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Abstract 

During healthy development and aging, somatic mutations aggregate in tissues, lending 

different mutational profiles to cells within these tissues. Similarly, developmental processes create 

the functional diversity necessary for normal tissue function. Cancer arises from the aberrant 

functioning of these processes. Mutational profiles and epigenetic regulation support uncontrolled 

growth of neoplasms with the potential ability to invade nearby tissues. The resulting intra-tumor 

heterogeneity contributes to evasion of drug pressures via Darwinian selection, and cell-state 

plasticity allows for dynamic shifts in regulation into drug-resistant persistor states. While bulk 

genomic assays profile averages of sampled cell populations, single-cell approaches allow for a 

picture of the heterogeneity of healthy and diseased complex tissues. In this dissertation, I assess 

the state of the single-cell field with a focus on assays characterizing whole genome copy number 

variation and chromatin accessibility. I show three examples of profiling heterogeneity by (i) 

assessing the genomes of thousands of cells in healthy and diseased tissues (ii) mapping the 

chromatin landscape of the murine hippocampus, and (iii) characterizing the development of 

Trametinib resistance through cell state plasticity across basal-like triple negative breast cancer cell 

lines. 
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Chapter 1: Introduction 
 
1.1 Heterogeneity of complex tissues 

Estimates for the total number of cells in the human body range from 1012 to 1016 cells 

(Bianconi et al., 2013) with the current number for a 70 kg male reference approximated at 3 × 1013  

cells (Sender et al., 2016). These cells serve a variety of roles as comprising parts of larger 

organized structures forming functionally complex tissues and organs necessary for life. Defining 

and characterizing the cell types present within complex tissues is a necessary component to 

building a comprehensive reference map that can help us understand fundamental biological 

processes of healthy tissues and their diseased counterparts (Rozenblatt-Rosen et al., 2017). The 

functional heterogeneity presenting across cells in a complex tissue can be the result of cell-to-cell 

genetic variation present in cells and/or the heterogeneity of regulation on top of this across all 

components of the central dogma (DNA, RNA, Protein). It is important to note, that observed 

phenotypic differences between cells can be independent of genetic variation within a tissue and 

can be restricted to differences in regulation only. In addition, heterogeneity of different regulatory 

levels may not match in the same cell populations (Goldman et al., 2019; Hinohara & Polyak, 

2019a). This necessitates the accurate genomic and regulatory characterization of complex tissues. 

The evolution of massively parallel sequencing and the emergence of multi-omics approaches has 

led to large consortium projects of healthy and diseased bulk tissues across large numbers of 

individuals (Auton et al., 2015; P. J. Campbell et al., 2020; Dunham et al., 2012; Hudson et al., 

2010; Roadmap Epigenomics Consortium et al., 2015; Weinstein et al., 2013). However, due to 

technical limitations, this has not translated fully to within-tissue heterogeneity. Bulk approaches 

require tissue samples consisting of input material on the order of micrograms; therefore, an 

average profile is reported across all assayed cells (N. E. Navin, 2015). This can result in potentially 

missing important sources of heterogeneity as both healthy and diseased tissues have been shown 

to harbor genomic alterations and regulatory differences present at low frequencies (<5%) in 
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sampled cell populations (Carter et al., 2012; Cibulskis et al., 2013; Mo et al., 2015; Rozenblatt-

Rosen et al., 2020). The emergence of single-cell methods finally made it possible to accurately 

capture the full breadth of represented diversity. In this dissertation I will assess how current single-

cell technologies and computational analysis methods have helped unravel cellular genetic, 

epigenetic, and transcriptomic heterogeneity within two of the most studied complex tissues: the 

brain and the breast. The second focus of this dissertation is how heterogeneity, a basic property of 

healthy tissues, provides the foundation to evasion of treatment response in cancers on multiple 

regulatory levels.  

1.1.2 Genomic heterogeneity in healthy tissues 

Mutations arise as multicellular organisms develop from a single embryonic cell (Figure 

1.1A.)  The size of mutations can range from single nucleotide variants (SNVs), short insertions 

and deletions in the genome (Indels), to larger structural variants (SVs) including the gain or loss 

of entire chromosomes (aneuploidy) and translocations (equal or unequal exchange of genetic 

material between chromosomes, 1.1B). Different molecular mechanisms give rise to different 

categories of mutations. Permanent changes to the DNA can occur via errors during DNA 

replication, meiosis, and mitosis, or through damage via exposure to radiation (e.g.: formation of 

pyrimidine dimers upon photochemical reactions) or carcinogens (Bertram, 2000; Chatterjee & 

Walker, 2017). Similarly, mobile genetic elements can introduce deletions or insertions to the DNA 

sequence (Chénais et al., 2012). Repair processes within a cell can correct for introduced changes, 

but can also be quite error prone (J. Chen et al., 2014; Rodgers & Mcvey, 2016; S. Sharma et al., 

2015). For example, copy number variants (gains or losses of large genomic regions, CNVs), which 

are the focus of chapter 2 of this dissertation, have a range of identified molecular mechanism 

associated with their formation, including non-allelic homologous recombination (NAHR), fork 

stalling and template switching (FOSTES), non-homologous end-joining (NHEJ), and mobile 

element insertion (MEI). The frequency of these events in genomic regions is often driven by local 
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genomic architecture, such as clusters of low copy repeats, repeated sequences and repetitive 

elements (Bickhart & Liu, 2014; Carvalho & Lupski, 2016). 

 When a mutation occurs in a germ cell lineage (i.e. sperm or egg), it can be passed onto the 

next generation, where the mutation will be present in all somatic cells (Milholland et al., 2017). 

Similarly, de novo mutations can arise, which are present in all cells of an offspring but cannot be 

detected in the parents (Freed et al., 2014). These mutations may occur early in development (i.e.: 

first few cell divisions of the zygote); however, studies applying more sensitive genetic assays have 

shown cases of low-level mosaicism in parents of de novo cases (I. M. Campbell et al., 2014; Van 

Der Maarel et al., 2000). When we look at SNVs, we find the rate of de novo germline mutations 

range from approximately 1.18 × 10−8  to 2.5 × 10−8 mutations per base pair per generation in 

humans and 4.6 × 10−9 to 6.5 × 10−9 mutations per base pair per generation in mice (Conrad et al., 

2011; Milholland et al., 2017; Uchimura et al., 2015). These germline mutations contribute to the 

overall variation present in a species. The Thousand Genomes Project found a typical human 

genome differs in 4.1 to 5 million sites from the reference (depending on the studied population), 

with the majority (99.9%) consisting of single nucleotide polymorphisms (SNPs) and short indels. 

Structural variants were less frequent (2,100 to 2,500 SVs in a typical genome, ~160 CNVs) but 

covered a larger portion of the genome than SNPs and short indels (~20 million bases of sequence 

per typical genome). When taking SNPs and indels into consideration, analysis of 69 samples from 

each of the studied 6 populations found expression quantitative trait loci (eQTL) at 3,285 genes at 

5% false discovery rate. For each of the studied populations the top 7.5–19.5% of eQTL variants 

overlapped transcription factor binding sites, indicating their high importance in the regulation of 

gene expression levels (see section 1.2.1). For larger structural variants the database of genomic 

variants lists approximately 7 million entries in the human genome with 984 thousand copy number 

variants alone overlapping with 85% of exons in the database (MacDonald et al., 2014). This 

highlights the importance of accurately cataloging CNVs to understand the potential effects on 

expression and their association with disease.    
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Post-zygotic, somatic mutations occur in cells after conception and can only be passed on 

within their cell lineages (Fig 1.1A). This results in somatic mutations often being restricted to 

specific tissues (C. Li & Williams, 2013). Somatic SNVs (Fig 1.1B) are approximated to have a 

higher mutational rate than their germline counterparts (Lynch, 2010),with a recent study showing 

2.8 × 10−7 and 4.4 × 10−7 mutations per base pair per generation for human and mouse, respectively 

(Milholland et al., 2017). This is an average value, as somatic mutations accumulate at different 

rates depending on tissue type (García-Nieto et al., 2019; Lee-Six et al., 2019; Lodato et al., 2018; 

Iñigo Martincorena et al., 2015). This is likely due to the functional diversity of tissues, which 

allow for different somatic mutational loads (C. Li & Williams, 2013). A recent comprehensive 

study cataloging 280,000 mutations from 36 healthy tissues showed disparate mutational loads 

across tissues, which also correlated with age, sex, and ethnicity. Overall mutational load increased 

with age across all tissues but was relatively lower in brain tissues. Breast tissue specifically 

showed a strong sex bias, with females harboring a higher mutational load (García-Nieto et al., 

2019). This study also explored selection on somatic variants via the ratio of non-synonymous (i.e. 

amino acid altering, dN) to synonymous (i.e. amino acid conserving, dS) mutations across genes. 

Values of dN/dS close to 1 represent little or no detectable selection, dN/dS > 1 suggests positive 

selection, and dN/dS < 1 implies purifying selection. Interestingly, missense and nonsense 

mutations across all tissues showed negative selection (dN/dS < 1) except for mutations previously 

observed in cancer samples, which exhibited positive selection across many healthy tissues (García-

Nieto et al., 2019). This was especially prominent in non-cancerous skin, where mutations at cancer 

associated gene NOTCH1 showed strong positive selection load (García-Nieto et al., 2019; Iñigo 

Martincorena et al., 2015). Similarly, in normal breast tissues there was an increased number of 

mutations in genes in pathways regulating proliferation, cell to cell adhesion, and cell survival such 

as TGFBR2, CTNNB1 and AKT1 (García-Nieto et al., 2019). This indicates underlying mechanisms 

pushing tissues towards a cancerous state by allowing for mutations to be positively selected for on 

a cellular level, which in time compromise healthy tissue function (Inigo Martincorena, 2019).  
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The high proportion of post-mitotic cell types in the brain makes it an interesting organ for 

study in the context of somatic variation (Fig 1.1A). While neurons are thought to have low 

replication rates outside of regions of neurogenesis (Bergmann et al., 2015), actively dividing non-

neuronal (e.g. glial) populations aggregate mutations through processes linked to mitosis as we age. 

Somatic mosaicism, the phenomenon of post-zygotic mutations creating genetically distinct cell 

populations, is widespread in the brain. The observed rates of somatic variation range from 1.3-

40% in regions of the brain, strongly scaling with age (Bushman & Chun, 2013; Kingsbury et al., 

2005; Lodato et al., 2018). The effect of these mutations depends on many factors, including the 

developmental time of occurrence. Somatic mutations are often cited as candidate mechanisms for 

a wide range of psychiatric disorders such as autism spectrum disorder  (Marshall et al., 2008) and 

schizophrenia (Stone et al., 2008). However, somatic mutations do not always lead to disease states. 

Neurons in healthy brains were shown to frequently harbor SNVs (~1500 mutations per neuron), 

and only some of which were linked to schizophrenia (Lodato et al., 2015). Similarly,  neurons in 

healthy brains contain structural variants, such as CNVs (<0.5 somatic CNVs per neuron), that can 

be linked with autism spectrum disorder (Cai et al., 2014; McConnell et al., 2013). These mutations 

were often patient-specific and showed a low recurrence between cells. Given the highly region-

specific and low replicating nature of adult neurons (Bergmann et al., 2015), brain tissue can 

tolerate a certain mutational load that is sequestered into smaller neuronal populations, as these 

mutations cannot spread further. Following the same logic, widely spread clonal mutations that are 

generated during early development and do not cause disease could generally be neutral or 

potentially beneficial (Bushman & Chun, 2013). This might also explain the dearth of extreme 

whole chromosome aneuploidy (defined as a gain or loss of five or more chromosomes) in the 

healthy brain, indicating that programmed cell death removes large-scale mutations that will likely 

have an extreme functional impact (Peterson et al., 2012). However, less aneuploid and mosaic 

euploid cells have been found in active neural circuitry (Kingsbury et al., 2005).  
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While the exact functionality of this neuronal diversity is still not known, in theory the 

mutational landscape of the mosaic brain shows an overview of mutational forces acting on early 

embryonic development, with a potential that early beneficial mutations were selected for in clonal 

cell populations for increased robustness in the brain. With aging neurons accrue somatic mutations 

individually though processes not related to mitosis (e.g. oxidative DNA damage, Lodato et al., 

2018). These isolated, deleterious mutations add to the mutational load of this tissue on top of 

mutations acquired in early embryonic development, which can lead to eventual neurodegeneration.      

Figure 1.1 Somatic genomic mutations in healthy and diseased complex tissues. (A) Cells 

accumulate somatic mutations through early- and late-developmental processes. Mutations in 

neurons show a snapshot of early development and later accumulation of mutations in individual 

neurons. Lineage formation continues, however, in actively dividing tissues in the mammary gland. 

(B) Somatic mutations can range from single nucleotide polymorphisms to structural variants, such 
as deletions, duplications, and translocations. (C) Clonal evolution in a breast cancer tumor and 

selection for resistant genotype upon treatment. (D) Sequencing methods for detecting sub- clonal 

mutation can range from regional bulk sequencing approaches to different forms of single-cell 

sequencing. 
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1.1.3 Genomic heterogeneity in cancer 

Cancer is a collection of related genetic diseases that are characterized by cells with 

abnormal growth, apoptotic dysfunction, the ability to modify their local microenvironments, and 

invade nearby tissues, while evading immune surveillance (Hanahan & Weinberg, 2011). Cells can 

attain these attributes by co-opting cellular pathways that regulate these characteristics via inherited 

germline and/or later acquired somatic mutation(s) (E. Y. H. P. Lee & Muller, 2010; Sanchez-Vega 

et al., 2018). As a result, certain types of cancer, including breast cancers, can go on to form 

abnormal growths called tumors (American Cancer Society, 2019b). The genes responsible for the 

formation of different types of cancer can vary largely from tumor to tumor (Beksac et al., 2017; 

P. J. Campbell et al., 2020; Cros et al., 2018; Grzywa et al., 2017; Weinstein et al., 2013), with 

indication of some recurrently mutated genes (Krepischi et al., 2012; E. Y. H. P. Lee & Muller, 

2010; Shlien & Malkin, 2009; Lixing Yang et al., 2013). The latter were first studied in the context 

of heritable cancers where germline and later somatic mutations are often thought to result in the 

dysregulation of gene expression in important tumor suppressors and oncogenes (B. Liu et al., 

2015; Mitelman et al., 2007) . Tumor suppressors and proto-oncogenes are often depicted as the 

“brakes” and “gas pedals” of regulation within a cell, which points to the fundamental difference 

of their dysregulation in cancer. Oncogenes are the permanently activated forms of wild type proto-

oncogenes by usually dominant, gain-of-function mutations. On the other hand, tumor suppressor 

genes are deactivated forms of wild type genes by recessive, loss-of-function mutations (Osborne 

et al., 2004).  

Activation of a proto-oncogene can take many forms ranging from point mutations, which 

decouple a molecular switch from cellular regulation (e.g. Ras proteins), translocations that create 

fusion proteins with altered regulation of protein expression (e. g. BCR/ABL), and copy number 

alterations where the amplified expression of the proto-oncogene is the result of multiple active 

copies of it throughout the genome (e.g. c-MYC). These dominant genetic alterations result in gain 

of function changes, where only one effected chromosome is needed for phenotypic change, such 
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as cell growth, cell proliferation, and survival (Bertram, 2000; E. Y. H. P. Lee & Muller, 2010; 

Osborne et al., 2004; Rubin, 1998). 

 In contrast, most loss of function mutations occurring in tumor suppressor genes are 

recessive by nature. The phenomenon of the two-step inactivation a tumor suppressor in a cell was 

proposed by Alfred Knudson, which later became known as the two-hit hypothesis of 

tumorigenesis. This theory, first shown in retinoblastoma for the tumor suppressor gene RB1, posits 

that both alleles of a tumor suppressor gene need to be inactivated for phenotypic change to be 

observed, which can happen either through mutations or epigenetic silencing (Knudson, 1971). The 

first hit can be inherited as a germline mutation or can be an early-acquired somatic mutation 

(sporadic cancer), making the tumor suppressor gene heterozygous. A second somatic mutation in 

the remaining normal functioning allele can result in the inactivation of the tumor suppressor gene. 

This can happen via a copy number loss in the tumor suppressor gene resulting in loss of 

heterozygosity (CNL-LOH) or by a copy number neutral loss of heterozygosity (CNN-LOH). 

CNN-LOH is most often the result of gene conversion via homologous recombination or by the 

duplication of the chromosome containing the recessive allele before or after the LOH event  

(Ryland et al., 2015; Tischfield, 1997). Epigenetic deactivation of the tumor suppressor gene can 

also result in LOH (Ryland et al., 2015). CNL-LOH is easier to detect due to the great loss of 

genetic material, which can be picked up by methods such as comparative genomic hybridization 

(arrayCGH), fluorescence in situ hybridization (FISH), and karyotyping. CNN-LOH events can 

only be discovered by methods which can provide information on both copy number and 

heterozygosity across the genome, such as SNP arrays, and whole exome or genome sequencing 

studies (Osborne et al., 2004; Ryland et al., 2015; Tischfield, 1997).   

Tumor suppressor genes can often affect apoptosis (PTEN) and other processes linked to cell 

cycle regulation, such as cell division (TP53), and DNA repair (BRCA1, BRCA2) (Ryland et al., 

2015). The most widely studied tumor suppressor gene encodes tumor protein p53 (TP53). In 

humans TP53 is located on chr17p13.1. p53 inhibits the propagation of genetically mutated cells, 
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with 15 additional isoforms which serve different roles in genetic regulatory pathways. p53 is 

activated by post-translational modifications which enable the protein to function as a trans-

activator of genes downstream in pathways that often get modulated by other cofactor genes to 

regulate apoptosis, inhibit cell cycle, angiogenesis and metastasis. MDM2 degrades p53, thus 

acting as a negative feedback regulator. Missense mutations in the TP53 gene allow escape from 

the degradative effects of MDM2. Germline mutants of this TP53 are associated with familial Li-

Fraumeni cancer syndrome, which results in multiple tumors of different tissues, including breast 

and a 100% penetrance by the age of 70 (Stracquadanio et al., 2016). Similar, somatic mutations in 

this gene can also be found in more than 50% of all cancer genomes (Muller & Vousden, 2013; 

Stracquadanio et al., 2016). This shows the importance of TP53 in cancer, which, when mutated, 

leads to a form of p53 which is unresponsive to a variety of stress signals. Tumor suppressors are 

generally loss-of-function mutations, but mutations occurring in TP53 often result in gain-of-

function alterations of its isoforms leading to a dominant negative effect over the remaining wild 

type p53. This arguably makes TP53 an oncogene as well. In primary breast carcinomas TP53 has 

been shown to be mutated in 18%–35% of cases, with most missense mutations occurring in the 

DNA binding domain, which affects the binding of pro-apoptotic cofactors such as ASPP1 and 

ASPP2 (Lacroix et al., 2006; P. Yang et al., 2013). 

DNA repair plays an essential role in maintaining genome stability and tumor suppression. 

High-risk genes such as PTEN, BRCA1 and BRCA2 have functional roles in DNA damage 

signaling, DNA repair processes and cell cycle checkpoints. As a result, when these genes get 

mutated, the cell's ability to repair double strand breaks (DSB) can be impaired. The repair of these 

breaks can be via the more error prone nonhomologous end-joining (NHEJ) or the two forms of 

homology-directed repair, gene conversion (GC) and single-strand annealing (SSA). While 

homology-directed repair is active during phases of the cell cycle following DNA replication (S,G2 

when sister chromatids are present), NHEJ is the dominant form of DSB repair during earlier phases 

(G0, G1, early S; Gudmundsdottir & Ashworth, 2006; Minami et al., 2014) After DNA damage, 
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BRCA2 mobilizes and regulates the activity of RAD51, which functions as a recombinase during 

the GC repair pathway. When a cell is BRCA2 deficient, GC is downregulated and the more error 

prone (RAD51 independent) SSA pathway is upregulated (Gudmundsdottir & Ashworth, 

2006).BRCA1 also co-localizes with RAD51, but is thought to be a regulator further upstream in 

the DNA repair pathway and consequently, BRCA1 deficiency results in the downregulation of 

both GC and SSA. In addition, BRCA1 also has been suspected to play a role in a more precise 

form of NHEJ (Ku/DNA-PKcs dependent) as opposed to the more error prone micro-homology 

mediated NHEJ. BRCA1 response is modulated according to the stress type by the damage 

response checkpoint genes ATM (e.g. ionizing radiation) and ATR (e.g. UV damage), which also 

regulate p53, which in parallel acts as an activator for apoptosis (Gudmundsdottir & Ashworth, 

2006; Lacroix et al., 2006). As a response to DNA damage, the cell cycle is halted at the G2-M or 

S phase checkpoints depending on which serine of BRCA1 is phosphorylated (Ser1387: G2/M; 

Ser1387:S) by ATM or ATR. Depending on the position of phosphorylation, BRCA1 stimulates 

the transcription of p21 or p27, which are required for the cell-cycle arrest at G2-M or Intra S phase, 

respectively (Gudmundsdottir & Ashworth, 2006). CHK2 also participates in modulating the 

response by BRCA1 by phosphorylating Ser988 after activation by ATM. In addition to DSB 

repair, BRCA1 has also been linked to a sub-pathway of nucleotide-excision repair (NER), a form 

of single strand break repair where BRCA1 in association with MSH2 and MSH6 preferentially 

repair base lesions from the transcribed strand (Gudmundsdottir & Ashworth, 2006; Minami et al., 

2014; P. Yang et al., 2013). Phosphatase and tensin homolog on chromosome 10 tumor (PTEN) 

suppressor gene also regulates G2/M arrest and apoptosis by controlling p53 degradation by MDM2 

through the regulation of PI3K-mediated receptor tyrosine kinase signaling to the survival kinase 

AKT. The aforementioned PI3K/AKT pathway is thought to modulate BRCA1 through 

phosphorylation at S694. BRCA1 may also affect the PI3K/AKT pathway by direct downregulation 

and by acting on upstream kinases of AKT (Gudmundsdottir & Ashworth, 2006). Due to the 

frequent mutations in genes associated with DNA repair pathways in breast cancer, novel 
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therapeutic approaches exploit the cancer cells' increased dependence for survival on alternative 

DNA repair pathways. This provides the opportunity to target these pathways with inhibitors, 

resulting in deleterious genomic instability of the cancer cells while sparing normal cells that have 

the original impaired DNA repair pathway intact, an approach termed “synthetic lethality”. The 

best clinical example of this is the targeted treatment with PARP inhibitors of BRCA deficient cells 

(O’Connor, 2015; Van Gent & Kanaar, 2016). PARP inhibitors block single-strand break repair, 

which is synthetic lethal in cells with defective homologous repair pathways. By combining 

targeted inhibitors of DNA damage response with radiotherapy, the efficacy of treatment could 

potentially improve because of radiosensitization of cells. Similarly, chemotherapy can be 

improved by choosing complementary DNA damage inducing agents with the DNA repair 

mechanism targeted by the inhibitor  (O’Connor, 2015). 

In addition to studying frequently mutated cancer-associated genes, a contributing salient 

feature of cancer solid tumors is their intra-tumor heterogeneity and the clonal evolution of their 

constituents (Fig 1.1C). The prevailing theory of tumor evolution (Nowell, 1976) posits that this is 

the result of individual cells forming diverging distinct clonal subpopulations that have their 

genome and their clonal spread within the tumor shaped by selective pressures, thus further 

affecting the overall mutational composition and tumor heterogeneity (N. E. Navin, 2015; Nowell, 

1976). As a result of these evolutionary pressures, tumors contain mutations that can direct tumor 

evolution (i.e. are actively selected on), namely driver mutations, and non-contributing passenger 

mutations that are created by the same operative mutational and DNA repair processes that create 

driver mutations. Passenger mutations, however, do not offer a selective advantage to the cells they 

are present in and therefore do not influence the clonal spread within the tumor (Nik-Zainal, 

Alexandrov, et al., 2012). It is important to note that selective advantage is defined in the context 

of other cells present within the tumor and its environment. Therefore, similarly to other instances 

of Darwinian evolution, a shift in evolutionary pressures can change tumor composition rapidly. 
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This is particularly emphasized in the case of treatment, which can confer a selective advantage to 

cells harboring variants promoting resistance (McGranahan & Swanton, 2017, Figure 1.1C). 

Intra-tumor heterogeneity can vary largely between tumor types, even when considering 

differences in sampling procedure, tumor stage, and sequencing depth (Alexandrov et al., 2020; 

McGranahan & Swanton, 2017). For example, melanoma and lung cancer exhibit larger coding 

mutation burdens than other tumor types, which is likely due to the involvement of years of 

exposure to exogenous mutagens (McGranahan & Swanton, 2017, e.g. ultraviolet light and tobacco 

carcinogens). These mutational processes leave their patterns in the genome over a patient’s life, 

which can then be assessed via observing recurrent mutational signatures across tumors. Individual 

signatures have to be decoded from the aggregate genomic patterns of multiple cancer patients by 

solving the blind source separation problem of pre-defined biologically relevant mutational classes 

via nonnegative matrix factorization. Studies using large cancer cohorts have identified unique 

signatures related to various etiologies, including smoking and UV exposure (Alexandrov et al., 

2013, 2016, 2020; Nik-Zainal, Alexandrov, et al., 2012).        

The high heterogeneity observed in different types of cancers also provides a unique 

challenge in identifying driver mutations located in coding (M. H. Bailey et al., 2018) and non-

coding regions (P. J. Campbell et al., 2020) of the genome. Consortium projects, such as the Pan-

Cancer Analysis of Whole Genomes, can help identify driver mutation via the aggregation of data 

across large sets of cancer genomes. Recently, an analysis on 2,658 whole-cancer genomes across 

38 tumor types (with matching normal tissues) was published to identify drivers of cancer (P. J. 

Campbell et al., 2020). On average, 4-5 driver mutations were identified per genome in coding and 

non-genomic elements. Interestingly, approximately 5% of cases had no identifiable driver 

mutations, indicating that the full discovery of all driver mutations has not been achieved (P. J. 

Campbell et al., 2020). This study also observed examples of patterns of clustered point mutations 

and SVs related to mutational processes that can generate multiple mutations in a single 

catastrophic event. The three studied processes were chromoplexy (shuffled chain rearrangements 
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resulting from repair of co-occurring double strand breaks observed in 17.8% of all samples), 

kaetegis (locally clustered point mutations with a single DNA strand bias observed in 60.5% of all 

cancers), and chromothripsis (tens to hundreds of DNA breaks located in one or few chromosomes 

that are then randomly reassembled) (Berger et al., 2011; P. J. Campbell et al., 2020; Korbel & 

Campbell, 2013; Nik-Zainal, Alexandrov, et al., 2012).   

Somatic mutations can be used to order events that occur in tumor evolution. This is based 

on the assumption that mutations shared by all cancer cells within the sample (i.e. mutations 

happening before the last selective sweep) happen before subclonal mutations, which occur after 

the emergence of the most recent common ancestor. The resulting differences in the variant allele 

frequencies of point mutations can therefore inform on the underlying clonal architecture of bulk 

tumor samples (Durinck et al., 2011; Nik-Zainal, Van Loo, et al., 2012). Similarly, copy number 

changes can further help with defining molecular clocks in a tumor as mutations occurring in a 

region with a copy number gain will be present at a differing number of chromosomal copies 

depending on their time of occurrence. Mutations preceding the copy number change will be 

duplicated, but mutations after the copy number gain will be only in one chromosome copy. This 

presents as differences in the ratio of heterozygous to homozygous mutations in regions of CN-

LOH, providing a measure of the age of duplication (Durinck et al., 2011; Gerstung et al., 2020; 

Jolly & Van Loo, 2018). Based on this analysis chromothripsis presented as an early event in 

multiple types of cancers (e.g.: liposarcomas, prostate adenocarcinoma and squamous cell lung 

cancer) (P. J. Campbell et al., 2020). Using the same concepts of evolutionary ordering a recent 

study has shown the evolutionary history of 2,778 cancer samples from 2,658 unique donors across 

38 cancer types. Interestingly, this study revealed a few common driver genes (e.g. TP53, KRAS, 

PIK3CA) to be frequently mutated in early tumor evolution, with an increase in the number of 

potential driver genes across tumors in later disease progression (Gerstung et al., 2020). This 

underscores the diversity of regulation of later tumor development.  
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Next to bulk approaches, single-cell methods offer an additional means to ascertain ordering 

of events in a single tumor. As opposed to bulk sequencing, the genetic makeup of a cell is directly 

assayed and therefore its relation to other sampled cells in the tumor can be inferred based on its 

mutational profile. Single-cell genomic analysis can thus elucidate subclonal heterogeneity and 

evolutionary history by detecting SNPs with high depth sequencing or by using low-pass 

sequencing to detect CNVs. High-coverage studies showed clonal architecture in muscle invasive 

bladder cancer (Y. Li et al., 2012), clear cell renal carcinoma (X. Xu et al., 2012), myoproliferative 

neoplasm (Hou et al., 2012), colon cancer (C. Yu et al., 2014), childhood lymphoblastic (Gawad et 

al., 2014) and secondary myeloid (Hughes et al., 2014) acute leukemias by sequencing whole 

exomes or multiple genomic loci. Other studies used read depth analysis on whole genome low-

coverage data for CNV detection in single cells of primary tumors of breast cancers (N. Navin et 

al., 2011; Y. Wang et al., 2014). 

1.1.4 Genomic heterogeneity in breast cancer 

Breast cancer encompasses a diverse group of solid tumors originating from breast tissue 

(most often from the cells lining the lobules or ducts) that are the leading type of cancer in women 

worldwide. In 2019, there were an estimated 268,600 new cases of breast carcinomas in the United 

States with approximately 41,760 resulting deaths that year alone, making this the second leading 

cause of death by cancer (American Cancer Society, 2019a). The leading causes for these deaths 

are distantly located metastases, which are currently still considered difficult to cure (Fouad et al., 

2015). Breast cancer outcomes are influenced by many factors, including race, ethnicity, sex of the 

patient, environmental factors and patient history, the anatomical region, tumor grade, and 

histological assessment of the tumor (Sinn & Kreipe, 2013). In this dissertation I will focus on 

invasive ductal carcinomas presenting in female patients, which is the most common lethal form of 

this disease. This group of carcinomas show high biological and mutational variability, which 

impedes our understanding of treatment, response, and outcome (Koren & Bentires-Alj, 2015; 

Martelotto et al., 2014). This creates the need for the robust characterization of heterogeneity. 
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Breast cancers traditionally have been classified based on marker expression profiling via 

immunohistochemistry (IHC) into at least four molecular subtypes that correlate with the presence 

or absence of progesterone (PR), estrogen (ER), and human epidermal growth factor receptor 2 

(HER2) receptors present on the tumor cell surfaces (Dent et al., 2007; Morris et al., 2007). Based 

on this classification most tumors are hormone receptor positive (ER+, PR+/-, ~65-80% of breast 

cancer) followed by HER2-receptor positive (15-30%) tumors, and Triple Negative (~10-25%) 

tumors negative to all markers (Dent et al., 2007; Lehmann et al., 2011b; Morris et al., 2007). 

Additional markers such as Ki67 (marker indicating the number of actively dividing cells), p53 

(marker for most frequently mutated tumor suppressor) and EGFR (proliferation marker frequently 

mutated in breast cancers) can improve the power of prognosis based on these  IHC categories, and 

are actively being used in clinics (Cheang et al., 2009; Kobayashi et al., 2013). 

Expression profiling of thousands of genes via DNA microarray technologies and next 

generation sequencing has led to the identification of recurrent molecular categories of breast 

cancer (Sørlie et al., 2003): Luminal A, Luminal B, HER2-enriched (HER2E), Normal-like, Basal-

like, and Claudin-low (Prat et al., 2010; Yersal & Barutca, 2014). While these molecular categories 

and IHC-defined subtypes can largely overlap, they are not always mutually inclusive. One 

example being that 80% of basal-like tumors are triple negative, whereas 70% of triple negative 

tumors are basal-like (Goldhirsch et al., 2013). Luminal A and Luminal B subtypes constitute 

approximately 74% and 10% of all breast cancers. Both are ER+ and/or PR+, which makes them 

viable targets for hormone treatment. However, Luminal A cancers (Her2- and have low levels of 

Ki67 protein) have better prognoses than Luminal B subtypes (Her2-/ Her2+ high levels of Ki67 

proteins) due to lower proliferation rates (Prat et al., 2015). The rarest subtypes (~4%) are Her2-

enriched cancers, which lack hormone receptors but can be treated by novel Her2 targeting 

therapies. Triple negative breast cancers (TNBC; ~14%) have the worst prognoses due to the 

absence of targetable receptors (American Cancer Society, 2019b, 2019a; Koren & Bentires-Alj, 

2015). In addition, while TNBC tumors respond well to initial chemotherapy,  the inherent high 
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intra-tumor heterogeneity in this molecular increases the chance for an early relapse (Carey, 2011; 

Dent et al., 2007; C. Kim et al., 2018b; Liedtke et al., 2008). As a result, recurrent genomic 

mutations have been closely studied in TNBC tumors to develop targeted therapies. SNPs and 

CNVs were found in tumor suppressor genes TP53, RB1, PTEN, BRCA1, INPP4B and oncogenes 

at PI3K, AKT3, EGFR, all of which modulate proliferation and survival pathways (Gonzalez-

Angulo et al., 2011; Herschkowitz et al., 2012; Park et al., 2014; Shah et al., 2012). Specifically, 

studies showed the aberrant activation of PI3K/AKT/mTOR and MAPK/MEK/ERK pathways, 

normally tasked with regulating cell cycle entry and proliferation necessary maintaining normal 

human physiology (Gonzalez-Angulo et al., 2011; Saini et al., 2013). Existing MEK inhibitors, 

including the MEK1 and MEK2 inhibitor, Trametinib (Zeiser, 2014), have shown antiproliferative 

effect in vitro and in vivo (Heiser et al., 2012; Hoeflich et al., 2009; Lehmann et al., 2011a; Pratilas 

et al., 2009; Saini et al., 2013), but despite having evidence for TNBC cancer cells strongly relying 

on these proliferation pathways, patient drug trials often showed inherent or acquired resistance 

after initial treatment success (Adjei et al., 2008; Rinehart et al., 2004; Zawistowski et al., 2017). 

While combination treatments with other drugs show promise (Ramaswamy et al., 2016), the 

inherent intra-tumor heterogeneity of TNBC tumors is problematic due to the presence or evolution 

of potentially resistant subclones in response to treatment. This mechanism of Darwinian selection 

(Fig 1.1C) on subclones upon treatment have been recently shown using regional bulk sequencing 

(Yates et al., 2015) and single-cell sequencing (C. Kim et al., 2018a). These studies show that drug 

resistant clonal populations follow branched evolution where resistant subclones become fixed in 

the population (i.e. increase in frequency) during a selective sweep and less resistant ones are 

extinguished during neoadjuvant chemotherapy. 

