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Abstract 

Urgency urinary incontinence (UUI) is a chronic, burdensome condition with urges 
to urinate that are difficult to defer and results in urinary leakage. UUI impinges on 
an individual’s quality of life, and affects about 15% of American women. Despite the 
heavy burden of UUI, we still have a poor understanding of the condition and how to 
most efficiently triage patients to the most effective treatment. 

The microbiome is recognized to play a role in genitourinary health. The vaginal 
microbiome is long known to inhabit the vaginal tract and play an important role in 
maintaining genitourinary health and preventing disease. Conversely, the bladder 
was thought to be sterile in the absence of an acute clinical infection, but recent 
studies have overturned this paradigm and have identified microbes in the bladder 
of healthy individuals. This has led to emerging evidence to show that changes in the 
microbiome of the bladder may play an important role in the pathophysiology of 
UUI. 

More specifically, decreased diversity in the urinary microbiome is associated with 
increased symptom severity for women with UUI. Moreover, the presence or 
absence of specific microbes is associated with UUI. In contrast, little work has 
explored the relationship of the known vaginal microbiome to either the urinary 
microbiome or UUI symptoms. Moreover, current computational methods used to 
study the urinary microbiome neglect the underlying ecology of bacteria. 

Here, we leverage network-based methods to propose a framework to generate 
microbial co-occurrence network structures to identify bacteria in the urinary and 
vaginal microbiomes associated with UUI. Network-based methods allow for 
hypothesis generation of the underlying microbial community dynamics. Ultimately, 
these network structures facilitate exploration of novel, therapeutic microbial 
targets while also being ecologically aware of the therapeutic effects on the 
community structure. 
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1 Introduction 

Urgency urinary incontinence (UUI) is a common but chronic condition 

characterized by a sensation (“urge”) to urinate that is difficult to defer and often results in 

involuntary loss (“leakage”) of urine (Abrams et al. 2002). It affects women to a much 

greater extent than men, which negatively impacts their quality of life, mental health, and 

financial well-being (Powell et al. 2018; Dugan et al. 1998; Robinson and Pearce 1998). 

There are three known etiologies for UUI: detrusor overactivity, poor detrusor 

compliance, and bladder hypersensitivity (Aoki et al. 2017). Each of these etiologies involve 

different anatomical structures of the bladder. Detrusor overactivity is the spontaneous 

contraction of the detrusor muscle that an individual cannot defer. Poor detrusor 

compliance occurs when the detrusor muscles are unable to properly stretch when filling 

with urine, resulting in increased pressure that leads to leakage. Last, emerging evidence 

suggests that the bladder urothelium, the epithelial cells that line the inside of the bladder, 

is not a passive barrier, but is involved in bladder sensory signaling. Furthermore, people 

with urinary urgency have an increased number of these sensory receptors (Li et al. 2011). 

The approach to treatment is iterative and tiered, starting with behavioral changes, 

followed by medication management and then finally surgery if symptoms do not respond 

to these previous measures. However, all levels of treatment have high attrition rates 

(Wyman, Burgio, and Newman 2009; Komesu et al. 2011). Anticholinergic drugs are the 

most common class of medications and they work by relaxing the detrusor muscle, the 

smooth muscles that line the bladder. However, up to 50% of women have intolerable side-

effects including dry mouth, dry eyes, and constipation (Hartmann et al. 2009). In elderly 

patients, these drugs can worsen symptoms of dementia, which can then be difficult to 
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prescribe to older patients (Gray et al. 2015; Coupland et al. 2019; American 

Urogynecologic Society (AUGS) Guidelines Committee with the assistance of Tonya N. 

Thomas and D. 2017). Moreover, these side-effects may worsen more in the elderly because 

of interactions with other drugs they may be taking and the changes in their body’s ability 

to metabolize drugs (Thüroff et al. 1998). 

More recently, with the recognition that the bladder urothelium is an active and 

responsive barrier, attention is being focused on how inflammation and infection can 

contribute to the etiology of urinary incontinence. Historically, the bladder was thought to 

be sterile in the absence of an acute infection. However, with more widespread use of high-

throughput sequencing and use of transurethral catheters to avoid contamination, it has 

been realized that bacteria are normally present in the bladder (Wolfe et al. 2012). 

Additionally, the development of an alternative culturing method, called expanded 

quantitative urine culture (EQUC), has further demonstrated the presence of living bacteria 

in the female bladder (Hilt et al. 2014). In short, the detection of these commensal bacteria 

in the bladder is the first step to focus on how infection and inflammation contribute to UUI. 

It has increasingly been appreciated that there are differences in the microbial flora 

of patients with and without UUI (Pearce et al. 2014, 2015) and decreased diversity in the 

urinary microbiome is associated with more severe UUI symptoms (Karstens et al. 2016). 

Furthermore, medication response was found to be related to the urinary microbiota 

composition, where responders at baseline were more likely to have less diverse bacterial 

microbiomes than non-responders (Thomas-White et al. 2015). Overall, it is becoming clear 

that characteristics of the urinary microbiota play a role in UUI. 



9 
 

In addition to evidence associating the urinary microbiome with urogenital health 

and disease, it is long known that the nearby vaginal microbiome also contributes to 

urogenital health and disease. The vaginal microbiome, or vaginal flora, is known to play a 

protective role in preventing diseases such as bacterial vaginosis, sexually transmitted 

infections (STIs), and urinary tract infections (UTIs) (Ma, Forney, and Ravel 2012). More 

specifically, four Lactobacillus species (L. iners, L. crispatus, L. gasseri, and L. jensenii) have 

been shown to dominate the vaginal flora in healthy, reproductive-age women (Ravel et al. 

2011). The role of Lactobacillus species in the vaginal microbiota is also becoming clearer, 

whereby they tightly regulate the vaginal environment by producing lactic acid after 

consuming host-provided glycogen (Nunn and Forney 2016). 

Despite research supporting the role of the microbiome in urogenital conditions, 

little is known about the relationship between the urinary microbiome and vaginal 

microbiome. Individually, the microbiota of the vagina and the urinary tract are known to 

play a complex role in determining urogenital health (MacIntyre, Sykes, and Bennett 2017). 

The overall composition of the vaginal and urinary microbiomes are more similar to each 

other in bacterial composition compared to the microbiomes of other human body-sites 

(i.e., the gut microbiome) (Thomas-White et al. 2018; Komesu et al. 2020). Furthermore, the 

functional diversity of the urinary and vaginal bacterial genomes are also more similar 

(Thomas-White et al. 2018). However, the characteristics of how these two microbiomes 

interact as an ecological environment and how their interaction may influence the 

development of disease are not well understood. 

The vaginal microbiota and the urinary microbiota are studied using similar 

approaches, but these methods have limitations in their inferential power and downstream 
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clinical application. Traditional approaches to characterizing the microbiome include 

quantifying the number or distribution of types of bacteria per sample (alpha diversity) and 

quantifying differences between samples (beta diversity) (Finotello, Mastrorilli, and Di 

Camillo 2016). Also included is differential abundance, which identifies bacteria with the 

greatest relative change between groups of interest (Paulson et al. 2013). However, these 

approaches are a starting point to developing hypotheses about how emergent changes in 

the normal microbial flora influence the development of diseases, such as UUI (Shade 

2017). 

Investigations to date have focused on studying the presence and type of microbial 

flora present. However, newer approaches now allow for systems-based approaches to 

investigate how urogenital microbial networks influence the development and response to 

treatment of UUI. Microbes are not merely a collection of independent organisms. Rather, 

they engage in ecological interactions that affect the stability and dynamics of the complex 

microbial community. We can start modeling the complexity of these interactions as a 

system using network-based approaches. These approaches aim to create a more 

comprehensive picture of microbial variation associated with UUI. This framework also 

allows us to consider the impact of bacteria and bacterial subgroups in women with UUI 

using the context of the microbial community. Investigating the role of the urinary and 

vaginal bacteria in UUI using innovative computational techniques may help identify 

modifiable risk factors that can be a target for future interventions. With this background, 

this thesis aims to address these questions: 
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1. How can we more effectively use microbial abundance data to understand the 

relationship between the vaginal and urinary microbial communities 

associated with urgency urinary incontinence? 

2. How are traditional microbial analyses represented within the microbial 

network as it relates to urgency urinary incontinence? 

3. How do interactions within the urinary and vaginal microbiome influence the 

development of urgency urinary incontinence? 

In the next sections, we will review important developments in urgency urinary 

incontinence research, both of the urinary and vaginal microbiomes, and microbial network 

analyses. In Chapter 2, we identify differences in the microbiome of women with and 

without urgency urinary incontinence using traditional microbiome analytical techniques. 

In Chapter 3, we introduce our network model and its application to the urinary 

microbiome and the vaginal microbiome to identify co-occurring groups of bacteria 

associated with urgency urinary incontinence. Last, we present a discussion and conclusion 

in Chapter 4, followed by suggested future work in Chapter 5. 

1.1 Statement of aims 

Specific Aim 1. Identify differences in the microbiome of women with and 

without urgency urinary incontinence using traditional microbiome measures. 

We will investigate the differences in the urinary microbiome and vaginal 

microbiome of women with and without UUI. We hypothesize that the diversity and 

abundance of bacteria will be different between women with and without UUI. 
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Specific Aim 2. Characterize the site-specific microbial community network 

structures of the female urogenital tract and characterize its relationships with 

urgency urinary incontinence in women 

We will investigate the interactions within the urinary and vaginal microbiome by 

creating a network-based framework to understand the relationship between the site-

specific microbiomes of the female urogenital tract and urgency urinary incontinence in 

women. This framework uses co-occurrence correlations to define bacterial relationships 

and will allow us to compare the currently accepted microbiome data analysis methods for 

the vaginal microbiome (Aim 2A) and urinary microbiome (Aim 2B). This framework will 

also enable us to assess microbiome communities with an ecological perspective, an 

understanding of which will generate experimentally testable hypotheses on the bacterial 

interactions that contribute to health. 

1.2 Aim 1 background 

Urgency urinary incontinence (UUI) is a highly prevalent condition among women, 

the risk of which increases with age, and ultimately lowers their quality of life. This 

stigmatized condition is currently treated through a tiered treatment plan with increasing 

invasiveness with each treatment trial. Despite the progress in better managing this 

condition, the etiology of the disease and effective patient stratification are still poorly 

understood. 

1.2.1 Current understanding of urgency urinary incontinence in women 

Urgency urinary incontinence is a chronic condition that predominantly affects 

women. The International Urogynecological Association (IUGA) and the International 

Continence Society (ICS) define this condition as, “[an] involuntary leakage accompanied by 
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or immediately preceded by urgency1” (Haylen et al. 2009). The underlying condition of 

urinary incontinence affects both sexes. For men, urinary incontinence is often because of 

an enlarged prostate or prostate cancer. In contrast, urinary incontinence in women occurs 

because of issues surrounding the bladder or pelvic floor muscles (Aoki et al. 2017). These 

issues in women are often related to childbirth or menopause. These life events that are 

unique to women motivate the innovation of treatment options for this chronic condition. 

The prevalence of urgency urinary incontinence in women is a global problem and 

reports estimate it to gradually increase over time. A number of studies across multiple 

countries estimated female urinary incontinence prevalence. Although there is variation in 

estimates, Milsom et al. (2013) summarizes that an at least weekly leakage occurs in 

approximately 10% of all adult women, while occasional leakage affects between 25% and 

45% of adult women. One common risk factor that is consistently associated across studies 

is age. Across eighteen reports spanning from 1966 to 2011, the rate of new cases was less 

than 2 per 1,000 person-years before age 40 years, but tended to increase there after 

(Stewart et al. 2014). Moreover, urinary incontinence affects societies financially, costing 

the US an estimated $19.5 billion in 2000 (Hu et al. 2003). Estimates suggest the number of 

US women with urinary incontinence will increase from 18.3 million in 2010 to 28.4 million 

by 2050 (Wu et al. 2009). These statistics demonstrate that this condition is not uncommon 

among women. 

                                                        

1 Haylen et al. (2009) defines “urgency” as the “complaint of a sudden, compelling desire to pass urine which is 
difficult to defer” 
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Despite this observed prevalence of urinary incontinence, stigma around it has 

crippling effects on one’s quality of life and blocks individuals from receiving the clinical 

help they may need. Stigma around medical conditions can lead to worse outcomes because 

of the fear of discrimination from peers and discourage care-seeking (Link and Phelan 

2006). One study to better understand the stigma around urinary incontinence was 

conducted using the Boston Area Community Health (BACH) Survey. The BACH survey is a 

population-based, random sample epidemiological survey of urologic symptoms with a 

random subsample of 151 men and women aimed to differentiate the stigma associated 

with both frequency and urgency from just urinary incontinence. Their results show that 

there is not only stigma around urinary incontinence, but also urinary frequency and 

urgency (Elstad et al. 2010). The women felt stigmatized for having an “unclean body or 

compromised social identity.” Furthermore, a study of 201 women at St. George’s and 

St. James’s Hospitals, London reported the women had reluctance to discuss their possible 

urinary incontinence problems with their primary care provider because of 

embarrassment, which further delayed the appropriate treatment for their symptoms 

(Norton et al. 1988). These unique issues to women, the high prevalence of urinary 

incontinence in women, and stigma around urinary incontinence all motivate the reason for 

the ongoing research to better understand the disease etiologies and develop novel 

treatment options for UUI. 

