sequences that may 

make motif searching for deubiquitinases difficult.  

To address the problem of identifying novel deubiquitinases despite significant diversity in 

primary amino acid sequences with a focused approach, we chose to study the Ovarian Tumor (OTU) 

family of deubiquitinases that contains many essential examples in humans and viruses, and limited 

validated examples in bacteria. Typically, the discovery of novel protein family members involves 

generating a sequence motif and manually curating predictions based on a sequence alignment 

approach. The motif approach is problematic in this case because the sequence homology across 

eukaryotic, viral, and bacterial OTU domains is quite poor. In fact, beyond unique mechanisms of 

substrate recognition and catalysis, we observe dramatic sequence permutations in the OTU fold that 

likely arose through convergent evolution. To address this barrier, our work uses a machine learning 

approach to identify key features of OTU deubiquitinases through generating features derived from the 

primary amino acid sequence without the reliance on known motifs. This approach allows for a search of 

distantly-related examples present in bacteria through the identification of underlying features that 

define an OTU domain. By identifying novel deubiquitinases in bacteria, we can improve our 

understanding of how bacteria manipulate the host ubiquitin system in a disease state and contribute 

methods to the field protein function prediction. 

 

 

Keywords 
 
ubiquitin, deubiquitinase, Ovarian Tumor, OTU, bacteria, support vector machine, primary sequence 

prediction  
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2. Background 
 

2.1 Ubiquitin System Overview 
 
Ubiquitin is a 76 amino acid protein that functions as a post-translational modifier through 

covalent attachment to proteins that it modifies. Proteins can be modified through a single attachment 

of ubiquitin known as monoubiquitination or multiple monoubiquitinations. A unique feature of 

ubiquitin is that it can be itself ubiquitinated through eight different sites: either through the N-terminal 

methionine (Met1) or any of its seven lysine (K) residues. These multiple attachment points on ubiquitin 

allow the post-translational modifier to diversely regulate target proteins as it forms unique signals 

through its various polymeric forms. Each of the different lysine or N-terminal methionine linkage forms 

are associated with various cellular outcomes. Aside from polyubiquitin, ubiquitin can also be modified 

with other post-translational modifiers, thus further increasing its diversity through distinct chain types.1 

Below in Figure 1A, the different associated cellular outcomes are depicted with their respective chain 

types and Figure 1B shows the diversity in regulation of ubiquitin through its diverse chain types.2 

 
 

 

 
Figure 1: Various cellular outcomes and linkages of ubiquitin.  A) Different cellular outcomes of each ubiquitin 
chain type. Functions in solid bubbles are known functions of that specific chain types while dotted bubbles are 
speculative and have some evidence to suggest that functionality. B) Diversity in chain types that can be made with 
ubiquitin in terms of level of complexity. Figure1B was adapted from Mevissen, et al., 2017.2  
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The regulation of the ubiquitin signal is cyclic in the eukaryotic host cell, where dedicated 

families of proteins can ‘write’, ‘read’, and ‘erase’ the signals.  The ubiquitin signal is formed through the 

passing of the ubiquitin molecule onto the following cascade: E1 ubiquitin-activating enzyme, E2 

ubiquitin-conjugating enzymes and E3 ubiquitin ligase. The ubiquitin signals can be read by proteins that 

recognize ubiquitin domains and translate the signal into cellular outcomes. The ubiquitin modifications 

can be removed through specialized proteases called deubiquitinases (DUBs) that have the ability to 

disassemble and recycle the ubiquitin molecules. Ubiquitin has evolved uniquely in eukaryotes, but 

bacteria and viruses have also developed E3 ligases and DUBs that hijack host signaling responses to 

support infection. 

 
 

2.1 Deubiquitinases  
 

There are eight known families of DUBs, including ubiquitin-specific proteases (USPs), ubiquitin-

like proteases (ULPs), ubiquitin C-terminal hydrolases (UCHs), Josephin, JAB1/MPN/MOV34 

metalloenzymes (JAMMs), motif interacting with Ub-containing novel DUB family (MINDY), Zinc finger 

containing Ub Peptidase (ZUP), and ovarian tumor (OTUs).2,3 Distinguishing features of the various 

families include structural differences along with reliance on the differing mechanisms of ubiquitin or 

ubiquitin-like molecule specificity, recognition, and mechanisms of removal.4 Dysregulation of DUBs has 

been implicated in many diseases including cancer, inflammation, neurodegeneration, and viral 

infection, which makes it a desirable target to study within viruses and bacteria.3 Although there are not 

many DUBs in bacteria that are known, a thorough screen through genomes of pathogenic bacteria can 

allow us to discover DUBs that may play a role in pathogenesis.  

Of the eight known families of DUBs, there are well-characterized examples of viral and bacterial 

proteins in the ULP family, but there is a gap in knowledge in our understanding of viral and bacterial 

examples across all the other families. Given the lack of data across other DUB families, we chose to 

focus our study on OTUs, for which there are a few viral and bacterial examples known. Given the 

available data, OTUs are a logical choice for building and validating the concept that we could learn from 

eukaryotic and viral examples and apply them to discovering bacterial OTUs. Through discovering and 

understanding more bacterial examples, we can later see how these bacterial OTUs support invasion 

and pathogenicity of a diseased state.  
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2.2 Ovarian Tumor Deubiquitinases 
 

OTUs are the second largest family of DUBs with 16 OTU proteins in humans.5 It has been shown 

that OTUs play roles in signaling cascades (including NFκB, interferon, and p97 signaling), the DNA 

damage response, and inflammation.3  A common factor dictating classification of OTUs relate to the 

mechanism of action for deubiquitination. OTUs contain a catalytic triad, consisting of a catalytic 

cysteine, acidic residue (typically aspartate), and a basic histidine residue that form this active site. The 

composition of the catalytic triad helps to activate the enzyme in order to catalyze the reaction of 

hydrolyzing the peptide bond between ubiquitin chains. Although the mechanism is uniform across 