1.1.5 Single-cell methods for genomic variant detection 

Characterization of the frequencies of cells with somatic mutations poses technological 

challenges for the detection of variants present in a smaller fraction of investigated cell populations, 
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such as complex tissues and tumors. This is due to bulk sequencing methods having limited 

sensitivity in detecting somatic variation in less than 5% of the cell population (Cibulskis et al., 

2013), thus filtering out potentially important variants that have arisen later developmental or tumor 

evolution (Gawad et al., 2016; N. E. Navin, 2015). Modifications to bulk sequencing methods 

attempt to solve this by deconvolving the combination of signal based on relative clonal 

contributions of regional or temporal samples of a tissue or tumor (Fig 1.1D). However, for these 

methods to work, clonal origin of cells has to be established; therefore rare sporadic mutations, 

such as the ones in the brain, cannot be identified (Dou et al., 2018; X. Li et al., 2018; Williams et 

al., 2018).  

The true breakthrough came with the advancement of single-cell genome sequencing 

methods, which permit cells to be sequenced individually. This has allowed for the accurate 

profiling of SNPs (Lodato et al., 2015, 2018) and CNVs (Cai et al., 2014; McConnell et al., 2013) 

in the brain, and across multiple types of cancer (Casasent et al., 2018; Gao et al., 2016; C. Kim et 

al., 2018b; Y. Li et al., 2012; N. Navin et al., 2011; Ni et al., 2013; Y. Wang et al., 2014; C. Yu et 

al., 2014). Inherent biases and challenges of applied methods still remain however. Currently, there 

is no “golden standard” for single-cell genome sequencing, with multiple existing technologies and 

computational methods providing different advantages depending on the studied biological 

question. One inherent challenge lies in the low amount of DNA that can be isolated from individual 

cells, which, depending on cell type and ploidy, can range from 6 pg in diploid cells to 12 pg of 

DNA in cancerous aneuploid cells (De Bourcy et al., 2014; N. E. Navin, 2015). To address this 

problem, different whole genome amplification (WGA) strategies have been developed to address 

the need for larger quantity of DNA from the entire genome for sequencing, while avoiding 

introducing amplification-based biases. The two most widely used WGA methods are degenerate 

oligonucleotide-primed PCR (DOP-PCR; Telenius et al., 1992) and multiple displacement 

amplification (MDA; Dean et al., 2001). DOP-PCR uses degenerate oligonucleotide priming across 

the genome followed by PCR amplification. While this method has high uniformity of 
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amplification, it preferentially amplifies selected sites due to variable PCR efficiency. Even using 

tetraploid cancerous cells led to only covering approximately 10% of the human genome (N. Navin 

et al., 2011). The low noise from the uniform amplification of this method makes DOP-PCR a good 

candidate for detecting CNVs, but falls short in SNV related studies due to the higher error rate of 

thermolabile polymerases (Deleye et al., 2017; Gawad et al., 2016). Multiple displacement 

amplification (MDA) methods use the high-fidelity phi29 polymerase, a thermostable enzyme, 

which has low error rates, high processivity, and genomic coverage (~70% for human genome for 

diploid and ~96% for tetraploid cells), but introduces amplification bias during the initial strand 

displacement and exponential amplification of the enzyme (Fu et al., 2019; Gawad et al., 2016; 

Leung et al., 2015). Multiple approaches aim to improve the amplification bias of this method either 

by creating water-oil emulsions of input genomic DNA (Fu et al., 2019) or by modifying the pre-

amplification steps to be quasi-linear (Zong et al., 2012) or linear (C. Chen et al., 2017). Hybrid 

methods such as multiple annealing and looping-based amplification (MALBAC) aim to combine 

the advantages of PCR and MDA-based methods. MALBAC starts with a pre-amplification step 

where random priming of thermostable enzymes introduces common sequences and temperature 

cycling creates loops of the isothermal amplicons. These loops decrease noise by stopping runaway 

exponential amplification before the following PCR amplification steps. This quasi-linear 

amplification method results in an intermediate coverage of the human genome with low noise and 

intermediate amounts of introduced errors relative to the two previous methods (Gawad et al., 2016; 

Zong et al., 2012). Another method aims to decrease amplification bias via excluding random 

priming and exponential pre-amplification steps. Linear Amplification via Transposon Insertion 

(LIANTI) achieves this by first using a hyperactive form of Tn5 transposase, now commonly used 

for library preparation methods, to fragment accessible double stranded DNA and ligate loaded 

synthetic oligonucleotides on both ends (Adey et al., 2010). A T7 promoter is inserted via the 

transposition event followed by in vitro transcription and reverse-transcription of the second strand 

to form amplicons. This method achieves low error and high genome coverage (97% of genome 
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covered, Chen et al., 2017). Decreasing signal to noise ratio of reads and allelic drop out has 

allowed for better CNV and SNP calling in individual cells. 

 There are a wide range of computational methods for analyzing single-cell somatic 

variation. Initial single-cell studies applied software developed for bulk data, and more recently, 

single-cell specific approaches have been established. The primary computational challenge for 

analysis is the low coverage of individual cells, the inherent allelic dropout, and the amplification 

bias of genome amplification methods (Fan et al., 2019). As this dissertation puts emphasis on 

profiling high number of cells at low coverage, I will focus on CNV calling methods. Methods used 

in bulk data, such as break point calling based on mismatches of aligned read pairs are not feasible 

in single-cell data due to low coverage (Fan et al., 2019; Knouse et al., 2016; X. Wang et al., 2018). 

Therefore, most CNV profiling algorithms rely on read aggregation within large, often megabase 

pair scale binned windows within individual cells, which then can be compared to identify gain or 

loss of chromosomal material. In order to have representative genomic windows, copy number 

calling algorithms correct for the varying mappability and GC content of the genome by 

normalizing bin values and using varying bin sizes (Fan et al., 2019; X. Wang et al., 2018). Quality 

of individual cells can then be assessed to remove outliers based on measures such as the mean 

absolute deviation of pairwise differences (MAPD) of adjacent windows (Garvin et al., 2015). 

Similarly, regions with highly repetitive elements such as centromeres and telomeres are commonly 

removed from the data. This is then followed by the segmentation of genomic windows into 

contiguous regions, defining breakpoints, and estimating absolute copy numbers (Fan et al., 2019). 

An exception to existing methods is SCNV, which uses a bin free approach to infer copy number 

changes (X. Wang et al., 2018). While available methods differ in window calling, normalization, 

and filtering, they use segmentation strategies which follow one of three common strategies. 

Contiguous copy number regions are identified either by using a Hidden Markov Model (HMM) 

for the segmentation and imputation of copy number (Shah et al., 2006), an objective function to 

approximate the underlying constant function of the data and the introduced variation by copy 
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number (Nilsen et al., 2012), or a sliding window approach, which approximates changes via 

statistical testing (Ha et al., 2012; Olshen et al., 2004a). 

From the plethora of available copy number calling methods, the four most widely used are 

Ginkgo (Garvin et al., 2015), HMMcopy (Laks et al., 2018; Shah et al., 2006), AneuFinder (Bakker 

et al., 2016), and CopyNumber (Nilsen et al., 2012). CopyNumber pools cells and segments them 

together via an objective function and Ginkgo uses a modified version of Circular binary 

segmentation (CBS) with a sliding window for segmentation (Olshen et al., 2004a). Both of these 

require a following step to estimate the absolute copy number (Fan et al., 2019; X. Wang et al., 

2018). Hidden Markov Model based approaches (AneuFinder, HMMcopy) do not require this extra 

step as segmentation and imputation of copy number is done at the same time. When Ginkgo, 

HMMcopy and CopyNumber were benchmarked on simulated and real datasets, HMMcopy 

outperformed other methods in terms of speed, and Ginkgo outperformed other method in terms of 

accuracy, but none of the methods exceeded 80% accuracy (Fan et al., 2019). A similar comparison 

between CBS and HMM methods showed high accuracy for >5 Mbp copy number changes (CBS 

was more sensitive to deletions an HMM to amplifications) in simulated data, but decreased 

substantially when CNVs were rare and present in small cell populations (Knouse et al., 2016). 

These results indicate that the inherent noise of sparse single-cell DNA-seq data is still challenging 

for CNV detection and that progress has to be made in improving the quality and quantity of cells 

profiled. 

Throughput presents an additional technical challenge for single-cell genome sequencing. 

Depending on the queried biological problem, two types of approaches have been used in single-

cell studies. Previous work focusing on a specific cell population or a rare cell types, such as 

neurons (Cai et al., 2014; McConnell et al., 2013) or circulating tumor cells (Ni et al., 2013), have 

selected or enriched for cells expressing distinguishing marker genes. These cells then were deeply 

profiled for SNPs and smaller CNVs in downstream analyses. Classically, these methods have used 

96 well plates with individual cells genome amplified in wells (Gawad et al., 2016; N. E. Navin, 
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2015).  An alternative approach to this is to increase the throughput of low coverage cells with the 

hope that a representative portion of the studied tissue is sampled. The number of cells needed to 

be a representative sample is dependent on many factors relating to the heterogeneity of the studied 

tissue and the false negative and false positive rates resulting from genome amplification and 

sequencing. For these studies, the power lies in finding the inherent relational structure of low 

coverage cells based on shared large scale CNVs. Aggregate groups of similar cells then can be 

used to get a higher resolution view of substructures, and potentially order events based on 

development or evolution. This approach has been particularly powerful in cancer research, as the 

selective pressures and evolutionary history of clonal population were revealed in breast cancer 

(Casasent et al., 2018; Gao et al., 2016; C. Kim et al., 2018b; N. Navin et al., 2011; Y. Wang et al., 

2014), bladder cancer (Y. Li et al., 2012), colon cancer (C. Yu et al., 2014), and in single circulating 

tumor cells of lung cancer patients (Ni et al., 2013).  

Throughput of single-cell methods for profiling transcriptomes has increased significantly 

in the recent years via the use of physical compartmentalization of cells using microfluidics and 

aqueous droplet technologies. However, this has translated only recently into single-cell genomics 

due to the difficulty of preforming genome amplification within physical compartments (e.g. 

microfluidics or microwell equipment, Fig 1.1D; K. Zhang, 2017). Virtual compartmentalization 

of single cells via a series of tagging, mixing and sampling of mixed cells has emerged as an 

alternative approach. Combinatorial indexing relies on first tagging and indexing cells with 

uniquely indexed Tn5 transposase, followed by the mixing all cells, down-sampling cells, and 

tagging them a second time via PCR. The combination of barcodes introduced in the two rounds of 

indexing allow for individual cells to be computationally distinguished. This removes the need for 

need for microfluidics or microwell equipment as both rounds of indexing happen in 96 well plates. 

In the first round, each well has a separate species of Tn5 inserting well-specific indexes into open 

regions of chromatin. Similarly, PCR reactions are well-specific by adding indexed adapters during 

the second round of indexing. It is necessary that tagmented nuclei remain intact after the first 
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round of indexing and redistribution of cells into the PCR wells. Scalability of this strategy only 

relies on the number of available indexes introduced in the two rounds, making this approach very 

high throughput (D. a Cusanovich et al., 2015; K. Zhang, 2017). This method was first implemented 

for chromatin accessibility profiling by modifying the assay for transposase-accessible chromatin 

(ATAC-seq) so that the introduced transposases introduces barcodes into open regions of chromatin 

in the first round of indexing (Buenrostro et al., 2013a; D. A. Cusanovich et al., 2015). In section 

1.2.2, I will focus on studies conducted on understanding chromatin accessibility across tissues and 

diseased states by using this combinatorial indexing method.  

Combinatorial-indexing strategies have also been extended to profile other properties 

including transcription, chromatin folding, and DNA methylation (Cao et al., 2017; Mulqueen et 

al., 2018; Ramani et al., 2017; Yin et al., 2018). We set out to develop a combinatorial indexing 

method to profile the whole genome, by making it accessible to Tn5 transposition, while retaining 

intact nuclear scaffolds for the redistribution into the second round of indexing. We aimed to profile 

copy number variation across a significant number of cells required to detect low frequency 

aneuploidy in the brain or to accurately track clonal evolution in cancer (Vitak et al., 2017a). 

1.2.1 Cell types and cell states in healthy complex tissues 

The robustness of a tissue’s ability to respond to environmental changes relies on its cellular 

heterogeneity. Cells of a tissue formulate characteristic responses to external and internal impulses 

in an organized manner (Altschuler & Wu, 2010). This is aided by the differentiation of cells into 

cell types and lineages. Separation between cell types is attenuated into distributions as cells fall 

into cell states, which  are much more plastic, as cells can transition between states and are therefore 

defined by the conditions giving rise to them and the time scale they are happening on (Janes, 

2016). This combination of cell type heterogeneity and cell state regulatory heterogeneity has 

classically been portrayed as a landscape of  cellular “potential energy” by Waddington (Fig 1.2), 

where cell types lie in valleys separated by energetic barriers that represent lineage commitment, 

and cell states are represented by the width of these valleys which can be explored via state 
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switching (Janes, 2016; Waddington, 1957). The process of commitment to cell type and state is 

much more dynamic than what is possible on the level of genetics as somatic mutations accumulate 

randomly, and selection on mutations happens over long timescales. In addition, the ability to 

reverse cell lineage commitment artificially into stem cells proves the dynamic nature of cell 

lineage and state maintenance (Ladewig et al., 2013; Takahashi & Yamanaka, 2016). Indeed, recent 

advancements are revealing cell fates to be much more plastic than previously thought and bring 

into question the hierarchical structure of Waddington’s landscape, indicating that the landscape 

can be turned on its developmental axis. This allows for single cells to de- and re-differentiate into 

alternate lineages, as necessary genes can be silenced or reactivated via proper stimuli (Ladewig et 

al., 2013). 

Plastic changes in cell fates and states can be conveyed via the dynamic control of chromatin 

architecture in a cell. Chromatin is organized around nucleosome core particles, which consist of 

histone octamers (two H2A, H2B, H3 and H4 molecules) and ~146 base pairs of DNA wrapped 

around them (Venkatesh & Workman, 2015). These organizational blocks of nucleosome core 

particles are connected together by linker DNA forming a “beads on a string” like primary 

chromatin structure (Fyodorov et al., 2018). The higher-order organization of this topology is 

controlled by H1 linker histone proteins. These modulate nucleosome stability by binding to DNA 

entering and exiting the nucleosome core complex (Fyodorov et al., 2018; Hergeth & Schneider, 

2015). This imparts regulatory function by “condensing” (hetero-) and “opening” (eu-) chromatin 

in a region therebyz blocking or allowing access of transcriptional machinery to the genes found 

there. This process is controlled via the localized epigenetic modification of DNA and histones by 

modifying chemical and structural properties of a region. In turn, these covalent epigenetic marks 

are recognized by chromatin reorganizers, which can then mobilize histones and change chromatin 

compaction (Valencia & Kadoch, 2019).  

The most prevalent covalent modification of DNA in vertebrates is the methylation of 

cytosines (5-methylcytosine, 5mC), which are deposited by methyltransferases (DNMTs) at CpG 
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dinucleotides (Lyko, 2018; Valencia & Kadoch, 2019). DNMTs vary in their regulatory roles in a 

cell. Novel methylation is deposited by DNMT3A/B, and DNMT1 is thought to serve the role of 

maintenance by methylating hemimethylated sites (M. Okano et al., 1998; Masaki Okano et al., 

1999; Sen et al., 2010). Most CpG sites are methylated and overlap with regions of high nucleosome 

occupancy and transcriptionally silenced genes (Collings & Anderson, 2017; Jones, 2012). The 

remaining non-methylated CpG sites can frequently be found clustered closely in CpG islands near 

active mammalian promoters (Kulis & Esteller, 2010). While it is not fully understood, CpG 

methylation is thought to suppress transcription via several mechanisms. Methyl groups can block 

DNA recognition at important sites (e.g. GC boxes) required by transcription factors (TFs, e.g. SP1, 

SP3) for transcriptional activation. Alternatively, methylated CpGs can also be preferentially bound 

by factors that further recruit repressive histone modifiers (such as histone deacetylases) (Handy et 

al., 2011). The methylation process of CpG sites is directly opposed by the iterative oxidization of 

5mC into relatively stable (5-hydroxymethylcytosine) and transient (5-formyl-methylcytosine, 5-

carboxyl-methylcytosine) forms of epigenetic marks by ten-eleven translocation (TET) enzymes 

(Rasmussen & Helin, 2016). Overall, TET enzymes preferentially bind CpG dinucleotides through 

their catalytic domains (Hu et al., 2013). TET1 and TET3 have an extra CXXC domain, which 

increases their affinity for 5mC-, 5hmC- and 5caC-modified CpGs (Jin et al., 2016; Y. Xu et al., 

2011). Studies have established that distinct methylation patterns of CpG sites are required for cell 

differentiation during development and in somatic cells (Schübeler, 2015; Valencia & Kadoch, 

2019).   

Post translational histone modifications also play an important role in cell fate and state 

specification within a tissue. There are more than 150 histone-modifying proteins, which deposit 

>200 distinct types of histone tail and globular domain modifications to regulate the positioning 

and function of other chromatin regulatory proteins and protein complexes (Audia & Campbell, 

2016; Khare et al., 2012; Tessarz & Kouzarides, 2014). These proteins are generally classified as 

writers and are directly opposed by proteins acting as erasers of histone modifications.  The writing 
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and erasure of histone marks regulate transcription via the combinatorial positioning of activating 

or repressive marks at promoters and regulatory elements (Choukrallah & Matthias, 2014). 

Acetylation of core histone N-terminal extensions has been extensively studied in the context 

transcriptional activation. Acetyl groups are added to lysines by histone acetyltransferases (HATs) 

and removed by histone deacetylases (HDACs) (Gallinari et al., 2007). Acetylation negates the 

positive charge of lysines of the histone tail N-terminal extensions and as a result decreases the 

affinity of the histone tail for the negatively charged DNA backbone. This leads to a more relaxed 

chromatin where activating acetylation marks, such as H3K27ac, can further be recognized by 

chromatin remodelers recruited by the transcriptional machinery to reposition, eject, slide or alter 

the composition of these “loosened” nucleosomes (Gallinari et al., 2007; Martin & Zhang, 2005; 

X. J. Yang, 2004). This process is directly opposed by HDACs that strengthen histone tail-DNA 

interactions via the removal of an acetyl group. Compaction of chromatin can be further increased 

via the methylation of certain lysine residues (such as the methylation of lysine 9 and the 

methylation of lysine 27 of histone H3) by methyl transferases (Gallinari et al., 2007; Martin & 

Zhang, 2005). Proteins with chromodomains, (e.g. HP1) can recognize marks such as H3K9trime3 

and promote DNA methylation and the assembly of heterochromatin (Lachner et al., 2001; Martin 

& Zhang, 2005). Methylation can also serve as activating marks (e.g. H3K4me3) and are removed 

demethylases (Choukrallah & Matthias, 2014). The “histone code” is still not fully understood in 

its complexity as it varies based on the epigenetic mark, the histone and the modified residue. 

Additional epigenetic marks include phosphate groups (kinase and phosphatase proteins), arginine 

methylation, ubiquitination, citrullination, SUMOylation, ADP ribosylation, deamination and 

crotonylation (Valencia & Kadoch, 2019).  

Finally, chromatin topology is modified by large chromatin remodeling complexes 

consisting (CRCs) of  >100 protein subunits. CRCs recognize epigenetic marks and employ ATP 

hydrolysis to slide or eject nucleosomes thereby increasing DNA accessibility to DNA binding 

proteins and the transcriptional machinery (Clapier & Cairns, 2009). CRCs are grouped into four 
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classes: SWI/SNF (mSWI/SNF (BAF)), imitation SWI, INO80, and nucleosome remodeling and 

deacetylation chromodomain helicase DNA-binding complexes (Clapier & Cairns, 2009; Valencia 

& Kadoch, 2019). Further subclassifications of these groups is dependent on the combination of 

accessory subunits within a CRC (often with DNA and histone binding roles) to the SWI/SNF2 

like core ATPase/helicase unit shared across all classes (Poynter & Kadoch, 2016).  

Lineage and cell state specification requires the establishment of characteristic 

transcriptional programs. These are regulated by transcription factors that bind DNA regulatory 

elements (REs) of specific genes. Cell types and states can have unique sets of expressed TFs 

associated with them, however, the same TF can have a different binding profile depending on cell 

type as binding motifs are affected by chromatin structure and epigenetic modifications. In addition, 

TFs interact with DNA methylation, nucleosome remodeling, and histone post transcriptional 

modifications thereby having the ability to reorganize focal chromatin structure. (Ahsendorf et al., 

2017; Choukrallah & Matthias, 2014).This interplay between TFs and chromatin stucture is often 

portrayed as the scaffolding mesh of cellular epigenetic and transcriptional regulation under 

Waddington’s landscape (Fig 1.2,  Ladewig et al., 2013; Takahashi & Yamanaka, 2016) 

Cells from the same genetic clonal lineage can occupy different cell types and states (Mathis 

et al., 2017), which can be defined by patterns in the expression of a variety of markers, identified 

via immunohistochemistry (IHC) and flow and mass cytometry (Giesen et al., 2014; Potts et al., 

2012; Reuben et al., 2017). This, however, requires prior knowledge for accurate population 

stratification. Genome-wide analyses such as RNA sequencing, bisulfite sequencing, or the assay-

for-transposase-accessible chromatin sequencing, can reveal cell states via shared patterns 

expression, methylation or chromatin accessibility between sets of cells. However, all assays have 

to be performed on the single-cell level, due to the heterogeneity of complex tissues (Goldman et 

al., 2019). 
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Figure 1.2 Waddington landscape of cell fate. Cells are portrayed as balls rolling down the 
epigenetic landscape of cellular potential energy. Cell types are separated by barriers which a cell 

cannot normally cross and cell states are the possible permutations, which cells can occupy upon 

external stimuli. Commitment into cell lineages can be decided via changes in chromatin 

architecture as a response to epigenetic modifications of DNA and nearby histones. Thereby, 

important lineage transcription factors can be recruited to promoters and enhancers of lineage 
commitment genes. Chromatin architecture can be profiled via ATAC-seq to understand the 

underlying regulatory architecture. 

1.2.2 Single-cell methods for cell type and cell state detection in healthy complex 

tissues 

Recent improvements in single-cell technologies have led to large-scale single-cell profiling 

of cell type and cell state heterogeneity across a wide range of tissues. Much of the focus has been 

on the mammalian brain (primarily using mouse as a model) due to the large functional variability 

of this organ defined by a large number of transcriptional and epigenetic cell types present across 

all regions. The development of high throughput microfluidics, microwell and droplet based 

approaches (Fig 1.3A)  for single-cell RNA sequencing (scRNA-seq, Han et al., 2018; Jaitin et al., 

2014; Klein et al., 2015; Macosko et al., 2015; Rosenberg et al., 2018; Streets et al., 2014) have led 

the profiling of expression programs of cell types in the mouse cerebral cortex (Tasic et al., 2016; 
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A. Zeisel et al., 2015; Amit Zeisel et al., 2018), retina (Shekhar et al., 2016), hypothalamic arcuate 

nucleus (Campbell et al., 2017), entopeduncular nucleus (Wallace et al., 2017), amygdala (Y. E. 

Wu et al., 2017), and more recently across nine major regions of the murine brain (Saunders et al., 

2018) and 19 regions across the mouse nervous system (Amit Zeisel et al., 2018). While single-cell 

RNA methods show the dominant expression programs occurring in different cell types, they do 

not inform on the chromatin accessibly changes and transcription factors playing roles in cell-type 

commitment. The assay for transposase-accessible chromatin sequencing can gauge chromatin 

architecture through probing the genome via hyperactive Tn5 transposases (Buenrostro et al., 

2013a). Though single-cell ATAC sequencing (scATAC-seq) technologies have been developed 

for microfluidics, plate and droplet-based platforms (Buenrostro et al., 2013b, 2015; X. Chen et al., 

2018; Mezger et al., 2018; Satpathy et al., 2019), the inherent use of the hyper active Tn5 

transposase made this method easily adaptable for combinatorial indexing (Fig 1.3A), making it 

one of the most popular methods for single-cell ATAC-seq (D. A. Cusanovich et al., 2015). Since 

its inception, this method has been widely used across multiple species and tissues ranging from 

fly embryonic development (D. A. Cusanovich, Reddington, et al., 2018), to mouse (Preissl et al., 

2018) to human cortex (Lake et al., 2017), to myogenesis (Pliner et al., 2018a), to hematopoietic 

differentiation (Buenrostro et al., 2018), to an atlas of 13 mouse tissues (D. A. Cusanovich, Hill, et 

al., 2018), to most recently mammary gland development (see section (Chung et al., 2019). While 

cell type specific chromatin architecture changes have been identified across multiple regions of 

the brain, the hippocampus, harboring a wide range of cells involved with memory formation, has 

not been profiled. We set out to create a comprehensive cell atlas for the murine hippocampus using 

sci-ATAC-seq (Sinnamon et al., 2019c).   

1.2.3 Single state plasticity in breast cancer 

Cell state heterogeneity adds an extra layer of complexity on top of genomic intra-tumor 

heterogeneity. Cells within tumors occupy cellular states with aberrant epigenetic architecture 

supporting transcriptomic changes and cellular signaling reminiscent of native states within their 
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organs and tissues of origin. This is often a result of mutations in genes that regulate focal and 

global chromatin architecture. Changes in DNA and histone modifying enzyme activity and CRC 

functionality have been observed across a wide range of cancers (Valencia & Kadoch, 2019). In 

acute myeloid leukemia (AML) global levels of hypomethylation have been observed with focal 

hypermethylation patterns of promoters and enhancers of important tumor suppressor genes, with 

~7–10% of all patients harboring deletion or truncating mutations in TET genes and ~25% of AML 

cases showing DNMT3A mutations (Cancer & Atlas, 2013; Kulis & Esteller, 2010; Rasmussen & 

Helin, 2016; Liubin Yang et al., 2015). On the level of histone modifications, both hematological 

malignancies, breast and colorectal cancers show upregulation of several classes (I, II and IV) of 

HDACs (Audia & Campbell, 2016; Valencia & Kadoch, 2019; West & Johnstone, 2014). Similarly, 

misregulation of components of the Policomb gene complex tasked with transcriptional silencing 

via histone methylation (e.g. H3K27me3) and ubiquitination has also been observed in leukemia 

and breast cancer (Bachmann et al., 2006; Chittock et al., 2017; Score et al., 2012). CRCs accrue 

mutations as well, as more than 20% of all cancers show mutations in mSWI/SNF-encoding 

genes(Valencia & Kadoch, 2019). This shows the importance of understanding the role of 

epigenetic changes in tumorigenesis, cancer progression and treatment resistance. 

In breast cancer, cells are often described along three axes of differentiation. Cells can range 

from stem-like to differentiated, basal-like to luminal, and epithelial to mesenchymal (Roy Z. 

Granit et al., 2014). These also relate to cell states that have classically been described in breast 

cancer based on their relatedness to undifferentiated and differentiated cell types present in the 

adult mammary gland. Mammary stem cells (MASC) are a bipotent cell type present throughout 

life, which during human mammary gland development give rise to two cell lineages: luminal 

progenitors and basal (myoepithelial) progenitors, which in turn can develop into differentiated 

basal and luminal cell types (Chung et al., 2019; Visvader & Stingl, 2014). A recent study showed 

this process to be strongly epigenetically regulated as single-cell ATAC sequencing on embryonic 

age 18 mouse fetal MASC cells exhibited poised basal like and luminal like populations, while 
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scRNA-seq could not distinguish between these two populations (Chung et al., 2019). 

Myoepithelial cells can further transition into mesenchymal cell states during later stages of 

development, such as puberty and pregnancy, where rapid changes occur to the mammary gland. 

Similarly, epithelial-to-mesenchymal transition (EMT) can occur in wound healing. Next to 

differentiation EMT is also a strongly epigenetically regulated process (Y. Wu et al., 2016). Known 

transcription factors can signal a push of cell populations to differentiate along a luminal lineage 

(ESR1, FOXA1, GATA3) or basal lineage (TP63, SLUG, EGR1), and can promote EMT (ZEB1, 

SNAIL, and TWIST) or mark the reverse process of mesenchymal-to-epithelial transition (Banyard 

& Bielenberg, 2015; Gascard et al., 2015b; Roy Z. Granit et al., 2014; Hardy et al., 2010; Lamouille 

et al., 2014; Micalizzi et al., 2010; Risom et al., 2018; Y. Wu et al., 2016). 

Recently, nanogrid single nucleus RNA-seq of triple negative breast cancers showed tumor 

cells of the same tumors to occupy heterogenous combinations of primarily basal-like cells, 

alongside luminal-A, luminal-B, normal-like and HER2+ cells, indicating that tumor cells of 

different origin can plasticly shift between cell states (Gao et al., 2017). Similarly, patient-derived 

cell lines also show this diversity of basal, luminal, and stem-like cells, which, even after isolation 

of an individual phenotype, reconstitute the fractions of states required for normal growth (Gupta 

et al., 2011b). This indicates a plasticity in cell states that tumor cells can use to restore 

heterogeneity. This becomes very important for a tumor’s survival as on top of Darwinian clonal 

selection tumors can exhibit transcriptional and epigenetic reprogramming within clones to 

repurpose existing regulatory developmental pathways to shift cell state equilibrium as a response 

to extrinsic stimuli (C. Kim et al., 2018b). This strategy is widely employed in breast cancers where, 

upon treatment, cells can shift into drug resistant persistor (DRP) populations for the duration of 

the treatment independent of their genomic background. This requires fast epigenetic re-modeling, 

which when closely studied resembles that of processes observed during differentiation and EMT 

(Hinohara & Polyak, 2019b). This has elicited combination treatments in breast cancers, where the 

epigenetic modeling is blocked next to targeted therapies. In a recent study of luminal ER+ breast 
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cancer, the authors tested whether KDM5B, a regulator of transcriptomic heterogeneity through 

H3K4me3 demethylation, affects resistance to the endocrine drug fulvestrant. Inhibition of KDM5 

showed decreased transcriptional heterogeneity and increased sensitivity to the drug (Hinohara et 

al., 2018). Similarly, Risom et al., 2018 showed DTPs of basal like TNBC cells to respond 

favorably to the MEK inhibitor Trametinib and PI3K/mTOR BEZ235 inhibitor treatment in 

combination with JQ1 and inhibitor of the BET bromodomain chromatin remodeler proteins. 

Interestingly, this study also showed a shared response across genetically distinct basal cell lines 

towards a basoluminal cell state upon Trametinib treatment, potentially indicating a targetable 

chromatin state. While these studies have evaluated intra tumor heterogeneity on the level of 

transcriptomic and epigenetic heterogeneity separately, no comprehensive integrated analysis of 

modalities has been done on breast cancer DTP formation to date. This has primarily been due a 

lack of reliable cross modality single-cell integration methods. 

1.2.4 Computational methods for dissecting heterogeneity in cell types and cell states 

 Single-cell RNA and ATAC sequencing provide valuable snapshots of the regulatory 

heterogeneity across studied tissues. They can inform us of cell types and cell states present in our 

data and can help us infer the ordering of regulatory changes in the case of development.  

Due to the early development of reliable high-throughput scRNA-seq methods, this 

technology has been applied to a wide range of studies across a multitude of tissues. Tools 

development of computational methods have followed along (Fig 1.3B). Conventional pipelines 

follow the same overall order of analyses. Pre-processing and quality control steps first assign 

aligned duplicate removed high quality sequencing reads to cells based on a unique molecular 

identifier (UMIs) and create a high dimensional single-cell expression matrix. Low expression 

transcripts are generally removed at this point along with cells with a low number of transcripts. 

Then, the cell expression matrix is normalized so that technical differences in cell read depth and 

gene expression are corrected for (Luecken & Theis, 2019). Methods for this can be as simple as 

linear regression on counts per million in bins of cell read depth to non-linear methods correcting 
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for multiple sources of variation (Cole et al., 2019; Luecken & Theis, 2019). Corrected pseudo-

count matrixes are then log-transformed to mitigate the mean-variance relationship of the data and 

reduce skewness. Additional sources of variation, such as mitochondrial reads bias, read dropout 

rate, batch and cell cycle effects can be corrected for afterwards. These log-transformed values can 

then be more easily interpreted for fold changes in downstream analyses (Luecken & Theis, 2019). 

At this point the reduction of dimensionality of the data begins first by selecting for highly variable 

genes across cells (~1,000-5,000 genes), followed by dimensionality reduction methods that project 

the data into as low a number of interpretable dimensions as possible while retaining its inherent 

structure (Heimberg et al., 2016; Luecken & Theis, 2019). These methods can be linear or non-

linear, with Principal Component Analysis (PCA) being the most popular linear method (Pearson, 

1901).  At this point, data is projected into two or three dimensions for visualization purposes. 

While for the initial dimensionality reduction linear methods are preferred for easier 

interpretability, non-linear methods are used for visualization purposes to show greater separation 

between cell types (Luecken & Theis, 2019). Uniform Manifold Approximation and Projection 

method (UMAP), and t‐distributed stochastic neighbor embedding (t‐SNE) are the two most widely 

used methods (Becht et al., 2018a; Wattenberg et al., 2017). Downstream analyses depend on the 

biological question of the study, but often continue with single-cell clustering, cluster annotation, 

anddifferential expression, gene ontology, and gene regulatory network analysis (Luecken & Theis, 

2019). For streamlined analysis, comprehensive platforms now exist which contain a collection of 

independently developed tools for all stages of analysis. Of the many existing platforms, the three 

most popular are Seurat and Scater developed for R and SCANPY for the python environment 

(Butler et al., 2018; McCarthy et al., 2017; Wolf et al., 2018). 
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Figure 1.3 Methods for single-cell expression and chromatin accessibility. (A) Examples of 

droplet based and combinatorial indexed based scRNA-seq and scATAC-seq library preparation 

(B) Downstream analyses of the feature matrix and the information gained.  

There are fewer analysis methods available for single-cell ATAC sequencing compared to 

scRNA-seq due to the relative novelty of the technique and the inherent challenges of this type of 

data. Analysis of data begins similarly to scRNA-seq by first demultiplexing, deduplicating and 

assigning aligned reads to single cells. Quality of reads can be assessed based on several features, 

one of which is the distribution of fragment sizes, which follows a decreasing trend with increasing 

fragment size that also shows periodic peaks corresponding to mono-, di- and tri- nucleosome 
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occupation. Regions that are nucleosome free are expected to be enriched at transcription start sites 

of genes (H. Chen et al., 2019; Yan et al., 2020). Following quality control, common peaks across 

cells are identified based on the read distribution relative to a random background (e.g. MACS2, 

Gaspar, 2018; Yong Zhang et al., 2008). Reads from cells in common peaks can be used to create 

the chromatin accessibility feature matrix, similar to the expression matrix. However, compared to 

scRNA-seq sequencing, single-cell ATAC sequencing can produce 10-20 fold more features due 

to the relative number of available enhancers (generally >50% of peaks) and promoters (~25% 

peaks) compared to transcripts, potentially allowing for better separation of cell states (Corces et 

al., 2016; Yan et al., 2020). This data is generally very sparse per cell due to the low copy number 

of DNA relative to RNA, resulting in only 1-10% of expected sites observed in a single cell relative 

to 10-45% expected genes detected per cell in scRNA-seq studies (H. Chen et al., 2019). 

