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INTRODUCTION

Generally speaking, the metabolism of the skin has been
studied far less frequently and understobod less well tl;lan that of
other tissues such as the liver>and kidney.  This appears to be
due mainly to the technical difficulties encountered: skin is not
a uniform fissue, consisting of many different structures. The
use of whole skin, therefore, is unsatisfactory. In an attempt to
obtain homogeneous samples of skin, the epidermivs has become
the material of choice for metabolic studies in the past decade.

Notwithstaﬁding the upsurge of studies on the carbohydrate
metabolism of "normal' epidermis in some rodents and in man,
there is practically no literature describing the possible altera-
tions in carbohydrate metabolism of "injured' epidermis in any
species. This paucity of material also appears to be due to the
technical difficulties of obtaining target tissues. For example,
regrowing epidermal cells in the wound-heaiing procesis are
probably limited to thosg directly adjacent to the wound. An early
lesion of papilloma or carcinoma produced by painting with
chemigal carcinogen may be confined to 10 ar 20 cells. To study

the possible metabolic changes in these minute lesions, the



application of the quantitative histochemical methods of Lowry
are eminently appropriate for assaying certain enzymes in ug
amounts of tissue.

In this study, different experimental injuries were produced

in the epidermis of rhesus monkeys (Macaca mulatta) and changes

in the activities of certain enzymes, participating in carbohydrate
metabolism were measured specifically in the "injured' histo-
pathological lesion.

In the following chapters, the characteristic features of carbo-
hydrate metabolism in skin as well as the literature on enzyme
changes following epidermal injuries are reviewed and summarized.
The pertinence of, and the need for the present study are thus
justified.

I. Cutaneous carbohydrate metabolism: Review,

Glucose, synthesized by photosynthesis in plants, plays an
important role in the transaction of energy in the biological system
of animals. Carbohydrate metabolism in the skin has been
reviewed by Rothman in 1954 (1), by Lorincz aﬁd Stoughton in
1958 (2) and by Freinkel in 1964 (3). The existence of the metabolic
pathway has been demonstrated by enzyme determinations and
Weber summarized the broad enzyme spectrum observed histo-

chemically or biochemically up to 1964 (4).
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The level of free glucose, /9 D-glucopyranose, was estimated
in the epidermis (5, 6, 7, 8, 9, 10); the amount of glucose present
in the epidermis depends on the blood sugar level., It is assumed
that the passage of glucose into the epidermal cells is a simple
diffusion process so that the utilization of glucose is not limited
(7, 10). It was found that glucose was not converted to gluconic
acid or to sorbitol in the skin (11)., Therefore, upon entering the
cell, glucose becomes phosphorylated to glucose-6-phosphate.
Hexokinase, the enzyme that catalyzes this reaction, has been
demonstrated in the skin (12, 13, 14, 15, 16).

About 15 per cent of this glucose-6-phosphate is hydrolyzed
back to free glucose and inorganic phosphate by glucose-6-phospha-
tase (14). Five per cent of glucose-6-phosphate present in the
epidermis is converted to glucose-1-phosphate through the reaction
catalyzed by phosphoglucomutase (14). Glucose-1l-phosphate is in
turn utilized in glycogenesis; biosynthesis and degradation of
glycogen by the skin were found and their pfocesses were con-
sidered to be rapid and dynamic by Adachi in 1961 (17, 18). Another
5 per cent of glucose-6-phosphate is converted to 6-phospho-
gluconate by the action of glucose-6-phosphate dehydrogenase,

which is the first step of the pentose phosphate shunt; the remaining



75 per cent is converted to fructose-6-phosphate by phosphoglu-
coisomerase, which is the initial step of glycolysis and the
complete oxidation to carbon dioxide and water (14, 19). Less
than two per cent of glucose is oxidized in the tricarboxylic
acid cycle (19, 20).

Skin tissues require both metabolic energy in the form of
adenosine triphosphate (ATP) and reduced nicotinamide adenine
dinucleotide phosphate (NADPH) as a reducing agent for bio-
synthesis. ATP is formed in the glycolysis and tricarboxylic
acid cycle, and NADPH is formed by oxidative decarboxylation

in the pentose phosphate shunt and tricarboxylic acid cycle.

A, Pentose phosphate shunt

Many reports have been published since Barron et al. in 1948
(13) first suggested the operation of the pentose phosphate shunt
in skin. Both C-l and C-6 of glucose are converted to the methyl
group of pyruvate and are, therefore, metabolized equally via the
glycolysis and tricarboxylic acid cycle. The loss of C-1 of
glucose as CO, gives a different metabolism of C-1 and C-6
of glucose in the pentose phosphate shunt. Freinkel (19) found that
the ratios of CO, derived from C-1 to CO, from C-6 glucose in

human skin were between 2.8 to 3.1, which indicate the activity
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of the pentose phosphate shunt. A similar qualitative study on rat
skin was dohe By Pomerantz and Asbornsen (20). The inter-
ﬁediates such as sedoheptulose-7-phosphate and ri;)ose—5-'phosphate
of this shunt were determined in the skin of the rat (12) and guinea
pig (22).

