
INTERACTIVE DISPLAY GENERATION IN SMALLTALK

Peter R. Nordquist
B.Mus.Ed., George Fox College, 1979
B.Mth.Ed., George Fox College, 1979

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science

March, 1985

The thesis "Interactive Display Generation in Smalltalk" by Peter R. Nordquist has been exam-
ined and approved by the following Examination Committee:

-

David Maier
Associate Professor
Dept. of Computer Science and Engineering
Thesis Research Advisor

--- --

Robert G. Babb I1
Assistant Professor
Dept. of Computer Science and Engineering

-

Richard Hamlet
Professor
Dept. of Computer Science and Engineering

Ralph L. London
Adjunct Professor
Computer Research Laboratory
Tektronix, Inc.

Dedication

To Chris, my wife and best friend, without whom this thesis would not have been possible.

iii

Acknowledgements

I would like t o thank my advisor, Dr. David Maier, for his direction, understanding, and

support. I would also like to thank Mark Ballard for his work on the software used t o print the

bit-maps in this thesis, as well as for many fruitful discussions about Smalltalk. I am grateful

t o Harry Porter for the initial writing of the program for printing bit-maps, and t o the people at

the Computer Research Laboratory, Tektronix, Inc. for supplying the magnolia workstation and

a running Smalltalk system.

I am most indebted t o my parents for their encouragement and faith in me throughout my stay

a t O.G.C., and also t o my wife's parents for their support.

Table of Contents

List of Figures ...

Abstract ...

1 . Introduction ..
1.1 Interactive Displays ..
l.apDatabases ...
1.3 Program Visualization ..
1.4 Algorithm Animation ...
1.5 Data Structure Display ...
1.6 Smalltalk Inspectors ...
1.7 Other Related Work ..
1.8 Specification ...

.. 1.9 Overview
1.9.1 Requirements ...
1.9.2 Vehicle ...
1.9.3 Solution ..
1.9.4 Adequacy of Solution ...

2 . A Sample Interactive Display ...

3 . Smalltalk and the Model-View-Controller Paradigm
3.1 System Supplied IDS in Smalltalk ..

... 3.2 Model
3.3 View ...
3.4 Controller ...
3.5 Composing IDS ...
3.6 Dependency Table ..

.. 3.7 Problems
... 3.8 Pluggable Views

.. 3.8.1 System Supplied Pluggable Views
3.8.2 Usage ...

.. 3.8.2.1 Aspect Message
3.8.2.2 Change Message ...

.. 3.8.2.3 TextView
... 3.8.2.4 Booleanview

3.8.2.5 SelectionInListView ..

...
Vll l

3.8.2.6 Menu Message ..
4 . Smalltallc Interactive Display Generator ..

... 4.1 Separate Place for ID Specifications
... 4.2 Structure of an ID

4.3 Structure of -a Display Type ...
... 4.4 Structure of an MVCRecipe

4.5 Top Views ..
... 4.6 Abstract Views

4.6.1 Composition of IDS ...
... 4.6.2 Matching Models to Display Types

.. 4.6.3 Updating Views
4.7 Primitive Views ..

.. 4.7.1 Text View
4.7.2 Read-only View ...
4.7.3 List View ..
4.7.4 Boolean View ...

.. 4.7.5 Constant Form View
4.7.6 Custom View ..
4.7.7 User Defined Primitives ..

.. 4.8 Structure of Specifications
.. 4.9 Error Handling - Too-small Views

5 . Using SIG ...
... 5.1 The Display Type Dictionary

... 5.2 Display Type Editor
5.2.1 Class List View ..

.. 5.2.2 Display Type List View
.. 5.2.3 Recipe List View

5.2.4 Specification List View ...
5.2.5 Views on an Individual Specification ..

5.2.5.1 Edit Mode ..
5.2.5.2 Display Mode ...
5.2.5.3 Checking Validity ...

5.3 Model Messages ..
5.4 Opening an ID on an Instance of a Class ..

... 6 . Building an ID
6.1 Creating the Display Type ...

... 6.2 How the Display Type is Used
6.3 Code for BTN ..

vi

7 . The Display Type Editor ..

8 . Conclusion ...
8.1 Summary of the Features of SIG ..
8.2 Problems with the h h V ~ Paradigm ..
8.3 Limitations of SIG ...

... 8.4 Possible Solutions
8.5 Reworking the MVC Paradigm ..

References ..

Appendix A ..

Biographical Note ...

List of Figures

..... 1.1 A Smalltalk Inspector : ..

2.1 Example Prolog Literal ...
2.2 Viewing Scheme for a Prolog Literal ...

.. 2.3 Editing a Functor
2.4 Adding a Prolog Literal ...

... 2.5 Deleting a Prolog Literal

3.1 A System Browser ...
3.2 System Browser Views ...
3.3 Inspection of an Instance of Class Prolog Literal ...

.. 3.4 Spawning an Inspector
3.5 A Spawned Inspector ...
3.6 Communication Paths in an MVC Triple ..
3.7 Prolog Literal View Diagram ...

.. 3.8 A Confirmer
3.9 Answering yes t o the Confirmer ..

4.1 components of an ID ..
... 4.2 ID Using Display Type withoutAtrows

... 4.3 An ID Using Display Type outline
4.4a BooleanListTest With List On ...
4.4b BooleanListTest With List Off ..
4.5 Display Type B L T e s t l ..
4.6 Code for class BooleanListTest ..

.. 4.7 Display Type withAtrows
... 4.8 Expansion of an MVCTooSmallView

5.la Display Type Editor in Edit Mode ..
5.lb Display Type Editor in Display Mode ...

.. 5.2 View Scheme of the Display Type Editor
5.3a An Incorrect Class List View ...
5.3b After the update list Operation ..
5.4 Using Templates ...

.. 5.5 A New BTN

... 6.1 Opening the ID
6.2 After Several Additions ...

viii

6.4 Adding the First Recipe .. 78
6.5 Adding a Specification ... 79
6.6 Editing viewClaas ... 79
6.7 Instance Variable Values for the First MVCSpecification .. 81
6.8 Use of Relative Rectangles .. 68
6.9 Specification for the Custom View .. 83
6.10 Specification for the Abstract View ... 84
6.11 Views Specified by MVCRecipe notNil+() .. 85
6.12a Before Adding Right Child .. 86
6.12b View Diagram for Figure 6.12a .. 86
6.13a After Adding Right Child .. 87
6.13b View Diagram for Figure 6.13a .. 87

7.1 Two Display Type Editors on One Display Type .. 94

8.1 View Scheme for an ID on a Dictionary .. 99

Abstract

INTERACTIVE DISPLAY GENERATION IN SMALLTALK

Peter R. Nordquist, M.S.

Oregon Graduate Center, 1985

Supervising Professor: David Maier

Smalltalk is an object oriented programming language designed to be run on a worksta-

tion with a dedicated processor, bit-mapped display, and pointing device. Smalltalk environ-

ments are highly interactive with multiple overlapping windows appearing on the screen simul-

taneously. These windows or Interactive Displays (IDs) both display data and monitor the

mouse and keyboard for user input. They accomplish these actions by making use of multiple

Model-View-Controller (MVC) triples. IDS are central to Smalltalk, yet constructing them is an

unduly complicated process.

SIG, the system described herein, eases the process of creating IDS in Smalltalk by i n t r e

ducing display types and abstract views. A display type is a specification for an ID. Display

types provide a mapping from a user's data structure to an ID on that data structure. Display

types are "interpreted" by abstract views. Together, display types and abstract views allow

IDS to be generated from specifications. New MVC triples can be added (and removed) from a

generated ID dynamically and conditionally, based on the current status of the user's data

structure. In addition, display types may reference one another to compose IDS.

1. Introduction

Computing has been plagued from its outset by an inability on the part of people to see

what it is that is inside the computer, i.e., just what data is actually stored there. Thus user

interfaces and their design have been and continue to be of central importance in computer s c i ~

ence. In particular, this thesis is concerned with user interfaces for editing data structures and

how such interfaces can be specified. The editing system described herein operates on data

structures in Smalltalk' and makes use of a high resolution bit-mapped display with pointing

device.

1.1. Interactive Displays

Originally, data structures were viewed and described as text.2 Interactive editors dealt

with all objects as if they were text, so all objects had to be reduced to a textual representation

to be edited. Gradually, as technology allowed, structured data began to be represented as

such, making the creation of interactive editors a more difficult task. Meyrowitz and Van Dam

have given a thorough summary of interactive editing systems dating from the days of input via

card decks through today's high resolution, bit-mapped displays with graphic input devices on

personal workstations [Meyr82].

The interactive editors in this treatise are called interactive displays, hereinafter written

ID. For the purpose of this document, an ID is a two-dimensional display of a data structure

with which a user can interact. An ID receives and executes user commands until told to close

by the user. Positioning the cursor on this display creates an association with a particular por-

tion of the data structure being displayed. Entered data then affects that particular part of the

'Smalltalk was developed by Xerox Corporation a t Xerox Palo Alto Research Center [Gold83]. The system
described herein was developed on a Tektronix Magnolia workstation running Smalltalk-80 version 2.

%umbers are considered text for the purposes of this discussion.

2

data structure being displayed. The data structures for the IDS built by the system described

herein may be recursively defined and of arbitrary complexity. The display changes dynami-

cally to reflect the current state of the data structure.

Foley and Van Dam have given guidelines for how to build an interactive graphics system

[Fole82], including how a data structure can be broken into segments that are then composed to

form an image on the screen. These segments are expressed graphically in their own coordinate

system, which is then translated to the coordinate system of the screen through a series of view-

ing transformations. Fortunately, this work has already been done in the viewing mechanism of

Smalltalk.

1.2. Databases

Some work on graphical displays of data structures has been done for databases. A

representative system is the Spatial Data Management System [Hero80]. At the user's disposal

are three screens. One provides a world-view of the database, i.e., a coarse index of the whole

system. On the other two, the user can obtain an exploded view of a portion that is highlighted

on the world-view screen. The data, for the most part, is represented as icons annotated with

written information for numeric and textual data.

Roger King has written an object oriented database management system called Sernbase

[King84]. Objects in this system are instances of types. Types have attributes, and each object

maintains values for the attributes defined by that object's type. The system runs on a high

resolution bit-mapped display with a mouse. The system interface makes use of a fixed screen

format to display any and all data structures and type-attribute information. There is a fixed

set of operators the user can invoke, using the mouse, to manipulate the displayed data. Thus,

while this system does display data structures and allow the user t o perform operations on those

structures, the display is static in that the screen format and mouse menu operators are system

l!lb defined and can not be specified by the user.

1.3. Program Visualitation

Program visualization systems are designed to aid in the building and debugging of p r e

grams by displaying data structures associated with programs, including source code, while the

program is running. The data structures displayed are in some way tied to the running p r e

gram. Steven Reiss a t Brown University has an excellent example of such a system, called

PECAN (Reis831. It offers multiple, concurrent program views, and has a syntax directed edi-

tar. The text presented in this editor can be edited as text or traversed as an abstract syntax

tree; the mouse or keyboard can be used to effect this traversal. Whenever a change is made in

the source program, all other views are updated to reflect this change.

Program visualization systems are important as related work because they have multiple

views that change dynamically when the structure they are displaying changes. They are

different in that they do not operate on arbitrary, user-defined, data structures. Another pro-

gramming system with visualization, PV, is described in (Hero821 and [Kram83]. Fischer has a

similar system for documenting Lisp programs [Fisc84]. The thrust of this system is documen-

tation rather than actual program visualization. The major contribution of this system is that

i t allows users t o specify which parts of the documentation they want to see by means of a

filter. This idea is also seen in the change management browser in Smalltalk v.2 [Gold84].

1.4. Algorithm Animation

Algorithm animation is concerned with showing data structures change over time as an

algorithm acts on them. Algorithm animation differs from program visualization for the most

part in the kind of data structures that are displayed. Both kinds of systems are designed to

visually display programs as they run, but differ in the kind of data they display and in the way

they display that data. Almost exclusively, views in program visualization systems are tied to

the source code in some way. Typically, one view will show source code statements highlighted

as they are executed, another, a representation of the syntax tree for this source code, and

another a view of the activation record stack. All of these views are related to the code itself in

a straightforward way. Algorithm animation, on the other hand, seeks to graphically explain

the algorithm that is implemented by the code. Rarely is the code that implements an a l p

rithrn the object of a graphic view as i t is in program visualization. A good example of algc-

rithm animation is found in the film Sorting Out Sorting by Ronald Baecker [Baec81]. This film

represents differing values by variable length rods or sticks that are dynamically rearranged as a

sorting algorithm executes. Typically, the small sticks are moved to the left or upper part of a

graphic view and the large ones to the right or lower part of this view. The order in which the

sticks are moved depends on the algorithm being animated. Animating algorithms generally

requires multiple views that are dynamically updated as data structures change. A representa-

tive system is Brown's BALSA [Brow84]. Ralph London, Robert Duisberg, and Richard Wagner

have recently produced an algorithm animation system in Smalltalk, and in doing so, have run

up against some of the problems of the model-view-controller paradigm described later in this

document [Lond84]. Algorithm animation provides innovative, well integrated views on the

data structures that are predefined by the algorithm being animated.

1.5. Data Structure Display

Brad Myers developed a system, INCENSE, at Xerox Parc for the language Mesa

[Myer83]. Mesa is strongly typed. Incense has display primitives for the basic types, and

displays can be created for records and arrays that are built using these basic types. Every

item to be displayed has an Artist, a set of display procedures. When called (from Mesa), an

Artist is given the position and size of the area on the screen in which the item the Artist is

responsible for displaying is to be displayed. It is the Artist's job to fit the data t o be displayed

into the area it has been given. Incense was designed as an aid for interactive debugging. It

does support the display of arbitrarily complex, including recursive, structures built from the

basic types, but does not allow interactive editing on those structures.

1.6. Smalltalk Inspectors

Smalltalk, as released by Xerox, has a facility for viewing and editing data structures.

Data editors in Smalltalk are called inspectors. Inspectors do allow editing of arbitrary, user

defined data structures, but they do so using a fixed screen format. Figure 1.1 shows an inspec-

tor on an Smalltalk object that is a rectangle. All inspectors have two views, regardless of the

structure of the data being viewed. All objects are represented in the same way within these

two views. Inspectors are further explained in chapter 3.

1.7. Other Related Work

Two other topics, while not directly related, should be mentioned here. Several people

have addressed the problem of designing specification languages for drawing pictures [Hend82],

[Pere83], [Wyk82], [Egge83]. Also, document preparation systems have to deal with displaying

data on paper. These systems solve this problem by supplying a specification language for for-

matting data. This data consists of text, pictures, equations and tables. The format for print-

ing this data is specified using the specification language, but the exact placement of data items

on the page must be determined by the system [Furu82], [Kimu83], [Knut79].

Figure 1.1 A Smalltalk Inspector

1.8. Specification

This thesis describes a means of specifying IDS. Specification languages have been impor-

tant t o computing since its inception; indeed, all programming is specification a t some level.

Specification languages are used for a variety of purposes. General purpose programming

languages specify a sequence of machine instructions; database definition languages specify the

type of data t o be stored in a database; and report generation languages specify the way data is

to be analyzed and presented. Another important use of specification is found in parser genera-

tion. Parser generators input a grammar for a programming language. This grammar del-

ineates the constraints that a program must meet in order t o be syntactically correct. The

parser generator then produces a parser which analyzes source programs according t o these con-

straints. The system described herein does something similar, taking a specification for an ID

on a da ta structure as input and producing an ID on that data structure.

In the past, most editors were text editors. It was assumed that the text was a long string

of characters, and any structure imposed on this text was maintained by the user so was of no

consequence t o the text editor itself. This assumption made it unnecessary t o have editor gen-

erators, for all editors carried out essentially the same operations, leaving no specification t o be

done. Recently, work has been done in document preparation to add structure t o documents.

Kimura and Shaw have proposed a model for documents [Kimu83]. This model is composed of

document objects that are either abstract or concrete, ordered or unordered, and composed in a

hierarchy. These document objects, much like Smalltalk objects, are instances of classes.

These classes can then be specified, and document editors produced that create documents

structured according t o the specifications.

As technology allowed, graphics editors came into being. Graphics editors that treat the

image produced as one that has structure are candidates for specification. Constraints on the

structure of the images produced by an editor are given in the specification for that editor. In

the examples in the next chapter, the data objects being edited have structure and the IDS

produced for these data structures consist of boxes containing text that are composed in such a

way as to reflect the structure of the underlying data. In this ID, we want to edit both the text

in the boxes and the placement of the boxes themselves.

1.9. Overview

The problem addressed in this work is providing high-level specifications that can be used

to create IDS on data structures.

1.9.1. Requirements

The solution must meet the following minimum requirements.

(1) High-level specifications must be as declarative as possible. The major role of these

specifications is to describe what the appearance and behavior of IDS are, not how this

appearance and behavior are provided.

(2) IDS generated from these high-level specifications must dynamically reflect the structure of

the data object displayed. The structure of an ID is based on the structure of the data it

is displaying. Thus, when the structure of this data changes, the structure of the ID must

change accordingly. For example, an ID displaying an array of objects may allot an

amount of screen area to each element in the array. When elements are added or deleted,

the screen area needs to be reallocated to effectively display the new state of the array.

(3) IDS must be able to display data structures with arbitrary levels of structure. Binary trees

are examples of such structures. When nodes are added or deleted from a binary tree, the

depth of the tree may change. The structure of an ID displaying such a tree must change

in response to the change in the tree.

(4) The high-level specifications must provide a framework or design methodology for build-

ing up IDS. It must be possible to specify individual pieces of an ID separately, as

modules.