OTUs, the composition of the protein structure can be very diverse. Figure 2A shows the evolutionary 

conservation across the human examples of OTUs, but in Figure 2B, the structural makeup of these 

proteins is very diverse in structure and length, even despite belonging to the same family of proteins 

within one species. The differences amongst the human OTUs is further highlighted when we look across 

the preferred ubiquitin chain types these enzymes hydrolyze, as seen in Figure 2C, as they ultimately 

affect different cellular outcomes through the large range in chain type preferences.5 Although we have 

good a understanding of human OTUs, their vast structural and functional differences may be 

problematic when attempting to predict viral and bacterial OTUs. 

  

Figure 2: Structural and functional comparison of known human OTUs.  A) Phylogenetic tree of the human OTUs. 
Figure from Mevissen, et al., 20135. B) Structural comparison of the human OTUs. Figure from Mevissen, et al., 
20135. C) Preferred chain types of the human OTUs. 
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Previously there were examples of known viral OTUs, but only a few bacterial examples in the 

literature.6–8 In our recent study, a set of seven OTUs were predicted and validated in pathogenic 

bacteria.9 This further increases the number of examples for known bacterial OTUs. Although all the 

bacterial examples found by Schubert, et al. showed deubiquitinating activity, these bacterial proteins 

were even more diverse than the human OTUs. Figure 3A shows the sequence logo of the bacterial 

proteins within the region of the catalytic triad, however, two of the bacterial OTUs, EschOTU and ceg7, 

contain permutations and rearrangements of the domain. Furthermore, Figure 3B shows the low 

sequence identity amongst all the proteins in a percent identity matrix.9 Ultimately, we have a small 

number of examples of bacterial OTUs, and even within these examples, there is low sequence identity 

and high diversity amongst the examples. 

 

 
Figure 3: Sequence comparison of bacterial OTUs. A) Sequence logo generated surrounding the OTU domain 
comparing the human OTU, OTUB1, and predicted bacterial OTUs. Asterisks highlight residues that form the 
catalytic triad. Green and red arrows highlight the arrangement of the sequences to the logo. B) Percent identity 
matrix of the OTU domains using PSI-Coffee alignment.9 

 
 

2.3 Previous Protein Prediction through Machine Learning 
 

Protein classification allows for identifying groups of proteins with similar structure, activities, 

and metabolic roles in the cell.10 One common approach taken in the protein classification field is to 

perform a binary classification task of classifying positive examples (family of interest) versus negative 

examples (proteins not belonging to that family). To this end, an applicable machine learning method 

used is a support vector machine (SVM) to perform the binary classification task between the two 

classes. SVMs determine hyperplanes (decision boundaries) by maximizing the margins (distance) 

between support vectors (points from different classes that are closest to each other). In the case when 

there is not a linearly separable decision boundary solution, the hyperplane can be mapped into higher 
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dimensions.11 Within the protein prediction and classification field, there is significant literature on the 

utilization of SVMs because they allow for interpretation of the relative importance of features through 

the weights. Table 1 details features generated from primary amino acid sequences used in protein 

predictions with different applications. 

In terms of features that can be generated strictly from protein sequence, amino acid 

composition is the simplest feature type. There have been many examples where composition allows for 

good performance in classification of various protein families. Samudrala et al. used amino acid 

composition (referring to the frequency of occurrence of the natural amino acids in the primary 

sequence) as a feature set when training their SVM classifier to identify bacterial type III secreted 

proteins.12 With amino acid composition as a feature type, they were able to achieve an area under the 

receiver operating characteristic (ROC) curve (AUC, a representation of accuracy) of 95%, sensitivity 

(proportion of actual positive cases) of 90%, and specificity (proportion of actual negative cases) of 88%. 

There have also been other studies where computational modeling used successive dipeptide and 

tripeptide composition of the amino acids to maintain more integrity of the positions on the amino 

acids. Although dipeptide and tripeptide composition increases the original feature space from 20 (the 

number of genetically encoded amino acids) to 202 (400) and 203 (8000), respectively, there is a gain of 

information due to the order that exists in protein sequences that dictate their protein family or protein 

function.13,14 Bhasin and Raghala were able to achieve a Matthew’s correlation coefficient (MCC, metric 

of accuracy that accounts for unbalanced classes in binary classification tasks) of 0.81 and an AUC of 

97.5% in the task of classifying G-coupled protein receptors (GCPRs) with dipeptide composition.13 

Wang, et al. were able to improve upon the feature type and achieved an MCC of 0.96, sensitivity of 

95.4%, and a specificity of 97.2% while classifying GPCRs with the utilization of tripeptide composition, 

showing that higher composition could increase the performance of the classification.14  Amino acid 

composition features are strictly sequence-based types of features, but have been previously shown to 

be distinguishable in protein family classification tasks. 

Other common types of features extracted from primary amino acid sequence are Composition, 

Transition, Distribution (CTD) features. These features could be mapped based on different 

physiochemical properties, especially for the Distribution (D) and Transition (T) features. Once an 

encoding based on physiochemical property is chosen, (examples include polarity, hydrophobicity, 

charge, normalized Van der Waals volume, polarity, solvent accessibility), the features can then be built. 

