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Abstract.

This work develops the methods necessary for deriving integrated network 

signatures of disease with an application in systems biology of infectious 

disease. 

Co-expression network models help identify important biochemical 

pathways, biomarkers and targets for research, but they typically focus on gene 

expression. In this work, co-expression network methodologies are extended to 

proteomics and applied to data derived from mice infected with either influenza or 

SARS-CoV.  

Although, peptide-level co-expression networks are promising, the 

determination of parent proteins is difficult, especially due to degenerate peptides 

mapping to multiple proteins. Protein inference attempts to solve this problem. 

While there are a handful of models, none have been purposed towards high-

throughput tag-based proteomics. As such, a new model for protein inference is 

developed, representing a new approach to the problem.  

Lastly, two methods of data integration are explored. First, using a new 

application of correlated factor analysis, and second, by joining independently 

constructed co-expression networks. These integration methods allow the 

discovery of new integrated network signatures of disease and suggest new 

paths for biomedical research. 



 

 1 

.

Figure 1. The SARS-CoV corona virus (SciencePhotoLibrary). 

1..Introduction.

Disease signatures, or biomarkers, are sets of biological components such 

as genes or proteins, that together can be used for prediction of clinically relevant 

phenotypes. The uses are diverse. For example, phenotypes can describe 

disease subtypes or pathological severity.  
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In the past, most signatures were derived using single data types, such as 

gene expression microarrays, and were subsequently found to be poor 

predictors. However, it is becoming apparent that the integration of multiple data 

types and the use of network models will vastly increase the accuracy and 

robustness of signatures (Sung, Wang, Chandrasekaran, Witten & Price, 2012). 

Weighted Gene Co-expression Network Analysis (B. Zhang & Horvath, 

2005) uses gene expression data to discover disease signatures. These methods 

are extended to proteomics and it is shown that the resulting peptide networks 

are scale-free, modular, and associate with clinically relevant phenotypes. 

In order to integrate peptide networks to gene expression data, protein 

inference must be performed. A new method of protein inference is developed for 

high-throughput tag-based proteomics (Smith, et al., 2002a). This model is 

compared to an established method and shown to make reliable predictions on 

both simulated and real data.  

With annotated peptide networks, relationships to independently 

constructed transcript networks are discovered, uncovering integrated signatures 

of disease. Joint co-expression network integration is compared to another 

method of integration called Correlated Factor Analysis (CFA). This work 

supports the idea that multi-omic signatures are feasible, robust, and biologically 

informative. 

This work is applied to studying the host response after infection by either 

SARS-CoV and influenza viruses (Ksiazek et al., 2003; Shortridge et al., 1998) 

(Figure 1).  
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Aim1.

A novel method for de novo protein co-expression network analysis is developed. 

Hypothesis: Peptide data is useful for co-expression analysis, and inferred sub-

networks have focused functional profiles.  

1. Protein co-expression networks are constructed using proteomics data 

from influenza and SARS-CoV infected mouse studies, and a human 

cohort study. 

2. Network significance is evaluated using permutation testing.  

3. The network is evaluated by identifying strongly connected central 

“hub” peptides, and functional profiling on subnetworks.  

4. Protein co-expression networks are also evaluated by comparison to 

known protein-protein interaction networks using the Mouse Protein-

Protein Interaction database.  

Aim.2.

A novel method of protein inference for tag-based proteomics is developed. 

Hypothesis: a method based on ideas from network flow provide a solution.  

1. Simulated data sets are generated using parameters reflecting real data. 

The simulated data is compared to real data in terms of topological 

properties on graphs connecting peptides to proteins. 

2. A method of protein inference is developed tailored to high-throughput tag-

based proteomics. 
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3. The method is compared to an established method for validation on both 

simulated and real data. 

Aim.3.

Integration of gene and protein data is demonstrated using two methods 

representing “early” and “late” methodologies. Hypothesis: Integrated analysis 

allows the discovery of relationships between previously unrelated genes and 

proteins relevant to disease. 

1. “Early” data integration is accomplished by extending correlated factor 

analysis resulting in immediately integrated gene and protein data.  

2. The most variable genes and genes that match the protein data are used 

for gene co-expression network construction.  

3. “Late” data integration is accomplished by joining independently 

constructed peptide and transcript networks. The subnetworks are 

selected for integration by a combination of member overlap, eigenvector 

correlation, and phenotype correlation.  

4. Integrated networks obtained using both methods are evaluated by 

comparing functional profiles.  

5. An integrated signature for SARS-CoV infection is found using joined co-

expression modules. 
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2..Background.

Importance.

The determination of biological components and their relative importance 

is important for understanding the disease process. The systems involved in the 

progression of disease are complex, and have proven difficult to analyze. 

Network methods have shown promise in decomposing complex problems, and 

have been applied to a broad variety of biological studies. In particular, systems 

biology is focused on learning about complex systems using network methods as 

a primary tool.  

However, networks composed of a single data type do not tend to reflect 

the complex biological networks observed in living things. Although difficult, in 

order to better model and represent the disease state, it is important to 

incorporate a variety of data types into our models. A way forward is to focus on 

technologies that allow high-throughput “Omic” level measurements, such as 

transcriptomic and proteomic measurements. The combination of network 

methods and ‘omic data integration will lead to more clinically relevant models of 

disease.  

Globally, millions of individuals are affected by respiratory viral infection 

every year (Dixon, 1985). However, the complete mechanism of viral pathology is 

still not clearly understood (Peiris J, n.d.; Safronetz, et al., 2011b). For SARS, the 

most common form of damage to the host is lung pathology, and in particular 

diffuse alveolar damage. Influenza pathology is thought to result from a 
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combination of a disregulation of immune response pathways (de Jong et al., 

2006) and high viral replication rates (Hatta et al., 2010). It is quite likely that 

different respiratory viruses share some of the causes of pathology. 

The result of this work could lead to new targets for further investigation, 

potentially leading to new therapies.  

Critical.Barriers.

Proteomics provides valuable information. Direct measurements of protein 

levels are important since this information cannot be inferred reliably from 

microarray data (Nie, Wu, Culley, Scholten, & Zhang, 2007). However, for a 

number of reasons, there is a large amount of missing data and significant 

difficulty in the inference of proteins in a biological mixture. In addition, there 

remains a distinct lack of de novo network methods applicable to proteomics. 

We should be able to improve our understanding of biology by integrating 

multiple sources of information such as gene expression and proteomics. 

However, data integration has proven difficult (Joyce & Palsson, 2006), and there 

are a limited number of successes with virtually no examples in virology. To date, 

no integrated models exist for host response in viral infection.  

Understanding the range of pathogenicity among viruses as a function of 

host response is important for the improvement of public health (Mauad et al., 

2009). The mechanisms behind tissue damage are not clear. Simple measures 

such as viral titer do not predict the level of damage (Safronetz, et al., 2011a). It 

is therefore crucial to have a clear understanding of how the host system, 
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including the innate and adaptive immune systems, responds to viral infection 

and how it relates to physiological damage (Hatta et al., 2010). 

Application.to.systems.biology.of.infectious.disease.

 

Figure 2. Weight loss of mice infected by influenza. Mice were given varying dosages of influenza 
virus and host response time series data was generated including both transcript and proteomics 
data. Significant amounts of weight loss was observed for infected mice. The effect of larger doses 
is easily seen. 

The work in this proposal is applied to publicly available data from an 

NIAID Systems Biology project (Systems Virology Center, NIAID Contract No. 

HHSN272200800060C) where mice are inoculated with differing dosages of 

SARS or influenza and measurements are taken while the infection progresses 

(Figure 2). Both viruses are enveloped RNA respiratory viruses that are harbored 

in animal reservoirs (Wendong Li et al., 2005b). The viruses infect epithelial 

tissue in the respiratory track (Fang Li, Li, Farzan, & Harrison, 2005a).  
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The SARS virus is the mouse adapted MA15 strain (Roberts et al., 2007). 

The animals used in the study were 20 weeks old C57bl/6 mice. SARS doses 

were given at 102, 103, 104, 105 PFU. Each day, for 7 days, weight is measured 

using combined groups of five mice. On days 1, 2, 4, and 7 RNA and protein 

levels were measured, and pathology samples taken. The Baric Laboratory at the 

University of North Carolina, Chapel Hill, conducted all SARS infections and the 

accompanying phenotypic characterizations. The Katze Laboratory at the 

University of Washington produced the gene expression data using the Agilent 

4x44 mouse microarray platform. Protein data was produced by the Pacific 

Northwest National Lab Proteomic Research Resource for Integrated Biology 

using LC IMS/MS (Baker et al., 2010) for the tag database creation and LC-MS 

for the sample analysis. 

Proteomic data comes in the form of peptide observations stemming from 

fragmented proteins. A mass-and-time tag database is used to identify peptides 

contained in sample mixtures (Ksiazek et al., 2003; Shortridge et al., 1998; Smith, 

et al., 2002a). Technical replicates are averaged. Missing values are recorded 

when no data was present for any technical replicate. 

Many transcripts in the microarray annotation do not have a matching 

protein in the tag database. To further characterize the differences between the 

microarray data and the tag database, the goProfiles package from Bioconductor 

is used. All GO term nodes on the biological process tree levels 2, 3, and 4 were 

examined. Associated Entrez gene identifiers for the microarray and proteins in 

the tag database were mapped using Bioconductor annotation databases. 
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For each GO term, the associated Entrez IDs were compared to the 

microarray and proteomics database. The two comparisons resulted in a set of 

GO terms unique to the microarray, a set of GO terms for the intersection 

between array and proteomics database, and a set unique to the proteomics. 

 

Figure 3. Comparison of microarray and tag database GO BP term coverage. For both the microarray 
annotation and the mass tag database, which describes all possible peptide identifications, the 
number of entities mapping to high-level GO terms is compared on the log scale. In some 
categories, including cell killing, and viral reproduction, the proteomics database is noticeably 
absent. In all other categories, proteomic coverage is lacking to some degree.   

As shown in Figure 3, the proteomic data has reduced functional category 

coverage. However, with respect to the microarray, a large portion of the GO 

term coverage comes from genes unique to the array. For example, considering 

level 2 BP GO terms, the coverage provided by the genes unique to the 

microarray is often almost twice as great as those genes in the intersection 

between microarray and proteomics database. Therefore, using the intersection 
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of EGs between microarray and proteomics database greatly diminishes the GO 

term coverage.  

 

Figure 4. Overall pathology score by dose and day. Comparing the overall pathology score for each 
mouse infected with the SARS-CoV virus shows increasing amounts of lung damage with time 
(moving backwards into the box). While the three higher dosages follow a similar trend, the 102  
profile appears quite different. 

The phenotypic information associated with this project is provided by a 

pathologist who has evaluated the lungs of each subject. Measurements for a 

wide range of variables are provided including features such as airway 

constriction, inflammation, airway inflammation, debris, denudation, the state of 

the vasculature, and whether signs of pneumonia are observed.  
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Conveniently all of the variables are combined into a single measure entitled 

“Overall Total Score”, which correlates very well with most other variables as 

shown in Figure 5. 

 

Figure 5. Comparison of the overall pathology score to inflammation related phenotypes. Although 
Diffuse aveolar damage (DAD) does not start until the overall score is above 4, the other variables 
correlate strongly implying that the overall score is a good surrogate for mouse lung health. 

When the lung pathology is observed as the Overall Total Score by time 

and by dosage, we see that the trend is strongest by time, and less difference is 

seen by dosage (see Figure 4). All mice that received a dose of SARS ended up 
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with observable lung pathology. Strangely, there are two points from mice that 

received a low (102 PFU) dose, but by day four had an extremely strong 

response to virus, which is seen in Figure 4. 

Aim.1.Background.

It has been observed that many naturally occurring networks can be described as 

having a “scale-free” topology (Albert & Barabási, 2002; B. Zhang & Horvath, 

2005) (Ravasz & Barabási, 2003; Smith, et al., 2002a). The Internet, social 

networks, and gene regulatory networks all show this fundamental organization. 

A scale free topology describes the node connectivity within the network. If we 

consider a network to consist of a set of nodes connected by edges, then in a 

scale-free network, a very small number nodes have the highest number of 

connections whereas most nodes show very modest connectivity. In fact the 

distribution of connectivity is linear on the log scale (Barabási & Oltvai, 2004; 

Dixon, 1985). 

Researchers began to notice similar patterns in gene expression profiles 

(Bergmann, Ihmels, & Barkai, 2003; Wendong Li et al., 2005b; Segal, Friedman, 

Kaminski, Regev, & Koller, 2005; Shai et al., 2003). Given some perturbation, 

such as viral infection, certain groups of genes are co-regulated and thus co-

expressed. When co-expression patterns are conserved across species, it 

implies a possible functional relationship (Fang Li et al., 2005a; Stuart, Segal, 

Koller, & Kim, 2003). A connection between co-expression networks and scale-

free topologies has been observed (Carter, 2004; Fraser & Marcotte, 2004; Satija 

& Lal, 2007; B. Zhang & Horvath, 2005). The weighted gene co-expression 
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network analysis (WGCNA) technique has been thoroughly developed 

(Langfelder & Horvath, 2008; Langfelder, Luo, Oldham, & Horvath, 2011; Ai Li & 

Horvath, 2009; Peiris J, n.d.; Safronetz, Rockx, Feldmann, Belisle, Palermo, 

Brining, Gardner, Proll, Marzi, Tsuda, et al., 2011b; Yip & Horvath, 2007) and has 

been applied to studying cancer (de Jong et al., 2006; H. L. Kim, 2004; Shai et al., 

2003), evolution (Carlson et al., 2006; Hatta et al., 2010; Oldham, Horvath, & 

Geschwind, 2006; Oldham et al., 2008), cardiac disease (Dewey et al., 2011; 

Mauad et al., 2009), and applied to mouse systems (MacLennan et al., 2009; 

Safronetz, et al., 2011a). 

However, de novo network methods have seen very little application in 

Proteomics. There have been attempts to validate yeast protein-protein 

interaction networks using gene co-expression, but they have not been 

completely successful (Bhardwaj & Lu, 2005; Hatta et al., 2010; Tirosh & Barkai, 

2005). 

Bing Zhang has previously written about protein co-expression analysis 

(Nie et al., 2007; Bing Zhang et al., 2006). The work focused on the yeast 

proteome, and was centered on computing abundance correlations among a 

sizable total of 1,119 proteins. These correlations were clustered and it was 

found that distinct, biologically significant clusters formed in response to cell 

perturbations. This work is very important in showing the potential of quantitative 

proteomics co-expression studies, but significantly leaves out the advent of 

scale-free topologies and lacks the use of more modern network building and 

clustering methods. 
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Since the 2006 Zhang study, gene co-expression networks have matured. 

This work aims to bring recent de novo network methods to proteomics, allowing 

for functional subnetwork discovery, potentially assigning function and 

relationships to proteins with unknown characteristics and identifying new 

relations between proteins. 

Aim.2.Background.

The protein inference problem attempts a prediction as to what proteins are likely 

be responsible for generating an observed set of peptides during the course of a 

mass spectroscopy experiment (Joyce & Palsson, 2006; Nesvizhskii & Aebersold, 

2005, Casadevall & Pirofski, 1999; Huang, Wang, Yu, & He, 2012; Serang & 

Noble, 2012a). Typically when people discuss this problem, they are referring 

specifically to liquid chromatography tandem mass spectroscopy (Aebersold, 

2003; Roberts et al., 2007). This type of experiment takes a biological mixture 

containing some variety of proteins, and digests (fragments) the proteins, using 

an enzyme such as trypsin, into a mixture of peptides, which are short 

sequences of amino acids (Baker et al., 2010; Mihályi & Szent-Györgyi, 1953; 

Northrop, 1922). This peptide mixture is injected into the instrument where liquid 

chromatography separates the peptides by hydrophobicity (Yoshida, 2004). 

Tandem mass spectroscopy involves two stages. The first stage of mass 

spectroscopy produces spectra for the intact peptide mixture most recently 

exiting (eluting from) the chromatographic column. Then a sampling of spectra is 

taken, and the peptides linked to said spectra are sent to the second stage that 

involves further fragmentation resulting in what is termed the fragmentation 
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spectra. Peptide sequences can be inferred from fragmentation spectra (Noble & 

MacCoss, 2012) using special software such as SEQUEST (Eng, McCormack, & 

Yates, 1994). 

 

Figure 6. Process of tandem mass spectroscopy. Figure taken from Serang 2012. In (A), proteins are 
digested into peptide fragments, and separated chromatographically, resulting in peptide spectra, 
and fragmentation spectra. Then in (B) using a protein database, and an in silico protein digest, 
spectra from (A) are matched against simulated spectra from the peptide database. A tripartite graph 
is constructed mapping spectra to peptide sequences which are then mapped to proteins.  

The expected spectrum for a given peptide sequence can be predicted 

computationally. The search algorithm attempts to match the observed spectra to 

what is expected given a particular sequence.  

Currently, all protein inference models are based upon the output of 

tandem mass spectroscopy. A tripartite graph connects the spectra to peptide 

sequences based upon a protein database (prior knowledge) and a theoretical 

protein digest (see Figure 6). The peptide sequences are then connected to 

proteins based on sequence matching. The goal in protein inference is to select a 
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set of proteins such that the number of false positives is minimized while 

maximizing the number of true positives (sensitivity). This problem is extremely 

difficult due to false edges between spectra and peptide sequences, and peptide 

sequences that map to multiple proteins. To illustrate the depth of the problem, 

some proteins are indistinguishable from alternate proteins since all the 

constituent peptides are degenerate. 

There are primarily three methods of protein inference. The first involves 

set-cover methods. The simplest method would be to remove any degenerate 

peptides, and to take proteins that have at least one or two unique supporting 

peptides. This method throws out a large portion of data and greatly limits the 

diversity of proteins identified, making it less than satisfactory.  

Another set cover method, IDPicker, attempts to find the minimum set of 

proteins necessary to explain the observed peptides (Bing Zhang, Chambers, & 

Tabb, 2007). The results are considered to be a conservative estimate. This 

computationally intense algorithm is solved using a number of heuristics. One 

such method for improving the run time of these algorithms is through protein 

bundling, where proteins with similar sets of peptides are combined into a single 

meta-protein, reducing the graph size considerably. Another method to improve 

tractability is to partition the graph of peptides mapping to proteins into smaller, 

individual graphs, requiring less work each. 