1.9.2. Vehicle

The system developed to solve this problem uses Smalltalk-80 version 2, in particular, the

model-view-controller (MVC) paradigm. The MVC paradigm is used to create all of the IDS

supplied with the Smalltalk system. In the MVC paradigm, an ID is a hierarchy of MVC tri-

ples. Each MVC triple consists of three distinct objects: a model, a view, and a controller. In

the MVC paradigm, the model stores the data t o be displayed, the view displays this data, and

the controller functions as an editor by taking command input from the user. The MVC para-

digm by itself falls short of meeting the requirements above for the following reasons.

(1) Creating an ID with just the MVC paradigm is a procedural, not a declarative, process. In

general, new Smalltalk code must be written for the models, views, and controllers that

make up an ID. There is no declarative specification mechanism.

(2) IDS created with just the MVC paradigm usually have a fixed format. This format does

not change to reflect changes in the structure of the data displayed. Most IDS are limited

to a two-level MVC triple hierarchy. Thus, these IDS do not represent recursive or itera-

tive data structures well.

(3) It is difficult t o create modular IDS with the MVC paradigm. Most IDS consist of a mass

of interrelated pieces that are not easily separated. In addition, the framework provided

by the MVC paradigm is too open ended. Design questions concerning which object (the

model, view, or controller) should implement which function are difficult to resolve. In

the system-supplied IDS, often both the view and controller store data and the controller

often does the majority of the display updating.

1.9.3. Solution

This thesis describes the SIG system, which addresses the problem of providing high-level

specifications from which IDS are created. SIG introduces two new concepts: display types and

abstract views. Display types allow design decisions to be "factored out" into specifications

9

separate from the IDS themselves. A display type is a template that, when filled in, specifies

I the appearance and update behavior of an ID. Abstract views interpret display types and adapt

an ID t o changes in the structure of the data displayed.

Display types are associated with Smalltalk classes. One class may have multiple display

types, each producing different IDS for objects that are instances of that class. Creating multi-

ple display types for a class allows users to represent instances of the class in a variety of ways.

Each display type has a list of recipes. Recipes provide the means for an ID changing in

response to changes in the data structure displayed by that ID. Each recipe has a condition and

a list of view specifications. The conditions are applied to the data structure being displayed to

determine which recipe should be invoked. Each view specification describes the behavior and

appearance of a piece of the ID. View specifications thus allow the description of an ID to be

broken into manageable pieces.

Display type editors are provided to help users deal with the complexity inherent in con-

structing display types. A display type editor keeps the recipes and view specifications associ-

ated with each display type in order. A display type editor enforces a helpful regimentation

when a user fills in a display type. When a user is editing a particular part of a display type,

e.g., a recipe, only the view specifications for that specific recipe are available for editing. In

addition, templates are provided for each part of a view specification to aid the user in correctly

specifying ID behavior and appearance.

SIG also provides a set of primitive views. These primitive views cover most of the com-

mon behaviors exhibited by IDS on simple data objects. When a user indicates, in a view

specification, that a particular part of an ID is to use a primitive view, a set of behaviors is pr*

vided automatically. The user has then only to supplement these basic behaviors to describe

totally that part of the ID. For example, an ID on a binary tree needs to have a view in which

the user can edit the text constituting the label for a node, and SIG provides primitive views for

displaying and editing text.

Abstract views provide the backbone for IDS generated from display types. IDS are com-

posed of primitive views and abstract views. Abstract views have one or more subviews. Each

of these subviews is either another abstract view or a primitive view. The number, type, and

placement of subviews depends on the structure of the data item displayed. Abstract views are

responsible for accurately representing the structure of the data item they are displaying. Thus,

an abstract view holds a display type that describes this structure. When the structure of the

data item changes, the abstract view consults the list of recipes that comprise the display type

to determine which applies to the new state of the data item. The abstract view then adds new

subviews as specified by the chosen recipe. For example, in an ID of a binary tree, one abstract

view is responsible for displaying one node of the tree. An abstract view displaying a node with

no children has one subview, a primitive view, to display the label of the node. When this node

acquires a child, the abstract view, after consulting the recipes of its display type, re-adds the

subview displaying the node's label, and adds a new subview (another abstract view) to display

the new child.

1.9.4. Adequacy of Solution

Together, display types and abstract views meet the requirements imposed on the solu-

tion, given above.

(1) Display types are a high-level specification for IDS on data structures. Display types

specify, declaratively for the most part, the parameters that are used to create an ID.

Display types also list conditions that are used to determine how an ID is to reflect the

various states of a data structure.

(2) SIG-generated IDS change dynamically with changes in the structure of the data

displayed. These changes are accomplished by abstract views that use the state of data

structures to select a particular recipe from a display type. The list of view specifications

associated with each recipe designates the number, type, and placement of the subviews of

an abstract view. Recursive data structures are accurately and dynamically portrayed

because abstract views hold display types containing recipes that call for new abstract

views and delete and re-add subviews while an ID is in progress. Iterative structures can

likewise be portrayed by providing a recipe for each number of iterations, though specify-

ing display types for these structures is somewhat more difficult than specifying the

display of recursive structures.

(3) Display types provide modularity a t two different levels. View specifications specify a sin-

gle MVC triple that is part of a larger ID. Display types specify sets of such triples.

Display types can reference other display types to create a hierarchy of specifications that

together compose an entire ID. Display type editors provide a design methodology for the

creation of IDS. An ID is created by filling in a display type(s) and writing Smalltalk code

to allow data objects to respond to the messages sent to them by the views specified in

view specifications. Display type editors aid the user in correctly filling in display types.

Primitive views also aid the process by providing the user with basic building blocks for

an ID. This design methodology lends uniformity to the process of creating IDS in

Smalltalk. The user is insulated from most of the complexity of the MVC paradigm

because display types are specifications for and separate from the MVC triples that actu-

ally realize IDS. The Smalltalk code that the user does write is all associated with the

data objects (models) displayed in an ID, not the views and controllers implementing that

ID.

2. A Sample Interactive Display

Figure 2.1 shows an ID on a data structure tha t is a tree, each node of which has an arbi-

trary number of children. This data structure represents a Prolog literal. Each node in the tree

represents the functor for some Prolog literal, and the children of this node, the arguments of

the functor. The requirements for this ID are that i t faithfully represent the structure of the

tree, display the functor a t each node, allow editing of the functor a t each node, allow nodes to

be added and subtrees deleted, and update the linear representation of the tree whenever any of

these edits are performed.

An entire Prolog clause displayed in this ID can be thought of as a single Prolog literal

with functor, ':-', and an ordered list of arguments. The first argument in the list represents

the head of the clause and the following arguments, the body. Each of these arguments is also

Figure 2.1 Example Prolog Literal

a literal, an instance of the Smalltalk class PrologLiteralll thus a clause is a tree in which every

node represents the functor of some Prolog literal. Figure 2.2 shows the general scheme used to

display a Prolog literal in Figure 2.1. For any given Prolog literal, the arguments appear in

order, below the functor. The view for the functor spans the width of the screen area allotted

to display the Prolog literal. For example, the view containing the text first in Figure 2.1 spans

the width of the views displaying the texts 11 and 12, the texts of the functors of the arguments

of functor first.

The uppermost view in Figure 2.1 shows a textual representation of the entire Prolog

clause. In this view, the functor, :-, a t the root of the tree that represents the entire clause is

displayed following its first argument, head. The functor :- is then displayed followed by the

rest of its arguments, first(ll(ll1, 112), 12), second, third. This is the way Prolog clauses nor-

mally read. All other Prolog literals in the uppermost view, e.g., first(ll(ll1, 112), 12), are

displayed in the following format: functor first followed by the argument list in parentheses.

The next lower view contains the text :-. This view spans the width of the whole figure because

functor

argument 1 argument 2 argument 3

Figure 2.2 Viewing Scheme for a Prolog Literal

'Smalltalk class names must s t a r t with a capital letter and be only one word long. T h e convention for "multiple"
word names is t o capitalize the first letter of each word.

it is showing the functor :-; this is the functor for the Prolog literal that embodies the entire

clause. The arguments of :- are displayed below it, in order, from left to right. Observe how

the scheme shown in Figure 2.2 is repeated recursively for each Prolog literal in the clause.

Views for functors that have no arguments extend to the bottom of the ID. Each view, except

the one showing the linear representation, displays the functor for a particular Prolog literal.

By moving the pointing device inside a view, one can edit the functor shown in that view. Fig-

ure 2.3 shows functor third changed to zzzz. After accomplishing this edit, the uppermost view

is updated to show the current state of the clause, as shown in the figure.

In addition to editing the functors of existing Prolog literals, we need to be able to add

and delete Prolog literals. When a Prolog literal is added or deleted, the structure of the clause

changes and this change must be reflected in the display. This structural change means views

must be added or deleted and portions of the display redrawn. Figure 2.4 shows the adding of

an argument, a Prolog literal with functor newFunctor and no arguments, to the functor zzzz.

Figure 2.3 Editing a Functor

Figure 2.4 Adding a Prolog Literal

Adding this argument necessitated splitting the area formerly occupied by zzzz into two views.

Notice that the uppermost view showing the linear representation is also updated. Since a P r e

log literal encompasses not just one node but an entire subtree, when a Prolog literal is deleted,

its entire subtree should disappear. Figure 2.5 shows the deletion of the literal whose functor is

11. Again, views had to be reallocated and the linear representation updated.

A Prolog literal was chosen as a sample data structure because i t exhibits most of the

features that make a data structure difficult to display. It is recursive, so there is no a priori

bound on the number of functors to be displayed. Each functor may have any number of argu-

ments, so the number and size of views needed for any given functor can not be preset. In

addition, views must be dynamically added and destroyed when functors are added and deleted,

so the ID must have the ability to analyze the data structure and use this analysis to allocate

display space. Of course when space is allocated dynamically, the ID must have some way of

dealing with the eventuality of running out of space.

Figure 2.5 Deleting a Prolog Literal

3. Smalltalk and the Model-View-Controller Paradigm

Smalltalk is an objectroriented programming language. It has strong support for graphics

and is meant t o run on a workstation with a high-resolution, bit-mapped display. In Smalltalk,

objects communicate with each other by passing messages, which are implemented by methods.

Chapter 2 introduced an ID on a PrologLiteral. PrologLiterals are Smalltalk objects that

respond to the message addBelow. Whenever the user selects menu option add below, (see Fig-

ure 2.1) a PrologLiteral receives the message addBelow. The method implementing the message

addBelow follows.

addBelow
"1) create a new P L
2) add i t below me
n

self changeRequest
ifFalse: "Someone doesn't want me to do this addn

Itself].
self addBelow: PrologLiteral new.
self topNode changed: #clauseAsText

The character '.' is the statement separator in Smalltalk. There are three kinds of message

selectors: unary, binary, and keyword. Unary selectors are simply identifiers; changeRequest

above is a unary selector. Binary selectors are infix operators. Arithmetic operators are binary

selectors. Keyword selectors consist of a word or set of words each followed by a colon and an

argument; addBelow: is a keyword selector in the example above, and the result of the unary

message new sent t o class PrologLiteral is its argument. The method shown above delineates

the actions that are taken whenever a PrologLiteral receives the message addBelow. First of all,

the PrologLiteral sends itself the message changeRequest. This message returns true if i t is per-

missible for the PrologLiteral t o change. If the message ehangeRequest returns false, this

method terminates and returns the receiver (the PrologLiteral that received the message

addBelow), otherwise, the PrologLiteral sends itself the message addBelow: PrologLiteral new.

This message creates a new PrologLiteral that is then added directly below the receiver in the

tree of PrologLiterals of which the receiver is a part. After this add has been accomplished, the

PrologLiteral sends itself the message topNode. This message returns the PrologLiteral embody-

ing the entire Prolog clause displayed by the ID. This PrologLiteral (the top node) is then sent

the message changed: #clause~sTezt ' which updates the uppermost view in the ID. Recall this

view is the one displaying the linear representation of the entire clause, see Figure 2.1.

Smalltalk objects are grouped into classes. For instance, there is the class of all rectangle

objects. These objects are instances of the class rectangle. For each class, there is a class

describing object that describes the structure (instance variables) that the instances of the class

have and contains the methods for the messages t o which the instances can respond. Classes

may have subclasses. A subclass is a specialization of a class. A subclass inherits both the

structure and methods of its superclass, the class of which it is a subclass. For example, s u p

pose we define a class of persons. Instances of the persons class respond to the messages name

and age which return t o the sender the name and age, respectively, of the person object t o

which the message was sent. We could then define a class, employees. The class of employees

is a subclass of the class of persons. Instances of the class of employees respond to the messages

name and age by using the same methods that instances of the persons class use. However,

employee objects also respond to the message salary, whereas person objects do not.

3.1. System Supplied IDS in Smalltalk

Smalltalk abounds with IDS on data structures, indeed, the whole user interface is built

around IDS. System browsers are probably the most common ID. They are used to maintain

class definitions and the methods associated with each class. Figure 3.1 shows a system browser

'The construct #clauaeAsTezt represents a literal message selector. Message selectors are instances of class Sym-
bol. A constant Symbol is represented in Smalltalk by preceding the Symbol itself with #. Typically, the Symbol sent.
a s the argument of the changed: message is a constant. In this case, clnuaeAsTezt is a Symbol constant, i.e., a specific,
user defined Symbol, and t h e preceding # denotes this fact.

BooleanViewTest

self changeRequest
iffalse: "Someone doesn't want me to do this add"

[rself].
self addBelow: PrologLiteral new.
self topNode changed: #clauseAsText

L

1 category list 2 class list 3 protocol list 4 message list

5 6

instance class

7 code

displaying the PrologLiteral method addBelow. System browsers have seven views. Figure 3.2

numbers and names each view for purposes of this discussion. View 1 shows a list of categories,

which are groups of classes. - In Figure 3.1, the category SIG-Tests is selected. View 2 shows

the classes in the category selected in view 1. Figure 3.1 shows all the classes in the category

SIG-Teats, with class PrologLiteral selected. View 3 shows a list of protocols, which are groups

of messages, associated with the class selected in view 2. In Figure 3.1, the protocols for Prolo-

gLiterals are shown, with the protocol textview menu messages selected. View 4 displays the

messages associated with the selected protocol. In figure 3.1, the message addBelow is selected

from the protocol teztView menu messages. Views 5 and 6 are called BooleanViews. Boolean-

Views are either on (black background) or off (white background). Views 5 and 6 complement

each other; one is always on, the other off, t o indicate whether view 4 shows instance messages

or class messages. In Figure 3.1, view 5 is on, so view 4 shows instance messages. When views

1 through 4 all have selections made, view 7 shows the method for the message selected in view

4. In Figure 3.1, the method addBelow, that was explained a t the beginning of this chapter, is

displayed in view 7.

Smalltalk inspectors were introduced in Chapter 1. These IDS are used t o inspect and

change the instance variables of an arbitrary object. The left view of an inspector displays the

list of instance variables owned by the object being inspected plus a pseudo instance variable,

self. Whenever one of these variables, or self, is selected in the left view, the right view

displays the value of that variable. Figure 1.1 shows an inspector on a rectangle with upper left

corner a t the point (100,100) and lower right corner a t the point (200,250).~ Since self is selected

in the left view of this figure, the right view shows (10OQ100 corner: 200@250), which depicts

the value of the entire rectangle, not just one of its instance variables.

Figure 3.3 shows an inspector on the PrologLiteral first(1 l(ll1, 11 2), 12) that we encoun-

2Rectangles do not have t o be displayed to exist as valid Smalltalk objects.

22

spawns another inspector on the parent of PrologLiteral first. The result is shown in Figure 3.5.

In Figure 3.5, we see that the contents (functor) of the parent of PrologLiteral first is :-, as we

would expect.

Both system browsers and inspectors display data dynamically as objects change. They

also allow interactive editing of objects by positioning the cursor on the display using the mouse

and entering new data a t the selected position via the keyboard. Other kinds of IDS are also

supplied with the Smalltalk system, all providing interactive displays with editing.

IDS in Smalltalk are built from three separate kinds of objects. The object that is

displayed by an ID is the model. The object that displays the data on the screen is the view,

and the object that takes update commands from the mouse and keyboard is the controller.

These three objects taken together, I call an MVC triple. Figure 3.6 shows the communication

paths between the objects in an MVC triple. A view can communicate directly with its con-

troller and model. A controller can also communicate directly with its view and model, but a

model can only communicate indirectly with its view.

Figure 3.5 A Spawned Inspector

1
I
1

I

Figure 3.6 Communication Paths in an MVC Triple

3.2. Model

The model of an MVC triple can be any object. The code for the MVC paradigm suggests

that the model was originally intended t o be the logical center of the ID. Since the model can

be an instance of any Smalltalk class, there is no view-specific or controller-specific information

inherent in it. The functionality of both views and controllers is dependent on the model, but

not vice versa.

I
3.3. View

The view displays the model on the screen. Therefore, the view must assume something

6 about the class of the model. Thus, there are many kinds of views, each able t o display certain

F classes of models. There are ListViews, FormViews, TextViews, as well as generic views that

k can be customized by the user via subclassing. A certain core of operations and data is com-

i
mon to all views, such as their insidecolor, and the method displayview that displays their

k model. Several methods, including displayview, are reimplemented in each new subclass of

k View, the class that defines the basic instance variables and methods for all views. Two of the

which controller should have control. In the following discussion, we differentiate between

views as they appear on the screen and views as they are related t o the view hierarchy. The

words upperllower are used t o indicate a view's position on the screen. The words toplbottorn

and above/below indicate a view's position or relative position in a hierarchy of views.

