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Abstract

Controlling cancer requires comprehensive understanding of the molecular, cellular, and

organizational properties of tumor tissue. While clinical pathology has served as a gold

standard for cancer diagnosis for over a century, the field continues to largely rely on vi-

sual inspection of sectioned and stained tissue under the microscope by expert pathologists.

Emerging technological advancements in scanning equipment have contributed to wide-scale

digitization of whole slide images with clear clinical connotation, while parallel strides in

artificial intelligence have enabled computational models of computer vision shown to meet

or exceed human capabilities for identifying features of interest and abnormalities in imag-

ing data. This work integrates deep learning systems for histopathological image analysis to

quantitatively and qualitatively evaluate spatial characteristics of tumor biology to better

guide clinical diagnosis and treatment of cancer. First, I illustrate an unsupervised ap-

proach to learn meaningful representations of multicellular organization both in response

to environmental perturbation and across diverse histopathological tissue types. Second, I

demonstrate a supervised approach that enables clinical-grade inference of the metastatic

origin of secondary cancer from whole slide histological sections of liver metastases. Third, I

introduce a semi-supervised annotation tool that retains an expert human pathologist in the

xv
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loop to resolve a critical research bottleneck in digital pathology by accelerating whole slide

annotation. Finally, I present a learning approach that transfers learned spatial features

from images of primary cancers to infer the origin of secondary metastatic cancers. These

studies support the application of emerging systems for computer vision, artificial intelli-

gence, and interactive manipulation of biological data to accelerate pathological evaluation

processes and augment human understanding of biology and disease.
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Chapter 1

Introduction

I believe the treatment is an absolute
cure for all forms of cancer.

Dr. J.E. Gilman,
on X-rays (1901)

But what... is it good for?

Computing Systems Engineer, IBM
on the microchip (1968)

A convergence of recent advancements in medical imaging instrumentation, clinical on-

cology, and artificial intelligence have given rise to the rapidly evolving field of digital

pathology, which broadly investigates the application of advanced computational models

of computer vision to biomedical imaging data. This chapter introduces key concepts and

recent findings of spatial biology of cancer, clinical pathology, and artificial intelligence that

give context to the remainder of this work.

Section 1.1 introduces the field of spatial systems biology and key technologies that

have enabled the deep profiling of spatial characteristics that have contributed to enhanced

understanding of tumor function. Section 1.2 introduces key concepts underlying the field

of computer vision and deep learning, which have undergone rapid developments in re-

cent years. Section 1.3 provides a research landscape overview of recent approaches to

1
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incorporate artificial intelligence learning systems to biomedical image analysis. Section

1.4 concludes with a summary of current opportunities and challenges in the field of digi-

tal pathology, and section 1.5 summarizes the contributions of this work and provides an

overview of the remaining subsequent chapters.

1.1 Spatial Systems Biology of Cancer

Our understanding of biology canonically fits into a hierarchical teleology that is typically

organized along an axis of physical scale. Figure 1 illustrates the scale of living systems

from atoms to molecules up through proteins, protein complexes, structures, cells, tissues,

organs, individuals, and out into multi-agent ecologies. While biological research has his-

torically been a largely reductionist enterprise - breaking down complex systems to study

constituent units - an emerging holistic view seeks to synthesize biological findings into a

more comprehensive context through the process now known as systems biology. Cancer

systems biology extends this approach to tumor biology to better understand how inter-

actions between signaling mechanisms, cells, and microenvironmental factors contribute

to tumor growth and resistance to therapy. By elucidating mechanisms by which tumors

develop resistance to targeted therapy, treatment strategies may be modulated to ensure

durable reponses both to improve and extend quality of life.1

Findings stemming from this approach have compelled some researchers to consider can-

cer as a systems biology disease, characterized by the disregulation of interacting elements

intended to maintain normal physiological homeostasis.3 Cancer itself is not one disease,

but an umbrella covering physiological conditions that exhibit characteristic hallmarks such

2
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Figure 1.1: Biology across physical scale. The role of the pathologist generally focuses on
scales ranging from cells through tissue and tumor. Figure reproduced from Kim, 20132

as active invasion and metastasis, sustained proliferative signaling, growth suppression inva-

sion, and cell death resistance.4 As tumor tissue undergoes uncontrolled cellular prolifera-

tion, tissue organization necessary to sustain normal homeostasis is disrupted. The emergent

complex architecture composed of specialized cellular subtypes is generally referred to as

the tumor microenvironment.5 Figure 1.2, reproduced from Hanahan and Weinburg,5 illus-

trates the multi-cellular complexity in spatial systems architecture presented by tumor cells,

non-tumor cells, immune cells, endothelial cells, fibroblasts, and a host of other specialized

units. Emerging appreciation for how cells interact in complex environments poses a new

challenge to understand how spatial abberations and the microenvironment collaborate to

disregulate cell differentiation, proliferation, apoptosis, and motility.6

1.1.1 Mechanisms by Which Cancer Arises

The mechanisms by which cancer arises are diverse, complex, and in many cases poorly

understood. Cancer is believed to typically arise from a single cell that acquires one or

3
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Figure 1.2: The tumor microenvironment is composed of diverse and interacting con-
stituent components. Reproduced from Hanahan, 20115

more mutations that impacts its ability to regulate self-replication, and ultimately induces

cellular immortality, which results in unconstrained proliferative growth. As a mutated cell

divides, it passes on its defective properties to its progeny, accelerating the outgrowth of the

now cancerous cells. The process by which cancer arises is broadly defined as tumorgenesis.

A single cell may acquire immortality through a unique set of steps, but causal mechanisms

tend to point towards a spontaneously acquired mutation in one or more genes associated

with cancer promotion or in one or more genes associated with cellular self-termination. For

example, the RAS family of proteins encoded by the RAS genes are involved in intracellular

signal transduction which promote cell growth when activated, such that a mutation caus-

ing RAS to become permanently active may induce cancer by forcing cells to continuously
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divide.7 Alternatively, the protein encoded by the p53 gene is known to regulate apop-

tosis such that a mutation that interrupts normal function of p53 may remove a primary

mechanism by which cells normally halt their own replication.8

Tumors likely develop over several years as cells begin to divide at a higher rate and

acquire additional genetic mutations and epigenetic alterations over time. Even though a

cell that has been immortalized might begin the process of unconstrained division, other

physiological stresses work against cancer’s growth by imposing limitations on available

resources, such as oxygen; while cancers are known to upregulate oxygen supply through

promotion of angiogenesis, a cell that runs out of oxygen will eventually die, whether the

cell is cancerous or not.9 The telomere structures that cap the terminal ends of chromo-

somes similarly provide an intrinsic limitation on cell divisions, as a cell whose telomeres

become depleted can become non-viable after additional replications, though upregulation

of telomere-repairing telomerase is known to circumvent this control.10

Because most cells contain two copies of each chromosome, the two-hit hypothesis in the

context of tumorgenesis postulates that mutations must be aquired in both promotion of

oncogenes and of inactivation of tumor suppressor genes in both alleles in a cell.11 Whether

cells may be spurned to induce replication by over-expression of oncogenes or whether the

intrinsic rate-limiting mechanisms of tumor suppressor genes malfunction, only a single cell

is required to initiate tumorgenesis and, eventually and over many generations, result in a

cancer diagnosis.
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1.1.2 Metastasis

Although primary tumors themselves present a significant biological burden, metastasis re-

mains the cause of 90% of deaths from solid tumors.12 In an overwhelming majority of

cancer patients, a diagnosis of metastatic disease is strongly associated with terminal ill-

ness.13 Because the complex microenvironment of a tumor affects its ability and propensity

to metastasize to other sites in the body,14 targeting metastatic signalling processes may

present unique opportunities to improve patient outcome.13

The process of metastasis is complex, involving a series of physiological and physical

steps necessary for a cancer cell to extravasate outside of the primary tumor, survive cir-

culation, seed a target organ, and engage in persistent growth.15 This process is shown in

Figure 1.3 which illustrates the physical forces necessary to disrupt normal physiological

function in such a way as to transport cancer cells with metastatic potential away from

the primary tumor and into a secondary site with suitable microenvironment conditions

that enable proliferative growth. Although metastases can arise from virtually any primary

tumor in the body, specific locations exhibit preferential hosts for metastasis, particualrly

brain, lung, bone, and liver.16

1.1.3 Imaging Science

Characterizing complex tumor architecture requires methods capable of profiling molecular

physiology of tissue while preserving the spatial context of those measurements. Considering

perhaps that humans generally perceive their environment through visual analysis of their

surroundings, for centuries imaging has provided a compelling medium to understand tumor

tissue, and remains a foundational approach to unravel the spatial structure of biological

6



Artificially Intelligent Pathology Geoffrey F. Schau

Figure 1.3: Metastases are distal outgrowth colonies of cells dispatched from a primary
tumor through blood or lymph vessels or by extravasation through solid tissue.

systems.17 Unlike most genomic analyses which destroy physical compartmentalization

during preparation, imaging science enables visualization of spatial interactions of a wide

variety of physical components in the tumor microenvironment at single-cell resolution.17

An array of imaging technologies have elucidated biological mechanisms operating at vastly

different scales, from nanoscale measurements made using quantum dot imaging all the way

through meter scale measurements made with PET (Positron Emission Tomography) and

MRI (Magnetic Resonance Imaging) technologies.18

Clinical diagnosis of cancer typically requires a surgical resection or biopsy of the sec-

ondary solid tumor. Once resected, the sample is chemically fixed and embedded into a

solid medium for storage and handling. From the resulting block, thin sections of tissue are

sliced, placed on a slide, stained, and viewed under a microscope. Despite generally con-

sistent methods for histopathological specimen preparation, clinical pathologists must be

flexible to technical artifacts and general uncertainties in discriminating between different

cancer types. Technical challenges with tissue preparation also manifest in digitized scanned

7



Artificially Intelligent Pathology Geoffrey F. Schau

images, including tissue tearing, tissue folding, and inadvertent capture of unwanted debris,

while staining artifacts due to inconsistent preparation or application of the H&E stain are

also not uncommon, often leaving regions of tissue either under- or over-stained. Variabil-

ity both between pathologists as well as within a single pathologist across different settings

are referred to as inter-operator and intra-operator variability, respectively, and remains a

significant challenge both in research and clinic.19–22

Emerging multiplexed imaging technologies afford an entirely different approach for tis-

sue analyisis. Multiplexed immunohistochemistry,23,24 cyclic immunofluorescence,25 multi-

plexed imaging mass cytometry,26 and CODEX27 have all emerged in the past several years,

each employing different fundamental mechanisms to elucidate the presence or absence of

molecular biomarkers of interest while retaining their spatial organization in whole tissue.

Despite an emerging generation of exciting biomedical imaging technologies, a vast majority

of clinical pathology still relies on hematoxyin and eosin (H&E) staining. The protocols for

generating H&E images are well-established, providing a cheap and easily accessible method

for producing high-contrast representations of tissue capable of displaying a broad range

of cytoplasmic, nuclear, and extracellular features.28 An example whole slide image (WSI)

is shown in Figure 1.4. At low magnification, the tissue appears similar to what might be

seen with a human eye. However, while microscopes are essential for discerning fine details

of a tissue composition, digitization of such images captures detailed structure in a single

image file that may be stored, transported, and viewed in a computer.

Increasing magnification of a whole slide image illuminates far greater detail than what

can be seen at whole-slide level. Figure 1.5 illustrates a zoomed-in dramatic example of an

H&E stained section of an invasive adenocarcinoma (left half of the image) invading normal
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Figure 1.4: A digital whole slide image of tissue sectioned and stained with hematoxylin
and Eosin reveals remarkably diverse spatial structure within living systems. Seen from a
low-magnification view, distinct regions of the sample are evident. The blue color corre-
sponds to the hematoxylin staining cellular nuclei while the pink color corresponds to the
eosin staining the extracellular matrix and cytoplasm. Together, H&E staining provides a
reliable and high-contrast representation of tissue features that are essential for guiding a
pathologist to an accurate diagnosis.

liver tissue (right half of the image), each separated by a barrier of immune infiltrate. Careful

inspection of these images by a trained pathologist are generally sufficient to establish

preliminary diagnoses, and even today are generally considered a gold standard of cancer

diagnostics.

Although whole slide histology has historically relied on visualizing stained tissue under

a microscope,29 instrumentation capable of scanning whole slide images at high resolution

has enabling capture and digital storage of histopathological specimens.30 Since their first
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Figure 1.5: Digital pathology enables computer-based interaction with high-resolution im-
ages of scanned tissue sections, such as this example of invasive metastatic adenocarcinoma
of the liver. At this resolution and magnification, individual cellular nuclei become clearly
evident while the texture and shape of the cellular cytoplasm enables a pathologist to read-
ily classify cells according to their type. For example, the broad, regular shapes of the large
cells at the right of this image are easily classified as normal liver tissue, while the small
dense cells with little cytoplasm near the middle of this image are characteristics of immune
cells. The disorganization of tissue seen at the left side of this image is a characteristic
property of many cancers.

introduction in 1990, whole slide scanners have undergone significant technological progress,

and have enabled digitization of whole slide images accessible to many clinics.31 While the

field of pathology has at times been slow to adopt technological advacements, efforts to

incorporate digital whole slide imaging have gained traction in pathology departments for

educational, diagnostic, and research purposes, in some instances even replacing traditional

glass-slide microscopy in clinical practice.32

In summary, the current state of oncology is confronted with three features of interest

relevant to this work: the abundance of imaging data capturing the context of a tumor’s
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microenvironment, the pressing clinical need to establish durable response to therapy, and

persistent concerns regarding inter-operator variability of tissue inspection. Computer vi-

sion systems have, in recent years, demonstrated success in establishing high-level under-

standing of tissue, as will be discussed in Section 1.3, but to better understand how and

why computer vision systems have undergone extraordinary progress in the past decade

requires a brief introduction to the core computational features of modern computer vision

systems.

1.2 Learning Systems Architecture

As pathology migrates into a digital medium, it brings with it tremendous opportunity.

The abundance of consistent data coupled with health care records, co-morbidities, health

outcomes, and response to therapy presents a rich space to test and validate biological hy-

potheses and design new tools. Learning to associate features of histopathological tissues

specimens with targets or labels of clinical interest requires a computational approach ca-

pable of learning spatial features contained within whole slide images that are relevant for

a clinical task; the broad success of deep learning and artificial neural networks has opened

a promising avenue to begin addressing key problems in digital pathology.

1.2.1 Artificial Neural Networks

Although the terms neural network and artificial intelligence have recently come back into

vogue, the origins of neural computing architecture extend as far back as the 1940s.33 with

the introduction of the McCulloch-Pitts model of the neuron. This concept was the first

effort to formulate a mathematical abstraction of neuronal function by explicitly defining
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system input, transformation, and output of a self-contained system modeled after biological

information processing.34 The extension of the mathematical abstraction of the McCulloch-

Pitts model to a typical classification task was first demonstrated by Frank Rosenblatt in

1960 through a design he called the perceptron.35 Though a relatively simple algorithmic

device, the perceptron, as shown in Figure 1.6, remains the foundational basic building block

of neural network systems. In its most basic form, a perceptron is composed of a set of

weights [w1, w2, ..., wn] corresponding to each input feature [x1, x2, ..., xn] plus a bias weight

w0. The perceptron modeled as function n(x) computes the dot product between inputs

and weights, adds the bias term, and passes the result through some activation function σ,

which presumes a non-linear function such as the signum, or sign function, though many

alternatives exist, giving the fundamental perceptron function

n(x) = σ
(
w0 +

n∑
i=1

xiwi

)
(1.1)

Modern neural network architectures combine thousands or even millions of similar

types of computing units together to give rise to extraordinary computational complexity.36

Because the fundamental perceptron unit takes as input a set of multiple features and

returns a single output, perceptrons can be stacked both vertically and horizontally to create

networks with greater capacity and depth. In modern terminology, a set of perceptrons each

processing the same input data but with unique sets of learned weights is referred to as a

layer in which the number of perceptron nodes is generally referred to as the width of a

layer. A model that stacks multiple layers in series is generally referred to as a multi-layer

perceptron, in which the number of composed layers is generally referred to as the model’s
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Figure 1.6: (Left) The perceptron is the fundamental building block of modern artificial
intelligent systems by multiplying input data against a set of learned weights and passing
the resultant sum through a non-linear activation function. (Right) Stacking perceptrons
both in height and width produces a basic multi-layer perceptron, the most basic neural
network architecture.

depth, as shown in Figure 1.6. Computational resources afforded with modern graphical

processing unit hardware enable training of neural networks of significant width and depth

whose complexity and performance scales with the overall size of the network, giving rise

to the term deep learning to refer to such models that contain more than one hidden layer

in the network.

1.2.2 Convolutional Neural Networks

Computer vision broadly refers to the computerized processing of 2- or 3-dimensional imag-

ing data for the purposes of extracting or inferring a high-level understanding content within

an image.37 Although humans generally perceive the world in 2 and 3 dimensions, an ar-

tificial neural network model assumes independence amongst its input features, treating

them independently and summing up their marginal contributions. Human perception re-

lies on the spatial relationship between individual measurements in an image, such that

neighboring pixels provide relative context to their neighbors and vice versa. The use of
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convolutional neural networks began with seminal work by Yann LeCun in 1988 in which

a small convolutional neural network was optimized to recognize hand-written digits37 and

was reignited in 2012 when a team led by Geoffrey Hinton surpasses state-of-the-art results

on the ImageNet dataset classification challenge using a convolutional neural network that

had been optimized on graphical processing unit processing hardware.38 Since then, the

use of CNNs has dominated recent imaging processing literature, having accelerated ad-

vancements across the full spectrum of image and video processing applications, motivating

recent advancements in object detection, scene transformation, and semantic segmentation.