The activities of glucose-6-phosphate dehydrogenase (14, 23,
24, 25, 26) and 6-phosphogluconate dehydrogenase (26, 27) were
estimated quantitatively in human skin. Glucose--6-phos-phate dehydro-
genase catalyzes the oxidation of glycose-6-phosphate to 6-phospho-
gluconolactone, which is rapidly hydrolyzed to 6-phosphogluconic
acid by the enzyme lactonase. 6-Phosphogluconate dehydrogenase
catalyzes the oxidative decarboxylation of 6-phosphogluconic acid
to ribulose-5-phosphate (Fig. 1).

The significant roles of this alternaj:ive pathway of glucose
metabolism in the skin‘may be to provide pentose phosphate for
the synthesis of nucleic acids (ribose nucleic and deoxribose
nucleicj and to generate reduced nicotinamide adenine dinucleotide

phosphate (NADPH) for reductive processes in lipogenesis and

keratinization.,

B. Glycolzsis

The formation of lactic acid from glucose in human skin was



reported as early as 1926 (28). Intensc glycolysis in the presence
of oxygen is a specific feature of cutaneous epitheli\al structure
(20, 29, 30, 31, 32, 33); the rate of conversion of glucose to
lactic acid under aerobic conditions is approximately 3 ug/mg/hr
(31). Lactate dehydrogenase (14, 24, 34), catalyzing the last
reaction step and most of other enzymes of glycolysis (14), has
been assayed in human skin,

All of the intermediates in the glycolytic sequence are esters
of phosphoric acid; only the initial reactant, glucose and the final
products, pyruvate and lactate, are not phosphorylated compounds.
The excess amount of lactate formed in the epidermis can easily
be absorbed by the blood stream from the cell.

The phosphate group of these intermediates is the chemical
instrument for generating ATP from ADP. As shown in Figure 2,
glycolysis yields a net of 2 ATP molecules per 1 molecule of
glucose in anaerobic conditions or 8 ATP molecules in aerobic
conditions. Recent iscotope studies show that 40-70 per cent of
labelled glucose is converted to lactic acid in human and rat skin

(19, 20). Thus, for every 100 moles of glucose, 80-140 moles of

ATP are produced via glycolysis.



C. Tricarboxylic acid cycle

Since Barron et al. (13) were unable to demons\trate iso-
citrate dehydrogenase activity and the oxidation of citrate and
o ~ketoglutarate in the in vitro respiration of the skin, they
suggested the hypothesis of the succinate-fumarate system as a
final step of glucose metabolism, Griesemer and Gould (35)
later found that tricarboxylic acid cycle substrates, including
£ -ketoglutérate but not' citrate, stimulated the epidermal res-
piration; thus, they assumed the presence of the enz&mes in the
epidermis for the oxidation of those substrates. However, there
was still the short-cut glucose metabolism through the succinate-
fumarate system of Barron et al. (13) to contend with.

Supplementing those of Barron et al. and Griesemer and Gould,
the works of Cruickshunk et al. (36, 37) have provided the findings
of transitory stimulation of citrate to the epidermal respiration
and of the presence of isocitrate dehydrogenase in the epidermis.
Furthermore, Hershey et al. (23, 24, 27) and other investigators
(14, 38, 39) have evaluated other tricarboxylic acid cycle enzymes--
succinate dehydrogenase, fumarase, and malate dehydrogenase--
in human and animal skin. Subsequently, it has become apparent
that the tricarboxylic acid cycle can operate in skin as well as

in other mammalian tissues.



Since less than two per cent of glucose is oxidized via the
tricarboxylic acid cycle in the skin (19, 20), ATP production
in this cycle is less than 60 moles for 100 moles of glucose
(Fig. 3). NADP-dependent isocitrate dehydrogenase is thought
to function as a pathway for the generation of NADPH for bio-

synthetic purpose.



Figure 1 .

Metabolic map of the pentose phosphate shunt
Numerical figures are the enzyme activities in the epidermis of

the rhesus monkey expressed as moles per hour per kilogram

dry weight (40).
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Figure 2
Metabolic map of the glycolysis

Numerical figures are the enzyme activities in the epidermis
of the rhesus monkey expressed as moles/hr/kg dry weight

(16, 40, 41, 42, 43, 44, 45, 46, 47, 48).

.ATP production
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(2)NADT » 2)NADH——(2)NADT 6 ATP
net 8 ATP
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Figure 3
The metabolic map of TCA cycle

Numerical figures are the enzyme activities in the epidermis
of the rhesus monkey expressed as moles/hr/kg dry weight

390
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II. Metabolic pattern in the normal epidermis of the rhesus monkey.

A. Enzymatic profile of glucose metabolism

Most of the enzymes involved in the pentose phosphate shunt,
glycolysis and tricarboxylic acid cycle, have been demonstrated
in this laboratory in the skin of rhesus monkeys. The specific
activity of each enzyme in the normal epidermis is shown in the
metabolic maps represented in Figures 1, 2 and 3. The only
pathway of glucose utilization in the skin of this primate is the
phosphorylation of glucose to glucose-6-phosphate (11); an active
hexokinase (EC 2.7.1.1) system was evaluated in the skin of the
rhesus (16).