Figure 3.7 shows the view hierarchy for the ID shown in Figure 2.1. The numbers indi-

cate the order in which these views were added to the ID. Views that have only a number are

invisible in Figure 2.1. Views containing text are visible in Figure 2.1. The dotted lines indi-

cate co-extensive views. Each view in Figure 3.7 has a related controller and model, and thus

represents an MVC triple. In the following discussion, MVC triple components are referred t o

by the number shown in Figure 3.7, e.g., controller 1 is the controller for the triple a t the top of

the hierarchy, view 5 is the view displaying the text :-. When the cursor is initially positioned

over the ID shown in Figure 2.1 and any mouse button is clicked, controller 1 gets control. By

convention, only the controller a t the top of the hierarchy handles the blue button, which

allows moving, resizing, and removal of the entire ID. If the blue button is not down, the top

controller attempts t o pass control down the hierarchy by telling the topmost view to query its

subviews in order. Each subview asks its controller if i t wants control. Controllers not at the

leaves of the hierarchy, usually defer t o controllers below them. Controllers a t the leaves of the

hierarchy generally want control if their view has the cursor. These controllers are responsible

for processing red and yellow button commands. Conventionally, the red button is used for

selecting items, e.g., an item in a list or a position within a paragraph of text. The yellow b u t

ton is used t o display a menu of view-specific commands, such as copy, cut, and paste, for views

editing text.

Using Figure 3.7 as a guide t o Figure 2.1, we see that Figure 2.1 shows a scroll bar beside

view 21. Scroll bars are displayed by controllers. Scroll bars indicate, among other things that

the controller displaying them currently has control.

Figure 3.7 Prolog Literal View Diagram

3.6. Dependency Table

Models directly reference neither their view nor their controller. However, on occasion,

models do need to tell views to redisplay. Suppose we want to display the same object in two

different places in an ID and allow editing either place. Two MVC triples in the ID would have

the same model, but separate views and controllers. If controller A makes a change to the

model view B is now displaying old information. The only thing logically linking views A and

B is their model. The model needs to notify all views on i t of changes. Smalltalk maintains a

table relating views to models. Each view in the system is recorded in this table. When an

object that is the model of some view issues the message self changed each view having that

object as model receives the message update:. On receipt of the message update: each view

takes appropriate action, usually redisplaying itself.

3.7. Problems

The MVC paradigm described above does work, but some aspects are more awkward than

they might be. When building an ID under this paradigm, a major problem is where to put

what. Operations can be performed in the model, view, or controller. Deciding when the con-

troller should take action itself and when i t should defer t o the view or model can be difficult.

Where data should be stored is another question. The view can, and often does, store model-

specific data, but to do so, i t and the model must be highly integrated. What usually happens

to effect this integration is the creation of a view subclass and a controller subclass for every

new kind of ID. For example, the first implementation of the ID for Prolog literals shown in

Figure 2.1 used subclasses of StringHolderController and StringHolderView, which are classes

for editing text objects. In this first implementation, PrologLiteral was a subclass of String-

Holder, the class of models for StringHolderViews and StringHolderControllers. StringHolder-

Controllers implement text editing menu messages. However, controllers in a Prolog literal ID

must also deal with the menu messages for manipulating a tree of PrologLiterals, such as add

below, add left, and add right. StringHolderViews were also insufficient because they can not be

selectively updated. In the Pmlog literal ID, the PrologLiteral a t the top of the tree of Prolog

literals, the one whose functor is :-, is the model for both view 3 and view 5 in Figure 3.7. In

order t o update view 3 when other views change, in the current implementation, the PrologLi-

teral at the root of the tree executes self changed: #clauseAsTezt. This action causes both

views 3 and 5 to receive the message update: #clauaeAeTezt. On receipt of this message, only

view 3 redisplays. In the first implementation, a subclass of StringHolderView was needed to

recognize a special parameter with the update: message. The second implementation does not

use StringHolder, StringHolderController, or StringHolderView. Instead, a version of pluggable

views are used. Pluggable views allow selective update without having to create special view

subclasses.

3.8. Pluggable Views

Pluggable views are provided with Smalltalk-80 version 2 as an aid for creating user inter-

faces. Models for pluggable views encompass more information. Generally, a pluggable view

displays only a part of its model. In Figure 3.3, we saw an ID that is a standard inspector with

a view listing instance variables and a view showing the value of the selected instance variable.

These views are pluggable and have the same model, an Inspector. Pluggable views also make

selective update easier. Again considering an inspector ID, when a new instance variable is

selected, the model executes self changed: #tezt which updates the text view, but leaves the list

view untouched. Pluggable views reduce subclassing of views and controllers. Menu messages

for the yellow button are sent to the model. Instead of a specialized controller to implement

messages peculiar t o the model, a standard controller passes these messages to the model. In

Figure 2.1, the messages add below, add left, add right, delete, format, and ezpand are tailored to

PrologLiterals, and are executed by instances of class PrologLiteral. In the first implementa-

tion, PrologLiteralController, a subclass of StringHolderController, was created solely to pass

the messages above on to the model, a PrologLiteral.

The features described make pluggable views attractive for developing code. Fewer

classes are created; fewer decisions must be made concerning where to implement ID behavior;

and debugging is simplified.

3.8.1. System Supplied Pluggable Views

Currently, the system supplies these views in three flavors: Boolean, text and list, called

Booleanview, Textview, and SelectionInListView, respectively. The related controllers are

SwitchController, Textcontroller, and SelectionInListController. BooleanViews act as indica-

tors that a certain condition is true or false. Textviews hold text and TextControllers perform

the text editing functions; the subclass CodeView is specialized to hold text that can be inter-

preted as Smalltalk code. Textcontrollers store a copy of the displayed text during editing.

This text is only sent to the model when the user issues the accept command. SelectionInListr

Views hold a list of items and allow one item a t a time to be selected from the list.

3.8.2. Usage

Models communicate with pluggable views via the changed: message, and pluggable views

pass messages to models, corresponding to the various actions taken during an ID. I call these

messages creation messages because the view is told, when i t is created, the actual message

selectors to use when passing messages to the model. Each flavor of pluggable view has a

different set of creation messages, but all three have aspect and change messages. Note that

aspect and change are not the message selectors; they are terms for a kind of creation message.

I will discuss these messages first as they relate to all three views, then discuss the other mes-

sages needed by each view in turn.

3.8.2.1. Aspect Message

The aspect message selector serves two vital roles for pluggable views. The model uses

the selector of the aspect message to signal the pluggable view to redisplay. The pluggable view

sends the aspect message t o the model t o retrieve information for that display. Thus, the

aspect message indicates what aspect, or part, of the model has changed. In a typical ID, a

change occurs in the model; the model then executes self changed: <aspect selector> where

<aspect selector> is the aspect message associated with some pluggable view on this model. A

model uses self changed: <aspect selector> when a change in one view necessitates changing

other views. For example, the model for an inspector ID is an instance of class Inspector. In an

inspector ID, when the list view selection is changed, the text view in the ID must change. The

model accomplishes this update by executing self changed: # tez t . (Here #tez t is the aspect

message for the text view.) Both the list view and text view thereby receive the message update:

#text, but only the text view was created with aspect message tezt , so only the text view

When a pluggable view receives the message update: <se lec tor>, i t checks t o see if

<selector> is its aspect message. If i t is, the view promptly sends <selector> as a message to

its model t o retrieve the data needed for display. The model's method for this aspect message

returns data that is used by the pluggable view for redisplaying. T o continue the example at

the end of the last paragraph, when the text view of the inspector ID receives the message

update: # tez t , this view first checks that tezt is its aspect message. The view then sends the

message t ez t t o the Inspector that is the model for the ID. In response to tezt , the Inspector

returns a Text4 object that represents the value of the instance variable selected in the list view

Each of the three pluggable views expects its model to return something different in

response t o the aspect message. Textviews expect to receive a Text. BooleanViews expect true

or false. SelectionInListViews do not use the aspect message t o retrieve data from the model;

instead, they have a separate message for this purpose.

' ~ e x t is a Smalltalk class whose instances are text strings. Texts have font information whereas Strings are only
an array of Characters.

hi.

3.8.2.2. Change Message

,
A pluggable view sends its change message t o its model as a result of a specific action

taken by the user. For BooleanViews, this action is moving the cursor over the view and click-

ing the red button. For TextViews, i t is executing the menu item accept. For SelectionInListc

Views, i t is selecting a new item in the list. The change message is always sent with a t least one

argument, which indicates the exact update the model should perform. For BooleanViews, the

argument is a Boolean value. For TextViews, the argument is the text currently displayed in

the TextView; and for SelectionInListViews, it is the item currently selected in the list. Again

consider an inspector ID; the change message for the list view is field:. When the user selects a

new instance variable uar from the list, the list view sends the message field: var t o its Inspec-

tor. Inspectors themselves have an instance variable, field, which is reset t o var on receipt of

this message.

3.8.2.3. TextView

TextViews have no creation messages other than the aspect message and the change me+

sage. In a TextView, when the user selects menu item accept, the view sends t o its model the

change message with the new text as an argument. The change message for a TextView may

take two arguments. When the change message has only one argument, the TextView sends its

model only the text currently displayed in the view. When the change message has two argu-

ments, the text and the Textcontroller associated with the TextView are both sent t o the

model. Most models will want to receive only the text.

Concerning the text object that is being edited by a Textview-Textcontroller pair,

Textcontrollers continue t o work on the actual text object sent t o the model with the change

message, so a word of caution is in order. If the model needs t o store the text received with the

change message, this model must store a copy of the received text. If this copy is not made, the

user will be editing the actual text stored in the model. In general, the user wants to edit a

work copy of the text. Similarly, when a model receives a request for text to be displayed, it

should respond with a copy of the text.

Textviews also respond to the message updateRequest which, is sent to all of a model's

dependent views when the model sends itself the message changeRequest. On receipt of

updateRequest, a TextView first checks whether the displayed text has been edited since the last

accept. If so, a confirmer appears with the message

The text showing has been altered.
Do you wish t o discard those changes?

t o which the user must answer yes or no. Figures 3.8 and 3.9 show an example of this scenario.

Figure 3.8 resulted from removing all the text showing in the CodeView of Figure 3.1 then

selecting the message addLeft in the message list view. The confirmer appeared because the

method for message addBelow has been changed but not accepted. Figure 3.9 shows the result

of answering yes to the confirmer shown in Figure 3.8. The original method for addBelow was

left intact, and the method for addleft, the new selection, is shown in the CodeView.

3.8.2.4. BooleanView

BooleanViews require two creation messages in addition t o the aspect message and the

change message. In reality these are not messages that will be sent by the view to the model,

but parameters t o be used by the view. The first is the label parameter, which is the string that

is displayed inside the BooleanView. The two BooleanViews in system browsers have labels

instance and class. The second is the value parameter which must be true or false. This

parameter is sent t o the model as the argument with the change message, t o indicate how the

model should change state.

In addition t o aspect and change messages, SelectionInListViews must have a list message,

and may have a print-items parameter, one-item parameter, and an initial-selection message.

Figure 3.9 Answering yes t o the Confirmer

Figure 3.8 A Confirmer

parent changeRequest
iffalse: Tomeone doesn't want my parent to do this add'

[tself 1.
self addleft: PrologLiteral new.
self topNode changed: #clauseAsText

As mentioned above, the aspect message for SelectionInListViews is not expected to return

information. Instead, the view sends the list message t o the model to retrieve the list of objects

F to show in the view. The printitems and one-item parameters are Boolean values that signal

i the SelectionInListView to act in certain ways. The one-item parameter is true only if there

I will always be one item in the list and that item is always selected. The print-items parameter

F indicates if the result of sending the list message t o the model is a list of strings, which can be

displayed directly, or is a list of objects, for which string representations must be obtained. A

view sends the initial-selection message t o its model whenever the view is redisplayed. When

the model receives the initial-selection message, i t returns one of the elements in the list to be

displayed. The SelectionInListView then selects the returned item in its display.

3.8.2.6. Menu Message

Zi TextViews require, and SelectionInListViews allow, one other creation message, the menu

message, which specifies the menu that appears when the yellow button is depressed. When the

model receives the menu message, it must return an ~ c t i o n ~ e n u . ' For SelectionInListViews,

any messages specified in this menu are passed t o the model, so the methods for these messages

should be implemented by the model. TextViews require that the menu message return a menu

containing a full compliment of editing functions (again, undo, copy, cut, paste, do it, print it,

accept, cancel) if you want them to appear in the Textview's menu. However, these messages

are implemented in Textcontroller or Codecontroller, so the model never receives any of these

messages. If additional messages are added t o this menu, they are passed t o the model, so the

model must implement methods for them.

'~ct ionMenu is a subclass of PopUpMenu; the new functionality it gives makes i t easier t o associate menu labels
with the message selectors t h a t implement those labels.

4. Smalltalk Interactive Display Generator

I wrote the Smalltalk Interactive Display Generator (SIG) to create a logical extension of

pluggable views. Pluggable views are used extensively in the standard Smalltalk system in

browsers and inspectors, to standardize and shorten the code used for the Smalltalk interface.

Browsers, Inspectors, Debuggers, ChangeLists, FileLists, Workspaces are all hard-coded IDS.

That is, each of them is coded in a different way, specific to the application they are performing

and the programmer who wrote them. In particular, they all implement different kinds of top

views, each a subclass of StandardSystemView.

The standard IDS mentioned above use a fixed set of subviews. The number or type of

subviews does not change in response to changes in the data structure being viewed. Inspector

IDS always have two visible views, file lists three, and system browsers seven. Though plugg-

able views do provide a standard way to separate models from view-controller pairs, in some

ways pluggable views limit the kind of IDS that can be produced. Pluggable views are designed

to occur at the leaves of a view hierarchy, and thus are not meant to have subviews themselves.

Almost all the system IDS have a two level hierarchy: a top view with subviews. While this

arrangement works fine for many applications, one needs to be able t o add subviews dynami-

cally depending on the state of the model (to have a general mechanism for creating IDS). SIG

provides these two features: a standard mechanism for adding subviews, and variations in the

number, size, and type of subviews based on the current state of the model. The following is a

discussion of SIG's components and how they interact t o provide these features.

4.1. Separate Place for ID Specifications

For the first feature, I postulated the need for a "language" for specifying the views that

appear and the yellow button menus available within those views. Recall that a Smalltalk ID

consists of not only yellow button menus, but also red button and keyboard activity. However,

defining yellow button menus is sufficient for many IDS and SIG allows for the definition of red

button and keyboard activity also.' This language is interpreted by SIG to create and manage

IDS on data structures. Writing a "program" in this language consists of creating a set of

display types. Executing this program is accomplished by telling SIG to open an ID on an

object using one of the display types in the set.

A display type is simply a data structure that holds the parameters necessary for specify-

ing an ID; i t is similar in this respect to the interesting events described by Brown [Brow84].

display types are separate from the MVC triples that make up the ID itself. This arrangement

is different from the pluggable view paradigm wherein all parameters for the ID are kept in the

view itself. The display type is a separate, standardized entity that provides these parameters

t o the pluggable views. Heretofore the model and special views stored these parameters.

4.2. Structure of an ID

An ID generated by SIG consists of multiple MVC triples. The ID is opened with a single

MVC triple. Then, other MVC triples are added to that triple using a display type for the

model associated with the first triple. For all IDS, one or more display types specify the classes

of the models, views, and controllers that make up the MVC triples in these IDS. The view

component of each MVC triple is an instance of a view class provided with the SIG system.2 All

the view classes provided by SIG are pluggable in the sense that they are parameterized. SIG

views expect their models to understand certain kinds of messages. The possible kinds of mes-

sages a view may send to its model include: a recipe message, a model message, a rectangle

message, a creation message, a menu item message,3 and a display message. A display type

specifies the actual selectors for these kinds of messages to be sent to a model. Figure 4.1 shows

'see User Defined Primitives in this chapter.

?Users may also define new view classes t h a t can be incorporated into SIG.

aControllers, not views, send menu item messages t o the model.

recipe,

model, I
rectangle,

Figure 4.1 Components of an ID

tha t the views and controllers of MVC triples in an ID extract message information from the

display types describing an ID. This information is used to send messages to the models of

these MVC triples. In addition, models signal their views t o update as described in Chapter 3.

Display types and models are supplied by the user. Display types reflect the structure of their

models, and the models must understand the messages specified in their display types. Figure

4.2 shows an ID on a binary tree, an instance of class BTN. The class is called BTN because

Figure 4.2 ID Using Display Type withoutArrows

Figure 4.3 An ID Using Display Type outline

each instance is a node in the tree. A node has data, a block of text, a parent, a left child, and

a right child. The parent, left child, and right child are themselves instances of class BTN. By

39

t
f

following these references, we can go from any node in a binary tree to any other node in the

tree. The display type used in this ID is called withoutArrows. Figure 4.3 shows an ID on the

same binary tree. The ID shown in Figure 4.3 is specified by a display type called outline.

There are five visible views in Figure 4.2. Each has a binary tree node as its model. The root

node is the one on which the ID was opened. The system added views of the other nodes after

looking a t the root node. The display type withoutArrowe contains four recipes, each of which

specifies a different way to add subviews to the ID. A particular recipe is selected on the basis

of the number of non-nil children of the node. If a node is a leaf, withoutArrows adds one MVC

triple, which can display and manipulate the node's label, to the current ID. The model for this

MVC triple is the leaf node itself. In Figure 4.2, the subviews showing the texts LL and LR are

views on leaf nodes. If a node has a right child but no left, two MVC triples are added to the

ID: one to hold the node's label and one to hold the right subtree. This case holds for nodes L

and R in Figure 4.2. If a node has a left child but no right, two MVC triples are added to the

ID: one to hold the node's label and one to hold the left subtree. Finally, for a node with 2 sub-

trees, three MVC triples are added: one to display the node's label, and one each for the left

and right subtrees. Node Top, the root node of the binary tree, uses this recipe. The display

type also contains the menu available to any view displaying the label of a node. This menu is

shown in Figure 4.2 for the view displaying the node RR.

Display types store the recipes mentioned in the example above. The display type has a

condition associated with each recipe. The condition takes the form of a message sent to the

model to determine its state. For an instance of class BTN, we send the message isLeaf, which

returns true if the BTN represents a leaf node and false otherwise. Each recipe consists of one

4.3. Structure of a Display Type

DisplayType is a class defined in the SIG system to represent display types. The follow-

ing sample DisplayType is called BLTestl. It specifies IDS on instances of the class Boolean-

ListTest, which is an innocuous class created solely for the purpose of illustrating display types.