There are three known etiologies for urinary incontinence: detrusor overactivity, 

poor detrusor compliance, and urothelium hypersensitivity (Aoki et al. 2017). Detrusor 

overactivity is defined as, “a urodynamic observation characterized by involuntary detrusor 

contractions during the filling phase which may be spontaneous or provoked” (Abrams et 
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al. 2002). In contrast, a bladder with low detrusor compliance means it cannot stretch and 

contract, which results in leakage from the increased pressure within the bladder and can 

also cause discomfort. Last, a bladder with urothelium hypersensitivity will react to stimuli. 

The urothelial lining is not a passive barrier, but is able to detect thermal, mechanical, and 

chemical changes. This last etiology involving the urothelium has shifted the focus of 

ongoing research to the effects of urothelial inflammation and infection on UUI. The next 

section explores current treatment plans that target these known etiologies. 

1.2.2 Current medical treatment guidelines 

The differential diagnosis of UUI primarily depends on urinary incontinence 

associated with symptoms of urgency. Robust self-completion questionnaires are widely 

recognized as a valid way to measure a person’s signs and symptoms to more accurately 

diagnosis UUI2. There are two broad groups of questionnaires: general surveys and urgency 

urinary incontinence specific. The general surveys measure lower urinary symptoms 

(LUTS). Some examples include the Urinary Distress Inventory (UDI) (assesses lower 

urinary tract dysfunction) and Incontinence Impact Questionnaire (IIQ) (assess urinary 

incontinence’s impact on health-related quality of life) (Shumaker et al. 1994). Overactive 

bladder3 symptom-specific surveys include the OAB-q (assesses all overactive bladder 

symptoms and their impact on health-related quality of life) (Coyne et al. 2002) and 

International Consultation on Incontinence Questionnaire (ICIQ) (assess urinary 

incontinence and its impact on the quality of life) (Avery et al. 2004). Despite equipping 

                                                        

2 Other important measurement tools not mentioned include urodynamics and urine culture, both of which 
can exclude differential diagnoses. 

3 A similar condition that gets diagnosed with urgency urinary incontinence is overactive bladder; urgency 
urinary incontinence is (Aoki et al. 2017). 
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researchers and health professionals with a variety of validated assessment tools for 

urinary incontinence symptoms, no ideal questionnaire exists (Shy and Fletcher 2013). 

Nonetheless, the variety of questionnaires give clinicians the ability to assess and customize 

a patient’s assessment to better treat and manage their symptoms. 

An additional tool to measure patient symptoms is a bladder diary. Patients can 

track their symptoms in bladder diaries, also known as voiding diaries, for three or seven 

days (Dmochowski et al. 2005). For each day, the patient records information for hourly 

intervals on details such as fluid intake, number of voids, and the level of urgency they felt. 

The observations of the diary can then facilitate discussions between the health 

professional and the patient to personalize their health plan. These diaries are invaluable in 

part because of its temporal nature and intentional record keeping making it a more 

objective measure of their condition’s severity (Stav, Dwyer, and Rosamilia 2009). 

Importantly, this record keeping also allows patients to track symptom improvement, thus 

shedding light on therapeutic effectiveness or failure. In sum, bladder diaries offer an 

integral assessment and tracking tool in evaluating a patient’s symptoms. After completing 

a thorough symptom assessment, healthcare professionals can proceed with multiple lines 

of treatment, each with varying levels of invasiveness and possibility of irreversible side 

effects. 

There are three general lines of treatment (Corcos et al. 2017). First-line treatments 

are non-invasive and reversible, which includes behavioral therapies, lifestyle changes, and 

patient education. There are two main treatments for behavioral therapy: bladder training 

(e.g., timed voiding) and pelvic floor muscle therapy (e.g., urgency suppression). Lifestyle 

changes that patients may make include managing fluid and caffeine intake and weight loss. 
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Patient education empowers them to engage with their treatment, which may affect their 

motivation and ultimately influence their health outcome. The second line of treatment 

involves pharmacological management of antimuscarinics4 (to target muscarinic 

acetylcholine receptors) and beta-3 andrenoceptor agonists (to target 𝛽3 adrenergic 

receptors). These pharmacological agents act to increase bladder muscle function, with the 

goal of improving quality of life and decreasing a patient’s symptoms. The last and third-

line treatments include onabutulinumtoxinA and neuromodulation. Intra-detrusor 

injections of onabutulinumtoxinA, more commonly known as Botox, paralyze the detrusor 

smooth muscle enough to reduce the number of urgency episodes (Chapple et al. 2013; 

Apostolidis, Dasgupta, and Fowler 2006). Neuromodulation treatments are artificial nerve 

stimulations that include peripheral tibial nerve stimulation (PTNS) and sacral 

neuromodulation (SNM). More specifically, the International Neuromodulation Society 

defines these neuromodulation methods as, “the alternation of nerve activity through the 

delivery of electrical stimulation of chemical agents to targeted sites of the body” 

(“International Neuromodulation Society,” n.d.). These three lines of treatment give 

clinicians the flexibility to personalize treatments based on an individual patient’s needs 

and symptom presentation. 

1.2.3 Treatment limitations for physicians and patients 

Despite the range of treatments, each option has considerable inconveniences and 

clinical limitations, which warrant further research into alternative therapeutics and 

                                                        

4 Antimuscarinics are a subset of a larger class of anticholinergic drugs, which also include the distinctly 
separate class of nicotinic receptor antagonists, and should be noted to avoid confusion (Montastruc et al. 
2010) 
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treatment options. The first-line treatments (e.g., behavioral therapies) are the least 

invasive, but they require behavior changes that are difficult for long-term compliance 

among patients (Borello-France et al. 2010). Second-line treatments (e.g., antimuscarinics) 

have a separate problem. Compliance among patients is dependent on which drug-specific 

side effects they can tolerate (e.g., dry mouth and impaired cognitive function); this is 

further complicated with the fact that randomized trials have found that no single drug 

outperforms the rest (Gormley et al. 2015). Moreover, for older individuals, careful 

consideration should be taken when prescribing antimuscarinics because of the possible 

worsening of cognitive function in an already at-risk population for cognitive decline 

(Ouslander 1995). Last, although neuromodulation treatments are effective and regarded 

as safe, the side effects include unwanted bleeding, infection/inflammation, and pain at the 

device insertion site (Corcos et al. 2017). The tiered treatment course, which increases with 

invasiveness, could be made more efficient if the most effective treatment could be more 

directly prescribed. In theory, this ideal scenario would increase overall patient satisfaction 

from not experiencing a number of unnecessary side effects and increase physician 

efficiency in promptly designing the best treatment. 

1.2.4 The Human Microbiome Project to facilitate progress in host-microbe 
understanding 

The development of DNA-based analyses from high-throughput sequencing has 

expanded the ability to characterize not just the disease-causing bacteria. The completion of 

the Human Genome Project promoted enthusiasm for a deeper and genome-based 

understanding of human health and disease. Immediately after the completion of the 

human genome, researchers reminded the research community that microbes also play a 

vital role in human health and disease (Relman and Falkow 2001; Davies 2001). Individual 
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smaller initiatives have since been conducted to better understand these bacteria on 

humans. However, at the time, there had not been a concerted effort to systematically 

characterize and understand the human microbiome. Since then, many initiatives 

worldwide have been conducted. 

The Human Microbiome Project (HMP) was one of the first coordinated efforts to 

characterize the healthy human microbiome occupying the body. Previously, there was no 

comprehensive effort in careful sampling across the multiple human body sites at a 

population level. The National Institutes of Health initiated this project in 2007 (Phillips 

2008; Proctor 2012) with the following goals: demonstrate feasibility of characterizing the 

human microbiome, understand the microbiome’s influence on disease, and develop the 

infrastructure for future microbiome research (The NIH HMP Working Group et al. 2009). 

The project also created important computational and technological resources to sustain 

future microbiome research (Proctor 2012). For example, bioinformatics software for 16S 

rRNA gene sequencing and whole metagenome sequencing assembly was developed5 along 

with centralized databases to host reference genomes for the human microbiome.6 The 

project recruited 300 healthy volunteers to participate, where 279 were sampled twice and 

100 were sampled for a third time. Each participant was then sampled up to 18 sites around 

the body. The major results of the project show the range of microbial variation in a 

Western population and how distinct body sites differed more within an individual than 

                                                        

5 Tools and technology can be found at https://www.hmpdacc.org/hmp/resources/.  

6 Data can be found at https://portal.hmpdacc.org/.  

https://www.hmpdacc.org/hmp/resources/
https://portal.hmpdacc.org/
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between the same body sites among different individuals. This project has left a lasting 

impact on the research community, catalyzing a new field for decades to come. 

Since the HMP has finished, studies suggest that body site-specific diseases are 

independent of the concentration of their resident bacteria. A naive assumption about 

infections is that more bacteria may lead to more disease. But from the HMP, we have 

learned, for example, that the vagina generally contains less resident bacteria compared to 

both the oral cavity and gut bacteria (Human Microbiome Project Consortium 2012). 

However, some notable findings show that each body habitat can have an associated 

disease with changes in its microbiome. Some examples include the interaction between 

obesity and the gut microbiota (Delzenne and Cani 2011), chronic obstructive pulmonary 

disease (COPD) and the respiratory microbiome (Dickson, Erb-Downward, and Huffnagle 

2013), and urogenital infections and the vaginal microbiome (White et al. 2011). Each of 

these disease-associations altogether not only support the association between bacteria 

and disease, but also the independence of disease on the concentration of bacteria at the 

body area. This further supports the need to understand how each bacterium’s role plays in 

human health and disease and to go beyond associations to also understand causal 

mechanisms. 

1.2.5 Urinary microbiome, vaginal microbiome, and urgency urinary 
incontinence 

Although the bladder was originally thought to be sterile and excluded from the 

HMP, there has been progress in changing the paradigm that the bladder is sterile. With 

emerging evidence of bacteria residing in the bladder in the absence of an acute infection, 

the microbiome of the healthy bladder may play an important role in preventing the 
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pathophysiology of lower urinary tract symptoms. Similarly, our understanding of lower 

urinary tract symptoms is not isolated from bacteria in the bladder. Robust evidence shows 

a link between the vaginal flora and urinary tract infections, which suggests a possible 

interaction between the vaginal flora and bacteria of the bladder. This highlights the need to 

explore the structure of a combined urogenital microbiome. 

1.2.6 From neglect to recognition of the urinary microbiome 

The bladder was notably not included in the HMP because of the long-held belief that 

the bladder is sterile (Thomas-White et al. 2016). The exclusion from the HMP slowed 

research on the bladder compared to other body sites. As mentioned above in section 1.2.4, 

these numerous examples show that the human microbiome changes with normal health 

and disease. For example, the vaginal microbiota of reproductive women varies with a 

number of host factors such as age and ethnicity (Ravel et al. 2011). Careful sampling of 

bacteria is also necessary because contamination from the environment can confound 

research findings. As a result of the technological developments under the HMP, sample 

collection methods were carefully designed and optimized to maximize their use for 

downstream analyses (Aagaard et al. 2013). Similarly, computational groups also developed 

computational methods to handle these novel sources of data (Gevers et al. 2012). These 

advancements developed collaboration networks, validated and agreed upon protocols, and 

robust computational techniques. Although these methods were all used to study bacterial 

communities, this did not guarantee direct applicability to other types of samples. The 

exclusion of the bladder from the HMP left researchers uncertain as to whether these 

established technologies and computational methods apply to study the microbial potential 

in the urine without additional considerations. 
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Decades-old hints of latent bacteria in the bladder and the difficulty in studying them 

were recently rediscovered, which ultimately helped reignite interest in the scientific and 

medical implications of bacteria in the healthy bladder. In 1979, Rosalind Maskell7 and 

colleagues investigated the strange phenomenon called “urethral syndrome,” where 

patients would present with UTI symptoms but without significant bacteriuria8. Maskell, 

Allen, and Pead showed that incubating urine cultures for more than 24 hours under 7% 

𝐶𝑂2 (instead of atmospheric air) revealed a number of slow-growing organisms (Maskell, 

Allen, and Pead 1979). The presence of these microbes contradict the at-the-time paradigm 

of a sterile bladder. Such a finding should not be surprising given the adaptability of 

microorganisms to exist virtually anywhere there is liquid water present (Rothschild and 

Mancinelli 2001). Maskell and her colleagues’ findings suggested at least one technological 

barrier (i.e., optimized growth media conditions) to better understand these more 

“fastidious” bacteria in the bladder. 

Leaning on the pioneering work of Maskell and colleagues, a separate group recently 

identified two major barriers in comprehensively identifying bacteria in the bladder: first, 

avoiding contamination from the vagina, and second, ensuring that the extracted bacterial 

DNA originated from live bacteria (Thomas-White et al. 2016). The vagina contains its own 

microbiome and the urethra that carries the urine is located in front of the vaginal opening. 

Typical urine specimens to be tested are collected using a technique called clean-catch, 

                                                        

7 Maskell spent much of her research career on understanding urinary tract infections, postulating the early 
existence of bacteria in the bladder that require special culturing techniques 
https://doi.org/10.1136/bmj.i6147.  