Understanding how and why these types of neural architecture routinely achieve state-of-

the-art results requires a brief overview of the mathematics behind their operation.

In analog signal processing, the convolution operation refers simply to flipping and

sliding two functions f(t) and g(t) against each other by some step τ and computing the

integral of the resultant function.

s(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (1.2)

Intuitively, convolution tells us how a system might respond given an input stimuli f(t)

and a known response of the system to some unit step or impulse function g(t) as the stimuli

passes through the system. The flipping of a signal ensures that the earlier time-step of the

signal is passed through the system first. Under the assumption of a linear time-invariant

system, additive stimuli are compounded within the system response as the two functions

are convolved against each other.

In the context of deep learning, the convolutional operator is considered a multi-dimensional
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and discrete-space function in which an input image I of dimensions M is convolved against

a learned kernel K of a chosen size to produce an output feature map S.‘ A visualization

of a simplified case is provided by Ian Goodfellow and reproduced below in Figure 1.7.39

To extend the illustrative example, consider an input and kernel K ∈ Rm×n, each with two

dimensions in which the corresponding feature map is defined by

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (1.3)

Because the convolution operation is extensible to any number of dimensions, a stack

of kernel layers can be treated similarly to a set of nodes in a layer of a neural network.

The fundamental convolutional neural network is generally composed of a few layers of

convolution kernels followed by one or more densely-connected layers in which the number

of output nodes generally corresponds to the number of unique classes that a classification

task might occupy. Figure 1.8 illustrates the general principle, in which an input image

is convolved with the learned kernel weight matrix to generate stacks of feature maps cor-

responding to the chosen depth of each kernel. Depending on the task, the feature maps

may be flattened and passed through a set of fully-connected layers to generate predictions,

such as an image’s class given the learned feature map representations. However, other

learning tasks such as segmentation retain multi-dimensional feature representations. Also

shown in Figure 1.8 are pooling layers, which are designed to collapse the output feature

maps typically by some summary statistic, such as max pooling,40 to help regularize the

learned representations and make the model more invariant to small changes in input. By

defining an appropriate metric of success for the vision task, such as accuracy for classi-
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Figure 1.7: The convolutional operation as applied to 2D discrete functions. For each
discrete step size, the running product sum of overlapping elements in the input and kernel
are computed as a new 2D output map. This example illustrates an input composed of a
single-channel, but the method is readily extensible to inputs of arbitrary depth. Figure
reproduced from Goodfellow, 201639

fication or intersection-over-union for segmentation, error is back-propagated through the

convolutional kernels to update their weights to improve feature learning relevant to the

learning task.

The purpose of this type of learning system is to learn spatial features with the convolu-

tional layers to generally optimally infer some class label y given some data point x. When

learning a multi-class system to correctly predict a single y from x, it is often desirable to

enforce a unitary summation constraint using the softmax activation function such that the
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Figure 1.8: The convolutional neural network applies a sliding window across an input
image. Because the weights of the window are held constant as it moves throughout the
image, these networks are both efficient and robust. By learning two-dimensional functions,
these types of layers extract spatial patterns within images to make predictions.

sum of all values from the layer add up to one, which enables a valid probabilistic interpre-

tation of the resultant predictions. The standard softmax equation is shown in Equation

1.4 in which σ : RK → RK is defined for i = 1, ...,K and z = (z1, ..., zK) ∈ RK .

σ(z)i =
ezi∑K
j=1 e

xj
(1.4)

The loss function between the training data labels represented by one-hot vectors and the

distribution of class predictions provides an intuitive measurement of error by the classifier.

Although classification is a foundation method in supervised machine learning, the use of

convolutional layers across images can provide informative unsupervised representations

as well. The variational autoencoder (VAE) learning architecture is employed in various

subsequent chapters, and so a brief description of its design and function are provided.
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1.2.3 Updating Learning Models

In either case of supervised or unsupervised learning with convolutional neural networks,

the error measured by any metric must be utilized to update the model in such a way as

to minimize the error during training. In the case of learning a classification model, the

model’s parameters θ compute a distribution of the probability p(y|x; θ) of some target

value y given some input x. Optimizing the model parameters θ requires first estimating

an error measurement between the model’s predictions and their ground truth targets, and

then utilizing that error to update the parameters in such a way as to lower the estimated

error during training. In the context of neural networks, passing a piece of data into a

network and computing an output is known as a feed-forward operation, while using the

error to update the weights of the network is known as backpropagation and is a key feature

in how neural networks are trained efficiently.

Utilization of the back-propagation method41 was first applied to artificial neural net-

works and image analysis by Yann LeCun in the late 1980s42,43 and continues to underly the

optimization of most neural network architectures. The backpropagation algorithm lever-

ages the familiar chain rule of calculus and is best visualized as a computational graph such

as the example shown below in Figure 1.9. This simple illustration shows that backpropa-

gation of error can be achieved in a step-wise manner going backwards through a network

starting at the output and evaluating how each of the weights of the model contributes to

the total error of the loss function. By stepping backwards and nudging each weight of

a layer either up or down in whichever direction that improves the model’s performance,

the model learns to reduce its loss function with each iteration. Thanks to the chain rule,
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Figure 1.9: The backpropagation method for updating a neural network shown as a
computational graph model in which each node represents a layer in an artificial neural
network. In this example, we wish to understand how output z relates to operations at
other steps in the computational graph ∂z

∂w . The chain rule of calculus illustrates how the
partial derivative may be factored out by computing the partial derivatives of each layer
with respect to connected nodes. Adapted from Goodfellow, 2016.

this is done efficiently between each layer rather than needing to explicitly compute the

contributions of each weight to the final output.

The backpropagation algorithm underpins the mechanism by which weights are typically

updated in a network given some supervisory signal by descending along the error gradient

with respect to the parameters of the network.44 This process, known as stochastic gradient

descent (SGD), refers to breaking a dataset into batches and updating the model over each

batch instead of the entire dataset. The objective of stochastic gradient descent is to

update the model parameters w over multiple batches of the dataset at each time step i

by computing the gradient of the error function Q(w) and updating the model weights by

some learning rate or step size η.

wi = wi−1 − η∇Q(wi−1) (1.5)

19



Artificially Intelligent Pathology Geoffrey F. Schau

By iteratively backpropagating error to update model parameters with respect to er-

ror over multiple iterations through some optimization policy such as stochastic gradient

descent45 or adaptive learning policies such as the adaptive moments (Adam) optimizer,46

neural network architectures arrive at some terminal parameterization of w that ideally

achieves a global minimization of the chosen loss function. While backpropagation and

SGD remain the de facto standard for modern neural network optimization, methods to

achieve improved outcomes and avoid local minima continue to evolve.47

The Variational Autoencoder

While inferring the posterior probability p(y|X) that a data point X belong to a given label

y is generally considered to be a classification type problem, often the absence of training

labels y necessitates unsupervised learning within the dataset under consideration. Many

typical feature extraction methods are sensitive to subtle shifts in pixel offset when each

pixel is treated independently, particularly when high-frequency content is present. This is

particularly true in imaging data, where a feature extraction method should be invariant

to the position, scale, or rotation of an object in a scene. In this case, rather than learning

axes of variation within pixel-wise correlations across a dataset, latent features defining the

content of an image are desired.

Autoencoders are a family of learning models that seek to learn optimal compression

of data subject to an information bottleneck constraint by training both an encoder and a

decoder simultaneously and minimizing the difference between an input data point and its

decoded, encoded reconstruction. One significant challenge of basic autoencoders is their

propensity to memorize data, due in part to the broad numeric space models can lever-
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age to embed data representations.48 The variational autoencoder (VAE) seeks to address

challenges pertaining to memorizability by learning latent features through variational in-

ference.49 Bayesian inference methods seek to learn latent or hidden representations of data

given observations made across a dataset by inferring the latent variables z given observa-

tions made in the data. By defining an encoder network parameterized by φ and a decoder

network parameterized by θ, the learning objective of an autoencoder, shown in Equation

2.1, is to maximize the probability that a data point xi is generated given a latent repre-

sentation z while minimizing the divergence between the distribution of the latent variables

with respect to an assumed prior p(z)

Li(xi, θ, φ) = −Ez∼qθ(z|xi)[log pφ(xi|z)] +DKL(qθ(z|xi)‖p(z)) (1.6)

Where DKL is the Kullback-Leibler Divergence, defined for two probability distributions

P (x) and Q(x) across propbability space X as and in which the distribution of the latent

variable is typically defined as the normal Gaussian distribution p(z) ∼ N (0, 1).50

DKL(P‖Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(1.7)

The general architecture of a variational autoencoder is shown in Figure 1.10 in which

the model is composed of probabilistic encoder and decoder functions that compress and

decompress data, respectively, through latent vector z.

In imaging, we model both encoder φ and decoder θ as convolutional neural networks

that can learn spatial features of interest in learning optimal latent representative features.

Because the error of the variational autoencoder learning architecture relates to the dis-
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Figure 1.10: The basic design of a variational autoencoder learns latent representations
of input data as z. Modified from lilianweng.github.io

tribution of latent features, special consideration is required to ensure that changes to the

model during training corrects for this effect. Although in principle, the distribution of z

could be computed by sampling the prior expected distribution of latent features, the sam-

pling operation is non-differentiable and can not be used to explicitly update the weights of

the network. The reparameterization trick diverts the non-differentiable portion of the op-

eration out of the network by parameterizing the mean and standard deviation of the latent

distribution z and scaling the variance by a random variable ε. This simple transformation

enables a fully differentiable network to infer the latent variables of a dataset subject to the

information carrying capacity constraints of z, given a dataset.

The VAE loss term is generally composed of two elements: the first penalizes recon-

struction error and the second penalizes feature distribution. While the KL divergence

is generally suitable for measuring statistical dissimilarity between two distributions, the

other quantitative metric of interest for the purpose of unsupervised feature learning with a
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variational autoencoder is the choice of dissimilarity metric between an input image and its

associated reconstruction. Common metrics include the cross-entropy and mean squared er-

ror between an input and its reconstruction. The structural similarity index (SSIM), shown

in Equation 1.8, is a simple formulation that has been shown to closely associate with hu-

man perception, such that high SSIM corresponds to high likelihood that a human will be

unable to distinguish one image from the other.51 By applying fixed window sizes across

regions of an image, the SSIM measures evaluates the contributions of the mean intensities

µx and µy, variances σx and σy, and covariance σxy of two images x and y and where c1 and

c2 are small scalers added for numeric stability. While the choice of reconstruction error

depends on the nature of the problem, the relative contribution of each term to the total

error function is typically controlled by a balancing hyperparameter such as that used in

the βVAE model.52

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ2y + c1)(σ2xσ
2
y + c2)

(1.8)

Although VAEs have been widely used for feature extraction and learning latent rep-

resentations of data, notable issues limit their applicability to certain types of problems.50

In general, data encoding-decoding often acts as a low-pass filter due to the model’s infor-

mation bottleneck failing to capture either high-frequency or fine details of data given its

limited carrying capacity. This limitation often makes VAEs non-ideal for tasks in which

subtle variation learning is required, as the models tend to learn axes of greatest variation

first, which may compromise the ability of a model to learn distinguishing features across

less significant axes. Further, because VAEs penalize the distribution of the latent features
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across sampled data, representations of outlier data points are often coerced towards the

median distributions of the data. The body of literature dedicated to refining and improv-

ing autoencoder designs for feature learning is actively developing, and although limitations

persist, even simple models designed to learn optimal encoding functions of complex data

have demonstrated capacity to extract the gestalt of a dataset across features that may be

visually interpretable by a human reader, as will be shown in Chapter 2.

Relationship to Human Perception

The design of the CNN is inspired by, but not intended to mimic, the human perception

system. The nature by which convolutional layers update their weights to better recognized

labeled objects has drawn comparisons to the human nervous system’s process of updat-

ing biological neural networks through development.53,54 The intuition provided by the

biological model of vision identifies similarities in the hierarchical arrangement of stacked

convolutional layers with the processing steps involving simple and complex cells in the

occipital lobe of most brains, as diagrammed in Figure 1.11. While this ideation supposes

that stacks of convolutional layers add complexity and depth to representation by combining

primative abstractions to represent complex imaging data, efforts to understand precisely

what is represented by distinct convolutional kernels remains an on-going challenge in the

field.55 Efforts have been made to interrogate individual kernels with natural color depth to

achieve a human-perceptible representation of the learned features. Figure 1.12 illustrates

a few of these representations from a convolutional neural network trained to classify nat-

ural images.56 Though interesting to look at, it remains challenging for humans to apply

semantic meaning to structures or features represented by kernel weights of a convolutional
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Figure 1.11: The use of convolutional operators is inspired by simplified understanding of
the human perception system, which integrates stacks of interconnected neurons to execute
high-level interpretation of visual stimuli.53

neural network, opening up fair challenges to the underlying approach as a black box model,

though the process of dissecting the inner mechanations of any human’s biological occipital

processing networks remains an equally challenging prospect.57

1.3 Digital Pathology & Artificial Intelligence

The degree to which computers can learn relevant associations between patterns in images

of patient tissue and clinical variables of interest in a manner similar to a pathoogist is

evolving rapidly, and underpins most of the major recent successes at the intersection of

digital pathology and artificial intelligence.32 Although the application of deep convolutional

neural networks to image analysis is undergoing renewed interest, the first documented

evidence of their applciation to histopathology dates back to the early 1990s.58,59 Even

before then, the term telepathology was first coined in 1986, referring to the use of television
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Figure 1.12: Pseudo-color examples of visualization of learned convolutional weights help
intuit learned structural features neural networks use in classification tasks. Adopted from
Yosinky, 201556

screens to visualize tissue.60 Since then, an array of new tools have emerged for the storage,

visualization, and annotation of digitized whole slide images,61,62 which are enabling large
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and openly accessible digital slide archives such as The Cancer Genome Atlas.63 The field

continues to undergo rapid developments as the shift from analog to digital pathology

continues to accelerate, particularly in light of research suggesting equivalence between

digital pathology and glass slide microscopy for primary histopathological diagnosis.64,65

Other opportunities stemming from integrating artificial intelligence methods into med-

ical practice are myriad.66,67 Over the past decade, computational advances in the field of

deep learning have revolutionized computer vision and digital image processing, which have

been successfully applied to medical imaging in diverse fields of medical imaging including

dermatology,68 retinopathy,69 and radiology.70 In digital pathology, deep learning has been

applied to a wide variety of tasks,30,67,71–73 ranging from low-level operations such as object

detection74 and segmentation75 to sophisticated clinical operation such as predicting disease

prognosis76 or response to treatment.77 Despite the wide array of specific clinical tasks that

deep learning is becoming involved in, many of fundamental steps in bringing a model to

bear follow a relatively common process.72 A graphical summary of the general process of

integrating deep learning systems with pathology is shown in Figure 1.13 in which digital

images are combined with clinical labels or human annotations to inform a computer vision

model.

The image recognition capabilities of certain deep learning models designed to discrim-

inate histological images across different tissue and tumor types have been shown to meet

or exceed clinical benchmarks in a a number of cases.78–80 A recent study illustrated

the capacity of deep learning systems to bridge the intersection of imaging and genomics

research, as a computer vision model achieved clinical grade accuracy in discriminating

between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) as well
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Figure 1.13: General purpose deep learning work-flow for deep learning in digital pathol-
ogy. Expert guidance from pathologists in feature engineering selection controls which
features in large whole slide images are relevant to the learning task.

as predict genomic mutations through histopathological spatial signatures.81 While deep

learning methods alone can demonstrate efficacy in limited settings, pathologists are trained

to identify features of tissue across a wide range of clinical contexts. These and similar find-

ings suggest ample opportunity to integrate deep learning approaches to augmented the

capability of clinical pathologists.82,83 For example, an augmented reality microscope has

been shown to rapidly identify malignant features of histopathology before a pathologist

inspects a slide with the intention to guiding a pathologist’s attention, accelerate tissue

inspection, and improve ease of diagnosis.84

Deep learning has also had success in addressing some of the technical artifacts associ-

ated with H&E preparation, particularly in the field of color normalization.85 While several

normalization methods86–89 seek to address issues associated with uneven stain distribution

within a slide, pathologists are expected to render diagnoses from inconsistently-treated
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tissues. As a result of other technical factors including variable cutting thickness, tissue

preparation, method of tissue resection or biopsy, time to fixation, operator bias, and the

choice of scanner, H&E images are not consistent even within a common cancer or tissue

type.

Although much of histopathology relied on H&E images, axillary staining techniques,

particularly immunohistochemistry, are regularly utilized in clinical pathology. The intro-

duction of the generative adversarial network by Ian Goodfellow and colleagues in 201490

has opened up novel lines of research investigating synthetically-generated virtually-stained

images that are difficult to discriminate from real images. Virtual staining describes the

process by which unstained tissue sections are captured digitally and a neural network ap-

plied to predict the presence of absence of particular stains of interest. A recent study

demonstrated that synthetic H&E stained whole slide images made directly from an un-

stained bright-field image were indistinguishable from truely stained tissue sections by a

set of board-certified pathologists.91 Other recent work has employed generative models

to accurately infer the presence of proteomic staining measured with immunofluorescence

by learning a transfer function between whole slide H&E images and adjacent sections

stained with immunofluorescently-tagged antibodies of DAPI and PanCK.92 In general,

axillary staining of specific molecular biomarkers is done via immunohistochemistry, how-

ever the choice and selection of marker panel to order can be subject to clinical bias.93–95

Virtual staining methods may provide a computationally-efficient mechanism to infer mul-

tiplexed staining patterns from a single tissue source without the need for expensive and

time-consuming companion diagnostics.