Figures 4.4a and 4.4b show two pictures of an ID specified by the display type BLTestl. The

ID has either 2 Boolean views or two Boolean views and a list view, as shown in the figures.

This ID simply makes the list view appear and disappear when the appropriate Boolean view is

highlighted. Each display type in SIG is associated with one Smalltalk class, but one class may

Une 1

l ine 2. and Its a llttle lonaer

Figure 4.4a BooleanListTest With List On

Figure 4.4b BooleanListTest With List Off

have many display types. Display types are composed of recipes, and recipes are composed of

specifications. The classes MVCRecipe and MVCSpecification, that represent recipes and

specifications, are explained below. The instance of DisplayType describing BLTestl is listed in

Figure 4.5 in outline form. The class name, BooleanListTest, appears in bold print a t the left

margin. The name of the display type, BLTestl appears under the class BooleanListTest. Two

recipes appear under the display type. The recipes are headed by their associated conditions

isListOn-+() and notNil+(). Under recipes are lists of specifications for subviews denoted by

the recipe. For each specification, the class of the subview appears first, with the rest of the

specification indented below it.

Each instance of class DisplayType has the instance variables class, name, default, and

recipes. The instance variable class contains the class displayed using this DisplayType.

Instances of class BooleanListTest can be displayed using DisplayType B L T ~ s ~ ~ . ~ For the

DisplayType in the binary tree example above, the instance variable class contains the object

BTN class.6 The instance variable name contains the name of the DisplayType. DisplayType

BLTestl has name 'BLTestl', obviously display types on a class must have unique names. The

instance variable default indicates whether a DisplayType is the default for its class. The

instance variable default is true for BLTestl. The final instance variable recipes is a collection

of MVCRecipes. Each MVCRecipe consists of a Boolean message, for its condition, and a list of

specifications for MVC triples. If the condition is true for a model, one MVC triple is created

for each specification in the list, and added to the current ID. The collection of recipes is

ordered. The recipe selected from the collection is the first one whose condition is true of the

model. If all conditions are false, an error occurs. In the DisplayType BLTestl, the instance

variable recipes is a collection with two MVCRecipes, each containing a different list of W C

triple specifications.

'Currently, SIG does not allow instances of subclasses of BooleanListTest to be displayed using DisplayType
BLTeafl.

"lass describing objects are often denoted by the class name followed by the word cloaa [GoldBt], (Gold84j.

BLTestl - default

MVCBooleanView
modelMessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectangleArgument: 0@0 corner: 0.25Q0.15
creationMessages: Dictionary (#label-+'list on' #aspect-+#value

#change-+#value: #value-+true)
menu: nil
subject: nil
lefthrder: 1
righthrder: 1
tophrder: 1
bottomEbrder: 1
displayMessage: nil
controllerClass: nil

MVCholeanView
modelMessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectanglehgument: 0Q0.15 corner: 0.25Q0.3
creationMessages: Dictionary (#label+'list off' #aspect+#value

#change-+#value: #value+false)
menu: nil
subject: nil
lefthrder: 1
righthrder: 1
topBorder: 1
bottomBorder: 1
displayMessage: nil
controllerClass: nil

MVCListView
modelMessage: #yourself
rnodelArgument: nil
rectangleMessage: nil
rectanglehgument: 0.25Q0 corner: 0.75Q0.5
creationMessages: Dictionary (#printItems+false #change+#selection:

#initialSelection~#selection #aspect+#list #oneItem+false)
menu: nil
subject: nil
lefthrder: 1
righthrder: 1
tophrder: 1
bottomBorder: 1

Figure 4.5 Display Type BLTestl

displayMessage: nil
controllerClass: nil

MVCBoole anview
modeblessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectangleegument: OQO corner: 0.25620.15
creationMessages: Dictionary (#labeld'list on' #aspect-+#value

#change+#value: #value+true)
menu: nil
subject: nil
leftbrder: 1
rightbrder: 1
tophrder: 1
b o t t o d r d e r : 1
displayMessage: nil
controllerClass: nil

MVCBooleanView
modelMessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectangleArgument: 0620.15 corner: 0.25620.3
creationMessages: Dictionary (#label-*'list off' #aspect-#value

#change+#value: #value+false)
menu: nil
subject: nil
lefthrder: 1
righthrder: 1
tophrder: 1
b o t t o d r d e r : 1
displayMessage: nil
control1erClas.s: nil

Figure 4.5 Display Type BLTestl continued

4.4. Structure of an MVCRecipe

MVCRecipe is a subclass of Association, which is a class that associates two objects.

MVCRecipes associate a condition with a list of MVCSpecifications. Associations have a key

and a value. The key for an MVCRecipe is the condition, which is represented as a message

with a list of arguments, called the condition message. Condition messages are sent to a model

to determine which recipe to use. If the model receiving the message returns true, the recipe

matches. Condition messages in MVCRecipes are represented as

message selector+(arguments)

A recipe is usually denoted by its condition message. Thus, the recipes in BLTestl are denoted,

isliston+() and notNiI-0. As we can see, both condition messages have empty argument

lists. In Figure 4.4a, the recipe isListOn-+() matches. In Figure 4.4b, the recipe notNiI-()

matches. The message notNil is often the condition message for the last recipe in a collection of

recipes because i t will always return true.6

The value part of an MVCRecipe is a collection of MVCSpecifications. Each

MVCSpecification represents one MVC triple. Recipe isliston-+() in BLTestl has three

MVCSpecifications in its collection. These MVCSpecifications specify the two Boolean views

and the list view, and their related controllers. Likewise, the recipe notNd+() has two

MVCSpecifications: one for each Boolean view. An MVCSpecification always specifies exactly

one MVC triple. We next discuss the kinds of views and controllers that SIG supplies for use in

MVCSpecifications. All SIG supplied view classes begin with 'MVC' to separate them from

standard Smalltalk classes.

4.6. Top Views

Top views are instances of MVCTopView, which is a subclass of Standardsystemview.

All SIG IDS have a top view, which is a t the top of the view hierarchy for the ID. Top views

have tabs that display white on black when the ID is active. Top views are not pluggable,

because pluggable views can only be subviews, and top views are not a subview of any view.

Controllers for top views, instances of MVCTopController have the standard blue button menu

for moving and sizing the ID.

All SIG supplied views contain the MVCSpecification from which the view was built. Top

views are built the same way for all IDS. Their model is the object on which the ID was opened

OCondition messages are not sent to nil objects.

and the rectangle they occupy is specified by the user. A top view has no yellow button menu,

has a fixed border width (I), and has an instance of MVCTopController as a controller. Since

all these items are fixed, the MVCSpecification in a top view does not describe the top view

itself; instead it describes the top view's lone subview. Both a top view and its lone subview

contain the same MVCSpecification.

The single subview of a top view is an abstract view, an instance of MVCAbstractView.

This subview is called the seed abstract view because i t adds all the rest of the MVC triples

needed for the ID. Generating this subview is not difficult, again, because so many parameters

are fixed. Since top views have only one subview, the rectangle the subview occupies is the

same as for the top view. Since this subview adds all other MVC triples in the ID, its model is

the object on which the ID was opened, which is also the top view's model. To add the rest of

the MVC triples required by the ID, the only other information the seed abstract view needs is

the display type that specifies how these MVC triples are to be added. The MVCSpecification

stored by both the top view and the seed abstract view contains the display type's name. Nei-

ther the top view nor the seed abstract view reflect the overall structure of the model for the

ID, they simply provide a framework on which to build an ID that does reflect this structure.

4.0. Abstract Views

Abstract views, instances of MVCAbstractView, are the major workhorse and the major

innovation of the SIG system. They allow IDS to be composed of sub-IDS, IDS to be generated

from specifications, and MVC triples to be added conditionally. Smalltalk supplied IDS all have

a fixed set of MVC triples. Conditionally adding views while an ID is in progress can not be

done using Smalltalk supplied pluggable views, without writing a special top view. The disap

pearance and reappearance of the list view in the BooleanListTest ID shown in Figures 4.4a and

4.4b demonstrates conditional view adding in SIG. The binary tree and Prolog literal IDS show

how IDS are composed by adding MVC triples as needed to reflect the current state of the

model. SIG IDS require the user to write less code because the way MVC triples are composed

in an ID is specified (using display types) rather than hard coded. Finally, SIG IDS allow

multiple-level view hierarchies, as evidenced by the binary tree and Prolog literal IDS. While

multiple-level view hierarchies are not forbidden, i t is rare to find a Smalltalk supplied view

hierarchy with more than two levels.

Abstract views act as holders for MVC triples that actually carry out an ID. In the

BooleanListTest example, there is one abstract view (the seed abstract view) that serves to hold

the entire ID. In the binary tree example, the views for each node are subviews of an abstract

view; each full node has three views, one text view for the label, and two abstract views to pr*

pagate sub-IDS on the left and right subtrees.

4.8.1. Composition of IDS

For all IDS, the view just below the top view in the view hierarchy is an abstract view.

This view's model is the model for the entire ID. The specification that describes this abstract

view is called the seed specification; the only item of interest in this specification is a display

type name. The named display type together with the model, gives the abstract view enough

information to build the ID. IDS for complex objects can be specified using multiple display

types connected by abstract views. The Prolog literal ID in Figure 2.1 uses two display types;

the first, PrologClauseBrowser, has one recipe with two specifications. The first specification

describes the uppermost view on the page, a read-only text view; the second specification

describes an abstract view that propagates a sub-ID on the Prolog literal itself. The display

type PLOriginal specifies the recursive part of the ID, i.e., the MVC triples displaying the func-

tor and arguments of each Prolog literal. To specify this recursive display, the display type

PLOriginal uses several abstract views that each use a display type to add subviews. The

display type for each subview is again PLOripinal, since we want to display each Prolog literal

the same way. In recursive IDS, such as those for binary tree or Prolog literal, each abstract

view starts a sub-ID, just as the seed abstract view is the starting point for the interaction at

the top level.

47
i

1 The controllers for abstract views normally do not have yellow button menu messages.

An abstract view expects that the controllers for its subviews receive the yellow button m e s

sages needed in an ID. However, if, as in the binary tree example, part of an abstract view is

visible on the screen, unobscured by any of its subviews, yellow button menu messages can

appear in that space. The controller for an abstract view, which is an instance of

MVCAbstractController, handles menu messages by first trying to pass control down the view

hierarchy. If the cursor is positioned inside an abstract view and no subview is under the cursor

or the subview there refuses control, the abstract view's controller will pop up a yellow button

menu if a menu is specified for the abstract view.

406.2. Matching Models to Display Types

Abstract views are responsible for combining the objects and the display types describing

the ID, t o produce the MVC triples actually present on the screen. The method addSubViews

for class MVCAbstractView accomplishes this combination by deleting and adding MVC triples.

When the ID shown in Figure 4.2 starts, the top abstract view has no subviews. I t first displays

itself. Since the inside color of abstract views is light gray, this action fills the ID with a light

gray background. The abstract view then sends in turn the condition message for each recipe in

the display type withoutArrows to its model, the node with label Top. In this case, the first

three condition messages isleaf, isLcftChildNil, and isRightChildNi1, return false. However, the

condition message for the fourth recipe, notNi1, returns true. Therefore, the recipe notNi1-+()

matches. This recipe contains a list of three specifications, each describing one MVC triple.

The first MVC triple displays the label for node Top. T o add this MVC triple to the ID, the

abstract view:

(I) determines the relative rectangle (0630.25 corner: 0.75Q0.2) for the view component, a text

(2) determines a model for this text view by sending the model message yourself ' to the

abstract view's own model,

(3) creates a new text view,

(4) adds this view as a subview of itself,

(5) tells the text view to initialize itself with the specified creation messages and border,

(6) and displays the new text subview. The abstract view for the Top node then adds the

second subview (actually, MVC triple) specified in the recipe. This subview is itself an

abstract view, but no matter, the procedure is the same. First determine the rectangle

the new view will occupy; then determine the model, this time by sending the model mes-

sage, leftchild, to the current model (node Top); then create a new abstract view; add it

as a subview; and instruct it to initialize itself. The third subview for node Top is also an

abstract view. This subview is added to the ID in the same way the second one was. The

only differences are that the third subview has a different relative rectangle and a new

model message, right Child.

T o initialize any MVC view, this view must store the specification that describes it. The

MVC view then reads this specification to determine its border and creation messages. On ini-

tialization, abstract views also execute self addSubViews, to add their subviews.

4.8.3. Updating Views

Typically during an ID, the user selects a yellow button menu message, e.g., add left in

BTN ID, which is then sent t o the model, a binary tree node. The model then carries out the

action required by the message, adding a new node as the left child of itself. Now we are faced

with the problem of updating the views on the node. In the BTN example, the node that added

the new child sends the message self changed to request the update. The methods implemented

by class BTN are shown in appendix A. The method addLeft under protocol tree functions

ad he message youreelfreturns the object to which it was sent.

contains self changed as its final statement. Abstract views that have no aspect message update

when sent the message update: <object>, and <object> is the abstract view's model.

Abstract views update by deleting old subviews then adding new subviews based on the current

state of the model.

4.7. Primitive Views

Primitive views display data and menus by which the user can issue commands to affect

the model. The classes for SIG supplied primitive views are MVCTextView, MVCReadOn-

IyView, MVCListView, MVCBooleanView, MVCConstantFormView, and MVCCustomView.

All primitive views, except constant form views, are pluggable views in that they have a t least

an aspect message and are assumed to be viewing only a part of some larger model. Primitive

views are meant t o occur at the leaves of a hierarchy, and, with the exception of constant form

view, should have yourself as model message. An object that has several instance variables may

be the model of several primitive views. For example, the recipe isliston+() in display type

BLTestl specifies three subviews, each a primitive view: two Boolean views and a list view. In

an ID that uses display type BLTestl, all three of these views have the same model, the

BooleanListTest on which the ID was opened. The model message specified for each subview is

yourse(f. This message is sent by the seed abstract view to its model, the BooleanListTest on

which the ID was opened, to establish the model for each of the three primitive views. Here

this message is sent to the same object. Therefore, all three subviews have the same model, but

each subview displays a different part of the model. Figure 4.6 shows the methods in class

EboleanListTest. The definition of class BooleanListTest shows that i t has instance variables

list and value. In the ID shown in Figures 4.4a and 4.4b, the upper Boolean view is highlighted

when the instance variable value is true; the lower Boolean view is highlighted when the

instance variable value is false, and the list view displays the list held in instance variable list.

Object subclass: #BooleanListTest
instanceVariableNames: 'list currentlySelectedItem value '
classVariableNames: "
poolDictionaries: "
category: 'SIGTests7

BooleanListTest methodsFor: 'initialize '

initialize
"Set the list to a example list and the value to false."

list +(Array with: 'Line 1'
with: 'line 2, and its a little longer'
with: 'third line'
with: 'line 4 is the longest line yet. It is a very long line').

value +false

BooleanListTest methodsFor: 'recipe adaptor'

isListOn
"Return true if the ListView should be displayed,
False otherwise. The ListView should be displayed
if the instance variable 'value' is true."

t value

BooleanListTest methodsFor: 'Booleanview adaptor'

value
"Return a Boolean. False if my value is nil."

value notNil
i f f rue: [I value]
ifFalse: [tfalse]

value: aBoolean
"Set my value."

value +aBoolean.
self changed

Figure 4.6 Code for Class BooleanListTest

BooleanListTest methodaFoc Xistview adaptor'

list
"Return the array I am storing."

f list

selection
"This is the initial selection message."

selection: anArrayElement
"This is the change message."

BooleanListTest class
instanceVariableNames: "

BooleanListTest class methodsFor: 'instance creation'

new
"Create an initialized instance."

f super new initialize

Figure 4.6 Code for Class BooleanListTest continued

4.7.1. Text View

Text views are instances of MVCTextView, which is a subclass of Codeview. Text views

hold text that may be edited with the Smalltalk text editor. Text views require two creation

Messages, an aspect message and a change message. The model for text views must return a

Text, on receipt of the aspect message, and must expect a Text on receipt of the change mes-

sage. For the demonstration class BTN, the aspect and change messages are teztCopy and

accept:, respectively.*

4.7.2. Read-Only View

Read-only views are instances of MVCReadOnlyView, which is a subclass of

MVCTextView. Read-only views act just like text views, except they have no editing menu.

They exist so text can be presented in a view that scrolls. The view that appears a t the top of

Figure 2.1 is a read-only view. This view can be the height of one line of text and still be

effective, even with a very long Prolog literal, because i t allows scrolling. Since read-only views

have no accept menu item, they require no change message. They must have an aspect m e s

sage, however, so the model can request that a read-only view be updated and the view can

obtain the text to display.

4.7.3. List View

List views are instances of MVCListView, which is a subclass of SelectionInListView. List

views behave like the list views in the system browser; they display a list of items, one line per

item. If an item's description is longer than one line, the description is truncated to one line.

A t most one item at a time is selected, and the model keeps track of the selection. List views

require only two creation messages, the aspect message and the change message. Unlike Selec-

tionInListViews, when the aspect message is sent to the model of a list view, it is expected to

return an array of items in the list; so i t functions as both the aspect message and the list m e s

sage of SelectionInListViews. This modification makes list views and text views behave con-

sistently. A list view sends its change message to the model when a new item is selected in the

view. The print items parameter, one item parameter, and initial selection message function

the same as for SelectionInListViews.

Figure 4.5 shows that display type BLTestl specifies that the aspect, change, and initial

selection messages for the list view are list, selection:, and selection, respectively. Figure 4.6

%ee the protocol iezt view adaptor in Appendix A.

shows the methods for these messages under the protocol ListViewAdaptor. The aspect m e s

sage, list, returns the list stored in the model. The change message, selection:, is sent to the

model with an argument that is the selected item in the list. The model stores the selected

item in the instance variable currentlySelectedItem. The initial selection message, selection,

returns the currently selected list item to the view.