8 Bacteriuria is defined as the presence of bacteria in urine. 

https://doi.org/10.1136/bmj.i6147
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midstream voided urine.9 Although measures are taken to avoid contamination, close 

proximity of the urethra to the vagina increases the risk of contamination of the urine with 

resident vaginal bacteria. For this reason, Wolfe et al. (2012) investigated the suitable urine 

collection method through a study of patients undergoing gynecologic surgery. They found 

clean-catch urine to be inferior to another urine collection method of transurethral 

catheterization. As the gold standard for detecting what is in the bladder, the suprapubic 

aspirate collection technique10 that directly samples from the bladder was used as a 

comparison. Their results showed that the microbial composition of bladder samples 

between the suprapubic aspirate and transurethral catheter are more similar to each other 

than clean-catch urine (Wolfe et al. 2012). These results show that transurethral 

catheterization is a suitable method to avoid vulvovaginal contamination when sampling 

urine from the bladder. 

After the technological advance to adequately sample urine from the bladder 

without contamination, two new questions arise: can we be sure the bacteria from the 

bladder are alive and is there a way to engineer the conditions to culture these bacteria. 

Pioneering work by Hilt et al. (2014) developed the next necessary technological advance to 

answer both of these questions. Their group developed what is called an expanded 

quantitative urine culture (EQUC). Traditionally, the clinical microbiology protocol for 

culturing urine streaks 0.001 mL of urine onto a 5% blood agar plate and is then incubated 

                                                        

9 The protocol for clean-catch, midstream voided urine is as follows. The area between the labia is first 
cleaned with sterile wipes before the subject is then asked to briefly urinate (in order to flush out any resident 
microorganisms and secretions). The subject is then asked to continue the flow of urine so a urine cup can 
collect a urine specimen. More on the topic can be found at 
https://medlineplus.gov/ency/article/007487.htm. 

10 https://medlineplus.gov/ency/patientinstructions/000145.htm.  

https://medlineplus.gov/ency/article/007487.htm
https://medlineplus.gov/ency/patientinstructions/000145.htm
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aerobically at 35°C for 24 hours. In contrast, the EQUC protocol notably uses 100 times as 

much urine (0.1 mL). The growth medium is also a modified blood agar plate with 

chocolate, colistin, and nalidixic acid agars, which is then incubated in 5% 𝐶𝑂2 at 35°C for 

48 hours. Out of the 65 urine specimens, there were 52 specimens (52/65 [80%]) that were 

reported as no growth by the traditional clinical microbiology protocol. However, the new 

protocol was able to grow bacterial species in 48 of the previously no-growth specimens 

(48/52 [92%]). Furthermore, the bacteria grown in EQUC culture were compared and 

matched with bacterial DNA sequences by 16S rRNA amplicon sequencing. This confirmed 

that the bacteria identified through 16S rRNA sequencing are alive and not just passing 

through into the bladder. The development of EQUC and the validated use of urethral 

catheters both laid the foundation for standardized study protocols in further studying the 

urinary microbiome. 

1.2.7 Urinary microbiome and urgency urinary incontinence 

This paradigm shift to the bladder not being sterile has created additional research 

opportunities to explore its connection with chronic urinary conditions. Currently, chronic 

urinary conditions such as overactive bladder syndrome (OAB) and UUI are poorly 

understood. For UUI, current treatments target abnormal neuromuscular signaling and/or 

functioning. However, medications for these treatments are ineffective in nearly half of 

subjects with UUI (Nitti et al. 2010; Hartmann et al. 2009). Now that we can characterize 

the bacteria in the bladder, this offers a new source of variation to better understand the 

heterogeneity in individuals with chronic urinary conditions. 

Early studies to explore the relationship between the urinary microbiome and 

chronic urinary conditions started with UUI. As a part of a larger study focusing only on 
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women who planned to undergo treatment for UUI, Brubaker et al. (2014) used qPCR to 

categorize women as positive and negative qPCR for bacterial DNA, a general measure for 

the presence and absence of the urinary microbiota. These women were also evaluated for 

post-operative UTI11. The study found that subjects with a positive qPCR reading had more 

UUI episodes but less of a risk for a UTI compared to the women with negative qPCR 

readings (Brubaker et al. 2014). The implication of these results reveal the variation in the 

urinary microbiota of women affected by UUI and its potential to influence clinical 

outcomes after treatment. To further understand the differences in the urinary microbiota 

of women with UUI, Pearce et al. (2014) aimed to characterize the bacteria in urine 

between 58 women with UUI and 60 women without UUI. Two notable results from this 

study reveal differences in observed bacteria genera12 between cohorts and bacterial 

composition based on a subsample of cohort samples. Although there was no statistical 

difference between the UUI and non-UUI control groups, the researchers observed six 

groups after clustering of the urinary microbiome samples. These groupings, called 

urotypes13, were based on the most dominant bacterial taxa in that sample (e.g., 

Lactobacillus) and the six dominant taxa were: Lactobacillus, Gardnerella, 

Enterobacteriaceae, Staphylococcus, Sneathia, and diverse. Their results suggest that this 

heterogeneity in the urinary microbiome across women is linked with demographic 

                                                        

11 UTI was defined “either as > 105 CFU/mL or as any treatment with antibiotics for a UTI (suspected or 
documented) at any point between randomization and 6 months”. 

12 Nine genera (Actinobaculum, Actinomyces, Aerococcus, Arthrobacter, Corynebacterium, Gardnerella, Oligella, 
Staphylococcus, and Streptococcus) were cultured more frequently in the UUI cohort, which is calculated by 
person presence rather than by abundance counts. 

13 Classification of human microbiome samples into groups was first done with the gut microbiome where 
they’ve termed their groups as “enterotypes”. 
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information and symptom severity because their statistical analyses show age, body mass 

index (BMI), and baseline UUI episodes per day were different across urotypes. To further 

investigate a possible interaction between the urinary microbiota and clinical treatment 

response, Thomas-White et al. (2015) recruited women taking oral medications for UUI. 

These women were categorized into non-responders, 5 mg solifenacin responders, and 10 

mg solifenacin responders14. The authors then observed the frequency of urinary bacteria 

across these categories. Although their study did not look at microbial diversity (e.g., 

Shannon diversity), their results showed variation in the detected bacteria with respect to 

drug response, suggesting a possible drug response stratification based on urinary bacteria. 

Further efforts to associate the urinary bacteria with clinical symptoms show that an 

increase in UUI symptom severity is associated with decreased microbial diversity in 

women with UUI (Karstens et al. 2016). Moreover, decreased microbial diversity and 

richness of the urinary microbiota in women with OAB is associated with increased levels of 

self-rated depression scores (Wu et al. 2017). Altogether, these results suggest an 

underlying microbial community structure to the urinary microbiota that changes with 

disease, knowledge of which may be useful in understanding UUI and OAB to assign more 

effective treatment options.  

1.2.8 Summary 

In summary, urgency urinary incontinence is a highly prevalent condition that 

debilitates the quality of life of those suffering with this condition. This complex condition 

                                                        

14  The primary outcome was treatment response after 12 weeks. After 4 weeks, “response” was based on 
whether the women reported improved symptom control as measured on the Patient Global Symptom Control 
(PGSC) questionnaire. Non-responders were increased to 10 mg solifenacin. Participants who did not respond 
at 10 mg at 12 weeks were categorized as non-responders. 
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has a range of treatment options with varying levels of invasiveness, but not without their 

own limitations and side effects. The human microbiome is shown to vary with health and 

disease, including the recent recognition of the commensal urinary microbiome. Changes in 

the urinary microbiome have been associated with urgency urinary incontinence. In 

contrast, evidence is currently lacking as to whether changes in the vaginal microbiome are 

associated with urgency urinary incontinence symptoms. Furthermore, the relationship on 

how the microbial communities of the bladder and the vagina both change with UUI is still a 

growing area of research. 

1.3 Aim 2 background 

In reality, microbial communities are complex collections of different microbes that 

interact dynamically (Coyte, Schluter, and Foster 2015; Gilbert and Lynch 2019). These 

collective interactions have the potential to elicit emergent effects that contribute to 

urinary tract symptoms such as UUI. The emerging area of microbial networks, which is the 

field of network science applied to the microbiome, has the potential to gain novel insights 

into the connection between the underlying structure of microbial community interactions 

and diseases such as UUI (Layeghifard, Hwang, and Guttman 2017; Röttjers and Faust 

2018). 

Previous computational methods fail to capture the underlying microbial complexity 

to prescribe effective treatments. To understand the relationship between the microbiome 

and disease, researchers have relied on quantifying the number and distribution of bacteria 

(alpha diversity), quantifying bacteria-wise differences (beta diversity), or identifying 

differential abundant bacteria between states of health and disease. Although these 

methods have advanced our knowledge of the human microbiome in human health and 
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disease, broad applications of restoring the diversity of bacteria have mixed results. For 

example, studies aiming to restore the gut microbiome to a healthy state using a fecal 

microbiome transplant show not all recipients of the treatment experienced restored gut 

health (Li et al. 2016; Paramsothy et al. 2017). These results rely on the underlying 

hypothesis that resetting the microbiome back to a healthy state can be done solely by 

replacing the microbiome with other microbiomes of a perceived healthy status, effectively 

replenishing the missing microbes that kept the microbiome healthy. These mixed results 

suggest that this hypothesis fails to account for the complexity in microbial systems to make 

effective changes. 

In recent years, there has been considerable interest in applying microbial networks 

to human disease, which have shown potential in improving our understanding of the 

relationship between the microbiome and disease. In contrast to diversity-centric methods, 

ecological interactions more directly motivate the theory behind microbial networks. These 

precise ecological interactions are unknown and invisible. However, microbial networks 

aim to infer this invisible interaction structure, from which higher-level inferences about 

these microbial systems can be made. Despite the interest in applying microbial networks 

in other microbiomes, microbial networks remain relatively unexplored in biomedical areas 

of research involving the urinary microbiome and vaginal microbiome. Before more 

advanced modeling of these microbial communities can be reasonably explored and 



29 
 

understood15, the next step to understanding these microbial relationships is to understand 

the network structures and effects of the microbiomes. 

1.3.1 Current limitations in established methods 

Microbial diversity and differential abundance are mainstay methods in microbiome 

science, but the knowledge gained from these methods is starting to plateau. Johnson and 

Burnet (2016) remind us that diversity is but one way to understand an ecosystem and that 

there are other factors to consider, such as stability and structure of an ecosystem(Johnson 

and Burnet 2016). Diversity measures have their own assumptions of the data and thus 

direct comparisons with each other is not straightforward. Despite the utility in the 

previously mentioned methods, effective inference from diversity measures requires 

extensive sampling and knowledge on how each diversity metric gives weight to organisms 

that differ in abundance (Bent 2008; Willis 2019). Living organisms rarely live in isolation, 

but rather, they exist in the same environment and influence each other (see section 1.3.2). 

Microbial diversity abstracts the complex microbial community into a single property. 

Fundamentally, accounting for interactions or community dynamics is not a direct 

assumption in these measures of the microbiome. 

1.3.2 Microbial ecology to study microbial communities 

Microbial ecology is the study of microorganisms in nature and their role among 

humans. Traditionally, we study microorganisms as individual species or strains after 

                                                        

15 More advanced modeling would include causal inferences on adding or removing select individual or 
groups of bacteria and exploring those effects on the rest of the microbiome. Some methods include, but are 
not limited to, Bayesian networks, system of differential equations, and structural equation modeling. An 
example of such as model can be found in Angulo, Moog, and Liu (2019) (https://doi.org/10.1038/s41467-
019-08890-y). 

https://doi.org/10.1038/s41467-019-08890-y
https://doi.org/10.1038/s41467-019-08890-y
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isolating them from their native ecosystems. Microbial communities, however, are multi-

species collections that interact and live among each other. Precise definitions of 

communities vary from tight ecological interactions among organisms to species that co-

occur within the same physical and chemical environments (Konopka 2009). Nonetheless, 

the concept around “communities” provides a mental framework to study multiple species 

of microorganisms rather than single species. 

Using ecological principles in microbiology, we can start asking and answering 

questions that were previously not possible. Although it has been long known that 

microorganisms play an important role in the living world (Gilbert and Neufeld 2014), here 

we will focus on their interactions among each other and with their hosts. 

From a host-microbe perspective, the questions we can ask revolve around how 

these interactions occur and what benefits result in the fitness and health of the host 

(Antwis et al. 2017). The co-existence between a host and its microbes motivate questions 

about the underlying mechanisms that shape these interactions. For example, we can ask, 

“What are the primary mechanisms within a host that mediate microbe-microbe and host-

microbe interactions?” More pertinent to our work here is to ask how these interactions 

influence our health. Ultimately, the long-term goal is to use our understanding of the host-

microbe interactions to impact disease prevention and treatment (Zmora et al. 2016). 

From a microbial community perspective, the questions we can ask revolve around 

microbial interactions and their collective functional potential. The interest in studying 

microbial interactions is important to understand ecosystem dynamics, such as ecosystem 

stability and functional potential (Konopka 2009). Understanding these dynamics open up 

the potential for targeted manipulation of these microbial systems by the precise 
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introduction of smaller microbial communities or targeted removed of key microbes. All of 

which can further the vision of personalized and precision medicine. 