The second class of protein inference methods are termed iterative 

methods, of which ProteinProphet is one. Again, this algorithm is operating on 

the graph of peptides mapping to proteins. In this case, an expectation-
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maximization-like problem is solved where iteratively peptide identification scores 

(the quality of the match from spectra to peptide sequence) are used to update 

posterior probabilities on proteins. The posteriors are then used to update 

weights on the peptide-protein graph edges, and the algorithm continues until 

convergence. The problem with ProteinProphet is that, as it has been observed, 

very high posteriors may be assigned to a protein with a single, high scoring 

peptide, or with several poor scoring peptides (Serang, MacCoss, & Noble, 

2010). Other protein-inference methods such as Scaffold, PANORAMICS, and 

EBP also fall into this category (Feng, Naiman, & Cooper, 2007; Price et al., 

2007; Searle, 2010). 

Lastly, Bayesian models make up the third type of protein inference. 

These probabilistic models attempt to model the physical process of mass 

spectroscopy. I will focus on two methods, MSBayes, and Fido (Serang et al., 

2010; Serang & Noble, 2012b). MSBayes is interesting in that peptide 

detectability was incorporated into the model. Detectability models attempt to 

predict which peptides are easily measured, and which are not (Yong Fuga Li, 

Arnold, Tang, & Radivojac, 2010b). This contribution is novel and interesting, 

although the model used for prediction involved hundreds of parameters, and 

was not necessarily useful for other mass spectroscopy platforms. More practical 

and useful for this work, Webb-Robertson et al. showed that the mass tag 

database could be used to train the detectability classifier (Webb-Robertson et al., 

2008).  



 

 18 

Fido, on the other hand, appears as a relatively simple probabilistic 

method with just three parameters. Although it appears simple, it is equivalent to 

“computing every possible set of present proteins and evaluating their net 

contribution.” As the number of proteins grows, the collection of all possible 

protein sets grow exponentially, which requires some inventive mathematics to 

remain tractable. In deriving the graphical model, seven assumptions are made 

to aid model clarity. Describing the three model parameters, first there is a 

probability, alpha, that a peptide is emitted from some given protein. Second, 

there is a probability, beta, that a peptide (matched from spectra) is in fact noise. 

Finally, each protein has an identical prior probability, gamma. This model is 

shown to perform very well compared to other methods, including 

ProteinProphet, which is in the Serang review on protein inference methods. 

Other methods here include the Hierarchical statistical model (Shen, Wang, 

Shankar, Zhang, & Li, 2008), the nested mixture model (Q. Li, MacCoss, & 

Stephens, 2010a). 

Aim.3.Background.

Recently, a large amount of work has been produced focused on the integration 

of transcript and proteomic data (B. Cox, Kislinger, & Emili, 2005; Daemen et al., 

2008; Fagan, Culhane, & Higgins, 2007; Joyce & Palsson, 2006; Kellam, 2001; 

Torres-Garc i a, Zhang, Runger, Johnson, & Meldrum, 2009; Waters, Pounds, & 

Thrall, 2006). 

Some researchers have been working towards creating models that allow 

the prediction of protein levels based on the transcript level (Fagan et al., 2007) 
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which allows researchers to generate values for missing proteins, producing 

more complete data sets. However, these models have not performed well, partly 

because of the complexity of the transformation of transcript to protein. 

In this project, two methods of integration will be explored: Correlated 

Factor Analysis (CFA) (C. S. Tan et al., 2009) and a novel approach: the 

integration of gene and protein co-expression networks. 

The “early” method of integration will be based on Correlated Factor 

Analysis a new method with deep roots in statistics (Browne, 1980; Ihara & Kano, 

1986), psychometrics (Tucker, 1958) and climatology (Salim & Pawitan, 2007). 

CFA has recently been extended to integrate transcriptomic and proteomic data 

(C. S. Tan et al., 2009). However, CFA has not been widely accepted and its 

feasibility on larger data sets is not known. In its only such use, 15,918 genes 

were integrated with 89 proteins. This project uses data that contains over 2,000 

proteins, so it remains to be seen if further development and validation is needed 

for application to larger protein sets. 

Summary.

Integrated network methods are important for the future of systems biology, and 

provide a way forward when dealing with increasingly complex biology. Using 

networks, we are no longer are looking at single gene or protein effects, but 

instead look at the behavior of the group, which is more in line with how 

biological systems actually work. When groups of genes are collected in a 

network module, it relaxes the multiple-testing problem faced when working on 
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very large sets of single genes. In addition, it is more biologically accurate when 

our networks contain multiple data types.  

Protein co-expression network analysis is a novel development, and is a 

significant addition to the field. Also, correlated factor analysis provides a 

valuable tool for data integration. These de novo, derived networks can show us 

potential biomarkers and novel, important targets for further research. Using 

these techniques to further the understanding of the host response to viral 

infection is key in understanding mechanisms of pathology.  
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3..Protein.co@expression.Network.Analysis.

Introduction.

In the cell, biological networks are populated with active, working, proteins. 

Systems biology aims to take a holistic view of activities in the cell, while 

embracing complexity (Ideker, Galitski, & Hood, 2001) (Tisoncik & Katze, 2010). 

As systems biology moves forward, models making use of quantitative proteomic 

data will become increasingly necessary (Kellam, 2001) (Ideker & Sharan, 2008). 

However, large-scale quantitative proteomics is still developing and can 

be challenging and complex in practice (Domon & Aebersold, 2006a; 2006b). 

Briefly, proteins are digested enzymatically, producing a multitude of peptide 

fragments. Using liquid chromatography coupled to mass spectroscopy (referred 

to as LC-MS) the digested (fragmented) mixture is separated and quantified, 

resulting in a set of peptide identifications with abundance measurements. 

Peptide identifications are made either by spectral searching or by mapping 

features to an accurate mass and time (AMT) tag database. Tag databases are 

previously constructed using pooled samples processed on a tandem MS/MS 

platform (Zimmer, Monroe, Qian, & Smith, 2006). 

Currently, virtually all of protein-interaction networks are constructed using 

protein-protein interaction (PPI) databases. However, manually curated PPI 

databases are regularly revised as our understanding of biology grows. PPI 

databases are typically quite heterogeneous, containing different experiment 

types and model organisms leading to sparse annotation and a lack of 
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experimental concordance. In addition, interaction temporality and contextual 

information is lacking. Coverage, selection bias, and detection bias all remain 

problems (Bonetta, 2010; Figeys, 2008). 

De novo approaches offer an alternative under which prior knowledge of 

protein interaction is eliminated and replaced by direct measurements of 

abundance. In this paper, we introduce a novel approach to proteomic network 

analysis that is applicable to peptide and protein level data. By using methods 

derived from weighted gene co-expression network analysis (WGCNA) 

(Langfelder & Horvath, 2008; B. Zhang & Horvath, 2005), we show that unbiased 

de novo co-expression peptide networks can be constructed and used for 

determining potential biomarkers, functional module prediction, and the discovery 

of important elements of human disease. 

Methods.

Protein.co@expression.network.construction.

Peptide networks are described using a graph with nodes representing peptides 

and edge weights representing similarity of abundance profiles (Figure 8). Edge 

weights are calculated using peptide intensities. Although not always 

representative of absolute abundance, intensity is frequently used to track 

relative peptide abundance and to infer protein abundance (J. Cox & Mann, 

2011). In this work, we do not attempt to rectify situations where proteins are 

represented by a single peptide or where degenerate peptides map to multiple 

proteins.  



 

 23 

 

Figure 7. A peptide network module. Peptide networks are decomposed into sub-networks, or 
modules. Peptide nodes in the network are connected by weighted edges representing similarity in 
abundance profiles. Hub peptides are highly connected, and can be described as central and 
important. The most weighted edges are highlighted showing a two sub-graphs. 

 

Construction of the network follows the WGCNA method (Langfelder, 

2010; Langfelder et al., 2011; Langfelder & Horvath, 2012; Langfelder, Zhang, & 

Horvath, 2008). Signed Pearson’s correlations are computed pairwise for all 

peptides in the filtered data set resulting in an adjacency matrix (Mason, Fan, 

Plath, Zhou, & Horvath, 2009). According to the scale-free criterion, a power 

(beta) is selected that transforms the distribution of node degrees to log-linear. 

The scaled adjacency matrix is used to compute the topological overlap matrix 

(TOM). 
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Topological overlap is a similarity metric that incorporates information from 

neighboring nodes, making it more robust to noisy correlations. The TOM is 

computed as TOMij = (lij + aij) / [min(ki, kj) + 1 - aij] where lij is defined as the sum 

of pairwise products of row i and column j in adjacency matrix a and ki and kj are 

the summation of row i in adjacency matrix a. 

Modules, or subnetworks, are composed of strongly connected peptides. 

Modules are discovered by hierarchical clustering of (1-TOM) using the “average” 

agglomeration method, followed by branch cutting with the dynamic hybrid 

treecut algorithm (Figure 11). 

Module.significance.

Similar to previous work (Bankhead, 2010; Iancu, Kawane, et al., 2012b; Oldham 

et al., 2006; 2008), module significance was examined using permutation testing. 

Empirical p-values are computed by comparing the mean topological overlap of 

peptides within a module to random samplings. For a given module with size n, 

mean edge weight is computed. For a number of trials, t, a sample of peptides is 

drawn with size equal to n, and the mean edge weight computed. If this value is 

equal to, or higher than the observed module mean, a count in incremented. The 

p-value is equal to (counts/t). In this work 10,000 random samples were drawn. 

Module.Summaries.

After assigning peptides to modules, an aggregate module signature is 

computed. The first principal component, after singular value decomposition on 

the subset of peptide abundance data by module, is a vector with length equal to 

the number of samples (an “eigenvector”). This vector acts as an overall 
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summary of the module. Modules can be sorted according to correlations 

between eigenvector summaries and biological phenotypes. Additionally, the 

relative “importance” of any given peptide within a module is found by computing 

a correlation to the eigenvector summary (called the Kme) (Oldham et al., 2008). 

Peptides with a large correlation to the eigenvector are said to be more central, 

and important within the module. 

Module.Concordance.

Concordance among a set of peptides relates to the shared sign of the slope 

when regressed against a given vector such as time. Our approach to 

investigating concordance involves constructing protein sub-networks, initially as 

“all-to-all” networks. After applying a topological overlap threshold, edges start to 

fall away. This pruning results in a set of disjoint connected components. To 

examine whether concordant peptides are connected in the network, a linear 

model is constructed for each peptide using a reference variable such as time or 

a phenotypic trait. Peptides are classified as increasing (+1), decreasing (-1), or 

no-slope (0) depending on the adjusted p-value. If a connected sub-graph 

contains both increasing and decreasing peptides, it is considered a discordant 

component. 

Peptide.connectivity.by.protein. .

Similar to testing for module significance, the connectivity among peptides 

mapping to a given protein can be tested by permutation. For each protein with 

greater than two peptides, the pairwise edge weights are averaged. Then for a 

number of trials, the same number of peptides are randomly sampled, and the 
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mean pairwise topological overlap recorded. The empirical p-value is taken as 

the number of times the random sample has values equal or greater than the 

observed case divided by the number of trials. This test can also be applied 

using correlations between the peptides. 

Protein@protein.interaction.enrichment. .

Permutation testing is used to determine whether a significant amount of PPI 

edges exist within a module. Co-expression modules are thought to reflect, to 

some degree, true protein interactions. To examine this premise, we compare the 

contents of modules with known PPIs.  Within each module, peptides were 

filtered for centrality, and then mapped to proteins. Proteins with any number of 

mapping peptides are included. Degenerate mappings were allowed. The 

number of observed PPIs within a module is counted and compared to the 

number of PPIs in a random module for a number of trials. P-values are 

computed as before. The PPI databases HPRD (Keshava Prasad et al., 2009) 

and MPPI (Yellaboina, Dudekula, & Ko, 2008) were used for human and mouse 

data respectively.  

Pathway.enrichment.

After PPI enrichment tests, significant sets of proteins were collected by module. 

Querying KEGG with these proteins (Kanehisa, 2004; Kawashima, Katayama, & 

Sato, 2003), using the R package KEGGSOAP (J Zhang & Gentleman, n.d.), 

provided a list of potential pathways to investigate by module. For each pathway 

returned, a hypergeometric test was performed using significant PPIs from the 

module and other proteins taking part in the pathway. The universe is defined as 
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the subset of proteins in the mass tag database with roles in known KEGG 

pathways. P-values are adjusted using the Benjamini and Yekutieli method 

(Benjamini & Yekutieli, 2001). 

Biological.functional.enrichment.

Functional enrichment on modules was computed using the R package GOstats 

(Falcon & Gentleman, 2007). Similar to computing PPI significance, peptides are 

mapped to proteins. Proteins are counted once within any module. Proteins 

mapped to from degenerate peptides are allowed. The universe is defined as all 

proteins found in the AMT mass tag database, similar to microarray studies. 

Annotation databases in Bioconductor (2.8) are used for mouse and human 

annotations. The conditional test is used which tests leaves of the Gene 

Ontology tree first, removing those mapped entities from the gene list. Then 

parent nodes are counted if the remainder of list members are significant, 

providing the most detailed GO terms with the least amount of correlation 

between terms. P-values were Bonferroni adjusted according to the number of 

GO terms tested. 

Data.sources.

Quantitative LC-MS data, including two mouse disease studies and one human 

study, is used. The Thermo Electron Exactive platform was used to generate 

data. Accurate Mass and Time tag (AMT) databases were developed at PNNL. 

VIPER (v3.48) was used to align individual samples with the AMT database and 

identify peptides (Monroe et al., 2007). Identifications have confidence metrics: 
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the probability for a correct match, the STAC score, and the probability for a 

unique database match; the uniqueness probability (UP) (Stanley et al., 2011).  

 

Figure 8. Missingness in proteomics data. Peptides may be observed in all samples, or only a 
subset. Above, a histogram shows the frequency of missing data points (NAs) per peptide. A peptide 
that is observed in all samples is represented in the tall bar (has few or no NAs) on the left while 
peptides present in few or no samples are shown on the right (mostly missing data).  

Peptides with STAC scores > 0 and UP > 0 are used. Peptide abundances 

are normalized by total ion count per sample and log10 scaled. Many peptides 

are identified in some samples and missing in others; peptides with less than 

10% missing data across samples are used (Figure 7). See http://omics.pnl.gov 

for more information. 

The infectious disease data came from the publically available data 

(Systems Virology Center, NIAID Contract No. HHSN272200800060C). We 

utilize both longitudinal SARS-CoV and influenza mouse studies. This data is 

generated using C57BL/6J mice exposed to either a mouse adapted SARS-CoV 
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(MA-15, from the Baric Laboratory at the University of North Carolina, Chapel 

Hill) or avian influenza virus (A/Vietnam/1203/2004 (H5N1, VN1203), from the 

Kawaoka Laboratory at the University of Wisconsin at Madison) (Barnard, 2009; 

Roberts et al., 2007). Measurements took place on post infection days 1, 2, 4 

and 7. 

SARS control samples include three technical replicates per day. Infected 

samples are five technical replicates with viral dosages of 102, 103, 104, and 105 

plaque forming units (PFU) per day. Abundance measurements for 16,890 

peptides mapping to 3,277 proteins were recorded. After missingness filtration, 

2,008 peptides mapping to 707 proteins remained with 352 proteins associated 

with a single peptide, and 355 proteins with two or more associated peptides. 

Influenza control samples include three technical replicates per day. 

Infected samples include five technical replicates with dosages of 102, 103, and 

104 PFU per day. Abundances for 10,285 peptides mapping to 2,661 proteins 

were recorded. After missingness filtration, 989 peptides associated with 493 

proteins remained with 274 proteins associated with a single peptide and 219 

proteins associated with at least 2 peptides. 

The human proteomics data (currently unpublished) comes from a sub-

cohort of participants selected from a large (N = 6000) longitudinal observational 

study of musculoskeletal health in older (≥ 65 years) men (MrOS) (Orwoll et al., 

2005) (Cawthon et al., 2007). The data used here focuses on the sarcopenia  
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Figure 9. Detail of the peptide network. (A) The peptide network is decomposed into a set of 
subnetworks, or modules. Module members - peptide nodes - are more connected to other peptides 
within the module than to those in other modules. (B) Modules can be summarized by taking the first 
eigenvector from data mapping to these peptides. Taking the correlation of peptides to the module 
summary gives the relative importance, or centrality of peptides. (C) Taking peptides that map to a 
given protein defines a protein subnetwork. (D) Difficulties arise when a peptide node maps to 
multiple proteins, rendering it degenerate. 

phenotype (related to loss of lean mass and muscle performance) (Morley, 

Baumgartner, Roubenoff, Mayer, & Nair, 2001). We used an initial proteomics 

study that included 68 samples from two carefully phenotyped groups 

(sarcopenic (N=38) and non-sarcopenic (N=30)) based on lean mass and leg 

power. Abundances for 10,679 peptides mapping to 1,868 proteins were 

recorded. After missingness filtration, 2,845 peptides mapping to 685 proteins 

remained with 505 proteins associated with a single peptide and 180 proteins 

with at least two peptides. 
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Results.

Peptide.networks.are.approximately.scale@free..

Scale-free network topologies have node degree distributions following the power 

law. There is a continuous range of node degrees, with the fewest nodes having 

the greatest number of connections (Albert, 2005; Ravasz & Barabási, 2003). We 

have found that peptide networks share this topology and have biologically 

informative graph properties similar to those found in gene co-expression 

networks (Figure 9, Table 1). We have found that, within limits, missing data 

does not negatively affect the model fit (Figure 10). 

Data  Peptides Proteins Power R^2 Slope MeanK Modules 

Influenza 989 493 15 0.82 -1.31 7.00 6 

SARS 2008 707 16 0.76 -1.67 10.8 14 

Sarcopenia 2845 685 15 0.81 -1.55 25.22 19 

Table 1. LC-MS data is applicable to co-expression network construction methods. R2 describes the 
scale-free topology fit. Definitions of mean K: network connectivity using the adjacency matrix.   