Computational methods combat this inherent sparsity by finding or defining features that are most 

informative at explaining the variability between cells and identifying cell states. Methods such as 

chromVAR, SCRAT and Cicero aggregate reads in biologically linked regions, either by finding 

shared transcription factor accessibility (chromVAR) or by linking regulatory regions (SCRAT, 

Cicero) in the proximity of gene transcription start sites or through co-accessibility  (Ji et al., 2017; 

Pliner et al., 2018b; Schep et al., 2017). Other methods use unsupervised statistical and machine 

learning methods to find co-regulated sites. Latent semantic indexing (LSI) was one of the first 

approaches developed, based on natural language processing. These methods first normalize the 

chromatin accessibility via a term frequency-inverse document frequency transformation (TF-IDF) 

and then reduce dimensionality using singular value decomposition (SVD). Later iterations of this 

method use an extra round of TF-IDF and SVD on peaks defined by clusters of the first round of 

LSI (D. A. Cusanovich, Reddington, et al., 2018; D. a Cusanovich et al., 2015). Similarly based in 

natural language processing, cisTopic applies latent Dirchlet allocation (LDA), a probabilistic 

topic-based modelling approach, which simultaneously infers a topic by cells matrix informing on 

cell states, and a topic by sites matrix that can help identify cis-regions specific to these topics 
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(Bravo González-Blas et al., 2019). Finally, SnapATAC uses a windowing approach across the 

genome followed by regression-based correction for library size and PCA. This method is the least 

computationally expensive and therefore very scalable (Fang et al., 2019). A recent study 

comparing 10 methods based on their ability to separate cell types in 13 synthetic and real datasets 

showed SnapATAC, LSI and CisTopic to outperform other compared methods (H. Chen et al., 

2019). Scalability has become a central issue with larger single-cell ATAC-seq datasets, and new 

machine learning based approaches, such as the single-cell ATAC-seq analysis via latent feature 

extraction (SCALE) show promise (Xiong et al., 2019). An additional problem lies with linking 

defined important features to cell states and interpretability as peaks often lack annotation. 

Unsupervised methods (e.g. Cicero) can use co-accessibility between peaks across cells to define 

co-regulated chromatin hubs (Pliner et al., 2018b). Other methods, (e.g. Cistopic) inherently link 

sites within topics (Bravo González-Blas et al., 2019). Differential accessibility between cell states 

can also define cell state specific sites. These sites can be annotated by methods (e.g. HOMER, 

ChIPseeker) that use proximity of sites to genes or regulatory regions to establish linkage (Benner 

et al., 2017; G. Yu et al., 2015). Similarly, gene ontology of grouped sites can be approximated (Gu 

Z., 2019). Finally, single-cell ATAC-seq has the inherent property to inform on putative binding 

sites of transcription factors. The enrichment of TF binding sites in cell state specific sites relative 

to a background can inform on TFs specific to those states and chromVAR can provide information 

on the changes in global chromatin accessibility changes at defined TFs binding sites across our 

samples (Benner et al., 2017; Schep et al., 2017). 

Single-cell studies capture a genetic snapshot across all cells, where each cell represents a 

sample from the distribution of biological processes occurring. Therefore, a continuous ordering of 

events can be reconstructed from the observed heterogeneity of cells. This is done via trajectory 

inference, where dynamical models of gene expression and chromatin accessibility are used to infer 

a path across cellular space based on cell to cell transitions (H. Chen et al., 2019; Luecken & Theis, 

2019; Schier, 2020). After cells are ordered along a trajectory, pseudotime can be calculated relative 
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to a root cell. Pseudotime is often interpreted as a proxy for developmental or treatment response. 

Depending on software, trajectories can range in intricacy from linear to bifurcating paths and 

loops. A wide range of software exists for trajectory inference and the best choice for analysis often 

depends on the biological problem and the method used for assaying. Including time points can 

often help with finding biologically relevant trajectories (Luecken & Theis, 2019). One of the first 

software designed for inferring trajectories was Monocle (Qiu et al., 2017), which has since been 

expanded from only doing ordering on single-cell RNA data to incorporating single-cell ATAC 

data as well based on Cicero (Pliner et al., 2018b; Yan et al., 2020).  

 Single-cell RNA and ATAC sequencing can show diverse, often complementary aspects 

of a biological question. Recent years have seen the development of co-assays that can shed light 

on chromatin organizational and transcriptional changes in parallel. These assays are limited, 

however, in the amount of information that can be garnered from a single-cell. This results in each  

modality of data often having lower quality compared to individual assays performed in two 

separate experiments (Zhu, 2020). This exchange of co-temporal data acquisition with data quality 

has created a need for computational methods to establish cross assay integration between 

individual experiments. These methods can bridge experimental and assay differences while 

reconciling heterogeneity across modalities and therefore helping with interpretability. This is 

achieved by projecting data from different assays into a common latent space from which missing 

data in each of the modalities can be predicted for via inference learning. The most common 

inference strategies used currently rely on some form of canonical correlation analysis, nonnegative 

matrix factorization, or variational autoencoder (Efremova & Teichmann, 2020). Two recently 

published methods showed scATAC-seq and scRNA-seq integration, with the latter used as a 

reference (Stuart et al., 2018; Welch et al., 2019). These methods offer a great opportunity to infer 

gene regulatory networks and shared trajectories to understand tumorigenesis and development 

(Welch et al., 2017). 
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1.3 Summary 

Genetic, epigenetic, and transcriptomic heterogeneity play a significant role in tissue 

functional maintenance and robustness to external stimuli. Developmental processes give rise to 

cell types and states, in addition to tissues accumulating somatic mutations. The latter give rise to 

evolutionary advantages in dividing cell populations potentially resulting in selection for somatic 

mutations at cancer associated genes. Similarly, the natural processes of cell type maintenance can 

mutate, resulting in aberrant forms of their original functions. This results in the eventual shift of 

the genetic and epigenetic regulatory equilibrium within an individual cell and the formation of 

cancer. Both epigenomic and genomic processes result in intra tumor heterogeneity, which can aid 

tumors in evading therapeutic pressure via Darwinian selection and cell state plasticity. Single-cell 

technologies (discussed above) serve as a platform to accurately profile the genomic and 

epigenomic heterogeneity in healthy tissues and their diseased counterparts. In this dissertation I 

show examples of these processes by (i) profiling the genomes of thousands of cells in healthy and 

diseased tissues (Chapter 2), (ii) mapping the chromatin landscape of the murine hippocampus 

(Chapter 3), and (iii) looking at the development of Trametinib resistance through cell state 

plasticity across basal-like triple negative breast cancer cell lines (Chapter 4). 
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Chapter 2: Sequencing thousands of single-cell genomes with 
combinatorial indexing 
 
Sarah A. Vitak*, Kristof A. Torkenczy*, Jimi L. Rosenkrantz, Andrew J. Fields, Lena 

Christiansen, Melissa H. Wong, Lucia Carbone, Frank J. Steemers, and Andrew Adey  

* These authors contributed equally to this work. 

 

This chapter has been reformatted for inclusion for this dissertation from the manuscript titled: 

“Sequencing thousands of single-cell genomes with combinatorial indexing” published in Nature 

Methods, March 2017. A. A. designed and supervised the study. I processed all sequence data and 

designed and wrote the copy number analysis pipeline and connected analyses. S.A.V. carried out 

all SCI-seq and GM12878 DOP library preparations, designed experiments, and performed all 

sequencing. A.A., S.A.V., and I wrote the manuscript. All authors contributed and edited the 

manuscript.  J.L.R. constructed QRP and DOP libraries on Rhesus samples. A.J.F. prepared all 

GM12878 QRP library construction and co-prepared all SCI-seq libraries using xSDS for 

nucleosome depletion. M.H.W. provided tumor samples and aided in the analyses of those samples. 

L. Carbone supervised and provided all samples for Rhesus work. F.J.S. contributed to 

experimental design and contributed to the manuscript, L. Christiansen produced all transposase 

complexes used in this study. 

 

All supplemental figures and tables are not included in this dissertation and should be referred to 

at https://www.ncbi.nlm.nih.gov/pubmed/28135258. 
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2.1 Abstract 

Single-cell genome sequencing has proven to be a valuable tool for the detection of somatic 

variation, particularly in the context of tumor evolution. Current technologies suffer from high per-

cell library construction costs which restrict the number of cells that can be assessed, thus imposing 

limitations on the ability to quantitatively measure genomic heterogeneity within a tissue. Here, we 

present Single-cell Combinatorial Indexed Sequencing (SCI-seq) as a means of simultaneously 

generating thousands of low-pass single-cell libraries for somatic copy number variant detection. 

In total, we constructed libraries for 16,698 single cells from a combination of cultured cell lines, 

primate frontal cortex tissue, and two human adenocarcinomas, including a detailed assessment of 

subclonal variation within a pancreatic tumor. This novel technology facilitates low-cost, deep 

characterization of somatic copy number variation in single cells, providing a foundational 

knowledge across both healthy and diseased tissues. 
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2.2 Introduction 

The booming field of single-cell sequencing continues to shine light on the abundance and 

breadth of genomic heterogeneity between cells in a variety of contexts, including somatic 

aneuploidy in the mammalian brain (Cai et al., 2014; Knouse et al., 2014; McConnell et al., 2013; 

Rehen et al., 2001), and intra-tumor heterogeneity (Eirew et al., 2015; Gao et al., 2016; Gawad et 

al., 2014; N. Navin et al., 2011). These studies have taken one of two approaches: high depth of 

sequencing per cell for single nucleotide variant detection (Cai et al., 2014; Zong et al., 2012) 

, or low-pass sequencing to identify copy number variants (CNVs) and aneuploidy (Baslan et al., 

2012; Knouse et al., 2016; McConnell et al., 2013). In the latter approach, the lack of an efficient, 

cost-effective method to produce high numbers of single-cell libraries has prevented the ability to 

quantitatively measure the frequency of CNV-harboring cells at population-level scale, or provide 

a robust analysis of heterogeneity in the context of cancer (Gawad et al., 2016). 

Recently, we established a method to produce thousands of individually barcoded libraries 

of linked sequence reads using a transposase-based combinatorial indexing strategy (CPT-seq) 

(Adey et al., 2010, 2014; Amini et al., 2014a)  which we applied to haplotype resolution (Amini et 

al., 2014a) and de novo genome assembly (Adey et al., 2014). This concept was then integrated 

with the chromatin accessibility assay, ATAC-seq (Buenrostro et al., 2013b), to produce profiles of 

active regulatory elements in thousands of single cells (Cusanovich et al., 2015) (sci-ATAC-seq, 

Figure 2.1A). In this method, nuclei are first barcoded by the incorporation of one of 96 indexed 

sequencing adaptors via transposase. The 96 reactions are then combined and 15-25 of these 

randomly indexed nuclei are deposited into each well of a PCR plate by Fluorescence Activated 

Nuclei Sorting (FANS, Supplementary Figure 1). The probability of any two nuclei having the 

same transposase barcode is therefore low (6-11%) (Cusanovich et al., 2015). Each PCR well is 

then uniquely barcoded using indexed primers. At the end of this process, each sequence read 
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contains two indexes: Index 1 from the transposase plate, and Index 2 from the PCR plate, which 

facilitate single-cell discrimination. As proof of principle, Cusanovich and colleagues produced 

over 15,000 sci-ATAC-seq profiles and used them to separate a mix of two cell types by their 

accessible chromatin landscapes (Cusanovich et al., 2015). We reasoned that a similar 

combinatorial indexing strategy could be extended to single-cell whole genome sequencing.  

2.3 Results 

 

2.3.1 Nucleosome depletion for uniform genome coverage 

 
The key hurdle to adapt combinatorial indexing to produce uniformly distributed sequence 

reads is the removal of nucleosomes bound to genomic DNA without compromising nuclear 

integrity. The sci-ATAC-seq method is carried out on native chromatin, which permits the 

conversion of DNA into library molecules only within regions of open chromatin (1-4% of the 

genome). This restriction is desirable for epigenetic characterization; however, for CNV detection, 

it results in biological bias and severely limited read counts (~3,000 per cell) (Cusanovich et al., 

2015). We therefore developed two strategies to unbind nucleosomes from genomic DNA while 

retaining nuclear integrity for SCI-seq library construction. The first, Lithium Assisted Nucleosome 

Depletion (LAND), utilizes the chaotropic agent, Lithium diiodosalycylate, to disrupt DNA-protein 

interactions in the cell, therefore releasing DNA from histones. The second, crosslinking with SDS 

treatment (xSDS), uses the detergent, SDS, to denature histone proteins and render them unable to 

bind DNA. However, SDS has a disruptive effect on nuclear integrity, thus necessitating a 

crosslinking step prior to denaturation in order to maintain intact nuclei.  

To test the viability of these strategies, we performed bulk (30,000 nuclei) preparations on 

the HeLa S3 cell line, for which chromatin accessibility and genome structure has been extensively 

profiled (Adey et al., 2013; Dunham et al., 2012), and carried out LAND or xSDS treatments along 

with a standard control. In all three cases nuclei remained intact – a key requirement for the SCI-

seq workflow (Figure 2.1B). Prepared nuclei were then carried through standard ATAC-seq library 
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construction (Buenrostro et al., 2013b). The library prepared from untreated nuclei produced the 

expected ATAC-seq signal with a 10.8 fold enrichment of sequence reads aligning to annotated 

HeLa S3 accessibility sites. Both the LAND and xSDS preparations had substantially lower 

enrichments of 2.8 and 2.2 fold respectively, close to the 1.4 fold observed for shotgun sequencing 

(Figure 2.1C, Supplementary Table 1). Furthermore, the projected number of unique sequence 

reads present in the LAND and xSDS preparations were 1.7 billion and 798 million respectively, 

much greater than for the standard library at 170 million, suggesting a larger proportion of the 

genome was converted into viable sequencing molecules. 

 

Figure 2.1 Single-cell combinatorial indexing with nucleosome depletion. (A) Single-cell 

combinatorial indexing workflow. (B) Standard isolated nuclei and nucleosome depleted nuclei 
using Lithium Assisted Nucleosome Depletion (LAND) or by crosslinking and SDS treatment 

(xSDS) produce intact nuclei. (C) Nucleosome depletion produces genome-wide uniform coverage 

that is not restricted to sites of chromatin accessibility. 

 

2.3.2 SCI-seq with nucleosome depletion 

 
To assess the performance of nucleosome depletion with our single-cell combinatorial 
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indexing workflow, we first focused on the deeply profiled, euploid lymphoblastoid cell line 

GM12878 (Adey et al., 2014; Amini et al., 2014a; Dunham et al., 2012). We produced a total of six 

SCI-seq libraries with a variety of LAND conditions, each using a single 96-well plate at the PCR 

indexing stage, and a single xSDS library with 3×96-well PCR plates. To serve as a comparison to 

existing methods, we prepared 42 single-cell libraries using quasi-random priming (QRP, 40 

passing QC) and 51 using degenerate oligonucleotide primed PCR (DOP, 45 passing QC). Finally, 

we karyotyped 50 cells to serve as a non-sequencing means of aneuploidy measurement 

(Supplementary Table 2). 

For each SCI-seq preparation, the number of potential index combinations is 96 (transposase 

indexing) × N (PCR indexing, 96 per plate); however, not all index combinations represent a single-

cell library, as each PCR well contains only 15-25 transposase-indexed nuclei. To identify non-

empty index combinations, we generated a log10 transformed histogram of unique (i.e. non-PCR 

duplicate), high-quality (MQ ≥ 10) aligned reads for each potential index combination. This 

resulted in a bimodal distribution comprised of a low-read-count, noise component centered 

between 50 and 200 reads, and a high-read-count, single-cell component centered between 10,000 

and 100,000 reads (Fig 2.2A,B, right; Supplementary Figure 2, Supplementary Software). We then 

used a mixed model to identify indexes that fall in this high-read-count component (Supplementary 

Figure 3), which resulted in 4,643 single-cell libraries across the six SCI-seq preparations that used 

LAND for nucleosome depletion and 3,123 for the xSDS preparation. 

To confirm that the majority of putative single-cell libraries contain true single cells, we 

carried out four SCI-seq library preparations on a mix of human and mouse cells using LAND 

(2,369 total cells) with either 22 or 25 nuclei per PCR well, and one preparation using xSDS split 

between two FANS conditions (1,367 total cells). For each experiment we analyzed the proportion 

of putative single cells with ≥ 90% of their reads that aligned exclusively to the human or mouse 

genome. The remaining cells represent human-mouse collisions (i.e. doublets) and make up 

approximately half of the total collision rate (the remaining half being human-human or mouse-
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mouse). The total collision rates varied between 0-23.6%, and were used to decide upon 22 nuclei 

per well with restrictive sorting conditions for a target doublet frequency of <10%, comparable to 

sci-ATAC-seq (Cusanovich et al., 2015) or high throughout single-cell RNA-seq technologies 

(Macosko et al., 2015). 

The unique read count produced for each single-cell library in a SCI-seq preparation is a 

function of library complexity (unique molecules in library) and sequencing depth. Due to the 

inhibitive cost of deeply sequencing every preparation during development, we implemented a 

model to project the anticipated read count and PCR duplicate percentage that would be achieved 

with increased sequencing depth (Figure 2.2C, Methods). As a means of quality assessment, we 

identified the depth in which a median of 50% of reads across cells are PCR duplicates (M50), 

which represents the point in which diminishing returns of additional sequencing become excessive 

(i.e. greater than 50% of additional reads provide no new information), along with several other 

metrics (Supplementary Table 3). To evaluate our projections, we built a model on a subset of the 

sequenced reads and compared the projected metrics with those from the actual depth. This analysis 

showed our model accurately predicted the median unique read count within a median of 0.02% 

(maximum 2.25%, mean 0.41%) across all libraries. We further tested our projections by selecting 

a subset of PCR wells from several preparations and performed additional sequencing which 

produced unique reads counts for each cell that were within a median of 0.13% (maximum 3.56%, 

mean 0.72%) of what was predicted by our model (Supplementary Figure 5). 

Coverage uniformity was assessed using two previously described metrics – mean absolute 

deviation (MAD) (Garvin et al., 2015), and mean absolute pairwise deviation (MAPD)  (Cai et al., 

2014), which indicated substantially increased uniformity using the xSDS strategy over LAND 

(MAD: mean 1.57-fold improvement, p = <1x10-15; MAPD: 1.70-fold improvement, p = <1x10-15, 

Welch’s t-test); however, the deviation of the xSDS preparation is still greater than for QRP and 

DOP methods, though similar to multiple displacement amplification methods (Figure 2.2D) . 

While LAND preparations had an increased coverage bias, the method produced higher unique 
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read counts per cell (e.g. M50 of 763,813 for one of three HeLa LAND preparations) when 

compared to xSDS (e.g. M50 of 63,223 for the GM12878 preparation). For all libraries, we 

observed the characteristic 9 basepair overlap of adjacent read pairs due to the mechanism of 

transposition(Adey et al., 2010; Goryshin et al., 1998), indicating we are able to sequence 

molecules on either side of a transposase insertion event (Supplementary Figure 6). 

2.3.3 Copy number variant calling using SCI-seq 

 
For any single-cell genome sequencing study, determining how to filter out cells that may 

have failed during library construction at the risk of removing true aneuploid cells is a significant 

challenge. Therefore, we initially proceeded with CNV calling assessment on our SCI-seq 

preparation without any filtering and compared them to the QRP and DOP methods. For all 

preparations, we proceeded with only cells for which a minimum of 50,000 unique, high quality 

aligned reads were sequenced (868 across all LAND libraries, 1,056 for the xSDS library). We then 

used Ginkgo (Garvin et al., 2015), Circular Binary Segmentation (CBS)  (Olshen et al., 2004b), and 

a Hidden Markov Model (HMM) (Ha et al., 2012), with variable-sized genomic windows (target 

median of 2.5 million bp) for CNV calling (Supplementary Figure 7) and conservatively retained 

the intersection of all three methods. To compare our sequencing-based calls with karyotyped cells, 

we focused on chromosome-arm level events (Figure 2.2E,F). Consistent with the coverage 

uniformity differences, our LAND SCI-seq preparations produced a high aneuploidy rate (61.9%), 

suggesting an abundance of false positives due to lack of coverage uniformity (Figure 2.2E,G). 

However, the xSDS nucleosome depletion strategy with SCI-seq resulted in an aneuploidy 

frequency of 22.6%, much closer to the karyotyping results (Figure 2.2E,H), and the two standard 

methods of single-cell sequencing at 15.0% and 13.5% for DOP and QRP respectively 

(Supplementary Figure 8). 

We next explored the range of resolution that can be achieved using SCI-seq, and 

determined filtering criteria based on MAD and MAPD scores across a variety of resolutions and 



46 

 

read count thresholds (Supplementary Figure 9). This analysis revealed a greater range of 

variability in our SCI-seq preparations that is largely driven by the wider range of unique reads per 

cell when compared to standard methods. We then applied a MAD filter across all methods of 0.2 

and recalculated the aneuploidy rate. Post variance filtering, the aneuploidy rates for xSDS, DOP, 

and QRP were 12.2%, 9.7%, and 10.5% respectively, all below the rate determined by karyotyping, 

yet closer to one another prior to filtering (Supplementary Figure 10).  

 

Figure 2.2 Comparison of LAND and xSDS nucleosome depletion methods with SCI-seq. (a) 

Log10 unique read count (y-axis) and histogram (right panel), by fraction of unique reads (x-axis) 

to indicate complexity for one of six LAND SCI-seq preparations on GM12878. Dashed line 

represents single-cell read cutoff. (b) As in (a) but for xSDS nucleosome depletion for one of three 
PCR plates. (c) Left, model built on downsampled reads for the GM12878 xSDS preparation and 

used to predict the full depth of coverage. Right, Projections for one of the LAND preparations and 

the full xSDS preparation. Points represent actual depth of sequencing. (d) Coverage uniformity 

scores for SCI-seq using LAND or xSDS and for quasi-random priming (QRP) and degenerate 

oligonucleotide PCR (DOP). (e) Summary of the percentage of cells showing aneuploidy at the 
chromosome arm level across all preparations with and without imposing a variance filter. (f) 

Karyotyping results of 50 GM12878 cells. (g-h) Summary of windowed copy number calls and 
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clustering of GM12878 single cells produced using LAND (g) or xSDS (h). Top represents a 

chromosome-arm scale summary of gain or loss frequency for all cells, bottom is the clustered 
profile for cells that contain at least one CNV call. 

 

2.3.4 Copy number variation in the Rhesus brain 

 
Estimates of the frequency of aneuploidy and large-scale CNVs in the mammalian brain have 

varied widely from <5% to 33%(Cai et al., 2014; Knouse et al., 2014; McConnell et al., 2013; 

Rehen et al., 2001). This uncertainty largely stems from the inability to profile sufficient numbers 

of single cells to produce quantitative measurements. The Rhesus macaque is an ideal model for 

quantifying the abundance of aneuploidy in the brain, as human samples are challenging to acquire 

and are confounded by a high variability of lifetime environmental exposures. Furthermore, the 

Rhesus brain is phylogenetically, structurally and physiologically more similar to humans than 

rodents (Rosenkrantz & Carbone, 2017). 

We applied SCI-seq to archived frontal cortex tissue, to demonstrate the versatility of our 

platform, by performing both LAND and xSDS SCI-seq methods along with 38 cells using QRP 

(35 passing QC), and 35 cells using DOP (30 passing QC). All samples were from adjacent ~150 

mm3 sections of frontal cortex (Individual 1). Our low-capacity LAND preparation (16 PCR 

indexes) produced 340 single-cell libraries with a median unique read count of 141,449 (248 cells 

≥ 50,000 unique reads), and our xSDS preparation generated 171 single-cell libraries with a median 

unique read count of 55,142 (92 cells ≥ 50,000 unique reads). The number of cells produced in our 

xSDS preparation was lower than expected, largely due to nuclei aggregates during sorting that 

may be remedied by additional cell dis-aggregations steps. 

Across all methods of library construction we observed greater discrepancies between the 

three CNV calling approaches than in the human analyses (Supplementary Figure 11-14). We 

believe that this variability is due to the lower quality of the Rhesus reference genome (284,705 

contigs < 1 Mbp) when compared to human, emphasizing the need for “platinum” quality reference 

genomes (Callaway, 2014). We therefore focused on the HMM results for sub-chromosomal calls 
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(Figure 2.3A) and performed aneuploidy analysis using the intersection of CBS and HMM calls.  

Consistent with our cell line results, the LAND preparation produced a much higher aneuploidy 

rate (95.1%), suggestive of false positives stemming from coverage nonuniformity 

(Supplementary Figure 15,16). The xSDS SCI-seq unfiltered aneuploidy rate (25.0%) was close 

to the DOP preparation (18.5%), with QRP producing a much lower rate (3.1%; Figure 2.3B). 

After imposing a variance filter for cells with a MAD score of 0.2 or lower, the aneuploidy rates 

dropped to 12.0% for the xSDS preparation, 8.7% for the DOP, and stayed the same for the QRP 

preparation at 3.1%. These rates were similar to those produced by xSDS SCI-seq on a 200 mm3 

section of frontal cortex from a second individual (381 single-cells, median read count of 62,731, 

213 cells ≥ 50,000 unique reads) which produced unfiltered and filtered aneuploidy rates of 12.1% 

and 10.3% respectively (Supplementary Figure 17). 
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Figure 2.3 Somatic CNVs in the Rhesus brain. (a) Example single cells with copy number 

variants, and one representative euploid cell for the SCI-seq preparation (HMM). (b) Frequency of 
aneuploidy as determined by each of the methods with and without filtering. 

 

2.3.5 SCI-seq on primary tumor samples reveals clonal populations 

 
One of the primary applications of single-cell genome sequencing is in the profiling of tumor 

heterogeneity and understanding clonal evolution in cancer as it relates to treatment resistance  

(Eirew et al., 2015; Gao et al., 2016; Gawad et al., 2014; N. Navin et al., 2011). We carried out a 

single xSDS SCI-seq preparation on a freshly acquired stage III pancreatic ductal adenocarcinoma 

(PDAC) sample measuring approximately 250 mm3 which resulted in 1,715 single-cell libraries 

sequenced to a median unique read count of 49,272 per cell (M50 of 71,378; 846 cells ≥ 50,000 

unique reads at the depth the library was sequenced; Figure 2.4A). We first carried out CNV calling 

using our GM12878 library as a euploid baseline for comparison to identify a set of high-confidence 

euploid cells (298, 35.2%) which were then used as a new baseline specific to the individual and 

preparation (Supplementary Figure 17-19). We next assumed that subchromosomal copy number 

alterations caused by genome instability are more informative for the identification of subclonal 

populations than whole chromosome aneuploidy due to errors during cell division. We therefore 

developed a strategy to identify putative copy number breakpoints at low resolution to be used as 

new window boundaries (Methods, Supplementary Figure 20) followed by stratification via 

principle components analysis (PCA) and k-means clustering. We initially applied this method to 

our HeLa libraries (2,361 single cells in total), revealing no distinct heterogeneity and further 

supporting the stability of the HeLa cell line (Adey et al., 2013) (Supplementary Figure 21-24), 

and then on our primary PDAC sample, which revealed an optimum cluster count of 4 by silhouette 

analysis (Figure 4B,C). 
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Figure 2.4 SCI-seq analysis of a stage III human Pancreatic Ductal Adenocarcinoma (PDAC). 

(a) SCI-seq library complexity as in Figure 1a. (b) Breakpoint calls (top) and breakpoint window 
matrix of log2 sequence depth ratio. (c) Principle component analysis and k-means clustering on 

breakpoint matrix. (d) 100 kbp resolution CNV calling on aggregated cells from each cluster. (e) 

Cluster specific CNVs and CEBPA amplification present in all clusters (k4 shown). 

 

The first of these clusters (k3, green) is a population of euploid cells that were not considered 

high confidence euploid in the initial analysis, and thus not removed. When including these, the 

euploid population rises to 389 for a final tumor cell purity of 46.0%, within the expected range for 

PDAC (Waddell et al., 2015). For the remaining three clusters, k1 (purple, 199 cells), k2 (gold, 115 

cells), and k4 (pink, 91 cells), we aggregated all reads from cells proximal to each centroid 
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(Methods) and carried out CNV calling using 100 kbp windows, a 25-fold greater resolution than 

the initial analysis, and then determined absolute copy number states (Adey et al., 2013) (Figure 

2.4D). Across the three tumor clusters, a substantial portion of copy number segments were shared 

(44.8%), suggesting that they arose from a common progenitor population. This includes a highly 

rearranged chromosome 19 which harbors a focal amplification of CEBPA, which encodes an 

enhancer binding protein, at copy number 7 which is frequently mutated in AML (De Kouchkovsky 

& Abdul-Hay, 2016), and has recently been shown to have altered epigenetic regulation in 

pancreatic tumors (Kumagai et al., 2009) (Figure 2.4E). An all-by-all pairwise comparison revealed 

clusters k2 and k4 as the most similar, sharing 65.9% of copy number segments, followed by k1 

and k4 at 58.3%, and k1 and k2 at 55.0%. We then assessed cluster-specific CNVs and discovered 

several that contain genes of potential functional relevance (Figure 2.4E). These include a focal 

amplification to copy number 6 of IKBKB in cluster k1, which encodes a serine kinase important 

in the NF-κB signaling pathway (Perkins, 2007); another focal amplification to copy number 5 in 

cluster k1 containing genes DSC1,2,3 and DSG1,2,3,4 all of which encode proteins involved in 

cell-cell adhesion and cell positioning and are often mis-regulated in cancer (Stahley & Kowalczyk, 

2015); and the deletion of a region containing PDGRFB specific to cluster k2, which encodes a 

tyrosine kinase cell surface receptor involved in cell proliferation signaling, and is frequently 

mutated in cancer (Forbes et al., 2015). 

Lastly, we applied xSDS SCI-seq to a frozen stage II rectal adenocarcinoma measuring 500 

mm3. During preparation we noticed a high abundance of nuclear debris and ruptured nuclei which 

likely attributed to the decreased yield of the preparation (16 PCR indexes) of 146 single-cell 

libraries (median unique read count of 71,378; M50 of 352,168; 111 cells ≥ 50,000 unique reads).  

We then carried out the same CNV calling approach as with the PDAC sample; however clear 

subpopulations or high frequency breakpoints were not observed, and therefore subclonal 

populations could not be identified (Supplementary Figure 25). This may be a result of nuclear 

deterioration due to irradiation, a common treatment for rectal cancers, underscoring the challenge 
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of producing high-quality single-cell or nuclei suspensions shared by all single-cell methods 

(Gawad et al., 2016). 

2.4 Discussion 

 
We have developed a novel approach, SCI-seq, which utilizes nucleosome depletion in a 

combinatorial indexing workflow to produce thousands of single-cell genome sequencing libraries. 

In total we produced 16,698 single-cell libraries (of which 5,395 were sequenced to a depth 

sufficient for CNV calling) from myriad samples using SCI-seq, including primary tissue isolates 

representative of the two major areas of single-cell genome research: somatic aneuploidy, and 

cancer. In addition to the advantages of throughput, the platform does not require specialized 

microfluidics equipment or droplet emulsification techniques. Using our more uniform nucleosome 

depletion strategy, xSDS, we were able to achieve resolution on the order of 250 kbp, though we 

suspect further optimization, such as alternative crosslinking agents, may provide sufficient depth 

for improved resolution. We also demonstrate the ability to identify clonal populations that can be 

aggregated to facilitate high resolution CNV calling by applying this strategy to a pancreatic ductal 

adenocarcinoma which revealed subclone-specific CNVs that may impact proliferation, migration, 

or possibly drive other molecular subtypes (P. Bailey et al., 2016). 

While the technology is currently limited to copy number variant detection, it may be 

possible to include in situ pre-amplification within the nuclear scaffold prior to SCI-seq or the 

incorporation of T4 in vitro transcription, such as in THS-seq (Sos et al., 2016), an ATAC-seq 

variant, to boost the resulting coverage and facilitate single nucleotide variant detection. While 

optimization is possible, as with any new method, we believe that the throughput provided by SCI-

seq will open the door to deep quantification of mammalian somatic genome stability as well as 

serve as a platform to assess other properties of single cells including DNA methylation and 

chromatin architecture. 

2.5 Methods 
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2.5.1 Sample preparation and nuclei isolation. 

 
Tissue culture cell lines were trypsinized then pelleted if adherent (HeLa S3, ATCC CCL-

2.2; NIH/3T3, ATCC CRL-1658) or pelleted if grown in suspension (GM12878, Coriell; 

karyotyped at the OHSU Research Cytogenetics Laboratory), followed by one wash with ice cold 

PBS. They were then carried through crosslinking (for the xSDS method) or directly into nuclei 

preparation using Nuclei Isolation Buffer (NIB, 10 mM TrisHCl pH7.4, 10 mM NaCl, 3 mM 

MgCl2, 0.1% igepal, 1x protease inhibitors (Roche, Cat. 11873580001)) with or without 

nucleosome depletion. Tissue samples (RhesusFcx1, RhesusFcx2, PDAC, CRC) were dounce 

homogenized in NIB then passed through a 35µm cell strainer prior to nucleosome depletion. The 

frozen Rhesus frontal cortex samples, RhesusFcx1 (4 yr. female) and RhesusFcx2 (9 yr. female), 

were obtained from the Oregon National Primate Research Center as a part of their aging nonhuman 

primate resource. 

2.5.2 Standard Single-cell Library Construction 

 
 Single-cell libraries constructed using quasi-random priming (QRP) and degenerate 

oligonucleotide primed PCR (DOP) were prepared from isolated nuclei without nucleosome 

depletion and brought up to 1 mL of NIB, stained with 5 μL of 5 mg/ml DAPI (Thermo Fisher, Cat. 

D1306) then FANS sorted on a Sony SH800 in single-cell mode. One nucleus was deposited into 

each single well containing the respective sample buffers. QRP libraries were prepared using the 

PicoPlex DNA-seq Kit (Rubicon Genomics, Cat. R300381) according to the manufacturer’s 

protocol and using the indexed PCR primers provided in the kit. DOP libraries were prepared using 

the SeqPlex DNA Amplification Kit (Sigma, Cat. SEQXE-50RXN) according to the 

manufacturer’s protocol, but with the use of our own custom PCR indexing primers that contain 10 

bp index sequences. To avoid over-amplification, all QRP and DOP libraries were amplified with 

the addition of 0.5 µL of 100X SYBR Green (FMC BioProducts, Cat. 50513) on a BioRad CFX 

thermocycler in order to monitor the amplification and pull reactions that have reached mid-
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exponential amplification. 

2.5.3 Nucleosome Depletion 

 
Lithium assisted nucleosome depletion (LAND): Prepared Nuclei were pelleted and 

resuspended in NIB supplemented with 200 μL of 12.5 mM lithium 3,5-diiodosalicylic acid 

(referred to as Lithium diiodosalycylate in main text, Sigma, Cat. D3635) for 5 minutes on ice prior 

to the addition of 800 μL NIB and then taken directly into flow sorting.  

Crosslinking and SDS nucleosome depletion (xSDS): Crosslinking was achieved by 

incubating cells in 10 mL of media (cell culture) or nuclei in 10 mL of HEPES NIB (20 mM 

HEPES, 10 mM NaCl, 3mM MgCl2, 0.1% igepal, 1x protease inhibitors (Roche, Cat. 

11873580001)) (tissue samples) containing 1.5% formaldehyde at room for 10 minutes. The 

crosslinking reaction was neutralized by bringing the reaction to 200 mM Glycine (Sigma, Cat. 