It is now the opportune moment to capitalize on the philosophy of holism and the 

deeper principles of ecology to complement the scientific knowledge built from reductionist 

methods in microbiology. Ecology and systems thinking are the driving principles in 

opening new opportunities for using the human microbiome to restore and maintain 

human health (Dethlefsen, McFall-Ngai, and Relman 2007). 

A common theme in microbial ecology is to use a systems approach to 

understanding microbial communities. These themes include: studying microbial origins 

and evolution, the taxonomic relatedness among bacteria, the roles bacteria play in their 

ecosystems, the interactions between other organisms, interactions with the environment, 

and the capacity to degrade chemical substances (Bertrand et al. 2014). 

On the theme of interactions, ecology provides us a framework for classifying 

different interactions between organisms. Lidicker proposed such a system that defined 

three types of interaction effects on an organism: positive, negative, or neutral (Lidicker 

1979). These three types describe the overall effect that one organism experiences from an 

interaction. Example interpretations of these interactions include mutualism (both 

organisms have positive interactions) and competition (both organisms have negative 

interactions). 

In particular, the theme of interactions between other microorganisms is 

particularly suitable for network analysis. With a low number of microorganisms, we can 

enumerate all possible pairwise combinations. However, as the number of microorganisms 
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increases, the number of pairwise associations becomes exponentially more difficult to 

organize and computationally analyze. 

1.3.3 Microbial co-occurrence networks 

Solving the research limitations of the current analytical methods will require novel 

methods to better understand all aspects of microbial communities. As noted in 

section 1.3.1, the current methods of diversity and differential abundance now provide 

limited additional insight into the complexities of microbial communities. The complexity 

originates from fact that bacteria will interact in direct and indirect mechanisms. One-step 

up from focusing on individual bacteria is to observe pairwise associations. Enumerating all 

pairwise comparisons of the bacteria in a community, however, increases exponentially, 

which will prove difficult to scale and interpret. 

Using principles of ecology and systems science, networks provide a promising 

approach to overcome the scale and difficulty in interpretations. Fundamentally, networks 

are a collection of objects and their connections with each other. These networks have a 

long history of research, which gives us analytical tools for inference on networks. 

Consequently, networks are also used in biology, ranging from constructing food webs to 

gene regulatory networks. The only difference between these biological networks is how 

you define the objects and the kind of connections between them. 

1.3.4 Growing evidence for connected urogenital microbiome 

Recent conjecture suggests an integrated urogenital microbiome consisting of the 

urinary and vaginal microbiomes. Traditionally, the urinary microbiome and vaginal 

microbiome are studied independently of each other. Komesu and colleagues proposed 

methodology to study the vaginal and urinary microbiomes in women with mixed urinary 
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incontinence (Komesu et al. 2016). Although the larger overarching study focuses on the 

urinary microbiota, the uncertain origins of the urinary microbes motivate this secondary 

exploration between the urinary and vaginal microbiomes. A review by MacIntyre, Sykes, 

and Bennett postulates the connection between the two microbiomes based on their close 

physical proximity and how each microbiota environment is highly regulated on their own 

(MacIntyre, Sykes, and Bennett 2017). Recently, Thomas-White et al. (2018) aimed to 

culture bacterial strains from urine because of the lack of reference strains for the urinary 

microbiota. Without pre-existing reference genomes to compare with, they compared their 

data to reference genomes of well-studied body sites. These other body sites were the gut 

bacteria and, notably, the vaginal bacteria. Their results show the urinary bacteria to have 

similar functional characteristics (based on conserved protein domains) and the existence 

of the same strains of bacteria in both the urine and vaginal microbiota in the same women. 

Similarly, Veit-Rubin et al. (2018) presented results at the International Continence Society 

conference on the relationship between the urinary, urothelial, and vaginal microbiome in 

OAB.16 They categorized women into cohorts of high and low bacterial abundance. From 

this grouping, they found patients with low abundance vaginal microbiome had increased 

Parvimonas spp in their urinary microbiome. Conversely, patients with a low abundance in 

their urinary microbiome had increased Escherichia coli in their vaginal microbiome. 

Moreover, they found Prevotella spp on the urothelium to have a protective role against 

urinary incontinence. Although presented as a conference abstract, these results suggest a 

relationship among the urogenital microbiome that may have clinical diagnostic and 

                                                        

16 Note, this is only a conference abstract and was not peer-reviewed. 
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therapeutic potential. Altogether, the evidence suggesting a combined urogenital 

microbiome is growing, but there is much to be learned of its community dynamics and 

structure. 

The vaginal microbiome has long been known to be associated with health and 

disease. Typically, the vaginal microbiome is studied by taking a swab of the vaginal 

epithelium (Ravel et al. 2011; Hyman et al. 2005) located in the lower genital tract. Before 

high-throughput sequencing methods, characterizing the vaginal flora exclusively used 

culture-based methods (Donders 2010). From these low-throughput methods, we have 

come to understand that a majority of the bacteria on the vagina exist in a mutualistic 

relationship, and provide a first-line of defense from infection by pathogenic bacteria. 

Members of the genus Lactobacillus encompass the majority of the bacteria in the vagina 

and are well known for maintaining vaginal health. Its dominance in the vaginal 

microbiome drove research to identify the protective effects of Lactobacillus through its 

production of lactic acid and resulting low pH. Major findings of the vaginal microbiome 

include our understanding of the dominant Lactobacillus groups, the crucial role of estrogen 

and glycogen in supporting lactobacilli, and rethinking the definition of a healthy and 

normal vaginal microbiome (Nunn and Forney 2016). Modern molecular techniques have 

revealed four dominant species of lactobacilli to dominant the vaginal microbiome: L. 

crispatus, L. iners, L. gasseri, and L. jensenii. In reality, little is known about how these 

lactobacilli and associated microbial communities differ between women and how these 

bacteria functionally interact with their host humans.  
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2 Urinary and vaginal microbial differences and 
urgency urinary incontinence 

2.1 Abstract 

It has increasingly been appreciated that there are differences in the microbial flora 

of women with and without urgency urinary incontinence (UUI). Compositional changes in 

the urinary microbiome are known to be associated with UUI. However, the relationship 

between the vaginal microbiome and UUI and how that variation relates to the urinary 

microbiome is still unknown. Additionally, there are a lack of studies exploring the 

relationship between the vaginal microbiome and UUI. Here we collected catheterized urine 

and vaginal swabs from women with UUI (n=20) and without UUI (n=30) and show that 

trends in alpha diversity are similar between the urinary and vaginal microbiome. After 

adjusting for age, body mass index, menopause status, and estrogen use, there were no 

differences in the urinary and vaginal microbiomes between women with UUI and without 

UUI. These results are partially in contrast with previous studies, which show microbial 

diversity changes in the urinary microbiome of women with UUI. There is still evidence 

lacking to show a relationship between the changes in vaginal microbiome composition and 

having UUI. We are surprised by the results here that contrast with the general consensus 

that the urinary microbiome differs in women with UUI relative to women without UUI. 

There is still more work to be done to understand the relationship between UUI and the 

vaginal microbiome and the relationship between the urinary microbiome and the vaginal 

microbiome. Ultimately, understanding how UUI symptoms, the urinary microbiome, and 

vaginal microbiome coexist will improve our understanding to best treat women with UUI 

and other lower urinary tract symptoms. 
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2.2 Introduction 

Historically, the bladder was thought to be sterile in the absence of an acute 

infection. However, with more widespread use of high-throughput sequencing and 

enhanced culturing techniques, bacteria are being recognized as a commensal part of the 

normal bladder (Wolfe et al. 2012). Additionally, the development of an alternative 

culturing method, called expanded quantitative urine culture (EQUC), has further 

demonstrated the presence of living bacteria in the female bladder (Hilt et al. 2014). 

It has increasingly been appreciated that there are differences in the microbial flora 

of women with and without UUI (Pearce et al. 2014, 2015). For example, decreased 

diversity in the urinary microbiome is associated with more severe UUI symptoms 

(Karstens et al. 2016). Furthermore, medication response was found to be related to the 

urinary microbiota composition, where responders at baseline were more likely to have 

less diverse bacterial microbiomes than non-responders (Thomas-White et al. 2015). 

Overall, it is becoming clear that characteristics of the urinary microbiota play a role in UUI. 

In addition to evidence associating the urinary microbiome with urogenital health 

and disease, it is long known that the nearby vaginal microbiome also contributes to 

urogenital health and disease. The vaginal microbiome is known to play a protective role in 

preventing diseases such as bacterial vaginosis, sexually transmitted infections (STIs), and 

urinary tract infections (UTIs) (Ma, Forney, and Ravel 2012). More specifically, four 

Lactobacillus species (L. iners, L. crispatus, L. gasseri, and L. jensenii) are shown to dominate 

in healthy, reproductive-age women (Ravel et al. 2011). The role of Lactobacillus species in 

the vaginal microbiota is also becoming clearer, whereby they tightly regulate the vaginal 
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environment by producing lactic acid after consuming host-provided glycogen (Nunn and 

Forney 2016). 

Despite research supporting the role of the microbiome in urogenital conditions, 

little is known about the relationship between the urinary microbiome and vaginal 

microbiome. Individually, the microbiota of the vagina and the urinary tract are known to 

play a complex role in determining urogenital health (MacIntyre, Sykes, and Bennett 2017). 

Furthermore, it is shown the bacterial genomes and composition between the vaginal and 

urinary microbiomes are more similar compared to other human microbiomes (e.g., the gut 

microbiome) (Thomas-White et al. 2018; Komesu et al. 2020) However, it is not well 

understood how these two microbiota interact as an ecological environment and how their 

interaction may influence the development of disease. 

In this study, we explore the relationship between UUI and the microbiome. We 

compare the urinary and vaginal microbiomes across women with and without UUI. 

2.3 Methods 

2.3.1 Study population and design 

This was a case-control study conducted at Oregon Health & Science University 

(OHSU) between 2016 and 2019. Study approval was obtained from OHSU’s Institutional 

Review Board (IRB 00010729). Participants were women between the ages of 45 and 85 

and were recruited both from the general population in the Portland Area as well as 

through urogynecology clinical providers from OHSU, Kaiser Permanente NW, and affiliated 

Portland area hospitals. Participants were prescreened over the phone and those who met 

the inclusion criteria completed their study visits at OHSU’s Women’s Health Research Unit 

(WHRU). This study is a part of a larger effort to understand overactive bladder syndrome 
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in women. For the purposes of this study, we focused on a subpopulation of women with 

urgency urinary incontinence and recruited 20 women with urgency urinary incontinence 

(cases) and 30 women with normal bladder function (controls). Case participants included 

females with daily urge-predominant incontinence confirmed on a 3-day voiding diary17 

with urge-predominant leakage as determined by Perceived Urgency Scale score greater 

than or equal to 3 (“Severe urgency that I could not postpone voiding” and “I leaked before 

arriving at the toilet”) for >50% of the total incontinence episodes on the diary. Control 

participants include female participants without a history of any urge urinary incontinence 

symptoms or frequent stress incontinence symptoms (more than once a week) based on a 

screening questionnaire and confirmation on a 3-day voiding diary. Participants were 

excluded if they had any of the following: a baseline need for intermittent self-

catheterization, known neurological diseases that could affect bladder function (stroke, 

multiple sclerosis, brain or spinal cord injury, myasthenia gravis), current pregnancy or 

lactation, history of pelvic radiation, current pelvic or bladder malignancy, symptomatic 

urinary tract infection detected on screening urinalysis and confirmed with culture (growth 

of >105 colonies per mL), symptomatic pelvic organ prolapse (sensation of vaginal bulge), 

or prior or current diagnosis of painful bladder syndrome. 

All participants provided written consent and completed a demographic and health 

questionnaire, as well as a three-day bladder diary. Participants were asked to score their 

urinary urgency on the bladder diary using the Patient Perception of Intensity Urgency 

Scale (PPIUS). Participants also completed the International Consultation on Incontinence 

                                                        

17 “Voiding diary” is synonymous with “bladder diary”. 
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Questionnaire (ICIQ) (Avery et al. 2004), Pelvic Floor Distress Inventory Urogenital Distress 

Inventory (UDI) (Barber, Walters, and Bump 2005), and Overactive Bladder Questionnaire 

(OABq) (Coyne et al. 2002). These are validated questionnaires to assess urinary 

incontinence symptoms, impact of pelvic floor disorders on daily function, quality of life, 

symptom bother, and health-related quality of life, respectively. Participants were asked 

about using the following vaginal products: douches, vaginal medications or suppositories, 

feminine sprays, genital wipes, contraceptive spermicides, and personal lubricants. Vaginal 

product use was collapsed to “any vaginal product use” because none of these products 

were used by a majority of the participants. During a study visit, a trained and licensed 

practitioner collected the participant’s urine from the bladder using an aseptic technique 

with a urethral catheter. The total volume of the bladder was emptied and urine specimens 

were aliquoted into sterile 50 mL conical tubes and stored at −20°C until further 

processing. All urine specimens were handled in a sterile biosafety cabinet subsequent to 

collection. 

The bladder behaviors were summarized as an average of averages, first 

summarized per woman and then per group (UUI or control). For example, urge leaks are 

the number of leaks when an urge to urinate was difficult to defer and resulted in a leak. 