Considering only significant modules, the SARS network contains 14 modules 

spanning from 65 to 369 peptides with a mean size of 133.9 peptides. The 

Influenza network contains 6 modules spanning from 56 to 327 peptides with a 

mean size of 141.3 peptides. The network dendrogram is shown in Figure 11. 

The sarcopenia network contains 18 modules spanning 477 to 36 peptides with a 

mean size of 142.25 peptides.  
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Figure 10. Protein co-expression networks are shown to be “approximately scale-free”. As the soft 
thresholding power, β, grows, the resulting adjacency matrix increasingly fits the scale-free model 
(A). This trend is robust to missing data. Data sets were generated with varying amounts of missing 
data ranging from a maximum of one to ten missing data points per peptide, shown here with lighter, 
broken lines. With more missing data, the total number of proteins and their constituent peptides 
increases (B). The rate of increase is higher for peptides compared to proteins, improving the 
peptide-to-protein ratio. For network analysis, it is strongly in our interest to incorporate peptides 
with missing data, making imputation an attractive option. The return on the number of proteins 
diminishes with increased peptides. 

 

Figure 11. Dendrogram and recovered modules for influenza network. The dendrogram is generated 
from the distance matrix (1 - TOM), and modules are recovered from branch cutting using the 
dynamic hybrid treecut algorithm. 
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Significant.modules.correlate.with.phenotypes.

Using module summaries, correlation to biological phenotype can guide the 

discovery of biomarkers (Figure 12). In this work, all modules were found 

significant with the exception of the sarcopenia network, which had one 

insignificant module (p-value 0.33).  

 

Figure 12. Correlation structure within a module. An illustration from the Influenza data is shown 
where each point represents a single peptide within module 1. In modules where the eigenvector is 
strongly correlated with a biological phenotype, an upward trend is observed between the Kme of a 
peptide and the correlation with the given phenotype, demonstrating structural order within the 
module. Prioritization along these dimensions suggest further experiments. 
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Figure 13. Influenza module-phenotype heatmap. The de novo modules (represented by module 
eigenvectors, ME), are highly correlated to clinically relevant phenotypes. An illustration from the 
influenza dataset is shown. In each cell, Pearson correlations are on top, with p-values below.  Clear 
patterns emerge showing positive and negative correlation clusters. Average weight is an important 
phenotype in this experiment as it clearly showed the infection severity.  Above we see modules 1 
and 6 correlate positively with each other while modules 4 and 5 correlate negatively. 

The influenza network showed strong correlations with average weight 

loss, an important indicator of severe infection (Figure 13). Two modules showed 

positive correlation (p-values 2e-10 and 2e-6) and two modules showed negative 

correlation (p-values 8e-10 and 2e-15), again showing the dichotomous split in 

phenotype correlations.  

In the SARS network, strong correlations with pathological features were 

observed including diffuse alveolar damage, tissue inflammation, and alveoli 

parenchyma pneumonia (see Figure 14).  

The strongest correlations found were found with time (module 3, Pearson 

correlation 0.8, p-value 1e-22) potentially relating to infection progress.  



 

 35 

 

 

Figure 14. The SARS de novo modules (represented by module eigenvectors, ME) are highly 
correlated to clinically relevant phenotypes. An illustration from the SARS dataset is shown. In each 
cell, Pearson correlations are on top, with p-values below. Clear patterns emerge showing positive 
and negative correlation clusters. As expected, related phenotypes such as airspace inflammation, 
interstitial septum inflammation, and diffuse alveolar damage (DAD) tend to be correlated in the 
same direction showing an overarching biological process at work. Label Key: Alv.Par.Pneumonia: 
alveolar parenchyma pneumonia, DAD: diffuse alveolar damage, OverallTotalScore: cumulative 
score calculated by a pathologist.  
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It is possible that the relationship of modules correlating in opposing 

directions is biologically derived. A closer look with eigenvector networks might 

reveal this. 

The sarcopenia network showed weak correlations with sample 

phenotypes. Several modules correlate with technical variables, indicating that 

the normalization method did not completely remove systematic effects. To avoid 

such problems, strong normalization techniques and potentially surrogate 

variable analysis should be explored.  

Peptides.are.connected.by.protein.

Given a complex biological mixture, a significant problem remains in confidently 

identifying the protein component. This problem is made worse by the existence 

of degenerate peptides. We have found that the connectivity of a protein’s 

constituent peptides is far from random, the peptides have strong edge weights 

within the protein sub-graph. This feature is potentially useful for resolving cases 

of degenerate peptide mapping, increasing confidence in protein identification.  

Topological overlap thresholds eliminate edges with weights below a given 

point. This filtering tends to fragment the network. However, at a topological 

overlap threshold of 80% (keeping only edges in the top 20% of all weights), 

most proteins remain connected (Sarcopenia 84%, SARS 72%, influenza 63%).  

To test for significant protein connectivity, we compared the mean 

topological overlap between constituent peptides and similar numbers of 

randomly selected peptides. A t-test between the mean protein connectivities and 

random connectivities shows significant connections between constituent 
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peptides (Table 2). This result suggests that the network structure should be 

helpful in resolving degenerate mappings by comparing the connection to 

alternative proteins. A given peptide, mapping to multiple proteins, could be 

assigned to a single protein based on a strong connection to it. 

 

Data Peptides Proteins Mean TO RandomTO p-value 

Sarcopenia 2845 685 0.089 0.004 2.09e-14 

SARS 2008 707 0.025 0.004 2.2e-16 

Influenza 989 493 0.028 0.005 8.99e-16 

Table 2. Protein subnetworks are strongly connected. Given a complex biological mixture, a 
significant problem remains in confidently identifying the protein component. This problem is made 
worse by the existence of degenerate peptides. This result statistically shows that the connectivity 
for a protein’s constituent peptides is far from random. Network topology may be useful for 
resolving cases of degenerate peptide mapping, increasing confidence in protein identification. 
Results from a two sample t-test between topological overlap (TO) of peptides derived from the 
same protein versus peptides selected at random. 

Connected.peptides.are.concordant.

When considering peptide abundance trends, it is desirable to have modules and 

proteins trending in the same direction (Figure 15). This aspect is important for 

inferring protein abundance based upon the observed peptides. For example, if 

we have four peptides mapping to a given protein, where two of the peptides 

have increasing abundance over time, and two of the peptides have decreasing 

abundance over time, then this protein shows discordance among its constituent 

peptides. Quantitative estimates of protein abundance should take account of 

this phenomenon. Also considering pathway dynamics, peptides mapping to 

members of a pathway should together reflect the shifts in protein levels that 

result from biological events. However, an intriguing idea is the possibility that  
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Figure 15. Utility of de novo network inference in resolving peptide level discordance. Protein sub-
networks constructed using peptide topological overlap show correlated clusters. Taken together, 
some proteins show conflicts between constituent peptides, where given a variable such as time, 
some peptides are increasing in abundance and other decreasing (A). To examine these trends, only 
proteins with uniquely mapping peptides were used. A protein sub-network was constructed by 
taking associated peptides, and keeping only edges with topological overlaps in a specified upper 
quantile (e.g. the upper twenty percent of all topological overlaps). In all three data sources, as the 
edge threshold is raised, the number of connected components with discordant peptides 
dramatically decreases (B, C), suggesting that inference of protein abundance can be guided by 
network topology. 

discordance observed among peptides might reflect the activities of different 

protein isoforms. 

Using proteins with unique peptide mappings, 48 of 218 proteins in the 

SARS data were discordant (Bonferroni adjusted p-value cutoff of 0.1). After 

applying a topological overlap threshold of 80% (as above), the number of 

discordant components dropped to 24, and with a threshold of 0.9 dropped to 12. 

In the sarcopenia network, peptides that were modeled against leg strength 

provided the most discordant proteins. At the same p-value threshold, 11 of 139 

proteins had discordant peptides. After applying the topological overlap 

thresholds of 0.8 and 0.9, these dropped to 4 and 3 respectively. In influenza, 15 

of 115 discordant proteins dropped to 7 and 3. It appears that edge strength is 

predictive of concordance among constituent peptides for any given protein. 

These results show potential utility for both protein inference and quantification. 
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Co-expression modules are thought to be useful for predicting new PPIs 

and pathway members. Previously, it has been observed that gene expression 

and protein expression are loosely coupled. It follows that protein co-expression 

networks should be more useful for making predictions about proteins. Using the 

HURD and MPPI protein-protein interaction databases, significant interactions 

were identified in all three experiments. After adjusting for multiple testing, the 

influenza network had 5/6 modules with PPI enrichment, the SARS network had 

12/14 modules enriched and the sarcopenia network had 10/19. It is interesting 

to note that some modules overlap in terms of mapped proteins. This effect is 

typically the result of highly similar protein sequences, for example the set of 

histones, which produce many degenerate peptides, pointing to the essential 

problem of protein inference in tag-based proteomics that presently remains an 

open question. 

To illustrate the potential utility of PPI enrichment in protein co-expression 

modules, the sets of proteins involved in influenza PPIs are associated with 

KEGG pathways. When defining the universe as all proteins contained in the 

mass tag database (5,521 proteins), a range of significant pathways were found 

including “regulation of actin cytoskeleton” (mmu:04810), the “tight junctions” 

pathway (mmu:04530), and the “antigen presentation and processing” pathway 

(mmu:04612). When the universe is restricted to proteins with known roles in 

KEGG pathways (2,539 proteins), the antigen presentation pathway alone 

remained significant in two modules. These pathways are important in the 

pathological progression of influenza, confirming the relation of network structure 
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to known biology, and showing the utility of highlighting PPIs in protein co-

expression network analysis. Looking ahead, it is possible that by examining the 

local network structure around proteins taking part in specific pathways, that new 

members or interactions may be discovered, although this remains an open 

question. 

Gene.ontology.term.enrichment.

Modules appear to have overarching functional organization. To further examine 

this idea, associations with GO terms are tested. For each module, the set of 

unique genes forms the test set. Gene Ontology enrichment, by module, was 

evaluated using the GOstats package. All three data sources showed gene 

enrichment with highly significant adjusted p-values (10−3 to 10−12). In the SARS 

and influenza networks, enrichment for biological processes such as DNA 

packaging, cellular component assembly, and cellular complex assembly is 

observed. The sarcopenia network modules also showed significant functional 

enrichment including immune response and blood processes, lending evidence 

to the claim of biologically relevant modular organization. Protein co-expression 

networks should be useful in guiding downstream experiments. 

Conclusions.

We have demonstrated the feasibility of constructing de novo protein co-

expression networks. These networks have a biologically meaningful and 

approximately scale-free topology (like many other validated biological networks) 

and contain statistically significant modules. The module summaries significantly 

correlate with clinically relevant phenotypes. Modules show significant 
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enrichment for known biological function. The network structure is potentially 

useful for resolution of degenerate peptides and inference of protein abundance. 

Peptides can be sorted according to their module centrality and relationship to 

phenotypic traits, allowing researchers to prioritize targets for further research. 

Finally, modules can provide a natural aggregate representation for composite 

biomarker discovery. These results suggest a significant advancement for 

proteomic network analysis. 
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4..Protein.Inference.For.Tag@Based.Proteomics.

Introduction.

Systems biology is an experimental approach to learning about the complex 

systems present in living organisms (Tisoncik & Katze, 2010). To date, many 

systems models are focused on gene expression. However, it is becoming clear 

that models will benefit from the inclusion of proteomics data (Vogel & Marcotte, 

2012, Malmström & Lee, 2007; Weston & Hood, 2004). In order to get a more 

meaningful sense of how cells respond to given conditions, direct measurements 

on protein products are necessary (J. Cox & Mann, 2007).  

Biological systems are known to be noisy and contain a lot of cross-talk 

(Donaldson & Calder, 2010; Koh, Teong, Clement, Hsu, & Thiagarajan, 2006; 

Waltermann & Klipp, 2011). Great numbers of replicates generally improve the 

modeling of complex systems and the power of statistical tests. Consider the task 

of learning a complex statistical model (Needham, Bradford, Bulpitt, & Westhead, 

2007). A good model fit requires hundreds of samples. Therefore, to be truly 

useful for systems modeling, high-throughput experiments are necessary.  

One approach that has found success in high-throughput proteomics is 

that of tag-based LC-MS (Smith, et al., 2002a; Smith, et al., 2002b; Zimmer et al., 

2006). For these measurements, first, tandem mass spectroscopy (MS) is used 

to create a database of peptide tags using pooled samples. Then, subsequently, 

in LC-MS runs, features (the resulting data) are matched to peptides in the tag 

database by elution time and mass. To judge the quality of a match to the tag 
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database, several metrics are computed, including the STAC score, the 

probability of a correct match to the database, and the uniqueness probability 

(UP), which indicates the uniqueness of the match (Stanley et al., 2011). The 

result is a list of attributed features (peptides) across a number of samples, each 

with a STAC and UP score, in addition to information about the quality of the tag 

itself. 

Although interesting work can be done at the peptide level, ultimately 

researchers wish to know the contents of the original biological mixture, and how 

its abundance was affected by biological or environmental events (Rappsilber & 

Mann, 2002). The protein inference problem is defined as the challenge of finding 

the most likely set of proteins that would generate the observed peptide data 

(Huang et al., 2012; Nesvizhskii, 2010; Nesvizhskii & Aebersold, 2005; Serang & 

Noble, 2012a). This problem is made especially challenging due to the 

degenerate nature of many peptides as well as the large amount of missing data 

and the appearance of low confidence identifications. 

Work has been done on this topic, however, currently all methods are 

based on LC-MS/MS proteomics, requiring peptide identifications and statistics 

from either MASCOT, SEQUEST, or X!Tandem coupled with PeptideProphet 

probabilities (Craig & Beavis, 2004; Eng et al., 1994; Nesvizhskii, Keller, Kolker, 

& Aebersold, 2003; Perkins, Pappin, Creasy, & Cottrell, 1999; Keller, Nesvizhskii, 

Kolker, & Aebersold, 2002). Results from tandem MS are significantly different 

compared to tag-based proteomics, and as such, it is helpful to have a protein 

inference method tailored accordingly. The assumptions made, and the statistics 
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derived for tandem MS are quite different than tag based proteomics due to the 

nature of the problem. In tandem MS, the range of peptides possibly identified is 

orders of magnitude greater compared to the closed universe of the tag database 

suggesting the Poisson distribution. Another difference is that we are not making 

peptide-spectrum matches (PSMs), but instead make peptide-tag matches 

(PTMs if you will). The mechanics of peptide identification is performed 

differently. 

There are three primary ways of performing protein inference. The first, as 

implemented by IDpicker, is a set cover solution (Ma et al., 2009). The result 

reflects the minimal set of proteins needed to explain the observed peptides. This 

method has the advantage of great specificity, but sensitivity can suffer (Serang 

et al., 2010). Secondly, iterative methods, such as ProteinProphet, use methods 

related to expectation-maximization to produce posterior probabilities on proteins 

(Nesvizhskii et al., 2003). A nice feature is that all proteins receive a score, which 

makes it flexible in terms of choosing cutoffs. Lastly, statistically motivated 

Bayesian models such as Fido make clear assumptions and attempt to find the 

maximum a posteriori protein set (Serang & Noble, 2012b). These methods try to 

model the physical process of proteomics. Probabilistic methods are desirable 

due to the easily interpretable outcomes. 

In this chapter, a novel solution for the protein inference problem aimed at 

tag based proteomics is presented. The model takes inspiration from network-

flow methods, where in this case, quality information attached to each identified 

peptide flows towards the protein. The flow is either helped or hindered by the 
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degeneracy of the peptide. The protein takes the sum of information, resulting in 

an identification score. The model also incorporates protein detectability, trained 

using the mass tag database, making it specific to the problem at hand.  

For validation purposes, and because there are no available gold 

standards in tag-based proteomics, I developed a method for generating large 

numbers of simulated LC-MS data sets, reflecting real data. The method is 

compared to Fido, which in the literature has been compared to the most popular 

protein inference methods, giving us an idea of the accuracy of protein inference. 

 

 

Figure 16. Annotation graphs. The mapping of peptides to protein by sequence can be represented 
as a bipartite graph termed an “annotation graph” since it is constructed using our current 
knowledge of the proteome. There are four classes of graph. The first class contains single peptides 
that uniquely map to single proteins. The second contains multiple peptides that uniquely support a 
single protein. The third, and where most problems lie, consists of a mixture of degenerate and non-
degenerate peptides. Degenerate peptides are defined as peptides that do not unique map to 
proteins. The fourth class consists of only degenerate peptides, and proteins each with a single 
peptide. 

Annotation.graphs.

Common to all methods of protein inference is the notion of viewing the problem 

graphically, connecting proteins to constituent peptides, which then map to 

observed spectra (Bing Zhang et al., 2007). These complexes are termed 

annotation graphs because they are built from and describe our current 

knowledge about the proteome (Figure 16).  



 

 46 

The mapping of peptides to protein by sequence can be represented as a 

bipartite graph termed an “annotation graph” since it is constructed using our 

current knowledge of the proteome. There are four classes of graph. The first 

class contains single peptides that uniquely map to single proteins. Although this 

class is technically contained in either Class 2 or Class 4, we keep it separate 

since it has been discussed frequently in the context of protein inference (Gupta 

& Pevzner, 2009). The second contains multiple peptides that uniquely support a 

single protein. The third, and where most problems lie, consists of a mixture of 

degenerate and non-degenerate peptides. Degenerate peptides are defined as 

peptides that do not unique map to proteins. The fourth class consists of only 

degenerate peptides, and proteins each with a single peptide. 

Thus, we can see that we are annotating data with prior knowledge. These 

graphs represent a map of peptides to proteins, clearly illustrating degeneracies, 

and cases where one protein is eclipsed by the peptides mapping to another 

protein (Slotta, McFarland, & Markey, 2010). 

Methods.

Data.

Two quantitative LC-MS data sets involving mouse disease studies are used. 

The Thermo Electron Exactive platform generated the data. Accurate Mass and 

Time tag (AMT) databases were developed in-house at PNNL. Peptide 

identifications are made with VIPER (v3.48) (Monroe et al., 2007). Identifications 

have confidence metrics: the probability for a correct match, the STAC score, 

and the probability for a unique database match, the uniqueness probability 
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(UP)(Stanley et al., 2011). Peptides with STAC scores > 0 and UP > 0 are used 

providing the largest data set possible. See http://omics.pnl.gov for more 

information. 