Composition (C) refers to the proportion of binned amino acids for a specific physiochemical property 

within the full-length sequence. Distribution features are the proportion of the specific property within 
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the beginning, 25%, 50%, 75%, and full length of the sequence. Transition features are the proportion of 

changes from one property to another (ie: hydrophobic to hydrophilic switch in a hydrophobicity 

encoding). Li, et al. show that this representation of amino acid sequence can perform well across many 

protein families with either SVM or K-nearest neighbor (KNN) as machine learning tools.15 This type of 

feature encompasses not only sequence-based but also physiochemical-based properties from the full 

length sequence derived from amino acids. 

Previous work by McDermott, et al. shows that it is possible to generate features from ubiquitin 

E3 ligases (enzymes that are writers of the ubiquitin code) from the primary amino acid sequence in a 

binary classification task of distinguishing bacterial E3 ligase proteins from unrelated bacterial 

proteins.16 The goal of the paper was to generate a model that could learn properties of the primary 

amino acid sequence that distinguish bacterial ligases so predictions could be generated from other 

bacterial strains lacking a known ligase. Originally the model was trained as a binary classifier with 164 

positive cross-kingdom ligase examples curated from UniProt while 235 negative, non-ligase examples 

were extracted from literature. K-mers were generated for all sequences using reduced amino acid 

alphabets (RAA), which categorize the amino acids into alphabets based on physiochemical properties, 

including charge, hydrophobicity, solvent accessibility, and structure to reduce the feature space. An 

SVM classifier was trained using RAA k-mers ranging in length from three to twenty. In this method, 

feature generation is a mixture of sequence-based and function-based features because the amino acids 

were encoded based on physiochemical properties and then the amino acid composition of the features 

were then extracted after the encoding. To equally sample numbers of positive and negative ligase 

examples, proteins in the training data were binned into groups based on sequence similarity to account 

for unbalanced examples of ligases. After cross-validation across all RAAs with a k-mer range of 3 to 20 

amino acids, the optimal encoding determined was the binary hydrophobicity RAA with a k-mer length 

of 14, resulting in an AUC of 90% in the held-out test data. Testing the model showed that the k-mer 

approach with RAA encoding based on an SVM model was sufficient for detecting known examples of 

bacterial E3 ligases that were held out in the training phase. This broad application with k-mers and RAA 

encoding could potentially be applied to learning the OTU family of DUBs without initial bias towards 

family motifs.16 Since the goal was to computationally predict more novel bacterial ligases, the final 

optimized model was applied to the Pathosystems Resource Integration Center (PATRIC) database, 

which contains over 80,000 genomes of bacteria that are known interactors with the human 

proteome.17  
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Table 1: Summary of the different feature types from the literature review.  Amino acid composition, dipeptide 
composition, and tripeptide composition are representative of sequence-based features, while 
composition/distribution/transition features are function-based. The reduced encoding with k-mers is a 
combination of sequence-based and function-based features. The order of features in the table represent increasing 
information content. 

 
 

2.4 Research Question 
 
Gaps in Research 
 

Most protein prediction algorithms strongly rely on sequence homology for predicting proteins. 

However, OTUs lack homology across known examples, especially in bacteria. This is due to a 

combination of poor sequence similarity and sequence reorganization that exists within the OTU fold 

across bacterial examples.  Therefore, developing a classifier that uses features derived from the 

primary amino acid sequence, but is not dependent on sequence homology, is crucial for overcoming 

this barrier to learning OTUs. 

 
 
 
 
 

Feature type Feature Performance 
metric Performance Application / 

Reference

Functional-based Composition, Distribution, Transition
Precision

Sensitivity
Specificity

93.3%
95.1%
99.9%

Actin capping
(Li, et al.)

Sequence-based & 
Functional-based

Reduced physiochemical encoding 
with k-mers AUC 90% Ubiquitin ligases

(McDermott, et al.)

Functional-based Amino acid composition
AUC

Sensitivity
Specificity

95%
90%
88%

Type III secretion
(Samudrala, et al.)

Sequence-based Dipeptide composition AUC
MCC

97.5%
0.81

GCPRs
(Bhasin & Raghala)

Sequence-based Tripeptide composition
MCC

Sensitivity
Specificity

0.96
95.4%
97.2%

GCPRs
(Wang, et al.)
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Research Question 
 

Our overarching goal is to increase understanding across all DUB families, especially in the 

contexts of viruses and bacteria. By narrowing the problem space specifically to the OTU family for this 

project, we can evaluate the potential of learning from eukaryotic and viral examples for the application 

of predicting in bacteria. The OTU family has a subset of known bacterial data with experimental 

validation, but other DUB families lack this information across all kingdoms of life so this could be a 

proof of principle in training within eukaryotic and viral examples for generalization to bacteria. 

Our goal is to refine a computational model that trains on features based off the primary amino 

acid sequences of known eukaryotic and viral OTU proteins to further predict undiscovered bacterial 

OTUs. Key considerations in the research question include curating appropriate negative (non-OTU) and 

positive (OTU) sequences, determining prominent features that distinguish between the two groups in 

an SVM model, and assessing model performance amongst different models that are generated. The 

purpose of this project is to build a model that could generalize to bacteria from training with eukaryotic 

and viral examples. Ideally, the properties of the features will allow for generalizability given that we 

know that we cannot rely on a model built entirely based on homology.  

 
 
Central Hypothesis 
 

Our overarching hypothesis is that we can train a classifier with k-mer features encoded based 

on physiochemical properties to learn OTUs. This initial baseline model using k-mers based on the 

primary amino acid sequence reduced to physiochemical properties will perform sufficiently to learn 

features that classify an OTU without domain knowledge on OTUs or protein structure biochemistry. But 

with the addition of subsequent features that direct the classifier, we can better distinguish OTUs from 

other proteins without complete reliance on homology. The additional feature sets will be a 

combination of sequence-based and function-based features. 