The number of times this occurred is recorded on each of the three days. This one subject’s 

bladder diary is then averaged across the three days. This average is then aggregated across 

subjects per cohort and averaged. This is done for the other bladder behaviors. Stress leaks 

are the number of leaks that result after sneezing, coughing, or other physical exertions. 

Night voids, also known as nocturia, is the complaint that an individual has to wake at night 
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one or more times for voiding. Voids is the number of times per day a person urinates and 

empties their bladder. 

2.3.2 DNA extraction and PCR amplification 

Microbial DNA from urine was extracted from microbial pellets formed from the 

centrifugation of 20-45mL of urine at 10,000 g for 30 min twice. DNA extraction was 

performed using the cultured cells protocol supplied with the DNeasy Blood and Tissue Kit 

(QIAGEN, Germany). Microbial DNA from vaginal swabs was extracted by vortexing swab 

heads in PowerBead tubes before centrifugation at 10,000 g for 30 seconds at room 

temperature following the MO BIO PowerSoil DNA isolation kit protocol (QIAGEN, 

Germany). 

Bacterial DNA was amplified by PCR using Golay barcoded primers which target the 

V4 region of 16S rRNA genes (Caporaso et al. 2012). Template DNA was amplified in 

triplicate using the GoTaq Hot Start Polymerase kit (Promega, USA). One microliter of 

template DNA and 1μL of a unique barcoded reverse primer were added to 48μL of master 

mix containing 1x colorless reaction buffer, 1.5mM MgCl2, 0.2mM dNTPs, 0.2mM forward 

primer, and 1.25 U of polymerase enzyme. The reaction volumes were placed in a 

thermocycler and run through the following conditions: 94°C for 3 min (initial 

denaturation), followed by 35 cycles of 94°C for 45 sec (denaturation); 55°C, 40 sec 

(annealing); 72°C, 1.5 min (extension); with a final extension at 72°C for 10 min. 

Ten microliters of each product was used to verify the amplification by gel 

electrophoresis on a 2% agarose gel. Replicates yielding visible bands at 382 bp were 

pooled together and purified following the QIAquick PCR Purification kit (QIAGEN, 

Germany) provided protocol. Purified products were again quantified and quality checked 
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at A260/A280 nm (Nanodrop, Thermo Fisher Scientific, USA). Products were diluted to 

10ng/μL and 5μL of each sample were pooled together for sequencing on the Illumina 

MiSeq sequencer (Illumina, USA). 

2.3.3 Sequence processing, taxonomic assignment, and phylogenetic tree 
building 

Illumina sequence reads for catheterized urine specimens and vaginal swab samples 

were processed using DADA2 (version 1.4.0) to yield amplicon sequence variants (ASVs) 

(Callahan et al. 2016). The paired-ended reads for sample reads were trimmed 10 bases 

from the 5’ end for both forward and reverse reads. Subsequently, forward and reverse 

reads were truncated to 240 and 160 bases, respectively. Chimeric sequences were 

identified and removed by taking a consensus across samples using the 

removeBimeraDenovo function with default parameters in the dada2 R package (version 

1.4.0). Sequences were aligned to the SILVA reference database (version 132) (Quast et al. 

2012) and taxonomy was assigned to individual ASVs using the RDP classifier as 

implemented in the assignTaxonomy function with default parameters in the dada2 R 

package (version 1.4.0) (Wang et al. 2007). To increase our power to detect patterns, we 

agglomerated our ASVs to the genus taxonomic rank. For alpha and beta diversity analyses, 

the vaginal and urinary microbiome sequences variants were normalized by rarefaction 

without replacement to 15,000 reads per sample and 2,500 reads per sample, respectively. 

Performed separately for vaginal and urine samples, ASVs that contributed greater than 5% 

of the total ASVs of at least one sample were considered for further analysis. Identification 

and removal of contaminant sequences was performed on urinary microbiome samples 

using the decontam R package (version 1.4.0) (Davis et al. 2017). The frequency 

classification method of decontam to identify contaminants was used at a threshold of 0.3. 
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Phylogenetic trees were constructed by generating a neighbor-joining tree based on a 

multiple sequence alignment as implemented in the AlignSeqs function with default 

parameters in the DECIPHER R package (version 2.14.0) (Wright 2016). This multiple 

sequence alignment was then fit to a Generalized time-reversible (GTR) model with a 

Gamma rate variation (GTR+G+I) maximum likelihood using the neighbor-joining tree as 

implemented in the pml function and optimized with optim.pml in the phangorn R package 

(version 2.5.5) (Schliep 2010). For the urinary microbiome, the genera of experimentally 

cultured reference strains, as detailed in Thomas-White (2018), were retained if they were 

removed through decontam. 

2.3.4 Statistical analyses 

Differences in clinical and demographic characteristics between cases and controls 

were tested using Student’s t-tests for normal and continuous characteristics, Mann-

Whitney U for non-normal and continuous characteristics, and Fisher’s exact test for 

categorical data. The Shapiro-Wilk test was used as the test for normality prior to testing. 

All analyses were performed in R (version 3.6.1) (R Core Team 2019). Data management, 

descriptive statistics, and visualizations of the microbiome data were performed using the 

phyloseq R package (version 1.28.0) (McMurdie and Holmes 2013), the tableone R 

package (version 0.12.0) (Yoshida and Bartel 2020), and the ggplot2 R package (version 

3.3.2) (Wickham 2016), respectively. 

Stacked bar plots based on sequence relative abundance were produced for the 

vaginal and urinary microbiome samples. Distance matrices for participants using clinical 

information and microbiome data were calculated using Gower’s distance (accounts for 

accounting for both numerical and categorical information) (Gower 1971) and weighted 
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UniFrac distance (Lozupone et al. 2007), respectively. Complete linkage was used for 

hierarchical clustering as implemented in the hclust function using the Ward criterion (as 

implemented in hclust using the ward.D2 method) in R (version 3.6.1) (Murtagh and 

Legendre 2014). A dendrogram was used to visualize the hierarchical clustering 

relationships via the dendextend R package (version 1.13.4) (Galili 2015). The dendrogram 

was cut based on the Silhouette metric, a measure assessing the similarity of within-cluster 

points with other cluster points. The Silhouette metric was calculated for 2 to 6 potential 

number of clusters. For the UUI subtype clustering based on clinical observations, the 

numerical data used were: age, body mass index (kg/m2), UDI, OABq symptom scores, 

OABq health-related quality of life scores, ICIQ, average daily number of urge leaks, average 

daily number of night voids, average daily number of stress leaks, days since last vaginal 

intercourse, average number of voids, and average number of urges. The categorical data 

used were: menopausal status, estrogen use, history of incontinence surgery, history of 

hysterectomy, history of prolapse surgery, history of IBS, history of anxiety, pelvic or 

vaginal surgery, vaginal delivery, history of recurrent UTI, estrogen status, Patient Global 

Perception of Severity of Urinary Symptoms, and Patient Perception of Bladder Condition. 

Alpha and beta diversity were calculated for the UUI case and control samples. Alpha 

diversity definitions used were the observed number of taxa, Pielou’s evenness index 

(Pielou 1966), and inverse Simpson index. We tested the relationship of the alpha diversity 

measures with clinical characteristics as covariates using a generalized linear model. The  

observed number of taxa and inverse Simpson index were calculated using the diversity 

function in the vegan R package (version 2.5.6) (Oksanen et al. 2019) and Pielou’s evenness 

index was calculated using the evenness function in the microbiome R package (version 
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1.6.0) (Lahti and Shetty, n.d.). Clinical covariates that were statistically different between 

UUI cases and controls were considered as covariates in downstream analyses. Beta 

diversity between subject samples was calculated using the weighted UniFrac distance 

measure (Lozupone et al. 2007) using the distance function in the phyloseq R package 

(version 1.28.0) (McMurdie and Holmes 2013), visualized using principal coordinates 

analysis (PCoA), and PERMANOVA was used to test ordination significance using the adonis 

function in the vegan R package (version 2.5.6) (Oksanen et al. 2019; Anderson 2001). 

We identified candidate urinary and vaginal genera with differential abundance 

between UUI and health controls using a negative binomial generalized linear model (GLM) 

as implemented in DESeq2 (version 1.24.0) (Love, Huber, and Anders 2014). The 

significance of the fitted coefficients is tested using a Wald test. To increase our power, we 

filtered out genera having a non-zero number of reads in less than three samples. The false 

discovery rate (FDR) of multiple testing was adjusted using the Benjamini-Hochberg 

procedure at a critical level of p-value < 0.1 (Benjamini and Hochberg 1995). 

2.4 Results 
Our study included 20 women with UUI and 30 healthy women between the ages of 

41 and 81 (Table 1). Women with UUI were older (p-value = 0.04), had a higher body mass 

index (p-value = 0.005), and more often had a history of recurrent urinary tract infections 

(p-value = 0.007). Women with UUI and healthy women did not differ in menopause status, 

estrogen use, and race (p-value > 0.05). Table 1 also displays participant demographics that 

did not differ between our cohort groups, which include: had a vaginal delivery, history of 

diabetes, currently smoking, and history of pelvic floor surgery. 
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UUI (n=20) Control (n=30) P-value 

Age (years)a 64.2±10.5 57.9±10.4 0.04 

Body mass index (kg/m2)b 29.25 [25.93, 32.8] 25.4 [23.2, 28.3] 0.005  

Menopause status   0.317 

    Premenopausal  3 (15.0%) 9 (30%)  

    Postmenopausal 17 (85.0%) 21 (70%)  

Any Estrogen use 9 (45.0%) 7 (23.3%) 0.220 

Race   0.680 

    White 18 (90.0%) 27 (90.0%)  

    Non White 2 (10.0%) 3 (10.0%)  

Vaginal delivery (Yes) 11 (55%) 17 (46.7%) 1.000 

Number of vaginal deliveries 2.91±2.55 1.88±0.99 0.144 

History of diabetes 4 (20%) 6 (6.7%) 0.143 

Smoking (current) 1 (5%) 0 (0%) 0.400 

Has history of recurrent UTI 5 (25.0%) 0 (0.0%) 0.007 

History of Anxiety 4 (20.0%) 4 (13.4%) 0.266 

History of IBS 4 (20.0%) 2 (10.0%) 0.279 

History of Pelvic Floor Surgery 7 (35.0%) 11 (36.7%) 1.000 

Table 1: Participant demographics. Student’s t-test was performed on continuous, normally distributed 
data and displayed with mean and standard deviation. The Kruskal-Wallis test was performed on 
continuous, non-normally distributed data and displayed with median and IQR. The Fisher’s exact test was 
performed on categorical data and counts reported as number of individuals with corresponding 
demographic or condition. Bold rows are statistically significant between cohorts. SD = standard deviation, 
IQR = interquartile range, a = normal distribution, b = non-normal distribution, c = categorical data. 

As expected, the women with UUI had different scores on the symptom severity and 

pelvic floor questionnaires (UDI, OAB-q, ICIQ, p < 0.001), all indicating a significant impact 

of urinary tract symptoms (Table 2). Additionally, women with UUI were more prevalent to 

have daily urge leaks (p-value < 0.001) (Table 3). We observed no significant difference in 

the prevalence of daily stress leaks (p-value > 0.05), prevalence of daily night voids, (p-

value > 0.05), and average number of voids (p-value > 0.05). 
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 UUI (n=20) Control (n=30) P-value 

Urogenital distress inventory (UDI-6 
Short Form) 

5.50 [4.75, 9.00] 0.00 [0.00, 0.00] <0.001 

OAB-q symptom bother 45.00 [40.00, 70.00] 6.67 [3.33, 15.00] <0.001 

OAB-q health-related quality of life 66.92 [45.77, 78.85] 98.46 [95.77, 100.00] <0.001 

International Consultation on 
Incontinence Questionnaire (ICIQ) 

10.50 [8.00, 14.25] 3.00 [0.00, 3.00] <0.001 

Table 2: Participant bladder symptoms. This table summarizes bladder symptoms, assessed by validated 
pelvic floor questionnaires and notes statistical differences between the two groups, urgency urinary 
incontinence (UUI) cases and controls. Bold rows are statistically significant between cohorts. Statistics 
performed by Kruskal-Wallis, comparing each groups to controls. 

 

 UUI (n=20) Control (n=30) P-value 

Daily urge leaksa  12 (60.0%) 0.00 (0.00%) <0.001 

Daily stress leaksa  3 (15.0%) 1 (3.4%) 0.291 

Night voidsa  9 (45.0%) 5 (17.2%) 0.054 

Number of voidsb 8.89±3.46 7.56±2.31 0.129 

Table 3: Summary of bladder habits over a 3-day bladder diary. Counts for daily urge leaks, daily stress 
leaks, and night voids represent the number of participants who had at least a daily occurrence of the 
bladder observation. Bold rows are statistically significant between cohorts. a = non-normal distribution, b 
= normal distribution 

The urinary microbiome data were clustered in a dendrogram generated via 

hierarchical clustering using the weighted UniFrac distance between urine samples (fig. 1). 

We observed two groups, which were defined when optimizing on the highest Silhouette 

metric (S = 0.548). One cluster is a mixture of bacteria primarily from the Firmicutes and 

Bacteroidetes phyla, and the second cluster is a mixture of Lactobacillus and Gardnerella 

genera. Notable genera in the Firmicutes and Bacteroidetes dominated cluster are 

Escherichia/Shigella, Bacteroides, and Lactobacillus. 