The demonstration of glucose-6-phosphate dehydrogenase
(EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1. 44)
suggested an active participation of the pentose phosphate shunt of
glucose metabolism in the epidermis of the rhesus monkey (40)
(Fig. 1).

A profile of the other 11 enzymes of the glycolytic pathway
established in the epidermis includes glucosephosphate isomerase
(EC 5.3.1.9) (41), phosphofructokinase (EC 2.7.1.11) (41), aldolase
(EC 4.1.2.b) (42), triosephosphate isomerase (EC 5. 3.1.1) (41),
glycerophosphate dehydrogenase (EC 1.1.1.8) (43), glyceraldehyde-3-

phosphate dehydrogenase (EC 1. 2.1.12) (44), phosphoglycerate
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kinase (EC 2.7. 2. 3) (45), phosphoglyceromutase (EEC 2. 7. 5. 4)

(45), enolase (phosphopyruvate hydratase) (BEC 4. 2.1, 11) (46},
N
pyruvate kinase (EC 2.7.1.40) (47), and lactate dehydrogenase
(EC 1.1.1.27) (48) (Fig. 2).
The enzymes of the tricarboxylic acid cycle assayed are
aconitase (aconitate hydratase) (EC 4. 2.1. 3), isocitrate dehydro-
genase (EC 1.1.1.42), fumarase (fuznarate hydratase) (EC 4. 2.1, 2),

malate dehydrogenase (EC 1.1,1. 37) and malic enzyme (EC 1.1.1.

40) (39) (Fig. 3).

B. Concept of metabolic control

The availability of orthophosphate and phosphate acceptor in
tissues has been known to have a basic influence on the rates of
oxidation and glycolysis {49, 50, 51). Energy transfer is coupled
to the oxidation-reduction reaction in the respiratory chain, and
the equilibrium of this reaction is controlled by the phosphate
potential, i.e., the ratio of ATP to ADP and Pi' An increased
amount of ATP inhibits the respiration (52).

Besides the mitochondrial respiratory control another type
of regulating mechanism has been suggested in connection with
the sequence of metabolic reactions. In this allosteric control,

specific metabolites regulate many enzyme activities.
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When these regulatory agents, allosteric effectors, bind an
enzyme on its allosteric sites, a reversible conformational
alteration occurs in the molecular structure of enzyme protein.
This conformational change, known as allosteric transition,
modifies the properties of the active site on the enzyme molecule.
It is suggested that this allosteric control plays an essential role
in the control of metabolic activity and possibly of protein synthe-
sis (53, 54),

Several enzymes participating in energy metabolism have been
reported to have allosteric properties and to be controlled by the
level of adenosine nucleotides~-~-ATP, ADP, and AMP (53).

The present concepts of metabolic control in the glycolytic
pathway are summarized in Fig. 4. Multi-site control interaction,
or multiple feed-back _control, are involved in the glycolytic control
mechanism (55).

Three control sites in tricarboxylic acid cycle have been
found at the points of oxidation of pyruvate, isocitrate and
succinate (56).

Although we did not intend to study the role of each enzyme in
this laboratory, we found that the rate-limiting enzymes were
strongly influenced by various activators and inhibitors. Therefore,

it may be possible that in the skin some of the key enzymes shown



1'%,
in Fig. 4 might work under a control mechanism similar to that

of other tissues,
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III. Epidermal enzymatic responses to various traumas: Review

The glycogen content of normal mammalian epidermis is
known to be small: it was found to be only one-‘;enth fhat of the
total skin glycogen or 19 mg % in dry weight (17, 57). Histo-
chemically demonstrable glycogen is found only in the cells of .
the upper stratum spinosum in normal state (58), and biochemical
findings show a 50% higher concentration of glycogen in the upper
layer than in the basal layer (7). Histochemical studies have
indicated that glycogen is stored in the epidermis atrthe initial

stages of various kinds of injuries and disappears during recovery

(59, 60).

A. Responses to carcinogens

Experimental skin carcinogenesis has received attention since
1915, when Yamagiwa and Ichikawa (61) induced skin cancer in
the ears of rabbits by prolonged applications of a coal tar conden-
sate. Although pathological and morphological studies in skin
treated with carcinogen have been made over many decades (62,
63, 64, 65), no study of metabolic changes has been reported,
The treatment of skin with carcinogens decreased the deposition
of forrﬁazan, which may indicate mitochondrial function, and

decreased Oy consumption (63, 64),
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B. Responses to ionizing radiations

It has been claimed (66) since 1927 that ultréviolet light and
X-ray irradiation cause a depression in-glycolysis of the skin,
The inhibition of enzymes by X-ray and ultraviolet light have
also been reported (67, 68).

Ohe erythema dose of X-ray causes an initial decrease
followed by an increase in the g'lucose'inco_rporation into glycogen
in thé skin at 24 hours after irradiation (17). Minimum erythéma
doses (2 x 107 ergs/cm?2) of ultraviolet light produce an accumula-
tion of glycogen in the basal cell layer after 12 hours and morpho-
logical changes of the epidermis after 24 hours (69). The accumula-
tion of glycogen by irradiation damage is due to the imbalance in
activity between phosphorylase and glycogen synthetase (17).