G8898-500G) and incubating on ice for 5 minutes. Cell culture samples were crosslinked and then 

washed once with 10 ml ice cold 1x PBS and had nuclei isolated by incubating in NIB buffer on 

ice for 20 minutes and pelleted once again. Nuclei were then resuspended in 800 uL 1x NEBuffer 

2.1 (NEB, Cat. B7202S) with 0.3% SDS (Sigma, Cat. L3771) and incubated at 42°C with vigorous 

shaking for 30 minutes in a thermomixer (Eppendorf). SDS was then quenched by the addition of 

200 µL of 10% Triton-X100 (Sigma, Cat. 9002-93-1) and incubated at 42°C with vigorous shaking 

for 30 minutes. 

2.5.4 Combinatorial indexing via tagmentation and PCR 

 
Nuclei were stained with 5 μL of 5mg/ml DAPI (Thermo Fisher, Cat. D1306) and passed 

through a 35 µm cell strainer. A 96 well plate was prepared with 10 μL of 1x Nextera® Tagment 

DNA (TD) buffer from the Nextera® DNA Sample Preparation Kit (Illumina, Cat. FC-121-1031) 

diluted with NIB in each well.  A Sony SH800 flow sorter was used to sort 2,000 single nuclei into 

each well of the 96 well tagmentation plate in fast sort mode. Next, 1 μL of a uniquely indexed 2.5 

µM transposase-adaptor complex (transposome) was added to each well. These complexes and 
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associated sequences are described in Amini et. al. 2015, Ref. 14. Reactions were incubated at 55°C 

for 15 minutes. After cooling to room temperature, all wells were pooled and stained with DAPI as 

previously described. A second 96 well plate, or set of 96 well plates, were prepared with each well 

containing 8.5 μL of a 0.058% SDS, 8.9 nM BSA solution and 2.5 μL of 2 uniquely barcoded 

primers at 10 µM. 22 post-tagmentation nuclei from the pool of 96 reactions were then flow sorted 

on the same instrument but in single-cell sort mode into each well of the second plate and then 

incubated in the SDS solution at 55°C for 5 minutes to disrupt the nuclear scaffold and disassociate 

the transposase enzyme. Crosslinks were reversed by incubating at 68°C for an hour (xSDS). SDS 

was then diluted by the addition of 7.5 µL of Nextera® PCR Master mix (Illumina, Cat. FC-121-

1031) as well as 0.5 µL of 100X SYBR Green (FMC BioProducts, Cat. 50513) and 4 µL of water. 

Real time PCR was then performed on a BioRad CFX thermocycler by first incubating reactions at 

72°C for 5 minutes, prior to 3 minutes at 98°C and 15-20 cycles of [20 sec. at 98°C, 15 sec. at 63°C, 

and 25 sec. at 72°C]. Reactions were monitored and stopped once exponential amplification was 

observed in a majority of wells. 5 µL of each well was then pooled and purified using a Qiaquick 

PCR Purification column (Qiagen, Cat. 28104) and eluted in 30 µL of EB. 

2.5.5 Library quantification and sequencing 

 
Libraries were quantified between the range of 200bp and 1 kbp on a High Sensitivity 

Bioanalyzer kit (Agilent, Cat. 5067-4626). Libraries were sequenced on an Illumina NextSeq® 500 

loaded at 0.8 pM with a custom sequencing chemistry protocol (Read 1: 50 imaged cycles; Index 

Read 1: 8 imaged cycles, 27 dark cycles, 10 imaged cycles; Index Read 2: 8 imaged cycles, 21 dark 

cycles, 10 imaged cycles; Read 2: 50 imaged cycles) using custom sequencing primers described 

in Amini et. al. 2015, Ref.14. QRP and DOP libraries were sequenced using standard primers on 

the NextSeq® 500 using high-capacity 75 cycle kits with dual-indexing. For QRP there is an 

additional challenge that the first 15 bp of the read are highly enriched for “G” bases, which are 

non-fluorescent with the NextSeq® 2-color chemistry and therefore cluster identification on the 
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instrument fails. We therefore sequenced the libraries using a custom sequencing protocol that skips 

this region (Read 1: 15 dark cycles, 50 imaged cycles; Index Read 1: 10 imaged cycles; Index Read 

2: 10 imaged cycles). 

2.5.6 Sequence Read Processing 

 
Software for processing SCI-seq raw reads can be found in the accompanying 

Supplementary Software or downloaded from http://sci-seq.sourceforge.net. Sequence runs were 

processed using bcl2fastq (Illumina Inc., version 2.15.0) with the --create-fastq-for-index-reads and 

--with-failed-reads options to produce fastq files. Index reads were concatenated (36 bp total) and 

used as the read name with a unique read number appended to the end. These indexes were then 

matched to the corresponding index reference sets allowing for a hamming distance of two for each 

of the four index components (i7-Transposase (8 bp), i7-PCR (10 bp), i5-Transposase (8 bp), and 

i5-PCR (10 bp)), reads matching a quad-index combination were then renamed to the exact index 

(and retained the unique read number) which was subsequently used as the cell identifier. Reads 

were then adaptor trimmed, then paired and unpaired reads were aligned to reference genomes by 

Bowtie2 and merged. Human preparations were aligned to GRCh37, Rhesus preparations were 

aligned to RheMac8, and Human/Mouse mix preparations were aligned to a combined human 

(GRCh37) and mouse (mm10) reference. Aligned bam files were subjected to PCR duplicate 

removal using a custom script that removes reads with identical alignment coordinates on a per-

barcode basis along with reads with an alignment score less than 10 as reported by Bowtie2. 

2.5.7 Single-cell Discrimination 

 
For each PCR plate, a total of 9,216 unique index combinations are possible (12 i7-

Transposase indexes × 8 i5-Transposase indexes × 12 i7-PCR indexes × 8 i5-PCR indexes), for 

which only a minority should have a substantial read count, as the majority of index combinations 

should be absent – i.e. transposase index combinations of nuclei that were not sorted into a given 

PCR well. These “empty” indexes typically contain very few reads (1-3% of a run) with the 
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majority of reads falling into bona fide single-cell index combinations (97-99% of a run). The 

resulting histogram of log10 unique read counts for index combinations (Supplementary Figure 3) 

produces a mix of two normal distributions: a noise component and a single-cell component. We 

then used the R package “mixtools” to fit a mixed model (normalmixEM) to identify the proportion 

(λ) mean (µ) and standard deviation (σ) of each component. The read count threshold to qualify as 

a single-cell library was taken to be the greater of either one standard deviation below the mean of 

the single-cell component in log10 space, or 100 fold greater than the mean of the noise component 

(+2 in log10 space), and had to be a minimum of 1,000 unique reads. 

2.5.8 Human-Mouse Mix Experiments 

 
 We took one of two approaches to mix human (GM12878 or HeLa S3) and mouse (3T3) 

cells: i) mixing at the cell stage (HumMus.LAND1 and HumMus.LAND2) or ii) mixing at the 

nuclei stage (HumMus.LAND3, HumMus.LAND4, and HumMus.xSDS). The reason we 

employed the latter was to control for nuclei crosslinking or agglomerating together that could 

result in doublets. Libraries were constructed as described above, for instances where two distinct 

DAPI-positive populations were observed during flow sorting, included both populations in the 

same gate so as not to skew proportions. Reads were processed as in other experiments, except 

reads were instead aligned to a reference comprised of GRCh37 (hg19) and mm10. The mapping 

quality 10 filter effectively removed reads that aligned to conserved regions in both genomes and 

then for each identified single cell, reads to each species were tallied and used to estimate collision 

frequency. For our early LAND preparations we sorted 25 indexed nuclei per PCR well and 

produced total collision rates (i.e. twice the human-mouse collision rate) of 28.1% and 10.4%. For 

the second two LAND preparations we sorted 22 nuclei per PCR well, which produced a total 

collision rate of 4.3% for one preparation and no detectable collisions in another. We also tested 

two FANS sorting conditions for our xSDS preparation, one was permissive and allowed a broader 

range of DAPI fluorescence, and the other more restrictive, and carried out both preparations on 
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separate sides of the same PCR plate. For the permissive gating we observed a total collision rate 

of 23.6% with a substantial reduction for the more restrictive gating at 8.1%. Based on these results 

we decided to continue sorting 22 nuclei per PCR well using the more restrictive FANS 

2.5.9 Library Depth Projections 

 
To estimate the performance of a library pool if, or when, it was sequenced to a greater 

depth, we incrementally sampled random reads from each SCI-seq preparation across all index 

combinations including unaligned and low-quality reads without replacement at every one percent 

of the total raw reads. For each point we identified the total number reads that are aligned with high 

quality (MQ ≥ 10) assigned to each single-cell index and the fraction of those reads that are unique, 

non-PCR duplicates, as well as the corresponding fraction of total reads sampled that were assigned 

to that index. Using these points we fit both a nonlinear model and a Hanes-Woolfe transformed 

model to predict additional sequencing for each individual single-cell library within the pool and 

projected out to a median unique read percentage across cells of 5%. To determine the accuracy of 

the models, we determined the number of downsampled raw reads of each library that would reach 

the point in which the median unique read percentage per cell was 90%, which is somewhat less 

than what was achieved for libraries that were sequenced at low coverage. We then subsampled the 

pre-determined number of reads for 30 iterations and built a new model for each cell at each 

iteration and then predicted the unique read counts for each cell out to the true sequencing depth 

that was achieved. The standard deviation of the true read count across all iterations for all cells 

was then calculated. 

2.5.10 Genome Windowing 

 
Genomic windows were determined on a per-library basis using custom tools. For each 

chromosome the size of the entire chromosome was divided by the target window size to produce 

the number of windows per chromosome. The total read count for the chromosome summarized 

over the pool of all single cells (GM12878 for all human samples where absolute copy number was 
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determined, as well as for each pooled sample where amplifications or deletions relative to the 

mean copy number were determined) was then divided by the window count to determine the mean 

read count per window. The chromosome was then walked and aligned reads from the pool tallied 

and a window break was made once the target read count per window was reached. Windows at 

chromosome boundaries were only included if they contained more than 75% of the average reads 

per window limit for that chromosome. By using dynamic windows we accounted for biases, such 

as highly repetitive regions, centromeres and other complex regions that can lead to read dropout 

in the case of fixed size bins22. 

2.5.11 GC Bias Correction 

 
Reads were placed into the variable sized bins and GC corrected based on individual read 

GC content instead of the GC content of the dynamic windows. We posit that the large bin sizes 

needed for single-cell analysis average out smaller scale GC content changes. Furthermore, SCI-

seq does not involve pre-amplification where large regions of the genome are amplified, therefore 

GC bias originates solely from the PCR and is amplicon-specific. To calculate correction weights 

for the reads we compared the fraction of all reads with a given GC to the fraction of total simulated 

reads with the average insert size at the same GC fraction. This weight was then used in lieu of read 

counts and summed across all reads in a given window. All regions present in DAC blacklisted 

regions were excluded from analysis for the human sample analyses (http://genome.ucsc.edu/cgi-

bin/hgFileUi?db=hg19&g=wgEncodeMapability)19. Following GC correction, all reads were 

normalized by the average number of reads per bin across the genome. Finally for each window we 

took the normalized read count of each cell and divided it by the pooled sample baseline to produce 

a ratio score. 

2.5.12 Measures of data variation  

 
  To measure data quality, we calculated two different measures of coverage dispersion: the 

median absolute deviation (MAD), the median absolute pairwise difference (MAPD). For each 
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score we calculated the median of the absolute values of all pairwise differences between 

neighboring bins that have been normalized by the mean bin count within the cell (log2 normalized 

ratios for the MAPD scores). These scores measure the dispersion of normalized binned reads due 

to technical noise, rather than due copy number state changes, which are less frequent2,22. 

2.5.13 Copy Number Variant Calling 

 
CNV calling was performed on the windowed, GC corrected and bulk sample normalized 

reads with two available R packages that employ two different segmentation strategies: a Hidden 

Markov Model approach (HMMcopy, version 3.3.0, Ref. 25) and Circular Binary Segmentation 

(DNAcopy, version 1.44.0, Ref. 24). Values were Log2 transformed for input (2*log2 for CBS) 

and copy number calls were made based on the optimized parameters from Knouse et al. 2016, Ref. 

11. For optimal sensitivity and specificity to detect copy number calls with sizes ≥5Mb we set the 

probability of segment extension (E) to 0.995 for HMM and for CBS we chose the significance 

level to accept a copy number change (α) to be 0.0001. The Log2 cutoffs for calling losses or gains 

were 0.4 and −0.35 for HMM and 1.32 and 0.6 for CBS. As an additional tool for CNV calling we 

used Ginkgo22, which uses an alternative method for data normalization. We uploaded bed files for 

each cell and a bulk down sampled bed file, which we created with Picard Tools (we used a down 

sample probability of 0.1). For the analysis we chose to segment single cells with the down sampled 

bulk bed file and when ploidy was known for the samples we created FACS files to force Ginkgo 

to normalize to that ploidy. Calls for the three methods were intersected either on a per-window 

basis or were filtered to only include calls that span ≥ 80% of a chromosome arm and then 

intersected for aneuploidy analysis. 

2.5.14 Tumor breakpoint analysis  

 
Unlike the assessment of sporadic aneuploidy, tumor structural variation is much more 

complex with a large portion of breakpoints within chromosomes. Further, sporadic aneuploidy 

within any given subclone of a tumor is less pertinent than an accurate profile of the subpopulations 
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that are present. We therefore used the HMM and CBS segmented ratio score matrixes to identify 

breakpoints by tallying up the boundaries of segmented regions across cells. We then used the 

resulting distribution of shared chromosomal breakpoints across the genome to identify local 

maxima to account for variability in which specific window the call was made, and then retained 

those that are present in at least 5% of cells. We then merged all windows within each breakpoint 

span and calculated the new log2 ratio of each aneuploid cell over the mean values of the euploid 

population. We then carried out principle components analysis prior to k-means clustering with a 

k value determined by Silhouette analysis. To minimize the effect of doublets which can account 

for ~10% of putative single cells and also to exclude low-performance cells, we retained only those 

in the close proximity to their respective centroids. We then merged sequence reads for all cells 

within each cluster and then carried out a higher resolution CNV analysis (target window size of 

100 kbp) using an HMM strategy followed by absolute copy number state identification and the 

identification of focal amplifications and deletions using a sliding window outlier strategy20. Intra-

tumoral clonal relationships are most accurately captured by shared breakpoints as opposed to the 

drift in copy number of a segment based on the assumption that structural changes involving breaks 

in the DNA as being more impactful on the cell. We therefore compared cells by assessing the 

proportion of segments between breakpoints that were identified using the high resolution (100 

kbp) CNV analysis that overlapped by at least 90% (to account for noise in the exact window that 

was called as the copy number change) out of the total number of segments.   
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3.1 Abstract 

Here we present a comprehensive map of the accessible chromatin landscape of the mouse 

hippocampus at single-cell resolution. Substantial advances of this work include the optimization 

of single-cell combinatorial indexing assay for transposase accessible chromatin (sci-ATAC-seq), 

a software suite, scitools, for the rapid processing and visualization of single-cell combinatorial 

indexing datasets, and a valuable resource of hippocampal regulatory networks at single-cell 

resolution. We utilized sci-ATAC-seq to produce 2,346 high-quality single-cell chromatin 

accessibility maps with a mean unique read count per cell of 29,201 from both fresh and frozen 

hippocampi, observing little difference in accessibility patterns between the preparations. Using 

this dataset, we identified eight distinct major clusters of cells representing both neuronal and non-

neuronal cell types and characterized the driving regulatory factors and differentially accessible 

loci that define each cluster. Within pyramidal neurons, we identified four major clusters, including 

CA1 and CA3 neurons, and three additional subclusters. We then applied a recently described co-

accessibility framework, Cicero, which identified 146,818 links between promoters and putative 

distal regulatory DNA. Identified co-accessibility networks showed cell-type specificity, shedding 

light on key dynamic loci that reconfigure to specify hippocampal cell lineages. Lastly, we carried 

out an additional sci-ATAC-seq preparation from cultured hippocampal neurons (899 high-quality 

cells, 43,532 mean unique reads) that revealed substantial alterations in their epigenetic landscape 

compared to nuclei from hippocampal tissue. This dataset and accompanying analysis tools provide 

a new resource that can guide subsequent studies of the hippocampus. 
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3.2 Introduction 

 

A major goal in the life sciences is to map cell types and identify the respective genomic 

properties of each of the cell types in complex tissues. Traditional strategies that utilize intact tissue 

are limited to averaging of the constituent cell profiles. To overcome this limitation, there has been 

a burst in development of unbiased single-cell genomics assays, leveraging the concept that each 

single cell can only occupy a single position in the landscape of cell types (Trapnell, 2015). This 

push into the single-cell space has largely centered on the use of single-cell transcriptional profiling. 

While profiling the RNA complement has produced valuable information (Saunders et al., 2018; 

Amit Zeisel et al., 2018), the ability to profile chromatin status, i.e. active versus inactive, has 

lagged behind, leaving open the question as to what extent accessible chromatin profiles are linked 

to cell specificity, particularly with respect to distal enhancer elements (Corces et al., 2016). 

Recently, progress has been made to ascertain chromatin accessibility profiles in single cells 

using ATAC-seq (assay for transposase-accessible chromatin) technologies. These strategies have 

been applied to myogenesis (Pliner et al., 2018a), hematopoietic differentiation (Buenrostro et al., 

2018), fly embryonic development (D. A. Cusanovich, Reddington, et al., 2018), the mouse (Preissl 

et al., 2018) and human cortex (Lake et al., 2017), and most recently an atlas of multiple tissues in 

the mouse, though notably lacking the hippocampus (D. A. Cusanovich, Hill, et al., 2018). The 

core concept behind the methods utilized in several of these studies is a combinatorial indexing 

schema whereby library molecules are barcoded twice, once at the transposase stage and then again 

at the PCR stage. This platform has also been extended to profile other properties including 

transcription, genome sequencing, chromatin folding, and DNA methylation (Cao et al., 2017; 

Mulqueen et al., 2018; Ramani et al., 2017; Vitak et al., 2017a; Yin et al., 2018). In this work, we 

optimized the sci-ATAC-seq assay for analysis of fresh and frozen hippocampal tissue samples to 

produce single-cell chromatin accessibility profiles in high throughput, with greater information 
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content – as measured by unique reads per cell. These improvements will also facilitate the use of 

this technology platform on frozen samples, enabling the assessment of banked tissue isolates.  

The hippocampus is critical to the formation and retrieval of episodic and spatial memory 

(O’Keefe & Dostrovsky, 1971; Scoville & Milner, 1957; Smith & Milner, 1981; Zola-Morgan et 

al., 1986). Historically, cell types within the hippocampus have been broadly classified by their 

morphology (Ramon y Cajal 1911; Lorente de No 1934) and electrophysiological properties 

(Kandel et al., 1961; Kandel & Spencer, 1961; Spencer & Kandel, 1961b, 1961a). More recently 

types have been identified by their transcriptional profiles (Cembrowski et al., 2016; Lein et al., 

2004), and single-cell transcriptomics has also revealed potential subclasses within previously 

defined cell types (Habib et al., 2017; A. Zeisel et al., 2015). The defined classes of cells within the 

hippocampus and the existing single-cell transcriptome data allowed us to refine our sci-ATAC-

seq method and provide the first single-cell epigenomics profile of the murine hippocampus.    

3.3 Results 

 

3.3.1 Single-cell chromatin accessibility profiles from mouse hippocampus 

 
We utilized sci-ATAC-seq to profile two fresh and two frozen mouse total hippocampi to 

map the accessible chromatin landscape (Methods). Each sample was freshly isolated from an adult 

(P60) wild type mouse (C57-Bl6) and either processed immediately or flash frozen using liquid 

nitrogen. Nuclei were isolated and carried through the sci-ATAC-seq protocol with several 

optimizations from previously described implementations (Methods, Figure 3.1A, and 

Supplemental Protocol). Briefly, nuclei were isolated by dounce homogenization of tissue in nuclei 

isolation buffer followed by Fluorescence Assisted Nuclei Sorting (FANS) using DAPI as a stain 

to select for intact, single nuclei. One of the key improvements to our workflow was the addition 

of Tween-20 (Sigma) to the nuclei isolation buffer which we believe increased the permeability of 

the nucleus and removed more of the cell membrane. We then performed sci-ATAC-seq as 

previously described using a 55°C tagmentation temperature (Methods, Supplemental Protocol). 
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Sequence reads were processed and subsequent analysis was performed using scitools 

(Supplemental Code). 

In total, we produced 2,346 single cells passing quality control (≥1,000 unique reads present 

in peaks and ≥25% of all unique reads present in peaks, alignment q≥10, not aligned to chrM, 

unscaffolded, alternative, or random contigs) evenly represented across replicates (2 frozen, 2 

fresh). Based on existing single-cell RNA-seq studies we assumed that our cell number should be 

sufficient for preliminary cell type deconvolution (Habib et al., 2017; A. Zeisel et al., 2015); 

however, we believe future innovation may enable greater numbers. Cells had a mean unique 

aligned read count of 29,201, which is notably higher than other high throughput single-cell ATAC-

seq workflows to date (Supplemental Table 1). We observed a strong correlation in ATAC signal 

between the aggregate profiles of the four replicates (Pearson R > 0.99), indicating high 

reproducibility across preparations for both fresh and frozen tissue. We did notice a statistically 

significant (t-test p-value = 2.2×10-6) increased number of unique reads per cell in the frozen 

samples; however, this can be attributed to greater sequencing depth (Supplemental Figure 1,2, 

Supplemental Table 1), or possibly due to the freeze-thaw cycle increasing the permeability of the 

nucleus. Between replicates of the same preparation method no statistically significant differences 

were observed. Chromatin accessibility peaks were identified by the aggregation of all cells to 

produce an ensemble dataset containing all called peaks, resulting in a preliminary set of 93,994 

high-confidence peaks, with a mean of 36.4% of reads from each cell falling within these regions. 

The fraction of reads in peaks for the frozen samples was greater than for the fresh samples 

(Supplemental Figure 2, Supplemental Table 1, p-value = 1.3×10-4). 

We constructed a read count matrix of our ensemble peaks and single cells from all 

conditions (Supplemental Data – InVivo.counts.matrix) by tallying the number of reads for each 

cell at each peak. We next utilized scitools to perform Latent Semantic Indexing (LSI), as 

previously described (D. A. Cusanovich, Reddington, et al., 2018; D. a Cusanovich et al., 2015), 

with the exclusion of cells with reads at fewer than 1,000 sites and of sites with fewer than 50 cells 
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exhibiting signal. The LSI matrix was projected into two-dimensional space using t-distributed 

Stochastic Neighbor Embedding (t-SNE) for visualization, which revealed distinct domains 

occupied by clusters of cells. We next used density-based clustering (Ester et al., 1996) and 

aggregated cells by cluster, called cluster-specific peaks and added them to a union peak set 

(n=98,043, 4% increase in peak count) for which all subsequent analysis was performed. We then 

identified nine major clusters (Figure 1C), one of which being likely barcode collisions and 

removed from further analysis (Methods). A comparison of the proportion of cells assigned to each 

cluster with respect to fresh or frozen samples did not yield a significant difference (Χ2 = 9.85, p-

value = 0.20; Figure 3.1B, Supplemental Table 2), though increased proportions of interneurons 

and microglia were observed in the frozen preparation. 

To assign each of our identified clusters to a cell type, we took advantage of published single-

cell RNA-seq data that produced sets of marker genes associated with cell types identified at the 

transcriptional level (Habib et al., 2017; A. Zeisel et al., 2015). For each set of cell-type-specific 

genes, we identified peaks 20 kilobasepairs (kbp) in either direction from the transcriptional start 

site, which were then used to calculate the enrichment for accessible chromatin for each cell within 

these regions. This produced a deviation z-score, similar to previously described methods 

(Buenrostro et al., 2015; Schep et al., 2017). We then visualized these scores on our t-SNE 

projections, which enabled us to clearly identify a number of neuronal and non-neuronal cell types, 

including astrocytes (AST), two groups of pyramidal neurons (designated  Neurons 1; NR1 and 

Neurons 2; NR2), interneurons (INT), oligodendrocytes (OLI), microglia (MRG), and 

oligodendrocyte progenitor cells (OPCs) (Figure 1D). To complement this strategy we also turned 

to marker genes described previously in the literature that were not present in available single-cell 

RNA-seq datasets and assessed the chromatin accessibility at elements proximal to these genes 

(Cembrowski et al., 2016; Lein et al., 2004; Y. Zhang et al., 2014) (Figure 1E, Supplemental Figure 

3). For example, the Glul gene, an established marker for astrocytes (Fages et al., 1988; Martinez-

Hernandez et al., 1977) showed accessibility only in the population of cells we identified as 
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astrocytes (Figure 1E, left). Prox1, previously shown to be enriched in the dentate gyrus (Lein et 

al., 2004), is accessible predominantly in the dentate granule cell population (GRN, Figure 3.1E, 

right). Markers for particular cell types were also consistent with in situ hybridization data from 

the Allen Brain Institute (Supplemental Figure 3) and RNA-seq data from sorted cells (Cembrowski 

et al., 2016; Y. Zhang et al., 2014). Based on our cell type assignments, the number of cells in each 

population reflects the proportions seen within the intact hippocampus (Abusaad et al., 1999) 

(Supplemental Table 1). This includes the observation of 14 fold and 41 fold fewer astrocytes and 

microglia when compared to neurons, respectively, in line with previous studies (Kimoto et al., 

2009). 

To further confirm our cell type assignments, we utilized the recently-released function in 

Seurat3 for the co-embedding of single-cell ATAC-seq and single-cell RNA-seq datasets in a 

shared t-SNE space (Stuart et al., 2018). We first generated gene activity scores using Cicero 

(described below), which utilizes linked distal regulatory elements and promoters to approximate 

the putative activity of each gene (Pliner et al., 2018a). These scores, along with transcript count 

matrices from Smart-seq and DroNc-seq publications (Habib et al., 2017; A. Zeisel et al., 2015), 

were processed using Seurat3 to identify anchors and effectively normalize them to one another to 

enable PCA and then visualization in a shared t-SNE space (Figure 3.1F). Encouragingly, our cells 

were positioned proximal to cells with matching assignments in their respective publications. We 

next identified 18 distinct clusters (Figure 3.1G) using PhenoGraph (Levine et al., 2015). Within 

these clusters we quantified the percentage of cells assigned to each cell type within each of the 

three datasets to assess the most represented cell type that is present. This analysis further confirmed 

our cell type assignments with substantial concordance between the highest represented cell types 

across platforms (Figure 3.1H). However, cross-dataset assignment was far from perfect, with 

certain cell types performing better than others, e.g. Oligodendrocytes performed well, versus 

granule cells which did not. We suspect that the major driver of the discrepancies is due to the 

indirect nature of the gene activity scores for the single-cell ATAC-seq data. 
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Figure 3.1 sci-ATAC-seq of the murine hippocampus. (A) sci-ATAC-seq workflow. Two 

indexes are incorporated into library molecules for each cell enabling single-cell discrimination. 

(B) LSI-t-SNE projection of single cells colored by tissue preparation method. Little variation in t-
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SNE space is observed between fresh or frozen starting material. (C) LSI-t-SNE projection of cells 

colored by assigned cluster and cell type. (D) Enrichment of accessibility of proximal regulatory 
elements for marker genes as identified by single-cell RNA-seq (Smart-seq protocol, “(S)”) (A. 

Zeisel et al., 2015) and DroNc-seq “(D)” (Habib et al., 2017) for each cell. The microglial 

population is enlarged for visibility. Black arrows indicate the cell cluster associated with the 

marker gene set. (E) sci-ATAC-seq read plots at Glul (astrocyte marker gene) and Prox1 (dentate 

granule cell marker gene). (F) Co-embedding (t-SNE) of single-cell RNA-seq and DroNc-seq cells 
from (D) with our sci-ATAC-seq cells using Seurat3. Cells are colored by their study “(A)” 

designates this study, “(D)” designates cells from Habib et al. 2017, and “(S)” designates cells from 

Zeisel et al. 2015, and cell type desgnation from their published study (RNA) or our designations 

(for the sci-ATAC-seq cells). (G) PhenoGraph cluster designations on the co-embedded cells. (H) 

Representative cluster cell compositions. The percentage of cells within each of the three assays 

that were assigned to the co-embedding cluster using PhenoGraph are reported. For example (noted 
by an asterisk) in Cluster 8, 93.0% of the sci-ATAC-seq cells that were assigned to Cluster 8 were 

designated as astrocytes. (I) ChromVAR global motif deviation z-scores for each cell for select 

motifs. Dashed lines and values correspond to mean values of cell populations. 

 

3.3.2 Global DNA binding motif accessibility 

 
To assess the global activity of DNA binding proteins we utilized the recently-described 

software tool, ChromVAR (Schep et al., 2017), which aggregates the chromatin accessibility signal 

genome-wide at sites harboring a given motif, followed by the calculation of a deviation z-score 

for each cell. This score represents the putative activity level of the DNA binding protein that 

corresponds to the assessed motif, which we then visualized on our t-SNE projections (Figure 3.1I, 

heatmap in Supplemental Figure 4). In line with expectations, our cell type clusters showed 

enrichment for accessibility at DNA binding motifs concordant with the identified cell type (Figure 

3.1I, Supplemental Figure 5). The analysis included the assessment of global accessibility for 

neuron-specific factors such NEUROD2, which associates with active chromatin marks (e.g. 

H3K27ac) in cortical tissue (Guner et al., 2017) and exhibited greater accessibility in the two 

pyramidal cell clusters (mean z-score (µz) = 1.49 and 0.95 for NR1 and NR2 respectively, all other 

cell types µz ≤ -0.74). We also observed increased accessibility of NEUROD1, also associated with 

active chromatin (Pataskar et al., 2016), in a portion of one of the pyramidal neuron clusters (NR2, 

µz = 1.02) with less accessibility across glial populations (µz ≤ -2.10). While many studies have 

identified a role for SOX3 during neural differentiation, consistent with a previous expression study 

(Cheah & Thomas, 2015), we observed increased SOX3 accessibility in astrocyte (µz = 1.59), 



71 

 

oligodendrocyte (µz = 2.85), and OPC populations (µz = 1.67), suggesting a glial role for this 

transcription factor in adulthood. ELF1, an ETS family member associated with activating 

interferon response in the hematopoietic lineage (Larsen et al., 2015), exhibited elevated 

accessibility in the microglial population (µz = 2.64), which also respond to interferon in the brain 

(e.g. (Goldmann et al., 2015)). Of particular interest was the strong enrichment for CTCF motif 

accessibility in glial cell populations (AST µz = 1.86, OLI µz = 2.22, OPC µz = 2.51, MRG µz = 

1.96) and interneurons (µ = 2.27) when compared to granule cells (µz = -0.45) or pyramidal neurons 

(NR1 µz = -1.65, NR2 µz = -0.33), an observation that was reinforced by our subsequent differential 

accessibility analysis described below. To confirm that the observed motif accessibility increase is 

due to true CTCF binding sites and not just the motif presence, we also carried out a deviation 

analysis using peaks called from publicly available CTCF ChIP-seq data of the mouse hippocampus 

(Sams et al., 2016), which revealed very similar patterns of accessibility (Supplemental Figure 6, 

Pearson R2 = 0.68). 

3.3.3 Differential accessibility by cell type 

 
We next sought to show that accessible regions could be identified according to cell type. 

To provide sufficient signal, we aggregated cells within clusters in their local neighborhoods as has 

been described previously (D. A. Cusanovich, Reddington, et al., 2018) and then carried out a 

differential accessibility analysis for each cluster compared to the rest of the cells (Methods, Figure 

3.2A). Numbers of significant (q-value ≤ 0.01, Log2 fold-change ≥ 1) loci ranged from 894 (OPCs) 

to 7,796 (granule cells), with substantial cell-type specific signal (Figure 3.2B, left, Supplemental 

Figure 7-9). To characterize these loci, we performed a motif enrichment analysis to identify DNA 

binding proteins that may bind within the differentially accessible regions (Figure 3.2B, right). In 

contrast to the prior, global accessibility analysis, where all accessible loci were utilized to detect 

increased signal at sites harboring a given motif in each cell; here, we are detecting enrichment of 

motifs in the specific subsets of loci that were determined to be differentially accessible. This 
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strategy revealed enrichment for binding by the SOX10 transcription factor in oligodendrocytes 

(Claus Stolt et al., 2002) and by NEUROG2 in the dentate granule cells (Roybon et al., 2009). 

Within the interneuron population, the motif with the highest enrichment was CTCF. This is 

consistent with our prior, global analysis of accessibility at motifs (Figure 3.1I); however, this 

reciprocal approach suggests that a set of sites very specific to interneurons harbor CTCF as 

opposed to sites that may be shared across numerous cell types with varying levels of accessibility. 

One of these regions was in an intron in the gene encoding actin filament associated protein 1 

(Afap1, Supplemental Figure 10). The ChIP data revealed CTCF binding within the same intron 

flanking the accessible region. Previous work has suggested that CTCF may have a particular 

importance in this cell type (S. Kim et al., 2018). CTCF binding motifs were enriched in the 

accessible chromatin of affinity purified parvalbumin positive cortical interneurons but not in VIP 

positive interneurons or excitatory neurons (Mo et al., 2015) and mice expressing one CTCF allele 

only in inhibitory neurons exhibit memory impairment (S. Kim et al., 2018). Recent data has also 

suggested that CTCF plays a role in the generation of cortical interneurons by regulating the 

expression of the LIM homeodomain factor LHX6 (Elbert et al., 2019). The potential selective 

importance of CTCF in interneurons warrants further study. 

To further determine the utility of our method in assigning regulatory elements to cell types, 

we tested whether we could parse enhancers that had been identified in the literature as inducers of 

target genes in response to neuronal activity. We focused on the Fos gene that has been studied 

previously as a general reporter of neuronal activity throughout the brain (Bullitt, 1990). 

Specifically, five enhancers (E1-E5) have been characterized (T. K. Kim et al., 2010) for both 

regulation during neuronal activity and type of stimulation (Joo et al., 2015). When we examined 

ATAC-seq signal at the five enhancers across cell types in hippocampus, we identified cell type 

specific patterns of accessibility. Notably, enhancers E1 and E3 were accessible only in neurons, 

while E2 and E5 were accessible in all cell types (Figure 3.2C).  
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Figure 3.2 Differential accessibility analysis between cell types.  (A) Volcano plots –log10(q-

value) (y-axis) versus log2 accessibility signal fold change (x-axis) showing all peaks. Each 

comparison is for the indicated cell population versus all other cell types. Significant peaks (number 

indicated, q-value ≤ 0.01, log2 fold change ≥ 1) are in black. (B) ATAC-seq signal plots for the top 

differential accessible peaks for each cell type. The most significantly enriched motif for each set 
is shown on the right along with the corresponding p-value and closest matching known motif. (C) 

c-Fos locus with enhancers E1-5 highlighted to show cell-type-specific utilization. 
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Further, enhancer E4 was accessible in group 2 but not group 1 pyramidal neurons and was 

also accessible in a small portion of dentate granule cells. Our findings suggest cell type specificity 

in stimuli responsiveness within the hippocampus, even between pyramidal cell subpopulations, 

opening the door to new studies of the basis of these signaling differences and demonstrating the 

utility of single-cell epigenomics over traditional bulk tissue assays. 