4.7.4. Boolean View

Boolean views are instances of MVCBooleanView, which is a subclass of Booleanview.

The functionality of Boolean views is the same as that of system-supplied BooleanViews with

minor modifications. Boolean views require the same creation messages as BooleanViews: aspect

and change messages, and label and value parameters. As we have seen, the display type

BLTestl calls for two Boolean views with labels list on and list of, one of which is always black

and the other always white. A pair of Boolean views often act as a switch in this way. When

the user indicates one Boolean view with the mouse that Boolean view is highlighted (displayed

with a black background) and the associated Boolean view is displayed normally (white back-

ground). In the BooleanListTest example, the list view is displayed when the Boolean view with

label list on is highlighted, and not displayed when the Boolean view with label list of is

highlighted. (See Figures 4.4a and 4.4b.) To achieve this pairing, both Boolean views have the

same aspect message, value, and and the same change message, value:. The value parameter is

true for the list on Boolean view, and false for the list of Boolean view. After receiving and

storing a new Boolean value, the method for the change message, value:, executes selj changed,

as shown in Figure 4.6, which ensures that whenever one of the Boolean views updates the

model both views are redisplayed.

4.7.6. Constant Form View

Constant form views are instances of MVCConstantFormView, which is a subclass of

Formview. A constant form view is the only kind of primitive view that is not pluggable, so it

requires no creation messages. The models for constant form views must be instances of Form

or OpaqueForm. These forms are stored in the specification, and are not some subpart of the

model. Constant form views use the display mechanism of FormViews, which resizes the form

to fit in the view. Actually, the FormView obtains a new form of the appropriate size, so the

form in the specification is left untouched. The display type withArrows, illustrated in Figure

4.7, uses constant form views to display arrows between nodes in a binary tree.

4.7.8. Custom View

Custom views are instances of MVCCustomView, which is a subclass of MVCView, a sub-

class of View. Custom views allow users to implement their own display routines in the model.

Custom views are pluggable. They require an aspect message selector so the model can selec-

tively update them. Whenever a custom view receives the message update: <symbol>, and

<symbol> matches the aspect message for the custom view, the custom view sends a display

message to its model. The model itself updates the screen in response to the display message.

Like the other creation messages, the display message is stored in the specification for an MVC

triple, but not with the other creation messages. A custom view never informs its model of a

change in the view, obviating the need for a change message. The display type customArrows

for class BTN, explained in Chapter 6, uses custom views for its arrows.

4.7.7. User Defined Primitives

Users can add their own primitive views to SIG. A user might want to create a new prim-

itive view to give new functionality to the red button or keyboard. If a new primitive view is

needed, the new view class needs the following characteristics to fit into the SIG system. It

must have an instance variable mvcSpec and implement the instance messages on:mvcSpec:,

release, mvcSpec, mvcspec:, and the class messages minimumsize and standardMenu. The m e s

sages on:mvcSpec: and release are sent by an abstract view to create and release a primitive

view. The messages mvcSpee and mvcSpec: allow other parts of the SIG system to access the

MVCTextView
modelMessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectangleArgument: 0@0 corner: 1@1
creationMessages: Dictionary (#aspect+#textCopy #change-+#accept:)
menu: ActionMenu

labels: 'again
undo
COPY
cut
paste
do i t
print i t
accept
cancel
add left
add right
delete'

lines: #(2 5 7 9)
selectors: #(#again #undo #copyselection #cut #paste #doIt #printIt

#accept #cancel #addLeft #addRight #delete)
subject: nil
IeftBorder: 1
rightBorder: 1
topBorder: 1
bottomBorder: 1
displayMessage: nil
controllerClass: nil

MVCTextView
modelMessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectangleArgument: 0.25Q0 corner: 0.75Q0.2
creationMessages: Dictionary (#aspect--+#textcopy #change-#accept:)
menu: ActionMenu

labels: 'again
undo
COPY
cut
paste
do i t
print i t
accept

Figure 4.7 Display Type withArrows

cancel
add left
add right
delete'

lines: #(2 5 7 9)
selectors: #(#again #undo #copyselection #cut #paste #doIt #printIt

#accept #cancel #addLeft #addRight #delete)
subject: nil
1eftBorder: 1
righthrder: 1
tophrder : 1
bottomBorder: 1
displayMessage: nil
controllerClass: nil

MVCConstantFormView
modelMessage : nil
modelhgument: an OpaqueForm
rectangleMessage: nil
rectanglehgument: 0.5Q0.2 corner: 0.75Q0.3
creationMessages: nil
menu: nil
subject: nil
1eftBorder: 0
r ighthrder: 0
topBorder: 0
bottomBorder: 0
displayMessage: nil
controllerClass: nil

MVCAbstractView
modelMessage: #rightchild
modelArgument: nil
rectangleMessage: nil
rectanglehgument: 0.5430.3 corner: 1Q1
creationMessages: nil
menu: nil
subject: 'withArrows7
lef thrder: 0
r ighthrder: 0
tophrder : 0
bottomhrder: 0
displayMessage: nil
controllerClass: nil

MVCTextView
modelMessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectanglekgument: 0.25Q0 corner: 0.75Q0.2

Figure 4.7 Display Type withArrows continued

creationMessages: Dictionary (#aspect-+#textCopy #change-+#accept:)
menu: ActionMenu

labels: 'again
undo
COPY

- cut
paste
do i t
print i t
accept
cancel
add left
add right
delete'

lines: #(2 5 7 9)
selectors: #(#again #undo #copyselection #cut #paste #doIt #printIt

#accept #cancel #addLeft #addRight #delete)
subject: nil
1eftBorder: 1
righthrder: 1
topBorder: 1
bottomhrder: 1
displayMessage: nil
controllerClass: nil

MVCConstantFormView
modelMessage: nil
modelArgument: an OpaqueForm
rectangleMessage: nil
rectanglehgument: 0.25Q0.2 corner: 0.5Q0.3
creationMessages: nil
menu: nil
subject: nil
lef thrder: 0
rightBorder: 0
topBorder: 0
bottomBorder: 0
displayMessage: nil
controllerClass: nil

MVCAbstractView
modelMessage: #leftchild
modelArgument: nil
rectangleMessage: nil
rectanglehgument: 0Q0.3 corner: 0.5@1
creationMessages: nil
menu: nil
subject: 'withhrows'
1eftBorder: 0
rightBorder: 0
topBorder: 0
bottomBorder: 0

Figure 4.7 Display Type withArrows continued

displayMessage: nil
controllerClass: nil

#notNil+()

MVCTextView
modelMessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectangleArgument: 0.2500 corner: 0.75Q0.2
creationMessages: Dictionary (#aspect-+#textCopy #change-+#accept:)
menu: ActionMenu

labels: 'again
undo
COPY
cut
paste
do it
print it
accept
cancel
add left
add right
delete'

lines: #(2 5 7 9)
selectors: #(#again #undo #copyselection #cut #paste #dolt #printIt

#accept #cancel #addLeft #addRight #delete)
subject: nil
1eftBorder: 1
rightBorder: 1
topBorder: 1
bottornBorder: 1
displayMessage: nil
controllerClass: nil

MVCConstantFormView
modelMessage: nil
modelArgument: an OpaqueForm
rectangleMessage: nil
rectangleArgument: 0.2500.2 corner: 0.5Q0.3
creationMessages: nil
menu: nil
subject: nil
left%rder: 0
rightBorder: 0
topBorder: 0
bottornBorder: 0
displayMessage: nil
controllerClass: nil

Figure 4.7 Display Type withArrows continued

modekgument: nil
rectanglehiesage: nil
rectanglehgument: W0.3 corner: 0.501
creationMessages: nil
menu:. nil
subject: 'withArrows'
IeftBorder: 0
righthrder: 0
tophrder: 0
bottomBorder: 0
displayMessage: nil
controllerClass: nil

MVCConstantFormView
modelMessage: nil
modekgument: an OpaqueForm
rectangleMesage: nil
rectanglehgument: 0.500.2 corner: 0.75Q0.3
creatiodessages: nil
menu: nil
subject: nil
lefthrder: 0
rightBorder : 0
topBorder: 0
bottomBorder: 0
displayMessage: nil
controllerClass: nil

WCAbstractView
modelMessage: #rightchiid
modelArgument: nil
rectangleMessage: nil
rectangleArgument: 0.5Q0.3 corner: 1@1
creatiodessages: nil
menu: nil
subject: 'withArrows'
1eftBorder: 0
rightBorder: 0
topBorder: 0
bottomBorder: 0
displayMessage: nil
controllerClass: nil

Figure 4.7 Display Type withArrows continued

MVCSpecification stored by a primitive view. The message minimumSize returns the minimum

screen area a view may occupy. The message standardMenu returns a menu containing the

messages implemented by the default controller for a view.

4.8. Structure of SpecEflcations

Instances of the class MVCSpecification represent specifications. A specification holds the

parameters necessary for an abstract view to add an MVC triple to the current ID. Specifying

an MVC triple means supplying values for the instance variables of an MVCSpecification. As

shown in Figure 4.5, the display type BLTest l contains five specifications: three for recipe islis-

ton-*() and two for recipe notNil+(). The following discussion pertains to the specifications

for recipe isListOn-+(). These three specifications are called simply the first, second, and third

specification. The names and expected values for the instance variables of class

MVCSpecification are given below.

viewclass [Class)

The view component of the MVC triple specified is an instance of Class. The following

are the current legal classes: MVCAbstractView, MVCBooleanView, MVCConstantForm-

View, MVCCustomView, MVCListView, MVCReadOnlyView, and MVCTextView. The

value of viewClass for the first and second specifications is MVCBooleanView. The value

of viewClass for the third specification is MVCListView.

modelMessage [nil 1 Symbol]

Symbol is the model message that an abstract view sends to its model. The object

returned becomes the model of the subview specified by this specification. All views

except abstract and constant form views use yourself as their model message. The value

of modelMessage for all three example specifications is yourself.

modelArgument [nil 1 Array I OpaqueForm]

Generally this variable is nil. If the model message has arguments, this variable is an

array containing the arguments. The display type PLOriginal, for class PrologLiteral,

uses modeMrgument in this manner. If the value of viewClass is MVCConstantFormView,

this variable may contain that Form.

rectangleMessage [nil 1 Symbol]

This variable is only used if the model knows how to calculate rectangles; normally i t is

nil. The display type PLOriginal uses a rectangle message. Each Prolog literal calculates

the height of the rectangle needed to display its functor based on the number of argu-

ments that Prolog literal has. If the variable rectangleMessage is not nil, the message sent

must return a relative rectangle. (Relative rectangles are explained in Section 6.1.)

Instances of class BooleanListTest do not care to calculate rectangles for their views, so

the value of rectangieMessage is nil for all three example specifications.

rectanglehgument [Rectangle I h r a y]

If rectangleMessage is nil, this variable must be a relative rectangle, which is used to hold

the subview being added. If rectangleMessage is not nil, rectangleArgument must be an

array of arguments. In this case, the selector found in rectangleMessage and the argu-

ments are sent to the model to return a relative rectangle. In the example, the first

specification has 030 corner: 0.25@0.15 as the value for rectangleArgument. This means

that the origin (top left corner) of the specified subview, the Boolean view list on, is at the

origin of the seed abstract view, as shown in Figure 4.4a.

creationMessages [nil 1 Dictionary]

All MVC views except top views and constant form views have creation messages.

Abstract views have only an aspect message. When an abstract view has an aspect m e s

sage, the model message should be yourselj; otherwise, the model message should return a

subpart of the current model. In the BTN example of Chapter 6, the model messages for

the abstract views are leftchild or rightchild, which return the left or right child, respec-

tively, of a binary tree node.

The variable creationMessages usually contains a dictionary, which is a set of key-value

pairs (associations). The kind of message or parameter: aspect, change, label, value, print

items, one item, or initial selection, is the key and a message selector, Boolean value, or

string is the value. The keys that are present depend on the class specified in uiewClass.

The values associated with keys aspect, change, and initial selection are message selectors.

The value associated with key label is a string. The values associated with value, print

items, and one item must be h l e a n s , as explained in Chapter 3.

In the example, all three specifications have a dictionary as the value of creationMessages.

The dictionary in the first specification contains the creation messages necessary for a

Boolean view. The label for this Boolean view is list on and the value true is sent to the

model with the change message. The second specification has a similar dictionary. The

third specification has a dictionary whose keys are those required by list views. The

aspect, change, and initial selection messages are: list, selection:, and selection. The print

items and one item parameters are both false, indicating that the model maintains a list

of strings, and that the list may have more than one item.

menu [nil 1 ActionMenu]

If the view described by a specification should have no menu, the instance variable menu

is nil, otherwise i t must be an ActionMenu. Text views have a standard menu with the

normal text manipulation commands. Most other views have an empty standard menu.

When editing a specification, whenever the variable viewClaaa is changed, the instance

variable menu is automatically filled with the standard menu for the view class given in

uiewClaas. The standard menu for any MVC view, except constant form view, may be

augmented by messages that should appear in the yellow button menu. Any items added

to the menu must have corresponding methods in the model. An example of augmenting

the menu for text views is given in Chapter 6.

subject [nil 1 String]

The subject of an English sentence is a noun, a descriptive entity. The instance variable

subject contains the display type that provides the descriptive information used by an

abstract view to propagate an ID. This variable is nil unless the view being specified is an

abstract view. If the variable vicwClaea specifies an abstract view, the variable eubject

must be the name of a display type. This display type is the description for a sub-ID. As

explained above, an abstract view uses the condition messages in the recipes from this

display type to determine the specifications for subviews of the current view. The display

type customAwows for class BTN contains specifications for abstract views.

Border [Integer]

There are actually four variables here, leftBorder, n'ghtBorder, topBorder, and bottom-

Border. Each holds an integer that specifies the width in pixels of the corresponding

border for this view. Borders are always black. If the specified integer is 0, no border is

displayed. The example specifications all specify all four borders to have width 1.

displayMessage [nil 1 Symbol]

This variable is only used by custom views, and contains the display message. The cus-

tom view described by this specification, sends the display message to its model any time

the custom view receives the message displayview. When the model receives the display

message, i t can update the display as i t sees fit. This message requests customized draw-

ings directly on the screen, so the model usually needs to know about the view that sent

this message so i t knows where on the screen to draw. A display message is used in the

display type custornArrows described in Chapter 6.

controllerClass [nil 1 Class]

This variable is almost always nil, as all SIG views have default controller classes. If it is

not nil, it must be a class whose instances are valid controllers for the view class specified

in viewClass.

4.9. Error Handling - Too-small Views

In an ID, such as on a binary tree or a Prolog literal, in which views are being added and

deleted, i t is possible to have too little space on the screen to display a view. Both the binary

tree and Prolog literal examples use text views. Text views must be big enough to display at

least some text, about 30 x 20 pixels, or an error will occur. All other MVC views also have a

minimum size, with the default being 10 x 10 pixels. After an abstract view has determined the

rectangle in which a new view is to be displayed, i t checks this rectangle against the minimum

size of the view to be added. When the rectangle is smaller than this minimum size, a too-small

view is added instead. Too-small views have a dark gray background and store the specification

for the view they are replacing. A controller for a tmsmal l view displays a yellow button

menu with one message, ezpand. When this menu item is selected, a new top view is spawned

using the specification stored by the too-small view. The model of the too-small view becomes

the model of the new top view. Figure 4.8 shows an ID on a binary tree having too-small views,

and a new top view spawned from the too-small view. There are actually three too-small views,

replacing two text views and a custom view, as shown in the spawned ID.

Figure 4.8 Expansion of an MVCTooSmallView

5. Using SIG

5.1. The Display Type Dictionary

A dictionary collects all display types in SIG. This dictionary is globally available in a

variable called DisplayBuilder. DisplayBuilder, like the system dictionary, Smalltalk, is the sole

instance of its class, DisplayGenerator. Besides storing display types, DisplayBuilder serves two

other functions in the SIG system:

(1) i t invokes the display type editor and

(2) i t starts IDS on instances of classes for which display types have been defined.

5.2. Display Type Editor

T o open a display type editor, execute DisplayBuilder edit, which creates a new ID with

six visible subviews. Figures 5.la and 5.lb show two display type editors, each viewing the

same display type. The editor in the top figure shows the initial configuration, which allows

editing. The editor in the bottom figure is in display-only mode, which is useful for scanning

display types. The user can control the mode of a display type editor. The menu items avail-

able within each view are also shown. Figure 5.2 shows a schematic diagram of the visible sub-

views in a display type editor. Each subview is numbered, for reference purposes, and labeled,

to denote the kind of data displayed. Views 1 through 5 are list views. In all of these list

views, at various times, the user may be prompted for a name of some kind. Such prompts are

given to obtain the information necessary for SIG to carry out some operation, e.g., adding a

new display type to DisplayBuilder.

------------ :custornArrows'
viewclass
modelMessage
modelArgument
rectanqleMessaae Only used by AbstractViews. May be a DlspayType or
rectanhleArwment lnspectl String which Is the name of a DisplayType.
creationMessages

'name of a Bplayfype'

Figure 5.la Display Type Editor in Edit Mode

Figure 5. lb Display Type Editor in Display Mode

1 Class List 2 DisplayType List 3 Recipe List

4 MVCSpecification List

5 Instance Variable List 6 Text

The views that comprise a display type editor have dependence relationships that are

similar t o the relationships between the views in the Smalltalk supplied system browser. View 1

displays the list of classes for which display types have been defined; view 2, the display types

defined for the class selected in view 1; view 3, the recipes for the display type selected in view

2; and view 4, the specifications for the recipe selected in view 3. View 5 displays a list of the

instance variables of the specification selected in view 4. All specifications have the same

instance variables, so view 5 displays a list containing the following items: viewClass, modelMes-

aage, naodelArgunaent, reetangleMessage, rectangleArgument, creationMessages, menu, subject,

leftBorder, rightBorder, topBorder, bottomBorder, displayMessage, and controllerClass, as shown

in Figure 5.la. View 6 displays the value of the instance variable selected in view 5.