In a short-range study on ultraviolet irradiation, it was reported
that ultraviolet irradiation inhibited or inactivated hexokinase and,
in turn, brought abouf remarkable reductions in glucose oxidation
and oxygen consumption at the initial stages, up to two hours
after exposure (68). More recently, an in vitro study has shown
that ultraviolet light inactivates tyrosinase, ATPase, acid phospha-

tase, succinic dehydrogenase, and oxidative phosphorylation (70).

C. Responses to wounding

Eight hours after stripping the corneum with scotch tape in
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man, glycogen is accumulated in the basal cells (71). Histo-
chemically, the activity of several hydrolytic enzymes has been
shown to increase during the early phase of wound healing,
Alkaline phosphatase appearéd in the malpighian layer at the
wound margin 24 hours after wounding (72, 73), acid pho‘sphatase
was found after 4 hours (73, 74), and leucine aminopeptidase was
present 2 hours after injury (74, 75). Before th_esé incrvéases in
enzyme activity, a traumatic inhibition of the enzyme or of its
synthesis was observed during the first two postoperative hours
(75). Oxidative enzymes--monoamine oxidase, succinate dehydro-
genase, cytochrome oxidase--have also been shown to increase

in the peripheral zone during the early phase (73).
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IV. Historical survey of the quantitative histochemical method

The general histochemical procedure was deve}oped by
Linderstrg!m—Langre,t al. in 1935, who found that pepsin was
found to be localized in the chief cells of the stomach (76). The
results of the microchemical analysis in the original technique
was compared with the histological preparation as a control.
This quantitative histochemical technique was further developed
by Anfinse and Lowry et al. in 1942 (77) and Lowry in 1953 (78, 79,
80), who applied it to the nervous system, retina anci brain,
Frozen dried sections of brain tissue were prepared and the
measurement of the volume and dry weight of fragments of these
sections were established as a substitute for the indirect histologi-
cal control of Linderstr;fm—Lang's technique (78). For the prepara-
tion of frozen-dried section Lowry carried out the quick freezing
and drying method of Hoerr (81), dehydration in vacuum at -30°
to -40°, and dissection from the dry sections. For the measure-
ment of the sample, the evaluation of sample size was based on
either the protein content, the sample volume, or the dry weight.
Protein can be measured on a small tissue with the folin phenol
reagent (83). The sample volume is calculated from the thickness
of the slice multiplied by the area. The dry weight can be deter-

mined with either a quartz torsion balance (84) or a quartz "fish-pole"
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balance (85), the latter, with a sensitivity and reproducibility of
about 0. 01}1g, being much more convenient; the moisture and
gases of the air give constant increment in wei ght under usual
laboratory conditions (78).

Since it was difficult to dissect the tissue out larger than
a few micrograms in weight, sufficient for histochemical purposes,
it was necessary to use rather small-scale chemical methods.
General procedures and tools were developed for measuring
small amounts, 10"10-10’13 mole, of chemicals such’ as chloride,
riboflavin, and phosphorus fractions with as little as 10 ug wet
wgight of brain tissue (78, 79).

With the development of fluorometry, which has many
advantages over spectrophotometry, the procedures for quantita-
tive microchemistry of enzymes, such as adenosine triphosphatase,
acid and alkaline phosphatase, gholinesterase, fumarase and aldo-
lase, were also elaborated on small scales with as little as 5 or
10 g of brain tissue (80). Fluorometry procedures are about a
thousand times more sensitive than spectrophotometry and there-
fore require only a thousandth part of material. This sensitive
method came to be particularly suited for studies involving the
localization of enzymes and related substrate and coenzymes with-

in the tissues.
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Kaplan et al. (86) found that the oxidized pyridine nucleo-
tides are converted to highly fluorescent derivatives when heated
\
in alkali or with carbonyl compound; on the other hand, reduced
forms are not influenced by alkali but have a native fluorescence.
Lowry et al. (87) modified the Kaplan procedure to stabilize the
fluorophor and to measure its fluorescence spectrum. Many of
the fluorometric procedures for enzyme assay have been developed,
based on the fluorescent properties of pyridine nucleotide, oxidized
and reduced. The first enzymes assayed by this principle were
lactate dehydrogenase, 6-phosphogluconate dehydrogenase, and
glucose-6-phosphate dehydrogenase (87). Furthermore, with the
addition of appropriate accessory enzymes, almost any enzyme
reaction can be assayed fluorometrically, depending on the oxida-
tion of reduced NAD or reduced NADP or the reduction of NAD'
or- NADP?t (87); and the procedures for many other enzymes have
been developed,
The microchemical methods thus devised by Lowry have

permitted accurate sampling and assays on various cell types
or tissue structures in the nervous system. These micromethods
were quickly modified and adapted during the past decade for the
study of various tissues in human skin by Hershey and his associates

(23, 24, 27). In addition to the procedures modified by Hershey
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the quantitative enzyme histochemistry in the skin has been further

developed by Adachi in this laboratory, based on the application

of the principle of coupling reaction in the various enzyme systems.
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V. Summary

The available literature indicates that the '"mormal'' epidermis
of man and some rodents utilizes glucose via the glycolytic path-
way, the pentose phosphate shunt, and the TCA cycle. The
major end-product of glucose catabolism is lactate, and the
contribution of the TCA cycle to ATP production is relatively
minor. The glucose utilization through the pentose shunt in the
epidermis is signficjantly active and appears to contribute to
nucleic acids and fatty acids metabolism in the epidermis.