Metastatic cancer detection has attracted considerable attention in digital pathology.
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Findings published in 2017 summarized top-performing models trained to identify metastatic

cancer within lymph nodes, and found that top-five performing algorithms performed com-

perably to a set of board-certified pathologists.76 Deep learning methods have proven to

facilitate improved detection of histopathological features of metastatic breast cancer within

lymph nodes, with findings supporting concordance between features detected by computer

vision models and confirmatory staining done by immunohistochemistry. In research led

by Martin Stumpe in 2018, a research group observed that neural network-assisted pathol-

ogists demonstrated higher accuracy than either the algorithm or the pathologist alone,

enabling quantifiable synergistic outcomes resulting from engineering deep learning models

into established clinical workflows.96

Deep learning systems have also shown to have prognostic value, as demonstrated in a

recent study illustrating that neural networks in conjunction with feedback from pathologists

can automatically detect the spatial organization of tumour-infiltrating lymphocytes (TILs)

in images of tissue slides from The Cancer Genome Atlas and that this feature was prognostic

of outcome for 13 different cancer subtypes.97

1.4 Challenges and Opportunities

Despite widening breadth of opportunity to address clinical needs in digital pathology with

artificial intelligence, significant challenges have impeded rapid adoption98,99 The first chal-

lenge described is that of the absence of labeled data. The adoption of the electronic health

record (EHR) has in many cases provided links from digital H&E images with clinical

treatments, outcomes, and diagnoses, however, lack of structure of many electronic records
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presents a rate-limiting step for curating fully-labeled datasets necessary for training com-

puter vision models.100 Further, even if labels are found to be associated with the contends

of a digitized WSI, intra-slide heterogeneity and variability often necessitate per-pixel or

per-region annotations provided by the pathologist. Such overlapping or hierarchical la-

bels of clinical interest often present non-boolean diagnostic criteria, challenging learning

systems already operating on high-dimensional input data.101

The degree to which neural networks models are interpretable remains a significant con-

cern and barrier to adoption of AI methods for clinical practice. A recent international

study has shown that deep learning methods out-perform their human counter-parts in

detecting breast cancer.,102 though concerns have been raised regarding the transparency

and reproducibility of those findings.73,103 Open data accessibility remains another sig-

nificant challenge to researchers and practitioners. The necessarily high resolution whole

slide images captured by digital scanners present additional challenges stemming from the

large volumes of raw imaging data, while essential protections surrounding patient privacy

protection must be maintained through data-sharing mechanisms. Compared to radiology,

where file sizes are typically less than 50 MB, an individual histopathological may consists

of approximately tens of Gigapixels and easily eclipse several gigabytes in size.82 The in-

herent size and variability within whole slide images limits the uniformity of single labels

applied to an entire slide, often requiring per-pixel annotations of whole slide images to

label tiles sampled from within them.104 Although the need for large manually annotated

datasets has historically posed a significant bottleneck for many deep learning applications

in digital pathology, recent work led by Thomas Fuchs demonstrated that large enough

datasets paired only with diagnosis labels may obviate the need for pixel-wise annotations
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while retaining clinical-grade performance metrics in identifying metastatic cancer of the

lymph node.105

Clinical medicine is often confronted with cases rare in the general population such

that robust datasets covering axes of variation for a given condition might be non-existent,

presenting a class-imbalance problem when training convolutional neural networks.106 If

larger datasets exist in a related context, transfer learning has been shown to be a reasonable

strategy to avert issues associated with class imbalance, as has been employed with success

for breast cancer prediction.79

Despite concerns regarding the accessibility and transparency of deep learning in digital

pathology, tremendous opportunity nevertheless exists, particularly in the fields of research

and education. A current decline in practicing pathologists has necessitated rethinking

in terms of how pathologists are educated and whether clinical decision support systems

may help alleviate work volume.107 In cases where a pathologist might experience signifi-

cant redundancy in day-to-day slide inspection, deep learning systems may be compelling

mechanisms to triage difficult cases from simpler ones, providing a pathologist with more

challenging cases and reducing redunant workflows for more trivial cases.98 Aritificial intel-

ligence systems may have a more central role to play in the education process of pathologists

in the near future, as synthetic image generating systems have already been used to generate

case and control samples to test a trained pathologist’s capacity to discriminate between

real and fake images.71 Artificial intelligence has also shown promise in supporting quality

assurance in digital images. A recent study employing deep learning to infer proteomic

signature of pancreatic adenocarcinoma identified regions of tissue correctly predicted by a

neural network, but whose true stain failed to stain a part of tissue due to technical issues
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during the staining process.108

Digital pathology and artificial intelligence have, and will likely continue to offer com-

plementary approaches to clinical practice by pursuing mechanisms by which to augment

a human pathologist, identify spatial bio-markers of clinical utility, and accelerate the rate

at which data can be ingested and compared.

1.5 Summary

Cancer is a pressing global health challenge, and though therapeutic advancements have

and are continuing to evolve rapidly, deeper understanding of individual cancers is required

to elucidate the mechanisms by which certain patients respond to therapy while others

do not. Metastases present a particular threat, as diverse microenvironmental conditions

of the secondary host site may differentially modulate the biology of a primary tumor or

present physical barriers that impede drug diffusion. Characterizing metastatic disease

is therefore a highly-relevant clinical challenge to ensure that a cancer that has metasta-

sized is accurately diagnosed and treatment appropriately prescribed to halt further spread.

The diagnostic criteria and mechanisms to do this are challenging and subject to inter- and

intra-operator discrepancies, often relying on analog inspection of tissue under a microscope.

While machine learning and computer vision systems are vulnerable to biases themselves,

computer-aided diagnoses have demonstrated compelling potential to improve the quality

of patient care by augmenting human view and understanding of medical information. The

degree to which modern approaches of computer vision and machine intelligence may aug-

ment understanding of the spatial biology of tumor tissue is an area of rapid development.
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This work seeks to evaluate these types of systems in the context of spatial systems biology.

1.5.1 Contributions

This thesis contributes to the study of metastatic cancer through the application of artifi-

cial intelligent systems to cellular imaging data and histopathological whole slide images.

This thesis is organized into four principle chapters of original research followed by a final

chapter summarizing conclusions and future research directions. Chapter 2 evaluates the

role of microenvironmental perturbations on multicellular organization and demonstrates

an unsupervised computer vision systems designed to learn meaningful representations of

characteristic growth phenotypes. Chapter 3 introduces the problem of metastatic origin

inference and presents a deep-learning system trained to characterize whole slide histologies

of metastatic liver cancers by their tissue of origin. Chapter 4 introduces a novel annotation

tool designed to resolve a critical bottleneck in digital pathology that incorporates unsuper-

vised feature manifold learning to accelerate the rate at which whole slide annotations may

be generated. Chapter 5 expands upon the work presented in chapter 3 by incorporating a

transfer learning paradigm that integrates whole slide images of primary cancer to augment

a metastatic tumor classification model. Chapter 6 summarizes this work and describes

future directions for research in artificial intelligence in digital pathology by reflecting on

the promises and limitations of these approaches.
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Chapter 2

Multi-cellular Feature
Representation Learning

Everything we see is perspective,
not truth.

Marcus Aurelius

This work has been formatted for inclusion in this dissertation from the manuscript

“Variational autoencoding tissue response to microenvironment perturbation’, by Geoffrey

F. Schau, Guillaume Thibault, Mark A. Dane, Joe W. Gray, Laura M. Heiser, and Young

Hwan Chang published in the Proceedings Medical Imaging 2019: Image Processing of the

International Society for Optics and Photonics in March, 2019 (doi: https://doi.org/10.

1117/12.2512660).109 This chapter also includes an additional section on the HCC1143

cell line that is unpublished but presented at the 19th annual International Association of

Breast Cancer Researchers conference held in Egmond an Zee, The Netherlands.
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Abstract

This work applies deep variational auto-encoder learning architecture to study multi-cellular

growth characteristics of human mammary epithelial cells in response to diverse micro-

environment perturbations. Our approach introduces a novel method of visualizing learned

feature spaces of trained variational auto-encoding models that enables visualization of

principal features in two dimensions. We find that unsupervised learned features more

closely associate with expert annotation of cell colony organization than biologically-inspired

hand-crafted features, demonstrating the utility of deep learning systems to meaningfully

characterize features of multi-cellular growth characteristics in a fully unsupervised and

data-driven manner.
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2.1 Introduction

The presence of constituent components within the cellular microenvironment and their

effect on growth, differentiation, and therapeutic response of tissue is of paramount im-

portance in the field of spatial systems biology.110,111 Recent advances in high-throughput

systematic screening technologies enable quantification of phenotypic differences among a

variety of cell populations in response to diverse chemical and genetic treatments.112,113

The microenvironment microarray (MEMA) platform114,115 is designed to generate images

that capture diverse phenotypic changes of cellular populations exposed to soluble ligands

and insoluble extracellular matrix (ECM) proteins. High-throughput generation of these

types of data require powerful and sophisticated algorithms to capture features of interest to

better form and validate biological hypotheses. Presently, image-based cell profiling meth-

ods utilize classical image quantification approaches to extract hundreds of features from

high content images to quantify the perturbations’ effects on feature gradients. However,

defining and characterizing micro-environment-dependent multi-cellular spatial organiza-

tion has remained an unmet computational challenge. Although popular techniques extract

features such as cell counts, cellular spatial relationships (i.e., neighborhood information),

or distance to cells in a specific sub-cellular structure,113 these features are limited to char-

acterizing spatial organization of individual cells and often require significant biological

expertise to design.

In biomedical imaging analysis, deep learning techniques that employ convolutional neu-

ral networks (CNNs) to extract deep hierarchical spatial features directly from raw pixel

image data have been shown to outperform classical methods that analyze hand-crafted
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features.116 Applications of deep convolutional neural networks in cellular imaging have

shown promising utility for classification, segmentation, and dimensionality reduction in

diverse biomedical contexts.117,118 Multi-agent learning models, including generative ad-

versarial networks (GANs)90 and variational autoencoders (VAEs),49 have recently been

shown to be capable of learning salient features of high-throughput imaging screens at

cellular and sub-cellular resolution.92,116 Although powerful, GAN architecture has been

shown to struggle in capturing multiple modes of input data, which limits the interpretabil-

ity of their learned features.119 Unlike GANs, VAE latent features conform to expected

prior distributions, which enables elegant interpretation and visualization of what these

models learn. To characterize features of multi-cellular growth patterns associated with

micro-environment perturbation, this work applies convolutional variational auto-encoding

architecture to analyze images of normal human mammary epithelial cells grown on the

MEMA platform. Our approach confers two primary advantages. Unlike current image-

based cell profiling methods that focus on single-cell analysis, our approach is designed to

learn biologically meaningful spatial organization of multi-cellular populations, and we in-

troduce a novel method to visually interpret meaningful high-dimensional learned features

of a VAE model by generating synthetic samples within the principal component plane of

the model’s learned feature space.
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2.2 Methods

2.2.1 Deep Variational Autoencoding Networks

The variational autoencoder (VAE) architecture introduced by Kingma and Welling49 is

designed to elucidate salient features of data in a data-driven and unsupervised manner. A

VAE model seeks to train a pair of complementary networks: an encoder network θ that

seeks to model an input xi as a hidden latent representation z, and a decoder network

φ that seeks to reconstitute xi from its latent representation z. The VAE loss function

shown in Equation 2.1 regularizes model training with an additional Kullback-Leibler (KL)

divergence term that penalizes the distribution of z with respect to a given prior, which

in our case is the standard normal Gaussian distribution, p(z) = N (0, 1). By specifying

a latent dimension z less than the input dimension of xi, a VAE model learns optimized

encoding and decoding functions that enable reconstruction of an input sample subject to

capacity constrains of the latent feature space within the model.

Li(xi, θ, φ) = −Ez∼qθ(z|xi)[log pφ(xi|z)] + KL(qθ(z|xi)‖p(z)) (2.1)

The VAE model trained in this study incorporates two-dimensional convolutional layers

to encode spatial information of multi-cellular organization of cells grown in diverse micro-

environments. Specifying a limiting bottleneck on the latent feature space forces the model

to learn salient features of the dataset and reduce the dimensionality of input features for

further downstream analyses.
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Learning Model Design

The encoder and decoder models used in this study are congruent and composed of five

2D convolutional layers each containing 64 filters with same padding and rectified linear

unit activations on all layers except for the final sigmoidal decoder layer. The outer two

convolutional layers have a 3×3 kernel, the inner two layers have a 2×2 kernel, and the

latent layer is composed of 16 hidden features, which illustrated good trade-off between

model capacity and training loss. Both the encoder and decoder are optimized with the

RMSProp optimizer against the custom variational loss function that penalizes the binary

cross entropy between input and reconstruction as well as the KL divergence between the

latent space sample and standard normal distribution. The models designed for this study

were written in Python using Keras120 with Google’s Tensorflow backend,121 and trained

using Nvidia Tesla V100 GPUs mounted on the Exacloud high performance computing

environment at OHSU.

2.2.2 MEMA Dataset

This study seeks to uncover the role of microenvironmental perturbations in the growth

of normal human mammary epithelial cells (HMECs) by evaluating phenotypic response

to 57 ligands and 47 extracellular matrix (ECM) components using the microenvironment

microarray platform,114 reproduced in Figure 2.1. In this assay, ECM proteins are roboti-

cally printed into micro-well plates to form 300 µm spots upon which cells bind and grow.

Additionally, soluble ligands are added to each well, thereby creating a combinatorial micro-

environmental perturbation comprised of one ECM and one ligand per spot. After three

days of growth, cells are fixed and stained for Keratin 19 (luminal marker in the red chan-
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Figure 2.1: The Micro-environment Micro-array (MEMA) platform is designed to treat
and fix small cellular populations on discrete spots in which each spot if treated with unique
combinations of extracellular matrix component and ligand.

nel), Keratin 5 (basal marker in the green channel), and DAPI (nuclear marker in the

blue channel). Input data from this study are 37,269 images of individual MEMA spots

down-sampled from full-resolution (1200×1200) to 256×256 pixels. Detailed experimen-

tal description, data, and meta-data of the data-generating process are available at the

MEP-LINCS Synapse wiki.1

2.3 Results

These results present both published and unpublished findings for both normal human

mammary epithelial cells (HMECs) and HCC1143 triple negative breast cancer.

1https://www.synapse.org/mep_lincs
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2.3.1 VAE Analysis

A VAE model was trained for 100 epochs on the 37,269 MEMA spot images evaluated

in this study. Input image reconstructions shown in Figure 2.2 illustrate that the trained

model learns sufficient spatial features of spot organization to reconstruct an input image

from 16 learned latent features. Although the reconstructions are clearly lossy, they suggest

that organization, intensity, and distribution of signal within the spots is learned. Notably,

despite the clear heterogeneity in the dataset, the learned reconstructions are generated from

a set of 16 learned features that conform to the expected standard normal prior placed on

the learning loss function. Because the prior places no constraint on relationships between

learned features, correlations between learned features exist. Interestingly, both the number

of cells on each spot and localized abundance of the KRT19 luminal marker, both of which

are typically used to characterize spot organization, appear to associate within the learned

VAE feature space, which is visualized in two dimensions with the t-SNE algorithm.122

Local sub-regions of the learned VAE feature space are further visualized in the two-

dimensional t-SNE projection by superimposing the input images onto the t-SNE coordi-

nates as illustrated in Figure 2.3. By examining the embedding space in this manner, local

regions of the learned feature space appear to group MEMA spots by similar features such

as shape, color, and morphology.

2.3.2 Latent Space Walking

To provide a qualitative assessment of the learned VAE features, we employ a latent space

walking procedure that holds all but one learned feature fixed at the latent dimension’s

expected value (zero) while the feature of interest is swept through the inverse cumulative
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Figure 2.2: (A) randomly sampled input images from the full dataset (B) lossy recon-
structions of the sampled input images after training (C) distributions of each of the 16
features across the entire dataset (D) correlation heatmap of the learned VAE features (E)
t-SNE projection of VAE space colored by the number of cells on each spot (F) t-SNE
projection of VAE space colored by a hand-crafted feature designed to evaluate cell spot
organization.

distribution function (CDF) of the standard normal Gaussian, as in Kingma, et al.49 By

passing synthetic latent feature samples through the trained decoder network, the VAE gen-

erates samples that correspond to changes in a single feature of interest while holding the

rest constant. At left in Figure 2.4 illustrates the effect each learned VAE feature (shown

in columns) has on the decoded synthetic sample by sweeping it through the cumulative

density function of the standard normal distribution (shown in rows). Although this repre-

sentation can provide a qualitative assessment of each of the independent learned features,

this established analysis does not consider recurring correlations between independent fea-

tures. The nature of neural computing and the covariance matrix shown in Figure 2.2

suggest that learned features interact in complex, non-linear ways that cannot be visualized

43



Artificially Intelligent Pathology Geoffrey F. Schau

Figure 2.3: t-SNE embedding of MEMA spots used in this study based on learned la-
tent features illustrates distinct sub-regions of feature space populated by spots of similar
morphology, including a set of technical errors in the bottom right (best viewed at full 10k
digital resolution).

with this class of latent space walking techniques.