We tested the relationship between the clinical observations of our participants and 

their urinary microbiomes. We found no relationship between urinary microbiome 

variation with cohort status (p-value = 0.76), vaginal product use (p-value = 1.0), or 



47 
 

estrogen use (p-value = 1.0). However, being post-menopausal did have a significant 

association with the urinary microbiome, where the Firmicutes-Bacteroidetes dominant 

cluster was predominantly post-menopausal (29 post-menopausal, 4 pre-menopausal) and 

the women in the Lactobacillus/Gardnerella dominant cluster have an even distribution of 

menopausal status (9 post-menopausal, 8 pre-menopausal) (p-value = 0.01). 

 

Figure 1: Clustering of urinary microbiome is associated with menopausal status. Hierarchical clustering 
was performed using the Ward’s minimum variance method on weighted UniFrac distances between 
samples. Dotted lines outline clusters that were chosen based on the Silhouette metric. Statistics 
performed by Fisher’s exact test, comparing clinical observations of participants with their clustering 
group. Cases are labeled with yellow diamonds and controls are labeled as blue squares. Black squares 
underneath the dendrogram indicates the participant either claimed to use any vaginal product (VPROD), 

is post-menopausal (MENOP), or claimed to use any estrogen (ESTRO). White squares indicate the 

complement of the status, and a white square for MENOP indicates being premenopausal. 

We similarly clustered the vaginal microbiome samples via hierarchical clustering 

using the weighted UniFrac distance (fig. 2). We also observed two groups when optimizing 

on the highest Silhouette metric (S = 0.611). One cluster is dominated by the Lactobacillus 

genus, and the second cluster is a mixture of Lactobacillus, Gardnerella, and 

Escherichia/Shigella genera. Participants with vaginal product use had a significant 
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association with the clustering groups (p-value = 0.02). The distribution of vaginal product 

use was more evenly used among participants in the Lactobacillus-dominated cluster (14 

no, 16 yes) versus the participants in the non-Lactobacillus dominant cluster (16 no, 4 yes). 

We found no relationship between cohort status (p-value = 1.0), being post-menopausal (p-

value = 0.74), or estrogen use (p-value = 0.22). 

 

Figure 2: Clustering of vaginal microbiome is associated with any vaginal product use. Hierarchical 
clustering (top) was performed using the Ward’s minimum variance method on weighted UniFrac 
distances between samples. Stacked bar plots (bottom) show relative abundance of vaginal microbiome of 
women with and without UUI. Dotted lines outline clusters that were chosen based on the Silhouette 
metric. Statistics performed by Fisher’s exact test, comparing clinical observations of participants with 
their clustering group. Cases are labeled with yellow diamonds and controls are labeled as blue squares. 
Black squares underneath the dendrogram indicates the participant either claimed to use any vaginal 
product (VPROD), is post-menopausal (MENOP), or claimed to use any estrogen (ESTRO). White squares 

indicate the complement of the status, and a white square for MENOP indicates being premenopausal. 

On our study, we did not detect any significant differences in alpha diversity 

measures between our UUI and non-UUI in either the urinary or vaginal microbiomes. After 

adjusting for age, menopause-estrogen status, and BMI, the alpha diversity of the urinary 

microbiome does not differ between women with UUI and without UUI (fig. 3). Menopause-
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estrogen status was divided into three groups: post-menopausal and supplementing with 

estrogen, post-menopausal and not supplementing with estrogen, and pre-menopausal. 

Similarly, for the vaginal microbiome, the alpha diversity also does not differ between 

women with UUI and without UUI (fig. 4). 

 

Figure 3: Women with and without UUI do not differ in urinary microbiome diversity. Alpha diversity is 
visualized using box-and-whisker plots and measured using observed number of taxa, inverse Simpson, 
and Pielou evenness. A generalized linear model was used to adjust for age, BMI, and menopause-estrogen 
status. 
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Figure 4: Women with and without UUI do not differ in vaginal microbiome diversity. Alpha diversity is 
visualized using box-and-whisker plots and measured using observed number of taxa, inverse Simpson, 
and Pielou evenness. A generalized linear model was used to adjust for age, BMI, and menopause-estrogen 
status. 

We did not detect any significant differences in beta diversity across multiple 

measures between UUI and non-UUI participants’ urinary or vaginal microbiomes. For the 

urinary microbiome, the beta diversity variation does not differ between women with UUI 

and without UUI (fig. 5). A majority of the microbial composition variation is captured in the 

two axes of the principal coordinate plot (69.8% of the total distance). After adjusting for 

age, BMI, and menopause-estrogen status, a PERMANOVA analysis shows no difference 

between the urinary microbiome composition of women with UUI and without UUI (p-value 

= 0.23). Similarly, for the vaginal microbiome, the beta diversity similarly does not differ 

between women with UUI and without UUI (fig. 6). A majority of the microbial composition 

variation is captured in the two axes of the principal coordinate plot (74.7% of the total 

distance). After adjusting for age, BMI, and menopause-estrogen status, a PERMANOVA 
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analysis shows no difference between the vaginal microbiome composition of women with 

UUI and without UUI (p-value = 0.71). 

 

Figure 5: Variation of the urinary microbiome between women does not differ between UUI cases and 
controls. The ordination plot is a principal coordinate analysis (PCoA) on weighted UniFrac distance. 
Permutation analysis of variance (PERMANOVA) was used to test the relationship between microbiome 
composition and cohort status. Statistical analysis was adjusted for age, body-mass index, and menopause-
estrogen status. Beta diversity was not significantly associated with cohort (p-value = 0.24). Shapes 
represents the cohort, where circles are women with UUI and triangles are women without UUI. Color 
represents a combination of menopause status and estrogen use status. 
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Figure 6: Variation of the vaginal microbiome between women does not differ between UUI cases and 
controls. The ordination plot is a principal coordinate analysis (PCoA) on weighted UniFrac distance. 
Permutation analysis of variance (PERMANOVA) was used to test the relationship between microbiome 
composition and cohort status. Statistical analysis was adjusted for age, body-mass index, and menopause-
estrogen status. Beta diversity was not significantly associated with cohort (p-value = 0.80).  Shapes 
represents the cohort where circles are women with UUI and triangles are women without UUI. Color 
represents a combination of menopause status and estrogen use status. 

We performed differential abundance of genera in the urinary microbiome and 

vaginal microbiome (results not shown). After adjusting for clinical covariates age, BMI, 

menopause status, and estrogen use and correcting for multiple testing using Benjamini-

Hochberg, no genera in either the urinary microbiome or vaginal microbiome was found to 

be differentially abundant between women with UUI and without UUI. 

In order to explore potential subtypes within UUI, we only clustered the participants 

with UUI and identified three clusters (fig. 7). Out of all 25 clinical variables used in 

clustering, these three clusters of participants differed in age (p = 0.02), menopausal-status 

(p = 0.001), estrogen use (p < 0.001), and any vaginal product use (p < 0.001) (Table 4). 
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Two of the groups (both n=9) were generally older (median ages 64 and 68), had a lower 

BMI (median BMI 27.07 and 30.98), and were predominantly post-menopausal (100% and 

88.9%) compared to the third group. The third group of two participants were younger 

(median age 43.50 years), had a higher BMI (median BMI 35.69), and were pre-menopausal. 

 

Figure 7: Participants with UUI clustered based on clinical observations. Hierarchical clustering, using the 
Ward criterion, was used to cluster subjects. The distance matrix used the Gower’s distance measure to 
account for both numerical and categorical information. Black squares underneath the dendrogram 
indicates the participant either claimed to use any vaginal product (VP), over the age of 60 year (AGE60), 

is post-menopausal (MP), or claimed to use any estrogen (EST). White squares indicate the complement of 

the status, and a white square for MENOP indicates being premenopausal. 

  



54 
 

 C1 (n=9) C2 (n=9) C3 (n=2) P-value 

Age (median, [IQR]) 64 [60, 64] 68 [67, 76] 43.50 [43.24, 43.75] 0.02 

BMI (median, [IQR]) 27.07 [25.79, 30.04] 30.89 [27.95, 32.92] 35.69 [32.46, 38.92] 0.366 

Menopause status (%)    0.001 

    Post-Menopause 9 (100%) 8 (88.9%) 0 (0%)  

    Pre-Menopause 0 (0%) 1 (11.1%) 2 (100%)  

Estrogen use (%)    <0.001 

    No 9 (100%) 0 (0%) 2 (100%)  

    Yes 0 (0%) 9 (100%) 0 (0%)  

Vaginal product use (%)    <0.001 

    No 7 (77.8%) 2 (22.2%) 0 (0%)  

    Yes 2 (22.2%) 7 (77.8%) 2 (2%)  

Table 4: Subject clustering based on clinical observations. Statistics performed by Kruskal-Wallis, 
comparing UUI cases to controls and displayed with the median and IQR. The Fisher’s exact test was 
performed on categorical data and counts reported as number of individuals with corresponding 
demographic or condition. Bold rows are statistically significant between cohorts. IQR = interquartile 
range, BMI = body mass index. 

To compare the relationship between having UUI and the urinary and vaginal 

microbiomes, we re-clustered the urinary and vaginal microbiome samples for only the UUI 

participants and compared the clusters with our groupings based on the clinical 

observations (Table 5). Each pair of clustered groups were not statistically different from 

random clustering (clinical/urinary p-value = 1.00; clinical/vaginal p-value = 1.00; 

urinary/vaginal p-value = 1.00). In other words, participants did not cluster into the same 

groups from one clustering to another using a different participant observation type 

(clinical observations, urinary microbiome, and vaginal microbiome). 
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 Urinary microbiome 

Clinical clustering UM1 UM2 

C1 8 2 

C2 7 1 

C3 2 0 

 

 Vaginal microbiome 

Clinical clustering VM1 VM2 

C1 5 4 

C2 6 3 

C3 1 1 

 

 Urinary microbiome 

Vaginal clustering UM1 UM2 

VM1 10 2 

VM2 7 1 

Tables 5: Pairwise clustering comparisons among clustering groupings based on clinical observations, 
urinary microbiome, and vaginal microbiome. CX represents the different clusters identified clustering the 
clinical variables where “X” is a unique identifier for the cluster. Similarly, UMX and VMX are the cluster 
groups identified in the urinary microbiome and vaginal microbiome, respectively, with “X” being the 
unique identifier. Clinical/urinary comparison (p-value = 1.00); clinical/vaginal comparison (p-value = 
1.00); urinary/vaginal comparison (p-value = 1.00). 

2.5 Discussion 

In this pilot study, we characterized the urinary microbiome and vaginal microbiome 

of women with normal bladder function and women with UUI. Surprisingly, our results 

partially contradict previous results reported in the literature comparing control and UUI 

urinary microbiomes. Namely, we did not find that the urinary microbiome composition 

changes with UUI status. In addition, although the evidence for linking UUI and the vaginal 

microbiome is sparse, we similarly did not find evidence of a relationship between variation 

in the vaginal microbiomes of our control and UUI groups. 

Women in the UUI group had a higher body mass index (BMI); this result is 

consistent with previous literature that obesity is associated with urgency urinary 

incontinence. Other risk factors associated with UUI are parity, previous hysterectomy or 



56 
 

pelvic surgery, pulmonary disease, diabetes mellitus, and nursing home admission or 

dementia (Coyne et al. 2013). 

The difference in bladder behaviors between cohorts is consistent with our 

definition of UUI. The significant difference in the number of urge leaks is thus expected. 

Stress leaks are associated with another common urinary incontinence subtype, stress 

incontinence. This type of incontinence is leakage as a result of physical exertion. Often, 

these two subtypes, stress incontinence and urgency urinary incontinence coexist. Despite 

this fact, we did not see a significant difference in the number of stress leaks between 

women with UUI and without UUI (p-value = 0.291). Although night voiding is a common 

symptom among people with UUI, we do not see a significant difference in night voids in 

our UUI cohort (p-value = 0.054). 

We were surprised to see that vaginal product use (douches, vaginal medications or 

suppositories, feminine sprays, genital wipes, contraceptive spermicides, and personal 

lubricants) was associated with our vaginal microbiome clustering analysis. There is a 

growing number of studies looking at the effect of vaginal product use on the vaginal 

microbiome. Recent studies have found that vaginal products can help inhibit 

uropathogenic bacteria (Hung et al. 2020). This may explain the Lactobacillus dominant 

cluster having more participants who used vaginal products. 

Based on the clustering analysis, variation in the urinary microbiome composition 

was not associated with UUI status, vaginal product use, or estrogen use (fig. 1). However, 

urinary microbiome variation is associated with menopausal status. This relationship 

appears to be stronger than the effect of having UUI because the clustering based on the 

urinary microbiome is not associated with UUI status. The Firmicutes-Bacteroidetes 
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dominant cluster is pre-dominantly post-menopausal women, so that lack of a dominant 

Lactobacillus is consistent with previous findings (Curtiss et al. 2018). 