More generally, our differential accessibility analysis was able to identify new enhancers by 

comparison with chromatin marks known to be associated with enhancers (Gjoneska et al., 2015). 

For example, when examining the most significantly differentially accessible loci for dentate 

granule cells, one of the top hits was a region marked by both H3K4me1 and H3K27ac, suggesting 

a putative enhancer upstream of the gene Slc4a4 (Supplemental Figure 11). Slc4a4 encodes a 

sodium/bicarbonate co-transporter involved in mediating both intracellular and extracellular pH 

(Svichar et al., 2011), and Slc4a4 expression is elevated in dentate granule neurons. While these 

accessible loci were enriched only in dentate neurons, several other accessible regions were 

identified in dentate granule cells as well as in the two pyramidal neuron populations, suggesting 

this gene is expressed in multiple cell types and, like Fos, may exhibit variable responses in 

different cell types. 

3.3.4 Pyramidal neuron subclustering 

 
In our initial clustering, the two most prevalent pyramidal neuron populations, CA1 and CA3 

were not able to be definitively resolved. We reasoned that analyzing these cells in isolation and 

using a recently-described method for discerning themes, or ‘topics’ of correlated signal within the 

data, cisTopic (Bravo González-Blas et al., 2018) may provide improved granularity. Based on a 

Latent Dirichlet Allocation framework, cisTopic identifies related sets of peaks that are classified 

as topics. On our NR1 and NR2 dataset, the optimum number of topics was determined to be 30 

(Supplemental Figure 12) which were then used to project cells into two dimensional space using 

Uniform Manifold Approximation and Projection (Becht et al., 2018b) (UMAP; Figure 3.3A). Cells 
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split into four distinct groups that were identified using PhenoGraph (Levine et al., 2015) on the 

topic matrix (Figure 3.3B). One of the clusters was comprised almost exclusively of the NR1 cells 

(95%), with the NR2 cells split into three groups. Notably, we did not observe any bias in cluster 

assignment with respect to the fresh versus frozen prepared cells (Supplemental Figure 13). We 

next examined genes specifically associated with CA1 and CA3 neurons and were clearly able to 

assign two of the four clusters based on specific accessibility of promoters and/or cis regulatory 

elements at these loci (Supplemental Figure 14). We also observed some enrichment of CA2-

specific genes and genes associated with mossy cells (MC) in two of the other clusters, suggesting 

that these cell types are likely present in the identified clusters; however, they may not make up the 

entirety of the population.  

In addition to improved sensitivity, cisTopic produces sets of peaks that are associated with 

one another as topics (Figure 3C, Supplemental Figure 15), several of which exhibited high cluster 

specificity. This included CA3-specific topic 13, which was enriched for NEUROD1. These cells 

were within the same region of the NR2 cluster that also exhibited increased NERUROD1 

accessibility (Figure 3.3B, right, Figure 3.1I). Motif enrichment files for all topics can be found in 

Supplemental Data 1. We additionally performed a differential accessibility analysis between the 

clusters (Supplemental Figure 16). While none of the significant peaks were proximal to definitive 

marker genes, these sites may be useful to inform future functional studies.  
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Figure 3.3 Pyramidal neuron subclustering. (A) Subclustering of the NR1 and NR2 assigned 

cells using cisTopic and UMAP. (B) Cluster assignments identified using PhenoGraph. CA1 and 

CA3 neuronal populations exhibited strong signal at cell-type specific marker genes. Asterisk 

indicates putative assignment based on modest enrichment at marker genes. Right panels show the 

NEUROD1 motif enrichment in the original t-SNE coordinates (top) which correspond to the 
region of cells assigned to CA3 cluster (bottom). (C) Biclustering of cisTopic topics and weights 

for each cell. Highlighted topics exhibit high cluster specificity. (D) Further subclustering of the 

Other/MC cell population produced three distinct groups, including putative mossy cells (MC). (E) 

Biclustering of cisTopic topics and weights for each cell. Highlighted topics exhibit high cluster 

specificity. (F) Topic 5, specific to one of the subclusters, is highly enriched for AP-1 related motifs, 

suggesting the cells may be in a state of heightened activity. 
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We suspected that the fourth cluster (teal, Other/MC) might contain additional cellular 

subtypes based on the hierarchical clustering of topics. We therefore carried out the same 

subclustering analysis as we did for the NR 1 and 2 groups specifically for these cells (optimum 

topic number = 13, Supplemental Figures 17-18, Supplemental Data 2), which revealed three 

distinct clusters (Figure 3.3D). When assessing the topics closely associated with one of the 

clusters, we observed a very high enrichment for AP-1 associated proteins, suggesting that they 

may be neurons in a heightened activity state (Figure 3.3E), though we did not observe enrichment 

of accessibility for any cell-type specific marker genes or DNA binding motifs, as was the case for 

a second cluster. We did observe increased chromatin accessibility proximal to several Mossy Cell 

marker genes (Cembrowski et al., 2016) which was most pronounced at Pmp22 and Thbs2 

(Supplemental Figure 19). 

3.3.5 Cis regulatory networks in the hippocampus 

 
Many enhancer elements reside far from the transcription start sites of the genes they 

regulate, making enhancer-gene associations challenging. To accomplish this, we leveraged the 

recently-described Cicero algorithm (Pliner et al., 2018a), which uses an unsupervised machine-

learning framework to link distal regulatory elements to their prospective genes via patterns of co-

accessibility in the single-cell regulatory landscape. We applied Cicero to our hippocampus sci-

ATAC-seq dataset to produce 487,156 links between ATAC-seq peaks at a co-accessibility score 

cutoff of 0.1 (Supplemental Data – InVivo.cicero_links.txt). Of these, 47,498 (10.5%) were links 

between two promoters, 146,818 (32.4%) linked a distal regulatory element to a promoter, and 

259,236 (57.2%) were between two distal elements. We next compared our Cicero-linked peaks 

with existing chromatin conformation data that had been produced on mouse cortical tissue (Dixon 

et al., 2012), as no hippocampus data sets are currently available; however, a majority of topological 

associated domains (TADs) are conserved across cell types (Dixon et al., 2012). Consistent with 

expectations, we observed a 1.1 to 1.5 fold enrichment (Figure 3.4A, p < 1x10-4 across all Cicero 
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link thresholds out to 500 kbp, Methods) for linked peaks that occur within the same TAD over 

equidistant peaks present in different TADs, suggesting that the identified links are associated with 

higher-order chromatin structure. We then identified cis-co-accessibility networks (CCANs) using 

Cicero which employs a Louvain-based clustering algorithm, which can inform us about co-

regulated chromatin hubs in the genome. Using a co-accessibility score threshold of 0.15 (based on 

high intra-TAD enrichment, Figure 3.4A), we identified 3,243 CCANs, which incorporated 

102,736 sites (mean 31.7 peaks/CCAN). 

To identify the enrichment of cell-type-specificity of CCANs, we aggregated ATAC-seq 

signal within each CCAN for each cell type and performed a z-score normalization (Supplemental 

Figure 20). We then projected the CCANs in 2d space using t-SNE and visualized them based on 

their enrichment to their highest matching cell type (Figure 3.4B,C, Supplemental Figure 21). This 

revealed distinct sets of co-accessibility networks for each cell type, with common networks falling 

towards the center of the projection space. CCANs with greater numbers of peaks tended to be less 

cell type specific, likely due to the large number of genes that are encompassed by the CCAN, the 

majority of which are not cell type specific (Supplemental Figure 22). This observation is also 

consistent with chromatin conformation literature (Dixon et al., 2012) (Supplemental Figure 23). 

We probed our cell type specific CCANs further by assessing networks that incorporated marker 

gene promoters. Prox1 (dentate granule marker), was present in a CCAN that included 89 total 

accessibility sites and was associated with the correct cell type (Figure 3.4D,E). While much of the 

CCAN did not exhibit cell type specificity, the region centered on Prox1 (with the highest co-

accessibility values) drove the assignment. To dissect out the major components of the larger 

CCAN, we used Cicero specifically on the dentate granule cells (Supplemental Figure 24A). This 

revealed three distinct CCANs within the region, with the Prox1-containing CCAN exhibiting the 

greatest specificity to the dentate granule cells (Supplemental Figure 24B). This suggests the 

possibility of larger chromatin networks with subsets of regulatory elements and genes joining or 

leaving the network based on cell type. Finally, we identified a number of CCANs that were 
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overlapping that included mutually exclusive sets of peaks, suggesting two alternative folding 

patterns of chromatin within the regions dependent upon the cell type (Supplemental Figure 25). 

Figure 3.4 Cis co-accessibility analysis using Cicero. (A) Cicero links at several co-accessibility 

score thresholds are heavily enriched for links that contain peaks present in the same topological 

associated domain (TAD) as determined by Hi-C methods (Dixon et al., 2012). The enrichment 

decreases at greater distances (x-axis). (B) t-SNE projection of CCANs colored by the cell type 
with the greatest accessibility for the CCAN. Each point represents an individual CCAN. Networks 

generally group by cell type. CCAN 174 which includes the Prox1 gene shown below in (D) is 

indicated with an arrow. (C) Accessibility z-scores for CCANs for granule cells and microglia. (D) 
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Cis co-accessibility network (CCAN) ID 174 including the Prox1 promoter (dentate granule marker 

gene). (E) CCAN 174 has the greatest accessibility signal in cells identified as dentate granule cells. 

 

3.3.6 In vitro neurons exhibit an altered epigenetic profile 

 
To examine how well in vitro cultured hippocampal neuronal populations match their in vivo 

counterparts at the epigenetic level, we isolated hippocampal neurons from P0 pups and allowed 

them to mature for 16-18 days in vitro (DIV). At this stage, the neurons had extended long processes 

and expressed markers of mature neurons such as MAP2. We performed sci-ATAC-seq as 

described above and produced 899 high-quality single-cell chromatin accessibility profiles passing 

our quality thresholds (Methods). Our mean unique read count per cell was again high when 

compared to currently published work at 43,532. We then performed peak calling on the ensemble 

of in vitro sci-ATAC-seq profiles, resulting in 111,005 total peaks. Similar to our in vivo 

preparations, the ATAC-seq signal correlated well between the two replicates (Pearson R > 0.99). 

Subsequent filtering, LSI-t-SNE, and clustering, as described for the in vivo preparation, revealed 

four distinct populations (Figure 3.5A). Upon examination via marker gene and DNA binding motif 

accessibility enrichment, we determined one of the clusters to be the interneuron population (40.6% 

of cells), with the remainder being excitatory (59.4%). 

We performed peak calling on the combined reads from both the in vivo and in vitro 

experiments and merged these peaks with those called on each set individually to produce a 

combined peak call set comprised of 174,503 sites. It is important to note that much of the increase 

over the in vivo peak set was due to increased coverage at sites that may not have met the calling 

threshold as opposed to peaks exclusive to the in vitro cultured neurons. We then performed LSI 

and t-SNE on the resulting counts matrix using cells produced in both experiments. While the in 

vitro cultured glutamatergic neurons largely formed their own grouping independent of their in vivo 

counterparts, the inhibitory neurons from the in vitro preparation grouped more closely with the in 

vivo population (Figure 3.5B). 
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Figure 3.5 Comparison of the accessible chromatin landscape of in vitro cultured neurons 

with in vivo obtained profiles. (A) LSI-t-SNE projections of in vitro obtained cells reveals four 
clusters, one of which exhibits interneuron patterns (VT2) and the remaining excitatory neurons 

(VT1,3-4). (B) LSI-t-SNE projection of the combined in vivo and in vitro datasets colored by 

independently called clusters. Excitatory neurons in the two conditions generally cluster separately, 

with interneurons more closely associated. (C) ChromVAR global motif deviation z-scores for 

select motifs for each cell. Dashed lines and values correspond to mean values of cell populations. 

(D) Differential accessibility analysis between in vivo and in vitro interneurons (top, INT vs. VT2, 
respectively) and between two closest excitatory neuron populations between in vivo and in vitro 

conditions (NR1 and VT1, respectively). ATAC-seq signal is shown for the top differentially 

accessible loci with the top three motifs and corresponding p-values and matching motifs to the 

right. 

 



82 

 

We next examined the global DNA binding motif accessibility of the combined population 

(Figure 3.5C). The starkest differences between the in vivo and in vitro cell populations was in 

motifs associated with the AP-1 complex, i.e. FOS, JUN, ATF, and JDP families (µz = 4.32 and -

1.72 for in vitro and in vivo respectively). The AP-1 complex plays a major role in stimulus 

response, including cell stress (Hess, 2004), which may not be surprising for neurons grown and 

matured ex vivo. It has also been shown that AP-1 modulates chromatin during neuronal activation 

(Su et al., 2017), suggesting the possibility of an elevated activity state in neuronal cultures 

compared to their in vivo counterparts; however, the decoupling of the many functional roles of the 

AP-1 complex from one another using global accessibility is not currently possible. We also 

examined the motifs for several other transcription factors that are relevant to neuronal 

development. NEUROD1, discussed above, responsible for early differentiation (E14.5 ventricular 

proliferative zone) (Pataskar et al., 2016) and survival of neurons, exhibited shared accessibility 

enrichment in a subset of cells from both the in vivo and in vitro neuronal populations. MEF2C 

delineates early precursors of a subset of inhibitory interneurons (Mayer et al., 2018) and we 

observed shared, elevated MEF2C accessibility in the interneuron populations, with greater 

accessibility in the in vitro cells (µz = 3.91) over that of the in vivo interneurons (µz = 1.10). In 

contrast to NEUROD1 and MEF2C, NEUROD2 acts later in hippocampal development than 

NEUROD1 (Pleasure et al., 2000), is expressed in migrating granule neurons, and binds to a 

number of neuron-specific promoters. The DNA binding motif for NEUROD2 was globally more 

accessible in the in vivo neurons when compared to their in vitro counterpart (µz = 2.05 and µz = 

0.05 for in vivo and in vitro respectively). This finding may reflect its later developmental 

appearance and that the main targets of NEUROD2 are involved in layer-specific differentiation 

and axonal pathfinding, which are not likely to be occurring in vitro. 

Differential accessibility analysis comparing in vitro and in vivo counterparts shed further 

light on the epigenetic differences between the two populations (Figure 3.5D). A comparison of the 

interneuron populations produced 4,356 and 7,575 peaks significantly differentially accessible in 
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the in vivo (INT) and in vitro (VT2) populations, respectively (q-value ≤ 0.01, Log2 fold-change ≥ 

1). A motif enrichment analysis of these peak sets revealed the most significantly enriched motifs 

corresponded to NEUROD1 in the in vivo peaks (p = 1×10-24), which is interesting because 

NEUROD1 global accessibility is low in both interneuron populations (Figure 3.4C). Interneuron 

peaks specific to the in vitro population were significantly enriched for ATF3 (p = 1×10-815), which 

is not surprising in light of the above accessibility of AP-1 in the in vitro cell populations and its 

shared role in cell stress and interaction with the AP-1 complex (Hai & Curran, 1991). We also 

examined differential accessibility between the most-closely grouped excitatory neuronal 

populations, which produced 1,761 and 2,964 for NR1 (in vivo) and VT1 (in vitro) respectively (q-

value ≤ 0.01, Log2 fold-change ≥ 1). The most significantly enriched motif in the in vivo peak set 

was EGR2 (p = 1×10-90), again a transcription factor expressed highly in migrating neural crest 

cells (Wilkinson et al., 1989) that  may be absent in an in vitro setting where cell migration is not 

pertinent. 

3.4 Discussion 
 

A better understanding of the role of specific cell populations in hippocampal function is a 

necessary step in order to study disease processes that involve this region critical to memory and 

learning. Thus far, studies have used gene expression data from sorted populations (Cembrowski 

et al., 2016) and single cells (Habib et al., 2017; A. Zeisel et al., 2015) to identify subpopulations 

of cells and novel marker genes for the cells within the hippocampus. Here, we provide the most 

in-depth epigenetic analysis of the hippocampus at single-cell resolution to date. Our sci-ATAC-

seq protocol (Methods) has been optimized for primary cell culture and both fresh or frozen tissue 

and produces unique read counts per cell in the tens-of-thousands, a full order-of-magnitude 

improvement over the initial sci-ATAC-seq publication (D. a Cusanovich et al., 2015). The data 

sets released with this study can be readily analyzed using scitools (https://github.com/adeylab). 

This tool suite is designed to be complementary to other single-cell ATAC-seq analysis packages, 
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such as ChromVAR, cisTopic, and Cicero, and serves as an easy framework for integrating analyses 

and generating plots to assess data quality and facilitate biological interpretation.  

We utilized our sci-ATAC-seq maps to identify the major cell types of the hippocampus, 

with sufficient depth and library complexity to profile less abundant cell types, such as microglia 

and oligodendrocyte progenitor cells. Using the recently-described cisTopic  analysis tool, we were 

able to achieve a high degree of granularity within pyramidal neuron population, enabling the 

definitive identification of CA1 and CA3 neurons, a population of putative CA2 neurons, and three 

lower-abundance populations, likely containing mossy cells and two unidentified neuronal 

subtypes. Our analysis of global motif accessibility revealed the expected enrichment of motifs 

associated with specific cell populations in addition to uncovering unanticipated findings, such as 

increased accessibility at CTCF motifs in interneuron and glial populations, a finding that was also 

observed in our differential accessibility analysis. We utilized our dataset to map cis co-

accessibility networks, enabling the association of distal elements with promoters or other 

regulatory loci. Finally, we directly compared the accessibility profiles of neurons that were 

matured in vitro with their in vivo counterparts to identify altered pathways or chromatin state 

configurations that should be considered for future experimental design. This revealed a stark 

difference in the global accessibility for motifs associated with the AP-1 complex, which is 

involved in cell stress as well as neuronal activity. Future work to identify the cause and effect of 

elevated AP-1 complex activity is warranted to understand its impact on studies that utilize 

hippocampal neurons matured in vitro. 

We believe that the chromatin accessibility maps we provide in this work, including the 

profiling of in vitro cultured neurons, and the software tools we are releasing are a valuable resource 

for any groups studying the hippocampus or those that wish to analyze single-cell chromatin 

accessibility data. Our maps complement existing single-cell transcriptional data, and take the field 

one step closer to a comprehensive atlas of the mammalian hippocampus; however, we 
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acknowledge that future innovation built off of the datasets we and others have produced will be 

required to achieve that goal. 

3.5 Methods 

 

3.5.1 Isolation of hippocampus tissue 

 
All animal studies were approved by the Oregon Health and Science University Institutional 

Animal Care and Use Committee. Sixty day old C57BL/6J mice were deeply anesthetized using 

isofluorane. After decapitation the brain was removed and the total hippocampus was isolated and 

placed in ice-cold phosphate-buffered saline (pH 7.4).  

3.5.2 In Vitro culturing of hippocampal neurons 

 
Pups (P0) were killed by decapitation and the brains dissected in ice-cold Hanks Basal Salt 

Solution (HBSS, pH 7.4) with 25 mM Hepes buffer. Individual hippocampi were excised without 

the meninges and pooled by individual animal. The tissue was treated with 2% papain and 80ng/ml 

Dnase I in HBSS at 37 °C for 10 min. Tissue pieces were rinsed three times with Hibernate A 

containing 2mM Glutamax and 1x B27 supplement. Neurons were dissociated carefully and filtered 

with a 0.4-μm mesh. Neurons were plated at a density of 1x106 cells per well of a six well dish 

coated with 50 μg/mL Poly-L-Lysine hydrobromide in boric acid buffer (50 mM Boric Acid, 12.5 

mM Sodium Borate, decahydrate). The neurons were plated in Neurobasal A containing 1xB27 

supplement and 2mM glutamax. After 2 hours, the media was changed to remove cell debris. Media 

half changes occurred every 3 days with fresh Neurobasal A containing 1xB27 and 2mM glutamax. 

Cells were maintained at 37°C with 5% CO2 in a humidified incubator. 

3.5.3 Sci-ATAC-seq assay & sequencing 

 
Tissue was diced on ice using a sterile razor blade in freshly-prepared Nuclei Isolation Buffer 

(NIB: 500 µL 10 mM Tris-HCl pH .5, 100 µL 10 mM NaCl, 150 µL MgCl2, 500 µL 0.1% Igepal, 

0.1% Tween, 1 unit Qiagen Protease Inhibitor, nuclease-free water to 50 mL) followed by dounce 

homogenization. For cultured cells, nuclei were directly isolated by removing media, washing once 
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with ice cold PBS, and then NIB added to cover the dish followed by incubation on ice for 5 

minutes, scraping using a tissue scraper, and then an additional 5-minute incubation on ice. For 

both tissue and cultured cells, nuclei were then pelleted and resuspended in 1 mL NIB with DAPI 

added to a final concentration of 5 mg/mL. Nuclei were then strained in a 35 µm strainer and sorted 

on a Sony SH800 Flow Sorter and deposited into 0.2 mL PCR plates containing 5 uL of 2X TD 

buffer and 5 uL of NIB, with 2,500 nuclei deposited per well. Plates were placed on ice until 

transposition. Tagmentation was performed by the addition of 1 µL of 2.5 µM barcoded 

transposome (EZ-Tn5 variant) (Amini et al., 2014b) and incubated at 55°C for 15 minutes followed 

by placing the plate on ice to stop the reaction. All wells were then pooled using wide-bore pipette 

tips and DAPI added to a final concentration of 5 mg/mL. Tagmented nuclei were then strained and 

sorted again and 22 were deposited into each new PCR well containing 0.25 µL 20 mg/mL BSA, 

0.5 µL 1% SDS, 7.75 µL nuclease-free water, 2.5 µL barcoded forward primer, and 2.5 µL reverse 

primer. Plates were kept on ice until all sorting was completed. After sorting, plates were incubated 

at 55°C for 15 minutes to denature the transposase followed by placing the plate on ice and adding 

12 uL of PCR mix (7.5 µL NPM, 4 µL nuclease-free water, 0.5 µL 100X SYBR Green) and then 

PCR amplified using the following conditions: 72°C for 5:00, 98°C for 0:30, Cycles of [98°C for 

0:10, 63°C for 0:30, 72°C for 1:00, plate read, 72°C for 0:10] on a BioRad CFX real time 

thermocycler. Reactions were pulled when mid-exponential, typically 17-22 cycles. Post-

amplification 5 µL of each reaction was pooled and cleaned up using a QIAquick PCR Purification 

column. Libraries were quantified using a Qubit fluorimeter, diluted to ~4 ng/µL and assessed on 

an Agilent Bioanalyzer HS Chip. Sequencing was carried out as previously described on a 

NextSeqTM 500 (research use only) using custom primers and chemistry (Vitak et al., 2017a). A 

detailed sci-ATAC-seq protocol is provided as a Supplemental Protocol. 

For fresh replicates, nuclei were divided into two transposase plates that were processed 

separately. Each transposase plate was then pooled and the nuclei sorted into a full PCR plate for 

each preparation. The frozen hippocampi were processed using one half of a transposase plate for 
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each biological replicate and then all wells were pooled and sorted into a single PCR plate. We also 

had two biological replicates for the in vitro preparations that were processed according to the same 

workflow as the two frozen samples. 

3.5.4 The scitools suite 

 
All initial analysis was performed with scitools, a custom software package we developed to 

help analyze sci-ATAC-seq data and other combinatorial indexing data (sci-). The toolset is a 

collection of commands to perform common functions for sci- datasets, including wrappers that 

utilize existing tools, including: BWA (H. Li & Durbin, 2009), MACS2 (Yong Zhang et al., 2008), 

BEDtools (Quinlan & Hall, 2010), SAMtools, as well as R (Core Team, 2019) libraries: ggplot2 

(Wickham, 2016), chromVAR (Schep et al., 2017), chromVARmotifs, cicero (Pliner et al., 2018a), 

RtSNE, dbscan (Ester et al., 1996). Usage of scitools for any of these functions should cite the 

relevant utilities. Scitools can be found at https://github.com/adeylab/scitools (an evolving tool) or 

as Supplemental Code for the version used at the time of this manuscript.  

3.5.5 Sci-ATAC-seq data processing 

 
BCL files were first converted to FASTQ files using bcl2fastq (2.19.0). We then 

demultiplexed our reads using scitools (fastq-dump, fastq-split) based on the two separate Tn5 

tagmentation events on the P5 and P7 ends of the molecules and the following added unique PCR 

indexes on both sides. In order for a barcode to be considered a match each of these four indexes 

constituting a barcode had to be within two Hamming edit distances away from their expected 

counterpart. We aligned to the mm10 genome using the scitools fastq-align function within scitools, 

which mapped reads using BWA-MEM. Aligned reads were filtered based on a quality score cutoff 

of 10 and PCR duplicates removed in a barcode-aware manner using scitools bam-rmdup. We 

determined whether a barcode represented a cell as opposed it representing noise by using the 

mixed model approach previously presented (Vitak et al., 2017a). Peaks were then called using 
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scitools callpeak, which utilizes MACS2 to identify peaks and then extend to 500 bp followed by 

peak merging and filtering of peaks that extend beyond chromosome boundaries.  

3.5.6 Latent semantic indexing and 2D embedding 

 
Count matrices were generated using scitools counts to produce a matrix of read counts at 

cells (columns) by called peaks (rows). This matrix was then filtered using scitools filter-matrix to 

exclude rows with fewer than 10 cells having reads (-R 10), and columns (cells) with fewer than 

1000 rows with reads (-C 1000). The matrix was then carried through term-frequency inverse-

document-frequency transformation using scitools tfidf, followed by latent semantic indexing, 

retaining SVD dimensions 1-15 using scitools lsi. The resulting LSI matrix was used in scitools t-

SNE which makes use of the RtSNE R package. All t-SNE plots were generated using scitools plot-

dims using an annotation file to encode cluster ID, sample ID, or other variables, including 

chromVAR motif deviation z-scores. 

3.5.7 Co-embedding of single-cell RNA-seq cells with sci-ATAC-seq cells 

 
We utilized Cicero (Pliner et al., 2018a) to produce gene activity scores, based on the 

chromatin accessibility signal at the promoter and linked distal elements to each gene. These scores 

were loaded into Seurat3 (Stuart et al., 2018) along with the gene read count matrices from Zeisel 

et al. 2015 (Smart-seq), and Habib et al. 2017 (DroNc-seq). We then carried out anchor 

identification and integration of the three datasets as decribed in Stuart et al. 2018. We then 

performed PCA and t-SNE on the integrated data. Clusters were identified using PhenoGraph 

(Levine et al., 2015) on the PCA dimensions. 

3.5.8 Identifying transcription-factor-associated changes 

 
We applied the chromVAR (Schep et al., 2017) R package to our data to infer changes in 

global motif accessibility across our cell populations. This provides information on the putative 

binding of transcription-factors and consequently the possible ongoing biological processes in cell 

populations. The mouse_pwms_v1 motif set from the chromVARmotifs R package was used in this 
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analysis. The bias corrected motif deviation scores were plotted on the t-SNE embedded 2D 

coordinates with the scitools plot-dims -M option for visualization.   

3.5.9 Cell type dependent differential accessibility  

 
To accurately identify differentially accessible peaks we used the make_glasso_cds function 

from the Cicero (ver=,0.0.0.9000) package to create clusters of k=50 cells based on their the low 

dimensional t-SNE coordinates. We then selected clusters with 99% cell type purity and aggregated 

accessibility profiles. We posited that the aggregate profiles would provide the replicates required 

for the DESeq2 R package, which in turn internally corrects for technical biases such as assay 

efficiency. With this method we tested (using the inherent nBinomWaldTest) for differentially 

accessible sites between cell types against all other cell types combined. We corrected for multiple 

testing at q=0.01 and further filtered differentially accessible sites by removing peaks accessible at 

q=0.2 in any of the other cell types. We also note that scitools aggregate-cells is also capable of 

aggregating cells in reduced dimensional space for purposes of differential accessibility analysis. 

We then applied HOMER (Heinz et al., 2010b) (http://homer.ucsd.edu/homer/motif/) to identify 

potential de novo and known regulators of chromatin accessibility within the cell type dependent 

differentially accessible sites. We used all accessible peaks as background and the mm10 

findMotifsGenome command.  

3.5.10 Subclustering of pyramidal neurons 

 
We applied Cistopic ver=0.2.0 (Bravo González-Blas et al., 2018) to separate out sub 

populations within the in-vivo neuronal cell populations we found (NR1, NR2). We chose the 

optimal number of topics (30, Supplemental Figure 12) by running several models ranging from 5 

to 50 topics and picking the model with the highest log-likelihood in the last iteration. We used the 

250 burn-in iterations and 300 recording iterations for this analysis. We determined topic associated 

regions via topic binarization with GammaFit (included in Cistopic) on the region-topics 

distributions matrix (thrP=0.975). We then projected the neuronal cells into two-dimensional space 
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via Uniform Manifold Approximation and Projection (UMAP) (Becht et al., 2018b) on the topics-

cell distributions matrix and observed four distinct cell groupings. We identified these clusters with 

the Rphenograph ver=0.99.1 (Levine et al., 2015) package on the topics-cell distributions matrix 

(d=4 clusters of k=150). The same processing and parameters were used to perform subclustering 

on the cluster exhibiting high heterogeneity. 

To correctly characterize these four clusters, we called potential de novo and known 

regulators of chromatin accessibility with HOMER (run with the mm10 genome and all sites as 

background using the findMotifsGenome command) on the top associated regions of topics that 

were enriched in individual clusters (identified via the topics-cell distributions matrix). In addition, 

we called differentially accessible sites unique to each of the clusters using DESeq2 (as in Cell type 

dependent differential accessibility methods section) and again applied HOMER for motif 

enrichment for these sites. 

3.5.11 Identifying cis-regulatory networks in the hippocampus 

 
We used the recently described Cicero package (Pliner et al., 2018a) to identify cis-co-

accessibility networks (CCANs) according to the recommended workflow. For CCAN 

identification, we used a p=0.15 threshold cutoff, which identified 2,066 chromatin networks that 

incorporated 47,805 sites of our in vivo cell populations. Fold enrichment for links within annotated 

TADs (Dixon et al., 2012) was performed by calculating the proportion of distance-matched (±25 

kbp of specified 50 kbp distance interval) intra-TAD links over inter-TAD links at a range of co-

accessibility score cutoffs (0.05 to 0.25 at 0.05 intervals). 10,000 permutations were then performed 

for each distance bin by randomly assigning two distance-matched peaks as linked and retaining 

the same total number of links for each co-accessibility cutoff and then calculating the fold intra-

TAD enrichment as described above. 
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3.5.12 Cell type specific cis-regulatory networks 

 
To assign cis-co-accessibility networks to cell types, we first calculated the fraction of cells 

of each cell type that have signal at a peak and assumed that the distribution of reads per cell across 

cell types is close to uniform. We then z-scored the resulting matrix across the CCANs and then 

visualized the separation of CCANs by cell type by bi-clustering and plotting the heatmap using 

the complexHeatmap (ver=1.17.1) R package. We also visualized CCAN cell type specificity by 

using t-SNE on the z-scored group read fractions to embed CCANs in 2D. We assigned the cell 

type to each of the CCANs based on the highest z-scored value. We next identified CCANs that 

contain at least one of the genes (Prox1, Dsp, Ociad2, Dkk3, Glul, Gfap, Mog, Cldn11, C1qa, Wfs1, 

Mobp, Pdgfra) shown to be differentially accessible in our data. We intersected +/-80 kbp regions 

before and after transcription start sites of these genes with the CCANs using BEDtools intersect. 

We plotted the CCANs around genes where the cell type assigned to the CCANs matched the cell 

type specificity of the gene using the Cicero plot_connections function. We used chromVAR to 

further validate the relative enrichment of CCANs by using CCAN peaks as motif input files. We 

used scitools plot dims -M option to visualize the deviation scores for the CCANs on the t-SNE 

coordinates. We have to note that in order for this method to work, peaks within the CCANs had 

to be accessible across multiple cell types, so we decided to use only CCANs with ≥ 10 peaks for 

this analysis. We finally included a more in-depth analysis of CCAN 174 centered around Prox1. 

We called CCANs just within Granule cells and identified three different sub CCANs, with the 

core of the original CCAN 174 showing even higher specify in the chromVAR deviation scores 

plots (Supplemental Figure 24). 
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4.1 Abstract 

 
Triple negative breast cancers (TNBC) constitute one-sixth of invasive female breast cancer 

cases and are the most likely to develop resistance to treatment via genetic and/or epigenetic 

adaptation into drug tolerant persister (DTP) states. We applied single-cell ATAC-seq and RNA-

seq to characterize the dynamic regulatory and transcriptional landscape in five basal-like TNBC 

cell lines in response to the MEK inhibitor Trametinib. We observed surprisingly few shared 

changes between lines, indicating substantial heterogeneity in the emergence of DTP states. 

However, we identified a shift toward a common state based on the novel observation of the 

preferential loss of cell line-specific regulatory elements and gene expression. Integration of the 

two modalities enabled a granular dissection of dynamic regulatory mechanisms, which revealed 

highly context-dependent roles of regulatory elements. This work highlights the heterogeneity of 

response, yet suggests homogenization occurs in the form of the preferential loss of epigenetic 

configurations unique to each BCCL.  
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4.2 Introduction 

 
Normal functional mammary glands require development of differentiated luminal and 

basal epithelial cells from a multipotent progenitor. Development of these specialized cells is 

mediated by epigenetic changes during embryogenesis, puberty, and pregnancy to support the 

functionality of the developing gland (dos Santos et al., 2015; Gascard et al., 2015a; Lien et al., 

2011; Mikkelsen et al., 2010; Pellacani et al., 2016). While a multipotent progenitor is evident 

during embryogenesis, the multipotent nature of postnatal mammary stem cells (MaSC) in the 

normal gland remains controversial (Lloyd-Lewis et al., 2017). However, upon transplantation, 

injury, or tumor initiation, it is clear that plasticity between lineages can exist, and requires 

epigenetic regulation (E. Lee et al., 2019; Wahl & Spike, 2017).  

Phenotypic diversity and plasticity are readily observed in tumors that arise in the 

mammary gland. Basal-like triple negative breast cancers, in particular, exhibit profound 

intratumoral cell state heterogeneity (Risom et al., 2018). The plasticity between cell states in these 

tumors can arise through asymmetric cell division (Almendro et al., 2013; R. Z. Granit et al., 2013) 

or extrinsic signals or stress, including exposure to therapies (Chaffer et al., 2011; Gupta et al., 

2011a; Klevebring et al., 2014; Risom et al., 2018). Plasticity driven by chromatin remodeling in 

response to therapeutic treatment supports the emergence of  drug tolerant persister (DTP) cells, 

which can survive during treatment in a quiescent or low proliferative state (Lesniak et al., 2013; 

Liau et al., 2017; Risom et al., 2018; Sharma et al., 2010). DTP cells retain their epigenomic 

plasticity, and their quiescence can be reversed upon withdrawal of drug, predisposing the patients 

for recurrence (Risom et al., 2018). Understanding the epigenetic changes underlying plasticity into 

DTP states could lead to new strategies for prevention of resistance and/or recurrence.  