6.2.1. Class List View

In display type editors, the class list view contains a list of classes for which display types

exist. The editors shown in Figures 5 . l a and 5.lb show classes BTN and ListViewTest, among

others. There are five items on the yellow button menu for the class list view: add, remove,

move, copy, and update list. Of these, ado

a current selection, while a remove, move, or copy operation requires that a class is selected.

The message add prompts for the name of a class to be added to DisplayBuilder and t o the

class list view. If the user adds a class that is already in the class list, SIG asks, whether the

display types currently associated with this class should be discarded. Menu item remove

removes the selected class from DisplayBuilder. If the selected class has display types, SIG asks

whether or not t o to delete the display types for this class. The item move acts as a rename

operator. SIG prompts for a class name. The display types associated with the currently

selected class are associated with the class given in response t o the prompt. The currently

selected class is then removed from DisplayBuilder. The copy operation is the same as move,

except the selected class is not removed from DisplayBuilder. Instead, a copy is made of each

display type in the selected class and these copies are associated with the specified class.

The last menu item, update list, is used when the class list appearing is not a correct

representation of the actual list of classes for which there are display types. This discrepancy

may arise when a class in the class list, say Test, is modified through a system browser. Figure

5.3a shows the display type editor after such a change. Test is the class selected in the class list

view. However, DiaplayBuilder, no longer references class Test, but an obsolete version of class

Test. Figure 5.3b shows the display type editor after an update list operation has been done.

6.2.2. Display Type List View

The display type list view contains the list of display types for the class selected in the

class list view. Figures 5.la and b show a display type editor editing display types for the exam-

ple class BTN. The display type list view has the following yellow button menu items: add,

remove, move, copy, make default, make non-default, reorder. There need be no current selec-

tion in the display type list view when the operations add and reorder are initiated. The other

operations must have a selection upon which to operate.

Figure 5.3a An Incorrect Class List View

Figure 5.3b After the update l ist Operation

The add message is similar to the class list view add; the differences are that it prompts

for a display type name rather than a class name. The r e m o v e message for this view operates

as the class list view remove. The move and copy operations also function in a similar manner,

except that they allow the user to move or copy a display type to a new class as well as to a

new display type within the selected class. Menu items make default and make non-default

allow the user t o toggle the default switch for the selected display type. The operation make

default makes the selected display type the default display type for the selected class. The

operation make non-default unsets the default switch for the selected display type. The reorder

message is used to reorder the display types in the display type list view.

6.2.3. Recipe List View

The recipe list view, in the display type editor, shows a list of all the recipes for the

display type currently selected in the display type view. Each item in the list represents the

condition message for a recipe. These condition messages are displayed in the format

#selector~(liat of arguments). For example, the first recipe for display type PLOriginal for

class Prolog literal has condition message #argSize+(O). When the condition message has no

arguments, the display has the form: #selector+(), as in Figures 5.la and b.

The menu messages available in the recipe list view are: add, remove, copy, and reorder.

All messages behave much the same as their counterparts in the display type list view. Unlike

the copy operation in the display type list view, the recipe list view copy will not copy a recipe

to a display type other than the one currently selected.

5.2.4. Specification List View

Items in the specification list view represent MVC triples that are added to an ID when-

ever the currently selected recipe matches the model. The representations shown in this list are

summaries of specifications. For example, the selected item in the specification list view of Fig-

ure 5.lb contains the text

MVCAbstractView m: #leftChild+nil r: nil+0@0.3 corner: 0.5@1.

The first item listed is the value of vicwClass. The m: indicates that the next

selector+argumentrlist pair makes up the model message. The r: indicates that the next mes-

sage is the rectangle message. Other items that may appear in a summary are creation mes-

sages and the display message, if they exist.

The yellow button menu for the specification list view is: add, remove, copy, edit, display,

and reorder. When the add operation is used to add a new specification to the list, no prompt

is issued, but the summary for this specification appears in the list as nil m: n i b n i l r: nil+nil.

Understandably, copy does not prompt either. Other than these differences, add, remove, copy,

and reorder operate as they do in the recipe list view. The menu items edit and display are

mode selectors. The display type editor in Figure 5.la is in edit mode, which is the default, and

the display type editor in Figure 5. lb is in display mode.

5.2.5. Views on an Individual Specification

Views 5 and 6 in Figure 5. la show an editor on a single specification. In Figure 5.lbl

these two views are replaced by a single view that may only display, not edit, a specification.

6.2.6.1. Edit Mode

The two bottom views of Figure 5.la resemble an inspector, and they behave almost like

an inspector on the specification selected in the specification list view. There are two major

differences: the text that appears in the right view contains a template for producing a new

value for the instance variable selected in the left view, and the right view has no do it context.

In this respect, the text view in a display type editor is more like a workspace than an inspec-

tor. Notice also that aeljdoes not appear in view 5 of the display type editor, as i t does in the

left view of normal inspectors.

View 5 in Figure 5 . la shows a list of the instance variables in a specification. Selecting

any item in the list causes the text view to the right to be updated. This view has one menu

message, inspect, that spawns an inspector on the currently selected instance variable. This

operation is particularly useful when editing the instance variables creationMessages and menu.

View 6 of Figure 5. la is a text view displaying the value of the instance variable, subject,

selected in view 5. Whenever a new instance variable is selected in view 5, view 6 is updated.

The yellow button menu for this view is again, undo, copy, cut, paste, do it, print it, accept, and

cancel. These messages operate as they do in the system browser with the exception of accept.

When accept is selected, the text in view 6 is compiled and executed. The object returned from

this execution becomes the new value of the instance variable currently selected in view 5.

In addition to the value of the instance variable selected in view 5 of the display type edi-

tor, view 6 displays a template that can be instantiated to reset that value. View 6 in Figure

5.la, contains the following text:

Only used by AbstractViews. May be a DisplayType or
String which is the name of a DisplayType.

'name of a DisplayType'
n

The string 'customArrows' is the current value of the instance variable subject. The template

in this case is 'name of a DisplayType'. The current value of the instance variable selected in

view 5 always appears a t the top of view 6 with the template for the selected instance variable

below this value enclosed in double quotes.

Templates consist of two parts, a comment and an executable text. The comment

explains something about the instance variable's meaning and expected value. Below the com-

ment appears an executable portion of text. It is separated from the comment by a blank line.

This text has the form needed to create an object of the correct type for the currently selected

instance variable. One way to use the template is to edit the sample values i t contains, paste in

the edited version of the template over the current template, and accept. Figure 5.4 shows this

process for the deletion of the change message for a text view. The text manipulations

MVCSpecEditorl ------------ Pictionary (#aspect->#textcopy #change->#accept:)
viewclass
modelMessage
modeiArqument
rectangleMessaqe For Abstract and ConstantFormViews, this may be nil,
rectanqleArqument otherwise i t must be a dictionary. See the method

on:mvcSpec: for the viewclass you are using for a
menu
sub'ect description o f the creationMessages needed.

lbf tborder
r~ghtBorder
topBorder

1 1 1
t + Dictionary new: 2.

bottomBorder
displayMessaqe

t at: #aspect put: XaspectSelector.

controilerClass t at: #change put: #changeselector.
------------ t

~ ~ ~ ~ ~ e c ~ d i t o r]
------------ Pictionary (Xaspect->#textcopy)
viewclass
modelMessaqe
modelArqument
rectanqleMessage For Abstract and ConstantFormViews, this may be nil,
rectanqleArqument otherwise it must be a dictionary. See the method

on:mvcSpec: for the viewclass you are using for a
menu
sub'ect description of the creationMessages needed.

laftborder
rlqhtBorder
topBorder

I t 1
t + Dictionary new: 2.

bottomBorder
displayMessaqe

t at: #aspect put: #aspectSeiector.

controllerCiass t at: #change put: XchangeSelector.
------------ t

Figure 5.4 Using Templates

explained above are necessary t o ensure that executable text appears in the text view a t the

time of the a c c e p t .

6.2.6.2. Display Mode

Figure 5.lb shows a display type editor in display mode. In this mode the lowermost view

shows all the instance variables and their values for the selected MVCSpecification. The menu

messages are the same as the text view in edit mode, except a c c e p t is absent. The major use

74

for display mode is seeing all the instance variables in the selected specification at one time.

6.2.5.3. Checking Validity .

Changes to a specification can render i t invalid. Hence, when the user attempts to leave

the selected specification, a check is done to ensure that i t meets certain integrity constraints.

If anything looks amiss, the user is asked to confirm the value of the offending instance

variable(s). The confirmers that appear are self explanatory, for example,

You have neither a modelMessage nor a modelhgument.
Proceed anyway?

6.3. Model Messages

In creating a display type for a class, several messages are specified t o which the model

must respond. These messages can be found using the display type editor. All the messages

that must be implemented fall into one of the following categories: condition, model, rectangle,

creation, menu, or display. To find these messages for a display type, a user first selects the

appropriate class and display type in a display type editor. Each of the messages present in the

recipe list must be implemented. After determining what messages must be implemented, the

display type editor may be changed t o display mode. For each recipe, the user selects each

specification in turn. The instance variables rnodelMessage, rectangleMessage, creationMes-

sages, menu, and displayMessage can contain message selectors that must be implemented.

6.4. Opening an ID on an Instance of a Class

After a display type has been created for a class, DisplayBuilder can open an ID using this

display type. Two messages exist for opening an ID: open: < anobject> and open: < anOb-

ject> using: < aDisplayTypeNarne>. The first message takes as its argument any object whose

class has a display type, and uses the default display type for the class. DisplayBuilder opens

an ID on <anobject> using the default display type i t found. For example, t o start an ID on

a binary tree, an instance of class BTN, execute DisplayBudder open: (BTN new). The result of

this execution is shown in Figure 5.5. A new BTN has no children, i.e., i t is a leaf, so the

display has only one view, a text view that fills the entire display area. The second message is

used for opening IDS using a display type that is not the default.

Figure 5.5 A New BTN

6. Building an ID

Figure 4.2 shows an ID on a binary tree specified by the display type withoutArrows. This

chapter explains how to build a similar ID for binary trees specified by a new display type cus-

t o d r r o w s . Figure 6.1 shows the ID that results from executing DisplayBuilder open: BTN new

using: ' cus todrrows ' . IDS specified by the display type customArrows display binary trees by

displaying the label of each node in a text view. On the screen below and to the left and right

of this text view are abstract views that recursively display the left and right children of the

node. Custom views display arrows connecting the text view and the left and right children. In

Figure 6.1, the yellow button is down and the user is just about to add a left child to the

(currently unlabeled) top node. After adding and labeling a few nodes, the ID appears as shown

in Figure 6.2.

Figure 6.1 Opening the ID

6. Building an ID

Figure 4.2 shows an ID on a binary tree specified by the display type withoutArrows. This

chapter explains how to build a similar ID for binary trees specified by a new display type cus-

tormlrrows. Figure 6.1 shows the ID that results from executing DisplayBuilder open: B T N new

using: 'customArrows'. IDS specified by the display type customArrows display binary trees by

displaying the label of each node in a text view. On the screen below and to the left and right

of this text view are abstract views that recursively display the left and right children of the

node. Custom views display arrows connecting the text view and the left and right children. In

Figure 6.1, the yellow button is down and the user is just about t o add a left child to the

(currently unlabeled) top node. After adding and labeling a few nodes, the ID appears as shown

in Figure 6.2.

Figure 6.1 Opening the ID

Figure 6.2 Alter Several Additions

The procedure for building IDS like the one shown in Figure 6.1 and 6.2 follows. First one

must create the class whose instances will be the models of IDS. After creating a class, a

display type is created using the display type editor. Figure 6.3 shows a display type editor

after custormlrrows has been added to the list of display types associated with class BTN, but

before any recipes have been given for the new display type. Before IDS using the new display

type may be opened, certain messages must be implemented in the model's class, as described

in section 5.3.

6.1. Creating the Display Type

This section explains creating the eustormlrrows display type, its first recipe, and the

specifications for this recipe. Again, Figure 6.3 shows the display type editor after eustormlr-

rows has been added, using the add command in the display type list view. After adding the

display type, we add the condition message for the first recipe, isleaf+(), by executing the add

command in the recipe list view, as shown in Figure 6.4. Next we add a new specification by

Figure 6.3 Adding the Display Type

MVCSpecEditor

Figure 6.4 Adding the First Recipe

executing the add command in the specification list view. Figure 6.5 shows the display type

viewclass
modelMessaqe
modelArqument
rectanqleMessage
rectanqleArqument
creationMessages
menu
sub'ect
lef tbor der
riqhtBorder
topeorder

Figure 6.5 Adding a Specification

BooleanViewTest

The following are legal MVCViews:

MVCAbstractView
MVCBooleanView
MVCConstantFormView
MVCCustomView
MVCListView

Figure 6.6 Editing viewClas8

editor in edit mode immediately after this addition. Figure 6.5 shows that the newly added

specification already has the message selector yourself as its model message, since most

specifications use yourself as their model message. Next we select the instance variable

viewclass in view 5 of the display type editor. This action results in the value nil being

displayed in view 6 along with a list of the legal MVC view classes. The value nil is then

replaced by MVCTextView, as shown in Figure 6.6. The instance variable viewClass is edited

first, because entering a value for viewClass causes the appropriate standard menu to be placed

in the instance variable menu. All other parameters needed t o specify customArrows can be

entered in this way, or we can copy the withArrows display type, one of the existing display

types for BTN, and modify its specifications.

During an ID, when the recipe isleaf+() matches the model, one text view is added to

the ID. The values for all the instance variables, including viewclass, in the specification

created above are shown in Figure 6.7. In Figure 6.7, we see that the model message for this

specification is yourself and modelArgument is nil ensuring that the model for the view described

by this specification is an instance of class BTN. The instance variable rectangleMessage is nil

and rectangleArgument contains the rectangle (0@0 corner: 1@1). The rectangle in which this

text view is added is (0620 corner: 1@1). Thus the text view will occupy the entire space occu-

pied by its superview. In Figure 6.1, the binary tree displayed has no children. The recipe

isleaf+() matches the model, so a text view was added in relative rectangle 0@0 corner: 1@1.

The area occupied by this view's superview, the seed abstract view for the ID, is the entire area

occupied by the ID, so the text view also fills the entire ID. Two creation messages, the aspect

message and the change message, are specified for the text view. Whenever the view receives

update: #textcopy, i t sends the message teztCopy to its model. Whenever the user selects menu

item accept, the model receives the message accept: <aText>, where <aText> is the text

showing in the view. Figure 6.1 shows the menu available t o users inside the text views in the

ID shown. This menu contains the standard text editing commands and three additional com-

mands: add left, add right, and delete. The standard text editing menu was supplied automati-

cally when viewclass was given the value MVCTextView. T o this standard menu were added

MVCTextView
modelMessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectangleArgument: 0@0 corner: 1@1
creationMessages: Dictionary (#aspect+#textCopy #change+#accept:)
menu: ActionMenu

labels: 'again
undo
COPY
cut
paste
do i t
print i t
accept
cancel
add left
add right
delete'

lines: #(2 5 7 9)
selectors: #(#again #undo #copyselection #cut #paste #doIt #printIt

#accept #cancel #addLeft #addRight #delete)
subject: nil
leftBorder: 1
rightBorder: 1
topBorder: 1
bottomBorder: 1
displayMessage: nil
controllerClass: nil

Figure 6.7 Instance Variable Values for the First MVCSpecification

the menu labels add lejt, add right, and delete t o give the menu shown in Figure 6.7. The list of

specifications for the first recipe, isleaf+(), contains just the single specification shown in Fig-

ure 6.7.

The second recipe, isLeftChildNiI+(), has three specifications. The first is for a text view

with the same functionality as the text view in the isleaf+() recipe. The only difference

between these two specifications is the size of the relative rectangle. When a binary tree node

has a right child, we must leave room to display the right pointing arrow and the right child

itself. In order t o do this, the rectangle allotted t o the text view must be smaller than (0@0

corner: 1Q1). Instead, the specified rectangle is (0.25@0 corner: 0.75Q0.2). The view displaying

82

the text Top Node in Figure 6.2 is displayed in relative rectangle (0.25QO corner: 0.75a0.2).

Observe that the left edge of this text view is one quarter of the way in from the left edge of

the ID, and the right edge isone quarter of the way in from the right edge of the ID. Thus the

view is centered in the x-range. In the y-range, i t occupies the top fifth of the area allotted to

the entire ID. Figure 6.8 shows outlines and relative rectangles for the three views added to an

ID when recipe isLeftChildNi1-+() matches the model.

The second view we need t o add for a tree node with no left child is the view containing

the rightrpointing arrow. The specification for this view designates a custom view as the

viewClass. The model message, yourself, means the custom view will have a tree node as its

model; the same node that is the model for the text view. The reetangleArgument stipulated is

(0.5Q0.2 corner: 0.75@0.3), so the origin of the custom view holding the arrow will be a t the

bottom center of the text view previously added, as shown in Figure 6.8. The text view extends

from 0.25 to 0.75 in x-range, so 0.5 is a t the center of this range; the y coordinate of the (lower

f
MVCTextView
0.2500 corner: 0.7500.2

*
MVCCustomView
0.500.2 corner: 0.76Q0.3
MVCAbstractView
0.500.3 corner: 101

Figure 6.8 Use of Relative Rectangles

right) corner of the text view and the y coordinate of the origin of the custom view are both

0.2, so, in the y-range, the custom view starts where the text view leaves off. Figure 6.9 shows

the specification for this custom view. From this figure, we see that this custom view has no

creation messages. There is no menu, because no menu should appear in this view. All border

widths are zero because we want the arrow to appear as if drawn in free space, connecting the

views. Custom views have no inside color, so they take on the inside color of their superview

light gray. Lastly, the message rightArrow is sent to the model every time the custom view is

displayed. The method implementing this message draws a right-pointing arrow on the screen.