The studies of glucose oxidation in the "injured!' epidermis,
on the other hand, are scanty and fragmentary. The obstacles
to these studies are largely due to the histological complexity of
the skin which makes it difficult to procure an accurate sampling.
Thus, the underlying metabolic alteration in pathological skin
has never been understood. The applications of the quantitative
micro-enzyme assay method of Lowry to skin appear to be the
ideal approach to this problem.

The experiments in this study are designed to approximate
a fundamental concept of possible alteration in glucose catabolism
in "injured' epidermis by analyzing some of the key enzymes in
each metabolic cycle of glucose in 3 types of injury. The enzymes

chosen were the following: 1) Glucose-6-phosphate dehydrogenase
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(EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1. 1.
1.44) analyzed for the pentose phosphate shunt; 2) glyceralde-
hyde~-3-phosphate dehydrogenase (EC 1.2.1.12) and lactate
dehydrogenase (EC 1.1.1,27) for the glycolytic pathway; 3)
isocitrate dehydrogenase (EC 1.1, 1.42) and malate dehydrogenase
(EC 1.1.1.37) for tricarboxylic acid cycle.

The traumas chosen were: 1) chemical injuryA(topicval carcino-

gen application); 2) physical injury (ultraviolet light irradiation);

3) mechanical injury (scraping of wound, removal of epidermis),

MATERIALS AND METHODS

I. Animals and their care

Six rhesus monkeys (Macaca mulatta) 2 years old at the begin-

ning of this experiment were used for the painting of 9, 10-dimethyl-
1, 2-benzanthracene (DMBA). They were kept in ind’ividual' cages
in the animal care room of the Oregon Regional Primate Research
Center,.

Three rhesus monkeys, 1-1/2 years old, were used for the
wound study. Before the experiment began, they were conditioned

1

for one week to a "sitting chair." After the back of each animal

had been wounded by scraping, they continued to sit on the chair
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for the next 2 weeks in the intensive care room of the Center to
prevent their scratching the wound sites. N

Another set of 3 rhesus monkeys, 1-1/2 years old, wes used
for ultraviolet light irradiation. These animals were given the
same training and intensive care as the animals used for wound
study during the one-week experiment,

All animals were fed Purina ""monkey chow' supplemented by

apples and biscuits.

II. Experimental methods

A. Painting with a carcinogen and cocarcinogen

The back of each animal was mapped out into 4 areas and the
hairs clipped for the application of carcinogen and cocarcinogen
and for the control areas, Two parts of the experimental skin,
approximately 5 x 5 cm each, were painted with .8 ml of freshly
prepared 1% solution of dimethyl benzanthracene (DNIBA)1 in

acetone as a carcinogen and 1 ml of 100% dedecg,flbenzc—:neZ as a

ICalbiochem, Los Angeles, California.

ZCalifornia Chemical Company, Oronite Division, San Francisco,
California.
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¢ocarcinogen (65). Before these chemicals were applied, one of the
two experimental areas was exposed to ultraviolet ];ight from a
Westinghouse sun-lamp, FS fluorescent lamp as another accelera-
tor (62). The amount of ultraviolet light energy was 12 x 104 ergs/
cmz, which was calibrated with a Rentschler click meter (Model
SM 200) equipped with a WL767 phototube (precalibrated against
an FS fluorescent lamp standardized by the United States Bureau
of Standards), One of the 2 control parts, about 2.5 x 2.5 cm
each, was treated with .5 ml of dedecylbenzene and of acetone
after ultraviolet irradiation. Another control was treated with
acetone only, after ultraviolet irradiation. The animals were
painted 3 times a week for the first 5 months and twice a week for

the next 7 months.

B. Ultraviolet light irradiation

Six spots 2.5 cm in diameter on one side of the back of each
animal received 10 erythema doses of ultraviolet light. Symmetri-
cal areas on the other side of the back were used as controls.

The source of ultraviolet light was Aero-Kromayer (Model

2221A)1, the intensity of which for the spectral region 3130A to

anovia Lamp Division, Newark, New Jersey.
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1850A was 70,000 microwatts/cm2, Erythema time is one second

according to the manufacturer.

C. Scraping wound

The back skin was scraped with a Keratotom! to a depth of

0.2 mm, which was thick enough to remove the epidermis.

III. Microchemical ass ays

A, Sampling

1. DMBA experiment.

Specimens, approximately 1l x 2 cm, of benign tumors (kerato-
acanthoma) (65), hyperplasia, and control skin were taken from
the three animals one year after the application of DMBA. Tissues
were frozen quickly in liquid nitrogen, cut 24 micra in thickness
at -20° in a cryostat, and dried at -5° in vacuum of 0.1 mm or
less Hg with an acetone-dry ice trap to absorb the moisture for
6-12 hours. Frozen dried tissues were kept in a vacuum at -20°
until the enzyme analyses.