To improve the degree to which the learned model’s feature space may be interpreted,

we introduce a novel principal feature manifold (PFM) visualization approach. Our tech-

nique is based off principal component analysis (PCA), which computes a set of principal

components that capture sources of significant variation within a dataset. In brief, PCA

transforms an input dataset into projection matrix T by rotating the input data X by a

computed weight matrix W, which is derived from the eigen decomposition of the data’s

covariance matrix, such that T = XW.

To do so, we first reduce the learned VAE feature space to the first two principal com-
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Figure 2.4: (left) Latent space walking where each column represents one of 16 latent
variables in the VAE model and each row represents uniformly spaced samples along the
cumulative density function of the latent variable distribution. (right) The principal feature
manifold sampled from the first two principal components of the learned VAE feature space
embedding visualizes sources of significant variation in the VAE encoding dataset in two
dimensions. In this analysis, the first two components explain 16.8% and 13.8% variance,
respectively.

ponents using PCA. Because the variance of each principal component is known, we then

sample a bivariate percentile distribution X̂ that is scaled to the variance of the first and

second principal components to span the sampling space we wish to visualize. We next

multiply the sampled percentile grid by the inverse of the principal component matrix W−1

to rotate the uniform grid back into VAE feature space. The trained decoder network φ

then transforms the resulting VAE space samples into synthetic input images S which can

be visualized in two dimensions, as shown at right in Figure 2.4.

S = φ(X̂) = φ(TW−1) (2.2)

This approach illustrates variability in the learned feature set by decoding higher-

dimensional feature interactions presented in the first principal component plane. Although

the information contained in a classical latent space walk and the introduced principal fea-
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ture manifold are similar, the PCA formulation enables evaluation of the entire latent

feature space in a simple two-dimensional image. While similar to the t-SNE space embed-

ding shown in Figure 2.3, the PFM approach is uniquely capable of generating arbitrary

synthetic samples using the trained decoder model.

2.3.3 Measuring Organization with Human Annotation

Presently, measuring organization of MEMA spots requires single-cell segmentation and

feature extraction to first classify every cell on the spot as either basal or luminal based

on expression of keratin markers. Spot organization is then computed as hand-crafted

metric that measures relative abundance of keratin 19 (KRT19), a structural component

of epithelial cells, within the central core region of the spot with respect to the outer

region. Although reasonably effective in this experiment, similar types of hand-crafted

features require sophisticated pre-processing steps and special knowledge of the biological

phenomena under study to design effectively which profoundly limits translation of one such

metric to other problems or experiments.

To evaluate how well our model characterizes spatial organization of cells in an unsuper-

vised manner, we incorporate annotations from 7 expert biologists who graded 300 randomly

selected MEMA spots as either unorganized (intermixed or single cell-type populations),

partially organized, or well organized (centrally clustered luminal cells surrounded by basal

cells). The inter-rater agreement is measured using the Fleiss kappa metric (κ = 0.473),

which suggests moderate agreement between raters123 while reflecting the inherently sub-

jective challenge of characterizing multi-cellular organization. Downstream analyses assign

the mode rating across all raters to each of the 300 scored spots as a simple majority vote
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Figure 2.5: Density separation of human annotation for 300 images across 16 learned
latent features.

decision. Associations between learned VAE features and annotated organization are illus-

trated in Figure 2.5, which suggests that certain features (particularly features 4, 7, 9, and

14) appear to exhibit shifts in their distribution with respect to organizational annotation.

To provide a fair comparison between the learned VAE space and the hand-crafted fea-

ture, we first reduce the sixteen learned VAE features into a single feature for comparison

for both supervised and unsupervised settings. In this analysis, we used the first principal
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Figure 2.6: (left) The first principal component (PC1) and first linear discriminant (LD1)
of the latent space are tightly correlated and illustrate clear separation between annotation
class. (right) Associations between the first principal component of the VAE feature space
and the hand-crafted organizational feature are weak. However, ANOVA analysis suggests
that the learned VAE space improves discriminatory power between the three annotated
classes.

component (PC1) for unsupervised comparison and the first linear discriminant (LD1) for

supervised comparison. The relationship between the first principal component (PCA) and

first linear discriminant (LDA) of the VAE latent space, shown at left in Figure 2.6, illus-

trates that the fully unsupervised and supervised metrics are strongly associated (Pearson

correlation R = 0.9) while neither the first linear discriminant nor principal component

correlate particularly strongly with the hand-crafted organizational feature (Pearson corre-

lation R = 0.49 and R = 0.41, respectively). However, clear class separability is evident

for both the hand-crafted feature as well as the fully unsupervised characterization by the

learned VAE space, shown at right in Figure 2.6.

To test the significance of these observations, ANOVA tests compute statistically-significant

separation of the three expert annotation classes (unorganized, partially organized, well-

organized) with respect to the first principal components, first linear discriminant, the
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Table 2.1: ANOVA results of class separation (VAE vs. hand-crafted feature (HCF) and
Cell Count; *significant)

VAE

PC1 PC2 LD1 HCF Cell Count

F value 717.9 8.2 1073 254 431.5
Pr (>F) <2e-16* 2.83e-4* <2e-16* <2e-16* <2e-16*

hand-crafted organization feature, and the spot cell count. The resulting F values and

associated p-values tabulated in Table 2.1 suggest that a fully unsupervised trained VAE

model (F value = 717.9) improves class separability over a classically designed hand-crafted

feature (F value = 254).

2.3.4 Characterizing Micro-environment Perturbation

This study was designed to evaluate the effect micro-environment perturbations (MEPs)

have on cellular growth characteristics. If certain groups of MEPs (either ligands or extra-

cellular matrix components) induce similar changes in growth morphology on the MEMA

spots, and if the VAE feature space learns to capture those organizational characteristics,

then similarly treated spots should be closely associated in the learned VAE feature space.

This analysis first computes the mean principal latent space projection of spots treated

with the same ligand-ECM combination and then performs hierarchical clustering on both

ligand and ECM conditions which are shown as a heatmap in Figure 2.7. In addition to

reflecting understanding that ligands have an overall more pronounced effect on cell spot

organization than ECMs, this analysis highlights micro-environmental factors most strongly

associated with multi-cellular organization characteristics. For example, this visualization

associates certain ligands known to be highly associated with cellular growth and organi-
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zation (TGFB, FGF2, FGF6, WNT3A, WNT10A, IL6, IL13, and BMP2). Interestingly,

TGFβ and BMP ligands–two closely related signaling molecules–tend to be associated with

cellular organization in cancer.124 They are also implicated in epithelial–mesenchymal tran-

sition, which is relevant to the shift in KRT markers. This observation is intriguing, as these

molecules are also known to play a key role in cellular differentiation and morphogenesis.

Additionally, this analysis also identifies independently observed technical artifacts in a few

of the ECM conditions, which are clearly distinct as the furthest two right columns of the

heat map and shown as technical artifacts in Figure 2.3. Though preliminary, this type

of analysis provides a rapid, unsupervised inference approach to evaluating sets of micro-

environment perturbations that similarly affect cellular organization and prioritize factors

for more detailed experimental studies.

2.3.5 HCC1143

HCC1143 triple negative breast cancer (TNBC) cells are grown on COL1 spots and treated

with one of 63 soluble ligand conditions. Cells are grown for three days, fixed, and stained

with KRT14 (luminal), VIM (mesenchymal), and DAPI (nucleus). Figure 2.8 illustrates

distinct regions of the VAE encoding space showing patterns of varying degrees of cel-

lular organization. Examining the VAE feature space with respect to individual ligand

treatments illuminates which treatments tend to co-locate, as well as the consistency of

features of spots undergoing similar ligand exposure across multiple technical replicates.

Two dimensional density gradient lines illustrate the degree to which spots under certain

treatments tend to pile up in the feature manifold in which more dense distribution of spots

suggests less heterogeneity in their learned phenotypic features, while broader distribution
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Figure 2.7: Hierarchically clustered MEPs by the mean encoding of their treated MEMA
spot images by extracellular matrix (x-axis) and soluble ligand (y-axis) conditions. Each
square represents the mean projection of encoded images for given ligand-ECM conditions
onto the first principal component of the VAE feature space. In this illustration, red colors
are more highly associated with cell spot organization and blue colors are more highly
associated with cell spot disorganization (see Figure 2.4).

suggests greater variability in treatment response. Figure 2.9 illustrate which ligands tend

to induce similar phenotypic responses through hierarchical clustering in which joint group

membership between unsupervised clusters and groups of receptor class is visualized by a

circle plot. In this approach, ligands were grouped into six clusters based on their target
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class of either WNT, TNFR, TGFβ, RTK, Notch, or Cytokine and k-means clustering was

performed on the latent representation with k = 6 to group spots based on learned mor-

phological features, which are visualized in two dimensions in Figure 2.8. These results

suggest inconsistent cross-clusterings between these two grouping methods, though some

structure is observed. Ligand treatments that target cytosine-related biological function

tend to impart phenotypes in cluster 1, which ligands targetting RTK (receptor tyrosine

kinase) signaling appear split between clusters 1 and 4. As mentioned, these results are

preliminary, but illustrate that unsupervised clustering of spots based on image feature

extraction may provide avenues to draw associations between ligand target and induced

multicellular phenotype.

2.4 Discussion

This work evaluates the role of variational auto-encoding models to learn latent space rep-

resentations of high-throughput imaging screens of human mammary epithelial cells in re-

sponse to micro-environment perturbations. We illustrate that convolutional VAE archi-

tecture provides a powerful approach for capturing high-level features that associate with

expert human annotation and hand-crafted features designed to measure cellular organi-

zation. Additionally, we introduce the Principal Feature Manifold technique designed to

visualize interactions between learned VAE features beyond typical latent space walking.

These analyses represent a preliminary exploration into the utility of deep learning sys-

tems to capture experimentally meaningful features of spatial organization with which to

characterize tissue growth patterns in response to micro-environment perturbation.
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Figure 2.8: VAE embedding projection of the HCC1143 cell line perturbed by the MEMA
platform
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Chapter 3

Neural Estimation of Metastatic
Origin

I have traveled the length and breadth
of this country and talked with the
best people, and I can assure you that
data processing is a fad that won’t last
out the year.

Editor of Business Books
Prentice Hall (1957)

Computers are useless;
they can only give you answers.

Pablo Picasso

This work has been formatted for inclusion in this dissertation from the manuscript “Pre-

dicting primary site of secondary liver cancer with a neural estimator of metastatic origin”,

by Geoffrey F. Schau, Erik A. Burlingame, Guillaume Thibault, Tauangtham Anekpuri-

tanang, Ying Wang, Joe W. Gray, Christopher Corless, and Young Hwan Chang. This

work was published in the Journal of Medical Imaging in February, 2020 (doi: https:

//doi.org/10.1117/1.JMI.7.1.012706).125
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Abstract

Pathologists rely on relevant clinical information, visual inspection of stained tissue slide

morphology, and sophisticated molecular diagnostics to accurately infer the biological origin

of secondary metastatic cancer. While highly effective, this process is expensive in terms

of time and clinical resources. This work seeks to develop and evaluate a computer vision

system designed to reasonably infer metastatic origin of secondary liver cancer directly from

digitized histopathological whole slide images of liver biopsy. This work illustrates a two-

stage deep learning approach to accomplish this task. We first train a model to identify

spatially-localized regions of cancerous tumor within digitized hematoxylin and eosin (H&E)

stained tissue sections of secondary liver cancer based on a pathologist’s annotation of

several whole slide images. Then, a second model is trained to generate predictions of

the cancers’ metastatic origin belonging to one of three distinct clinically-relevant classes

as confirmed by immunohistochemistry. Our approach achieves a classification accuracy

of 90.2% in determining metastatic origin of whole slide images from a held-out test set,

which compares favorably to an established clinical benchmark by three board-certified

pathologists whose accuracies ranged from 90.2% to 94.1% on the same prediction task. This

work illustrates the potential impact of deep learning systems to leverage morphological

and structural features of H&E stained tissue sections to guide pathological and clinical

determination of the metastatic origin of secondary liver cancers.
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3.1 Introduction

Metastatic liver cancer accounts for 25% of all metastases to solid organs, yet because liver

metastases can arise from almost anywhere in the body, accurately determining the origin

of metastatic liver cancer is of paramount importance for guiding effective treatment.126,127

In clinical practice, pathologists commonly rely on clinical information, tissue examination,

and molecular assays to determine the metastatic origin of a patient’s secondary liver tu-

mor. Although clinically effective, this approach requires significant expertise, experience,

and time to perform properly. Deep learning methods have rapidly accelerated the au-

tomation of key processes in identifying and quantifying clinically meaningful features in

biomedical images and continue to drive modern advancements in digital pathology.128,129

Furthermore, deep learning systems have been applied to settings where their performance

matches and even exceeds the ability of clinical human practitioners in tasks related to im-

age analysis, including in clinical instances that rely on inspection of hematoxylin and eosin

(H&E) stained tissue.74,81,130–132 The emerging power and success of many deep learning

approaches applied to image content analysis stem from their ability to learn and leverage

meaningful features from large data collections that cannot be explicitly mathematically

modeled.131,133–137 For example, these approaches can provide robust and reproducible

solutions for automated detection and analysis of tumor lesions within whole slide images

containing both normal and cancerous tumor tissue segments.138–141

Our key contribution in this paper is a deep learning approach to identify metastatic

tissue within whole slide section and classify these tumors by their metastatic origin. We

evaluate model performance with respect to a clinical benchmark established by three board-
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certified pathologists charged with the same classification task as our model in which each

pathologist was tasked to infer the metastatic origin of liver cancer directly from H&E

stained tissue sections without the use of molecular immunohistochemistry assays or clinical

data. Through this work, we demonstrate feasibility of deep learning systems to automati-

cally characterize the biological origin of metastatic cancers by their morphological features

presented in H&E tissue sections.

3.2 Methods

3.2.1 Data Set

This study collected 257 whole slide scanned H&E stained images of metastatic liver can-

cer. Raw H&E images were acquired from the OHSU Knight BioLibrary, uploaded to a

secure instance of an OMERO server,142 programmatically accessed through the OpenSlide

python API,143 normalized with established methods to overcome known inconsistencies

in the H&E staining process,86 and tiled into non-overlapping patches of 299 × 299 pixels

necessary to accommodate the utilized deep learning architecture. Tiles whose mean three-

channel, 8-bit intensities were greater than 240 were filtered out as white non-informative

background. The total training data set is composed of twenty thousand non-overlapping

tiles from tumor tissue within the H&E scanned images. Each image in the dataset is

annotated with clinically-determined metastatic origin labels informed by clinical informa-

tion, pathological inspection of tissue sample, and staining by immunohistochemistry (IHC).

Clinical annotations were summarized into 3 distinct subgroups by a clinical practitioner,

which are summarized in Fig. 3.1. Annotations of tumor regions within 28 whole-slide H&E
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Figure 3.1: (A) Summary of the acquired dataset, composed of WSIs each containing
metastatic tissue originating from one of 3 sites of interest. (B) Distribution of non-
overlapping tile counts in each WSI with mean count 3300 tiles per WSI.

images were generated by a board-certified pathologist and collected using PathViewer1, an

interactive utility for the collection and storage of pathological annotations.

3.2.2 Learning Approach

Our approach is composed of two deep neural networks that operate in series. The first

stage model is trained to filter tiles containing normal or stromal tissue from whole slide

images (WSIs), as these tiles are not expected to have predictive value in estimating the

metastatic origin of cancerous tissue. The first stage model is trained to pass through tiles

containing cancerous tissue from whole slide images (WSIs) and filter out tiles containing

normal liver. A second stage model is then trained to predict a single label of metastatic

origin for each tile in the dataset. Individual per-tile predictions are then aggregated within

their respective whole slide image and averaged to compute a single prediction for the whole

slide image. A diagram illustrating the basic work-flow of our approach is shown in Fig. 3.2.

In the first stage of our approach, pathologist annotations of tumor regions are employed

1https://glencoesoftware.com/products/pathviewer/
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Figure 3.2: Deep learning based approach to leverage pathological annotation of tumor
region to isolate and localize tumor tissue from a WSI and generate predictions of metastatic
origin.

to train a binary classifier to predict whether a given tile of H&E image is either tumor

or non-tumor tissue. A second stage classification model is then trained on just the tumor

portions of images to predict metastatic origin based on clinically-determined whole-slide

labels. In all cases, the predictions from the models are reassembled into probabilistic

heat maps over the WSI, enabling a rapid assessment of spatial characteristics driving

predictive reasoning. Both first and second stage models utilize the Inception v4 deep

learning architecture, shown in Figure 3.3, which is optimized to capture morphological and

architectural features on varying scales with high efficiency and has been shown to achieve

human-level prediction capability on the ImageNet dataset.144 For the first and second

stage models, we randomly assigned 30% of the 28 and 257 whole slide images, respectively,

to held-out test sets used for model validation. Deep learning models and training routines

were developed in Keras with Tensorflow backend121 and trained undergoing cyclic learning
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Figure 3.3: Learning architecture of the Inception v4 model illustrating the various sub-
block layers employed in the overall design.

rates145 with base learning rate of 0.001 and using the Adam optimizer.46 To mitigate

learned bias due to class imbalance, we utilize training data generators designed specifically

to class-balance with over-sampling each batch of training. Models were trained from scratch

on NVIDIA V100 GPUs made available through the Exacloud HPC resource at Oregon

Health & Science University. The code used to generate the results and figures is publicly

available.2

3.3 Results

3.3.1 Quantitative Localization of Liver Cancer in Whole Slide Images

The first-stage model is a tumor tile binary classifier that generates a prediction between

0 and 1 for each tile in the dataset in which a 1 corresponded to perfect confidence that

2www.github.com/schaugf/NEMO
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a tile was of tumor tissue and in which a 0 corresponded to perfect confidence that the

tile was of normal or stomal tissue. This model achieved an area under the precision-

recall curve of 0.791 under the receiver operator characteristics curve which was sufficient

to establish good correlation (R2 = 0.96) between clinical estimation and our model’s

estimates of tumor purity (percent tumor in the whole slide image) as shown in Fig. 3.4.