The high cell-state heterogeneity and propensity for cell-state switching of basal-like breast 

cancer cell lines necessitates single-cell profiling for further understanding of the state transitions 

during DTP generation. While more traditional bulk methods provide an average of the assayed 
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cell populations, single-cell approaches can interrogate the heterogeneity of the regulatory 

landscape by populating it with cells as data points. Single-cell RNA sequencing technologies have 

recently been at the forefront of understanding cell-state heterogeneity in development (Bach et al., 

2017; Pal et al., 2017; Wuidart et al., 2018) and cancer (Brady et al., 2017; Davis et al., 2020; 

Karaayvaz et al., 2018; C. Kim et al., 2018b; Pervolarakis et al., 2019); however these technologies 

do not provide information on chromatin regulatory changes that underlie epigenetic state plasticity 

such as the opening or closing of distal regulatory elements linked to promoters of important cancer 

genes. Recent single-cell chromatin accessibility analysis of the developing mammary gland 

indicates that distinct chromatin states are evident in basal and luminal cell populations as early as 

E18 in development (Chung et al., 2019), but how chromatin states are altered in tumors upon 

treatment is unknown. 

The Assay-for-Transposase-Accessible-Chromatin (ATAC-seq) can map regulatory 

landscapes through the determination of promoter and enhancer accessibility and the identification 

of putative DNA binding proteins through motif analysis. ATAC-seq on ensemble cell populations 

has shown great promise at delineating the epigenetic heterogeneity across primary human cancers 

and the development of chromatin accessibility profiling technologies in single-cells has helped us 

elucidate the complex heterogeneity of epigenomic architecture within cells of healthy and diseased 

tissues (Chung et al., 2019; Davis et al., 2020; Pervolarakis et al., 2019). Of these technologies, 

single-cell combinatorial indexing ATAC-seq (sci-ATAC-seq), in which library molecules go 

through two rounds of barcoding (Transposase then PCR) has been applied to a wide range of 

subjects, including organoid development (Mulqueen et al., 2019), myogenesis (Pliner et al., 

2018b), hematopoietic differentiation (Buenrostro et al., 2018) and cell atlases of various tissues 

(D. A. Cusanovich, Hill, et al., 2018; Sinnamon et al., 2019a). It is uniquely positioned to 

investigate intratumoral phenotypic state heterogeneity and the underlying plasticity that supports 

the emergence of DTPs. 
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We previously demonstrated that the heterogeneity and plasticity of basal-like breast cancers 

can be modeled in breast cancer cell lines (BCCLs), and showed that targeted therapies inhibiting 

MEK or PI3K/mTOR pathways generated quiescent DTPs in distinct differentiation states. 

Importantly, plasticity between cell states in response to therapies occurred through epigenomic 

transitions (Risom et al., 2018). Here, we profile chromatin accessibility and transcriptional 

changes at the single-cell level in five basal-like breast cancer cell lines in response to MEK 

inhibition, which we previously characterized to alter the differentiation state of Basal-Like Breast 

Cancer (BLBC) (Risom et al., 2018). These lines have diverse genetic backgrounds and distinct 

baseline state heterogeneities and yet showed similar phenotypic cell state responses to the MEK1 

inhibitor Trametinib, enriching for basoluminal cell state markers while de-enriching for 

mesenchymal cell state markers. We profiled individual cells from each cell line using sci-ATAC-

seq and found that, despite similarities in the phenotypic state after treatment with Trametinib, 

adaptation to the DTP state did not appear to be mediated by shared epigenetic changes across the 

different cell lines. Instead, we identify a previously-undescribed process of inter-cell line 

homogenization, in which chromatin sites that are uniquely open or closed in specific cell lines 

exhibit the greatest change, which shifts in the direction of the other cell lines. These findings are 

further supported by single-cell analysis of the transcriptional landscape, though to a lesser degree. 

Use of both modalities enabled us to build an integrative analysis model to decipher adaptive 

interactions between enhancers and gene expression, revealing how cell line-unique chromatin 

landscapes homogenize toward a more common DTP state. 
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4.3 Results 

 

4.3.1 Epigenetic heterogeneity across basal-like TNBC cell lines  

 
We set out to deeply characterize the epigenetic cell states in five basal-like triple negative 

breast cancer cell lines (MDAMB468, HCC1806, SUM149PT, and two populations of HCC1143) 

at baseline and in response to MEK inhibitor treatment. The two populations of HCC1143 are 

distinguished throughout as HCC1143G, the commercially available line, and HCC1143S, a 

spontaneously generated stable line. The similar origin of these lines was confirmed by STR 

profiling and detection of the same driver mutations that have been previously described in 

HCC1143. However, HCC1143S has diverged from HCC1143G, showing a distinct genetic profile 

and loss of expression of many basal keratins (Figures S1A-S1C). We performed both sci-ATAC-

seq and multiplexed single-cell RNA-seq on two independent experiments of the five cell lines 

treated for 72 hr with Trametinib or DMSO vehicle control (Figure 1A; STAR Methods). Cell line 

and treatment identity were maintained in both assays during sample multiplexing within the same 

experiment to minimize batch effects. For scRNA-seq, our samples were indexed with hashtag 

antibodies prior to library generation and sequencing, and for ATAC-seq, samples were 

multiplexed during the transposase indexing stage of combinatorial indexing. We processed 

sequencing data using established workflows to produce a gene × cell counts matrix for scRNA-

seq and custom software to produce a peak × cell matrix of QC-passing cells for the sci-ATAC-seq 

dataset (Figures S1D and S1E; STAR Methods) (Sinnamon et al., 2019a).  

In order to identify unique and shared epigenetic features across the cell states present in the 

cell lines at baseline (DMSO), we applied cisTopic (Bravo González-Blas et al., 2019), a 

probabilistic modelling technique based on Latent Dirichlet Allocation to simultaneously identify 

epigenetic cell states and the sets of co-regulated chromatin regions associated with them (Topics; 
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Figure 4.1A; STAR Methods). We determined the optimal number of topics to be 30 (Figure S1F) 

with a mean of 6,057 associated peaks per topic (Figure S1G). 

Figure 4.1 Study design and epigenetic state heterogeneity of BCCLs. (A) Overview of 

experimental and analysis strategy. (B) UMAP projection for the topic space of the five BCCLs 

assayed via sci-ATAC-seq. (C) Bi-clustering of BCCLs based on average between cell line 

correlation of drop out corrected site usage. The most line-specific topics are noted along with the 

number of sites in that topic. (D) Aggregate ATAC-seq signal at the topic-identified line-specific 

sites from C. Windows are centered on each peak and extend 2,500 bp in each direction. Top motifs 
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enriched in these sites are noted. (E) Bi-clustering of pairwise differential accessibility (DA) 

assessment. (F) Total numbers of DA peaks for each line relative to all others. (G) Aggregate 

ATAC-seq signal at line-specific DA sites. Windows are centered on each peak and extend 2,500 

bp in each direction. Top motifs enriched in these sites are noted.One prominent topic (Topic 25) 

was shared among all cell lines, largely representing constitutive promoter elements and 

housekeeping genes. The remaining topics were found to primarily show cell line specificity 

(Figure S1H), which was emphasized when we projected cells into two-dimensional space for 

visualization by performing Uniform Manifold Approximation (UMAP) (Becht et al., 2018b) on 

the matrix of topic contributions per cell, revealing distinct separation between the BCCLs (Figure 

4.1B). This separation was also observed in correlations between the average predictive probability 

of the distribution of sites for each cell line (Figure 4.1C; STAR methods). Consistent with their 

common origin, we observed the two HCC1143 subclones to be closely correlated (Spearman Corr 

= 0.917) in their epigenetic landscape and least correlated with HCC1806 (average Spearman Corr 

= 0.753) and MDAMB468 cells (average Spearman Corr = 0.767).  

We next characterized the chromatin features most unique to each of the BCCLs by selecting 

cell line specific topics based on the average contribution score within each of the cell lines (Figure 

S1I; STAR Methods). We identified the set of associated peaks within each of these topics (Figure 

4.1C; cutoff: thrP>0.975; STAR Methods) and verified cell line specificity by calculating the signal 

of accessibility for these sites across all cells grouped by cell line (Figure 4.1D). Using these cell-

line specific peak sets, we then performed motif enrichment (Heinz et al., 2010a) to explore the 

putative DNA binding proteins driving the differences, which revealed distinct sets for each 

individual line, with only modest overlap, notably AP-1 and its associated factors. Together, this 

analysis identifies transcription factors motifs associated with chromatin features/topics that are 

specific to each of the cell lines (Table S1), many of which have been reported to play roles in 

breast development and breast cancer differentiation states.  
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We additionally identified differentially accessible (DA) peaks between each pair of cell 

lines independent of our topic-based approach (STAR methods). Consistent with the topic analysis, 

hierarchical clustering of the DA counts placed the HCC1143 lines closest, with HCC1806 and 

SUM149PT also grouping together (Figure 4.1E). We then identified sites uniquely differentially 

accessible in each line when compared to all other lines which produced a range of 4,517 to 11,063 

differentially accessible loci per line (Figures 4.1F and 4.1G; total of 28,353 uniquely accessible 

and 7,835 uniquely inaccessible across all lines). These DA sites were highly enriched in the sites 

associated with the most specific topics to each cell line (Figure S1J, STAR Methods). Furthermore, 

the grouping of nearby differentially accessible loci enabled us to identify copy number alterations 

of genes that were previously documented from genome sequencing efforts (Barretina et al., 2012). 

This included SMAD4, deleted in MDAMB468, and CCND1, duplicated in the HCC1143 lines 

(Figure S1K), which supports the use of single-cell ATAC-seq data for the identification of putative 

copy number alterations, particularly deletions, consistent with a previous report (Satpathy et al., 

2019), and provides a potential framework for understanding the interaction of epigenomic 

regulatory changes with the genomic landscape. Motif enrichment of the uniquely accessible DA 

loci revealed matching families to the topic-based analysis with the exception of the enrichment of 

the SMAD motif family in the HCC1143S and HCC1806 BCCLs (Figure 4.1D vs 4.1G, Table S1). 

Motif families found to be enriched in uniquely inaccessible loci were previously identified in other 

cell lines within their uniquely accessible loci. For example, the KLF motifs accessible in 

SUM149PTs were found in the inaccessible loci in HCC1143 and MDAMB468 cells. Taken 

together, the cell line specific topic and differential accessibility analyses are concordant and 

suggest distinct motif families are responsible for maintaining the separate epigenetic cell states in 

these BCCLs. Furthermore, the consistent response profile of these lines across multiple Trametinib 

exposure experiments (Risom et al., 2018) indicates that the epigenetic response observed is 

programmed and not stochastic. 
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4.3.2 Cell line specific chromatin changes upon Trametinib treatment 

We previously showed that HCC1143G basal-like breast cancer cells alter their epigenetic 

state in response to targeted therapies, and that these changes appeared to be essential to resisting 

cell death (Risom et al., 2018). Here, we sought to characterize the epigenetic state shift that occurs 

in multiple basal-like breast cancer cell lines under MEK inhibition with Trametinib. To determine 

the concentration of Trametinib that would induce drug tolerant persister (DTP) cell populations in 

these cell lines, we evaluated growth rate inhibition metrics to determine sensitivity to Trametinib 

relative to the DMSO vehicle control (Hafner et al., 2016). The maximum effect of the drug (GRmax) 

revealed a high resistance of HCC1806 to Trametinib, followed by a modest resistance of 

MDAMB468 as compared to the more sensitive SUM149PT and HCC1143 cell lines (Figure 

4.2A). Based on the GR curves, we chose to treat the five cell lines with 1µM Trametinib for 72 

hours to induce DTP populations in all cell lines. 

Single-cell ATAC-seq profiles for both treated (Tram.) and control (DMSO) were 

combined and processed using topic-based dimensionality reduction (cisTopic; optimal topic count 

of 54; 3,535 mean peaks associated with each topic; Figure S2A). Visualization in two-dimensional 

space with UMAP revealed separate cell line specific DTP states after Trametinib treatment 

(Figures 4.2B). As with the assessment of topics in untreated cells, several topics were identified 

that were present across all cells, representing constitutively accessible elements that did not change 

after Trametinib treatment (Topics 52, 54 and 35). Among topics that changed within at least one 

cell line between DMSO and Trametinib treatment only Topic 15 was shared between two lines, 

with both SUM149PT and HCC1806 exhibiting slightly decreased accessibility at elements 

associated with the topic. The remainder were cell line specific (Figures 4.2C and S2B). A 

comparison of topics identified in the combined dataset vs the control lines alone dataset revealed 

conserved cell line specific topics (Figure S2C). Additional topics in the combined dataset 
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associated with Trametinib treatment were also line-specific. As with the untreated analysis we 

performed differential accessibility and correlation analyses, which placed all Trametinib treated 

groups closest to their DMSO groups (Figure S3A). The two populations of HCC1143 lines 

clustered together and were most distinct from the HCC1806 cell line, with SUM149PT and 

MDAMB468 cells in between. 

 
Figure 4.2 Epigenetic state shift and cross-cell line homogenization of BCCLs upon treatment. 

(A) Growth rate inhibition at increasing concentrations of Trametinib. In each line a DTP state 

emerges. (B) UMAP projection for the topic space of the five lines assayed via sci-ATAC-seq for 

all control (DMSO) and drug-exposed (Tram.) conditions. (C) UMAP projection as in (B) but with 

cells colored by the Z-scored topic probability values shown for two topics. (D) Volcano plot of 
DA between all control and treated cells with the significant hits listed on the right along with the 

distance to the nearest TSS. (E) Venn diagram of overlapping hits from within-line DA analysis. 

Decreasing accessibility sites are shown with the majority in only a single line. The EGR1 promoter 

element is significant in all but one line. (F) All-by-all site-based Spearman correlation between 

cells under control (left) and Trametinib treated (right) conditions. Asterisk indicates a significant 

difference in distributions (Mann-Whitney U test, p<0.05). (G) Comparison in the number of 
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identified DA sites between individual lines under control (left) and Trametinib treatment (right). 

Lines indicate pairs of comparisons between the two conditions. (H) Entropy analysis schematic 
where a binarized matrix is utilized and subsampled for sets of sites to generate a background 

distribution for comparison with cell line specific sites. (I) Site Shannon Entropy shift for sample 

background sites (distribution), with the set of CLSs indicated by a point. All sets of sites exhibit a 

decrease in Shannon Entropy, indicating global homogenization. (J) Site Kullback-Leiber 

Divergence for sample background sites (distribution), with the set of CLSs indicated by a point. 
CLSs are an extreme outlier indicating a high magnitude shift. 

 

As a more precise means of identifying shared changes in chromatin accessibility upon 

Trametinib treatment that may not manifest in the broader topic-based assessment, we next 

deployed a differential accessibility analysis between Trametinib treated vs control samples using 

all lines in aggregate. This produced very few significant hits (n=20; Figure 4.2D) and included 

regions near the promoters (< 5kbp from TSS) of genes that play a role in G1 cycle arrest, decreased 

proliferation, and apoptosis, all of which are previously demonstrated mechanisms of cellular 

response to Trametinib in vitro. These hits included the loss of accessibility in promoter regions of 

AP-1 complex members FOS and FOSB (Zeiser, 2014) (Figures 4.2D and S8) as well as of NTSR1, 

LINC00941, IDH3b, GOT1, and IER2, which are involved in cell proliferation, metabolism and 

migration (Al-Khallaf, 2017; H. Liu et al., 2019; Meléndez-Rodríguez et al., 2019; Neeb et al., 

2012; Q. Wu et al., 2019; Younes et al., 2014). The most significant hit was the uniform loss of 

accessibility near the promoter region of EGR1, an important transcriptional regulator and tumor 

suppressor (M. Yang et al., 2016). These hits match with expectations of a reduced metabolic and 

proliferation state common to many drug responses; however, it is unclear if these are causal 

mechanisms or the consequence of the emergence of a DTP state under Trametinib treatment.  

Since few common significant differences in accessibility sites were found, we next 

identified differentially accessible chromatin regions between Tram vs DMSO for each cell line 

individually, and found a total 2,597 DA peaks (1,249 up and 1,348 down; Figures 4.2E and S3B; 

Table S2), which varied substantially between the lines. This analysis revealed 0 shared sites 

between all cell lines (Figure 4.2E), and only a low number of sites that were shared between 

multiple cell lines (1 shared between 4 lines, 2 shared between 3 lines, and 98 between 2 lines). 
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These shared loci included the DA sites at CCND1 (shared by 2 lines), a key regulator of cell 

proliferation, which has been shown to be directly controlled via EGR1 in glioma cell lines (D.-G. 

Chen et al., 2017), and CD24 (shared by 2 lines), which is often used as a marker to determine cell 

line stemness (Figure S1K, Mani et al., 2008; Polyak and Weinberg, 2009). Similarly, when we 

examined common regulatory mechanisms, such as opening or closing of regulatory elements 

proximal to promoters and promoter elements of genes, we found 0 overlapping genes with 

regulatory elements changing in common across all cell lines (Figure S3C). Even in cases where 

we observed uniformly changing promoter elements between several lines, we also found multiple 

other elements in these promoter regions that open or close after treatment that were mutually 

exclusive between the lines. This was particularly pronounced in the loci proximal to EGR1, where 

dynamic elements were largely discordant between lines (Figure S3D and S3E). Further 

investigation of the DNA binding motifs at these loci also show little overlap, suggesting different 

mechanisms of promoter downregulation at the EGR1 locus. Together, these results indicate cell 

line specific chromatin responses to Trametinib in the generation of DTP states.  

We next prioritized dynamic topics by associating them with the set of DA peaks, which 

produced distinct mappings between peak sets from the two methods with substantial motif 

enrichment overlap (Aibar et al., 2017) (STAR Methods; Figure S3F and S3G, Table S3). When 

we annotated Trametinib enriched peaks associated with topics based on their distance to gene 

transcription start sites (TSS), only HCC1806 peaks were enriched within 1 kbp of promoter 

regions. MDAMB468, HCC1143, and SUM149PT regions were enriched more strongly in regions 

up and downstream of promoters, UTR, intronic and distal intergenic regions. This indicates that 

epigenetic adaptation to Trametinib is most likely enhancer-driven within the four less resistant cell 

lines (Figure S3G). HCC1806, in contrast, likely retains the ability to modulate pathways of 

resistance through promoter usage, which was further supported by pathway enrichment analysis 

on its Trametinib associated topic (Topic 49), (Gu Z., 2019). This revealed a significant enrichment 

(q-value < 0.05) of genes with roles in RNA Polymerase I promoter opening and telomere 

https://paperpile.com/c/YmIgNL/t3kw
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maintenance and packaging, which could contribute to the cell line’s ability to evade drug-induced 

growth arrest (Figure S4A). We additionally performed an analysis similar to gene set enrichment 

where we leveraged the deviation in accessibility across sites proximal to sets of genes associated 

with properties of breast cancer (Figure S4B). Results for HCC1143G were largely consistent with 

our previous findings using bulk RNA-seq and the same gene sets (Risom et al., 2018). A 

comparison between lines revealed a dearth of shared pathways that were altered in response to 

Trametinib exposure across the lines (Figure S4B and S4C), in line with both the topic-based and 

differential accessibility analysis that support very different response mechanisms for the 

individual lines. 

Finally, we assessed the extent of internal heterogeneity within the lines at baseline and with 

Trametinib treatment. We correlated the predictive probability distribution of sites within each of 

the lines, which showed the HCC1143 lines to be significantly more heterogeneous than the other 

basal-like cell lines (Figure 4.2F; t-test and Mann Whitney U test; Statistics in Table S4). This 

agreed with the high Shannon index of the HCC1143 line when cell state heterogeneity was 

assessed based on differentiation state marker staining (Risom et al., 2018). Trametinib treatment 

was found, in all lines except for HCC1806, to increase the intra-cell line heterogeneity of site 

accessibility. Since HCC1806s were the most resistant to Trametinib treatment, this could indicate 

that the cell line is already poised for resistance in its DMSO state. Similar results were found when 

we assessed the Shannon entropy across all sites within cell lines, with the exception that both 

HCC1806 and MDAMB468 decreased heterogeneity with treatment (t-test and Mann Whitney u 

test; Statistics in Table S4). 
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4.3.3 Preferential homogenization of cell line specific accessible chromatin regions 

upon Trametinib treatment 

Having found that the basal-like BCCLs did not share substantial common chromatin 

accessibility changes upon drug treatment, we further explored the cell-line specific epigenetic 

responses to Trametinib. We observed that the number of differentially accessible sites between all 

combinations of cell lines treated with DMSO was significantly higher (Mann-Whitney U test, W 

= 20, p= 0.023) than that of Trametinib treated populations (Figure 4.2G). We hypothesized that 

the decrease in the number of differentially accessible sites between Trametinib treated groups and 

the lack of shared changes in Trametinib response could indicate a shift towards homogenization 

between lines at sites unique to each cell line. We defined Cell Line-specific Sites (CLSs), as the 

set of sites that were significantly more accessible in one line under DMSO control conditions 

relative to all other lines by utilizing the union of peaks associated with topics specific to each line 

(mean 6,620 for each line, sum = 33,099; Figures 4.1C and S1I). The sets of sites for each individual 

line did not exhibit significant enrichment for any shared motifs and were not associated with any 

shared biological processes as assessed using ontology-based tools (Figures 4.1D and S4; STAR 

Methods), with the only commonality being the uniqueness to each respective line. 

We tested our homogenization hypothesis by calculating the relative shift in Shannon 

entropy and the Kullback-Leibler (KL) divergence in the CLSs of Trametinib treated cells 

compared to control cells. Here, Shannon entropy informs on the direction and KL-divergence 

marks the magnitude of the shift in heterogeneity between BCCLs. We deployed a permutation 

strategy of random sampling with replacement between iterations on subsets of regulatory elements 

that equaled the number of CLSs (n=33,099) to establish background levels of entropy shift and 

KL-divergence between lines (Figure 4.2H, STAR Methods). This revealed a decrease in Shannon 

Entropy for all sampled sets, indicating a general shift towards homogeneity (Figure 2I). Next, we 

examined the Shannon Entropy shift for CLSs, which was significantly more negative than the sets 
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of background sites (p=0.02, given a normal distribution; Figure 4.2I, black circle). The KL 

divergence for CLSs, a measure of the magnitude of the effect, was a striking outlier, indicating an 

extreme preference for homogenization at CLSs (Figure 4.2J, p<0.0001). In addition to Topic-

defined CLSs, we tested CLSs defined using differential accessibility (Figure 1F, total up regulated 

sites = 26,595, total down regulated sites= 7,835) and observed the same effect.  Notably, these 

shifts upon treatment occurred in both directions: increased accessibility at CLSs that were uniquely 

inaccessible, and decreased accessibility at CLSs that were uniquely accessible (p<0.0001 in both 

directions for Shannon entropy shift and KL divergence; Figures S5A andS5B). This supports the 

paradigm that there is a general shift towards epigenetic homogeneity across cell lines as a response 

to treatment with a strong preferential loss of cell line specific sites. 

To further understand this phenomenon, and understand whether it affects the accessibility 

of specific transcription factor binding motifs, we assessed the global change in chromatin 

accessibility at sets of loci harboring specific DNA binding motifs (Figure S5C; STAR Methods)  

(Schep et al., 2017). We then collapsed motif families based on similarity and annotations in the 

csBp database (Figure S5D; STAR Methods) to produce 71 groups of motif accessibility deviation. 

We then ordered motif groups based on the within-group variance from high to low of Trametinib 

treated cells and identified six that exhibited homogenization upon Trametinib treatment relative 

to the DMSO control (STAR Methods). This indicated that the DNA binding proteins recognizing 

these motifs may play an elevated role in site homogenization upon treatment between cell lines. 

These motifs consisted primarily of bZip domain, TEA domain and Forkhead domain transcription 

factors. Specifically, members of the AP-1 complex, which play important roles in regulating 

proliferation and apoptotic signaling in response to treatment, had a more uniform TF accessibility 

across Trametinib treated cells (Figure S5D). 
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4.3.3 Transcriptional changes in response to Trametinib 

To understand the transcriptional changes occurring in the five BCCLs following Trametinib 

treatment and preferential inter-line site homogenization, we performed scRNA-seq using the 10x 

Chromium platform with antibody hashtags to multiplex the 10 sample conditions. Of note, our 

initial processing of the scRNA-seq data using Seurat (Stuart et al., 2019) produced 11 clusters of 

cells from our 10 conditions (STAR Methods), with two distinct clusters representing the 

SUM149PT cell line treated with Trametinib (Figure S6A). The additional SUM149PT cluster 

exhibited expression patterns that were shared with both the SUM149PT and HCC1143G cell lines 

(Figure S6B), suggesting that the population may represent cell collisions that were not properly 

eliminated in the hashtag demultiplexing process. We therefore developed a novel technique for 

demultiplexing that leverages the Shannon Entropy of hash barcodes associated with each cell, and 

this technique readily identified the additional cluster as collisions (Figures S6C and S6D, STAR 

Methods). After filtering to remove these, we reprocessed our dataset and identified 10 distinct 

clusters, two for each individual line based on treatment condition, much like our sci-ATAC-seq 

dataset (Figure 4.3A). We first examined the global heterogeneity within each line by computing 

all-by-all cell-cell distances (Figure 4.3B, Mann-Whitney U test, Table S4, STAR Methods). This 

revealed a consistent pattern to what was observed at the chromatin accessibility level with a slight 

shift to increased heterogeneity within most lines with the exception of HCC1806 which decreased 

in heterogeneity. We next identified differentially expressed (DE) genes between DMSO control 

and Trametinib treated conditions for each cell line (Table S5), which, similar to chromatin 

accessibility, we found to be predominantly unique to each line (Figure 4.3C; 58.8% unique to one 

line, 83.4% in ≤ 2 lines). Five genes were significantly differentially expressed within all five lines, 

all of which exhibited increased expression under Trametinib treatment. Notably, four of the five 

genes were basal keratins (KRT5, KRT15, KRT16, KRT17; Figure S6E), consistent with our 

previous work showing increased basal differentiation state marker expression upon Trametinib 

treatment (Risom et al., 2018). The fifth gene consistently upregulated with Trametinib treatment 
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was CD24. When we compared the cell lines on average, we found some genes downregulated 

upon Trametinib treatment, such as CD44 (decreased expression in four of five lines; Figure S16A). 

Interestingly, the CD44(high); CD24(low) cell population has been classically used as a marker to 

identify more mesenchymal-like cancer stem cells (Mani et al., 2008; Polyak & Weinberg, 2009), 

potentially suggesting a more differentiated state with MEK inhibition. 

 

Figure 4.3 Transcriptomic state shift and cross-cell line homogenization of BCCLs upon 

treatment. (A) UMAP visualization of scRNA-seq for both conditions for the five BCCLs.(B) All-

by-all cell-cell Euclidean distances as a measure of intra-line heterogeneity shifts between control 
(left) and Trametinib treated (right). Asterisk indicates a significant difference in distributions 

(Mann-Whitney U test, p<0.05). (C) Overlap of DE genes identified between conditions within 
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each line. (D) Distribution of mean expression for all genes and CLGs (top) indicating no 

significant difference between conditions. Difference in expression variability for all genes and 
CLGs (bottom) indicating a significant shift between both sets, with a greater shift in CLGs. (E) 

Example CLGs that shift to the shared state, showing the control distribution (left) and Tramtinib 

treated distribution (right). UMAP plots to the right show the expression level for the genes with 

the control cells shown on the left and Trametinib treated cells on the right. 

We next explored whether our observation of a shift towards inter-line homogeneity, with 

an extreme preference for CLS homogenization upon Trametinib treatment was reproduced at the 

transcriptional level. We identified Cell Line-specific Genes (CLGs) by performing a DE analysis 

between cell lines under control DMSO treatment (using HCC1143G as the parent line for 

HCC1143), retaining any gene that either showed increased or decreased expression unique to one 

line when compared to each other line (n=299, 0.01< BH adj p value and |log2FoldChange| >1.5; 

Figure S6F, Table S6). To ensure that global expression was consistent across each condition, we 

confirmed that there was no difference between the mean expression for the set of all detectable 

genes in the experiment (Mann-Whitney-Wilcoxon test, W = 2.2×108, p-value = 0.3107) as well as 

for the set of CLGs (W = 4.4×104, p-value = 0.6546) (Figure 4.3D, upper graph). We then calculated 

the variance in expression across each set of genes which revealed a small but significant decrease 

in expression variance across all genes (W = 2.4×108, p-value = <0.001, 3.4% decrease in mean 

variance), but a greater significant decrease in CLGs (W = 5.3×104, p-value = <0.001, 12.3% 

decrease in mean variance; Figures 4.3D, lower graph and S6G). 

These observations match what we found in the chromatin accessibility space, with a 

substantial shift toward inter-line homogenization of cell line specific accessible loci also reflected 

in homogenization of cell line specific gene expression. The effect was more muted in the 

transcriptional space, which may be due to the increased dynamic range of transcript abundance 

when compared to the near-digital measurements of chromatin accessibility. We observed the shift 

towards homogenization of CLGs across all possible directional combinations. This includes genes 

uniquely expressed in a single cell line that are downregulated upon Trametinib exposure, such as 

MMP1, which is notably involved in cancer cell migration, breast cancer progression, and poor 
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prognosis (Boström et al., 2011; Q. M. Wang et al., 2019), as well as genes that were uniquely 

significantly repressed in a line that become activated upon drug exposure, such as KRT17 (Figure 

4.3E). The category of genes that exhibited the greatest decrease in variance were those expressed 

at high levels in a single cell line but absent or low in other lines, and upon treatment the unique 

line decreased expression while expression was increased in the other lines, as was the case with 

Vimentin (Figure 4.3E). 

4.3.4 Integration of single-cell chromatin accessibility and transcriptome datasets  

The cell line diversity and distinct state shift in BCCLs upon Trametinib exposure provides 

an information-rich structure ideally-suited to cross-modality dataset integration. We first 

identified co-accessible loci across regulatory regions in our sci-ATAC-seq dataset using cicero 

(STAR Methods) (Pliner et al., 2018b). This produced 573,458 total co-accessibility links with 

195,259 meeting a positive co-accessibility score cutoff of 0.15, a threshold we have previously 

shown to be highly concordant with chromatin conformation data and viable for performing 

integration with transcriptomic datasets (Sinnamon et al., 2019a). Using these links, we constructed 

a matrix of gene activity scores that leverages ATAC signal at promoter and linked co-accessible 

elements for each gene. We next analyzed this matrix in the same way as a typical scRNA-seq 

dataset using Seurat (Stuart et al., 2019), which produced clusters and top differentially expressed 

genes that were consistent with the clusters and genes identified in the scRNA-seq dataset (Figure 

S7A-S7C, STAR Methods).  

Recent techniques (Stuart et al., 2019; Welch et al., 2019) have advanced our ability to 

accurately identify mutual information between modalities and enable the co-embedding of the 

distinct datasets into a shared manifold. Using the framework of anchoring between modalities 

included in Seurat, we harmonized our sci-ATAC-seq and scRNA-seq datasets to produce a single, 

integrated matrix in gene space. We visualized our integration in two-dimensions via UMAP which 

produced ten groups, two for each cell line representing DMSO control and Trametinib treatment 
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conditions similar to sci-ATAC-seq and scRNA-seq UMAP visualizations when analyzed 

independently (Figure 4.4A).  

Figure 4.4 Integration of sci-ATAC-seq and scRNA-seq data and establishing a treatment 

response trajectory. (A) UMAP projection of integrated datasets. Arrows indicate direction from 

control to Trametinib treated groups of cells. Assay identity is shown in the upper right panel. 

Cell line identity is shown in the bottom right panel. (B) Confusion matrix of the predicted labels 

for sci-ATAC-seq cells based on the integrated scRNA-seq data. (C) Example genes with 
expression levels for the scRNA-seq cells shown on the left and gene activity scores for sci-
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ATAC-seq cells shown on the right. (D) Treatment response trajectories (TRTs) for each of the 

lines. Cells are colored according to their position along the TRT. The two lines shown in (E) are 
circled in dashed lines. (E) Correlation between the TRT position of cells in the joint manifold in 

(D) with the position from the ATAC (top) and RNA (bottom) TRTs alone. Cells are colored by 

treatment condition. 

The anchors also enabled the assessment of the cross-modality mutual nearest neighbors 

(MNNs) which we used for label transfer to assess the accuracy of the harmonized dataset. Across 

the MNN assignments, 98% had the same cell line label and 93% had both an accurate cell line and 

treatment label, which is expected to be lower due to the overlap of labels within the transition 

space from treated to untreated in the manifold (Figure 4.4B). The success of the label transfer was 

also reflected in the distribution of max prediction scores of anchors, with 98.6% of anchors scoring 

above the high quality 0.5 cutoff (Figure S7D). The successful integration of our datasets allowed 

us to observe correlated changes at genes, such as VIM, EGR1, and KRT14 (Figure 4C), in 

epigenetic and transcriptome space. 

Robust methods exist to determine an ordering of cells through a pseudotemporal  (Cao et 

al., 2019a; Sinnamon et al., 2019a) or pseudodose (Srivatsan et al., 2020) space. We leveraged our 

harmonized scRNA-seq and sci-ATAC-seq gene activity score manifold to project Treatment 

Response Trajectories (TRTs) from the extreme cell state of control DMSO exposed cells to the 

extreme of the Trametinib treated cells for each individual line (Figure 4.4D; STAR Methods, (Cao 

et al., 2019a)). To confirm that the integrated dataset TRT is concordant with each individual 

modality alone, we also performed ordering for each modality separately and correlated ordering 

between the integrated and independent TRTs which produced Spearman correlations between 0.61 

and 0.85 across the lines (Figures 4.4E, S7E-S7G). The correlations did not exhibit any discernible 

bias to either the chromatin accessibility or transcription modality. Taken together, the integrated 

TRTs enable the capture and analysis of the interplay between regulatory and transcriptional 

changes along the continuum of response to Trametinib 
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4.3.5 Cross-modality integration allows dissection of gene regulatory mechanisms 

during drug response 

The combined dataset gives us the power to track the transcriptional changes and, using 

co-accessibility scores, identify the dynamics of the associated regulatory elements, that may 

contribute to the expression changes observed in each gene. This enables a high-resolution 

dissection of the epigenetic control of transcription during the dynamic cell state transition of each 

BCCL in response to Trametinib. We examined the chromatin state changes for regulatory regions 

associated with key genes that had altered expression after response to Trametinib. 

Using our integrated single-cell chromatin accessibility and transcriptome TRT, we first 

assessed instances where transcriptional changes were generally shared among all five lines in 

response to Trametinib treatment, including KRT17 which increased in all lines (Figure 4.3E, 

middle). We observed a varied pattern of distal element usage at loci linked to the KRT17 promoter 

region (Figures 4.5A and 4.5B). For example, usage of a regulatory element 25.8 kbp downstream 

of the promoter (RE2) varied between the two HCC1143 lines with HCC1143G exhibiting 

accessibility at RE2 with an increase in accessibility through the TRT, whereas HCC1143S showed 

little to no accessibility at RE2 at any point in the TRT (Figure 4.5B). This element is also linked 

via co-accessibility with the promoter of KRT14, which increased in all lines except for HCC1143S 

for which expression was undetected in both conditions (Figure S8A), suggesting that in 

HCC1143S this element and the KRT14 gene are likely not physically associated with the activating 

chromatin network that drives the expression increase of KRT17. In contrast, the RE1 of KRT17 

(283 kbp upstream of the promoter) was open in both HCC1143 lines, but increased its accessibility 

upon Trametinib treatment only in the HCC1143S line (Figure 4.5B). RE1 falls within the gene 

body of ACLY which maintained a constant expression level under control and Trametinib 

treatment in all lines (data not shown). The MDAMB468 line appeared to be the only line that 

increased KRT17 promoter accessibility under Trametinib treatment, and this line also increased 
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accessibility of RE2. HCC1806 did not appear to change accessibility at any of these distal regions, 

which is consistent with reduced distal element changes that are exhibited by the line relative to the 

others (Figure S11B), and suggesting that the expression change observed for KRT17 in HCC1806 

is promoter-driven. Other dynamic genes in this region that were not linked to KRT17 include 

KRT15 and KRT19 which increased in expression in all five lines, KRT13 which showed a marked 

increase in expression only in HCC1806, and finally FKBP10 and P3H4 which lost expression 

solely in HCC1806 (Figure S8A). 