The infectious disease data came from publically (Systems Virology 

Center, NIAID Contract No. HHSN272200800060C). We utilize both longitudinal 

SARS-CoV and influenza mouse studies. This data is generated using C57BL/6J 

mice exposed to either a mouse adapted SARS-CoV (MA-15, from the Baric 

Laboratory at the University of North Carolina at Chapel Hill) or avian influenza 

virus (A/Vietnam/1203/2004 (H5N1, VN1203), from the Kawaoka Laboratory at 

the University of Wisconsin at Madison). Measurements took place on post 

infection days 1, 2, 4 and 7. 

SARS control samples include three technical replicates per day. Infected 

samples are five technical replicates with viral dosages of 102, 103, 104, and 105 

PFU per day. Abundance measurements for 16,890 peptides mapping to 3,277 

proteins were recorded.  

Influenza control samples include three technical replicates per day. 

Infected samples include five technical replicates with dosages of 102, 103, and 

104 PFU per day. Abundances for 10,285 peptides mapping to 2,661 proteins 

were recorded.  

Simulation.Framework.

Starting with LC-MSSim (Schulz-Trieglaff, Pfeifer, Gröpl, Kohlbacher, & Reinert, 

2008) and later evolving into MSSimulator (Bielow, Aiche, Andreotti, & Reinert, 

2011), simulations of mass spectroscopy have advanced steadily. The latter is 
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now part of the TOPP proteomics software project based at the Max Plank 

Institute (Bertsch, Gröpl, Reinert, & Kohlbacher, 2011). In my work, a simulation 

framework was constructed around MSSimulator using the R scripting language 

(Ihaka & Gentleman, 1996) automating the process, enabling large amounts of 

simulated data to be produced with a great degree of flexibility (Figure 17).  

 

Figure 17. The peptide data simulation pipeline. Given an LC-MS data set and mass tag database, 
peptides are mapped to all possible proteins, making up the sample pool. A random sample of 
proteins is processed by MSSimulation which simulates the entire LC-MS pathway from enzymatic 
digestion to chromatographic elution to charge state prediction and detection. The resulting set of 
simulated peptides is matched against the mass tag database, resulting in a set of peptides 
reflecting a realistic observation. Using a protein database, annotation graphs are constructed for 
the simulated data, which are pruned in a greedy manner so the proportion of each annotation graph 
classes match proportions found in the real data. 

The goal of the simulation is to produce simulated data sets that 

accurately reflect observed data both in terms of the peptides identified and 

annotation graphs produced. To this end, the simulation pipeline requires 

observed data consisting of identified peptides with quality scores and the mass 

tag database used to identify the peptides.  
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The pipeline begins by specifying the desired number of samples and 

proteins per sample. The pool of proteins available for sampling is formed by 

matching all possible proteins using the observed data. In this way, the simulated 

peptides result from a similar background. After sampling proteins from the pool, 

a FASTA file is generated for use with MSSimulator, essentially giving us a 

known set of proteins for method evaluation. When run, MSSimulator simulates 

the entire process of mass spectroscopy consisting of in-silico digestion, 

chromatographic elution, ionization, charge state estimation, feature generation, 

and detectability prediction. MSSimulator takes an extensive set of option 

parameters that allow one to tune the output accordingly. The result is a list of 

simulated peptides for each sample. To better match our data, the set of peptides 

is filtered by what would be identified using the mass tag database. Using quality 

scores from real observed data, we generate sampling distributions that are 

applied to the simulated data, giving each peptide a STAC score, uniqueness 

probability, and proportion of observations across samples.  

After the peptide simulation, annotation graphs are constructed connecting 

the simulated peptides to the set of proteins in the mass tag database. It was 

observed that the proportion of each class of annotation graph did not match 

observed proportions from real data. Commonly, there were too many annotation 

graphs of classes two and three, and not enough cases of one peptide mapping 

to one protein (Class 1) making the simulation potentially biased and 

necessitating the need for pruning. 
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To transform the set of annotation graphs to better match the observed 

input data, graph pruning was used to greatly improve the realism by shaping the 

proportions of each class of annotation graph and the numbers of peptides 

mapping to each protein. Graphs are pruned by first separating all connected 

graphs into four classes as stated previously. The proportion of each class is 

compared to the proportions found in the real observed data for comparison. If 

the simulated annotation graphs have a class proportion greater than what is 

observed in real data, then a random graph of that category is selected, and a 

random edge in the graph is cut. This greedy approach to graph pruning 

gradually cuts out peptides, and brings the category proportions into alignment, 

although at a cost of lost simulated peptides. 

Simulated.Data.Sets.

To validate the methods, four simulated data sets were generated using the 

SARS-CoV data. Each simulated data set is generated using a subset of the 

observed data. Peptide subsets were selected according to the level of 

missingness, using maximum levels of 10%, 25%, 50%, or 75%. For example, if 

our goal is to retain all peptides with a maximum amount of missing data of 10%, 

then a peptide identified in 91% of the samples, missing in 9%, would be 

accepted. Subsetting the data has an effect on the distributions of quality scores 

and proportions of annotation graph classes.  The quality scores were sampled 

from distributions constructed from each subset. The tag quality score from the 

initial construction of the mass tag database is used. 
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The four simulated datasets were generated using different numbers of 

protein inputs as well. With respect to the missingness levels, the numbers of 

proteins sampled were 300, 600, 900, and 1200. After the simulation, the number 

of proteins mapped to by simulated peptides is often different from the starting 

number. This change is due to some proteins subject to poor ionization or elution 

times that are too long or short, and effectively lost during the process. The 

annotation graphs were pruned to match the full SARS-CoV data set. Table 3 

shows the features of the simulated data sets. 

 

Table 3. Simulated data sets. Four simulated data sets were generated using SARS-CoV data subset 
by missingness. For example, the Sim10 data set is simulated using peptides that are present in at 
least 90% of samples, or missing in a maximum of 10%. In each case, 60 samples were simulated. 
Above the proportions of annotation graph class are shown before and after the pruning step. Class 
1 annotation graphs are produced by pruning Classes 2, 3 and 4.   

Virology.subsets.for.comparison.

For each data source, influenza and SARS-CoV, three subsets were taken by 

missingness with levels of 10%, 50%, and 100% producing a variable number of 

observed peptides and proteins mapped. At the 100% subset, all peptides were 
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used even if observed in a single sample providing the greatest range of proteins 

possible. Table 4 shows the contents of each dataset. 

 

Table 4. Description of real data subsets. Three subsets of each data source were generated 
according to levels of missingness. SARS10 and FLU10 each contained peptides with a maximum of 
10% missing data. SARS50 and FLU50 contained peptides with a maximum of 50% missing data 
across samples, and SARS100 and FLU100 contained all identified peptides. Depending on the level 
of missingness the proportions of annotation graph change, typically with the proportion of class 2 
graphs increasing with increasing amounts of missing data. 

Network.flow.model.for.protein.inference.

This protein inference model is based on the idea of information flow on a 

bipartite graph, which represents a new approach to the problem. Within a given 

annotation graph, we have peptides connected to proteins. Each of the peptides 

is observed across some number of samples, and for each sample a set of 

quality scores (STAC, UP, tag quality score) is kept. The model begins with the 

product of quality scores, and “flows” them towards the protein targets. The “flow” 

of quality information is limited by degeneracy and missingness of the peptides, 

but rewarded for uniqueness. The protein targets accumulate information, but the 

total is again limited by a prior estimate of detectability. A diagram of the model is 

shown in Figure 18. 
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Figure 18. The protein inference model. Schematic illustrating the calculation of the protein score in 
the Flow Model for protein inference.  

The prior probability, αi, describes the predicted detectability for any given 

protein before any data has been collected (Yong Fuga Li et al., 2010b; Tang et 

al., 2006; Webb-Robertson et al., 2008). A uniform distribution might be useful 

except that it would ignore the fact that we have a resource available, namely the 

mass tag database. Naively, we might define the prior as the proportion of tags 

for the given protein compared the set of all tags in the mass tag database. 

However, this assignment would punish small proteins that have few proteotypic 

peptides.  

Peptide detectability describes the variation in observations given the 

physical-chemical properties of peptide sequences interacting with MS 
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instrument architectures. It has been observed that some peptides are detected 

more often, and depending on the MS platform used, the set of detectable 

peptides change. Overall, the current sentiment in the literature is that 

detectability is primarily a function of the sequence of a given peptide. Depending 

on the sequence, overall peptide properties become more or less prominent, 

such as hydrophobicity or the flexibility of the peptide backbone.  

Webb-Robertson et al. proposed an SVM classifier for peptide 

detectability trained using the mass tag database. If we consider the in silico 

digestion of a protein sequence, producing a finite number of peptides, some 

proportion of those can be found in the mass tag database, essentially meaning 

that for this experiment these particular peptides are detectable. Peptides not 

found in the mass tag database are considered undetected and labeled negative 

examples, while peptides found in the database are labeled as positive 

examples. Then, for each peptide resulting from the in silico digestion, a feature 

vector is generated using previously determined constants of hydrophobicity, 

flexibility, disorder, and other modeled characteristics of peptides as described in 

the previous work on detectability.  

Fortunately, great quantities of amino acid characteristics are found in the 

R package “Seqinr” (Charif, 2007wf). By counting the specific residues found in 

any given peptide, we can easily calculate a mean characteristic such as 

Grantham polarity or average histidine composition. A combination of the best 

performing features from the previous three papers was used here. In this case, 

the in silico protein digestion algorithm “dig2” was used (Palmblad, 2000) and the 
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SVM implementation found in the R package “e1071” was used for prediction. All 

proteins found in the mass tag database are used for prediction.  Using protein 

sequences from Uniprot (downloaded July 2012), an in silico trypsin digestion 

(allowing up to 2 missing cleavages) is performed and 47 features are computed 

for each predicted peptide. Those predicted peptides that are found in the mass 

tag database are labeled detected and all others are labeled undetected. This 

dataset is used to tune and train an SVM (radial basis, polynomial = 3, gamma =  

0.1, cost = 1). For any given protein, an in silico digest produces a set of 

predicted peptides, each of which can be scored for detectability and the 

proportion of detectable peptides used for prior probability. The final detectability 

score for a given protein is the proportion of constituent peptides that are 

classified as detectable. A peptide is determined to be detectable if prediction 

results in a probability greater than 0.5. The model is then defined as 

ProteinScorei = αi Σj (wj * βj) 

βj = quality information for peptide j  

    (product of max STAC, UP, PeptideProphet) 

wj  = Edgej = the information limiting edge  

    = (B or P) * Presence  

αi = Predicted detectability for protein i.  

B = bonus given to unique edges (2 & 3 are considered) 

P = punishment given to degenerate edges (1/degeneracy) 

Presence = proportion of samples where a peptide   

           is identified. 

This model rewards proteins that have multiple, non-degenerate, 

supporting peptides with high STAC scores, uniquely mapping to identifications 

in the mass-tag database, having repeatable measurements across samples, 
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and are predictably detectable from prior information. This model reflects a belief 

that a given protein is present. Proteins with low scores lack enough evidence to 

be believable, which is different than saying we have evidence against a given 

protein. This model is sufficiently transparent and tractable, easy to understand 

and modify making it accessible for modification in the future.   

Features.Used.In.Peptide.Detectability.Prediction.

These features are taken from and described in the seqinr package. 

 (Charif & Lobry, 2007). 

1. Mass 
2. Length 
3. Mass To Length 
4. Average Positive Charge 
5. Total Positive Charge 
6. Average Negative Charge 
7. Total Negative Charge 
8. Number Of Nonpolar Hydrophobic Residues 
9. Polar Hydrophobic Residues 
10. Uncharged Polar Hydrophilic Residues 
11. Charged Polar Hydrophilic Residues 
12. Total Positively Charged Polar Hydrophilic 
13. Total Negatively Charged Polar Hydrophilic 
14. Eisenberg Scale Hydrophobicity 
15. Hopp-Woods Hydrophilicity 
16. Kyte-Doolittle Hydrophobicity 
17. Roseman Hydropathy 
18. Grantham Polarity 
19. Vihinen Flexibility 
20. Grantham Polarity 
21. Fauchere Normalized Van Der Waals Volume 
22. Weber-Lacey Rf Value In High Salt Chromatography 
23. Zimmerman Bulkiness 
24. Zimmerman Polarity 
25. Zimmerman Isoelectric Point 
26. Eisenberg-Mclachlan Atom Based Hydrophobic Moment 
27. Shannon’s Entropy On Sequence 
28. Count Of Each Amino Acid (20 Features) 
29. Detected (In Mass Tag Database) 
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Results.

Simulated.Data.Sets.Compared.to.Real.Data.

The four simulated data sets are compared to the full set of SARS-CoV data 

revealing quite similar distributions of quality scores and annotation graphs. The 

comparisons are made to show that the simulated data is useful for validation. In 

each case, the proportion of annotation graph classes was held essentially 

constant, while the number of input proteins was varied (Figure 19). In addition, 

the distribution of quality scores, which are sampled from during the simulation, 

were constrained so that simulations with smaller numbers of proteins had higher 

scoring quality metrics. As the size of the sample pool increased, the scores 

became more similar to the full SARS data set.  

For each simulated set, the proportion of peptides to mapped proteins is 

quite similar. The full SARS set averages five peptides per proteins. The sim10 

set averages slightly above 5.5, and the other simulated sets average slightly 

more than 4.5. More importantly, the topology of the annotation graphs makes 

the largest impact on the protein inference. More complicated graphs make for 

more difficult inference. 

All simulated data sets have an annotation-graph-to-protein ratio (number 

of graphs compared to number of proteins) of about 0.8, which agrees with the 

full SARS set. We do find some disagreement when examining the average node 

degree for proteins by annotation graph class. 
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Figure 19. Proportions of annotation graphs are similar between simulated data and SARS-CoV data. 

Class 1 will always have a degree of 1, and similarly with Class 4. In Class 2, 

where we have some number of uniquely mapping peptides connected to a 

single protein, we find the sim10 data set has considerably more peptides 

connected to each protein than other simulations and the full SARS set. The 

other three simulations agree with the SARS set (see Figure 20).  

 

Figure 20. Annotation graph Class 2 protein node degree. The degree of annotation class 2 proteins 
shows the number of supporting peptides. Simulations Sim25, Sim50, and Sim75 show similar 
amounts of peptides in each graph, while Sim10 has a higher degree.  
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In Class 3, where we have mixtures of multi-mapping peptides and proteins, the 

SARS full set has an average degree of close to 12, whereas the simulations 

have average degrees of slightly less than 8 (Figure 21), likely a result of graph 

pruning. 

 

Figure 21. Annotation graph Class 3 protein node degree. The degree of proteins in annotation graph 
class 3. SARS-CoV data shows a much higher degree, meaning that proteins in those graphs have 
more supporting peptides. 

Class 3 graphs have the most potential for variation due to the mixture of 

multi-mapping peptides and proteins, and due to the way that proteins are 

sampled, graphs are pruned and quality scores sampled. Some definite trends in 

the topology of Class 3 graphs are observed. For the full SARS set and 

simulation sets other than Sim10, the number of protein targets in each class 3 

graph are largely similar. The Sim10 set has a smaller number of proteins, so 

appears to have a larger boxplot whisker, but it is not appreciably different 

(Figure 22). 
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Figure 22. The number of proteins in each Class 3 annotation sub-graph. Although Sim10 appears to 
be an outlier, the boxplot is affected by the small number of graphs. In other cases, the mean and 
third quartile line up with real data. SARS does show a larger number of possible outliers, where 
some annotation graphs contain a large number of proteins, potentially making them difficult targets 
for protein inference. 

There is some variation of degeneracy within Class 3 graphs (Figure 23). 

A degeneracy ratio is the number of edges in a graph divided by the number of 

peptides. So a graph with all uniquely mapping peptides would score 1, and 

graphs with degeneracy, or more edges than peptide nodes, would score > 1. 

Overall, Class 3 graphs are dominated by graphs with a small amount of 

degeneracy, and rarely does the degeneracy-ratio rise above 5. Without 

considering outliers, the mean degeneracy starts low, and increases across the 

simulated sets until reaching parity with the observed SARS data. 
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Figure 23. The ratio of edges in class 3 annotation graphs to the number of peptides, showing the 
relative amount of degeneracy contained in each graph. Here, Sim10 and Sim25 have slightly smaller 
amounts of degeneracy in these graphs, while Sim50 and Sim75 have very similar means.  

The quality scores, which directly influence the protein inference results, 

show good agreement. The STAC scores tend to be higher in the Sim10 

simulations, but gradually return to parity with the SARS data. Conversely, with 

the uniqueness probability scores, the Sim10 set is lower and then across the 

simulations, Sim25, Sim50, and Sim75, these scores return upward to the SARS 

data. 

In summary, the proportion of peptides and annotation graphs to proteins 

in simulated annotation graphs is in agreement with observed data. The average 

degree for protein nodes in the simulations is generally similar, although in Class 

3 graphs, the simulations have distinctly fewer peptides forming sparser graphs. 

The mean level of degeneracy in Class 3 graphs is somewhat lower in the 
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simulations with fewer proteins, but becomes similar to the observed data in 

Sim50 and Sim75 data sets. Additionally the number of proteins in Class 3 

graphs are very similar across all sets. The quality scores follow the same 

distributions, with the smaller simulated sets having quality metrics skewed 

towards higher values. Overall, the Sim75 data set is qualitatively most similar to 

the full SARS set. 

Protein.detectability..