Further, visual comparisons between the pathological tumor annotation and our model’s

predictions illustrate spatial concordance between the drawn tumor-bounding mask and our

model’s predictions. Once trained, the tumor-region identifying model was deployed on the

entire remaining dataset to include only tiles containing cancerous tissue. Several practical

considerations contribute to our model’s failure to perfectly reflect pathological annotation,

including damaged tissue, necrosis, and stromal regions in the whole slide image. Because

our approach in this case is limited to 28 WSIs, we anticipate greater data volume would

improve robustness of our model to these and other tissue-specific morphological features.

3.3.2 Quantitative Whole Slide Image Classification of Metastatic Origin

After the first stage identifies regions of the H&E images that are tumor, the second stage

model learns to classify those tiles according to their metastatic origin. A second Inception

v4 deep neural network was designed to generate a three-class prediction for each tile in

the training set as belonging to either a colonic adenocarcinoma, gastrointestinal stromal,

or neuroendocrine carcinoma. Whole slide image predictions predictions aggregated across

all corresponding tumor tiles achieved an F1 score of 0.875 on the held-out testing set of

WSIs, having failed to correctly classify 5 out of the 51 held-out testing samples. Class-

specific statistics shown in Table 3.1 quantify classification performance metrics for the
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Figure 3.4: (A) Confusion matrix from the held-out testing set for a tumor/non-tumor
predictive model illustrating F1 score of 0.772 in the classification task. (B) Precision-recall
curve with area under the curve of 0.791. (C) Comparison between the true tumor purity
in the sample inferred from the pathological annotation (x-axis) versus the inferred tumor
purity from the model’s output (y-axis) with strong correlation (R2 = 0.96) (D) Three ex-
amples from the held-out testing set with pathological annotation of tumor regions outlined
in blue (top) and corresponding model predictions estimating regions of whole slide images
that contain tumor tissue (bottom) illustrating concordance between the pathological an-
notation of tumor region with the outcome of our model. In these illustrations, a brighter
color intensity corresponds to higher probability that the underlying tile was labeled as
being of tumor by the trained model.
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Figure 3.5: (A) Confusion matrix of WSI prediction on a held-out test set. (B) Confusion
matrix of tile-based predictions. (C) failure cases with respect to the inferred tumor purity
(percentage of the whole slide image that contains tumor tissue) in the sample on the x-axis
(fraction of tiles predicted to be tumor) and the model’s output confidence in its prediction
on the y-axis.

metastatic origin prediction model. Confusion matrices of both WSI and per-tile predictions

are shown in Figure 3.5. In this example, per-tile classification accuracy of 82.3% and per-

WSI accuracy of 90.2% were achieved.

Several technical factors were associated with incorrect predictions, including slide blur-

ring, tissue folding, and low tumor purity. Our model’s confidence was lower for samples that

it incorrectly classified, as shown in Fig. 3.5, though one sample was incorrectly classified

with 86% confidence which was driven by misclassified stromal tissue present in the H&E

slide. Individual tiles associated with highly confident predictions for each class are shown

in Fig. 3.6. Pathological inspection of these tiles suggests that tiles associated with highly

confident class predictions present pathological features that guide diagnoses, as the first

row contains tiles presenting features associated with primarily spindle-type gastrointesti-

nal stromal tumors and the third row presenting typical well-differentiated neuroendocrine

carcinomas. The first two images in the second row represent dirty necrotic tissue which,

among the three diseases under consideration, tends to be associated with colonic adeno-
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Table 3.1: Class-specific statistics of both the tumor identification and three-way origin
classification task
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Tumor Identification 0.77 0.52 0.77 0.53 0.77 0.77 0.77

Colonic Adenocarcinoma 1.00 0.83 0.88 1.00 0.88 1.00 0.93
Neuroendocrine Carcinoma 0.79 1.00 1.00 0.92 1.00 0.79 0.88

Gastrointestinal Stromal 0.78 0.98 0.87 0.95 0.88 0.78 0.82

Figure 3.6: Example tiles correctly classified by the model with high confidence in which
each row is a distinct class (gastrointestinal stromal, colonic adenocarcinoma, and neuroen-
docrine carcinoma in rows 1, 2, and 3, respectively).

carcinomas. However, this type of feature is not explicitly associated with cancer, and

so should be interpreted with caution. Importantly, this approach obviates the need for

pathological region annotation beyond what was required to train the first stage model.

3.3.3 Clinical Benchmark Comparison Study

A study was developed to benchmark our approach to clinical practitioners. This study

recruited three board-certified pathologists to independently classify each of the 51 whole

slide image samples in the held-out test set according to their metastatic origin. Each

participant independently incorrectly classified 3, 4, and 5 samples each, while our neural

network model missed 5 samples from the held-out test set. Table 3.2 summarizes the
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Table 3.2: Slides mis-classified by either the model or at least one pathologist (GS: Gas-
trointestinal stromal; CA: Colonic adenocarcinoma; NC: neuroendocrine carcinoma). In-
stances of misclassification are highlighted in bold text.

Slide Alias Ground Truth Model Path1 Path2 Path3

101 CA CA CA CA NC
102 CA CA CA CA NC
103 CA CA CA NC GS
104 CA CA NC NC CA
105 GS CA GS GS GS
106 GS GS GS GS NC
107 GS CA GS GS GS
108 NC GS GS NC GS
109 NC CA NC NC NC
110 NC NC NC CA NC
111 NC CA CA CA NC

eleven samples that were missed by either the model or by at least one pathologist and

their respective predictions. Interestingly, only two of the mis-classified samples by the

model were correctly classified by all three pathologists. Table 3.7 illustrates a selected

sample classified correctly by the model and all three pathologists, a sample missed by

the model that the pathologists all got correct, a sample missed by both the model and

at least one pathologist, and a sample for which the model was correct but at least one

pathologist made an incorrect classification. All examples illustrate the raw H&E image

and three heat maps generated by the model for each of the three-way predictions in which

a brighter color corresponds to a higher confidence in the model’s prediction for each class.

Importantly, predictions are only available for tiles that the first-stage of our model classified

as tumor tissue, as non-tumor tiles were filtered out of the metastatic origin prediction

task. Although the failure cases are diverse, probabilistic overlays of metastatic origin

prediction may facilitate faster and more efficient examination of these tissue sections in

clinical decision making processes.
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Figure 3.7: Example mis-classified H&E slides with associated annotations from the sec-
ond stage model illustrating spatially-resolved localized predictions of metastatic origin.
In these example images, brighter colors are associated with more confident class-specific
predictions. First row: sample correctly predicted by the model and all three pathologists.
Second row: sample missed by the model that all three pathologists got correct. Third
row: Example missed by both the model and at least one pathologist. Fourth row: example
missed by at least one pathologist that the model got correct. (GS: Gastrointestinal stromal;
CA: Colonic Adenocarcinoma; NC: Neuroendocrine Carcinoma). The complete dataset of
all high-resolution whole slide images and their associated colored prediction heat maps are
available upon request.

3.4 Discussion

This work presents a deep learning based approach designed to infer the origin of metastatic

liver cancer using a two-stage serial model composed of a first model trained to identify tu-

mor from non-tumor within H&E sections of metastatic liver tissue based on pathologists

annotation and a second stage model that learns to predict the metastatic origin of in-

dividual patches of tumor tissue and aggregates those results into predictions over WSIs.

We illustrate through a clinical benchmark comparison that our approach is within perfor-
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mance criteria of board-certified pathologists, suggesting that these types of systems may

be capable of generating rapid, first-pass assessments of metastatic origin in the absence

of detailed clinical information or comprehensive molecular profiling assay. We believe this

type of data-driven visualization augmentation provides an additional layer of information

that may facilitate the speed and ease of generating final decisions by clinical care providers.

Although these results illustrate feasibility of our approach, several significant limita-

tions remain. Principally, this analysis was data-limited to only three most-prevalent sources

of metastatic origin when in practice metastases can and do originate from a broad variety

of biological sources. Secondly, we observe that the first stage model may be inflexible to

alternative sites of metastatic tissue. Instead of training a model to identify tiles contain-

ing cancer tissue in liver, a more generalizable model may be trained on a broad diversity

of primary cancers and regularized appropriately to identify cancer independently of the

host tissue. Third, although our model was shown to perform similarly to board-certified

pathologists, we have not thoroughly considered the manner by which these types of deep

learning models might optimally improve current work-flows of practicing pathologists.

We believe that robust translation of deep learning systems such as the one presented

in this paper may continue to supplement and augment clinical decision-making processes

dependent on medical image analysis. The degree to which first and second stage models

are generalizable would likely be improved with additional training data. Presently, this

study was limited to a few hundred whole slide images in total for which pathological

annotations were made available for only a few dozen. Although practical logistical issues

prevent high-throughput annotation collection and processing, we believe that for this and

similar types of systems to reach their full potential, robust integration of current bio-bank
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and other data repositories with engineered data-processing pipelines must be established

to facilitate rapid and reproducible research. While this approach is still in early stages, we

nevertheless remain optimistic that future developments of computer vision systems may

significantly contribute to improving the efficiency and efficacy of pathological interrogation

of metastatic patient tissue. Future directions will seek to evaluate whether metastatic class

boosting is achievable using primary tumor as analog training data, which is explored in

greater depth in Chapter 5.
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Chapter 4

DeepHAT: Deep Histology
Annotation Tool

Everything that can be invented,
has been invented.

Charles H. Duell
Commissioner,

U.S. Office of Patents (1899)

This work presented in this chapter has not been published and remains under active

development. A tentative white paper and technical report has been circulated to core

collaborators Hassan Ghani, Erik A. Burlingame, Guillaume Thibault, Christopher Corless,

and Young Hwan Chang.
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Abstract

The proposed method is predicated upon the observation that feature representations of

clinically relevant tissue labels across various whole slide images is highly conserved. This

work illustrates that unsupervised deep learning methods are capable of capturing morpho-

logical similarities in an interactive feature space that can be manually annotated. This

work compares region annotations manually generated by an expert pathologist at whole-

slide resolution with annotations generated against an interactive feature manifold. This

work describes an open-source annotation tool that incorporates a semi-supervised learning

approach that retains an expert pathologist in the loop. The tool is designed to learn mean-

ingful feature space projections of tiles samples from whole slide histology and present the

projections in a web-based application that enables a user to manually select, inspect, and

annotate clusters of tiles that share similar morphological features. Validation experiments

illustrate basic utility for composing annotations of a single-slide and multi-slide setting.
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4.1 Introduction

Acquiring intra-slide annotations of whole slide histology is a major bottleneck in digi-

tal pathology, and yet because whole images are often very large, annotations are often

necessary to refine class labels of heterogeneous regions within a single image. The size

of whole slide images generally presents an intractable computer vision problem, so slides

are commonly tiles into fixed-sized patches which are more easily computed on. Because

morpho-spatial features of histopathology are generally conserved both within and across

different whole slide images, the annotation process of identifying semantically-similar tis-

sue features may be highly redundant; the features associated with hemorrhage or fat, for

example, are generally conserved so as to enable a pathologist to engage in pattern-matching

behavior to identify regions or features of interest within whole slide images. This work

seeks to accelerate the annotation process by first grouping patches of whole slide histology

across multiple samples based on morphological similarity and facilitating annotations of

a composite representation. We seek to validate the approach by comparing annotations

collected by this novel method to patch-level annotations generated by a trained pathologist

on whole slide images.

Segmentation and annotation of biological images have been the subject of considerable

attention in recent years, though the application of computer vision techniques to identify

cell boundaries has been undertaken by various research groups for the better part of a

century.146 Several tools have been introduced to address high-throughput annotation of

biological data. CellProfiler is a specialized tool designed for single-cell segmentation from

diverse biological data types that incorproates deep learning methods.147 Ilastik utilizes
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semi-supervised annotation to iteratively update random forest models to predict regions

of tissue that match annotations provided by the user in a near real-time manner.148 Deep

learning methods have emerged to leverage sparsely labeling of data to optimize catego-

rization of imaging data. One-shot learning is one such example, in which information is

borrowed from related classes to generate predictions of unseen classes by updating a proba-

bilistic Bayesian model as new categories are observed.149–151 Few-shot learning builds upon

this idea by employing a common semi-labeled latent space to infer class identity of new

data.152,153 While few-shot learning presents a difficult computational problem, humans

are in fact quite capable of one-shot classification.154 Although model designs have shown

to extend sparse labels to unseen data classes without the need for retraining from scratch,

they rely on some trained data nevertheless. In cases of clinical histopathology, image label-

ing and annotation is expected to come from an expert pathologist, who through training

develops reasonable models of prior expectations and distributions of a broad diversity of

pathologies.

This work seeks to leverage the ability of a trained pathologist to inform labeled rep-

resentations from scratch by annotating tiles samples from whole slide histology based on

learned spatial features across a dataset. The approach described is intended to reduce the

redundancy of annotating regions of interest that exhibit morphological similarities both

inter- and intra-whole slide image, reduce overhead costs associated with loading and de-

loading whole slide images from a whole slide viewer, and be accessible to different users

without the need for copying large datasets of histopathological tiles.
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4.2 Data

4.2.1 Whole Slide Images

This work is supported by seventy eight hand-annotated whole slide images provided by

the Knight BioLibrary shared resource at Oregon Health & Science University. For each

image, a trained pathologist annotated tumor regions within the slide, such that image is

compartmentalized into a binary class label as either tumor or non-tumor. Raw image data

are provided as either svs or scn files from Leica or Apperio scanner hardware. Images

are stored in raw format on the lustre storage system made available through the exacloud

computing environment at OHSU.

The set of whole slide images provided by the BioLibrary is accompanied by a look-up

table that relates each image to a set of clinical variables, including tissue of origin and the

clinical diagnosis informed by the healthcare record. An expert clinical pathologist collated

these variables into fourteen distinct target populations. These metadata are stored on the

filesystem as flat comma separated value tables.

4.2.2 Whole Slide Manual Annotations

An expert pathologist was tasked with manually labeling tumor regions within whole slide

images using the QuPath1 software tool for quantitative pathology as shown in Figure

4.1.61 The expert pathologist annotated 78 whole slide images sampled across the fourteen

designated class labels. Custom tooling was developed in python and Apache Groovy to

extract manually-annotated regions and store binary mask arrays for each whole slide image.

1https://qupath.github.io/
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Figure 4.1: QuPath user interface of whole slide image undergoing expert annotation. In
this example, unannotated regions are unlabeled and so are excluded from this analysis.
Tiles that are ambiguously labeled are labeled according to the majority label in the tile.

Preprocessing of whole slide images includes linkers to generated annotation masks and

enables patch-level labeling to indicate whether a sampled patch from a whole slide image

is sampled from within or external to tumor tissue.125

4.3 DeepHAT Design

4.3.1 Whole Slide Image Preprocessing

Whole slide images are loaded into python through the OpenSlide2 python API and prepro-

cessed to first tile the whole slide such that each tile captures a uniform surface area across

multiple slides and resolutions such that each tile captures 100 µm2 and resized to 128×128

pixels. Background tiles are filtered out by removing tiles whose mean intensity is greater

than 230 and less than 20. Remaining tiles containing tissue are color normalized by an

2https://openslide.org/
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established method. (Macenko, et al). Each of N tiles from an image are concatenated and

stored as numpy arrays if size (N × 128× 128× 3) at an unsigned 8-bit color resolution.

Once each image is processed, a second routine loops through each array, loads them

into memory, and stores them in a binary file format onto the disk in an HDF53 data storage

format that allows for dynamic indexing directly from storage.

4.3.2 Histological Representation Learning

Similar tiles of histology should be clustered together to enable more rapid annotation

of whole slide features across multiple images, which necessitates a similarity metric or

quantitative representation of tiles on which to compute. A variational autoencoder (VAE)49

was trained to learn meaningful representations of whole slide histology by encoding the

learned histological features into an abstract feature space such that similar types share

similar encoding representations. Model were designed with the PyTorch4 library for deep

learning and trained on a multi-GPU instance equipped with four NVIDIA V100 processors

and 64 GB random access memory. Preliminary results suggested compelling learning

characteristics given a batch size of 64 and a latent representation dimension of 32 floating-

point values. A dataset composed of approximately 30k tiles were employed to train a

model for 10 epochs with a base learning rate of 1e−3 updated by the Adam optimizer and

with a learning rate scheduler designed to reduce the learning rate upon reaching a plateau

by a factor of 0.1. Once training is complete, model weights and parameters are stored and

each tile is independently encoded into a latent representation and saved as an N ×D array

containing N tiles across D learned latent variables.