Injured and control samples of epidermis were dissected
out from the frozen dried sections under the stefomicroscope,

weighed out 0.5 to 2.0 pg on a quartz fiber ''fishpole'' balance

lStorz Instrument Company, St. Louis, Missouri.
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(84), and transferred into the small "micro' test tube, with a

2.5 mm inner diameter and 25 mm in length.

2. Ultraviolet light irradiation experiment,

Biopsy specimens, 1 x1 cm, were taken from the irradiated
and the control skin on the 6th, 12th, 24th, 48th, 72nd, and 168th
(one week) hour after irradiation. The dissection and measurement
of preparations of frozen dried sample proceeded as described

above.

3. Wound experiment.

Biopsy specimens, approximately 1 x 2 cm, were oBtained
from the wound sites and the adjacent portion to it on the lst, 2nd,
4th, 8th, 14th, and 21st day after wounding. The area adjacent
to the wound site (approximately 1 em), was used as a control for
this experiment. The preparation of samples was the same as
for those of the DMBA experiment.

Epidermal cells started to r;aigrate inward from the wound
margin but did not cover the wound on the first day after wounding.
On the 2nd day, a newly-grown epidermal sheath covered the.

wound; occasionally the advancing epithelial cells moved through

the dermis below the leucocytic barrier. Thereafter the inward
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migration of the epithelium advanced further. The wounded sample
on the first day after wounding, therefore, was tak§n from the
immediate margin of the wéund amd from the 2md day om; the
newly-formed or migrated epidermal tissues were chosen as

wounded epidermis.

B. Reagents

The partial properties and characteristics of six enzymes studied
in this thesis were studied previously with an epidermal homogenate
from normal rhesus monkeys in this laboratory (39, 40, 44, 48).
The optimal assay conditions determined in the previous studies
were directly applied to this experiment.

The stability of certain reagents was also checked regularly.
For example,nicotinamide adenine dinucleotide (NADY) and nicotin-
amide adenine dinucleotide phosphate (NADP+) were standardized
at least monthly as follows: NAD? to be standardized was added
to 0.1 M tris buffer, pH 8.7, containing ethanol and alcohol dehydro-
genase. For NADP? standardization 0.1 M tris buffer, ‘pH 8.8,
containing 1 mM MgCl,, glucose-6-phosphate and glucose-6-
phosphate dehydrogenase was used. Consequently NADT and
NADP' were converted to NADH and NADPH, respectively, which
were determined spectrophotometrically at 340 mu. Fifty micro-

melar NADH in 0.1 M tris buffer, pH 8.7, was used for
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spectrophotometrical standardization.

1. Substrates:
Glucose-6-phosphate (Sigma), disodium salt; 100 mM; stored
at -20°, 6-Phosphogluconate, trisodium salt (General
Biochemicals); 100 mM; stored at -20°,
Fructose-1, 6-diphosphate (Calbiochem); 50 mM; stored at -20°,
Aldolase from rabbit muscle, crystalline suspension in
(NH,),SO0y, 10 mg/ml, (Sigma); stored at 4°.
Pyruvate, sodium {Sigma); 100 mM; stored at -20°.
Isocitrate, trisodium (Sigma); 100 mM; stored at -200,

Oxaloacetic acid {(Sigma); 100 mM; stored at 209

2. Buffers:
Tris (hydroxymethyl) amino methane-hydrochloric acid buffer,
.5 M; pH 7.8, 8.1, B. 2 atid &, 8; atorad at -20°,
2-Amino-2-methyl-1, 3-propanediol buffer, 0.5 M; pH 8. 6

and 8. 8; stored at -200,

3. Coenzymes:
Nicotinamide adenine dinucleotide, oxidized form, (NAD+)
(Sigma); 100 mM; stored at -209°.

Nicotinamide adenine dinucleotide, reduced form,(NADH)
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(Sigma); 50 mM; prepared in a Tris. buffer, pH 8.1-8.6,
just prior to use.
N

Nicotinamide adenine dinucleotide phosphate (NADP+) (Sigma);

20 mM; stored at -20°.

Cofactors:

MgCly; 1 M; stored at 4°.

MnCl,; 1 M; stored at 4°.

Ethyledinitrilotetraacetic acid (EDTA); 100 mM adjusted pH
to 7. 5; stored at 40,

Mercaptoethanol solution (Sigma), 1.0 M in 0, 02 N KOH;
stored at 4°, |

Albumin (bovine plasma) (Calbiochem); 5% aqueous solution;

kept at 4° or -20°,

Fluorescence reagents:

Carbonate buffer, 0.1 M, pH 10. 5; stored at room tendperature.
(The fluorescence of NADPH and NADH is stable in this buffer. )
6.6 N NaOH.

(to develop the fluorescence of NAD+)
Iy 2 =teet & O HOL.

(to destroy the native fluorescence of NADPH and NADH)
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C. Assay methods

The assay conditions and constituents of the reaction mixture
for G-6-PDH, 6-PGDH and GAPDH are given in Table I and those
for ILDH, ICDH and MDH in Table II.