 
 

Data Acquisition 
 

There are many protein databases (including PFAM, MEROPS, and InterPro) that classify 

proteins into various families or clans mainly through the reliance of computational methods such as 

pHMMs (profile Hidden Markov Models) or BLAST (Basic Local Alignment Search Tool).18–20 Although 

these metrics are sufficient to generate predictions on whether a protein belongs in a specific family, we 
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wanted to train a classifier off the most stringent examples of OTU proteins. UniProt curates protein 

sequences into two databases: UniProtKB/Swiss-Prot and UniProtKB/TrEMBL, where the former requires 

manual curation and experimental validation to be determined as a reviewed sequence and the latter 

can contain any level of evidence.21 

To curate our negative examples, previous literature in protein family prediction shows that we 

can sample sequences that are not related to ubiquitin activity from the UniProtKB/Swiss-Prot database 

or pull sequences from families in the PFAM database that are not related to OTUs nor ubiquitin.16 Our 

goal is to obtain only bacterial sequences for the negative set because we ultimately aim to predict 

novel bacterial OTUs. The full-length sequences will be downloaded from UniProt and are readily 

available to generate features for subsequent modeling. 

 
 
Specific Aim 1 

 
Aim 1 – Generate a baseline OTU classifier that utilizes features derived from the primary amino 

acid sequences of known eukaryotic and viral OTUs and assess its ability to generalize to the 

prediction of bacterial OTUs. 

 

 
 
Figure 4: Overview of Specific Aim 1. Workflow diagram of Aim 1, generating a model based on k-mer features 
with reduced amino acid encoding. 
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Viral and bacterial OTUs can be discovered through sequence alignment to the consensus motif 

of the OTU family. However, there are instances in bacteria where there are rearrangements of the 

catalytic triad of the OTU domain, and in these instances a classical sequence-based approach is not 

suitable. We aim to generate features from the entire primary amino acid sequence though encoding 

the sequences into k-mers (substrings of the sequence) and train the classifier with an SVM. To reduce 

the feature space, we will map the sequences into alphabets representing physiochemical properties, 

such as hydrophobicity, charge, solvent accessibility, and structure because from the native primary 

amino acid alphabet, with each increase in length, the features increases by a factor of 20. The 

performance of this initial model will be used as a baseline to compare to subsequent optimized models. 

The initial k-mer approach should give us flexibility to capture permutations derived through convergent 

evolution. Our initial approach utilizes the combination of both sequence-based and function-based 

features to try to classify known OTUs from negative examples. 

To build the initial baseline model for binary classification for OTU positive versus negative 

proteins, counts of k-mers encoded in the various four reduced amino acid alphabets (including 

hydrophobicity, solvent accessibility, physiochemical properties, and charge), as described in 

McDermott, et al., 2019 will be generated.16 The model will be trained using an SVM with recursive 

feature elimination (RFE) and downsampling of negative examples to balance the two classes in the 

training data. The performance of this initial model will be used as a baseline to compare to subsequent 

optimized models. This methodology is depicted in Figure 4. 

 
 
Specific Aim 2 

 
Aim 2 – Optimize the feature generation from the primary amino acid sequence through adding 

additional biologically relevant features to the baseline model. 

 



 17 

 
 
Figure 5: Overview of Specific Aim 2. Workflow diagram of Aim 2, imputing additional feature sets with the k-mer 
model generated from Aim 1. 

 

We aim to improve the initial model built from k-mers by adding additional feature sets. There 

are many examples using sequence-based and function-based features that are predictive of bacterial 

effectors, and this may help to prioritize the bacterial OTUs in predictions. We hypothesize that 

generating features through k-mers from the primary amino acid sequence can be predictive of protein 

families and by adding feature sets we can increase our prediction accuracies. We aim to generate 

features that do not rely completely on homology to optimize the model. Our additional sets of features 

are either more heavily sequence-based or function-based (exclusively) and we are going to test to see 

which feature type is more successful in predicting bacterial OTUs. 

The baseline model will be improved through the addition of other features that are generated 

from the primary amino acid sequence that are likely to inform the classifier on OTUs. These features 

will be in addition to the k-mers that are used in the baseline model.  We aim to direct the k-mer model 

with either sequence-based or functional-based features. The sequence-based features include amino 

acid composition, dipeptide composition, and tripeptide composition. The function-based features 
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contain composition, transition, distribution features. The optimal model will be built by determining 

the most informative features in the classification task. This is built off the model generated from Aim 1, 

as shown in Figure 5. 
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3. Methods 
 

3.1 Data Acquisition 
 
 Full-length sequences were downloaded from UniProt. The initial screen for OTU positive 

sequences was a query for “OTU” with the annotation of “positional domain”. Only reviewed sequences 

were included in the full data set. Other viral and bacterial OTU positive sequences were curated from 

viral and bacterial screens performed by Dzimianski, et al., and Schubert, et al.8,9 

 To curate the OTU negative set, full-length non-redundant bacterial sequences were 

downloaded from UniProt. The sequences were cleaned to remove any sequences that appeared in the 

positive OTU set and filtered to remove any sequences with the functional terms relating to “ubiquitin”. 