3https://www.hdfgroup.org/solutions/hdf5
4https://pytorch.org/
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4.3.3 Feature Manifold Projection

Feature encodings are visualized with either the tSNE122 or UMAP155 projection algorithms,

both of which are designed to project the learned feature space into a two-dimensional space.

In both cases, implementations are used from the RAPIDS5 library which is built upon

the CUDA6 toolkit that enables utilization of GPU-computing architecture in performing

operations. This approach projects every tile as a point in a two-dimensional space that is

easily visualized in a scatter plot as shown in Figure 4.2 in which projected tile features are

colored by the clinical whole slide image diagnosis. Morphological features associated with

regions in this space are visualized with tile plots, which first conform the continuously-

valued projection space onto a regular grid manifold onto which tiles are directly visualized,

enabling confirmation by inspection that the VAE model learns meaningful representation of

the tile dataset as shown in Figure 4.3. Although the unsupervised autoencoding approach

does not perfectly segregate populations of tiles based on their clinical diagnosis, certain

morphological features of the tiles tend to be clearly clustered in an entirely unsupervised

manner. If structural features of interest were to be evident in this type of representation,

then a pathologist may achieve significant efficiency when annotating this representation

rather than each whole slide image independently. For example, this approach may not

be sufficient for achieving high accuracy when annotating different cancer subtypes, but

may provide an efficient tool for segregating tumor from non-tumor tissue or for removing

undesired tiles that capture edge effects or technical artifacts.

5https://rapids.ai/
6https://www.geforce.com/hardware/technology/cuda
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Figure 4.2: Unsupervised feature manifold projection of latent feature space represen-
tation of tiles samples from whole slide histologies of 14 tissue types. In this example,
similar whole slide diagnoses tend to co-cluster, suggesting that unsupervised spatial fea-
tures specific to metastatic indications are conserved across whole slide images. Normal
liver features tend to tightly co-cluster which is expected, as normal liver histology has a
regular and distinct spatial structure. Conversely, adrenal cortical carcinomas appear to be
more dispersed which suggests greater variability in the learned spatial features associated
with this metastatic cancer sub-type.

4.3.4 Interactive Annotation Application

An interactive interface to the projected feature space is necessary to facilitate the gener-

ation and storage of per-tile annotations of the learned feature space. The bokeh7 library

7https://bokeh.org/
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Figure 4.3: The point-projection plot shown in Figure 4.2 is here rendered by position-
ing tiles onto a coarse grid of the coordinate space. Callouts illustrate varying degrees of
preserved morphological similarity. The top call-out illustrates a distinct region of feature
space capturing edge effects largely independent of clinical subtype. The middlel callout
illustrates a region of a high degree of morphological variability that includes tiles contain-
ing fat cells, stroma, and striated tissue. The bottom callout illustrates a region of high
morphological homogeneity composed entirely of normal liver samples.

is designed to support server-based interactive data visualization and interaction and is

utilized to incorporate the learned feature space projection with an engine to select and an-

notate individual data points. Importantly, because selections are made with small polygons

in specific regions of the projection, a user is able to capture many tiles that share similar

encodings and morphological features. The interactive scatter point plot incorporates user

tools enabling a user to pan and zoom in or out. Once a selection of points is made, the user

can query the tile dataset stored on disk to sample sets of tiles at full resolution to guide
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Figure 4.4: Annotation application computational overview

the annotation decision. The tool is equipped with a few basic selection options similar to

those available in the QuPath tool, such as Tumor, Stroma, Hemmorhage, etc. However,

the user may create their own annotation as a free text string, which the tool remembers

and automatically appends to the drop-down list of pre-build annotations. For a given

selection, the user can define a character string annotation which is automatically saved

into a separate datafile that associates each tile to its annotation. The general processing

work-flow used in the annotation is illustrated in Figure 5.1.

4.3.5 DeepHAT Accessibility

The tool is hosted on an instance of the exalogin partition on the exacloud computing

system and configured to broadcast its interface on a specific port that remote users can

forward to their local machine without necessitating download of large raw datasets. Re-

mote users can access the visualizer by forwarding the bokeh server broadcast port to their
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own computer, and can be forwarded with: ssh -vNfL localhost:5006:localhost:5006

user@exalogin Where user is the user name of an approved user on the Exacloud sys-

tem. If a user is using a machine running the Windows operating system and does not

have access to the secure shell command line, a freely available extension for the Chrome

Web Browser, the Secure Shell App8 has been tested and also works. Once the ssh tunnel

is dug, the user can interact with the tool from their local web browser by navigating to

localhost:5006. This approach thereby enables an expert pathologist to rapidly annotate

hundreds or thousands of whole slide images stored on a secure remote server from their

own local web browser.

The application consists of a few distinct components to guide the annotation process

as shown in Figure 4.5. The left panel is highly interactive, allowing a user to zoom in and

pan around the feature space embedding. A number of utilities are included that enable

a user to select regions of the feature map, such as the small selection shown with blue

squares near the center of the feature map. The right panel provides a zoomed-in view of

selected tiles. In this example, the selected regions appears to contain primarily necrotic

tissue as evidenced by the morphological features of the shown tiles. The bottom right

panel allows a user to either select from a set of pre-defined annotated classes or enter in

a new string to define the selection. Annotations are saved as a new column in a flat csv

file, which is easily saved and reloaded into the DeepHAT tool for down-stream analysis or

further review. Because the save format is simple, a user can easily share their annotations

with other users who wish to modify the annotations generated. The inherent limitations of

the number of data points that HTML can render in a single instance limits the number of

8https://hterm.org/
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Figure 4.5: DeepHAT user interface to the web-based annotation application. The left
panel is highly interactive and allows the user to zoom, pan, and select sets of tiles. The
top right panel allows a user to cycle through each of the selected tiles. The bottom right
utilities allow a user to select pre-defined annotation classes, enter their own, and save the
resulting annotations to disc.

data points a user can annotate at once. Qualitative experiments suggest that the number

of points rendered should be kept below ten thousand to retain fluid interactions with the

annotation tools. Because the number of data points rendered in the annotator is limited, a

mechanism is required to effectively propagate annotations to the remainder of the dataset.

4.4 Results

4.4.1 Single Slide Annotation

For illustration purposes, a single annotated histopathological whole slide image was first

evaluated with DeepHAT to validate whether feature separability was observed and to
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confirm that the annotation utility properly traced relevant tile meta-data for pseudo-

whole slide image annotation. The shown sample is a whole slide image of adrenal cortical

carcinoma from the NEMO dataset shown in Figure 4.6(A). The slide was tiled, normalized,

encoded, and projected into 2-dimensions as shown in Figure 4.6(B) in which tiles are

colored according to the annotations generated by a pathologist and demonstrate good

separability between tumor and non-tumor tissue. Annotations of the feature manifold

from the single image were generated by a trained expert using the DeepHAT tool, which

were later post-transformed back into the original image, as shown in Figure 4.6(C), in

which good concordance is observed between whole slide annotation and annotations made

in DeepHAT. The confusion matrix of mis-classified tiles is shown in Figure 4.6(D), in

which across 6384 tiles sampled from the image, the DeepHAT annotations aligned to their

whole slide ground truth with 85% accuracy, 90% specificity, and 82% sensitivity. Zoomed-

in callouts of the single whole slide image feature space projection illustrate local feature

similarity as shown in 4.7.

4.4.2 Tumor Annotation from Whole Slide Primary Tissue

A second validation experiment sought to evaluate the reliability of whole slide annotations

made with DeepHAT when annotating tumor tissue from normal tissue in primary cancers.

A set of 78 whole slide images with hand-annotations generated in QuPath were tiled,

labeled, and encoded using the VAE learning architecture described above. Figure 4.8

illustrates the learned feature space projection of the dataset illustrating the raw tiles atop

tSNE embedding coordinates as well as point projections colored according to annotations

generated in DeepHAT by an expert pathologist and colored by the annotations generated
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Figure 4.6: (A) Thumbnail of a single whole slide image. (B) Corresponding feature
manifold projection colored according to the tile label provided by a pathologist at whole
slide resolution. (C) Pseudo-whole slide image annotation is achieved by back-transforming
the feature manifold into the original whole slide image coordinate system. (D) Confusion
matrix of binary intersection of annotations generated at whole slide resolution and using
the DeepHAT tool.

at whole slide resolution. The confusion matrix between tumor and non-tumor tiles labeled

by DeepHAT and using QuPath illustrates an accuracy of 74.8%. The acceptable quality

of annotation performance clearly depends on the questions being asked, but importantly,

this result is achievable with merely 14 unique polygon annotations in the DeepHAT tool,

amounting to about 10 minutes of a pathologist’s time. This is in start contrast to the over

500 unique polygons generated across several dozen whole slide images that took several

weeks of intermittent effort to generate. We also illustrate that per-tile errors may be

restricted to certain whole slide images, suggesting that some images tissues may be more
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Figure 4.7: Histopathological feature space projection of a single slide. Callouts illustrate
local feature similarity throughout the feature manifold. To generate this type of figure, the
learned VAE feature representations for each of the tiles in the dataset are projected into
two dimensions with the UMAP algorithm. Points are then fit to a grid of fixed dimension,
and original tile images pasted over their coordinates.

or less difficult for an unsupervised learning approach to parse given morphological features

in the samples tiles.

4.5 Discussion

This work presents an approach to accelerate whole slide annotation by learning feature

representation of tiles of whole slide histopathology, embedding those features into two di-

mensions, and incorporating the resultant projection into a tool designed to acquire and

store per-tile annotations. Although this approach holds promise for parallelizing image an-
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Figure 4.8: (A) Learned feature space projection of tiles sampled from 78 whole slide
images of primary cancers. (B) Annotated feature manifold from the DeepHAT tool (left)
and at WSI resolution (right) illustrates agreeable concordance between tumor and non-
tumor labels. (C) Confusion matrix (in thousands of tiles) illustrating a per-tile accuracy
of over 74% using 14 unique selected polygons in DeepHAT with respect to over 500 unique
polygons across 78 whole slide images in QuPath. Annotation classes defined in (A) by
the user are collapsed into tumor/non-tumor classes for purposes of binary comparison.
(D) distribution of labels across several whole slide images illustrates varying degrees of
concordance at whole slide resolution, suggesting that features from some whole slide images
may be more challenging to meaningfully separate into tumor and non-tumor components.

notation, a number of limitations remain under-explored. Importantly, due to the rendering

capabilities of the chosen library in HTML, a limited number of tiles are able to be ren-

dered in a dynamic and interactive environment. Because the tSNE and UMAP algorithms

project data into floating point numeric space, resultant projections are forced onto a grid

to improve the ease of visualization. This results in a pile-up of tiles that are rendered

in HTML, which is generally limited to fewer than 5000 in a single instance. Although
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we explicitly designed a tile-viewer utility to allow a user to cycle through a selection, the

purity of the stacks of overlapping tiles is variable within some regions of the feature map

is variable. Whether this overlapping label variability is due to the coarse grid space or due

to insufficient separation of tumor from non-tumor histologies likely depends on the type of

data undergoing embedding, so inferring consistency of learned feature space embedding is

an important direction of future research.

The most significant challenge to this approach is the operating assumption that un-

supervised learning architecture is capable of learning meaningful representation of the

processed tiles so as to enable quality annotations given the feature space projection. Al-

though evidence suggests that these models may at times achieve compelling embeddings,

issues regarding consistency remain, such that two tiles that look by eye to be highly similar

are nevertheless distributed throughout different parts of the feature map. One potential

solution would incorporate on-line semi-supervised learning so as to leverage whatever anno-

tations have been provided to iterative refine the feature space projection to best delineate

annotated classes. Although the tool has a few of these features already included, such as

a semi-supervised UMAP algorithm and a linear discriminant analysis transform feature,

their performance still relies on the feature space representation to stratify classes of inter-

est. For example, if two tiles are each labeled tumor and non-tumor, but are embedded into

identical regions of feature space, then no degree of semi-supervised projection will be able

to distinguish the two.

Finally, although the tool is currently operational on a closed internal GPU-equipped

server, the system still is slow in terms of time required to train an auto-encoder model

and render the tile projection once loaded. This suggests the possibility of employing
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previously trained auto-encoder networks to do the feature extraction without needing to

retrain a model. Although this type of transfer learning has shown promise in many other

domains, it is limited to the inherent biases of the datasets used to train the preliminary

model. Future efforts will seek to incorporate more robust software engineering principles

to resolve these and related bottlenecks in pre-processing, rendering, and hosting. Taken

together, the DeepHAT approach represents an unsupervised method capable of achieving

significant improvements in efficiency of a pathologist tasked with annotating large numbers

of whole slide images.
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Chapter 5

Primary-Metastatic Transfer
Learning

Never estimate what may be accurately
computed. . . Never guess what may be
estimated. . . Never guess blindly...

Julian Bigelow
Chief Engineer of the IAS Machine,

The world’s first digital computer

This work presented in this chapter has not yet been published, but is done with core

collaborators Hassan Ghani, Erik A. Burlingame, Guillaume Thibault, Christopher Corless,

and Young Hwan Chang titled ”Histological transfer learning from primary to metastatic

whole slide images”.
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Abstract

Accurate diagnosis of metastatic cancer is essential for identifying optimal treatment con-

trol strategies to halt further spread of metastasizing disease. While pathological inspection

aided by immunohistochemistry staining provide a valuable gold standard for clinical di-

agnostics, deep learning methods have emerged as powerful tools for identifying clinically

relevant features of whole slide histology relevant to identifying a tumor’s metastatic ori-

gin. This works seeks to evaluate a deep learning system trained to classify secondary

tumor histology based on presented spatial histopathological features of both primary tu-

mor and their metastatic counterparts by transferring a learned model trained on primary

cancer into the metastatic setting. A fourteen-way classification model designed to infer

the metastatic origin directly from whole slide images of H&E stained tissue achieved mean

class-specific areas under receiver operator characteristics of 0.779, which outperformed

comparable models trained on only images of primary tumor (mean AUROC of 0.691) or

trained on only images of metastatic tumor (mean AUROC of 0.675). We further sought to

evaluate whether similarity of morphological features from primary and metastatic tumors

that share a common cancer type. In this work, we identified a correlation between the

mean Kullback-Leibler divergence between primary and metastatic samples from each class

and the model’s class-specific AUROC of 0.317, suggesting only a slight association between

inferred dissimilarity between primary and metastatic tumors of similar type and the degree

to which a model was successful in classifying them according to their class in a transfer

learning setting.
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5.1 Introduction

We previously illustrated a learning system trained to classify whole slide images of metastatic

liver cancer according to the cancer’s metastatic origin,125 which is discussed in detail in

Chapter 3. That work was limited to three of the most commonly recurring classes of

metastatic cancer due in part to limited data availability of other classes of metastatic can-

cers, while this work seeks to leverage morphological spatial properties of primary tissue to

enhance the performance of a classification model trained to infer the origin of secondary

metastatic cancer based on histopathological presentation in digital whole slide images.

Although similarities between primary and metastatic tumors have shown striking simi-

larity in gene expression,97 growth characteristics,156 and chromosomal rearrangement,157

presently no quantitative measurement of primary-metastatic similarity has been extended

to the morphological presentation of cancer within histopathological images. Our proposed

hypothesis is that if primary and metastatic cancers exhibit morphological similarities in

whole slide images, then incorporating primary cancers into training a computer vision

system to classify metastatic cancers may confer a modeling advantage.

Training a model in one setting and transferring its learned parameterization into a

different setting is an example of transfer learning. These approaches have demontrated

robust capacity for boosting model performance,158 and have found wide use in the field of

deep learning for computer vision applications.159,160 This work extends previous analyses

by evaluating the degree to which a computer vision model generalizes to unseen samples of

whole slide metastatic cancer by training on only primary cancers, only metastatic cancers,

and by first training on primary and transferring the learning model to retrain on metastatic
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samples. Further, this work evaluates the divergence between primary and metastatic can-

cers of different types within learned unsupervised morphological feature space, and draws

connections between the degree to which primary and metastatic cancers are dissimilar

and how well models generalize to correctly predicting metastatic origin of different cancer

types.

5.2 Methods

5.2.1 Computational Pipeline

An overview of the computational steps taken in this work is presented in Figure 5.1,

which broadly separates the study objectives into two components. The first portion of

the study seeks to pre-train a neural network classifier on whole slide images of primary

cancers, while the second portion seeks to transfer the learned classification model into the

metastatic setting. Both steps involve similar processing pipelines but with complementary

objectives. Because whole slide images are large and heterogeneous, they may contain both

tumor and non-tumor tissue. This mixture of tissue types has been shown to confound

the degree to which classification models are generalizable, and so both components of this

study require a model to identify tumor tissue from non-tumor tissue within the whole slide

image. Both models are informed by manual annotation of whole slide images done by

a board-certified pathologist. Annotated whole slide images are divided into training and

test sets, and independent binary classifiers were trained to classify tumor and non-tumor

tissue. Once validated, these preliminary filter models are deployed onto their respective

whole datasets to filter out normal stromal tissue from the tiled datasets such that the
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Figure 5.1: Transfer learning concept designed to leverage morphological and spatial
features of primary cancer to infer the metastatic origin of secondary cancers.

resultant datasets are composed primarily of cancer tissue. Secondary models are then

trained to correctly classify the tumor tiles according to their tissue of origin as informed by

the clinical diagnostic record. Samples were chosen to reflect 14 common sites of metastatic

origin to include both primary cancers and associated metastatic cancers of the liver. These

whole slide images are similarly divided into training and testing sets and utilized to inform

classification models. This work sought to evaluate the role of a transfer learning paradigm

to evaluate whether a model trained just on primary cancer can infer a metastatic cancer’s

origin and whether a model trained on primary cancer but transfered into the metastatic

setting for additional re-training outperforms the baseline approach.