Protein sequence and structure variation leads to variation in peptide 

detectability, but is also affected by laboratory protocols and the instrumentation 

used. In this work, protein detectability was defined as the proportion of 

detectable constituent peptides. An SVM classifier was trained to predict peptide 

detectability, and on cross-validation tests using the tag database, achieved 73% 

accuracy. The task was to predict if a given peptide produced from in silico 

digestion would have been detected when building the mass tag database. The 

predictive model allows that some peptides produced after digestion, and not 

appearing in the mass tag databased are still able to have detectability scores as 

high as other peptides found in the database. When setting the detectability 

threshold at 0.5, most proteins had detectability scores around 0.3. For example, 

in digesting proteins BAG2_MOUSE, APOA4_MOUSE, and LCAT_MOUSE, 16, 

29, and 24 peptides were produced respectively, and the proportion of detectable 

peptides was 0.313,  0.310, and 0.4 (See Figure 24). 
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Figure 24. Peptide detectability. The Y axis shows probability for detection and the X axis indexes 
the predicted peptides. Prediction of peptide and protein detectability using an SVM classifier 
trained using the mass tag database. The classifier makes a prediction for each peptide after an in 
silico digestion. The proportion of detectable peptides is used as the detectability score for a given 
protein.  

Simulated.protein.inference.

For simulated data, known proteins allow exact predictive performance to be 

measured. Protein inference using both Fido and the flow model give each 

protein a score. Fido results in a posterior probability, while the flow model 

results in a numeric score. By thresholding the scores, we partition the list of 
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proteins into present and not-present. The partitioned list can be compared to the 

set of proteins used in the simulation giving true and false positive rates. By 

varying the threshold, we produce receiver operating characteristic (ROC) plots. 

A perfect predictor would have an area under the curve (AUC) of one, while a 

random predictor would have an AUC of 0.5.  

 For simulated data sets, Fido was used with default parameters given by 

application website (hosted by the Nobel lab) which are described as being very 

robust parameters. To be fair, a very limited amount of tuning was performed for 

either model. For the flow model, one parameter, the bonus given to unique 

edges in parameter W, was tried with two values, 2 and 3. With parameter B = 2, 

the results appeared very similar to Fido, and with parameter B = 3, the results 

surpassed Fido. It is possible that with proper parameter optimization, Fido would 

perform better, but in limited testing, parameters were not found that improved 

the predictions.  

 

Table 5. Prediction results for each simulated data set using both the Flow and Fido models. The 
Flow ROC and Fido ROC columns show the area under the curve while the Cut columns show 
similarity between Flow and Fido when comparing the top X%.  

The ROCs for the flow model show consistent AUCs above 0.9 which is 

considered very good. Fido also performs very well with AUCs over 0.9 in half of 

the trials indicating that scores do a good job separating true and false proteins. 

As the threshold changes, there is an abrupt transition between true and false 
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predictions giving the predictor the ability of high sensitivity and simultaneously 

high specificity (Figure 25).   

 

Figure 25. ROC curves for prediction on simulated data sets using both Flow and Fido models. The 
dotted black line represents the prediction made by Fido. The blue line represents prediction made 
using the detectability prior alone. The red line represents the quality flow information before the 
prior is applied. The black line represents the final Flow prediction.  

When a threshold is selected, as already mentioned, the list of proteins is 

apportioned into a list of proteins we believe are in the original biological mixture, 

and those we do not. With a given threshold we can compare the predictive 

result of each algorithm. One comparison method is to count the number of 
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proteins in agreement divided by the number possible. In this work, I looked at 

cut points of 0.9, 0.8 and 0.6. For example, the proteins are ranked, and the top 

90% are taken for comparison. The flow model and Fido compare favorably 

where at 80 and 90%, the two lists are nearly identical, which also implies the 

bottoms of the lists are identical as well. When we compare the top 60% of each 

list, there is less agreement ranging from 0.858 to 0.885 percent. It appears there 

is a differing order in the middle of the ranked list of proteins (see Discussion). 

SARS.and.influenza.protein.inference.

In protein inference on real observed data, the proteins responsible for the 

observed peptides are unknown. To compare the algorithms, protein inference is 

performed, and proteins are ranked according to the scores they receive. The 

same proteins are used in the results of each algorithm. Then taking the top X% 

of each list (from Fido and Flow), the intersection is used to get the percent 

agreement.  

The two inference models produce different score curves, which is shown 

in Figure 26. Notably the Flow model makes a smooth continuous range of 

scores. In the full SARS data, which maps to 3185 proteins, the lowest 1000 

scores show approximately 600 with scores close to zero, which afterwards 

increases at a steep rate. Fido, on the other hand, tends to give somewhat high 

scores to many proteins. Considering that these are posterior probabilities, we 

observe that only slightly more than 200 of 3185 proteins receive zero 

probabilities. After this point, there is a large discontinuous jump of posterior 
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probabilities to 0.4, which quickly increase so that more than 2300 protein have 

posterior probabilities of greater than 0.6.  

 

Figure 26. The lowest 1000 protein inference scores produced by the Flow and Fido models.  

For all datasets tested, a similar trend in agreement is observed (Figure 

27). The agreement starts very low in comparing the top 1-5% of proteins, and 

then quickly increases upwards peaking around 20% of the top scores. A drop is 

observed between 40 to 60%, finally rising to 100% as the lists converge. It is not 

surprising that the top of the lists do not agree since Fido ranks many proteins 

with a score of one, becoming randomly sorted as the list is ranked. If we are 

concerned with taking a large portion of the proteins, then we find that the two 

algorithms have a very good agreement starting at approximately the 80% level. 
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Figure 27. Comparisons of protein inference using Flow and Fido with real data. Three data sets 
were generated by taking only peptides with a maximum of 10% missing data (SARS10, FLU10), a 
maximum of 50% missing data (SARS50, FLU50), or the largest data set including all peptides 
(SARS100, FLU100). In each case, after protein inference, proteins are compared after selection by 
scores in the top x% (which is along the x axis). The observed overlap in the selection is normalized 
compared to what is expected by chance.  

If we consider that the Flow model makes no use of latent variables, and 

instead represents a transformation of the observed data, then with some 

assumptions we are able to define minimum scores. Suppose that we are 

interested in proteins that have at least one peptide with a STAC score of 0.6, a 

UP score of 0.8, and a tag Peptide Prophet score of 0.9. In addition, we want this 

peptide to be observed in at least half the samples, and non-degenerate, with a 

prior probability of 0.5.  Taking the product of these scores gives 0.108. However, 

when the SARS full dataset is examined, only 1,228 of the proteins have scores 

above this threshold. In Fido, this threshold is 0.84, which might be a good cut 

point for confidence. 

By examining low scoring proteins, a few different aspects become clear. 

For one, many of the low-scoring proteins are those seen in a small fraction of 

the samples. From the SARS full data set, 4272/16890 peptides are present in at 
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most 2% of the samples. Fido does not take the number of times a peptide is 

observed into account. It is simply operating with the assumption that if we saw it 

once, then it should be in the annotation graph. 

 

Figure 28. Percent agreement between protein inference of the Flow and Fido model using the 
SARS100 data. When the Flow model does not consider missing data information, the results from 
the two algorithms becomes more similar, as seen in the SARS10 comparisons. 

To demonstrate the effect of accounting for the number of observations, 

protein inference was performed on the full SARS data, but setting the Presence 

parameter to one, as if every peptide was observed in every sample. The result 

is much improved agreement with Fido (Figure 28). 
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Discussion.

Differences.from.Fido.–.Use.Case.Example.

Clearly, since Fido does not take the number of times a peptide is observed into 

account, the data should be manually cleaned before protein inference. However, 

it appears that even without data cleaning the Flow model performs fairly well. 

Proteins supported by peptides either observed very rarely or with very low 

quality scores are accordingly ranked low.  

 

Figure 29. Disagreements (shown in red) in the top 95% of protein inference. Fido is giving a broad 
range of scores  compared to the Flow model. These are proteins that are accepted by Fido and not 
by the Flow model. A majority of disagreements come from proteins with a single supporting 
peptide, often with very low STAC scores.  
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However, there remains some disagreement between the algorithms. Using the 

SARS50 dataset and taking the top 95% of the ranked protein list, proteins are 

examined that are accepted by Fido and not by the Flow model. Some 

discordance is shown below in Figure 29. With this subset, in Flow, the scores 

are concentrated towards the bottom of the ranked list. In Fido, scores are 

spread out, including some proteins with posterior probabilities above 0.75. In 

total, 52 proteins did not agree. These proteins had Flow model prior probabilities 

ranging from 0.44 to 0.76, but extremely low flow-model-edge scores. An 

example is shown below in Table 6. 

 

Table 6. Score discrepancies between the Fido and Flow models. Puzzlingly, these proteins have 
high posterior probabilities from Fido when considering the extremely low STAC scores. In this 
case, these proteins were supported by a single peptide. 

In this example, all of the proteins are supported by single peptides. It is 

surprising then that Fido would give a posterior probability of 0.81 to protein 

ABCE1 when it has a STAC score (which is used by Fido) of 0.096. 

An.approach.unique.to.protein.inference.

The Flow method represents a new approach to protein inference that tracks 

very well with a more theoretical, but still well tested algorithm. The Flow model is 

useful for a first pass examination of the data since it clearly delineates which 

proteins have suitable information supporting them, and takes advantage of 

multiple samples by down weighting peptides that are rarely observed.  
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The prior probabilities are based directly on the mass tag database, which 

should take account of the protocols used, and the mass spectroscopy platform 

used. There is certainly room for improvement in protein detectability, and 

changes to this model could improve the predictive power. 

Conclusions.

An automated method for producing simulated LC-MS peptide data was 

produced that harnessed the MSSimulator. Simulated annotation graphs were 

made to match annotation graph topology distributions present in real data using 

a greedy graph pruning method. Simulations were validated by comparison of the 

annotation graph topology and features to the full SARS data. Both protein 

inference algorithms Fido and the flow model performed very well on simulated 

data, with the flow model performing slightly better. When applied to real data, 

the results are in good agreement. Some disagreement is observed for proteins 

with single supporting peptides. In those cases, the flow model produces more 

believable scorings. 

This is the first protein inference method designed with high-throughput 

tag-based proteomics in mind. The method is simple in computation and requires 

no latent variables. Other methods do not take missingness or the particulars of 

tag-based proteomics into account. This method is also the first network flow 

based model, which demonstrates a new class of methods in protein inference.  
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6..An.Integrated.Systems.Signature.of.SARS@CoV.Infection.

Introduction.

Cells contain an incredible number of molecular entities forming a dense 

interconnected network of interactions. In order to take a more global systems 

view in our analysis, multiple data types, representing the range of biological 

entities, must be integrated. Considerable attention has been given to the 

problem of data integration in large scale systems approaches (Adourian et al., 

2008; Fagan et al., 2007; Gat-Viks, Tanay, Raijman, & Shamir, 2006; McAteer & 

Skerrett, 2009; Mcgarvey et al., 2009; Troyanskaya, Dolinski, Owen, Altman, & 

Botstein, 2003; Vaske et al., 2009). Given the many types of “omic” data, the 

most general problems involve annotation and interpretation (Palsson & Zengler, 

2010). Currently, the best and most informative way to integrate biological data 

remains an open question.  

More recently the study of host-pathogen systems has become 

increasingly important for understanding viral pathology (Aderem et al., 2011; 

Peng et al., 2009; S.L. Tan, Ganji, Paeper, Proll, & Katze, 2007; Zak & Aderem, 

2009; Forst, 2006; Joyce & Palsson, 2006). In these studies, we learn about the 

relationships among components associated with the host’s response to 

infection. This work is focused on the first line of defense: the innate system 

(Katze & He, 2002; Takaoka & Yanai, 2006; Zak & Aderem, 2009). 

SARS-CoV is an upper repertory virus that caused a global pandemic in 

2002 (Ksiazek et al., 2003; Wendong Li et al., 2005b; Low & McGeer, 2003; 
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Roberts et al., 2007; Rockx et al., 2011; Stadler et al., 2003). Commonly 

encountered, the corona family of viruses is responsible for a large portion of 

reported “colds” (Masters, 2006). Understanding the host response to this 

infection could lead to new therapeutic actions (Dykxhoorn & Lieberman, 2006).  

In this work, two methods of data integration are explored and applied to 

the problem of integrating the transcriptome and proteome. This problem is 

significant since these two “omes” are a great distance apart in terms of 

biological processes. In addition to the biology, the technologies used for 

measuring transcripts and peptides are incredibly different and require different 

treatments. Using SARS-CoV infected mouse-lung microarray data and tag-

based proteomic data, data integration should work to improve our systems 

understanding of SARS infection. 

In this chapter, a new method for integrating transcription and proteomic 

data is developed using co-expression networks (B. Zhang & Horvath, 2005). 

Another previously published method, correlated factor analysis (CFA) (C. S. Tan 

et al., 2009) is explored. The two different methods represent “early” (CFA) and 

“late” (co-expression networks) approaches. CFA is considered “early” in the 

sense that data is integrated immediately, whereas integrating pre-built networks 

is deemed “late”. 

Interpreting integrated results might possibly bring new understanding of 

the response to SARS-CoV, which could lead to biomarkers for pathogenicity, 

and the ability to predict host response. Ideally, the identification of individuals 
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requiring more intensive care due to an over-reactive host response could 

improve triage and reduce the chance of a fatal infection. 

Background.

In this chapter, we are working with tag-based proteomics and microarray based 

transcriptomics, which are two experimental domains. Each of them has distinct 

methods for generating data, learning about organisms, and investigating 

disease. Tag-based proteomics is described previously in Chapter 4. Following is 

a very brief description of transcriptomics. 

Within any given organism, DNA is transcribed and mRNA molecules 

(transcripts) are actively transported in the cell. The transcripts ultimately encode 

protein sequences, but only after a long series of biological transformations and 

editing events (Vogel & Marcotte, 2012). Measuring transcript abundance of a 

given organism is thought to give some insight into the state of the cell at a 

discrete time point. One way expression measurements are taken comes by 

lysing cells and purifying mRNA. The mRNA is processed according to specific 

microarray protocols involving the addition of florescent tags (Wolber, Collins, 

Lucas, De Witte, & Shannon, 2006). The solution is washed over the microarray, 

at which point the RNA fragments hybridize with (bind to) oligonucleotide probes 

on the surface of the array. The probes, bound with florescent RNA, are 

measured by imaging. The brighter the spot, the more RNA has hybridized. 

The probes are designed to limit degeneracy; great effort was spent 

making the probes as unique to a given gene as possible. In this work, the 

Agilent 4x44 microarray is used. This microarray carries 43,803 probes that map 
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to 20,835 Entrez gene IDs. We see that genes are often mapped to by multiple 

probes. 

 

Figure 30. Overlap of entrez gene IDs between the Illumina expression microarray and the mass tag 
database used to identify peptides in the infectious disease experiments utilized. 

Although microarrays are able to cover almost the entirety of the mouse 

transcriptome, there is lesser coverage for the proteome (Figure 30). The number 

of proteins measured is expected to improve, but for now remains a limiting 

factor. Here, the mass tag database used to identify peptides, contains entries for 

5,858 Entrez IDs (after mapping Uniprot protein IDs to Entrez). The overlap 

between microarray and tag database consists of 5,694 IDs, leaving 164 proteins 

unique to the proteomics side, and 15,141 Entrez IDs unique to the transcript 

side.  

The GO hierarchy is a tree of nodes, connected by edges, and can be 

viewed in terms of levels (Ashburner et al., 2000). The three roots of the tree are 

“Biological Processes” (BP), “Molecular Function” (MF), or “Cellular Component” 

(CC). A non-unique set of genes are mapped to each node in the tree. Here we 
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are focusing on the BP tree. The root can be considered level 1. Level 2 is the 

set of GO terms that can be reached by traversing not more than 1 edge. Level 3 

are all GO terms that are one additional edge from Level 2 nodes. As we traverse 

down into the tree, the terms change from more general to more specific (Figure 

31).  

 

Figure 31. Comparison of GO IDs for members of the Illumina expression microarray and the mass 
tag database. At “upper” levels of the GO hierarchy, the GO terms are more general, while at “lower” 
levels the terms become more specialized. In the comparison, while the array has more GO terms 
unique to its members, it is not until GO level 4 that the proteomics side has a single unique GO 
term.  

At level 2 in the BP tree, 25 GO terms are common between the tag 

database and the array, with only 4 GO terms unique to the array. At level 3, the 

difference becomes more distinct where 124 GO terms are common between the 

data types, but 149 are unique to the array. Finally at level 4 (as deep as this 
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analysis would dare go), 348 GO terms were common, 1,270 GO terms were 

unique to the array, and a single GO term was unique to the tag database.  

The GO term unique to the virology tag database was positive regulation 

of leukotriene production involved in inflammatory response (GO:0035491), a 

specialized term and informative given the topic. In addition, among GO terms 

unique to the array, immunity related terms are found. These terms are shown in 

Table 7. 

 

Table 7. GO terms unique to the Illumina expression microarray. The array column shows the 
number of genes mapping to that particular GO term using Bioconductor annotation packages. 
These GO terms were selected because of their association with immunity relation functions. 

When looking at KEGG pathways mapped to Entrez IDs within either the 

tag database or the microarray probeset, the difference is smaller than what was 

seen in the GO term analysis. 199 KEGG pathways mapped to the union of 

Entrez IDs. Of these only 2 were unique to the array including lipoic acid 

metabolism (mmu00472) and D-arginine and D-ornithine metabolism 

(mmu00785). While its beneficial to our analysis to have this bountiful overlap, it 
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likely demonstrates the sparsity of our pathway knowledge. Many proteins and 

genes lack functional annotation, and there is no doubt that many pathways 

remain to be discovered. 

Methods.

Data.

Proteomic Data: Abundance measurements for 16,890 peptides mapping to 

3,277 proteins were recorded. Taking all observed peptides, protein inference 

was performed using the Flow and the Fido models (see Chapter 4). Proteins 

were accepted with scores above 0.95 in both the Flow and Fido models 

resulting in 691 proteins.  

Peptide data was filtered by protein inference mapping, STAC (> 0.6), UP 

(>0.5) and Peptide Prophet tag score (>0.9) which resulted in 611,812 

observations, or a matrix of 188 sample rows by 9,326 peptides. Sample 

replicates were combined by taking the mean over peptides, increasing the 

number of peptides with observations for each sample. Peptides were then 

filtered by missingness, taking peptides with not more than 20% missing data, 

resulting in a matrix of 92 samples by 2,273 peptides that mapped to 467 Uniprot 

protein IDs. 