 
 

3.2 Feature Generation 
 
K-mer features with Reduced Amino Acid Encoding 
 
 K-mer features were built based on similar encodings detailed by McDermott, et al.16 The full 

length sequence was iterated through based on a k-mer length and translated to represent each bin 

within the encoding type. The k-mer lengths generated were between k=6 and k=16, inclusive, as 

previously in literature these were tested lengths that were used. Table 2 details the different encodings 

that were tested in this study, which includes hydrophobicity, physiochemical properties of individual 

amino acids, solvent accessibility, and hydrophobicity & charge in conjunction. The features were built 

based on scripts on the public repository: https://github.com/biodataganache/SIEVE-Ub. All the 

sequences in the positive and negative data set were encoded in all the different RAAs, which 

encompasses counts data within the full-length sequence for each k-mer and encoded group. 
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Table 2: Reduced amino acid encodings.  Encodings used for initial training included hydrophobicity, 
physiochemical properties (broadly), solvent accessibility, and hydrophobicity & charge.16 

 
 
Composition Features 
 
 Three different composition sets were generated from the primary amino acid sequences: single 

composition, dipeptide composition, and tripeptide composition. Single amino acid composition 

encompassed counts of occurrence of each amino acid within the full-length sequence. Dipeptide 

composition features were generated by iterating through each sequence with a k-mer length of 2 and 

capturing counts based on occurrence for each of the dipeptide combinations. Tripeptide composition 

features are similar to dipeptide composition features, except that the k-mer length was 3. Each of these 

feature types were generated in their own data tables for the entirety of the positive and negative OTU 

sequences. 

 
 
Composition, Distribution, Transition Features 
 
 Composition features were based on single amino acid composition, similar to the previous 

method stated above. The Distribution and Transition features were based on hydrophobicity, classified 

as shown in Table 3. Distribution features were generated for the beginning, 25%, 50%, 75%, and full 
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length of the sequence based on the occurrence of each of the groups. Transition features were the 

proportion of changes from one group to another group. 

 
Polar Neutral Hydrophobic 

R, K, E, D, Q, N G, A, S, T, P, H, Y C, L, V, I, M, F, Q 
 
Table 3: Composition, Transition, Distribution feature classification of amino acids based on hydrophobicity. Bins 
of each group based on hydrophobicity, which includes polar, neutral, and hydrophobic amino acids. 

 
 

3.3 Model Building Overview 
 

Initially, the negative data set was randomly down-sampled to equal the number of OTU 

positive sequences. The data was split into training and testing sets, where the training set included all 

the eukaryotic and half the viral OTU positive sequences and an equal proportion of negative OTU 

sequences. The rest of the down-sampled data was held out in the test set. This is diagramed in Figure 

6A. 

The initial model built based on k-mers with reduced amino acid encoding included a rare 

feature filter, which removed features that appeared less than twice in the training data set. Features 

were then ranked based on variance and only the top 25% most variant features were used in building 

the model. A 5-fold cross-validation approach was used within the training data to estimate the 

performance with the rare and variance filters. Performance metrics captured were accuracy, sensitivity, 

and specificity. This approach is shown in Figure 6B. 

To test the validity of RFE as a backwards method of feature selection, we implemented nested 

cross-validation to estimate the model’s performance compared to the initial 5-fold cross-validation. 

The nested cross-validation approach split the training into 5-folds, training with RFE in the first 4-folds 

and testing on the held-out 1-fold to estimate performance. The RFE with cross-validation iterated 

through each feature and dropped the lowest performing feature until accuracy dropped 10% compared 

to the initial round of RFE. This is shown in Figure 6C. Accuracy, sensitivity, and specificity were 

calculated on the held-out data. 

The final model utilized all the training data with cross-validation to optimize the number of 

features. After the optimal number of features was determined based on performance in accuracy, the 

features underwent a backwards selection to prune to the minimal model.  
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All models were built in Python with the scikit-learn package, using SVM with default 

parameters and a linear kernel. 

 
  

 

 

               
Figure 6: Overview of data partitioning and training. A) Overview of positive (OTU) and negative (non-OTU) 
sequences and their division into train and test sets. B) 5-fold cross-validation to estimate model error in the 
training set. C) Nested cross-validation method used to test performance of RFE. 

 
 

 

B

C

A
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3.4 Average Edit Distances 
 
 To examine the impact of features retrained by RFE and examine whether the feature selection 

method reduced redundancy within the set of predictors maintained within the classifiers, we captured 

all the features used in the model kept at each iteration of RFE. The edit distances were calculated for 

each pairwise combination of k-mer features within that iteration of RFE. The average was then taken 

for the group of features within that iteration of RFE. 
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4. Results 
 

4.1 Data Acquisition 
 

Through a search in UniProt for reviewed sequences of proteins with an annotated OTU domain, 

there are 94 available sequences, which include 82 eukaryotic, 11 viral, and 1 bacterial example.22 With 

an additional literature search of published works with experimental validation showing proteins with 

an OTU domain and DUB activity, there are an additional 38 viral and 9 bacterial sequences that could 

be used as positive OTU examples.6–8,23 In total, that yields 140 positive sequences with OTU domains 

that could be used to train the classifier. 

To curate our negative examples, previous literature in protein family prediction shows that we 

can sample sequences that are not related to ubiquitin activity from the UniProtKB/Swiss-Prot database. 

Ultimately, we are interested in predicting novel OTU deubiquitinases in bacteria and by utilizing 

bacterial sequences, we hope to narrow down the feature space, even despite having a majority of viral 

and eukaryotic OTU sequences in the positive set. Initially, there were 286,786 bacterial sequences that 

were reviewed in the non-redundant proteome of UniProt. One sequence was removed because it was a 

bacterial OTU sequence. Then the sequences were filtered and removed if it contained “ubiquitin” in the 

functional annotations of the protein descriptors. After the ubiquitin filter, there were 286,676 

sequences that were left in the negative training set. 

To narrow the training data, the negative OTU sequences were down-sampled to create a 

balanced data set with the positive OTU examples. The sequences were partitioned such that the 

training set contained all 82 eukaryotic OTU sequences and half the viral OTU sequences (24 viral 

sequences) and matched numbers in negative OTU sequences. The testing set contained half of the viral 

OTU sequences and all 9 bacterial sequences along with matched numbers in negative OTU sequences. 