5.2.2 Whole Slide Pre-Processing

This work employs dataset composed of 324 whole slide images of metastatic cancers and

344 whole slide images of primary cancer collected from the Knight BioLibrary and Knight

Diagnostic Laboratories at OHSU. Each whole slide image read and processed through the
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Figure 5.2: Tile and WSI count across the fourteen annotated classes from both primary
and metastatic datasets illustrating a more uniform and representative training set across
the fourteen classes of interest

OpenSlide python API which is used to divide the large images into non-overlapping tiles

128 × 128 × 3 pixels wide that cover 100µm square. Tiles containing predominantly white

background light were filtered out and the remaining tiles were normalized.86 Annotation

tables provided by the Knight BioLibrary associate each whole slide image with its tissue

of origin informed by the clinical diagnostic record. The total counts of both whole slide

images and individual tiles collected for both the primary and metastatic dataset are shown

in Figure 5.2. The inherent class imbalance in the metastatic whole slide training set

presented a limiting factor for previous work, which is intended to be overcome in part by

a transfer learning paradigm.
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5.2.3 Learning System Architecture

This study utilizes the ResNet50 learning architecture, shown in Figure 5.3, which is a

powerful learning architecture that has been widely applied to challenges in digital pathol-

ogy.79,130,132 We incorporate the baseline ResNet50 model and modify its output layer to

contain 14 nodes, each corresponding to one of the fourteen sites of tissue origin, and a

softmax activation function such that the vector of output values sums to one and thereby

enabling a probabilistic interpretation of the model’s output. We trained a single ResNet50

model for 10 epochs with a learning rate of 0.001 and batch size of 32 on the complete

training set of whole slide images from either primary or metastatic cancers. In all cases,

the Adam optimizer was employed with a learning rate scheduler designed to decimate the

learning rate at the end of each epoch, and class-balancing data loaders are used to maximize

class diversity with each batch of training data. To evaluate the transfer learning approach,

a third model is trained for 5 epochs on primary cancer and 5 epochs on metastatic cancer.

5.3 Results

5.3.1 Prior First-Stage Tumor Identification

Previous work introduced an approach for training a first-stage model to filter our normal

tissue of metastatic liver examples by learning to classify tiles given expert pathologists’

annotation of tumor and non-tumor regions of the images to remove normal tissue and other

stromal regions from confounding the model’s prediction. Similarly, a two-stage model is

proposed for the primary cancer setting in which a binary classification model is trained to

remove normal tissue. First, we evaluate the performance of the first stage model trained
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Figure 5.3: The ResNet50 model applied to histopathological image tiles. Whole slide
images are tiled, labeled, and stored in a hierarchical data format on disk to reduce compu-
tational limits on random access memory availability. Tiles are stored as arrays composed
of N tiles with width w and height h with three color channels in unsigned 8-bit integer
format. The ResNet family of neural systems architecture incorporates skip connections
between layers, as shown in the bottom left. These layers have been shown to improve
the ability of the model to back-propagate error by reducing effects associated with the
vanishing gradient problem.

in the metastatic setting as applied to the primary cancer setting. As shown in Figure

5.4, the previously trained model generally fails to remove undesired normal tissue from

the primary setting, which is expected, as the first stage model was specifically trained to

identify cancerous tumor strictly within liver tissue. Because this evaluation set is composed

of primary sites we may reasonably expect that the model may be learning the morphological

features associated with normal liver rather than morphological features associated with

primary tumor. This finding necessitates the use of a primary-specific normal tissue filter

model.
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Figure 5.4: Percent tumor predicted by the previously-employed first stage NEMO model
against the percent tumor annotation provided by the Knight BioLibrary.

5.3.2 Filtering Normal Primary Tissue

A new model was designed and trained to fit the classification labels provided by an expert

pathologist. A ResNet50 model was trained to correctly predict whether a given tile was

samples from within or external to the regions annotated as tumor by an expert pathologist.

Annotations were generating using the QuPath61 software tool for 78 whole slide images

spanning all 14 distinct primary tissue types. Annotations were computationally extracted
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Figure 5.5: (A) Confusion matrices of a learned binary classification model to identify tu-
mor tiles from normal tissue in primary cancers for training and held-out test sets. (B) Area
under the receiver operator characteristics curve for both training and test sets illustrating
an AUROC of 0.92 and 0.88 on the training and test sets, respectively. (C) Distribution of
error types across the represented primary tumors under investigation illustrates relatively
uniformly distributed error.

and employed to label each tile sampled from each of the 78 whole slide images as either

belonging to a region annotated as tumor or not, in which case the tile is labeled non-

tumor. Figure 5.5 illustrates the classification performance of the trained model as applied

to a held-out test set. In general, the model performs well as evidenced by an area under the

receiver operator characteristics curve of 0.88. The proportion of type I and type II errors

were also shown to be generally evenly distributed across the fourteen classes, suggesting

that no one class was responsible for model failure in either training or testing sets.
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5.3.3 Primary-to-Primary Prediction

With both primary and metastatic datasets removed of normal tissue, second-stage models

are required to correctly predict the tissue of origin of the remaining tiles deemed to contain

tumor tissue. A ResNet50 model configured for 14-class output with softmax activation was

trained on the primary dataset and evaluated on a held-out test set of whole slide images of

primary cancer. The confusion matrix shown in Figure 5.6 illustrates good per-tile accuracy

during training (> 96%), though reduced generalization performance on the held-out testing

dataset (> 55% accurate in 14-way classification).

A more nuanced understanding of the model’s predictive ability is achievable if we loosen

our success criteria away from requiring a strictly correct prediction. The distributions of

rank to the correct choice is shown in Figure 5.7, which illustrates how far down the ordered

set of predictions one must go to arrive at the correct prediction. For example, if a model’s

top choice is correct, then its correct rank is one, whereas if the correct prediction was the

second highest confidence prediction, its correct rank would be two. While overall we can see

that while the majority of samples were correctly predicted with rank 1, a sizable number

of remaining samples appear to be within the top 5 or 6 ranks, suggesting that although the

model might not make the correct prediction first, it may still enable a triage of potential

selections based on their rank and confidence. Treating each predicted class as a binary

classifier enables class-specific receiver operator characteristics analysis as shown in Figure

5.8, which illustrate good performance for each class individually for both tile and WSI

predictions. Whole slide predictions are computed as the mean per-tile predictions across all

tiles sampled from the respective whole slide, which supports the consistent observation that
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Figure 5.6: Distributions of the model’s whole slide image confidence in the correct class,
separated by whether the model was actually correct and shown for both training and
testing datasets

the model’s whole slide classification performance consistently out-performs the model’s per-

tile classification, as the approach smooths out intermittent tile-errors throughout the image.

Because predictions are made on individual tiles independently, the spatial relationships

among predictions of tissue type within the whole slide images is easily spatially-resolved.

Figure 5.9 illustrates a single example of an incorrectly-classified whole slide image in which
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Figure 5.7: Distribution of the rank from true class. The x-axis reflects the rank-order
of each slide’s true class, so if a model’s first, most-likely prediction is correct, that sample
has a rank of true class of 1; if a model’s second most likely choice was correct, then the
rank of true class is 2. In general, the model is highly biased towards the correct class
label. This supposes that although a model’s most likely prediction may not be correct,
considering multiple best guesses has a much higher likelihood of containing the correct
option, similar to how a pathologist generates a differential diagnosis by considering various
sources of evidence in support of various possible diagnoses of an unknown condition.

the correct whole slide label was a squamous carcinoma, but in which the model predicted

the model to be a gastrointestinal stromal tumor. This perspective illustrates how although

the model’s first choice was incorrect, its second choice was correct with 35.2% and 18.3%

confidence, respectively.

A deeper understanding of how and why the model fails to generate correct predictions

for almost half of the samples may guide improvement to the training routine and refine

our interpretation of model performance beyond strict accuracy. Figure 5.10 illustrates how

the prediction confidence across the fourteen classes for both training and test set differ

when the model is incorrect. By examining the samples that the model correctly classified
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Figure 5.8: Area under the Receiver Operator Characteristics curves for tile and WSI
predictions illustrates that in general predictions are more reliable at the whole slide level,
which are made by computing the average predictions across all tiles in the whole slide
image.

from those that were incorrectly classified, we observe a clear reduction in prediction for the

correct class for incorrect samples, which is expected. However, we also observe a marked

reduction in prediction confidence even for the samples that the model tends to get correct.
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Figure 5.9: Example of spatially-resolved predictions from an incorrect classification of a
squamous carcinoma incorrectly predicted to be a gastrointestinal stromal tumor. In this
case, about half the tumor was correctly predicted to be a squamous carcinoma while the
larger, other half of the image was incorrectly predicted to be a gastrointestinal stromal
tumor.

5.3.4 Primary-to-Metastatic Classification

With both primary and metastatic samples filtered, a new classifier designed to predict

the metastatic origin of secondary cancer is trained in three different manners. The first

model is trained just on primary cancers as shown above. A second model is trained
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Figure 5.10: Distributions of model predictions of the correct class it was expected to
choose, separated by both training and testing analysis and whether the model was correct.

on just metastatic cancers, and a third model is trained on primary cancers and then

retrained on metastatic cancers. The third strategy describes a transfer learning approach,

in which a model is first trained in one setting for one task - predicting the tissue of origin

of primary cancer - and redeployed in a second setting on a different but related task,

namely to predict the tissue of origin of metastatic cancer from whole slide images of liver

metastases. In all three cases, an identical ResNet50 learning architecture was instantiated

with identical Adam optimizers trained to minimize the cross-entropy between predictions

and class labels. Data loaders were designed to generate batches of data with the batch size

of 32 with the same data transforms that include flipping, rotating, and color scaling by

saturation, brightness, and hue with class-balancing. To ensure constant training volume,

the first two models are each trained for 10 epochs on their respective dataset, and the

transfer learning model is trained for 5 epochs on each. After training is complete, each
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model’s state dictionary is saved to disc and reloaded upon evaluation of a held-out testing

set composed of 159 metastatic whole slide images. Predictions are generated at per-tiles

resolution, and whole slide predictions are computed as the average class prediction across

all tiles in a whole slide image.

For each class, a receiver operator characteristics (ROC) curve is computed across the

model’s class-specific predictions for both tile and whole slide images for each of the three

models as shown in Figure 5.11. These trends illustrate the quality of the model’s predictions

across the three training routines for both per-tile and per-WSI classification. In general,

predictions at the whole slide level out-perform predictions made at per-tile level, which is

not surprising as the simple whole slide averaging routine to generate whole slide predictions

is capable of smoothing out local prediction inaccuracies and are thereby more robust to

misclassification of tile subsets. Although in general, the model’s performance is enhanced

through the inclusion of pre-training on primary tumors, though this trend is not entirely

consistent. For example, predictions of the metastatic origin of adrenal cortical carcinomas

and gastrointestinal stromas appears to achieve best performance when trained on just

primary tumor, while tumors originating in the kidney and squamous carcinomas appear

to perform better when trained on just metastases. One plausible explanation for this

observation might consider the inadvertent inclusion of surrounding normal tissue in either

case, which may modulate the model’s capacity to distinguish between the tumor types if

the training labels are not applied to pure tumor tissue.

The quality of model training is also evident in examining the areas under the receiver

operator characteristics (AUROC) curves, which provide a quantitative metric for model

performance. The density distributions of AUROCs for each class shown in Figure 5.12(A)
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Figure 5.11: Receiver Operator Characteristic curves for the prediction of metastatic
origin from three models trained on either primary tumor, metastatic tumor, or both. In
general, combining metastatic and primary datasets contributes to superior classification
performance using the primary-to-metastatic transfer learning framework described.

support the finding that in general pre-training on primary cancers enhancing model per-

formance, which are broken down by specific class in Figure 5.12(B). The rank confidence

plot in Figure 5.12(C), similar to Figure 5.7, supports similar findings that although the

model’s first choice may not be correct, the model’s confidence is the correct class is gen-

erally higher than would be expected by chance. The per-tile confusion matrix shown in

Figure 5.12(D) illustrates that the tile-classification task is generally more challenging for

neuroendocrine carcinomas, colonic adenocarcinomas, and gastrointestinal stromas, which
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Figure 5.12: Whole slide classification of metastatic whole slide images. (A) Per-class AU-
ROC distributions illustrate conferred benefit by incorporating both primary and metastatic
samples in the metastatic origin prediction task. (B) Distributions of model performance
across each of the predicted classes using each of the three described learning approaches.
(C) Rank-confidence illustrates differential diagnosis potential, as the model’s correct predic-
tion tends to be non-uniformly distributed but instead biased towards the correct prediction.
(D) Per-tile classification confusion matrix illustrating confounding variables in the colonic
adenocarcinoma, neuroendocrine carcinoma, and gastrointestinal stroma classes, which also
happen to be the most represented classes in the dataset.

are the most represented classes in the dataset.

5.3.5 Primary & Metastatic Feature Divergence

One plausible explanation for a model’s failure to generalize between primary and metastatic

settings might involve feature dissimilarity between images of a specific class of tissue be-

tween their primary and metastatic representations. We next evaluate whether inter-class

divergence of image features between metastatic and primary tiles may be inferred to bet-

ter explain discrepancies in how generalizable metastatic origin prediction is under the
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hypothesis that cancer subtypes with greater discrepancy between primary and metastatic

morphologies are less likely to be correctly classified by a model trained on primary cancers

and deployed on metastatic cancers.

This approach trains an unsupervised variational auto-encoder on all tiles and eval-

uates how different cancer types differentially separate between primary and metastatic

presentations. Facet tSNE embeddings of learned latent representations across the datasets

are shown in Figure 5.13, illustrating the distribution densities of tiles belonging to a spe-

cific class colored according to whether they are from primary or metastatic samples. In

principle, if tiles of a given cancer type look identical in both primary and metastatic

images, then their distributions of tiles should perfectly overlap in this feature representa-

tion. This expectation supported by the tiles samples from normal liver in which tiles from

both datasets almost perfectly overlap with one another. Other examples show similar but

not complete overlap, particularly in the cases of colonic adenocarcinomas and pancreatic

adenocarcinomas. However, other samples appear to be more widely distributed and non-

overlapping, such as neuroendocrine carcinomas and squamous carcinomas. Some cases,

such as leiomyosarcomas, appear strongly bimodal, suggesting that some tiles share similar

features while others do not. The mean KL divergence across each of the learned features

quantifies the statistical dissimilarity between primary and metastatic tiles, which are illus-

trated in Figure 5.14(A). Figure 5.14(B) illustrates that the correlation between mean KL

divergence and the model’s reported AUROC performance suggests a slight linear associa-

tion with a correlation of 0.317, which may be interpretted as very slight evidence that the

greater the divergence between primary and metastatic samples, the stronger the model’s

classification performance in the transfer learning setting. Figure 5.14(C) demonstrates
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Figure 5.13: tSNE embedding of learned VAE features colored by both primary and
metastatic samples

the mean divergence between pairs of tissue types, while 5.14(D) illustrates the divergence

between primary and metastatic tiles across each of 64 learned VAE features. In general,

these results support the visual interpretation taken from evaluating the distribution of tiles

projected into two dimensions in the tSNE plots, showing that in general different cancer

types exhibit distinct morphological feature representations.
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Figure 5.14: (A) Kullback-Leiber divergence across each of the learned VAE features il-
lustrating separability between primary and metastatic samples measured both within and
cross-class divergences. (B) Linear relationship between the KL divergence and the learned
model’s AUROC shows a surprising positive trend, suggesting that the more divergent the
distributions, the better the chance of the learning model has to learn accurate classifica-
tion. (C) Correlation matrix between primary and metastatic feature space representations
from a single auto-encoder model. (D) Learned features associated with different classes of
metastatic origin illustrates both class-specific and class-agnostic individual features.

5.4 Discussion

This work illustrates the importance of incorporating pre-training into histopathological

classification, as pre-training on images of primary cancers confers benefit to a model trained

to classify metastatic tumors according to their metastatic origin. This work opens many

fruitful questions still unanswered, particularly with respect to the ability of these types of

models to confer added benefit to a practicing pathologist tasked with inferring metastatic

origin directly from histopathological whole slide images. This work has a number of limita-
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tions that may limit the extensibility of its findings. In particular, this study was limited to

14 distinct classes of metastatic origin that were treated independently within the learning

model. Future efforts may necessitate larger datasets with greater class-specific coverage

to ensure robust ability to generalize both inter- and intra-class accuracy. This work also

ignores shared latent features of tumor tissue that may be clinically relevant to rendering

an accurate diagnosis of metastatic origin. Namely, this work ignores any other clinical

feature of interest that may be relevant to this task, such as age, gender, medical history,

and incidence of other disease phenotypes. This work also presents the clinical challenge of

inferring metastatic origin in a simplified setting, when in practice a pathologist uses both

other clinical covariate factors as well as obtainable results from axillary testing such as

immunohistochemistry or genomic sequencing to guide their diagnostics.