 

Transcript Data: This microarray data, matched to the proteomic data, became 

public on Nov 01, 2011. Processing details were taken from the GEO repository: 
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“Twenty-week-old C57BL/6 mice were infected by intranasal instillation of 

10^2,10^3, 10^4 or 10^5 PFU of SARS CoV MA15 in 50 µl of PBS or mock-

infected with PBS alone.  At days 1, 2, 4 and 7 days post-infection, lungs were 

harvested. 

Specific lobs of the lung from each animal were harvested and briefly rinse tissue 

in cold (4ºC) PBS. Following the RNAlater (Ambion) protocol, tissue was cut into 

small chunks (<0.5cm in any single dimension) and place immediately into a 10-

20 volumes (w/v) (e.g. 100mg/ml) RNAlater. After a 4ºC incubation for overnight, 

samples were stored at -80ºC further processing. Lung tissue was removed from 

RNAlater, washed in a small volume of Trizol, homogenized in 10-20 volumes 

(w/v) TRIzol and stored at -80°C until RNA isolation. 

All TRIzol lysates were processed simultaneously: they were phase-separated, 

and RNA was isolated from the aqueous phase (diluted 2 fold with RLT buffer) 

using Qiagen RNeasy Mini columns and the manufacturer’s recommended 

protocol (Qiagen Inc., Valencia, CA). RNA quality was assessed on an Agilent 

2100 Bioanalyzer using the nanochip format, and only intact RNA was used for 

microarray analyses. 

The Agilent One-Color Microarray-Based Gene Expression Analysis Protocol 

was followed for the Cy3-cDNA probe preparation. The Agilent One-Color 

Microarray-Based Gene Expression Analysis Protocol was followed for 

hybridization and array washing. Two hundred fifty ng of each RNA sample was 

hybridized to one Agilent 4X44K human HG (Design ID 014850) array. 
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Dry slides were scanned on an Agilent DNA microarray scanner (Model G2505B) 

using the XDR setting. Raw images were analyzed using the Agilent Feature 

Extraction software (version 9.5.3.1) and the GE1-v5_95_Feb07 extraction 

protocol. All arrays were required to pass Agilent QC flags. Extracted raw data 

were background corrected using the norm-exp method and quantile normalized 

using Agi4x44PreProcess and RMA Bioconductor packages." 

With the procedures above, 92 expression profiles were collected from the 

four time points (1, 2, 4, 7 days) and four dosage levels (102, 103, 104, 105 SARS 

pfu), and included 3 mock samples per day. 31,416 probes passed probe QC 

flags for all replicates of at least one infected time point.   

After assessing biological replicates, the following replicates were 

removed: Mock at Day 7, replicate 2 and PFU 10^2 on Day 4, replicate 3, since 

the mock clustered with infected samples, and clustered with early infected and 

mock samples, rather than with samples where infections are more progressed.  

Pathology.

Measurements for a wide range of pathological variables are provided including 

features such as airway constriction, inflammation, airway inflammation, debris, 

denudation, the state of the vasculature, and whether signs of pneumonia are 

observed. Conveniently, all of the variables are combined into a single measure 

entitled “Overall Total Score”, which is highly correlated with the other variables. 

When the lung pathology is observed as the Overall Total Score by time 

and dosage, we see that the trend is strongest by time, and less difference is 

seen by dosage. All mice receiving a dose of SARS have observable lung 
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pathology. The response of individuals receiving dosages of 10^2 PFU appear 

somewhat different than individuals receiving higher dosages (see Figure 32).  

 

Figure 32. Overall pathology scores by dosage. The figure on the left shows the mocks and the 102 
dosage level, while the figure on the right shows the 103, 104, 105 dosage levels. The host response 
patterns are clearly different. 

Methods.Used.

Correlated.factor.analysis.

Correlated factor analysis (CFA) (Tan et al., 2009), a method for data integration, 

uses ideas from Maximum Covariance Analysis (Storch & Zwiers, 2002) and 

essentially consists of singular value decomposition on the covariance matrix of 

gene and protein data. CFA is an interesting approach to the integration problem 

in that it requires no free parameters and results in immediate joint analysis. 

Using CFA, the hope is to discover patterns of correlation, shared between the 

two data sources, that are associated with the biology of disease. In this case, 
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we are extending the method to transcript and peptide data, which is a novel use 

of data.  

First, the cross-covariance matrix is computed from the matrices of 

transcript and peptide data by 

! = ! !!!
(! − 1) 

where X and Y represent the transcript and peptide data matrices respectively, 

and n is the number of samples. The covariance matrix, !, has dimension p by q 

where p is the number of transcripts and q is the number of peptides. Singular 

value decomposition applied to the covariance matrix results in three matrices: 

!!!!!! = !!!!!!!!!!!!!!!!!!!!  

where the left singular values U consist of the eigenvectors of !!!,!the right 

singular values consist of the eigenvectors of !′!, and D holds eigenvalues. The 

kth left and right singular vectors and the singular value together are called a 

factor or a “pattern-pair”. Within D, the eigenvalues on the diagonal decrease in 

value, and describe the relative amount of covariance explained by pattern-pair 

k. 

! !!
!

Σ!!!!
 

which is simply the square of the eigenvalue over the sum of eigenvalues 

squared.  

CFA analysis is focused on the comparison of pattern-pairs, or the pairing 

of column vectors from !! and !! where k takes a value from 1 to r. In order to 

determine the number of pattern-pairs to use, a permutation testing approach is 
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used. Essentially, rows are permuted on the peptide matrix, and CFA analysis is 

performed, the maximum eigenvalue is stored from each permutation. 

Significance in pattern-pairs can then be judged by taking only those with 

eigenvalues greater than all permuted eigenvalues. Here, 1000 permutations are 

performed. 

Once significant pattern-pairs have been identified, the question becomes 

which members of the pattern-pair should be considered. In this case, each 

pattern-pair contains 828 transcripts and 2246 peptides. Certainly not all of the 

members contribute equally to the variance. We are most interested in members 

that have large contributions to the covariance. Therefore, we can extract 

members that have larger vector loadings that directly correspond to variance 

contributions. Transcript and peptide vectors should be considered separately. 

The method here involves taking the full vector !!, one of the columns of U or V, 

and computing 

!! = !!!! 

which results in a vector with length equal to the number of samples. This 

computation is equivalent to taking the dot product by sample between the 

observed data and the pattern. A subset of !! is taken based on the top W% of 

absolute values. This subset is again used to compute the score !!∗ . The 

correlation is computed between !! and !!∗ . As the top W% increases, the 

similarity between the two score vectors becomes increasingly similar. Our goal 

is to take the smallest number of members that explains most of the covariance. I 
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have developed an automated method for this procedure. Epsilon can be defined 

as the error allowed in finding the “top” of the slope. The algorithm is listed below. 

1. Compute the curve generated from correlation of !! 
and !!∗ at varying Ws. 

2. Fit this curve to a Loess equation. 
3. At various points along the Loess curve, x, compute 

the slope of the tangent. 

4. When the slope – epsilon < 0, return x. 

Performing this method on each pattern-pair results in a set of transcripts 

and another set of peptides that explain a great deal of the variance observed.  

However, as this is longitudinal data, we are concerned with finding sets of 

transcripts and peptides that vary together. The results of CFA show a mixture of 

entities trending up and down over time. By focusing on transcripts or peptides 

with large absolute values, we do not pay attention to important information 

contained in the sign of the value. Therefore, by taking the top W% of values, 

and then separating by sign, we have broken the set into those peptides or 

transcripts that trend upwards or downwards over time. 

To judge whether similar genes are represented by the important peptides 

and transcripts in each pattern-pair, a Jaccard-index was computed between 

pattern-pairs.  

Network(Integration.

Network based integration of transcript and peptide data is performed using 

independent co-expression networks built using each data type individually. A 

great deal has already been written about methods behind WGCNA, see Chapter 

3 and (Iancu, et al., 2012a; Langfelder & Horvath, 2008; Langfelder et al., 2012; 
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Mason et al., 2009) for a small sampling of the literature. Here, signed, robust 

correlations were used, the scaling term, beta, was chosen so that the R2 for 

peptide networks was greater than 0.8 and for transcript networks greater than 

0.9, and Partitioning Around Medoids (PAM) was respected in branch cutting. 

The test involved 1000 permutations performed to assess statistical significance 

on connectivity in modules.  

Each network is partitioned into a number of modules, each of which 

contains either transcript or peptide nodes. After mapping transcripts and 

peptides to Entrez gene IDs using the protein inference results, the overlap is 

measured between pairs of modules. To test the significance of each overlap, 

random modules are constructed by keeping the module sizes fixed and varying 

the contents. Ten thousand permutations are performed, and the number of 

overlaps greater than each module pairing is recorded. In this way, we have an 

empirical p-value for each overlap. Overlaps were taken as significant if less than 

1% of permutations had overlaps greater in magnitude. 

Once significant overlaps are found, the correlation between module 

eigenvectors is computed. In addition, the module eigenvectors are correlated 

with phenotype data to determine if overlapping modules similarly correlate with 

phenotype information. The combination of these three measures of correlation 

between modules describes an integrated signature, or more explicitly, the 

signature is a multi-omic collection of modules that share mapped IDs, 

correlation of summary eigenvectors, and correlation with sample phenotypes. 
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Functional.enrichment.

Using KEGG (Kanehisa, 2004) using the R package KEGGSOAP (J Zhang & 

Gentleman, n.d.), proteins found in each module provided a list of potential 

pathways to investigate. For each pathway returned, a hypergeometric test was 

performed using proteins from the module and other proteins taking part in the 

pathway. The universe is defined as the subset of proteins in the mass tag 

database with roles in known KEGG pathways. P-values are adjusted using the 

Benjamini and Yekutieli method (Benjamini & Yekutieli, 2001).  

GO term enrichment was performed as in Chapter 3 using GOstats 

(Falcon & Gentleman, 2007). 

Results.

CFA.results.

Only the first pattern-pair was found to be significant after permutation testing. It 

is noted that this style of statistical test, in this context, may be too conservative. 

It might be more reasonable to consider all singular values, rather than only the 

highest value for each permutation. In these results, while the first singular value 

was quite high, the drop in singular values was extremely sharp, and quickly 

became close to zero (Figure 33), indicating that the first pattern-pair explains the 

greatest amount of variation in the covariance between transcript and peptides. 

The singular value for the first pattern-pair is 37.16 corresponding to 79.05% of 

covariance explained. In Tan’s work, the first three pattern-pairs were significant, 

and cumulatively explained 74.8% of covariance.   
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Figure 33. Significance of pattern pairs by permutation testing. The black line shows the singular 
values associated with each pattern pair, from left to right. Only the first pattern pair showed a 
singular value greater than what was generated by permutations, making it the only significant 
pattern pair. The green line was generated by taking 1000 permutations on the data, and each time 
taking only the highest singular value.  

By taking the top W% of absolute values in the pattern-pair, and 

comparing this subset to the full set, separately for transcripts and peptides, we 

can find the smallest number of entities that explain most of the covariance 

(Figure 34) allowing us to focus on a much smaller number of “active” entities. 

Here, using the previously described algorithm, W was chosen that induced the 

tangent slope closest to 0.1 with a Loess span of 0.25 capturing most of the 

variance while limiting the number of entities to analyze. 
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Figure 34. Selection of cutoff for important members in the pattern pair. For the left and right 
singular vectors separately, the transcript and peptide members are selected that explained most of 
the variation. The y-axis shows the correlation between scores computed using the entire pattern 
and a selection of members. As the selection becomes larger, the variance explained starts to 
become equivalent to taking all members. The selection is made by taking those that fall before the 
shoulder of the curve. 

The top W% found were 13.1% for transcripts, and 11.0% of peptides, 

resulting in a set of 108 transcripts and 247 peptides, which mapped to 108 and 

150 entrez gene IDs. It is encouraging that we have proteins supported by 

multiple peptides in the most “interesting” peptides. 
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Figure 35. Decoupling pattern pair signals by abundance trends over time. When the peptides from 
pattern pair 1 are considered, we find members that trend both upwards and downwards over time. 
Since our experiment is highly concerned with temporality, it is desired to be able to separate 
important entities by abundance trends. By filtering significant pattern pair members by the sign of 
the vector loading (in the singular vectors U and V), we can easily separate the members by 
abundance trend over time.  

Peptides and transcripts that were part of the top W% of the pattern-pair 

were found to trend in both directions which is quite significant for a study that is 

longitudinal in nature. Therefore, it is desirable to separate entities by direction 

over time. Temporality separation was accomplished by separating values in 



 

 91 

eigenvectors of U and V by sign. Of the 108 genes, 63 had upward trend while 

45 had a downward trend.  

In terms of the gene IDs represented by peptides, 71 had downwards 

trends while 176 had upwards trends. An example of the separation is shown in 

Figure 35. 

 

Table 8. Table of CFA results from pattern-pair 1. These results represent members of pattern-pair 1 
that have the largest role in explaining the observed variation. The transcripts and peptides have 
been mapped to appropriate entrez gene IDs. 

Between the extracted members of the transcripts and peptides, and after 

mapping to entrez gene IDs, 39 were found to be similar from a union with size 

200 (Jaccard index 0.195). Permutation testing showed this overlap to be 

insignificant. The overlap in the pattern-pair was made worse when considering 

the transcripts and peptides separately by direction of trend over time. When 

considering only transcripts and peptides that trended downwards, the 
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intersection was 4. When considering transcripts and peptides that trended 

upwards, the intersection was 16, which is fewer than half of the intersection 

taking everything together, pointing out that a significant portion of the overlap 

was comprised of discordant transcript-peptide pairs. The discordance here 

might be due to entities with negligible slopes that are counted in one direction or 

the other. However, these partitions are made by classifying the loadings in the 

eigenvectors of U and V, not by slope alone. 

CFA.GO.enrichment.analysis.results.

Using the mass tag database as the universe, GO enrichment analysis was 

performed using the R package GO stats. For the transcript data, due to the very 

large table of results, only the lowest 10 p-values are shown along with a 

selection of other, interesting, GO terms (Table 9). The GO term with the greatest 

significance, cellular component assembly, is three levels from the root of the GO 

hierarchy (tree).  

 

Table 9. Significant GO terms for the CFA transcript pattern. Here the most significant GO terms are 
associated with component and complex assembly. 
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While it is not extremely specialized, it is somewhat descriptive, coinciding with 

other members of the list including terms involving complex assembly, 

nucleosome assembly, chromatin assembly, caveola assembly.  

 

Table 10. Significant GO terms for the CFA peptide pattern. The top of the list shows an emphasis on 
regulatory GO terms. 

Essentially this group of GO terms seems associated with large complex 

assembly, which makes sense given the context of viral infection. 

When the enriched GO terms for the protein side are considered, while we 

do see some assembly related terms, there are many more terms involving 

enzymatic activity including endopeptidases, hydrolases, and responses to 

stimulus of various sorts (Table 10).  

CFA.PPI.Networks.

A small amount of member overlap was observed when considering the top hits 

from the significant pattern pairs. However, when pattern pair members were 
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mapped into the protein-protein interaction space, a highly connected network 

was found. The PPI network was constructed using the BioNetBuilder2 

(Konieczka et al., 2009) plugin for the software package Cytoscape (Smoot, Ono, 

Ruscheinski, Wang, & Ideker, 2011). Based on work involving mapping similar 

genes across species (known as orthologs), a database was constructed 

containing what are called interologs, or orthologs with known interactions 

(Yellaboina et al., 2008). The database is called the Interologger database, and 

pulls data from other public databases such as HPRD, MINT, Bind, Biogrid, 

KEGG, MPPI, and others. Using a list of the genes and proteins found in the CFA 

results, PPI edges are placed between entities from the pattern pair. Neighboring 

nodes were allowed if the Interologger score (indicating sequence homology for 

the orthologs) was above 0.5 and the neighbor node was connected to both a 

transcript and peptide node. The resulting PPI network is show in Figure 36. 

In the network representation, larger nodes are more responsible for the 

covariance observed. We see that a collection of histones and ribosomal proteins 

were active as well as actin associated proteins. The largest nodes tend to be 

those that are present in both data types. PPI edges are weighted by confidence, 

so that high confidence edges pull associated nodes together closely, giving us a 

clear way to link the pattern pair in a way that is (more) understandable by 

biologists, and presents a way forward in analysis, namely with graph analysis. 
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Figure 36. Protein-protein interaction network for CFA pattern pair 1. Known interactions are shown 
between members of the CFA pattern pair. The network shows transcripts in red, peptides in blue, 
and members that were shared between the transcript and peptide patterns in green. Extra nodes 
were allowed if the PPI score was above 0.5 that was used as a cutoff for significant edges using the 
Interologger database via the BioNetBuilder2 plugin for Cytoscape 2.8. 

Network.Integration:.the.most.variable.transcripts..

It is common when building transcript co-expression networks to use the most 

variable data. In fact, it is within the variance that biological signals are found. 

Therefore, co-expression transcript networks were constructed selecting the 

most variable 7000 transcripts. Of these, 5,531 had Entrez gene IDs, which 

produced a network containing 19 modules and was compared to a protein co-

expression network containing 14 modules. Comparing these networks did not 
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result in any significant overlaps between modules, and further analysis was not 

continued. 

Intersection.networks.

Networks were constructed by taking the entrez gene ID and sample ID (since 

two samples had been removed from the transcript data) intersection between 

quality filtered peptide and transcript data. This corresponded to 2246 peptides 

mapping to 445 Uniprot IDs (in the mass tag database) and 490 Entrez gene IDs. 

For the transcript network, 828 probes were used corresponding to 439 Uniprot 

IDs and 447 Entrez gene IDs. Between the two data sets, 429 Uniprot IDs and 

437 Entrez IDs were shared. Some discrepancy is observed, since peptides are 

often degenerate, mapping to multiple proteins, which can then map from a given 

Uniprot ID to multiple Entrez IDs. The transcript network consists of 7 modules 

while the peptide network contains 14. 

The intersection networks were found to be significantly overlapping. 