This was partitioned so that we can test whether the knowledge on training on eukaryotic and viral 

examples could be transferred to bacterial sequences. This is due to the lack of validated data on 

bacterial OTU proteins.  
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4.2 Specific Aim 1 
 
Feature Filtering on k-mer Features 
 
 After the k-mer features were generated and the training and testing sets were sampled, the 

features were filtered. Within the training data, rare features were filtered out. We defined a feature as 

being rare if it did not show up at least twice in the training set. Then the variance of the features was 

calculated across the training data. The top 25% most variant features were then selected to train in an 

SVM for binary classification. The classifier was trained with 5-fold cross-validation to estimate the 

accuracy, sensitivity, and specificity across the four encodings, hydrophobicity, physiochemical 

properties of amino acids, solvent accessibility, and hydrophobicity & charge. This was applied to each k-

mer length and encoding combination. 

 With the filters placed on the feature space, the hydrophobicity encoding performed with above 

80% mean cross-validation accuracy across all the k-mer lengths. The sensitivities and specificities across 

the k-mer lengths and the encodings were consistent in terms of their means, but the hydrophobicity 

encoding had a smaller standard deviation, as seen in Figure 7A-D. At this point, the performance of the 

encoded k-mers was similar across the encodings without any RFE applied; none of the combinations of 

k-mers and encodings outperformed all the others. However, it was promising that with the 

combinations of k-mers and encodings, the models were able to discern OTU positive and negative 

sequences better than chance.  

At this point, we began to optimize the hydrophobicity encoding because it was the simplest 

model across all the encodings and understanding the features was also an important factor in the 

model building. Of all the encodings, the range in number of features is from 64 features to 147,022 

features, which is quite a large feature space to try to extrapolate biological understanding.  
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Figure 7: 5-fold cross-validation on rare and variance filters. Mean accuracy, sensitivity, and specificity across k-
mer lengths 6-16 for A) hydrophobicity encoding, B) physiochemical properties encoding, C) solvent accessibility 
encoding, and D) hydrophobicity and charge encoding. 

 
 
Feature Selection with RFE 
 
 The next step was to next see if we could use RFE as a feature selection tool. In order to test 

this, we applied a nested cross-validation approach. This approach encompassed splitting the training 

data into 5 folds for the outer loop of the nested cross-validation. One of the folds was held out as an 

unseen test set. The four folds were taken into the inner loop and split into five further folds to run RFE, 

where the optimal number of features were found within the inner loop. Afterwards, the optimal model 

from the inner loop training was used to assess performance on the held-out fold in the outer loop. 

 

 

 

A B

C D
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k-mer 6 7 8 9 10 11 12 13 14 15 16 

p-value 0.315 0.887 0.669 0.989 0.985 0.31 0.238 0.601 0.256 0.032 0.442 

 

  
 
Figure 8: Validating RFE with the hydrophobicity k-mer.  A) Accuracy, sensitivity, and specificity on held-out 
portion of the training data of all k-mers trained with nested cross-validation B) Mean accuracies of k-mers 
comparing without feature selection and with RFE as feature selection. C) Number of features used to generate 
models without feature selection and with RFE as feature selection on a log10 scale. D) p-values of paired t-test 
between the accuracy performances with and without feature selection across all k-mers E) Example of 
performance across each iteration of recursive feature elimination, with k-mer 9 in hydrophobicity encoding within 
one-fold of the inner loop of the nested cross-validation. F) Edit distance across each round of RFE for k-mer 9. 

C

E
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 The accuracy, sensitivity, and specificity were above 80% (similar to the initial training with rare 

and variance filtering), as seen in Figure 8A. When compared together, as seen in Figure 8B, there were 

no discernable differences in performances across all the performance metrics between the two model 

training approaches. There was no statistical difference in the means across the five folds between the 

initial cross-validation training and the nested cross-validation training, when a paired two-tailed t-test 

was ran, as seen in Figure 8D; the p-values were above 0.05 indicating that we reject the null hypothesis 

that there is a difference in the means between the two groups. At this point, the performances 

between the two models were comparable, but the number of features selected using RFE was 

drastically less than without feature selection, as seen in Figure 8D. When we look at one of the training 

folds, as seen in Figure 8E, for the k-mer length of 9, we see that as we drop features, we see that 

performance still remains high even when nearly 50% of the features are removed. These data in 

culmination show that using RFE is able to maintain the performance within the training data while 

minimizing the number of features in the model. 

 In order to examine whether RFE removed features based on redundancy, we attempted to look 

at edit distances across each round of RFE for a few of the k-mer encodings. For each round of RFE, the 

optimal features were captured. The Levenshtein edit distance was calculated for each pairwise 

combination of k-mer features and the mean was taken for that group of k-mer features. Figure 8F 

shows a plot of the edit distances for each iteration of RFE. What we would predict is that through each 

round of RFE, we are removing redundant features so as we continue through with RFE, the average edit 

distance would increase as we decrease the number of features in our model. However, Figure 8F shows 

that there is small change in the average edit distance across all iterations of RFE. The average edit 

distances range from 3.05 to 3.13 across each iteration of RFE for the k-mer length of 9 in the 

hydrophobicity encoding. It appears that with RFE, the edit distances are slightly minimized towards the 

optimal model, which is the opposite result of what is expected so further exploration is needed to 

examine why RFE slightly increases the redundancy with the feature set. 