The use of unsupervised feature extraction methods to infer feature divergence between

primary and metastatic cancers also has a number of limitations. Like other efforts that

incorporate these kinds of learning models, the learned feature space is subject to discrep-

ancies, a lack of interpretability, and inconsistency in feature space embedding with similar

input images. Although exploratory, it might be reasonable to use the relative dispersal of

samples within a learned feature space to infer the heterogeneity or variability of intra-class

samples so as to guide researchers in determining an adequate number of representative

samples so as to cover an inferred feature space.

This work presents a number of future directions, in particular opening up the op-

portunity to explore clinical application of augmented inference of metastatic origin on

a pathologist’s classification performance. By measuring human accuracy both with and

without the proposed model, clinical synergy between human expert and machine intelli-
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gence may be quantified. This work may also present new opportunities to strategy patients

based on computationally-inferred status of collected histopathological specimens. Retro-

spective analysis of the samples used in this study may enable a mechanism to train an

auxiliary classifier to predict drug or treatment response from histopathological features of

whole slide images. This line of research may contribute both to the design of therapeutic

strategies, as well as to the design of investigative clinical trials seeking to stratify patience

into competing study arms. Overall these results reinforce the importance of pre-training

computer vision systems in digital pathology, as pre-training a network on primary can-

cers is shown to improve the ability of the learning model to infer the origin of secondary

metastatic cancer.
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Chapter 6

Conclusion

I think... that you have to have more
than just a machine.

All the problems of the world could be
settled easily, if men were only willing
to think. The trouble is that men very
often resort to all sorts of devices in
order not to think, because thinking is
such hard work.

Thomas J. Watson,
Chairman & CEO, IBM (1914–1956)

This work has investigated computational strategies to employ deep learning systems

architecture for histopathological image analysis in a clinical setting. This chapter summa-

rizes the limitations broadly applicable to this approach, as well as future research directions

in the field of digital pathology & artificial intelligence.

6.1 Limitations

The artificial neural networks described in this work vary in their type, complexity, and

intended purpose, yet their use has been motivated by the clinical need for faster, cheaper,

and more reliable methods of interrogating tumor biology. This work, which largely revolves

around metastatic cancer of the liver, is both promising yet limited. Although the methods

115



Artificially Intelligent Pathology Geoffrey F. Schau

utilized in this work are not necessarily new, this work was not intended to introduce

an incremental improvement in a computer vision task, nor was it advance underlying

knowledge of cancer biology. Rather, this work is interdisciplinary by its very nature,

and illustrates how clever application of existing tools to important problems can in fact

yield interesting and surprising insights as by-products of their application. Cutting edge

research in digital pathology tends to incorporate many more hundreds or thousands of

whole slide images than what was included in these studies. Considering the significant

heterogeneity of many cancer types, the datasets used to model computer vision and pattern

recognitions systems should then be trained on equally diverse data. The collection, storage,

and management of these large datasets presents a significant challenge, and though this

work has benefited from an accessible data repository, it is not shown whether the models

presented would fairly generalize to images scanned and retained by other slide repositories.

As large consortia continue to interconnect data and images in support of the research

community, additional efforts must be made to ensure that learning strategies validate both

within and external to a host repository.

Some of this work was initially intended to serve as a means of augmenting a human

pathologist’s capacity to interrogate whole slide images. However, these results do not fully

close that gap. More comprehensive evaluation of both the learned models as well as their

effects on human operators might be necessary to achieve acceptance into clinical practice.

Future work in digital pathology and artificial intelligence appears to encounter a fork

in philosophical approach to building sophisticated learning systems, forcing practitioners

to choose whether an artificial intelligent solution should be specialized to precise singular

tasks, or generalizable as human pathologists are trained to be. Both approaches have their
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own limitations, but because this work has not pursued general-purpose histopathological

feature learning, limitations of the specialized approaches are relevant. Specialized systems

may do well on clearly defined tasks, but they pose a significant additional problem in de-

termining how best to integrate specialized networks to fulfill more general problem solving.

For example, some of this work illustrated multi-stage approaches where one specialized net-

work might filter out surrounding stroma tissue, while a second more specialized network

was trained to classify the remaining tissue. In this case, it is relatively straight forward

to integrate these models in series, one performing its task after the other. But humans

are more complex in their decision-making which has not been modeled by the approaches

described here, presenting a new limitation in the capacity for any of the learned models

presented here to work in symphony with other computer vision systems.

Relatedly, general computer vision systems are generally designed to process input of

common shape and size such that the number of trainable parameters is held fixed across

an entire dataset. In this work, design decisions regarding the size of the samples tiles

were made largely based on established practices in the field. While this approach is suf-

ficient to achieve certain results, it ignores the function of the human vision system and

the manner by which trained pathologists examine sections of tissue, in which liberal use of

lateral movement and zoom create highly dynamic inspection processes during which the

pathologist considers complex spatial information at variable scale. To date, few systems

are designed to mimic this behavior, and so are limited in their ability to leverage spatial

information that requires far-field context to meaningfully interpret.
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6.2 Future Research Directions

Upon setting out upon this work, three things were noted of relevant import: pathology

is in many ways a gold-standard for cancer diagnosis and, therefore, cancer treatment;

inter-operator agreement between pathologists is often surprisingly poor; data availability

in digital pathology is quite good; and deep-learning methods are powerful enough to likely

contribute to resolving certain discrepancies in the image analysis work-flow at the core of

pathological practice.

The vast majority of the work that went into designing, developing, and verifying com-

putational pipelines to execute the research presented is not emphasized, nor indeed should

it be; this dissertation is primarily motivated to share new science and knowledge in the field

of biomedical engineering. However, the reader might consider how the tools and methods

employed in these specific studies might easily extend themselves to very similar problems

in very different domains. Classifying bits of tissue as one type or another is not unique to

cancer pathology, nor is the need to identifying distinct tissue or cells. The contributions

of this work are therefore two-fold: first, the science that emerges from the motivating

questions; and second, a tool platform that is easily reconfigured to begin answering many

more questions in a much shorter amount of time than what was required to prepare this

dissertation.

AI for Differential Diagnoses

A current future direction under considering considers secondary utility for a model’s differ-

ential prediction of metastatic origin. Although a single model making a single prediction is
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Figure 6.1: Incorporating IHC panel recommendations into a learning model’s differential
diagnostic predictions retains an expert pathologist’s decision-making and axillary molecular
testing methods.

sometimes correct, in practice clinicians often rely on differential diagnoses which typically

rank-order possible underlying conditions given various bits of medically-relevant evidence.

A neural network’s probabilistic output can be interpreted as a differential diagnosis, since

it enables an observer to rank order the model’s predictions based on the model’s confidence

across available choices. In clinical practice, a pathologist may leverage relative uncertainty

to order a confirmatory IHC panel designed to differentiate between potential diagnoses.

On-going work led by Hassan Ghani has integrated a knowledge base of discriminatory

IHC stains into a web-based queriable database that tabulates and ranks stains according

to their discriminatory power, such as teh example shown in Figure 6.1. The models pre-

sented in this work may be extensible in that manner, such that the model’s most likely

candidate choices may be employed to optimally select distinguishing IHC stains without

the intervention of a biased clinician.
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Electron Microscopy Annotation

While some of the work presented herein has commented on the data size of images used

for training deep learning models, the volume of data from immunohistochemistry pales in

comparison to data volumes generated by scanning electron microscopy. Such ultra-high-

definition measurement systems enable visualization of tissue in a single channel at 4nm

resolution and in three spatial dimensions, offering unprecedented resolution into the struc-

tural composition of tumor tissue. The DeepHAT system described in chapter 4 is already

under exploratory investigation to evaluate whether annotations of these such images may

be accelerated using clever feature space projection approaches.

Predicting Drug Response

Significant clinical need exists for increased availability of useful drugs with accompanying

actionable bio-markers, and one particularly rich area of open questions lies in the intersec-

tion of paired patient histopathology and clinical trial outcome. One can imagine stratifying

a patient population based on their response to investigative therapy and training a classifi-

cation network to predict which patients are more or less likely to respond. If such a model

can be trained to generalize well to new patients, secondary opportunity lies in the careful

interrogation of the model’s reasoning to infer new bio-markers that themselves might be

predictive of patient response. However, if interpreted reasoning eludes the observer while

a neural network model continues to generalize well, new drugs may be accompanied by the

computer vision system themselves to serve as the bio-marker retrieval system, rather than

relying on a pathologist’s determination.
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Human Factors Engineering

Current scientific literature contains an abundance of evidence that suggests that the like-

lihood that computer vision systems will soon routinely meet or exceed human capability

are on the horizon. Yet despite published models or datasets, academia has largely ignored

the value of human factors engineering to identify mechanisms that might most effectively

incorporate artificial intelligence learning systems into clinical practice. While the input of

pathologists is often used to explicitly label data or confirm a model’s performance, rarely

are the thoughts and opinions of pathologists regarding how they might best prefer to inter-

face with AI incorporated into published design decision making. A related line of inquiry

should investigate down-stream effects associated with over-reliance on AI-based methods.

A hypothetical experiment might be designed to evaluate the role of an AI-system on per-

forming some task, evaluate the role of a human expert at that task, and evaluate the role

of the human plus the AI-system, with the hypothesis being that a synergistic effect might

be measurable when combining the relative strenghts of the two actors. However, an im-

portant twist might then investigate the effect of that synergy as the AI system is gradually

impeded, or handicapped, without the human operator’s knowledge. Do humans tend of

forsake effort when machines appear competent? And, if so, can we measure the degree of

error expected if a machine later begins to fail at its task, and can we anticipate whether

a human will intervene and take corrective action? In clinical medicine, the human cost of

an over-reliance on artificial intelligence is unknown; the human factors engineering of AI

integration is ripe for exploration and innovation.
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Extension to Multiplexed Imaging

Although typical microscopy is limited by the bands of the electromagnetic spectrum to

which human eyes are tuned, fluorescent labels enable wide-field view of tissue make-up

with protein-specific channels of information, enabling generation of imaging data with far

greater channel depth than the typical red, blue, and green channels that can recapitulate

a significant portion of the electromagnetic spectrum human eyes are tuned to. Emerging

technologies including cyclic immunofluorescence, CODEX, and mIHC are all means of

acquiring two-dimensional images with varying independent axes of depth not from color,

but from the presence of molecules and proteins. Though much of the digital pathology

work presented in this thesis has relied on H&E images, characteristically occupying mostly

just red (eosin) and blue (hematoxylin) color channels, the methods described herein are

largely indifferent to the channel depth of data object, enabling translation of these methods

to these exciting emerging technologies. Neural network architecture, and the convolutional

layers from which modern computer vision systems are built, are highly amenable to tensor

inputs of arbitrary dimensionality, simply swapping the depth channel which is nominally

three for color images, to N for however many independent measurements are able to be

captured with a multiplexed imaging platform.

Imaging-Omics Integration

As the depth of information extractable from whole tissue continues to increase, driven in

part by the emergence of multiplexed imaging technology, and as single-cell segmentations

become more robust, to integration of rich imaging data with rich genomics data presents

a significant opportunity to uncover causal and associated relationships between these two
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great pillars of biomedical data. Deep learning methods of contributed to significant progress

in cellular segmentation, particularly in multiplexed imaging domains where cytoplasmic-

specific markers provide convenient delineations between cell bodies. These approaches

are not generating large, spatially-resolved datasets of proteomic signatures at single-cell

resolution, in many ways similar to popular single-cell genomic measurements techniques,

yet retain spatial context of measurements. Figure 6.2 illustrates the core principle behind

a proposed method to be published in this year’s 59th annual Conference on Decision and

Control in which translation between two measurements of the same unit of analysis, in this

case the cell, may be learned even in the absence of unpaired measurements. In this work,

a self-supervised domain translation model may be learned by enforcing a cycle-consistent

reconstruction penalty as a sample from one domain is cast into a mutually-shared feature

space in some other domain before being translated back again. Although this work is still

preliminary, it holds great promise for elucidating biological mechanisms that are currently

difficult to interrogate given absence of paired multiplexed data sources.

6.3 Dei Ex Machinae

The human brain is thought to possess on the order of one quadrillion synaptic connec-

tions between pairs of approximately ninety billion neurons. This astounding complexity

is without comparison in the known universe, and dwarfs the computational complexity of

even the most advanced artificial neural network systems. If we were to draw an analogy

between the number of trainable parameters in an artificial neural network and the number

of synapses within the brains of living creatures, then we must resign ourselves to examining
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Figure 6.2: Integrating single-cell imaging and omics data remains a great challenge in
systems biology. The proposed XAE learning system architecture is designed to learn cross-
domain translation from unpaired datasets.

the so-called “lower-order” organisms of our planet to find familiar kin. The thirteen million

trainable parameters of the popular ResNet50 model would scantly supersede the nearly ten

million synaptic connections of the common fruit fly, Drosophila Melanogaster. Though the

likelihood that a fruit fly could learn to interpret histological slides is no greater than the

likelihood that an artificial neural network might grow wings and learn to fly, the parallels

of the scope and scale of the computational complexity of each motivate an appreciation for

the evolutionary future of artificial learning systems, as they gain rapidly upon the slower,

less coordinated evolution of biological thinking machines.

The populist hype surrounding deep learning is no accident, nor is it without justifi-

cation. The performance of these systems, demonstrated in this work and in the works of

many others, are an encouraging sign that artificial neural networks are capable of achieving

remarkable results, even with respect to well-trained human experts. In the eyes of a prac-

titioner, their success is due in no small part to their elegance, accessibility, and flexibility.
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But in the eyes of the skeptic, concerns are amplified by both researchers and the public

as the field of artificial intelligence continues to blaze a trail of public failures alongside a

broad avenue of success. Despite failures, setbacks, and limitations, the opportunity nev-

ertheless continues to attract investments in the billions of dollars, pushing valuations of

deep learning-centric enterprises to the highest reaches of venture capital.

Medical science is accelerating at a rate beyond the ability of a human mind to keep

pace. Yet machine learning systems, such as those described in this document, though

operating at a level far beneath the capacities of a human mind, are capable of collecting,

disseminating, and processing data in vast quantities and at near constant rate. The future

of these tools to improve diagnostics in health care at home and around the globe is, in

the humble opinion of the author, inevitable. The role of machine intelligence systems in

understanding, characterizing, and diagnosing disease is not yet well-formulated. To trust

a computer to make decisions or infer causality of disease inherently places the well-being

of fellow humans into the nebulous decision-making processes within a computer system.

But just as a self-driving automobile does not have to have a 100% success rate to be better

than a human driver, so too do machine learning models need only surpass human decision

makers in narrowly-defined tasks to provide value to health care delivery. If nothing else

but speed and reproducibility, systems like those presented in this work have measurably

valuable qualities that make them potent partners in the battle against disease.

To Not Replace...

At the Frontiers of AI in Medicine Symposium held at Stanford University in September,

2019, Professor Fei-Fei Li, conference chairperson and prominent leader of the AI field in
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computer vision, introduced the symposium with a statement that she believes that we, as

a community, must hold in paramount importance: That the objective is not to replace, but

to augment.

It is true that certain actors in the world are motivated to replace doctors and care-

givers by unfeeling robotic analogs deemed superior by virtue of their capacity to ingest and

process information. A certain self-righteousness and hubris within the technocratic strata

might claim to be on the cusp on throwing out the human system upon which medicine

is based in favor on some type of impartial thinking machine. The philosophical divide

between believers and doubters of AI is widening, but a middle ground reasonably holds

that machines are no more capable of replacing doctors than humans are of replacing the

microchip.

Organizations across all strata of biology, from cells and tissue through societies and

ecologies, rely on the competitive advantage of their constituent member units to sustain

life. This work has sought to bring together the unique capabilities of human and machine

towards the betterment of our own species, and refinement of our machine counterparts,

through the study of cancer. The natural symbiosis between human and machine, each

reinforcing the distinct advantages of the other, will continue to offer profound contributions

to the medical sciences, extend the well-being of our species, augment our role as care-givers,

and facilitate the continued democratization of medicine to every member of our species

and to every corner of the globe. May thinking machines of the future herald good and

sustainable health for all humankind.
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The Mark I, the first implementation of the perceptron algorithm (1958)
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[45] Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In
Yves Lechevallier and Gilbert Saporta, editors, 19th International Conference on
Computational Statistics, pages 177–186, Heidelberg, 2010. Physica-Verlag HD.

[46] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
ICLR, pages 1–15, 2015.

[47] Quoc V Le, Adam Coates, Bobby Prochnow, and Andrew Y Ng. On Optimization
Methods for Deep Learning. In Proceedings of the 28th International Con- ference on
Machine Learning, 2011.

[48] Adityanarayanan Radhakrishnan and Caroline Uhler. Memorization in Overparame-
terized Autoencoders. arXiv, pages 1–25, 2019.

132



Artificially Intelligent Pathology Geoffrey F. Schau

[49] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv
preprint, (Ml):1–14, 2013.

[50] Carl Doersch. Tutorial on Variational Autoencoders. pages 1–23, 2016.

[51] Zhou Wang, A C Bovik, H R Sheikh, and E P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, apr 2004.

[52] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. ?-VAE: Learning basic visual
concepts with a constrained variational framework. 5th International Conference on
Learning Representations, ICLR 2017 - Conference Track Proceedings, pages 1–22,
2017.

[53] Grace Lindsay. Convolutional Neural Networks as a Model of the Visual System:
Past, Present, and Future. Journal of Cognitive Neuroscience, pages 1–15, 2020.

[54] Michael Eickenberg, Alexandre Gramfort, Gaël Varoquaux, and Bertrand Thirion.
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