Significance here is defined empirically as less than one percent of permuted 

overlaps being larger than observed overlaps. By that definition nine distinct 

member overlaps were observed, forming three distinct subgraphs.  
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Figure 37. Multi-module, multi-omic integrated co-expression signature for SARS-CoV infection. 
Three kinds of edges are shown. Black edges indicate a significant overlap in module membership. 
Red edges indicate significant positive correlation between module eigenvectors. Blue edges 
indicate a significant, but negative, correlation between module eigenvectors. Node sizes 
correspond to module size, outlines show correlation with the overall pathology score. Although two 
modules might have a significant module eigenvector correlation, at times the correlation to the 
same phenotype can be different. The integrated graph above shows three subgraphs, (1,4,8), 
(4,12,13), and (3,2,10).  

The overlap of module members is highlighted by the correlation between 

module eigenvectors (Figure 37). From the nine edges in the overlap graph, eight 

showed significant eigenvector correlation (p-value < 0.0006). The correlation 

between transcript module 1 and peptide modules 4 and 8 was 0.523 and 0.434 

respectfully (p-values 1.16e-07 and 1.908e-05). The correlation between 

transcript module 4 and peptide modules 12 and 13 was 0.696 and 0.683 (p-

values 1.159e-13 and 2.554e-14. The correlation between eigenvectors of 

transcript module 3 and peptide modules 2 and 10 was 0.755 and 0.801 (p-value 
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2.2e-16 for both). It should be explicitly mentioned that module membership 

overlap is not necessary for module eigenvector correlation, as seen with array 

module 3 and peptide modules 12 and 13 or array module 4 and peptide module 

13. These are potentially very interesting sets where, in response to viral 

infection, a set of transcripts responds, mirrored by the response of a set of 

proteins that are not directly encoded by these genes. The eigenvector overlap 

plots in Figure 39 show joint trends over time and dosage. Array module 1 with 

peptide modules 4 and 8 show abundance peaks on day 1, which quickly drop to 

valleys by day 7. Conversely, array module 3 with peptide modules 2 and 10 

show low points on day 1 and peaks at day 7.  

 

Figure 38. Relationship of modules to phenotypes. For each phenotype including diffuse aveolar 
damage, inflammation, edema, and the overall pathology score, both peptide and transcript module 
eigenvectors were correlated with phenotype, and the pair (transcript and peptide) with the highest 
correlations are awarded +1, while the pair of modules with the most negative correlations were 
awarded a -1. All other entries are 0. Clear patterns show array module 1 with the bulk of maximum 
negative correlations and array module 3 with the bulk of maximum positive correlations. A larger 
number of peptide modules appear due to multiple peptide modules associating with single array 
modules. 
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Lastly, and differently, array module 4 with peptide modules 12 and 13 

seem to respond more to dosage than time. In summary, we have two different 

patterns of module response, one by time and the other by dosage. 

The correlation in eigenvectors implicitly brings a shared correlation to 

sample phenotypes due to the similar vector structures between the modules. 

Although some variation is observed, and at times correlated eigenvectors do not 

share correlation with a given phenotype. However, shared correlation with 

phenotypes is readily observed in the overlap graph above.  In the case of 

transcript module 3 and peptide module 2, we have strong correlations to the 

overall pathology score, with similar magnitudes (0.652 and 0.571 respectively 

with p-values 3.344e-12 and 4.158e-09). With transcript module 4 and peptide 

modules 12 and 13, we have similar correlation magnitudes (0.449, 0.451, and 

0.552 respectively (p-values 8.969e-06, 8.088e-06, and 1.648e-08).  Moving in 

the opposite direction, array module 1 and peptide modules 4 and 8 correlate 

with the overall pathology score -0.633, -0.505, and -0.352 (p-values 2.244e-11, 

3.762e-07, and 0.0007). 

However, given the rich set of phenotypes available, it is more telling to 

approach each individually, and to judge which modules are more correlated to 

each of the phenotypes. We sketch a brief algorithm thus: for each phenotype, 

the maximum and minimum correlating pair was found. A matrix is constructed 

where, when regarding each phenotype, if a pair of modules is maximum, +1 is 

added to the matrix element corresponding to this pair, and if the module pair has 
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the minimum correlation (i.e. negative correlation), a -1 is added to the matrix 

position corresponding to the pair.  

 

 

Figure 39. Overlapping eigenvectors.  Similar response patterns are shown between array and 
peptide modules. The blue lines show array module eigenvectors plotted across an index over 92 
samples. Red lines show the peptide modules. The grey background shows viral dosage arranged 
by time. The left side of each grey rectangle is day 1 and the right side is day 7. The top most figure 
shows array module 1 and peptide module 4. The middle figure shows array module 4 with peptide 
modules 12 and 13. The bottom figure shows array module 3 with peptide modules 2 and 10. The 
bottom plot is the best example of shared signal between array and peptide modules, and exhibits 
clear evidence for a multi-omic signature.  
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After integration a clear set of integrated modules becomes apparent. 

Figure 38 describes this set. We see that in terms of array modules, modules 1, 

3, and 4 take nearly all of the possible maximum and minimum correlations. 

Peptide modules 2, 4, 13, 8, and 12 show the most correlations to phenotypes 

respectively. The phenotypes ascribed to array module 4 include 

OverallTotalScore, Vasculature, DAD, Eosinophils, HyalineMembrane, Exudates, 

Day, and Alveoli Parenchyma Pneumonia. The phenotypes ascribed to peptide 

module 8 include Denudation, Debris, and Edema. 

Array and peptide modules, constructed after taking correlation signs into 

account, are separated (imperfectly) by abundance trend over time. Array 

modules 1 and peptide modules 4 and 8 show decreasing abundance over time, 

while the other modules show increasing abundance trends (Figure 40).   

Annotation.of.Integrated.Modules.

Annotation mapping to transcripts and peptides were acquired by using 

the Uniprot web service (Apweiler, 2004; Magrane & Consortium, 2011; C. H. Wu, 

2006). Within each module, each entity can be associated with a number of 

keywords and a protein family. 
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Figure 40. Abundance trends for array and peptide modules show joined modules share similar 
trends over time. The sample index is ordered by day, and then by viral dosage. The plots show 
smoothed Loess lines, that in some cases mask very noisy signals. The left most column from top to 
bottom shows array module 1 and peptide modules 4 and 8, in that order. The middle column shows 
array module 4 with peptide modules 12 and 13, and the right column shows array module 3 with 
peptide modules 2 and 10.   

By filtering module members by correlation with the module eigenvector to 

which they belong, also called the centrality of a node, we can rank the members 

by importance. The more central a node, the more similar the expression or 

abundance profile is, compared to the module eigenvector. In cases where the 

module eigenvector correlates very strongly with a given phenotype, we are 
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interested is what biological entities relate most closely. Tables of the top module 

members are shown below in Tables 11, 12, and 13. 

 

Table 11. The ten most central module members for array module 1, and peptide modules 4, and 8. 
The first column shows the correlation with the module eigenvector, describing its centrality in the 
module. In the array module we find a cytochrome family member and an assortment of other 
proteins including caveolin, crip2, and destrin. On the peptide module side, we find an emphasis on 
aldehyde dehydrogenases and selenium binding proteins. It is thought that selenium binding protein 
might be involved in the sensing of xenobiotics, which could be protein imported with the virus.  

In these cases, the top ten members in each module are examined. In 

Table 11, between module array module 1 and peptide module 4, similar 

keywords include Zinc, Metal-binding, Oxidoreductase, DNA-binding, Acetylation. 

Between array module 3 and peptide module 2 the most common shared 

keywords are Acetylation, DNA-binding, Actin-binding, Ubl conjugation. For 

module 4, the most common keywords include Protease, Proteasome, Threonine 

protease, ATP-binding, and Acetylation, while for peptide modules 12 and 13 the 
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most common keywords include Protease inhibitor, Serine protease inhibitor, 

Signal, and Secreted. In Table 12, for array module 4 protein families include 

Cystatin family, DEAD box helicase family, eIF4A subfamily, Pyruvate kinase 

family, Peptidase T1A family, Small GTPase superfamily, Rho family, Serpin 

family, Tubulin family, while for peptide modules 12 and 13 shared protein 

families include many from the Serpin family, ALB/AFP/VDB family, Transferrin 

family, and additionally for module 13 only, the Peptidase S1 family, Fetuin family 

and Hemopexin family. 

 

Table 12. The ten most central module members for array module 4 and peptide modules 12 and 13. 
The first column shows the correlation with the module eigenvector, describing its centrality in the 
module. In this case we find in the array module, Rac1 which has a role in a wide assortment of 
pathways, and Cstb which is a intracellular thiol proteinase inhibitor. On the peptide module side we 
find other protease inhibitors, including members of the Serpin family. Serotransferrins are typically 
associated with the task of transporting iron atoms, but have also been associated with cell 
proliferation, although that latter role is less clear.  
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When the most central module elements are considered, we can see what 

protein families are most associated with clinical phenotypes. For array module 1 

and peptide module 4, overlapping families include the Caveolin family, GST 

superfamily, Mu family, Cu-Zn superoxide dismutase family and module 4 

contains members of the Aldehyde dehydrogenase family. In array module 3, 

central members include proteins from families of CAP family, Histone H1/H5 

family, Histone H2A family, Intermediate filament family while for peptide module 

2 protein families include GTP-binding elongation factor family, EF-Tu/EF-1A 

subfamily, Heat shock protein 90 family, Histone H1/H5 family, and the DEAD 

box helicase family, eIF4A subfamily (Table 13).  

Overall, it appears that each set of integrated modules is somewhat 

discrete in its functionality. Array module 1 and peptide module 4 are related to 

metal binding proteins interacting with DNA and engaging in changes to 

Acetylation patterns. Array module 3 and peptide module 2 seems to be 

associated with chromatin modifications, and indeed are enriched with histones 

and actin binding proteins, and elongation factors. Array module 4 and peptide 

modules 12 and 13 are enzyme driven and have quite a few Serpin family 

members, which are protease inhibitors.  
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Table 13. The ten most central module members for array module 3 and peptide modules 2 and 10. 
The first column shows the correlation with the module eigenvector, describing its centrality in the 
module. Array module three comprises of histones mostly. This concentration is interesting since it 
shows very strong module eigenvector correlation with peptide module 10, which comprises of 
pyruvate kinase isozymes and an actin binding protein. Pyruvate kinase isozyme is associated with 
apoptosis when transported to the nucleus. 

GO.enrichment.for.intersection.networks.

Tabulation of GO terms shows largely similar trends as keyword and protein 

family analysis. In the first sub-graph including array module 1, peptide module 4 

and peptide module 8, the most significant GO terms include processes involving 

actin filament processes, component assembly, and oxidation reduction 

processes (Table 14). Although there are some common themes running across 

the modules, the direct overlap of GO terms is very sparse. 
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Table 14. The ten most significant enriched GO terms for array module 1 and peptide modules 4 and 
8. An emphasis is found on actin processes (internal cellular movement) and complex and 
component assembly. 

In array module 4, peptide module 12 and peptide module 13, enriched GO 

terms tend to associate with regulation of processes. In particular, the regulation 

of endopeptidase, regulation of hydrolases, and response to immune signaling 

like cytokines (Table 15). Here the GO term overlap is strong. 
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Table 15. The ten most significant enriched GO terms for arrays 4 and peptide modules 12 and 13. 
Here we find an emphasis on regulation, involving enzymes such as endopepidases, metabolic 
processes, and signaling involving cytokines an inflammation. 

For array module 3, peptide module 2 and peptide module 10 have enriched GO 

terms that are associated with nucleosome assembly, and DNA-protein complex 

organization. Also enriched are terms with actin cytoskeleton organization and 

processes (Table 16). Again, there is strong GO term overlap across modules. 

Overall, we see that the module set including array module 1 with peptide 

modules 4 and 8 and the module set including array module 3 with peptide 
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modules 2 and 10, both include cellular complex assembly, but where the 

abundance trends over time are in opposing directions.  

 

Table 16. The ten most significant enriched GO terms for array module 3 and peptide modules 2 and 
10. This set of terms shows an emphasis on protein-DNA complex subunit organization, DNA 
packaging, and nucleosome assembly. Cellular macromolecular complex assembly, also present in 
each list, is actually 5 levels from the root of the biological process GO hierarchy and involves the 
assembly of very large protein structures. 

The first sub-graph declines in abundance over time, the latter increasing in 

abundance. The sub-graph of modules 3, 2, and 10 show a tendency towards 

DNA-protein interactions. The module set including array module 4 and peptide 
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modules 12 and 13 stand apart in the amount of enrichment associated with 

regulation and response to biological events. This module set seems more 

related to dosage rather than time. 

Discussion.

Using two different methods, a connected biological signal is observed across 

different data types. The data types, transcriptomic and proteomic, represent 

very different views in the cell. First, microarray measurements are fairly close to 

the DNA. In this case, we are observing the host response, changes in the 

genomic program over time, as infection progresses. On the other hand, the 

proteomic data represents the biological machinery actively doing work in the 

cell. To my knowledge, this study is the first evidence showing clear 

modularization of the proteome, connected to modularization in the 

transcriptome, in response to viral infection. Very little is known about how 

proteome modules change in response to biological events, or even what is 

typical in normal healthy cells.  

CFA analysis returned a set of transcripts and peptides that were together 

co-varying in a significant way, and explained a large portion of the variance. 

Although a high degree of member overlap was not observed across the data 

types, by using protein-protein interaction databases, the individuals were found 

to be connected, resulting in a very interesting, and novel, sort of biological 

network, where edges represent observed PPIs, but the nodes are mixed 

representing genes and proteins. Inference on networks such as this might 

reveal new pathways important for understanding infection. In addition to the 
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connected network, enriched GO terms were observed to be shared across the 

pattern pair. GO terms including cellular macromolecular complex assembly, 

DNA packaging, chromatin assembly and disassembly, actin filament based 

movement, nucleosome assembly, and immune process related terms are 

shared. Although the results from CFA contain individuals with abundance trends 

moving in both directions, with a simple extension it was shown that the signal 

could be separated into groups that trend together over time. 

Joined co-expression modules bring another approach to integrating data 

types. In this case, networks are constructed separately, and then, along with 

phenotypic data, modules of each type are compared to determine what 

combination best agrees. Agreement is defined in three ways: module 

membership overlaps, module eigenvector correlation, and similar correlation to 

phenotype. A brief remark: it is quite remarkable that eigenvectors from these 

distinct data types would be as similar as we observed, and that modules with 

very little overlap in terms of membership would have such similar responses. 

Clearly strong biological organization is observed which should lead to insights 

into viral infection. 

When considering the enriched GO terms and biological entities found to 

be most important across CFA and joint network analysis, we find similarities, 

showing that by using either method results in shared entities responding to 

infection. Similarly, each method gives credence to the other, making it much 

more likely that the observed biological signals are real.  
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It appears that we are observing very fast acting pathways, interactions of 

DNA and proteins, transcription and translation, that likely evolved as fast 

responses to viral infection. Effectively we have discovered the beginnings of a 

true multi-omic signature of SARS-CoV viral infection that may have relation to 

other viral respiratory infections as well. 

 

Figure 41. Mapping CFA peptide results to peptide co-expression modules shows a lack of definitive 
clustering. 

Comparison.of.early.and.late.analysis.

To get a sense of how the results of CFA and joint co-expression analysis relate 

to one another, I compare the peptide modules to the peptide portion of the 

significant pattern pair. First, taking the pattern-pair subset of 247 peptides, it is 

observed that these peptides fall within 10 of 14 total modules. 
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Similar quantities of CFA peptide result members exist in the largest modules 

(modules 1 and 2) and the much smaller modules, such as modules 12 and 13 

(Figure 41). Certainly, it is interesting to note that in modules most important to 

the joint co-expression module set, those peptide modules joined to gene 

expression modules are also those that have the largest quantity of CFA results 

overlapping, with the exceptions of modules 8 and 10.  

When looking within the modules, the Kme of peptides that are part of the 

pattern-pair 1 subset do not have proportional loadings. Put another way, there is 

not a linear relationship between CFA loadings and module centrality (Kme) 

(Figure 42). This suggests that one method is not a surrogate for the other. 

 

Figure 42. Relationship between CFA pattern-pair loading and Kme in peptide results. There is not a 
strong linear relationship between the module structure and the CFA loadings. However, there is a 
strong relationship in peptide abundance over time and the sign of the loading and module 
structure, showing the results of one method are not surrogates for the other. 

In terms of comparing the mechanics of the two methods, CFA with few 

parameters to adjust, remains a much simpler process compared to the 

construction of co-expression modules, which require many parameters and sub-

methods such as clustering and branch cutting, making the process complex and 
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variable. The flexibility comes with a reward however. The structure of the 

network is rich, and we find a much greater proportion of the data is useful for 

analysis. Even just considering the ability to relate phenotypes to modules, which 

is currently not present in CFA analysis, this richness is seen easily. 

Correlated factor analysis resulted in one significant pattern pair and this 

is likely reasonable. It is thought that each pattern pair might correspond to 

distinct cellular activities and pathways, and would thereby allow us to 

decompose cellular activity into manageable pieces. The intersection is taken 

between gene and protein data in creating the integrated signature, removing a 

large portion of the transcript variance. It is common in network construction to 

take the most variable transcripts, and to use those in the network. But when 

transcript data was subset by peptides present in at least 80% of samples, the 

variance ranking on transcripts spanned the entire range meaning that our 

transcripts represented the entire range of variance possible. Many of the 

transcripts were of low variance. In this light maybe the result found with CFA is 

reasonable, that only a smaller portion of transcripts accounted for much of the 

variance, because there was little to start with. 

However, the integrated networks were constructed and were found to be 

quite significant when considering mean topological overlap among the nodes in 

the graph. In addition, the significant GO terms strongly overlapped with those 

found in CFA analysis.  

Co-expression modules tend to separate the data by abundance trend 

over time, while CFA does not. I was able to show that with a small change in the 
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CFA method members could be separated by trend. Also, the modules appear to 

apply some degree of functional sorting as evidenced by the GO term analysis, 

as well as by protein family. 

The discovery of eigenvectors shared between peptide and transcript 

data, strongly and significantly correlating to clinical phenotypes shows a true 

multi-omic signature for viral infection. 

Conclusions.

Looking at integrated data is important in the future of systems biology. Here we 

have an example of how integrated analysis can shed light on the problem of 

pathology. With these methods it is surely possible to learn new and interesting 

things about the relationship between the host and pathogen, but also more 

generally between the transcriptome and the proteome. Systems biology is about 

relationships, and there is no better way to learn than by taking the larger view 

provided by data integration. 
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6..Discussion.of.Aims.