The last specification in recipe isLejtChildNil+() specifies an abstract view. This

specification is shown in Figure 6.10. The model message for this abstract view is rightchild.

During an ID, when this view is added, the parent view sends the message rightchild to its

model, and the result becomes the model of the new abstract view. The relative rectangle for

this abstract view, (0.5Q0.3 corner: 1@1), extends from the bottom of the view displaying the

right arrow to the bottom of the allotted area in the y-range, and from the center to the right

edge of the allotted area in the x-range, as shown in Figure 6.8. Instance variables creationMes-

sages and menu both have value nil in this specification. Abstract views are not required to

have an aspect message. If they have none, their model message should return some subpart of

MVCCustomView
modelMessage: #yourself
modelArgument: nil
rectangleMessage: nil
rectangleArgument: 0.5630.2 corner: 0.75Q0.3
creationMessages: nil
menu: nil
subject: nil
leftBorder: 0
r ighthrder: 0
topBorder: 0
bottomhrder: 0
displayMessage: #rightArrow:
controllerClass: nil

Figure 6.9 Specification for the Custom View

MVCAbstractView
modelMessage: #rightchild
modelhgument: nil
rectangleMessage: nil -
rectanglehgument: 0.5Q0.3 corner: l @ l
creationMessages: nil
menu: nil
subject: 'customArrows'
1eftBorder: 0
rightBorder: 0
topBorder: 0
bottomBorder: 0
displayMessage: nil
controllerClass: nil

Figure 6.10 Specification for the Abstract View

the model. In this case, we return the BTN instance variable rightchild. This view has no

menu, and the borders are all zero width. Zero width borders are almost always used for

abstract views, as they give the illusion that an abstract view is not present, but only its sub-

views. The value of subject for this abstract view is customArrows, the display type we are

currently building. The display type entered in subject must be associated with the same class

as the class of

(1) the model for the abstract view being specified, if this abstract view has no aspect mes-

sage, or

(2) the object returned by the aspect message for the abstract view being specified, if this

abstract view has an aspect message.

In this case, rule (1) applies. The abstract view being specified has no aspect message, as shown

in Figure 6.10; its model is the right child of a tree node, another tree node; and the display

type cuatomArrows is associated with class BTN.

The next recipe is isRightChildNil+(). The views for this recipe are the same as thme for

isLejtChildNil-+() except they put the rectangles for the custom and abstract views on the left

instead of the right side. Finally, if none of the above recipes matches the model, notNil+()

86

will. In this case, we know the tree node for which we are adding views has two subtrees. Con-

sequently, this recipe designates five views. Figure 6.11 shows the placement of these five views

relative to one another. The text view is the same as in the last two recipes. Custom views for

both the left and right arrows and abstract views for both the left and right subtrees are needed

to complete the display.

6.2. How the Display Type is Used

The following example illustrates the process of matching a recipe and adding views to an

ID based on the specifications associated with that recipe. Figure 6.12a shows an ID on a tree

node, Top, that is a leaf. Figure 6.13a shows the ID after tree node Right has been added as the

right child of Top. Figures 6.12b and 6.13b diagram all the views present in the ID at these

two points in time. When the command in Figure 6.12a is executed, tree node Top executed

the method addRight, which added tree node Right as the right child of Top, then executed self

changed. When a view is created and given a model, this view is added to the end of the list of

MVCTextView

MVCCustomView MVCCustomView
1eftArrow r i g h t k r o w

MVCAbstractView MVCAbstractView
l e f t ch i ld r i g h t c h i l d

Figure 6.11 Views Specified by MVCRecipe notNil+()

Figure 6.12a Before Adding Right Child

\ 1 MVCTopView (Top)
L

\ 2 seed MVCAbstractView (Top)
L

3 MVCTextView displaying text 'Top' (Top)

Figure 6.12b View Diagram for Figure 6.12a

Figure 6.13a After Adding Right Child

\ 1 MVCTopView (Top)

2 seed MVCAbstractVie~v (Top)

4 MI'CTextView displaying
text 'Top' (Top)

5 (Top)
MVCCustomView

\, 6 MVCAbstractView (Right)

7 MVCTextVievr- displaying the
text 'Right' (Right)

Figure 6.13b View Diagram for Figure 6.13a

'views associated with this model. When the model executes self changed, the resulting update:

message is sent to each view in the model's dependency list in turn. In this example, the views

are ordered in the dependency list as they are numbered in Figure 6.12b. The message update:

with tree node tree node Top as argument was first sent to view 1 in Figure 6.12b. Top views

ignore update:, so nothing happened. Then view 2 received the update: message. On receipt of

the message update: < anobject>, an abstract view executes the method addsubviews if

< anobject> is its model. This condition is met for view 2 in Figure 6.12b, so view 2 executes

addSubViews. The method addsubviews takes the following action.

(1) Deletes existing subviews, such as view 3 in Figure 6.12b. Deleting a view removes it

from the dependency list, so view 3 never receives the message update:.

(2) Display border and inside color. View 2 has a zero-width border, so displaying it does

nothing. Abstract views have light gray inside color, so the entire space occupied by the

ID is painted light gray.

(3) Determines the object to which to send the recipe condition messages. Since view 2 has

no aspect message, the condition messages are sent to the model of view 2, the tree node

Top.

(4) Gets the condition messages. View 2 holds the specification that describes it, from which

i t extracts the instance variable subject. The extracted value names the display type view

2 will use to add its subviews, i.e., customtlrrows. View 2 then asks DisplayBuilder to

return the actual DisplayType object with this name. Upon receipt of this display type,

view 2 picks out the collection of recipes for use in the next step.

(5) Sends the condition messages to the object determined in step (3). The first recipe for

eustomArrows is isleaf-+(). View 2 sends the condition message isleaf to tree node Top,

which now has a right child, so i t returns false. View 2 then sends the next condition

message, isLeftChildNi1 to tree node Top. This condition is true of Top, so this recipe

matches the model.

(6) Adds subviews according to the specifications associated with recipe MLeftChildNiI-0.

This recipe has three specifications, as discussed in Section 6.1.

(6a) As its first subview, view 2 creates and adds a text view in relative rectangle

(0.2500 corner: 0.75@0.2), as described in the first specification. This text view is

view 4 in Figure 6.13b. Note that view 3 no longer exists. After adding view 4 as

the first subview, view 2 sends the model message, youraelj, to tree node Top to

determine the model for view 4. Tree node Top is returned and installed as the

model for view 4. Next view 4 is told to initialize itself. This initialization consists

of: 1) recording the messages textcopy and accept: as the aspect and change mes-

sages, respectively, for view 4, 2) setting all four borders to a width of 1, and 3)

storing the entire specification in the instance variable mvcSpec. Lastly, view 4 is

told to display. It displays its border and inside color, white. It then sends its

aspect message, textcopy, to its model, tree node Top, and the text 'Top' is

returned. This text is then displayed in view 4, as shown in Figure 6.13a.

(6b) The second subview is a custom view. View 2 added i t in relative rectangle

(0.500.2 corner: 0.7500.3). This custom view appears as view 5 in Figure 6.13b.

After being added, view 5 is given tree node Top as model, in the same way as

view 4. View 5 is then told to initialize itself. In this case, no change is effected in

the display because view 5 has zerc+width borders and custom views have no inside

color. To complete the display, view 5 executes model rightArtow: self. This

action sends tree node Top the display message, rightArrow:, with view 5 as the

argument. The method rightArrow: then draws the arrow.

(6c) The third specification calls for an abstract view. View 2 creates a new abstract

view and adds i t in relative rectangle (0.5Q0.3 corner: 1@1). This abstract view is

view 6 in Figure 6.13b. To establish the model for view 6, view 2 sends the

specified model message, rightchild, to the object determined in step (3), tree node

Top. This message returns the new right child, tree node Right, that is then

installed as the model for view 6. View 6 is then instructed to initialize itself. At

the end of the initialization, an abstract view executes self addSubViews. There-

fore, view 6 performs the series of steps 1-6 with its model, tree node Right, and its

subject, display type customArrows. Since tree node Right is a leaf, the recipe

isLeaf-r() matches it. View 7 in Figure 6.13b is added and displayed. View 7

occupies the same area as view 6. The display of view 7 completes the redisplay of

tree node Top, and the result is shown in Figure 6.13a.

6.3. Code for BTN

Class BTN has four instance variables, tezt, parent, leftchild, and rightchild. In the

display type above, several messages were specified. All of the messages not implemented in

class Object must be implemented by BTN. T o provide a cross section of the messages that

must be implemented, the methods for messages isleaf, accept:, teztCopy, and rightArtow: are

shown here.

The method for condition message isleaf follows.

isLeaf
"is this node a leaf"

This method is not too difficult; if instance variables leftchild and rightchild are both nil, the

receiver is a leaf and returns true, otherwise false.

The creation messages accept: and teztCopy are the change and aspect messages, respec-

tively, for all text views in an ID using DisplayType cus todrrows.

accept: aText
"Set the text of this BTN"
text +-aText copy.
self changed: #textcopy.

textcopy
"Return a copy of the value of the instance variable 'text'."

f text copy

The method for accept: takes one argument, the text in a text view when the accept command

is executed, makes a copy of this text, and stores i t as the label for the receiver, a tree node.

Any text is acceptable, so the method always returns true. The method for textcopy simply

returns a copy of the text currently stored in the receiver.

The message rightArrow: is the display message for the custom views displaying right

pointing arrows. The method for rightArrow: uses an instance of class Pen to draw the arrow.

Instances of class Pen exhibit behavior similar to that of the Logo turtle.

rightArrow : aView
"Draw an arrow from the top right to the bottom left
corner of aViewYs displayBoxn

I bic db pnt I
bic +Pen new.
bic mask: Form black.
bic defaultNib: 2.
bic combinationRule: Form over.
bic place: (db +aView displayBox) topleft.
bic goto: db bottomRight.
bic turn: 292.5.
bic go: (pnt t d b extent // 5).
bic place: db bottomRight.
bic turn: 45.
bic go: pnt

This method draws the line making up the shaft of the arrow then two small lines to create the

tip. Note that the lower right corner of this view is a t the top center of the abstract view hold-

ing the right child. This means the method should draw the arrow from the top left corner of

the view that is its argument to the bottom right corner of this view. The message displayBoz,

sent to the argument aView, returns the rectangle on the screen that aView occupies. The

method then draws the arrow from the top left to the bottom right corner of this rectangle.

7. The Display Type Editor

The display type editor itself is an ID that was written using SIG. Two display types, edit

and edit or diuplay, specify the entire ID; they are associated with the classes DisplayTypeEditor

and MVCSpecEditor, respectively. In the following discussion, display type editor refers to an

ID and DisplayTypeEditor to the Smalltalk class. DisplayType editors have two parts, a part

that relates a given specification to a recipe and thereby to a display type, and a part that p r e

vides editing capability on this specification. The first task is accomplished by the four upper-

most views in a display type editor. As we have seen, the lists displayed in these views are

structured in a dependence hierarchy. Each class has display types; each display type has

recipes; and each recipe has specifications. The second task is achieved by the two lower views;

the left view selects an instance variable and the right view allows data t o be entered for that

instance variable.

The display types edit and edit or display, are associated with classes DisplayTypeEditor

and MVCSpecEditor rather than DisplayType and MVCSpecification because both types make

use of list views. List views require the model to maintain view-specific information: the

current selection. A problem arises if, for example, we have two display type editors open

simultaneously, each editing different recipes for the same display type. Figure 7.1 shows this

scenario. If both editors had the same DisplayType as model, i t would be difficult for this

DisplayType to maintain the current selections for both editors. Each display type editor has a

different instance of class DisplayTypeEditor as model. A DisplayTypeEditor maintains the

current selections for the four upper views of a display type editor. In the same way, the two

lower views in a display type editor have an instance of MVCSpecEditor as model. A

MVCSpecEditor points to a specification and keeps track of the instance variable currently

selected.

I

MVCTextView m: #yourself->nil r: nil->0.25@0 corner: 0.754B0.2 Dictionary (#aspect
MVCAbstractView m: Atrightchild->nil r: nil->0.5@0.2 corner: 1@1 ------------ I

I MVCTextView m: #yourself->nil r: nil->0.25@0 corner: 0.75a0.2 Dictionary (#aspect
MVCAbstractView m: #leftchild->nil r: nil->0@0.2 corner: 0.5@1 ------------ I

Figure 7.1 Two Display Type Editors on One Display Type

The display type edit, for class DisplayTypeEditor, has one recipe, notNil+(). This recipe

has five specifications. The views designated by the first four specifications are the MVCList

Views that hold the list of classes, the display types for a class, the recipes for a display type,

and the specifications for a recipe. To maintain the current selections in each of these list

views, DisplayTypeEditors have four instance variables, class, type, recipe, and specEditor. The

instance variable specEditor actually holds an MVCSpecEditor, not an MVCSpecification. This

anomaly is handled by the methods implementing the creation messages for the specification list

view.

The fifth specification in the recipe notNil+() calls for an abstract view that has aspect

message, spec; model message, yourself; and subject, edit or display. This abstract view holds a

sub-ID, the visible views of which are views 5 and 6 of the display type editor, as shown in Fig-

ure 5.2. Since the model message is yourself, the model for this abstract view is the Display-

TypeEditor that is the model for the whole ID, but the subject, edit or display, is the name of a

display type for the class MVCSpecEditor. T o determine the model for views 5 and 6 of a

display type editor, the abstract view that is the superview of views 5 and 6 sends its model the

aspect message spec. This message returns the MVCSpecEditor found in the DisplayTypeEditor

that is the abstract view's model. This MVCSpecEditor becomes the model for views 5 and 6.

The subject for the fifth specification in recipe notNil-() of display type edit is edit or

display, which is the sole display type for class MVCSpecEditor. This display type has two

recipes, isDieplayFlagSet+() and notNil-(). The first recipe has one specification that specifies

a read-only view that displays instance variables and values for a specification. Figure 5.lb

shows an example in which recipe i sDisplayFlagSet~() matched. The second recipe represents

the default case, edit mode, as shown in Figure 5.la. This recipe contains two specifications,

one specifying a list view for the list of instance variables and one specifying a text view for

manipulating the selected instance variable.

Display type editors also appear as shown in Figure 7.1. Both of the display type editors

in this figure have light gray space where the lower view(s) usually appear, because no

specification has been selected yet. The instances of DisplayTypeEditor that are models for

these editors have nil for specEditor. SIG assumes that nil should never be the model of a view,

so abstract views do not even try to add any subviews if the model for those subviews would be

nil. In each display type editor in Figure 7.1, the light gray appears where the lower views nor-

mally would, because no lower views were added.

8. Conclusion

SIG provides a structured mechanism for generating IDS in Smalltalk. Three innovations

are provided in the SIG system.

(1) An ID is specified by display types that are outside of the ID itself.

(2) display types provide a way to add MVC triples to an ID conditionally.

(3) A mechanism is provided that interprets display types.

Together, these three features provide a uniform way to produce IDS.

8.1. Summary of the Features of SIG

Before SIG, the parameters of an ID were a part of the ID itself. Using only pluggable

views, the yellow button menus that appear in any given view must be stored in the model, and

each view that is part of an ID must know explicitly how to add subviews. That is, such views

must know how many subviews to add, and the location and type of these subviews. Smalltalk

inspectors provide a good example of this kind of ID. They all have two views, a list view and

a text view, that always appear in the same positions in the ID. With SIG, information about

the number and kind of views that are to appear in an ID is kept in a display type external to

the views and controllers that make up the ID.

Views are added to an ID conditionally in SIG. This feature allows an ID to more accu-

rately reflect the state of its model. Adding views conditionally allows the number, size, and

type of views to change depending on the content of the model. This is particularly important

for recursive models such as binary trees or Prolog literals. In these cases, i t is impossible to

specify a priori how many views will be needed. Even non-recursive IDS can benefit by adding

views conditionally. A display type editor has two modes, edit and display, each requiring a

different set of views. Display type editors can switch modes because views are added

conditionally.

Abstract views provide the mechanism by which display types are interpreted and views

added to an ID. Whenever an abstract view is instructed to update, it uses a display type to

add just those views that reflect the current state of the model. In addition, abstract views

allow IDS to be composed. A display type can "call" another display type using its subject

field. Thus, the specification of a large ID can be broken into subparts. The display type editor

is such an ID. The four upper views are described by one display type, edit. The subject of the

last specification in the display type edit is edit o r display, the name of the display type that

describes the one (or two) lower view(s) in a display type editor.

In SIG, the number of messages the model must implement is slightly increased over the

number that must be implemented by the models of pluggable views. SIG models must imple-

ment the condition messages that are used to select recipes, although some of these messages

would have to be implemented anyway, e.g., isLeaf for class BTN. Using SIG, the amount of

code a user must write t o implement an ID is reduced as no code must be written to implement

views and controllers. Before creating SIG, I wrote an ID similar to the Prolog literal ID shown

in the figures in Chapter 2. This ID required approximately twice as much code as the Prolog

literal ID shown in Chapter 2. This decrease in code size is most significant for IDS with view

hierarchies more than two levels deep. In addition, the tool set of primitive views combined

with the mechanism for adding subviews gives a framework that cuts down the number of deci-

sions to make when building IDS.

8.2. Problems with the MVC Paradigm

The Smalltalk MVC paradigm, while very versatile, is nonetheless quite difficult to use.

There is no simple subset of things a novice user can do to produce an ID. At a minimum,

classes for a model, view, and controller must be produced, thereby introducing the problem of

understanding how these entities communicate, which is not under the user's control. In an ID

of any complexity, there are many views and controllers all tied to each other and their models

in a hopeless entanglement. Views and controllers both store their corresponding controllers

and views, and both store their models, but models know nothing about either their views or

controllers. Models are related to their views, indirectly, through the dependency list. The

only way for a model to affect the ID is t o execute selj changed, possibly with a parameter.