Figure 4.5 Dissection of regulatory mechanisms at dynamic genes. (A) Co-accessible loci at the 
KRT17 locus. Links with a co-accessibility score greater than our cutoff of 0.15 between the KRT17 

promoter and distal elements are highlighted. (B) Expression level along the TRT for each of the 

five lines for KRT17 (top), with the site usage probability in ATAC data along the TRT for the 

promoter and linked elements shown below. (C) Distribution of significantly enriched motif scores 

present at the KRT17 promoter and linked distal elements. Highlighted motifs have corresponding 
gene expression changes. (D) Expression levels of transcription factors with significant enrichment 

of motifs present in regulatory loci associated with KRT17. KRT17 expression levels are shown in 

Figure 4.3E.(E-H) As in (A-D) for the EGR1 locus. 
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To dissect some of the driving mechanisms that underlie the variable regulation of KRT17 

across the cell lines, we examined the motifs present at the promoter and associated RE1 and RE2 

distal elements. We first identified transcription factors that had a binding motif present in the 

queried regions with increased accessibility and that also exhibited increased expression upon 

Trametinib treatment in the various lines (Figures 4.5C and 4.5D). HCC1143S and SUM149PT 

increased accessibility at RE1 and both lines showed increased expression of SOX4, which has a 

motif present at the site. Additionally, a motif for SNAI2 is also present at RE1, which also 

increases in expression in HCC1143S and SUM149PT but is not expressed at all in HCC1143G, 

which does not exhibit accessibility changes at RE1. The repressive activity of SNAI2 is discordant 

with the upregulation that is observed in HCC1143S and SUM149PT; however, SNAI2 requires 

co-factors to impart repression, notably LSD1 coded by KDM1A (Figure S8A; Phillips et al., 2014), 

which does not exhibit altered expression in response to Trametinib. With motifs present in RE1 

and RE2, ID3 and associated DNA binding factors may also play a role (again complicated by its 

most common role as a transcriptional repressor), since it is increased or already high in lines 

showing increased accessibility in either RE1 or RE2. At RE2, both HCC1143G and MDAMB468 

showed increased accessibility in response to Trametinib exposure, with MDAMB468 also 

showing increased accessibility at the promoter. KLF6 motifs are present in both of those regions, 

and KLF6 expression increases in both of these lines. Interestingly, despite expression increases in 

KLF6 and ID3, HCC1806 cells do not change accessibility at any of these regions; however, it has 

the lowest starting accessibility of any of the lines and the least increase in expression of KRT17 

with treatment, suggesting that the KRT17 locus is mostly closed and remains that way with 

trametinib exposure.  

We next examined the repression of EGR1 (Figures 4.5E-4.5H), which all cell lines except 

MDAMB468 decreased in expression to undetectable levels (Figures 4.5F and 4.5H). In total, 10 

REs positively co-accessible with the EGR1 promoter were identified (including RE1) as well as 6 

REs that were negatively co-accessible (including RE2; Figure 4.5E). One of the positive associated 
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co-accessible links is to the promoter of HSPA9, which is associated with proliferation, and showed 

a slight decrease in expression in all lines consistent with closing of this site. Other genes in this 

region either do not change expression, or if they do, they are not linked by co-accessibility with 

the promoter of EGR1 (Figure S8B). The negative co-association with RE2 (353.5 kbp 

downstream) was largely driven by an increase in accessibility in MDAMB468 with subtle 

increases in the HCC1143 lines. In all lines, the EGR1 promoter exhibited a decrease in 

accessibility, consistent with the promoter closure representing the top shared chromatin 

accessibility change upon Trametinib exposure (Figures 4.2D and 4.2E) and consistent repression 

in expression; however, this drop in accessibility was most stark in HCC1806, in line with the 

observation that this line has a more dynamic promoter landscape than the other lines (Figure S3G). 

The remaining distal REs that were associated with EGR1 all decreased in accessibility. 

In analysis similar to that described above for KRT17, we looked for down regulated 

transcription factors that bound to motifs in the REs or promoter regions of EGR1 (Figure 4.5G). 

This analysis revealed motifs for EGR1 and DNMT1 at the promoter region, and expression of 

these factors was decreased in all cell lines except MDAMB468, consistent with our DA analysis. 

At RE1, HMGA1, HMGA2, FOSL, and FOXM1 motif accessibility was lost in the SUM149PT 

and HCC1806 lines, with a slight decrease in HCC1143G and their expression was also 

downregulated. Interestingly, the RE2 site that increases in accessibility in the MDAMB468 cell 

line had KLF1 and KLF5 motif accessibility, which shows close similarity in its motif to KLF6 

which played a role in the regulation of KRT17 and had increased expression in the same cell line 

(Figures 4.5A-4.5D). This could indicate that KLF6 may instead be driving these accessibility 

increases at multiple sites genome-wide harboring KLF family motifs in this line, highlighting both 

the challenges of motif-based analysis as well as the benefit of coupled transcriptional data that can 

be used to identify the most likely candidates. 

We additionally identified several instances where a gene was increasing or decreasing in 

expression similarly in response to Trametinib in multiple lines, with regulatory elements diverging 
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in their accessibility change. For example, HCC1143G and SUM149PT lines both increased 

expression of S100A; however, a linked distal regulatory element decreased in accessibility in 

SUM149PT and increased in the HCC1143G line (Figure S8C). This interaction was also evaluated 

for other genes linked to the conflicting regulatory element with no alternative gene that was likely 

driving this change. Our strategy for dissecting out the REs contributing to transcriptional changes 

also helped in separating linked regulatory elements of genes (ISG15, HES4) where promoters were 

in close proximity and difficult to resolve (Figure S8D). Together, these results highlight the 

distinct epigenetic mechanisms of each of these basal-like BCCLs in response to MEK inhibition 

with Trametinib. 

4.3.6 A global view of regulatory dynamics during drug response 

In addition to dissecting the regulatory control of genes that were identified as top hits by 

our individual analyses of the sci-ATAC-seq and scRNA-seq datasets; we sought to assess the 

global regulatory trends along the Trametinib TRT across the cell lines. We visualized these 

relationships by plotting the Spearman correlation of the accessibility of the regulatory element and 

gene expression through the TRT for all elements within 500 kbp versus the raw co-accessibility 

score of the distal Regulatory Element (RE) - Promoter (Pr) association. Notably, a majority of 

regulatory elements fall below our established score threshold for positive or negative co-

accessibility significance (≥|0.15|). This is likely driven primarily by constitutively accessible 

promoters that may not alter in accessibility when shifts in transcription occur, as well as challenges 

in promoter-gene assignment when multiple putative promoter elements are clustered together in 

close proximity. 

Among the significant positive or negative co-accessible Pr-RE associations and 

significant correlations of accessibility and transcription changes (≥|0.5|), we established four 

quartiles, each representing a distinct regulatory association for upregulated and downregulated 

sets of genes (Figure 4.6A and 4.6B). The first, Q1, represents REs that are correlated with the 
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proximal gene and have a positive co-accessibility score to the promoter. For example, AREG in 

SUM149PT cells (Figure 4.6C, top right), which has a distal element (RE2) that is co-accessible 

with the promoter, both of which decrease in accessibility upon Trametinib exposure and correlate 

with the decrease in expression of the gene. In contrast, Q2 represents REs that either increase or 

decrease in accessibility in concordance with the promoter, but are anti-correlated with the 

expression of the gene (see Figure 4.6C, lower right for examples). This quartile can be explained 

by the recruitment (downregulated genes) or release (upregulated genes) of repressive factors that 

affect the openness of chromatin at both the promoter and associated RE. Q3 represents instances 

where the promoter accessibility and gene expression are correlated; however the level of 

accessibility of the RE is anti-correlated with the gene expression and exhibits a negative co-

accessibility score. This can include instances of a repressive factor modulating chromatin 

accessibility by binding to or releasing from the RE to decrease or increase, respectively, the 

promoter accessibility and expression of the gene. However, this quartile would also include loci 

that are not modulating the proximal gene, but instead another gene that changes expression in the 

opposite direction, thus driving the negative correlation with expression. Finally, Q4 represents 

REs that positively correlate with the expression change of the proximal gene and both are anti-

correlated with the change in promoter accessibility. This quartile is one of the least populated and 

typically exhibits only a subtle shift in promoter accessibility change, but could represent an 

instance of the release of a repressive factor at the promoter facilitated by activating factor 

recruitment at the associated RE. Taken together, these quartiles represent a global view of distinct 

regulatory mechanisms linking regulatory element usage and resulting gene expression changes.  

We next reasoned that a focused analysis on the elements with the highest likelihood of 

functional impact, as assessed in our quartile analysis, may provide insights into the global factors 

that drive the emergence of DTP states upon Trametinib treatment. We utilized the REs that fell 

into each of the quartiles (Pr-RE co-accessibility cutoff ≥|0.15| and correlated with linked gene 
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expression ≥|0.5|) and filtered to include only those with a minimum 25% fold change in the 

average probability of accessibility in either direction and that are statistically significant (Figure 

4.6D, t-test, q<0.01; STAR Methods). We found a significant portion of these sites to overlap with 

cell line specific sites playing a role in inter-line homogenization (hypergeometric test q-value < 

0.001) within all lines (Figure 4.6E). This analysis is consistent with the previous observation that 

CLSs are most likely to change upon treatment (Figure 4.2I and 4.2J), and further associates these 

REs with functional impact on the transcriptional state of the linked gene. 

Finally, we sought to ascertain the putative DNA binding factors driving the high-confidence 

functional impact on dynamic transcription. Of these sites within the four quartiles, only sets 

containing REs that become more accessible as the target gene increases in expression or become 

less accessible as the target gene decreases in expression (i.e. quartile Q1) had enough REs to 

perform motif enrichment, in line with the dearth of putative repressive factors in the quartile 

analysis we performed. For these positive correlation element lists, we observed little overlap 

between cell lines in the significant motifs within the categories (Figure 4.6F). SUM149PT and 

HCC1806 shared the most within the set of REs associated with transcriptional activation, 

including E2A, SNAI2, GABPA, and CTCF / BORIS. Within the sets of motifs enriched in REs 

associated with downregulated genes, SUM149PT and HCC1143 showed the greatest overlap and 

included Max, ELF5, ISRE, and IRF2. Taken together, the majority of distal REs that have a high-

confidence functional impact on transcription are enriched for CLSs, can have a contradicting 

direction of accessibility change between lines with a shared transcriptional shift, and harbor little 

similarity with respect to motif enrichment, pointing to a complex system of regulatory control that 

is highly contextually dependent. 
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Figure 4.6. Global regulatory networks during the emergence of Trametinib DTP states.  
(A) Schematic of possible regulatory element (RE) relationships with a proximal promoter and 

gene broken down into quartiles based on the RE-Pr interactions. (B) Density plots of RE-

Promoter-Gene relationships for each BCCL. Dashed lines indicate cutoffs for assignment to the 

relationship quartiles portrayed in (A). Specific REs that are highlighted in (C) are indicated. (C) 
Examples of expression (top), promoter accessibility (Pr, middle), and regulatory element 

accessibility (RE, bottom) for upregulated and downregulated genes within each of the quartiles 



122 

 

established in (A). (D) Curated high-confidence REs (Pr-RE co-accessibility cutoff ≥|0.15|, 

Spearman correlation of RE with linked gene expression ≥|0.5|, |log2fold(Tram 
accessibility/DMSO accessibility)| ≥0.322 at RE and t-test with BH correction q value <0.01) that 

show significant fold change and are most likely to drive transcriptional changes. (E) High-

confidence sites in (D) are significantly enriched for CLSs. Bar plots represent the -log10 q-value 

for a hypergeometric test. (F) Motif enrichment for high-confidence dynamic, functional REs in 

quartile Q1 that gain accessibility and are associated with upregulated genes and increased 
promoter accessibility (left), as well as those that decrease in accessibility and are associated with 

downregulated genes and decreased promoter accessibility. 

 

4.4 Discussion 

Triple negative breast cancers (TNBCs) constitute approximately one sixth of all invasive 

breast cancer cases (Dent et al., 2007). This subtype is heterogeneous and aggressive, characterized 

by a high rate of early relapse and residual risk upon treatment (Carey, 2011; Liedtke et al., 2008). 

In contrast to other subtypes for which targeted therapies against hormone receptors have improved 

overall survival, well-established targeted therapies for TNBC do not exist. Molecular profiling of 

TNBC has suggested potential targeted therapies (e.g. PARP inhibitors for BRCA deficient 

tumors), but similar to that seen with chemotherapies, TNBC tumors rapidly develop resistance to 

these treatments. Understanding mechanisms of therapeutic resistance is essential to developing 

new treatment regimens for TNBC. Here, we provide a thorough systems biology analysis at the 

single-cell level of the epigenetic and transcriptional response of five basal-like TNBC cell lines to 

MEK inhibition with Trametinib. This work provides a resource of information comparing five 

genetically distinct cell lines at baseline and following treatment, and develops new technologies 

for interrogating complex connections between chromatin accessibility and gene regulation. 

Importantly, we uncover a shift toward inter-line homogenization at both the epigenetic and 

transcriptional level that suggests convergence toward a resistance phenotype despite distinct 

mechanistic pathways toward that resistance. 

Basal-like breast cancers exhibit high activation of the RAF-MEK-ERK pathway, and basal 

breast cancer cell lines have been shown to be more sensitive to MEK inhibition than luminal lines 

(Mirzoeva et al., 2009). MEK inhibition with Trametinib has shown antiproliferative effects in 
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BLBC both in vitro and in in vivo studies, however, tumor cells often acquire resistance through 

epigenetic adaptation (Risom et al., 2018; Saini et al., 2013; Zawistowski et al., 2017). A significant 

contributor to this resistance is the high intratumoral heterogeneity and plasticity associated with 

TNBC tumors. Previously, we showed that basal-like TNBC cell lines can reconstitute the high 

degree of differentiation-state phenotypic heterogeneity present in that subtype of tumors (Risom 

et al., 2018). Trametinib treatment drove increased expression of basal differentiation state markers 

(e.g. KRT 5, 14, 17) in BLBC cell lines and combination treatments with BET inhibitors restricted 

cell state switching, resulting in increased cell death. This highlights the importance of cell state 

plasticity in acquiring treatment resistance. Here, we’ve taken an approach to assess single cells to 

understand how intra- and inter-tumor heterogeneity affects treatment response. We present a 

model by which tumor cells repurpose existing developmental pathways of the mammary gland to 

traverse the Waddington epigenetic regulatory landscape (Waddington, 1957) to acquire drug 

resistance, and do so along independent paths (Figure 4.7A).  

We first evaluated baseline epigenetic states via topic and differential accessibility 

approaches in the DMSO control cells. The HCC1143 cell lines exhibited the highest baseline intra-

line heterogeneity, consistent with our previous work showing combinations of luminal, basal, and 

mesenchymal states within this line (Risom et al., 2018). We were also able to compare 

transcription factor motifs within the topics that defined each cell line to begin to understand the 

distinct regulatory pathways that maintain these cells at baseline. For MDAMB468, we found an 

enrichment for AP2, ETS, CTF and Forkhead (FOX) motifs families, with FOXA1 having the 

highest enrichment. FOXA1 is a transcription factor that is highly expressed, with highly accessible 

motifs, in mature luminal breast cells, and it is associated with repressing the basal molecular 

phenotype within breast cancers (Bernardo et al., 2013; Heinz et al., 2010a). FOXA1 was also 

shown to drive symmetric division of TNBC cells resulting in de-enrichment for KRT14 expression 

(Roy Z. Granit et al., 2018). This analysis may help explain the low baseline levels of KRT14 in 

this cell line. HCC1806 also showed enrichment for FOX motifs, along with GATA, IRF, and P53 
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family motifs, with the TP63 motif showing the greatest enrichment. The simultaneous enrichment 

of luminal (FOXA1, GATA3) and myoepithelial (TP63) motifs likely underlies the heterogeneity 

in this cell line. SUM149PT peaks were enriched for bZIP (AP-1), KLF, CTF and RUNX family 

motifs. HCC1143S-specific peaks also showed AP-1 enrichment along with NFkB, TEAD, and 

Homeobox motifs. And finally, HCC1143G peaks were also enriched for TEAD, and also showed 

enrichment of RUNX, ETS, and SOX motif families. These results indicate that these BLBC cell 

lines maintain distinct epigenetic states driven by different transcription factor regulators that 

support varying differentiation states and degrees of internal heterogeneity.  

Our interrogation of the drug tolerant persister states after treatment of these BLBC cell lines, 

represented as the bottom of the Waddington landscape (Figure 4.7A), showed a dearth of shared 

changes at both the epigenetic and transcriptional level. There were no shared topics between cell 

lines (with the exception of the two HCC1143 lines). Analysis of the genes nearest to DA sites in 

the Trametinib vs. DMSO samples by sci-ATAC-seq revealed a small number of sites with 

consistent decreased accessibility. These genes, overall, had roles in proliferation (e.g. EGR1, 

NTSR1, FOS), cell metabolism (e.g. IDH3B, GOT1), or cell motility (IER2) (Ouyang, 2017, Al-

Khallaf, 2017; Meléndez-Rodríguez et al., 2019, Shaulian and Karin, 2001; Wei, 2017). EGR1 was 

the most decreased, and low EGR1 expression has previously been correlated with unfavorable 

outcomes in breast cancer tumors treated with Tamoxifen (Shajahan-Haq et al., 2017). 

Additionally, reduced levels of EGR1 promoted resistance to Paclitaxel (PTX) treatment in TNBC 

cells via the promotion of slow cell cycling (Lasham et al., 2016). Taken together, the epigenetic 

silencing of EGR1 may contribute to loss of proliferation in these Trametinib treated BLBC cell 

lines and contribute to the emergence of a DTP state. Interrogation of DE genes in DTPs vs control 

cells in RNA-seq also showed few shared transcriptional changes. The limited set included a subset 

of keratin markers that we previously observed as increased in Trametinib treated cells, confirming 

similar plasticity in differentiation state (Risom et al., 2018). In addition, CD24 expression 

increased in all lines, and CD44 decreased in four of the five, indicating a potential shift away from 
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a more proliferative stem-like state commonly observed in basal like breast cancer (W. Li et al., 

2017). 

When comparing the control and Trametinib treatment conditions, we observed a slight 

increase in intra-line heterogeneity at the chromatin level in four of the five lines, with HCC1806, 

the most resistant of the lines, as the exception (Figure 4.7B). A significant difference in intra-line 

heterogeneity was also observed in three lines at the transcriptional level, with HCC1143S and 

MDAMB468 showing an increase and HCC1806 showing a decrease. The reduction in internal 

heterogeneity of HCC1806 may be due in part to the promoter-driven nature of the line, which 

tends to be less variable than their distal element counterparts and are often constitutively open. 

Also consistent with this observation is that the lines with increasing heterogeneity at both the 

chromatin and transcriptional level have a higher density of cells in the transition space between 

control and treated states (Figure 4.4A, 4.4D), likely contributing to the heterogeneity and 

indicating that the DTP state for these lines may not be as stable, even after 72 hours of drug 

exposure. 

Despite the lack of individual sites or genes changing similarly across the cell lines in 

response to Trametinib treatment, we observed a striking inter-line homogenization in which the 

sites and genes that were unique to specific cell lines at baseline (CLSs and CLGs, respectively) 

were the most changed in response to treatment, and they changed in a direction that made the inter-

line DTPs more similar. The decrease in distance between cell lines with respect to differentially 

accessible loci after treatment also supports this novel finding (Figures 4.2I-4.2G, 3D and 4.3E), as 

does the observation of decreased inter-line transcriptional variance that was greater at cell line 

specific genes. This phenomenon was observed in both directions across both modalities: i.e. 

uniquely active CLSs and CLGs shifting to an inactive state and uniquely inactive CLSs and CLGs 

shifting to an active state. Perhaps more surprising was the observation of instances where a 

uniquely active CLS or CLG stays active and the other four lines shift to a higher level of activity 

to match the individual line as well as the uniquely inactive reciprocal. Notably, in both the 



126 

 

chromatin accessibility and gene space, the features that were cell line specific did not have any 

similarity other than their unique presence within their respective cell line and their propensity to 

change in some way in response to Trametinib. These changes were in the form of either a higher 

probability of altering their accessibility (Figure 4.7C) or expression level and variance (Figure 

4.7D) to become more similar to the other lines. Furthermore, regulatory elements identified as 

CLSs were also more likely to be associated with transcriptional changes (Figure 4.7E). 

The consistency in observations between the chromatin and transcriptional layers prompted 

us to integrate our data across the two modalities in order to understand the path each cell line takes 

along the Waddington landscape during its adaptation to Trametinib. Recent published methods 

have shown successful integration of scATAC-seq and scRNA-seq data via projecting data into a 

shared latent space (Stuart et al., 2018; Welch et al., 2019). Our results showed successful 

integration between modalities with a high matching of ATAC-seq cell annotations and inferred 

labels after label transfer (Figure 4.4). In addition, ordering cells along the shared latent space 

proved to retain individual modality ordering, suggesting this as a successful alternative to other 

shared trajectory inference methods (Welch et al., 2017); however, we note that our dataset contains 

five distinct lines with two distinct states each, and other methods may be more appropriate when 

higher proportions of cells fall between states. This shared TRT between modalities enabled a 

detailed dissection of gene regulatory circuits, utilizing linked distal regulatory elements to 

promoters along with the transcriptional state of the corresponding gene (Figure 4.5). For genes 

that showed a similar expression change, we were able to break down the exact distal elements that 

altered their accessibility to drive the change. This revealed varied and sometimes contradicting 

changes between lines, including between the two HCC1143 lines. These dissections emphasize 

the importance of context, both locally and globally, when assessing or evaluating regulatory 

element function, where elements may appear to be activating in one context but either inactive or 

repressive in another. 
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To take a global approach to understanding linked epigenetic and transcriptional changes, 

we identified four regulatory quadrants that allow us to classify interactions between promoters and 

regulatory elements in a novel way (Figure 4.6A). Our results show that a large portion of REs 

behave classically, with an accessibility pattern that matches that of the promoter and resulting gene 

expression changes. Q2 and Q4 represent more unusual cases where promoter usage does not match 

changes in expression. Interestingly, MDAMB468 and SUM149PT cells show an excess of Q2 

regulatory interactions, which will require further study. It is important to note that a significant 

portion of interrogated REs showed high correlation between transcriptional and accessibility 

changes, but no linkage between the promoter and REs. These could likely be cases where no 

dynamic changes occur in promoter accessibility and could expand our knowledge of regulatory 

hubs with constitutive promoters that have remained elusive to methods like Cicero (Pliner et al., 

2018a). This approach also enables the systematic identification of regulatory elements with 

seemingly contradicting function in the context of different cell lines (Figure S8D). Finally, we 

leverage this analysis to establish a high-confidence set of REs that drive transcriptional changes. 

These sites were enriched for CLSs, which is consistent with the observation that CLSs as well as 

CLGs are more likely to change their activity level upon drug exposure; however, there were no 

clear consistencies between lines with respect to specific transcription factors that could be driving 

these changes. 

By leveraging single-cell epigenetic and transcriptional changes we gained a mechanistic 

understanding of cellular plasticity in BLBC cells in response to Trametinib treatment. We assess 

these mechanisms using a novel framework for assigning transcriptional consequence to regulatory 

elements in a dynamic context. The resulting networks varied across lines, even where 

transcriptional changes may be shared, which underscores the importance of local and global 

context when assessing RE function, and bears particular relevance to massively parallel reporter 

assays, where often only a single context is evaluated. We also identified a novel paradigm of drug 

treatment induced homogenization within basal-like TNBC cell lines, where drug exposure drives 
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the preferential shift in RE accessibility and gene expression levels from a unique cell line specific 

state in a single line to a state shared by all lines. This may be promising for future treatment 

strategies, as it suggests that intratumoral heterogeneity can be successfully steered toward a more 

common DTP state, and that novel combination therapies targeting the common end state could 

contribute to a more complete remission. 

 

Figure 4.7 The dynamic epigenetic landscape of MEK inhibition in TNBC cell lines.  (A) 

Waddington depiction of the treatment response to Trametinib exposure in the five BCCLs. Each 

line takes an independent path down through the regulatory landscape; however, the differences 

between the lines, represented as the ‘hills’ separating the ‘troughs’ are reduced. (B) Four of the 
five lines exhibit an increase in intra-line heterogeneity, with one line, HCC1806 that is the most 

resistant, decreasing in heterogeneity. (C) Regulatory networks were dissected with cell-line 

specific elements most likely to shift to a common state in DTPs. (D) The epigenetic changes extend 

to the transcriptional space. There is a global decrease in variance in transcription between lines 

that is more pronounced at line-specific genes. (E) Regulatory elements that are the most tightly 
linked to transcriptional changes are also most likely to be cell line specific elements.  

 

 

 

  



129 

 

4.5 Methods 

 

4.5.1 BCCL cell line culture 

Basal-like breast cancer cell lines HCC1143, HCC1806, SUM149PT and MDAMB468 were 

purchased from ATCC. The HCC1143 cell line obtained from ATCC is called HCC1143G 

throughout this paper to distinguish it from the HCC1143S line, a subclonal line that appears to 

have spontaneously drifted from the commercially available line in terms of mutational status and 

phenotype over years of culture. Cell lines were STR profiled to confirm identity, and were 

regularly screened to ensure they were free of mycoplasma contamination. HCC1143G, 

HCC1143S, and HCC1806 cell lines were cultured in RPMI supplemented with 10% FBS and 10 

µg/mL Penicillin and Streptomycin (P/S); SUM149PT were cultured in Ham’s F12 supplemented 

with 5% FBS, 5µg/mL Insulin, 10mM HEPES, 10 µg/mL P/S, and 1µg/mL hydrocortisone; 

MDAMB468 were cultured in DMEM with 10% FBS and 10 µg/mL P/S. Cells were maintained 

at 37°C and 5% CO2. HCC1143-BL that were used for WES were purchased from ATCC and 

cultured in RPMI supplemented with 10% FBS.  

For treatment, cells were plated overnight in full growth media, and then treated the next day 

with either 1µM Trametinib or an equivalent volume of vehicle (DMSO). After three days, cells 

were collected for sciATAC-seq or scRNA-seq. 

For the GR curves, stable pools of each cell line expressing nuclear mKate2 were generated 

using the NucLight Red lentiviral reagent with puromycin selection (Essen Biosciences). These 

cells were then plated in 96 well plates overnight in full growth media and treated the next day with 

Trametinib in an 8 pt. dose curve consisting of 1:4 serial dilutions with a high dose of 10µM. Red 

channel images were taken on the IncuCyte ZOOM (Essen Biosciences) at 0h and 72h of treatment, 

and images were segmented with the ZOOM software to calculate nuclei counts. GR values were 

calculated from these counts as previously described (Hafner et al., 2016).  

4.5.2 Generating sci-ATAC-seq Libraries 
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Tn5 transposase was prepared and loaded with barcoded adaptor oligos using published 

protocols (Picelli et al., 2014; Sinnamon et al., 2019a). Nuclei were isolated from cultured cells by 

resuspending in 1 mL of ice-cold Nuclei Isolation Buffer (NIB) and incubated on ice for 15 min. 

DAPI (5 mg/ml in diH2O) was added to the nuclei in NIB at 5 µg/ml final concentration. We then 

followed our previously described protocol (Sinnamon et al., 2019a) for sci-ATAC-seq on these 

samples, with some alterations detailed below. 

From the 1ml of each sample, 4,000 DAPI-stained nuclei were Fluorescence Assisted Nuclei 

sorted (FAN, Sony SH800) into 24 8-well strip PCR tubes (192 total wells, BioRad) containing 

5µL of 2× TD buffer (Illumina) and 5 µL of NIB per well. The identity of each of 10 the conditions 

was conserved in the following tagmentation step where 1 µL of 8 µM dual barcoded Tn5 

Transposase was added to each of the wells followed by incubation for 15 minutes at 55°C, which 

was ended with the plates being placed on ice to stop the reaction. After tagmentation all wells 

were pooled and 40 tagmented nuclei were FAN sorted again into each well of three 96 well PCR 

plates containing [0.25 µL 20 mg/mL BSA, 0.5 µL 1% SDS, 7.75 µL nuclease-free water, 2.5 µL 

indexed forward PCR primer, and 2.5 µL indexed reverse PCR primer]. Transposases were 

denatured by a 15-minute incubation at 55°C following sorting. Then 12 µL of PCR mix (7.5 µL 

Nextera PCR Mix (NPM), 4 µL nuclease-free water, 0.5 µL 100 × SYBR Green) was added to each 

well and then PCR amplified on a Bio-Rad CFX thermocycler via the following conditions: {5 

minutes at 72°C, 30 seconds at 98°C, and cycles of [10 seconds at 98°C, 30 seconds at 63°C, 1 

minute at 72°C; plate read, 10 seconds at 72°C]}. We pulled reactions mid-exponential, usually 

between 18-20 cycles. Post-PCR-amplification we used a QIAquick PCR purification column to 

clean 10 µl of each reaction for clean-up. The quality and concertation of the cleaned up libraries 

was determined using an Agilent Bioanalyzer, which we then diluted to and sequenced on a 

NextSeq 500 (research use only)  using custom primers and chemistry (Vitak et al., 2017b), which 

produces 10 bp PCR indexes and 8 bp Tn5 indexes at each end and paired-end 50 bp reads of 

genomic DNA. 
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4.5.3 Generating sc-RNA-seq Libraries 

 
All five cell lines were treated for 72 hr with 1µM Trametinib or DMSO, then trypsinized, 

and the 10 samples were each labeled independently with 0.5 µg of a TotalSeq-A anti-human 

Hashtag antibody (Biolegend). Cells were then pooled, with each pool containing ~10,000 cells. 

Libraries containing the pooled hashtagged cells were processed using the Chromium Single Cell 

3’ Reagent kit (v3 chemistry) (10X Genomics). The resulting libraries were profiled using the 

Tapestation (Agilent), followed by quantification with real time PCR (KAPA Biosystems) using a 

StepOne real time PCR workstation (Themo/ABI). Each library was loaded onto one lane of a 

HiSeq2500 (Illumina) for sequencing. 

4.5.4 DNA sequencing and SNV calling 

 
Total DNA was collected from HCC1143G, HCC1143S, and HCC1143-BL cells using the 

Qiagen DNAeasy Blood and Tissue kit (Qiagen). Genomic DNA (2 μg) was sonicated using 

Covaris E220 Focused Ultrasonicator (Covaris, Inc.) to an average size of 150bp. Whole-exome 

DNA sequencing libraries were prepared with 500ng of the fragmented gDNA using KAPA Hyper-

Prep Kit (KAPA Biosystems) with Agilent SureSelect XT Target Enrichment System and Human 

All Exon V5 capture baits (Agilent Technologies), following manufacturer’s protocols. Next-

generation sequencing was carried out using the Illumina HiSeq 2500 platform by the OHSU 

Massively Parallel Sequencing Shared Resource (MPSSR). Raw paired-end sequencing reads 

(100bp) in FastQ format output by the HiSeq 2500 were aligned and processed using BWA MEM 

(0.7.12) software to the full hg19 genomic assembly (GATK, Broad Institute). Picard tools (v. 

1.119), SAMtools, and GATK (v. 3.3-0) were used to sort, index, remove PCR duplicates, and 

locally realign bam files, as well as to generate target coverage and duplication metrics 

(http://broadinstitute.github.io/picard). After data processing, a mean of 94X on-target coverage 

was obtained for the sequencing libraries with 67% of on- target reads exceeding 50X depth.  
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Aligned and processed bam files were compared for calling somatic variants between 

samples using MuTect (v. 1.1.4, GATK, Broad Institute). Somatic variants were called between 

HCC1143G or HCC1143S and the HCC1143-BL cell line, which was used as a “matched normal.” 

All resulting variants were filtered to those labeled “KEEP” by MuTect and having at least 30X 

coverage and 5% variant allele frequency (VAF) in the “tumor” (treatment) and at least 15X 

coverage (with no presence of the alternate base) in the “normal” (HCC1143-BL). Variants listed 

in the dbSNP database (build 137, https://www.ncbi.nlm.nih.gov) were also omitted.  

Quantification and Statistical analysis 

 
This section describes the analysis preformed on sci-ATAC-seq and sc-RNA-seq datasets 

and finally the integration and downstream analysis of the two modalities of data. Primary analysis 

on sci-ATAC-srq was performed using our previously published sci-suite (Sinnamon et al., 2019c). 

This is a set of tools fo ther analysis of single-cell combinatorial indexed data, including wrappers 

for commonly used open source software such as including BWA (Li and Durbin 2009), MACS2 

(Zhang et al. 2008), BEDTools (Quinlan and Hall 2010), SAMtools, as well as R (R Core Team 

2019) libraries: ggplot2 (Wickham 2016), chromVAR (Schep et al. 2017), chromVARmotifs, 

Cicero (Pliner et al. 2018), RtSNE, UMAP (Becht et al., 2018b). Usage of scitools for these 

functions should cite relevant original source. Scitools is available 

at https://github.com/adeylab/scitools (continuously under development). 

4.5.5 Raw processing of data for sci-ATAC-seq 

 
We first converted our BCL to FASTQ files using bcl2fastq v. 2.19. The scitools functions 

fastq-dump and fastq-split were used to demultiplex reads based on the barcode identifying 

individual cells. These barcodes are made up of four components: two inserts of the Tn5 

tagmentation events on the P5 and P7 ends of molecules (first round of indexing), and the following 

two unique identifying PCR indexes on both sides of the molecules (second round of indexing). 

We filtered molecules so each of these four components had to be within two Hamming distances 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499306/#GR243725SINC39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499306/#GR243725SINC74
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499306/#GR243725SINC51
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499306/#GR243725SINC52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499306/#GR243725SINC52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499306/#GR243725SINC69
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499306/#GR243725SINC58
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499306/#GR243725SINC49
https://github.com/adeylab/scitools
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away from expected barcode sequences. Barcode matched reads were aligned to the hg38 genome 

using scitools fastq, which implements BWA-MEM v. 0.7.15. We filtered aligned reads by 

removing PCR duplicates, mitochondrial reads, and reads with a quality score less than 10 via the 

bam-rmdup function. We then applied our previously described mixed model approach (Vitak et 

al., 2017b) to the distribution unique reads per cell and a newly implemented knee-plot calling to 

identify reads from intact cells as opposed to debris (plot-complexity, Figure S1D). Based on the 

fraction of unique reads per cell and the total reads per cell we selected cells below 60% and above 

0% for knee-plot calling, where we ordered cells according to their unique aligned reads and used 

the R package inflection to call the knee (Figure S1D). Based on these results we filtered cells with 

less than 5000 unique reads (bam-filter wrapper function) resulting in n cells and then used the 

pseudo-bulk aggregate of all passing cells to call peaks via MACS2 v. 2.1.1 (158041  peaks). These 

peaks were then extended to 500 bps, merged and then chromosome border corrected (atac-

callpeak).       