No difference in all three alpha diversity measures between cohort microbiomes 

suggests that UUI is not associated to variation in either the urinary and vaginal 

microbiomes. Similarly, there was no statistically significant clustering of participant 

samples into women with UUI and without. This evidence is consistent with previous 

findings. Karstens et al. (2016) and Pearce et al. (2014) both were unable to detect large 

differences in sequence-based microbial diversity. Our study sample population size was 

greater than Karstens et al. (2016), but less than Pearce et al. (2014). In light of a smaller 

sample size, our results further suggest that the amount of microbial diversity in the 

urinary microbiome of women with UUI may not differ from women without UUI. Despite 

previous studies finding no significant difference in the microbial diversity of urine in 

women with UUI, individual bacterial differences were identified (Karstens et al. 2016; 

Pearce et al. 2014). Some possible explanations for the discrepant results are that our study 

had a smaller sample size, our study population is from the Pacific Northwest compare to 

the mid-west, our predominantly non-Hispanic Caucasian sample population, or our UUI 

participants were being treated with estrogen (Pearce et al. 2015, 2014; Thomas-White et 

al. 2015; Karstens et al. 2016). 

2.6 Limitations 

It is plausible that a number of limitations may influence our results. First, the 

demographics of this study can only generalize to Caucasian women around the ages of 60. 

Also, the UUI and non-UUI cohorts differ in BMI. We are thus unable to say whether BMI is 

related to potential microbial differences rather than the urinary symptomology because 
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increased BMI is a known risk factor for UUI. Future studies, with larger sample sizes and 

matched clinical covariates and greater ethnic diversity, will be required to evaluate these 

important differences. There is still a lack of studies that describe the female urinary 

microbiome in large, well-characterized populations. The vaginal microbiome is much more 

characterized in comparison. A limitation for survey data is that the data presented here is 

cross-sectional while longitudinal studies of the stability of these scores is unknown. 

Limitations of the stacked bar plot are that only large and dominant bacterial differences 

can be observed among samples. Differences in lower abundant bacteria among participant 

samples are difficult to identify. This is especially the case where most of the UUI cases and 

controls do not associate into a single cluster. This further suggests that there does not 

appear to be an association between the composition of the vaginal microbiome and UUI. 

Another limitation with this analysis is that measures of microbial diversity reduce 

the complexities of a microbial community. Each microbial sample is summarized into a 

single number, which is taken as a measure of the health of a microbial system. However, 

this may not be the case. Plus, this ignores the ecological interactions that exist in a 

community, which will affect the microbial dynamics. Microbial diversity is a starting point 

to further understanding the extent of the microbiome’s effects on human health and 

disease. 

2.7 Conclusion 

We characterized the vaginal microbiome and urinary microbiome of pre-

dominantly post-menopausal women to understand the connection between the vaginal 

and urinary microbiome with urgency urinary incontinence (UUI). The lack of clustering by 

UUI status suggests that there is not a global relationship between UUI and vaginal 



59 
 

microbiome composition or urinary microbiome composition. The urinary microbiome 

clusters significantly by menopause status, unlike the vaginal microbiome. However, the 

vaginal microbiome clusters significantly by vaginal product use. By their clinical 

observations, women with UUI cluster significantly by age, menopause status, estrogen use, 

and any vaginal product use. Finally, the lack of concordance between clustering the 

participants by clinical information, urinary microbiome, and vaginal microbiome suggests 

little relationship linking each of them together. Thus, our study does not provide evidence 

for a relationship between the variation in composition of the vaginal microbiome and 

having UUI. Our results are consistent with previous studies on the lack of evidence 

supporting changes in the diversity of urinary microbiome associated with UUI. However, 

our results contrast previous studies that identified differences in individual bacterial 

abundances in the urinary microbiome of women with UUI. There is still work to be done to 

further explore the relationship between UUI and the vaginal microbiome, along with the 

relationship between the urinary microbiome and the vaginal microbiome. Ultimately, 

understanding how UUI symptoms, the urinary microbiome, and vaginal microbiome 

coexist will improve our understanding to best treat women with UUI and other lower 

urinary tract symptoms. 
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3 Urinary and vaginal microbial co-occurrence and 
urgency urinary incontinence 

3.1 Abstract 

The state of the vaginal microbiome is known to contribute significantly to women’s 

health. We’re also increasing our understanding of the role the commensal urinary 

microbiome has on lower urinary tract symptoms. Markers of microbiome health and 

dysbiosis rely on diversity summary measures and identifying differentially abundant 

bacteria. These methods have expanded our understanding of how changes in these 

microbial communities are associated with disease. However, these current microbiome 

analytical methods do not fully account for the ecological interactions of constituent 

members of the microbial community, which may uncover subtle microbial community 

differences that are missed through microbial diversity indicators and differential 

abundance methods. Here we show that microbial co-occurrence networks can uncover 

known and emerging uropathogens in both the urinary microbiome and vaginal 

microbiome that are missed with traditional analytical methods. We found that the urinary 

microbiome of women with UUI have unique correlations between Lactobacillus and known 

genera associated with urinary tract infections and bacterial vaginosis such as 

Campylobacter, Corynebacterium, Actinotigum, Aerococcus, Prevotella, and 

Escherichia/Shigella. Similarly, we identified the genera Aerococcus as a central constituent 

bacteria in the vaginal microbiome co-occurrence network. The genera Aerococcus was also 

found to co-occur with Gardnerella and Prevotella, which are two bacteria known to cause 

bacterial vaginosis. Our results demonstrate the potential of using microbial co-occurrence 

networks to understand lower urinary tract symptoms and their relationship with the 

urinary and vaginal microbiomes. We anticipate our work to be a starting point for more 
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sophisticated and robust microbial network models of the urinary and vaginal microbiome 

ecology. 

3.2 Introduction 

Organisms exist with each other through known ecological interactions, such as 

mutualistic (win-win) and competitive (lose-lose) situations (Lidicker 1979). These 

interaction classifications also exist for microbial communities (Konopka 2009). The 

aggregate of these microbial community interactions has recently been explored and 

modeled using microbial co-occurrence networks in the human microbiome (Faust et al. 

2012). These microbial networks allow us to uniquely identify key bacteria using the 

structure of the co-occurrence network to gain information about the community as a 

whole. Here we explore model the microbial co-occurrence of the urinary and vaginal 

microbiome in women with and without UUI. 

3.3 Methods 

The study population and design, DNA extraction and PCR amplification, and 

sequence processing, taxonomic assignment, and phylogenetic tree building are the same as 

those described in section 2.3.1, section 2.3.2, and section 2.3.3, respectively. 

3.3.1 Network analysis 

The abundance count table was processed using SparCC for composition-aware 

variation. SparCC accounts for the compositional nature of 16S rRNA data by performing a 

linear Pearson correlation on log-ratio transformed data (Friedman and Alm 2012). This 

transformation is beneficial because it retains the true abundance values as a ratio, which 

are independent of other taxa included in the data, and the transformation can take any 

value rather than being constrained to a fixed abundance. The SparCC method was 
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performed as implemented in the sparcc function with default parameters in the 

SpiecEasi package (version 1.0.7) (Kurtz et al. 2019). Network analyses were performed 

using the R packages tidygraph (version 1.2.0) (Pedersen 2020b), with the underlying 

functionality of igraph (version 1.2.5) (Csardi and Nepusz 2006), and visualized using the R 

package ggraph (version 2.0.3) (Pedersen 2020a). Community detection was performed 

using the InfoMap community detection algorithm, which minimizes the expected 

description length of a random walker along the network, as implemented in 

cluster_infomap in the R package igraph (version 1.2.5) (Rosvall and Bergstrom 2008; 

Csardi and Nepusz 2006). 

A permutation analysis was used on all UUI case and control vaginal microbiome 

data to determine a correlation threshold by shuffling the sample labels for each genera in a 

pairwise comparison prior to calculating correlations. A similar permutation was 

performed separately on the urinary microbiome data. This permutation analysis generates 

a null distribution of correlations from which to identify a threshold of correlations for 

downstream analyses. A permutation of 1000 trials was performed and a threshold of the 

top 5% of the null distribution was used to determine a correlation cut off for each the 

vaginal microbiome (correlations > 0.23) and urinary microbiome data (correlations > 

0.22). Only positive correlations were considered for the network analysis. 

3.4 Results 

We inferred two urinary microbial interaction networks by analyzing 20 women 

with UUI and 30 women without UUI (fig. 8, Table 6). The UUI network had fewer genera in 

the connected network (93 genera in UUI versus 135 genera in controls) and fewer unique 

bacterial co-occurrences (624 associations in UUI versus 763 associations in controls). The 
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basic structure of the urinary microbiome network showed 4 clustered subgroups of 

bacteria for women with UUI and 9 clusters for women without UUI. Visually and 

quantitatively using modularity and connectance, we see that the control urinary microbial 

network is more clustered into smaller microbial groups, which may suggest more 

specialized microbial niches. We also observe a difference in how the bacterial phyla 

associate with each other in the network (p-value < 0.001) (fig. 9). 

 

Figure 8: Network visualization of urinary microbiome in UUI and healthy controls. This shows the urinary 
microbiome co-occurrence network, one for the case subjects (left) and one for the control subjects (right). 
The bacterial genera here are shown as circles, colored by communities of bacteria identified using the 
InfoMap algorithm, and connected by the SparCC correlation. Each edge represents a significant co-
occurrence relationship greater than a correlation of 0.22 defined by a permutation analysis. Only positive 
relationships are shown. 
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 Interpretation Case Control 

Number of nodes Space of co-occurring bacteria to consider 93 135 

Number of edges Number of co-occurrence relationships 624 763 

Modularity Measure of community detection 0.46 0.60 

Normalized 
connectance 

Complexity of system 0.15 0.09 

Table 6: Network statistics for urinary microbiome networks across cohorts. 

 

Figure 9: Urinary bacterial phyla associate differently in UUI versus healthy controls. This hive plot orients 
the different phyla on the axes. Only the top four phyla are shown and the remaining phyla are collapsed 
into “Other”. Correlations limited to greater than 0.5 for visualization purposes. 

We explored key urinary bacteria in each of the UUI and control urinary microbial 

networks using the betweenness centrality measure (Table 7). We found the Lactobacillus 

genera to be more central in both UUI and controls. Because of the previously known 

prevalence of Lactobacillus in the commensal urinary microbiome, our observation of 

Lactobacillus here as a key bacteria to the microbial community structure is a promising 

positive control for our network-based approach. 

Because Lactobacillus is central to both UUI and non-UUI networks, we explored the 

microbial associations between the Lactobacillus genera and other genera in each cohort 
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(fig. 10). We found 25 unique genera in UUI and 16 unique genera in the controls that 

associated with Lactobacillus in their respective networks. Both networks shared a total of 

10 common genera that associated with Lactobacillus. Among the unique associated genera 

in UUI, we found that at least a quarter of them are known uropathogens associated with 

urinary tract infections (Table 8). 

 Cohort Phylum Genus Betweenness 

1 UUI Firmicutes Lactobacillus 0.19 

2 UUI Firmicutes Agathobacter 0.07 

3 UUI Firmicutes Incertae_Sedis 0.06 

4 UUI Actinobacteria Bifidobacterium 0.04 

5 UUI Proteobacteria Azomonas 0.04 

1 Control Firmicutes Lactobacillus 0.12 

2 Control Firmicutes Veillonella 0.10 

3 Control Firmicutes Agathobacter 0.07 

4 Control Actinobacteria Corynebacterium 0.07 

5 Control Firmicutes Psuedobutyrivirbio 0.07 

Table 7: Network statistics for urinary microbiome networks across cohorts. Betweenness = betweenness 
centrality, UUI = urgency urinary incontinence. 

 

 

Figure 10: Overlap of bacteria correlated with Lactobacillus in UUI and controls. 
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Correlation Phylum Genus 

0.49 Proteobacteria Campylobacter 

0.40 Actinobacteria Corynebacterium 

0.38 Actinobacteria Actinotignum 

0.35 Tenericutes Ureaplasma 

0.34 Firmicutes Dialister 

0.32 Firmicutes Aerococcus 

0.26 Bacteroidetes Prevotella 

0.25 Proteobacteria Escherichia/Shigella 

Table 8: Notable urinary bacteria correlated with Lactobacillus in UUI are associated with urinary 
tract infections. 

Additionally, we inferred two vaginal microbiome-wide microbial interaction 

networks of the 20 women with UUI and 30 women without UUI (fig. 11, Table 9). The UUI 

network had similar number of genera in the connected network (60 genera in UUI versus 

58 genera in controls) but more unique bacterial co-occurrences (396 associations in UUI 

versus 195 associations in controls). The number of clusters in the vaginal microbiome 

network were similar between cohorts, where the UUI network clustered into 5 subgroups 

of bacteria and 6 clusters for women without UUI. Visually and quantitatively using 

modularity and connectance, we see that the control urinary microbial network is more 

clustered into smaller microbial groups, which may suggest more specialized microbial 

niches. We also observed a difference in how the bacterial phyla associate with each other 

in the network (p-value < 0.001) (fig. 12). 
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Figure 11: Network visualization of vaginal microbiome in UUI and healthy controls. This shows the 
vaginal microbiome co-occurrence network, one for the case subjects (left) and one for the control subjects 
(right). The bacterial genera here are shown as circles, colored by communities of bacteria identified using 
the InfoMap algorithm, and connected by the SparCC correlation. Each edge represents a significant co-
occurrence relationship greater than a correlation of 0.23 defined by a permutation analysis. Only positive 
relationships are shown. 