This action either updates all the views on the model or, in the case of pluggable views, only

those views whose aspect message matches the parameter. In either case, the model has no way

of communicating to a view directly a request to update. Another problem is that control is

passed from controller to controller via the view hierarchy. If a controller decides that i t does

not want control, the controller asks its view if any of the view's subviews want control. To

execute this request, the view must ask each of its subviews in turn to ask their controllers if

they want control.

Another problem with views and controllers is that controllers often update the display

directly. Text controllers redraw the screen as text is being typed in, and they repaint the text

caret inside a text view. List controllers reverse the display as the user moves the cursor over

items in the list. Both of these actions are implemented in the controller for efficiency reasons.

Response would simply be too slow a controller had to signal its view to make the update. This

arrangement does work, but i t contributes to the confusion and the whole mystical aura sur-

rounding views and controllers.

Much of the problem lies in trying to integrate the viewing mechanism with the control

mechanism. This problem has its roots in picture composition. If an image has structure, we

want to treat different components of the structure in different ways. Usually, the ID designer

wants t o implement a se t of behaviors. Each behavior is associated with some logical portion of

the image. If the user is moving the cursor over an image on the screen, it is a difficult problem

to determine to which logical portion of the image the cursor is pointing a t any given time.

This is not a problem as long as some screen space can be allotted to each logical portion of the

image. However, this space allocation can not always be accomplished. For example, Figure

8.1 shows a possible view scheme for an ID displaying a dictionary. This dictionary is a set of

three associations. Each association has a key and a value. Together the three key-value pairs

utilize all the space allotted to the ID. Each association has associated operations, e.g., text

editing on the value of the association, which would appear whenever the user depressed the

yellow button inside one of the views displaying an association. Suppose we want to add a new

association to the dictionary. If we specify add as one of the menu messages to appear in a

view displaying an association, an association receives the add message. Associations do not

know if they are a part of some dictionary. The association in this example has no way to tell

the dictionary of which it is a part to add a new association. One way around this problem is

to allocate the dictionary itself some "real estate" in the ID, but this approach does not seem

', Dictionary '
\

', Association 1 ', Association 2 ', Association 3
\ \ \

\ . \

key 1 key 2 key 3

value 1 value 2 value 3

Figure 8.1 View Scheme for an ID on a Dictionary

right, as the set of associations is the dictionary. There is no information to be displayed in

this designated "real estate"; i t exists solely for control purposes. Another means of sending

messages directly to the dictionary .is to have a dedicated button. However, dedicating a mouse

button is hardly practical in general as mice have a limited number of buttons while there may

be arbitrarily many such buttons needed.

8.3. Limitations of SIG

Pluggable views ease the task of generating IDS by focusing attention on the model.

Menu messages are sent to the model, and the model has indirect control over its views through

the views' creation messages. SIG furthers this new focus. Display types provide a rudimentary

mapping from a model to an ID on that model, albeit still using the existing MVC paradigm.

SIG thus suffers from the "real estate" problem mentioned above. SIG extends the existing

MVC paradigm by the addition of display types, but IDS specified by these display types are

realized only by passing many messages between the views and models present in these IDS.

The biggest problem with this scenario is that the user must understand, if not implement, all

these messages. The model message and rectangle message, for example, mainly affect the

mechanics of executing an ID, rather than what the ID actually displays. These messages can

be confusing to the user.

8.4. Possible Solutions

The "real estate" problem can be addressed by specifying to which object a menu mes-

sage should be sent. In the dictionary example above, the mapping might specify the following.

If add or delete is selected, the corresponding message is sent to the dictionary. The other com-

mands can be used to manipulate the text of a key or value. If the accep t command is selected

over a key, the original text for that key and the currently displayed text are sent to the dic-

tionary. The dictionary then uses the original text to look up the key to be changed, removes it

and readds the association with the new key.

In addition to such control specifications, viewing specifications would also be given. In

this example, these viewing specifications might be something like the following.

(1) Keys are displayed above values.

(2) Each key-value combination extends from the top to the bottom of the display.

(3) Key-value combinations are displayed side by side.

In this viewing specification, there is no mention of associations or the dictionary, because they

are not displayed as entities in themselves. Of course, in an actual specification, the alignment

of displayed entities would have to be specified in more detail. Specifying which views go where

in an ID might be done graphically instead of with relative rectangles as in SIC. The user could

be allotted an area on the screen in which to draw rectangles in which data items would appear.

8.6. Reworking the MVC Paradigm

The problem of complexity in the MVC paradigm and the proliferation of messages

specified in pluggable views and SIG DisplayTypes merit some additional work. Much of the

confusion stems from the existence of three separate objects (the model, view, and controller)

that are intimately related. Views and controllers are particularly interrelated, so much so that

i t is often quite difficult to determine which (the view or controller) is doing what when.

Future research in the area of making IDS in Smalltalk more understandable and easier to

use effectively should concentrate on trying to find an alternative to the existing MVC para-

digm. SIG is constrained to using the MVC paradigm. The MVC paradigm imposes the follow-

ing restrictions.

(1) Each data structure component must have an associated view if it is to receive menu mes-

sages directly, hence the "real estate" problem.

(2) The user must have knowledge of the implementation of the views effecting an ID,

because these views send specific messages to the data structure (model).

(3) When a change is made in a data structure, the data structure itself must announce that

it has changed.

As a minimum requirement, any mechanism replacing the MVC paradigm has to overcome

these three limitations. There should be a distinction between data structures (Smalltalk

objects containing data in which the user is interested) and the viewing and editing of these

data structures. How can these two things be related so as to produce effective IDS with a

minimum of effort if not through the MVC paradigm? The idea of external specifications of

mappings from data structures to IDS on these data structures, provided by display types in

SIG, is a basis for a new approach to this problem. Rather than specifying which objects (views

and controllers) to use to create an ID and the messages these objects understand, as is done in

SIG, the external specifications should specify only the types of the components of the data

structure, how these components should be positioned on the display relative to one another,

and which components should receive which menu messages to effect changes in the data struc-

ture. SIG makes an effort a t providing each of these things: typing, in the display type instance

variable viewClass; relativity, in rectangle message; and control capability, in menu. However,

the new specifications, unlike SIG's display types, must be as devoid as possible of any

knowledge of the mechanism that interprets those specifications. This specification interpreter

must monitor the user's data structure as well as the input devices. When a menu message

input is received from the mouse, this interpreter determines, from the data structure

specifications, to which component of the data structure to send this message. Since the inter-

preter is monitoring the data structure, if the data structure changes as a result of the input,

the interpreter knows of this change and can update the display accordingly.

A mechanism that would return the value of any component of a data structure, given a

specification for that component, could be implemented in class Object. For example, we may

have. a scheme for instances of class BTN. In addition to the display and menu information for

BTNs, the scheme types instance variables. This scheme contains the fact that all BTNs have

four instance variables: text, parent, IeftChild, and rightchild that have types Text) nil, BTN)

nil, BTN I nil, and BTN I nil, respectively. During an ID, if the value of the right child of the

left child of the root of a binary tree is needed, the specification interpreter can query the root

by sending the message get: leftChild.rightChildl. The user does not have to implement a

method for the message get:; i t is implemented by class Object, and uses the typing information

to carry out the query. Using a mechanism like this, the interpreter could extract the data it

needed for any particular portion of a display from a data structure without the user being con-

cerned with the way this extraction was accomplished.

Some problems would accompany the overthrow of the MVC paradigm. The most formid-

able of these problems is that all of the current Smalltalk IDS are written using the MVC para-

digm. Although the MVC paradigm is pervasive throughout Smalltalk, it is not present a t the

lowest level of control and display manipulation. For example, instances of class ParagraphEdi-

tor, a kind of controller, contain the methods that update the display, monitor the keyboard,

and implement yellow button menu items again, undo, copy, cut, paste, and cancel.

ParagraphEditors do not use the MVC paradigm to accomplish these tasks; they access the

display, mouse, and keyboard directly. It may be possible to use the code that accomplishes

these actions more or less directly in a system that does not use the MVC paradigm.

References

Baec8l.
Ronald Baecker, "Sorting Out Sorting," 16mm color sound film, 25 minutes, SIGGRAPH
1981, Dallas, Texas (1981).

Brow84.
Marc H. Brown and Robert Sedgewick, "A System for Algorithm Animation," CS8401,
Brown University, Dept. of Computer Science, Providence, Rhode Island (January, 1984).

Egge83.
Paul R. Eggert and Kam P. Chow, Logic Programming Graphics and Infinite Terms,
Department of Computer Science, UCSB (June 1983).

Fisc84.
Gerhard Fischer and Matthias Schneider, "Knowledge-Based Communication Processes in
Software Engineering," Proceedings o j the 7th International Conference on Software
Engineering, (March 1984).

Fole82.
James D. Foley and Andries Van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley Publishing Company, Reading, Massachusetts (1982).

Furu82.
Richard Furuta, Jeffrey Scofield, and Alan Shaw, "Document Formatting Systems: Sur-
vey, Concepts, and Issues," ACM Computing Surveys 14 No. 3 pp. 417-472 (September
1982).

Gold84.
Adele Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-Wesley
Publishing Company (1984).

Hend82.
Peter Henderson, "Functional Geometry," pp. 174187 in ACM Conference on LISP and
functional programming, (August 1982).

Hero80.
C. F. Herot, R. T. Carling, M. Friedell, and D. Kramlich, "A Prototype Spatial Data
Management System," SIGGRAPH '80 Proceedings: ACMISIGGRAPH Conference, pp.
63-70 (1980).

Hero82.
Christopher F. Herot, Gretchen P . Brown, Richard T. Carling, Mark Friedell, David
Kramlich, and Ronald M. Baecker, "An integrated Environment for Program Visualiza-
tion," pp. 237-259 in Proceedings o j the IFIP WG 8.1 Working Conference on Automated
Tools for Information Systems Design and Development, North-Holland Publishing Com-
pany (1982).

Kimu83.
Gary D. Kimura and Alan C. Shaw, "The Structure of Abstract Document Objects,"
Technical Report No. 83-0402, Computer Science Dept., University of Washington,
Seattle, WA (September 1983).

King84.
Roger King, "Sembase: A Semantic DBMS," Proceeding8 of the First International

Workshop on Ezpert Database Systems, pp. 151-171 ACM, (1984).

Knut79.
D. E. Knuth, TEX and Metafont: New Directions in Typesetting, Digital Press and the
American Mathematical Society, Bedford, Mass., and Providence, R.I. (1979).

Kram83.
David Kramlich, Gretchen P. Brown, Richanr T. Carling, and Christopher F. Herot, "Pro-
gram Visualization: Graphics Support for Software Development," pp. 143-149 in IEEE
1988 Proceedings of the 20th Design Automation Conference, (1983).

Lond84.
Ralph L. London and Robert A. Duisberg, Animating Programs Using Smalltalk, Com-
puter Research Laboratory, Applied Research Laboratories, Tektronix, Inc . , Beaverton,
Oregon (1984).

Meyr82.
Norman Meyrowitz and Andries Van Dam, "Interactive Editing Systems: Parts I & II,"
ACM Computing Surveys 14 No. 3 pp. 321-415 (September 1982).

Myer83.
Brad A. Myers, "Incense: a System for Displaying Data Structures," Computer Graphics
17 no. 3 pp. 115-125 ACM, (July 1983). Also Displaying Data Structures for Interactive
Debugging, Xerox PARC Reprot CSL-80-7,June 1980,xii+97 pp.

Pere83.
Fernando C. N. Pereira, Can Drawing Be Liberated from the Von Neumann Style?,
Artificial Intelligence Center, SRI International (March 1983).

Reis83.
Steven P. Reiss, "PECAN: Program Development Systems that Support Multiple Views,"
pp. 324-333 in Proceedings - International Conference on Software Engineering, IEEE
(December 1983).

Wyk82.
Christopher J. Van Wyk, "A High-Level Language for Specifying Pictures," ACM Tran-
sactions on Graphics 1, No. 2 pp. 163-182 (April 1982).

Appendix A

Listing of the Code for Class BTN

Object subclass: #BTN
instanceVariableNames: 'text parent leftchild rightchild '
classVariableNames: "
poolDictionaries: "
category: 'SIG-Tests'

BTN comment:
'Binary Tree Node -- test class for Text & AbstractViews.
7

BTN methodsFor: 'text view adaptor'

accept: aText
"Set the text of this BTN"
text + aText copy.
self changed: #textcopy.
true

textcopy
"Return a copy of the value of the instance variable 'text'."

ttext copy

BTN methodaFor: 'access'

parent
f parent

parent: aBTN
"aE3TN might actually be nil, but that's OK"

parent +&TN

replace: aChild with: aJ3TN
"aChild should always be a BTN, aBTN may be nil.
Replaces the child == aChild with aBTN."

leftchild == aChild
iffrue: "its the left"

[leftChild + aBTN.
tself] .

rightchild == aChild
iffrue: "its the right"

[rightchild +aBTN.
fself] .

f self error: 'Cou1dn"t do the replace'

rightchild: aBTN
rightchild + aBTN

BTN methodsFor: 'testing'

isLeaf
"is this node a leaf"

tleftchild isNil & rightchild isNil

isLeftChildNi1
"is this node's left Child nil"

fleftchild isNil

isRightChildNi1
"is this node's right Child nil"

f rightchild isNil

BTN methodsFor: 'tree junctions'

addLeft
"add a new node where the receiver's leftchild is and ask whether
the receiver's leftchild should be the left or right child of the new node."

I newNode selection oldLC (
self changeRequest
ifFalse: "Someone doesn't want me to do this add"

[tselfl.
(newNode +BTN new) parent: self.
leftchild isNil
ifFalse:

[selection +O.
[selection = 01
whileTrue: "Must select either left or rightn

[selection +(PopUpMenu labels:
'make subtree left child of new node
make subtree right child of new node ') startup].

selection = 1
iffrue: "subtree is left child"

[newNode leftchild: leftchild]
ifFalse:

[newNode rightchild: leftchild].
leftchild parent: newNode].

leftchild tnewNode.
self changed

addRight
"add a new node where the receiver's rightchild is and ask whether
the receiver's leftchild should be the left or right child of the new node."

1 newNode selection oldLC 1
self changeRequest
ifFalse: "Someone doesn't want me to do this addn

[tself] .
(newNode +BTN new) parent: self.
rightchild isNil
ifFalse:

[selection +O.
[selection = O]
whileTrue: "Must select either left or right"

[selection +- (PopUpMenu labels:
'make subtree left child of new node
make subtree right child of new node ') startup].

selection = 1
ifTrue: "subtree is left childn

[newNode leftchild: rightchild]
ifFalse:

[newNode rightchild: rightchild].
rightchild parent: newNode].

rightchild +newNode.
self changed

delete
"delete the receiver from the tree, and choose which subtree to make
the new root. Be sure to mark this node as deleted by giving it new text."

parent isNil
ifTrue: "Can't delete the root"

[fself error: 'Can"t delete the root'].
(leftchild notNil and: [rightchild notNil])
ifTrue: "Can't delete this node because i t has subtrees"

[fself error: 'CanMt delete an interior node with left & right subtrees'].

parent changeRequest
ifFalse: "Someone isn't logically complete."

[fself] .
self changeRequest
ifFalse: "Need to do this in case this node is at the top of an expanded view."

[fself].
leftchild isNil
ifTrue: "make the rightchild the new rootn

[rightchild isNil
ifFalse: "non nil nodes must have their parent reassigned."

[rightchild parent: parent].
parent replace: self with: rightchild]

ifFalse: "make the leftchild the new root"
[leftchild parent: parent.
parent replace: self with: leftchild].

parent changed.

"The next three lines totally disassociate this node from the tree."
parent +nil.
leftchild +nil.
rightchild +nil.

"Mark this node as deleted (in italics)."
text +Text string: 'deleted' emphasis: 3.
self changed "To warn the user this node is now deleted.n

BTN methodaFor: 'line drawing'

1eftArrow: aView
"Draw an arrow from the top right to the bottom left
corner of aView's displayBoxn

(bic db pnt I
bic +Pen new.
bic mask: Form black.
bic defaultNib: 2.
bic combinationRule: Form over.
bic place: (db +aView displayBox) topRight.
bic goto: db bottomleft.
bic turn: 22.5.
bic go: (pnt +db extent // 5).
bic place: db bottomleft.
bic turn: 45.
bic go: pnt

rightArrow : aView
"Draw an arrow from the top right to the bottom left
corner of aView's displayBoxn

I bic db pnt I
bic +Pen new.
bic mask: Form black.
bic defaultNib: 2.
bic combinationRule: Form over.
bic place: (db +aView displayBox) topleft.
bic goto: db bottomRight.
bic turn: 292.5.
bic go: (pnt +-db extent // 5).
bic place: db bottomRight.
bic turn: 45.
bic go: pnt

Biographical Note

The author was born 7 April 1956, in Medford, Oregon. He attended the Medford public

schools through grade 9. In 1971 he moved to Talent, Oregon and graduated from Phoenix

High School in 1974. From 1974 through 1976, he attended Southern Oregon State College. In

October 1976, he transferred to George Fox College, Newberg, Oregon where he received a

Bachelor of Arts degree in Music Education and a Bachelor of Science degree in Math Educa-

tion in June 1979.

From September 1979 to August 1982, the author managed the computer center a t George

Fox College. In September 1982 he began study a t the Oregon Graduate Center and during his

first year held a Clark Foundation Fellowship. He completed the requirements for the degree

Master of Science in Computer Science in March 1983. He is leaving the Graduate Center to

work as a systems software engineer with Intel Corporation, Hillsboro, Oregon.

The author has been married six and one half years to the former Christine Fitch.

	198503.nordquist.peter to p. ii.pdf
	198503.nordquist.peter to p. 50.pdf
	198503.nordquist.peter to p. end.pdf