4.5.6 Topic analysis 

 
We generated a counts matrix containing cells as columns and peaks as rows via scitools 

counts and filtered to exclude rows with fewer than 10 cells with reads (-R 10) and columns with 

fewer than 1000 (-C 1000) reads. We then binarized this counts matrix and applied Cistopic v. 

0.2.0, a probabilistic topic modelling method based on Latent Dirichlet Allocation, which groups 

sets of accessible sites and cells simultaneously by common themes (Topics). The resulting two 

matrixes (topics-cell distribution and the topics-sites distribution matrixes) can then be then used 

for downstream projections of cell states via uniform manifold approximation and projection 

(UMAP, on topics-cell matrix) and topic exploration of associated sites (on topics-sites matrix).  

We first analyzed the DMSO treated cell lines separately to characterize initial cell line 

heterogeneity. We determined the optimal number of topics (30) via running a likelihood 

stabilization analysis (Figure S1F) where we ran multiple models with differing number of topics 
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and chose the model with the highest log-likelihood at the last iteration (iteration number 250). We 

then analyzed the combined DMSO and Trametinib treated cells. Using the same likelihood 

stabilization method, we first selected 50 topics (Figure S2A) and then again performed a finer 

scale analysis near 50 topics resulting in 54 as the optimal number of topics. In both analyses we 

chose the top associated sites for each topic by binarizing topic sites topics-sites distribution matrix 

with the GammaFit option of Cistopic (Figure S1G, thrP =0.975) and performed HOMER (Heinz 

et al., 2010b), http ://homer.ucsd.edu/homer/motif/) known and de novo motif enrichment (Tables 

S1 and S3), to identify enriched regulators of chromatin accessibility relative to all background 

peaks. 

4.5.7 Differential accessibility 

 
To identify differentially accessible sites between provided annotation groups, we first used 

scitools aggregate-cells to create clusters of k=40 cells based on their low dimensional UMAP 

coordinates. Assuming these cells have similar accessibility profiles we aggregated accessibility of 

cells within these pseudo-bulk groups to use as replicates in the down-stream analysis with the 

DESeq2 (Love et al., 2014). Using this R package, we corrected for technical biases such as assay 

efficiency and performed differential accessibility tests (using nBinomWaldTest) between all 45 

combinations of cell lines and treatment groups (Figures 4.1E, right panel of S3A and S3B-S3C, 

Table S2), and between the joined Trametinib and DMSO treated cell lines (Figures 4.2D and S3D). 

Finally, in all DA analyses we corrected for multiple testing at q=0.01 with the qvalue R package. 

In downstream analyses we used differentially accessible sites to bi-cluster cell lines (Figures 1E, 

right panel of S3A and S3B-S3C) and to order topics based on importance via enrichment between 

DA and topic associated sites (Figures S1J and S3F). 

 

4.5.8 Identifying unique cell line specific sites 
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To identify unique, cell line specific sites, we averaged the contributions of topics across 

cells in each of the cell lines based on the probability distribution topics-cells matrix (Figures S1H 

and S1I) and chose the binarized sites of the highest contributing topics uniquely present in 

individual cell lines. We argue that LDA inherently results in an overlap of associated sites of 

related topics, therefore we can assume that strongly associated cell line specific sites are 

represented in our chosen cell line specific topics, even when multiple topics are cell line specific. 

In addition, we confirmed the cell line specificity of these sites via differential accessibility analysis 

(Figure 4.1F and 4.1G, Star Methods). We first intersected sites that were differentially accessible 

between all combination of DMSO treated cell lines with either HCC1143S or HCC1143G groups 

held out from the comparisons, then took the union of these two cases. This removed the potential 

skewing of our results due to the relative closeness of the two subclones in the epigenetic landscape. 

We plotted the signal within these sites using scitools make-signal and scitools plot-signal (Figures 

1D and 1G), which confirmed the cell line specificity of our sites. Using AUCell, (Aibar et al., 

2017) we were able to confirm the enrichment of DA sites in our chosen topic peaks (Figure S1J), 

further confirming their cell line specific nature. 

4.5.9 Measuring epigenetic heterogeneity of cell populations 

 
Measuring epigenetic heterogeneity can be challenging due to the inherent high dropout rates 

of single cell chromatin accessibility assays. We applied two approaches to characterize cell to cell 

and site to site variation accurately within annotations. Dropout rates can be approximated via the 

use of the predictive distribution matrix, a cells by sites matrix, which is the result of the 

multiplication of the topics-cells and the topics-sites probability distribution matrixes. With this 

approach dropouts within individual cells are corrected for via the use the same site with similar 

topic associations. This matrix is primarily used for the ranking of cell line specific sites in standard 

Cistopic workflow, but can be applied for approximating cell-cell spearman correlation due the 

inherent dropout correction (Figure 2F). We then performed a Mann-Whitney U test (r wilcox.test) 
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and t-test between the treated and non-treated groups within cell lines (Table S4). We argue that 

the large sample number allows for a t-test to be performed even when the compared distributions 

do not follow normality due to the central limit theorem. In addition, we approximated site to site 

variation via Shannon entropy on the binarized cell-site accessibility matrix.  We argue that due to 

the random distribution of dropout across sites, we can correct for read depth by looking at the 

frequency of cells being accessible at a site within annotations via Shannon entropy.  

4.5.10 Cell line specific site uniformization 

 
We observed a decrease in the number of differentially accessible sites between Trametinib 

treated groups and minimal number of shared changes upon treatment between cell lines (Figure 

2G). We tested a potential elevated homogenization effect between lines at cell line specific sites 

vs random background sites. We calculated the relative shift in Shannon entropy of Trametinib 

treated cells relative to DMSO treated cells summed over all unique cell line specific sites (∆𝑆 =

∑ (𝑆𝑖
𝐷𝑀𝑆𝑂 − 𝑆𝑖

𝑇𝑟𝑎𝑚 )𝑖=𝑢𝑛𝑖𝑞𝑢𝑒  𝑠𝑖𝑡𝑒𝑠 ). Similarly, we calculated the sum of Kullback-Leibler (KL) 

divergence in the Trametinib treated cells compared to control cells treated with DMSO vehicle. 

The Shannon entropy shift informs us of the direction and the KL divergence can tell us about the 

magnitude of the effect. To have an accurate comparison as a background we performed 

bootstrapping (10,000 iterations) where we random sampled the same number of regulatory 

elements as unique cell line specific sites and calculated the sum of their KL divergence and 

Shannon entropy. We performed these analyses on cell line specific sites identified via topic unique 

sites (Figures 2H-2J) and via differential accessibility (Figures S5A and S5B). For the case where 

unique cell line value was within the background distribution (Figure 2I) we fit a normal 

distribution and tested for the probability of having more extreme (lower.tail) entropy difference 

than the unique cell line value via the r function pnorm.  
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4.5.11 Gene set enrichment based on chromatin accessibility 

We employed two strategies for gene set enrichment analysis. First, we identified Trametinib 

only and DMSO only enriched topics via the use of AUCell, (Aibar et al., 2017), where we looked 

for topics which had an relative enrichment in sites that were differentially accessible between 

Trametinib and DMSO within individual cell lines. We then performed rGREAT (McLean et al., 

2010) on the top associated of the highlighted topics (Topics 6,7,11,32,42, 49,51 for Trametinib 

and 1,2,25,34,41,53 for DMSO) using UCSC liftover of associated sites to hg19 assembly from 

hg38 (Figure S4A). Second, we used a method similar to chromVAR (Schep et al., 2017) to calculate 

standardized deviation scores over sets of sites +/-10 kb from promoters of provided curated gene 

sets (Risom et al., 2018) relative to all background sites (atac-deviation command). We then 

calculated effect size each gene set by taking the difference of the mean standardized deviation in 

the Trametinib treated group and the DMSO treated control for each of the cell lines. We calculated 

significance by doing a t-test between the two groups for each of the cell line and gene set. We 

Bonferroni corrected for the multiple gene set comparisons within cell lines (Figure S4B and S4C). 

4.5.14 Differential expression and identifying unique cell line specific sites 

 

We ran differential expression (DE) analyses (FindMarkers command within Seurat 3) 

between Trametinib and DMSO treated groups within cell lines and across all cell lines with the 

minimum percentage of features in either compared groups set to 0.25, p adjusted < 0.05 and 

|log2foldchange| > 1 (Figure S6E, Table S5). We intersected individual DE genes of the cell lines 

using InteractiVenn (Heberle et al., 2015). We identified cell line specific genes for each of the cell 

lines by comparing DMSO treated groups of one cell line to all others with HCC1143S held out, 

due to the relative low cell numbers of this group compared to others and its relative transcriptomic 

closeness to the HCC1143G compared to other cell lines. For identifying CLGs for downstream 

analyses we used a more stringent q<0.01 and |log2foldchange|>1.5 cutoff (468 genes, Figure S6F, 

Table S6). 
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4.5.12 Identifying cis-regulatory networks and approximating gene activity 

 
We used the R package Cicero (Pliner et al., 2018a) to link regulatory regions based on their 

shared accessibility across cells. We identified 573,458 total co-accessibility links with 195,259 

meeting a positive co-accessibility score cutoff of 0.15. Of these 64,606 co-accessible sites, 44,756 

were linked to promoter regions of genes. Using the read depth normalized variation in co-

accessibility between regulatory elements and promoters across cell lines and treatment we 

approximated gene activity (Figure S7A and S7B). Finally, we normalized values by the total 

number of genes included. 

4.5.13 Raw processing of data for scRNA-seq 

 
Samples were run on two lanes of the 10X Chromium v2 system. Initial quality assessment, 

HTO tag counting, alignment to the hg38 human genome and transcript assignment was done with 

CellRanger. Median UMI counts per cell was 25,974 and 21,202, and genes detected per cell was 

5,128 and 4,815 for pools 1 and 2 respectively. Downstream analysis on the output unfiltered 

expression matrix and the HTO count matrices was primarily done via Seurat (v. 3). We first used 

HTODemux provided with Seurat (v. 3) with default settings to identify cells with ambiguous 

sample origins. Following analyses, however, revealed 11 clusters of cells instead of the expected 

10. Differential expression of these clusters revealed the 11th cluster (classified as SUM149PT 

Trametinib treated cells) to have a gene expression profile similar to HCC1143G DMSO treated 

cells and SUM149PT Trametinib treated cells. This led us to develop a Shannon entropy-based 

method, where we used HTO tag frequency within cells to mark heterogeneity of the tags. The 

distribution of entropy across cells proved to be bimodal, which we fit with a mixed model similar 

to our sci-ATAC-seq read cutoff strategy. This analysis revealed the 11th cluster to be highly 

heterogeneous based on its HTO-tags, which we then proceeded to filter out. Depending on the 

type of analysis, we applied one of the two methods of normalization available in Seurat 3 on the 

filtered counts matrixes. In analyses such as internal heterogeneity and cell line specific gene 
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expression uniformization, where removing technical heterogeneity (such as read depth) while 

preserving biological heterogeneity is important, we employed scTransform for normalization and 

scaling. Interestingly, we found that the standard Seurat 3 workflow of log-normalization, z-score 

transformation with the NormalizeData and ScaleData functions were better suited for integration 

of the sciATAC-seq and scRNA-seq datasets. This could be due to the harsher nature of the 

normalization on the gene activity matrix. In both methods of normalization, we corrected for 

mitochondial mapping percentages. We ran PCA analyses with 50 total PCAs for dimensionality 

reduction on the selected features and projected cells into two dimensions via UMAP (Becht et al., 

2018b).  

4.5.15 Measuring transcriptomic heterogeneity 

 
We measured the transcriptomic heterogeneity of cell line and treatment groups by 

computing all combinations of internal Euclidian distances within annotations based on their PCA 

loadings (Figure 4.3, Table S4). We then performed a Mann-Whitney U test and t-test between the 

treated and non-treated groups within cell lines. We argue that the large sample number allows for 

a t-test to be performed even when the compared distributions do not follow normality due to the 

central limit theorem. 

4.5.16 Uniformization of cell line specific expression 

 
We subset our scTransform data into Trametinib and DMSO groups and calculated the 

standardized variance and average expression within these groups via the FindVariableFeatures 

Seurat 3 command. The standardized variance accurately corrects for average expression of the 

gene. We then performed a Mann-Whitney U test and t-test between these groups. Finally, we 

performed the same analysis on the subset of unique CLGs (stringent q<0.01 and 

|log2foldchange|>1.5 cutoff, 468 genes, Figure S6F, Table S6)..   

4.5.17 Integration of scRNA-seq and sci-ATAC-seq data 
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We applied the recently described cross-data-modality integration method based in 

Canonical Correlation Analysis (CCA) to co-anchor our two data sets (S7C, Stuart et al., 2018). 

First we performed Latent Semantic Indexing (LSI) on our the filtered chromatin accessibility 

matrix and calculated the normalized LSI loadings scores for anchor weighting. We then identified 

1,816 co-varying features via the SelectIntegrationFeatures function between and the standard 

normalized scRNA-seq expression matrix and the sci-ATAC-seq normalized gene activity matrix. 

This method yielded better integration results when we applied the FindTransferAnchor (with the 

parameters dims = 1:20 and reduction = ‘‘cca’’ ) compared to when variable features were only 

selected based on the scRNA-seq (3000 features) data. Similarly we found that LSI weighting out 

performed Cistopic based anchor weighting in the following TransferData step (weight.reduction 

= atac[[‘‘lsi’’]]), where scRNA-seq data labels were transferred onto sci-ATAC-seq cells. We 

created a confusion count matrix based on treatment and cell line label matches of the scRNA 

predicted and actual labels (Figure 4.4B). In addition, we plotted the sci-ATAC-seq predicted label 

score distributions of the sci-ATAC-seq cells for transfer quality control (Figure S7D). These 

scores are computed during the TransferData step from the anchor classification scores. Using a 

similar method for feature imputation we transferred the scRNA-seq data onto the scATAC-seq 

cells and performed PCA on the combined datasets, followed by visualization via UMAP (Becht 

et al., 2018b). 

4.5.18 Ordering of cells along treatment response 

 
We applied the R package Monocle 3 v. alpha to the imputed feature PCAs and the projected 

UMAP coordinates of the combined RNA ATAC data sets to order cells along a treatment response 

curve (Figures 4.4D, S7E-S7F). We used the negative binomial distribution to approximate size 

factors, gene dispersions and clustered cells into 10 groups based on the PCAs. Using 

RGE_method=”SimplePPT” we learned the principle graph within cell lines by forcing partition 

groups to contain only cells from a given cell line. We did this by omitting cells from the ordering 
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where outlier cells were part of a cluster associated with a different cell line. This was primarily in 

the HCC1143S cluster, likely due to the lower number of RNA data for these cells.  Finally, we 

chose the root nodes visually so that pseudotemporal ordering direction was from DMSO to 

Trametinib treated cells. We then separately ordered just the scRNA-seq cells based on PCA and 

UMAP projection of their expression data and the scATAC-seq cells based on their cistopic cell-

topics matrix and the UMAP projections. For the latter we approximated the size factors using the 

binomialff option and used DDRTree for graphing out cells. To prove that the ordering in individual 

modalities was conserved in the integrated dataset we performed a Spearman correlation between 

ATAC and combined data and RNA and the combined data (Figure S7E- S7G). We also performed 

this analysis where we used the cells closest to the combined ordering as roots for the individual 

modalities and found slightly lower correlations. In both approaches the correlation between 

combined and the sci-ATAC-seq datasets were lower than the scRNA-combined data set 

correlations. This is likely due to the ordering ATAC cells in combined datasets based on the gene 

activity scores as opposed to ordering based on cistopic scores of sci-ATACseq data. 

4.5.19 Characterizing linked transcriptomic and epigenetic adaptation 

 

We created a computational framework for characterizing changes in the linked epigenetic 

transcriptomic landscape. We selected cicero linked (>0.001) co-accessible sites with the promoter 

regions (<5000 bp to TSS) of the differentially expressed genes we identified using our scRNA-

seq data. We calculated the Spearman Correlation between the interpolated values of the gene 

expression and the dropout corrected probability of accessibility at the promoter linked sites along 

the treatment curve of each cell line (Figures 4.6A-4.6C). We used the loess smoothing function in 

R for interpolation with the smoothing parameter set as 200 and the ordering of the co-embedded 

cells (interval set as the maximum and minimum treatment curve order of cell line cells). For each 

linked site we calculated the log2fold change between the average dropout corrected probability of 

accessibility values of Trametinib treated and DMSO treated cells and performed a Mann-Whitney 
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U test between the two groups. Finally, in all DA analyses we corrected for multiple testing at 

q=0.01 with the qvalue R package. After removing promoters, we identified high confidence 

dynamically changing regulatory sites putatively involved in the regulation of DE genes by first 

filtering for sites with abs|co-accessibility| ≥0.15 and |Spearman correlation along treatment| ≥0.5. 

We finally filtered for sites with at least a 25% change in accessibility ( |log2fold(Tram 

accessibility/DMSO accessibility)| ≥0.322) and a  q-value<0.01 (Figure 4.6D). We then performed 

an enrichment of these filtered sites for the topic defined cell line specific unique sites (Figure 

4.6E). We used a hypergeometric test (R command phyper) to calculate the relative enrichment of 

high confidence filtered sites (linked to transcriptional change) in all cell line unique sites. We 

corrected for false discovery rate via the Benjamini-Hochberg Procedure. Finally, we used homer 

to analyze the transcription factors enriched in the filtered sites of a cell line relative to the DMSO 

topic defined unique line specific sites of that cell line (Figure 4.6F). 
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Chapter 5: Conclusions and future directions 
 
 5.1 General discussion 

Healthy tissue function is closely tied to genomic and epigenomic heterogeneity. Genomic 

somatic mutations accrue during development and aging. The resulting somatic mosaicism enables 

advantageous neuronal diversity during early development and can give rise to clonal populations 

with enhanced proliferation in continuously dividing cell populations. Interestingly, as cells 

aggregate mutations that increase their individual fitness in cancer-related genes, so does the chance 

for them to turn cancerous and form tumors. At this point, genomic heterogeneity becomes 

advantageous for the tumor to avoid treatment pressure (Figure 1.1).  

 Similarly, regulation of tissue-component cell types and cell states is heterogenous and 

complex (Figure 1.2). Cell lineages are founded via epigenetic changes during development, such 

as the deposition of methylation and acetylation marks. These poise transcriptional machinery via 

chromatin accessibility, opening at lineage specific gene enhancers and promoters. Cell states are 

the perturbations of these cell lineages and are responsible for making adaptive responses to 

extrinsic stimuli. Cancer can exploit the developmental epigenetic processes necessary for cell 

lineage formation and cell state transitions to create cell populations resistant to treatment. As a 

result, mapping genetic and epigenetic heterogeneity has become a major advantage of single-cell 

studies over bulk approaches as the latter can only provide averaged profiles of the assayed cell 

populations. Cell atlases produced by single-cell methods capture snapshots of cell types and states 

present in the studied tissue. Cell atlases can also capture the progression between cell states, which 

computational methods can use to decipher the regulatory ordering of cells. These can be further 

extended by taking samples throughout development, tumorigenesis or treatment response to 

observe changes across the regulatory landscape. This dissertation shows the application of high-

throughput combinatorial indexed strategies to profile chromatin accessibility and whole genome 

copy number variation across a variety of healthy and diseased tissues.  
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Figure 5.1 Genomic and epigenetic heterogeneity complex tissues. (A) Methodological 

improvements to sci-assays. (B) Computational considerations of employing integration between 

datasets (C) Biological questions regarding Trametinib treatment of BCCLs. 

I first showed how sci-DNA-seq helped interrogate large-scale aneuploidy of the Rhesus 

brain, pancreatic ductal adenocarcinoma, and the cell line GM12878. Cell line and brain aneuploidy 

matched values reported in literature and other single-cell methods (Figures 2.2, 2.3), establishing 

the validity of our approach for further analysis on a tumor sample (Figure 2.4). The major 

advantage of sci-DNA-seq was shown on the profiled PDAC tumor, where I first identified clonal 

populations based on their low coverage CNV profiles, which provided the basis for aggregation 

within these cell populations. I developed a breakpoint-based copy number calling computational 

framework for this analysis which can potentially be applied for future analyses of tumor 

populations. This led to the detection of higher resolution (100 kbp windowed) copy number 

alterations at potential clone-specific driver genes, such as IKBKB and PDGRFB (Forbes et al., 

2015; Perkins, 2007). Since this method was published, other single-cell DNA sequencing studies 

have shown how selection on preexisting clonal populations as early as pre-malignant lesions can 

lead to treatment resistant cells in cancer (Casasent et al., 2018; Hinohara et al., 2018; C. Kim et 

al., 2018a). These studies, however, outline the difficulty in determining treatment resistance on 

the mutational landscape alone as selection happens on the phenotypes of individual cells, which 

is tied to regulatory landscape on top of clonal heterogeneity. Therefore, measuring somatic 

heterogeneity, regulatory changes, and phenotype in parallel is important to further understand 
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acquired treatment resistance (Hinohara & Polyak, 2019b). Assays such as the suspended 

microchannel resonator can utilize scRNA-seq and growth measurements in parallel to help 

elucidate these processes (Kimmerling et al., 2018). 

In Chapter 3, I showed how using sci-ATAC-seq can map these steady state regulatory 

processes by capturing the chromatin accessibility landscape of the healthy murine hippocampus 

(Figures 3.1-3.5). This revealed high-resolution separation of cell types, including rare populations 

of microglia and oligodendrocyte progenitors. The necessity of improving computational 

approaches of dimensionality reduction was exhibited by the application of CisTopic (Bravo 

González-Blas et al., 2019) to the pyramidal neuronal populations, which helped identify 

previously not seen CA1 and CA2 neurons. Later analysis of co-regulated chromatin hubs and TF 

accessibility revealed cell type specific chromatin architecture and potential transcription factors 

playing a role in their regulation. Finally, the separation of in vitro cultured neurons and in vivo 

neuronal populations revealed large regulatory differences between corresponding neuronal 

groups, indicating that epigenetic biases are introduced during neuron culturing conditions.   

In Chapter 4, I showed how sci-ATAC-seq can map the dynamic process of epigenetic 

adaptation of genetically distinct basal like triple-negative breast cancer to Trametinib treatment 

(Figures 4.1-4.7). While our previous study (Risom, 2017) indicated a shared response drug 

resistant persistors across the studied five cell lines, my initial analyses showed no matching 

epigenetic change. However, differential accessibility indicated that the epigenetic distance 

between cell lines defined by chromatin accessibility decreases upon treatment. The analysis of 

involved sites revealed a preferential homogenization of cell-type specific sites. This phenomenon 

was also replicated in transcriptomic space indicating a contraction in epigenetic and transcriptomic 

space upon treatment. In order to understand it further, I developed a computational pipeline to 

match changes in chromatin regulation with shifts observed in the transcriptome upon treatment. 

These revealed an enrichment of cell line specific regulatory elements in sites that are linked to 
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changed transcription. This phenomenon is not well understood, but offers potential therapeutic 

benefits and opens up opportunities for later studies.  

5.2 Methodological Considerations 

 
The studies shown in this dissertation emphasize the importance of methodological 

improvements across assays via increasing throughput, read coverage, integration of other assays, 

spatial information, lineage tracing, and the development of novel computational methods. 

 

5.2.1 Improving combinatorial indexed assays  

 
Combinatorial indexing is a highly scalable technology which is evolving fast to incorporate 

assays to show genetic and epigenetic heterogeneity across single cells (Figure 5.1A). 

Combinatorial indexing strategies have been applied to profile the chromatin accessibility (D. A. 

Cusanovich et al., 2015), transcriptome (Cao et al., 2017, 2019b), whole genome (Vitak et al., 

2017a), and chromosome conformation capture (Ramani et al., 2017, 2020) of single cells. While 

initial strategies have been 96-well plate based, recent hybrid droplet-based methods have further 

improved throughput in droplet based sci-ATAC-seq (Lareau et al., 2019), sciRNA-seq (Datlinger 

et al., 2019), and led to novel methods such as single-cell combinatorial indexed cytometry (Hwang 

et al., 2020). In addition, pushes have been made to profile regulatory features in parallel, such as 

joint parallel profiling of RNA and ATAC (Cao et al., 2018). 

In addition to increasing throughput, increasing read coverage of individual cells has been 

central to these assays. Decreasing the sparsity of single-cell ATAC-seq data can help improve 

separation of cell types and states, along with capturing more fine transitions between cell states. 

Improvements such as the method introduced in Chapter 2 (Sinnamon et al., 2019b), omni-ATAC-

seq (Corces et al., 2017), and scip-ATAC-seq (Mulqueen et al., 2019) have primarily focused on 

improving the effectiveness of the Tn5 transposition. This can be done by decreasing contaminating 

sequences, such as mitochondrial DNA and by making nuclear entry more permissible for the 

transposase. Another aspect of ATAC-seq data is the difficulty in distinguishing missing data from 
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closed chromatin. One method addresses this experimentally via the use of a GpC 

methyltransferase to label sites in nucleosome depleted DNA before a bisulfite sequencing. As GpC 

dinucleotides are abundant but are also not frequently methylated in the mammalian genome, 

Nucleosome Occupancy and Methylation sequencing (NOME-seq) can provide parallel 

endogenous methylation patters via CpG methylation and fine scale chromatin accessibility 

information through GpC methylation (Kelly et al., 2012). Recently, a single-cell adaptation of this 

approach was published (Pott, 2017) followed by an assay which profiles the transcriptome of 

assayed cells as well (Clark et al., 2018). 

Increasing read coverage of single cells has been as important for single-cell DNA 

sequencing methods as in single-cell ATAC-seq. However, as opposed to chromatin accessibility, 

the uniformity of genome amplification is necessary for unbiased copy number calling. While sci-

DNA-seq is high throughput, it does not incorporate a genome amplification method, which limits 

our ability to call single nucleotide polymorphisms accurately. Other existing single-cell DNA 

sequencing methods including whole genome amplification steps have been plagued by low 

throughput until recently. The incorporation of Linear amplification via transposon insertion (C. 

Chen et al., 2017) into a combinatorial indexed schema successfully profiled mouse sperm rare 

chromosome mis-segregation events in meiosis (Yin et al., 2019) . 

While single-cell assays capture the granularity of complex tissues, they do not inherently 

record spatial information. As both complex healthy tissues and solid tumors rely on spatial 

organization for normal functionality or disease progression, there is a need for spatially resolved 

single-cell assays. Indeed, identification of CA1, CA2 and CA3 pyramidal neuronal populations in 

the hippocampus could have been verified with spatially resolved data. In addition, the evolution 

of clonal populations within a tumor can be very spatially restricted as exhibited by bulk methods 

(Dou et al., 2018; X. Li et al., 2018; Williams et al., 2018). Recent advances in in situ hybridization 

(ISH) technologies and in situ RNA sequencing show close to single-cell resolution (Eng et al., 

2019; Rodriques et al., 2019; Ståhl et al., 2016; Vickovic et al., 2019). Computational methods 
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using the integration of ISH atlases of gene expression with scRNA-seq have also shown promise 

in mapping rare cell types (Achim et al., 2015; Moncada et al., 2020; Satija et al., 2015). These 

methods however are often limited in throughput, and cannot profile nuclear genomic and 

epigenetic properties. Alternative methods use targeted capture to spatially map cells from cryo-

sectioned samples as exhibited in spatially resolved single-cell whole genome sequencing of in situ 

and invasive ductal carcinomas (Casasent et al., 2018). 

Single-cell combinatorial indexed ATAC sequencing was recently expanded (Thornton et 

al., 2019) to include spatial information via the first round of transposase-based indexing (Figure 

5.1D). This allowed for the spatial profiling of the mouse cortex and the pseudospatial ordering of 

glutamatergic neurons in the somatosensory cortex. This assay has not been extended to include 

single-cell whole genome sequencing but could be incorporated via the addition of nucleosome 

depletion strategies presented in section 2.3.1.  

Understanding lineage relationships is important for deciphering the order of cell state 

transitions during development or tumorigenesis. Computational methods listed in section 1.2.4 

can order cells or similarly behaving cell groups by assuming each to be a low-quality snapshot of 

a ground truth distribution of cells. Based on the statistical inference of the error and the order of 

these snapshots can reveal dynamic chromatin accessibility gene expression changes. These, 

however, are approximations of the ground truth and can often overfit data, resulting in conflicting 

trajectories on identical data (Weinreb et al., 2018). Therefore, we should be careful when 

considering the ordering of the inferred treatment trajectory in Chapter 4. One promising aspect, 

however, was the high correlation between the combined and single assay only ordering. The lower 

correlation of sci-ATAC-seq only and the combined dataset orderings was likely due the 

differences between ordering on gene activity scores as opposed to ordering on accessibility peak 

changes. This creates a possibility of developing a method where, after the initial ordering of gene 

activity, chromatin accessibly changes between cells with the same accessibility could be 

considered to fine tune within trajectory ordering.  
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Experimental lineage tracing is also an alternative to provide reliable information on cell 

lineages. These can be genetically encoded fluorescent protein; however, this method only works 

at low cell numbers due to the limitation in spectral resolution. By introducing prospective markers 

via different inducible (Sleeping Beauty transposase, Cre–loxP and CRISP–Cas9 systems) lineage 

relationships can be conserved.  Introducing heritable genetic barcodes with the CRISP–Cas9 

system can trace progeny of the initial cells, as novel induced indels become permanent additions 

to the original barcode (Baron & van Oudenaarden, 2019). Methods differ in how the introduction 

of these indels happens; scGESTALT (Raj et al., 2018) relies on a heat shock induced system, 

scScarTrace (Alemany et al., 2018) and LINNEUS (Spanjaard et al., 2018) rely on the injection of 

Cas9 RNA or protein in the one cell stage. Whereas read out of barcodes happens on the level of 

RNA for LINNEUS and scGESTALT, scScarTrace requires a separate DNA sequencing step 

(Baron & van Oudenaarden, 2019). These methods require complex genetic manipulation at the 

beginning of the experiment, and are model system dependent, as opposed to more easily 

deployable virus-based label delivery systems. However, up until recently, the latter had the 

limitation of not capturing progression. The CellTag system allows for progressive labeling via 

multiplexing with introduced indexes each round. Such a system could of benefit to understanding 

acquired drug resistance (Biddy et al., 2018; Guo et al., 2019; Kong et al., 2020). Retrospective 

tracing of somatic mutations could also reveal lineage relationships. As the mutational frequency 

in mitochondria is 10-100 times that of genomic DNA, it has been suggested as a natural DNA 

barcode (Baron & van Oudenaarden, 2019).  A recent study showed that mitochondrial reads 

obtained from scATAC-seq or scRNA-seq can show the lineage relationship of healthy and 

leukaemic haematopoietic cells (Ludwig et al., 2019). This could potentially be applied in drug 

resistance studies; however, potential mutational selective sweeps should be taken into 

consideration. 

5.2.2 Computational considerations 
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scATAC-seq provides a wealth of data which can allow for the separation of cell types not 

captured by scRNA-seq. This, however, often comes at the price of interpretability and highlights 

the importance of finding reliable markers in accessibility to annotate cell populations. While 

methods described in section 1.2.4 can approximate linkage to nearby genes, this does not 

necessarily mean changes in expression. Massively parallel enhancer reporter assays have directly 

contributed to our understanding of evolutionarily conserved enhancers (Inoue & Ahituv, 2015) 

and the GeneHancer project undertook creating a curated set of high confidence enhancer based on 

eQTLs, eRNA co-expression, TF co-expression, and capture Hi-C (CHi-C) data (Fishilevich et al., 

2017). The method I developed for linking single-cell RNA-seq and ATAC-seq through the 

integration of single-cell assays adds to this by finding repressors and enhancers based on shared 

trends between accessibility and expression (Figure 5.1B). It also showed how a large number of 

regulatory elements of genes are missed based on co-accessibility using Cicero (Pliner et al., 

2018b), which is likely due to promoters not changing in accessibility, such as constitutive 

promoters. This method still could be improved by the use of cell line specific co-accessibility, 

which could further refine the regulatory classification laid out in Figure 4.6. Also, next to 

Spearman correlation across the treatment trajectory, logistic regression could be used to predict 

linkage as in the latest release of SnapATAC (Fang et al., 2019).  

The studies I presented in chapters 3 and 4 showed cell type- and cell state-specific putative 

transcription factor accessibility. Methods used in single-cell ATAC-seq, such as chromVAR and 

Homer, rely on motif binding as a proxy for TF activity. Verifying these TFs can be done via ChiP-

seq (Barski et al., 2007; Johnson et al., 2007) and CUT&TAG seq (Kaya-Okur et al., 2019). The 

single-cell adaptation of ChIP-seq (Grosselin et al., 2019) is inherently low coverage per single 

cell, and CUT&TAG methods are still under development. As I have shown in chapter 4, the 

integration of single-cell accessibility assays could also contribute here as well since correlation of 

changes in expression and putative activity can be used to create lists of high confidence TFs at 

sites. One thing to note is how AP-1 complex transcription factor members presented as highly 
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variable across all studies, which is likely due to it representing cells under stress during the 

preparation of nuclei for sci-ATAC-seq library. However, most TFs associated with the AP-1 

complex dropped out when I used the peaks identified as high confidence in the integrated single-

cell RNA and ATAC analysis.  

5.3 Future directions 

The studies presented in this dissertation lay out several possible future directions of 

research. For methodological improvements, the integration of spatial information into sciDNA-

seq could greatly enhance our ability to assay subclonal tumoral populations that are topologically 

restricted. Also, the potential information resulting from non-tumoral cells sampled in the vicinity 

of topological samples could provide information about mutational profiles in different 

microenvironments. Furthermore, topologically mapping metastases from the same patient could 

help elucidate foundational cell populations and the mutational/spatial organization necessary for 

successful metastasis formation. While the introduction of spatial information to the assay could 

be done based on the work of (Thornton et al., 2019), the preparation of tumor samples would 

require the development of novel techniques due to the difficulty in disaggregation (Figure 5.1D).  

In addition, the computational method developed for identifying linked regulatory elements with 

gene expression changes based on integrated scRNA-seq and scATAC-seq could be used in large 

single-cell atlas studies spanning multiple tissues to find high confidence tissue specific regulatory 

elements and the potential transcription factors controlling them. Similarly, this could be used in 

drug resistance trials. For instance, based on the results of Risom et al., 2018, inhibiting BET 

protein activity via JQ1 prevents BEZ235 drug-induced chromatin changes. Follow up 

computational analysis of integrated datasets could help identify the sites blocked by JQ1 that are 

required for drug resistance. 

The results shown in chapter 4 also posit several biological questions (Figure 5.1C). Does 

the homogenization between cell states give us information about potential windows of opportunity 

for combination treatments? Are acquired resistant states reversible? Would the homogenization 
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between cell lines reverse as well? Sci-ATAC-seq performed after washing out of Trametinib (data 

not shown) will answer some of these questions after further analysis.  
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