Completed.Work.

This work carried though a unified arc connecting one cellular dimension to 

another. First, I showed that deriving protein co-expression networks using 

peptide-level data are feasible and contained interesting biological information. 

Then a novel method of protein inference was developed with a focus on tag-

based proteomic data. Finally, with an ability to confidently map peptides to 

proteins, it is shown that integration is possible in two ways using either 

Correlated Factor Analysis or by the joining of co-expression modules. It was 

shown that the joined modules shared biological enrichments, potentially 

showing biological pathways in the cell that respond to cellular events in parallel, 

a biologically important finding. 

Peptide.Networks.

Using tag-based proteomic data, the first de novo peptide networks were 

constructed using methods primarily developed for investigations of gene 

regulation. It was shown that these networks have a similar scale-free topological 

structure, and that peptides naturally grouped into modules, or sub-networks. 

Peptides within a given module are more connected to one another than to 

members of other modules. Modules were summarized taking the first 

eigenvector from data corresponding to the module, and were found to correlate 

strongly with clinical phenotypes. Within certain modules, strongly correlating 

with phenotypes, we see trends where higher centrality within the module (by 
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correlation with the module eigenvector) leads to higher correlation with the 

phenotype. This observation has been made in gene and transcript networks, 

and is considered the mark of a valuable signature describing disease. It is 

informative that we would also see the effect in peptide networks.  

These results are significant since the method allows one to define an 

aggregate signature. The signature does not consist of a single protein, or even a 

single peptide, but an group of peptides that are highly related to each other in 

terms of similar abundance profiles over samples, and potentially through 

protein-protein interactions. The aggregate signature may contain multiple 

proteins, supported by different numbers of peptides. In gene and transcript co-

expression networks, it is thought that highly connected members may in fact be 

reflective of protein-protein interactions in the cell. However, it seems much more 

likely that these types of interaction inferences may be better realized using 

proteomic data for obvious reasons. Similarly, results show highly significant 

pathway enrichment, and large numbers of known PPIs within modules. Again, 

we would expect that if pathways are being modulated, it would be observable in 

proteomic data. These ideas are supported by the observations that peptides are 

more connected when considering them grouped by protein (compared to 

random groups). Also, strongly connected peptides are concordant considering 

trends of abundance over time.  

Although we observe proteins that split between different modules, it is 

possible that these disconnected groups of peptides are in fact reflective of 

different protein isoforms, interactions, or contexts. These methods give us the 
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potential for disambiguating between protein isoforms or pathway roles, that were 

previously unattainable. 

Protein.inference.

A new protein inference model, tailored to tag-based high throughput proteomics, 

was developed and validated using both simulated data and two real data sets by 

comparing results to what I consider is the state of the art in protein inference. 

This new model, which I have termed “the Flow model”, represents a new 

approach to the protein inference problem by using methods similar to those 

used in network flow problems.  

Simulated data was produced by building a harness around the 

MSSimulator, part of the TOPP proteomics processing pipeline. The harness 

allowed an easy way to generate a large number of samples using a known set 

of input proteins providing a way to formally test protein inference methods with 

known true positives.  

However, the vast number of parameters available to the MSSimulator 

makes it difficult to tune. To get around this challenge, it was observed that the 

annotation graphs from simulated data were in different proportions that what is 

observed using real data. Therefore, a simple graph pruning algorithm was 

applied to the simulated annotation graphs, bringing the proportion of each graph 

class in line with the observed data. It remains unclear whether other aspects of 

the data are disturbed by the graph pruning. In this way, by starting with a set of 

proteins similar to what we find in real data, we are able to produce a set of 
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simulated peptides, likely be observed, and appearing in realistic proportions of 

annotation graph classes. 

Most protein inference implementations are focused on tandem mass 

spectroscopy, and as such, require the output of peptide search algorithms such 

as Peptide Prophet or MASCOT making them unusable for tag-based 

proteomics, since the assumptions and the software used are quite different from 

tag-based proteomic work. However, a recently implemented model, Fido, is 

based on a probabilistic model and does not require tandem MS output files, 

though it does require PeptideProphet probabilities. In a review article written by 

the model designer, Fido is compared to other “main stream” protein inference 

methods, potentially giving us an indirect way to compare our model to others. 

The Flow model, which “flows” quality information from supporting 

peptides to proteins, describes a simple computation that compares very 

favorably to the Fido method, which depends of the inference of latent variables 

requiring sophisticated computation methods. The sum of information is 

rewarded for uniqueness and punished for degeneracy and missingness, and 

scaled by a SVM model trained using the mass tag database. This SVM is used 

for prediction of detectability. A protein is considered detectable if, after digestion 

using trypsin, it contains peptides that are themselves detectable by the mass 

spectroscopy platform. The mass tag database provides a record of what 

peptides were in fact found to be detectable and therefore embodies an excellent 

source of information for training such a classifier.  
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The Flow model performed very well using simulated data, and generally 

compares very well to Fido. One difference lies in the fact that the Flow model 

takes missingness into account whereas Fido does not. In the Flow model, if a 

peptide is observed in only 10% of the samples, reflecting the amount 

information that is passed to the protein. Fido on the other hand simply takes the 

fact that the peptide was observed, and regards it no further. So, in summary, the 

Flow model is appropriate for use with tag-based proteomics, compares well with 

other methods but additionally takes missingness and a prior detectability into 

account.  

Data.Integration.

Integration of transcript and proteomic data was shown both feasible and useful 

using two different methods. First, representing more of an “early” approach to 

integration, the CFA method was utilized, which essentially takes the singular 

value decomposition of the covariance matrix for the two types of data. The 

covariance matrix shows what transcripts and peptides vary together during 

infection over time. The decomposition of the covariance allows us to find groups 

of peptides and transcripts that, taken together, explain most of the variance 

observed. The decomposition of the cross-covariance matrix results in “pattern-

pairs”. In this work, using permutation testing, only one pattern-pair was found to 

be significant. The members of the pattern-pair are taken if they have 

eigenvector loadings that are above a given threshold. The pattern-pairs might 

be considered a joint aggregate signature for infection by SARS-CoV.  



 

 121 

However, longitudinal data was not considered in the original work 

describing CFA. In this work, I was able to show that with a simple change, it was 

possible to separate the resulting sets of peptides and transcripts into groups that 

had similar abundance trends over time, important for describing dynamic 

systems in response to biological perturbations and events. The patterns 

resulting from CFA did not overlap in terms of gene identities, but did overlap in 

terms of enriched GO terms. The transcripts and peptides were found to take 

part in a connected protein-protein interaction network that contained shared 

members as well as transcript nodes and peptide nodes. This biological network 

is highly interesting and possibly holds novel information describing biological 

events. 

The other, “late” integration approach involved taking previously 

constructed co-expression networks and joining modules by rules of relation. The 

modules were joined by observing their relationships in three ways. First, simply 

a count of overlapping members after mapping to a common Entrez identifier. 

This overlap count was confirmed as statistically significant using permutation 

testing. Then overlapping modules were compared by correlation between the 

module eigenvectors. Lastly, it was observed that the joined modules also 

similarly correlated with phenotypes in magnitude and direction. Therefore, we 

have modules that overlap by member, correlate by eigenvector, and correlate 

similarly to phenotypes. By using these metrics, three module sets were found 

that represented a multi-omic signature of SARS-CoV infection. The joined 

modules were found to have similar GO term enrichment, since they were 
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composed of similar protein families and highly similar eigenvectors that literally 

overlap one another. The joined modules also share distinct functional 

signatures.  

Links were found between integrated results found by the CFA method 

and those joined modules from integrated co-expression analysis in terms of the 

enriched functional signatures on the integrated sets. These results show sets of 

biological entities that responds in similar ways to viral infection (by SARS-CoV). 

The result of transcript and peptide modules that co-vary so similarly in a 

temporal context potentially shows which biological pathways exist in such a 

manner as to rapidly respond in situations of host defense, such as the innate 

immune response.  

Potential.Avenues.for.Exploration.

This work has opened many avenues for further research, and in this portion I 

will discuss the potentially fruitful topics for further investigation. First I will 

discuss aspects of peptide network construction that could be improved, then I’ll 

discuss protein inference and data integration. 

Peptide.Networks.

In building peptide networks, the first step involves transforming the data into 

normalized abundance measures. In my work, normalization involved taking the 

output from VIPER, dividing each peptide abundance by the total sum of 

abundances for the particular sample, and log transforming. In comparison to 

transcript microarray data, which typically uses quantile normalization, this form 

of normalization is weaker (not necessarily a bad thing). It would be interesting to  
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Table 17. Imputation was carried out in two ways, using KNN29 and estimation with linear models. A 
general trend is observed where linear estimation results in higher scale-free topology fit (R2) but 
lower mean connectivity and variance. In all examples, KNN resulted in the highest mean 
connectivity and standard deviation. R2 describes the scale-free topology fit. Definitions of mean K, 
median K, sd K: network connectivity using the adjacency matrix. mean, median, and standard 
deviation on network connectivity using the adjacency matrix. 

test different methods of normalization, and potentially the removal of systematic 

artifacts, and to judge how the resultant networks change. I did do some 

preliminary work on performing robust normalization, taking the difference 

between each peptide abundance and the sample median, and dividing by the 

IQR (inter quartile ratio) which lines up the medians across all samples as well as 

the 1st and 3rd quartile whiskers. The effect was lesser connectivity in the network 

as well as a smaller R2 fit to scale-free topology. But whether the network would 

align better to the more normalized transcript data is not known.  

After data normalization, the next thing to consider would be the approach 

to missingness. Correlation matrices require that most of the data be present. So 

that presents us with two choices, we can use nearly complete data at the cost of 

leaving out many identified peptides, or we can attempt to perform imputation on 

missing data.  
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Imputation was evaluated using both K nearest neighbors (KNN) and 

estimation with a linear model (LM) (Hastie, Tibshirani, Narasimhan, & Chu, n.d.). 

The linear model simply uses group as the predictor variable and peptide 

intensity as the response. Data was imputed for peptides with less than 5% 

missing data and subsequently used for network construction (Table 17). 

Although network statistics were generally comparable, networks built with KNN 

imputed data showed a slightly reduced fit to the scale-free model, but higher 

mean and variance in terms of connectivity. The accuracy of imputation was 

estimated using simulated missing data. For each dataset, peptides with 

complete data are selected. Then 1%, 5%, 10%, and 20% of data points are 

randomly removed. After imputation, the mean, median, and standard deviation 

of the error distribution (imputed – real) is examined. 

Both the KNN and LM error distributions are centered at zero, but skewed in 

towards underestimation (see Supplementary Figure 3). QQ plots of real and 

imputed data show that both methods strongly underestimate abundance at low 

ranges and overestimate at the high range. 

In all cases, there is no clear trend in mean error, or the standard 

deviation of error, with increasing amounts of missing data. Overall, KNN error 

distributions tend to be much narrower than LM-produced error distributions. The 

maximum observed standard deviation in the SARS KNN imputed error 

distribution is 0.1485 while in the LM imputed data it is 0.2292 on the log10 scale 

(see supplementary Table 1 for all methods and data).  
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To quantify the effect of imputation on network construction, modules from 

two networks are pairwise compared using Fisher’s exact test for the overlap of 

module members. A 2x2 table is shown below, where each variable is a count of 

members.  

Net1 / Net 2 In Module A Out Module A 

In Module B X Y 

Out Module B Z W 

 

For each pair of modules, the Fisher’s exact test result and the number of 

overlapping peptides is recorded. This information is used to calculate a 

comparison score, defining the quality of module alignment between networks. 

The comparison score, c/min(n,m), is defined where c is the number of significant 

module overlaps, n and m are the number of modules in the networks. An 

overlap is counted if the intersection contains greater than 10 peptides and the 

Fisher’s test p-value is less than 0.05 after a Bonferroni correction over all pairs. 

A perfect module-wise one-to-one network alignment produces a score of 

1, whereas randomized modules, on average, produce a score close to zero (c 

<< min(m,n)). When module overlaps become non-specific, one module 

overlapping with several others, the score rises above one (c > min(n,m)). 

As the amount of missing data increased, comparison scores increased, 

indicating diminished network alignments. Without imputation, SARS networks 

showed mean comparison scores in the range of 1.19 to 1.39, increasing with the 

amount of missing data. Influenza scores increased from 0.98 to 1.10 and 

Sarcopenia comparison scores increased from 1.41 to 1.91. 
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The KNN imputed data produced network alignments that generally 

tracked well with the non-imputed comparisons. For the sarcopenia dataset, by 

far the largest set of complete data, imputing with KNN led to better network 

alignments (0.29 mean comparison points lower), while in the other datasets the 

alignments were very similar (mean comparison point different 0.04 and -0.04 for 

SARS and Influenza respectively). The LM-imputed networks show similar 

results except in the case of 20% missing SARS data, where the comparison 

score was 2.08, indicating a large degree of non-specific overlaps. 

A more detailed assessment of imputation is needed to determine what 

degree and method will lead to the most robust and confident networks. By 

allowing more missing data, a more diverse population of peptides enters the 

model, increasing the information content. At the same time, with more missing 

data, we have greater uncertainty in correlations and calculations involved in 

network construction. With larger numbers of samples, it becomes more likely 

that the computed correlations are closer to the true correlations, but the 

magnitude of error is still unknown. Using more robust correlation methods such 

as bootstrapping, Tukey’s bi-weight, or multiple imputation techniques might 

mitigate this problem. 

Two other topics that might have a strong effect on the interpretation of protein 

co-expression networks include feature selection on peptides that go into the 

network, and correlation variance “carry-through”. First, in the co-expression 

network, the number of peptides supporting any given protein is widely variable. 

Many proteins have only a single peptide, while others have tens. It is possible 



 

 127 

that proteins with large numbers of peptides could be biasing the network 

structure. To combat this bias, after protein inference when the set of identified 

proteins is decided on, the best one to three peptides for each protein could be 

selected according to the criterion used in Flow model protein inference, putting 

all proteins on “even ground” and allowing masked peptides to become more 

important in the network. Secondly, it would be interesting and useful to estimate 

the variance of correlations using bootstrap methods, and to determine what 

connections in the network are more variable and less confident. If these 

confidence measures could be passed to the branch cutting methods that derive 

the modules, then a great deal more confidence could be given to modules 

acting as signature of disease. 

Protein.Inference.

With more data sets, a greater variety of simulated data could be generated 

spanning a larger portion of the proteome. The simulated sets should have more 

varied annotation graph class proportions, meaning cases with fewer singlets 

and more complex graph structures. More data would allow better comparisons 

between Fido and the Flow model as well. 

Currently, the score that results from the Flow model, for each protein, is 

at minimum zero, but has no upper limit. It would be more intuitive if the score 

resulting from the graph portion of the model, the quality information flow, was 

probabilistically framed. This would match up with the prior, and would also be 

more comparable with other probabilistic methods. One way of making these 

comparisons might be to simply divide the Flow score (before the prior is applied) 
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by the possible maximum sum if all quality information was perfect and the 

peptide had been measured for all samples, giving the ratio of the observed 

score to the potential maximum score. It would then be enlightening to compare 

the probabilities attained with those from Fido, a probabilistic method. 

Lastly, the Flow model would benefit from a better prior model. Currently, 

the prior uses a collection of features attained from three different studies on 

predicting protein detectability. However, it was found in those studies that 

changes in platform and experiment led to different sets of features that 

performed best. It is therefore uncertain whether there exists a best subset of 

features that works “well enough” in all cases, or whether each protein inference 

must perform a feature selection step when training the SVM. Training of the 

prior is the most time consuming step, so improvement here would carry on to 

improve the usability of the method. 

Data.Integration.

Annotation, connecting the transcript and peptide to their correct source gene, 

can be one of the most difficult aspects of data integration,. For transcripts, this 

annotation is straightforward since microarray probes have been designed 

specially for avoiding degeneracy among genes and have good documentation 

for each. On the other hand, given a peptide, it can be quite difficult to determine 

what gene it resulted from. When considering theoretical proteins found in 

databases such as TREMBL, it quickly becomes daunting. Our knowledge of the 

proteome is still rapidly expanding, directly affecting our peptide-transcript 

integration solution.  
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After we have produced a set of joined modules, the next step would be to 

aggregate the summary eigenvectors into a single signature. This meta-vector 

would correlate, and thereby connect, each of the modules, both transcript and 

peptide. This single meta-vector would also show the correlation strength, and 

connectivity, of the joined modules to phenotype, simultaneously. The search for 

a meta-vector would involve finding a vector so that the angle between each 

module eigenvector and the meta-vector is minimized. This meta-vector would 

reflect cellular activity that is taking place across the fundamental biological 

molecular entities, on a systems level. 

Lastly, I must state the importance of increasing the peptide data 

coverage (with respect to the proteome), which lets us build intersection co-

expression networks that include more members, containing more variability and 

allowing us to find increasingly interesting and important biological signatures.  

7..Summary.

In this work, a new strategy for data integration has been developed and shown 

to hold promise for advancing systems biology. The work was applied to a data 

from a large-scale infectious disease study that aimed to compare influenza and 

SARS infections in mice. The data was generated by dosing mice with varying 

concentrations of virus, and measuring gene expression and protein abundance 

in lung tissue at four time points.  

First, using methods normally reserved for gene expression studies, the 

first de novo protein co-expression networks were constructed using peptide 
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level data. The networks are shown to be feasible, novel, and composed of 

functional modules. The networks appear useful for protein biomarker discovery.  

Second, a novel method for protein inference was developed using ideas 

from network flow that scored each protein with summarized peptide information, 

producing the first method of protein inference aimed at high-throughput tag-

based proteomics and also represents a new approach to the problem. The 

method was tested on simulated data, and compared to a more established 

model using real data.  

Finally, using the previous results, two methods of data integration were 

explored: correlated factor analysis and joint co-expression network analysis. 

Both methods showed potential in discovering integrated network signatures of 

disease. The joint co-expression analysis shows potentially the first evidence for 

modularization in the proteome, mirroring what is known about the transcriptome. 
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