 Interpretation Case Control 

Number of nodes Space of co-occurring bacteria to consider 60 58 

Number of edges Number of co-occurrence relationships 396 195 

Modularity Measure of community detection 0.50 0.59 

Normalized connectance Complexity of system 0.23 0.12 

Table 9: Network statistics for vaginal microbiome networks across cohorts. 
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Figure 12: Vaginal bacterial phyla associate differently in UUI versus healthy controls. This hive plot 
orients the different phyla on the axes. Only the top four phyla are shown and the remaining phyla are 
collapsed into “Other”. Correlations limited to greater than 0.5 for visualization purposes. 

We explored central vaginal bacteria in each of the UUI and control vaginal microbial 

networks using the betweenness centrality measure (Table 10). Unlike the urinary 

microbiome network (Table 6), we did not find Lactobacillus as being central to both the 

UUI and control networks, but only for the control network. Because of the dominance and 

clinical importance of Lactobacillus in the commensal vaginal microbiome, observing 

Lactobacillus as a central bacteria to the microbial community structure is another 

promising positive control for our network-based approach. 

Because the Aerococcus genus is central to our vaginal microbial network in UUI and 

it is a known uropathogen associated with urinary tract infections (Zhang et al. 2000; Hilt et 

al. 2020), we explored its surrounding bacterial connections in our network (Table 11). We 

found that the two top average relative abundant genera that Aerococcus was associated 

with, Gardnerella and Prevotella, are both together associated with bacterial vaginosis 

(Randis and Ratner 2019). 
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Cohort Phylum Genus Betweenness 

UUI Firmicutes Aerococcus 0.33 

UUI Firmicutes Streptococcus 0.19 

UUI Proteobacteria Mannheimia 0.15 

UUI Bacteroidetes Bacteroides 0.15 

UUI Bacteroidetes Prevotellaceae_UCG-001 0.15 

Control Firmicutes Lactobacillus 0.20 

Control Fusobacteria Fusobacterium 0.14 

Control Firmicutes Faecalibacterium 0.13 

Control Firmicutes Parvimonas 0.13 

Control Firmicutes Staphylococcus 0.12 

Table 10: Network statistics for vaginal microbiome networks across cohorts. Betweenness = betweenness 
centrality, UUI = urgency urinary incontinence. 

 

Phylum, Genus 
Average relative 
abundance (%) 

Actinobacteria, Gardnerella 7.47 

Bacteroidetes, Prevotella 4.01 

Bacteroidetes, Bacteroides 1.35 

Bacteroidetes, Prevotellaceae_UCG-001 0.89 

Firmicutes, Ruminiclostridium_6 0.45 

Firmicutes, Staphylococcus 0.27 

Fusobacteria, Streptobacillus 0.15 

Actinobacteria, Actinomyces 0.10 

Firmicutes, Helcococcus 0.04 

Table 11: Connections with Aerococcus in the vaginal microbiome of UUI cases. Average relative 
abundance was calculated based on UUI case samples. 

3.5 Discussion 

We constructed microbial co-occurrence networks for both the urinary and vaginal 

microbiomes of women with UUI and without. We found that the control networks had 

more bacteria clustered in smaller groups than in the UUI case networks. These networks 

being more clustered into these smaller groups suggests a putative structure among the 
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clustered bacteria which may have evolutionary and functional synergy. In other words, 

microbes that are closely related may compete more for resources, while a more modular 

community with complementary functions would exhibit mutualistic behaviors that are 

worth exploring further. 

In both the urinary and vaginal microbiome networks, we found Lactobacillus to be a 

central microbial player in the network structure. This is consistent with previous findings 

(Pearce et al. 2014; Ravel et al. 2011). For the urinary microbiome of women with UUI, we 

found positive correlations between Lactobacillus and a number of bacteria that are known 

to or are gaining evidence to be associated with urinary tract infections. Adjacent to the 

urinary microbiome, we found the genus Aerococcus as most central to the microbial 

community structure of the vaginal microbiome of women with UUI. It is notable that 

Aerococcus has recently been isolated from the bladders of women with urinary tract 

symptoms (Hilt et al. 2020). Although Aerococcus was not directly found in the bladder, the 

vaginal microbiome is recognized as a key anatomical site for the pathogenesis of urinary 

tract infections (Stapleton 2016) and is shown to have similar functional capacities with the 

urinary microbiome (Thomas-White, et al. 2018). This further suggests the possible 

transmission of the vaginal microbiome to seed the urinary microbiome with uropathogens 

that are associated with urgency urinary incontinence. 

3.6 Limitations 

It is plausible that a number of limitations could have influenced the results 

obtained. Small sample sizes reduce our power to identify results and increase the amount 

of noise in our data. This is especially true for microbiome data that is sparse, meaning most 

of the microbes are not present across all the samples. This sparsity can cause issues when 



71 
 

calculating correlations because low number of samples per pairwise correlation can 

artificially inflate the strength of a correlation with a small number of samples. 

Compositional data analysis is an up-and-coming area of research to be applied to 

the microbiome (Gloor et al. 2017). The work here presents and uses a compositional aware 

network method, SparCC, to generate the microbial networks. Although this is a good first 

step, there needs to be further work on studying the influence of compositional data on 

such low biomass microbiomes. Current studies of compositional data methods are 

typically performed on high biomass microbiomes, such as the gut microbiome. However, 

we don’t fully understand the implications of these methods being done on a differently 

structured microbiome, such as the urinary microbiome or vaginal microbiome. 

Additional limitations include the lack of functional information annotated on these 

bacteria and the lack of temporal information. Bacterial function would enrich this analysis 

to better understand relationships among the bacteria and how or why they may co-occur 

with each other. This strengthens the hypothesis that those co-occurring bacteria 

complement each other evolutionarily or functionally. 

3.7 Conclusion 

We modeled the vaginal microbiome and urinary microbiomes of pre-dominantly 

post-menopausal women to understand microbial associations within the vaginal 

microbiome and within urinary microbiome to identify important bacteria to the 

microbiome structure that are associated with urgency urinary incontinence (UUI). There is 

still work to be done to further explore the range of possibilities to use network-based 

analyses to deepen our understanding of bacterial associations and their relationship with 

UUI. Ultimately, understanding how UUI symptoms, the urinary microbiome community 



72 
 

structure, and the vaginal microbiome community structure will improve our 

understanding to best treat women with UUI and other lower urinary tract symptoms. 
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4 Discussion and conclusions 

We characterized the vaginal microbiome and urinary microbiomes using traditional 

bioinformatic methods and explored the utility of microbial co-occurrence networks to 

understand urgency urinary incontinence in women. The initial evidence from the 

traditional analysis suggests that there is no link with either the urinary microbiome or 

vaginal microbiome and urgency urinary incontinence. The reason for this rather 

contradictory result is still not entirely clear, but may be due to our study population having 

more estrogen treatments compared to other studies. Despite these contradictory results, 

our network analysis shows promising insights into other differences not apparent through 

traditional microbial diversity or differential abundance methods. In the urinary 

microbiome of women with UUI, we found bacteria associated with Lactobacillus to be 

known uropathogens for urinary tract infections. Moreover, we found the vaginal 

microbiome of women with UUI to have a known uropathogen associated with urinary tract 

infections, Aerococcus, to be central to the microbial community. Our results demonstrate 

the potential of using microbial co-occurrence networks to understand lower urinary tract 

symptoms and their relationship with the urinary and vaginal microbiomes. We anticipate 

our work to be a starting point for more sophisticated and robust microbial network 

models of the urinary and vaginal microbiome ecological states. 
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5 Future work 

There are a number of directions this work can take. These next steps include: 

connecting the urinary and vaginal networks to create an integrated urogenital network, 

robust testing the microbial co-occurrence networks in low biomass environments, and 

incorporating negative correlations into the network analysis. After these steps are 

evaluated, an orthogonal direction to explore is temporal networks in how these microbial 

networks change over time. And ultimately, these results will need to be experimentally 

validated in the lab, starting with small triplets of bacteria unique to UUI that may influence 

UUI symptoms. 

5.1 Interconnected urogenital microbial co-occurrence network 

We have two networks, a urinary and vaginal microbiome co-occurrence network. It 

may be fruitful to explore the interconnected nature of the urogenital microbiome by 

constructing a single network comprised of both the urinary and vaginal microbiome. This 

can be limited to just interactions between the two microbiomes, which can be modeled 

using a bipartite graph. To make this mode tractable, focusing on putative clusters in each 

microbiome can reduce the computational overhead of this analysis. Removing this 

restriction can be explored to identify co-occurring urinary and vaginal bacteria. While 

these two sets of bacteria might not interact, they still co-occur with each other and may 

have a biological link between them. A first step in understanding the relationship between 

these two microbiomes is to perform a Mantel test18 to test the correlations between the 

distance matrices constructed for each of these microbiomes. This tests whether the 

                                                        

18 See https://mb3is.megx.net/gustame/hypothesis-tests/the-mantel-test. 

https://mb3is.megx.net/gustame/hypothesis-tests/the-mantel-test
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variation in one microbiome (e.g., urinary microbiome) is associated with the variation in 

the other microbiome (e.g., vaginal microbiome). Furthermore, a canonical correlation 

analysis (CCA)19 can be performed to understand the relationship between the microbiome 

and clinical information, similar to work shown in Komesu et al. (2020). 

5.2 Explore other correlation methods applied to low-biomass 
microbiomes 

Although the work presented here works with low-biomass microbiomes, this was 

not an in-depth benchmarking of network methods applied to low-biomass environments. 

There are many network methods to choose from and there may be more appropriate 

methods to be applied. Additionally, most of these network methods have been tested and 

developed with higher biomass microbiomes. Some of those assumptions may not apply to 

lower biomass microbiomes. Lower biomass microbiomes have increased sparsity, which 

will need to be explored and addressed. 

5.3 Negative correlations 

Negative correlations were unexplored in this work. These correlations can be 

thought of co-exclusion patterns. A simple measure to explore is the utility of the positive-

to-negative ratio of correlations (Ma 2017). Another measure and technique that can be 

explored is the utility of co-exclusion-specific tools (Albayrak et al. 2018). 

5.4 Temporal networks 

The microbiome is always changing. It is known that the vaginal microbiome 

fluctuates with hormonal cycle, contraceptives, diet, and exercise (Song et al. 2020). A 

                                                        

19 See https://mb3is.megx.net/gustame/constrained-analyses/cca. 

https://mb3is.megx.net/gustame/constrained-analyses/cca
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natural extension of the work presented in Chapter 3 is to explore network variations over 

time using temporal networks (Li et al. 2017). There already is R code and instruction to 

explore temporal networks (Brey 2018). 

5.5 Construct networks based on urotype and community state type 

The urinary and vaginal microbiome have been shown to have subtypes. These 

subtypes are based on dominant bacteria in an individual’s microbiome. In the vaginal 

microbiome these subtypes, or community state types, have clinical and research utility 

such as being a good predictive indicator of bacterial vaginosis (Seta et al. 2019). Similarly, 

the urinary microbiome can be classified into subtypes, or urotypes, which indicate some 

susceptibility to diseases like bacterial vaginosis (Gottschick et al. 2017). Based on this 

information, it may be worthwhile to explore the network variation among these different 

subtypes and what those implications may be. 

5.6 Focus on disease and pathogen networks 

The work presented in Chapter 3 is a first application in using networks to the 

urinary microbiome and growing applications to the vaginal microbiome. Poudel et al. 

(2016) have proposed a framework for identifying candidate microbial assemblages for 

disease. This framework consists of four network analyses: a general network analysis 

(similar to the work presented in Chapter 3), host-focused analysis to relate features of the 

microbial network with host-based information, pathogen-focused analysis to a priori focus 

on known pathogens in the network, and a disease-focused network (similar to the work 

presented in Chapter 3). Work that can be done here is to formalize this framework for 

human microbiome networks because the original paper was directed to plant pathology 

and management. 



77 
 

5.7 Consensus network from multiple methods 

There are a plethora of network methods available (Jiang et al. 2019). However, it is 

difficult to know which set of networks is the most accurate. Crowdsourcing construction of 

gene regulation networks have proved successful (Prill et al. 2011). This approach can also 

be applied to microbial network construction to identify a biologically meaningful and 

tractable model of microbial communities. 

5.8  In vitro validation of microbial interactions 

We now have putative interactions and communities from the urinary and vaginal 

microbiomes. These are in silico results and will still need to be experimentally validated. 

We can combine in silico and in vitro results to validate our findings. Because of the unique 

and fastidious nature of the urinary microbiome, it may prove to be difficult to 

appropriately engineer a culture medium to effectively grow these bacteria. It may be 

advantageous to explore computational methods to hypothesize and optimize appropriate 

media for urogenital microbe growth using databases such as a Known Media Database 

(KOMODO) (Oberhardt et al. 2015). 

Ideally, the results of these work will be experimentally validated in vitro by taking 

pairs or triples of bacteria to grow together in order to observe their ecological interactions. 

Previous work shows exploring ecological interactions by measuring metabolic output 

using small numbers of bacteria together (Medlock et al. 2018). Similarly, there are model 

microbiome communities that can be used to explore constrained microbiome interactions 

for results presented here (Lozano et al. 2019). 
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