After an appropriate incubation, the assays of NADP-
dependent enzymes, G-6-PDH, 6-PGDH and ICDH, were based
on the stoichiometrical reduction of NADP' to NADPH. The GA@PDH
activity was measured based on the reduction of NADT to NADH.
NADPH or NADH produced by enzyme reaction was measured by
the native fluorescence method. The assay system for LDH and
MDH was based on the oxidation of NADH to NAD', The strong
alkali method was used for NADT as say as described below,

Blank and standard tubes were run simultaneously; the reaction
mixture without tissue was used as a blank for each enzyme assay
and the standardv tube contained 0.5 x 1075 to 1.5 x 10-5 M NAD?
(NADH) or 0.5 x 1076 t0 2.0 x 10-6 M NADPH. NADPH fo} NADPT
~dependent enzyme assay was su'bstituted by NADH. In all six
enzyme assays, no reaction followed when their respective sub-
strates were omitted from their reaction mixtures. An enzyme
blank was negligible and did not increase blank value, when 0.2 to
5}1g of the dissected epidermis were used as enzyme source in 10

to 15 ul of substrate reagent.

E
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1. The native fluorescence method for NADPH or NADH assay.

The enzyme reaction was stopped by placing th\e tubes into
ice-chilled water. Subsequently the mixture was diluted with 1
ml of éarbonate buffer, 0.1 M, pH 10.5, The fluorescence of
reduced NAD or NADP is stable in this solution.

Fluorescent light was activated and transmitted in a Farrand
fluorometer (Model A2) with a primary filter of Corning glass
filter No. 5860 and a secondary filter complex of Corning No.
4308, 5562, and 3387. The activation (excitation) aﬁd fluorescence
maximum for pyridine nucleotide was 360 mu and 460 mp respec-
tively., The primary filter used isolated the mercury line at
365 mpm for activation and the secondary filter combination had
maximum transmission at 470 mu (87).

The intensity of the fluorescence of NADPH or NADH was
directly proportional to its concentration and was amplified and

measured on a galvanometer,

2. The strong alkali method for NADT assay. 7
After incubation, the reaction was stopped by the addition of
HCI1 (final concentration of 0.2 to 0.5 N). This procedure also

destroyed unreacted NADH. The aliquot treated with acid was then

%
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transferred into 100 jul of strong NaOH to give a concentration of
5.0 to 8.0 N and was allowed to stand for one hour at room

\
temperature or 30 minutes at 37° or 15 minutes at 60°. In this
process the NAD? produced by enzyme reaction was converted
to a stable fluorescent product by the action of strong alkali. The
fluorescence of this product was measured as described in the

native fluorescence method after 5~ to 10 -fold dilution with distilled

water.

IV. Statistical analyses

The student t-test and analysis of variance were run for the
significance of the result. When an analysis of variance on the
data was significant, Newman-Keuls test was done to find where the

significance lay (88).

Computational formulas

a. The t-test

X X
t=__ 1 s
S. o+ s
where 3—(1’ 3_(2 = the mean values of two sample
S<., Sg = the standard errors of the two sample means



b. Analysis of variance

38

(1) G*/kn :
(2) ZXin. Where G = Xij: total of all raw scores
(3) ZTJ.Z/n T = the sum of all scores for treatment,
i.e., tumor, hyperplasia and
normal, etc.
(4) ZAjZ/k A = the sum of all scores for each
animal
k = nﬁmber of groups
n = number of individuals in a group
Degree of Means of
Source Sum of square freedom square F
Between animals (4)-(1) n-1
Within animals (2)-(4) n{k-1) SS/df MS MS
Bet./” Within
Treatments (3)-(1) k-1
Residual (2)-(3)-(4)+(1) (n-1)(k-1)
(2)-(1) nk-1

Total
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RESULTS

I. Chemical injury induced by DMBA

The enzyme activities in the hyperplastic epidermis and
benign tumor induced by the combined application of DMBA and
dodecylbenzene are summarized in Table III and Figure 5.
Statististical analyses, analysis of variance, and t-test,are shown

in Tables 1V, V, VI, VII and VIII,

A. The effect of DMBA on the enzymes of the pentose phosphate

shunt

The most remarkable effect of DMBA was on both glucose-6-
phosphate and 6-phosphogluconate dehydrogenase. F-value in
the analysis of variance indicated that individual variations
among the three animals were insignificant in the assay of each
enzyme and that the effect of DMBA treatment was significant
on both enzymes (Table IV, V and VIII, Figure 5).

In general, there was no stétistically significant difference
in enzyme activity between tumor and hyperplastic tissue, where-
as significant changes were seen between normal control, and
tumor or hyperplastic tissue. As shown in Table VIII, G-6-PDH

activity in tumor tissue was 5 times higher than in normal

(P 0.05) and 1.5 times higher than in cocarcinogen control (P 0.05).



40
6-PGDH activity in tumor was about 4 times (P 0.01) and 1, 4 times
(P 0.05) higher than in normal and in cocarcinogen\control tissue,
respectively. The control cocarcinogen also enhanced G-6-PDH
activity to 3. 3 times and 6PGDH activity to 2.4 times higher level
than normal (P 0.01). Acetone alone also seemed to affect both

enzyme activities.