 
 
Minimal k-mer Models 
 

After it was determined that RFE is a valid approach for feature selection, we built the minimal 

optimal models for the hydrophobicity encodings with k-mer lengths 9, 10, and 11. We chose to 

optimize these k-mer lengths because they were the minimal lengths with the best performance within 

the encoding, with cross-validation accuracies between 85% to 87% with the RFE. All the training data 
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was used to find the optimal minimal features using the RFE as a feature selection tool. The final models 

were tested against the held out bacterial OTU set that also contains half of the viral examples.  

The results are depicted in Table 4.  We see across the three k-mer lengths of 9, 10, and 11, the 

performances are very similar. They have accuracies of 87.9%, sensitivities ranging between 81.8% to 

87.9%, and specificities of 90.9%. The minimal number of features after the RFE is approximately 10-fold 

less than the starting number of k-mer features that were generated for each k-mer length in the 

hydrophobicity encoding (Table 4). Our next step is to add different feature sets in conjunction with the 

filtered k-mer encoded features to try to improve the model performance in predicting bacterial OTUs in 

Specific Aim 2. 

 

k-mer Accuracy Sensitivity Specificity Starting features Minimal features 

9 87.9% 81.8% 90.9% 512 39 

10 87.9% 87.9% 90.9% 1024 102 

11 87.9% 84.8% 90.9% 2048 322 

 

Table 4: k-mer performance on held out test set. Performance (accuracy, sensitivity, specificity) on held out test set 
of viral and bacterial sequences, with k-mers 9, 10, 11 encoded based on hydrophobicity.  

 
 

4.3 Specific Aim 2 
 
Composition, Transition, Distribution Features 
 
 Since the hydrophobicity encoding had performed the best compared to the other encodings 

within the k-mer feature set, we opted to use the hydrophobicity encoding of the CTD features to see 

whether it could improve the model’s performance on predicting OTUs from non-OTUs. This feature set 

is a physiochemical-based feature set and also encompassed proportions of where the characteristics 

were found within the sequence. 

 After generating the CTD features and running RFE together with the k-mer features, we see in 

Figure 9A that there is no significant difference in mean cross-validation accuracies for any of the three 

k-mer lengths. Results of t-tests comparing the two groups of k-mer only features versus k-mer features 

with the additional hydrophobicity CTD features are shown in Figure 9B.  
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k-mer 9 10 11 

p-value 0.908 0.565 0.691 
 

Figure 9: Cross-validation of k-mer features in conjunction with additional CTD feature set. A). Cross-validation 
accuracy of k-mer features encoded in hydrophobicity versus k-mer features with additional CTD features. B) P-
values of a t-test comparing the means of the accuracies between k-mer only features and k-mer with additional 
CTD features. 

 
 After generating the cross-validation accuracies for the k-mer features with the CTD features, 

the classifier was retrained with all the sequences held out in the training set and then the classifier 

predicted within the testing set. Table 5 depicts the results for the k-mer features with the additional 

CTD features. We see that the final model produced is within the cross-validation accuracies we 

observed from Figure 9B, with accuracies ranging from 86.4% to 90.9%. 

  
 

k-mer Accuracy Sensitivity Specificity Starting features Minimal features 

9 86.4% 84.8% 87.9% 523 24 

10 87.9% 84.8% 90.9% 1033 207 

11 90.9% 90.9% 90.9% 2059 233 

 
Table 5: k-mer and CTD features performance on held out test set. Performance (accuracy, sensitivity, specificity) 
on held out test set, with k-mers 9, 10, 11 with RFE.  

 

A

B
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Composition, Dipeptide, and Tripeptide Features 
 

  
k-mer 9 10 11 

Adjusted p-value 0.0075 0.0019 0.0067 
 
Figure 10: Cross-validation of k-mer features in conjunction with additional composition feature sets. A) Graph of 
cross-validation accuracies of k-mer features versus k-mer features with additional composition features. B) P-
values of an ANOVA comparing the group means of each group of cross-validation accuracy. 

 

The single amino acid composition was calculated for each of the sequences in the complete 

data set. This encompassed counts of individual amino acids in the full length of each sequence. After 

the k-mer features were filtered for rarity and variance, the composition features were added and 

applied to RFE for feature selection. A similar approach was taken for dipeptide composition and 

tripeptide composition features. 

Above in Figure 10 are the results comparing the k-mer only features to k-mer composition 

features with the additional composition features. The result of the cross-validation accuracies improves 

across the addition of all composition features as seen in Figure 10A. In Figure 10B are the results of an 

ANOVA comparing the group mean accuracies of the cross-validation, where we see a significance in the 

difference of the means across the k-mer lengths of 9, 10, and 11. These data show that we see that the 

addition of the composition features, including single amino acid composition, dipeptide composition, 

and tripeptide composition appear to improve the model’s ability to distinguish OTUs from non-OTUs. 

 

 

A

B
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k-mer Accuracy Sensitivity Specificity Starting features Minimal features 

9 87.9% 81.8% 93.9% 532 47 

10 87.9% 90.9% 90.9% 1044 81 

11 93.9% 90.9% 97.0% 2088 137 

 
Table 6: k-mer and single amino acid composition features performance on held out test set. Performance 
(accuracy, sensitivity, specificity) on held out test set, with k-mers 9, 10, 11 and single amino acid composition 
features with RFE.  

 

k-mer Accuracy Sensitivity Specificity Starting features Minimal features 

9 95.5% 97.0% 93.4% 912 133 

10 95.5% 97.0% 93.4% 1424 245 

11 95.5% 97.0% 93.4% 2448 149 

 
Table 7: k-mer and dipeptide composition features performance on held out test set. Performance (accuracy, 
sensitivity, specificity) on held out test set, with k-mers 9, 10, 11 and dipeptide composition features with RFE.  

 

k-mer Accuracy Sensitivity Specificity Starting features Minimal features 

9 92.4% 93.9% 90.9% 8512 269 

10 93.94% 93.9% 90.9% 9024 474 

11 93.94% 96.7% 90.9% 10048 629 

 
Table 8: k-mer and tripeptide composition features performance on held out test set. Performance (accuracy, 
sensitivity, specificity) on held out test set, with k-mers 9, 10, 11 wand tripeptide composition features with RFE.  

 
 
 Above in Table 6, Table 7, and Table 8 are the fitted final models for the k-mer lengths 9, 10, and 

11 encoded with hydrophobicity with the addition of single amino acid composition features, dipeptide 

composition features, and tripeptide composition features, respectively. We see that there is 

improvement in accuracy and specificity across all the k-mer lengths with the addition of the 

composition features compared to the k-mer only classifier in Table 4 and the k-mer classifier with CTD 

features. The optimized classifiers with the additional composition feature sets performed within the 

range of the cross-validation accuracies. For the single amino acid, dipeptide, and tripeptide 

composition features, the accuracies range from 87.9% to 95.5% accuracy. The sensitivities range from 
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81.8% to 97.0% and the specificities range from 90.9% to 97.0%. The minimal features chosen for each 

of the classifiers are more than ten-fold less than the initial features generated through the use of RFE 

as a feature selection tool. 
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5. Discussion 
 
 We initially sought to find a method of predicting novel bacterial deubiquitinases, however, it 

has been observed that there is low sequence similarity within the OTU domain and even sequence 

rearrangement shuffling the catalytic triad within the domain. We proposed using machine learning 

based on features generated from the primary amino acid sequence to overcome the reliance on 

sequence homology, which is typically used with multiple alignment techniques to sequence motifs. 

Many of the proposed features previously used in machine learning techniques to classify families of 

proteins included k-mers encoded in RAAs, composition features, and CTD features generated from the 

primary amino acid sequence. 

 
 

Conclusions 
 

Based on Specific Aim 1, we see that using k-mer features with hydrophobicity encoding can be 

predictive of bacterial OTU sequences from non-OTU sequences with the addition of feature filtering 

based on variance. Furthermore, we can use RFE to select the most informative features, thereby 

significantly decreasing the feature space and simplifying our classifier models, while still maintaining 

classifier performance.  

From Specific Aim 2, we see that the addition of CTD features does not appear to improve the 

classification of OTUs from non-OTUs, through comparing the cross-validation accuracies between the 

two feature sets. However, with the addition of single amino acid composition, dipeptide composition, 

or tripeptide composition does appear to improve the model performance in the classification of OTUs. 

 

 

Limitations 
 

A limitation to this study is that the models lack generalizability to other DUB families. This 

particular application is only usable in the context of predicting OTUs, considering the lack of examples 

across a majority of the DUB families. Therefore, we cannot say whether the types of features identified 

as important for predicting OTUs would also serve well for predicting other bacterial DUBs. 

This brings it to the context of the current study itself, where a large limitation is the limited size 

in the training data, especially for validated, non-redundant proteins for viruses and bacteria. As more is 
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understood in the field of ubiquitin DUBs, we could in the future improve the machine learning 

application of protein family prediction for OTUs. 

Another limitation to this study is that the method of sampling data may not be the best 

representation. Due to the limitation in unique sequences annotated in UniProt, we down-sampled non-

OTU sequences to balance to the OTU sequences. Classifier performance may be dependent on the 

selection of non-OTU sequences used in the training set. We also trained against eukaryotic, viral, and 

bacterial sequences to predict ultimately in bacterial sequences. This transfer learning may not be 

completely comprehensive and more work needs to be done in evaluating larger groups of non-OTU 

sequences. 

 A computational limitation to the study is within the generation of the various feature sets and 

the model building, which lack scalability for larger sizes. A majority of the models were built with the 

maximum of about 400 sequences at a time, so more work would need to be done in order to address 

the problem of scalability. 

 

Future Directions 
 

 Future work from this project includes examining how the selection of negative non-OTU 

sequences affects the model performance. The original method of down-sampling non-OTU sequences 

may affect the model performance and may not be representative of the population. There is also the 

consideration that the OTU sequences encompass eukaryotic, viral, and bacterial sequences, while the 

non-OTU sequences are only bacterial. It would be interesting to compare training a non-OTU set across 

all kingdoms versus just bacteria, although it is an important consideration that the goal is to discover 

more bacterial OTU proteins. 

 Next steps from this work also include comparing the prominent features from each of the 

generated final models to known OTU sequence logos to see if parts of the catalytic triad were 

determined to be distinguishing for OTUs versus non-OTUs. An extension of this would be to examine 

the model’s performance compared to other computational tools that are used to predict domains and 

protein families, such as HMMs on InterPro to see if there is some consensus to this method. 

Importantly, more work needs to be done in order to examine the effect of RFE as a feature selection 

tool to determine whether redundant features are removed and whether there are biological insights 

regarding the distinguishing features of OTUs that can be gathered from this method. 
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 Within the scope of analysis done for this project so far, another aspect of the that can be 

examined more closely is the OTUs that were not classified correctly. There may be features within the 

sequences of these OTUs that could guide future prediction studies for OTU if the structure of these 

proteins is drastically different than the other known OTUs. 

 Although there is more work to be done to refine the models in terms of improving 

performance and understanding the biological significance of the RFE, this work has shown that k-mer 

features can be useful for distinguishing OTUs from non-OTUs. This takes a step outside of relying 

heavily on homology and the construction of sequence logos for predicting more proteins within a 

protein family of interest.  
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