B. The effect of DMBA on glycolytic enzymes

Glyceraldehyde-3-phosphate dehydrogenase activity had insigni-
ficant individual variations and was changed in the DMBA treat-
ment (Table VI), whereas practically no change of lactate dehydro-
genase activity was observed. Individual variation in the assay of
IL.LDH activity was significant at P 0. 05 level (Table VII).

GAPDH activity in the tumor was 3 times higher than in normal
and 2 times higher than in control tissue (P 0.01-0.001) (Table VIII).
LDH activity of tumor tissue was increased only 30% of normal
level, but this increase was statistically insignificant and indicated
no difference in LDH activity among the treated, control, and nor-

mal epidermis (Table VIII, Figure 5).

C. The effect of DMBA on tricarboxylic acid cycle enzyme

Individual variations among animals for the assay of isocitrate

dehydrogénase were insignificant (Table VII). All of the treated
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epidermis showed approximately 3 times higher activity of ICDH
than normal epidermis (P 0.001) (Table VIII). No significant
difference in the ICDH activity was observed among the tumor,
hyperplasia, and cocarcinogen control epidermis (Table VIII).
Individual variations in malate dehydrogenase were very large
(P 0.001), and the activity of this enzyme did not show any statis-
tically significant changes between the normal and éxperimental

epidermis (Table VII and VIII, Figure 5).
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TABLE VII

Analyses of variance from the data of LDH, ICDH, and MDH activity in

the epidermis treated with DMBA,
Yy

LDH
Source SS df MS F 7
Bet, animals 124,59 2 62.30 5.5% > 3.5 (P 0.05)
Within animal 200.97 18 11.16 -
Treatments 38.19 6 6.37 0.5%%% £ 3,0 (P 0.05)
Residual 162.78 12 13.57
Total 325.56 20
ICDH
Source SS df MS F
Bet. animals 1.64 2 0.82 2,5%% £ 3,5
Within animal 7.19 18 0.40
Treatments 2.96 6 0.49 1.4%%% £3.0
Residual 4,23 12 0.35
Total 8.83 20
MDH
Source SS df MS F
Bet. animals 135.0 2 67.5 10.2% >6.0 (P 0.01)
Within animal 118.6 18 6.6
Treatments 33.2 6 5.9 0.7%%% <£3,0
Residual 85.4 12 7.1

Total 253.6 20

* Individual variations are significant
*% Individual variations are insignificant

***Treatments are insignificant at P 0.05 (see t-test in Table VIII)
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Figjure 5
Histograms of enzymatic changes in the epidermis treated
with DMBA and dodecylbenzene together.
In the ordinate the enzyme activity is expressed as moles per
hour per kilogram dry weight tissue. In abscissa I stands
for tumor, II for the hyperplasia adjacent to tumor, III for
hyperplasia produced by DMBA and UVL, IV for hyperplasia
produced by DMBA, V for dodecylbenzene and acetone control,

VI for acetone control, and VII for the normal epidermis.
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II. Physical injury induced by ultraviolet light

The enzyme. activities affected by ultfaviolet light are shown
in Tables IX, X, XI, XII, XIII, and XIV and the changes during one
week of U. V., irradiation are outlined in Figure 6. In general there
were initial increases in enzyme activity at 6 hours, then decreases
between 12 to 48 hours, and again increases at 72 hours after

irradiation.

A. The effect of UVL on the enzymes of the pentose phosphate

shunt (Table IX and X, Figure 6)

The mean of 90 determinations of glucose-6-phosphate dehydro-
genase and 6-phosphogluconate dehydrogenase activity ranged
between . 50 and . 59 and between . 51 and . 58 mole per hour per
kilogram dry weight, respectively, in the control epidermis, depend-
ing on the individual animal. An analysié of variance from these
data indicated that this extent of individual variation was notsigni-
ficant (Table XV). Initial increases of 30% and 20% in the activity
of G-6-PDH and 6-PGDIH, respectively, were observed in the
irradiated epidermis 6 hours after irradiation. After these increases,
the greatest decreases of both enzymes were found during 24 to

48 hours after irradiation: 20% (P 0.05) decrease in G-6-PDH

and 40-50% (P 0.001) decrease in 6-PGDIH activity in two of three
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anim.als. These depressions of the enzyme activities were
followed by maximal increases in both enzyines at 72 hours;
thereafter the values of specific activity remained or decreased
slightly until 168 hours (1 weeic) after irradiation: 40-140%

(P 0.001) in G-6-PDH and 40-50% (P 0.001) increase in 6-PGDH

activity,

B. The effect of UVL on the glycolytic enzymes (Table XI and

XII, Figure 6)

The data on glyceraldehyde-3-phosphate dehydrogenase
activity in normal epidermis showed statistically significant
(P 0.01) individual variation which ranged from 3. 4-4. 3 moles
per hour per kilogram dry weight of epidermis. The normal range
of lactate dehydrogenase activity from 16.7-21. 8 moles per hour
per kilogram dry weight was not statistically significant (Table
XV).

An initial increase of an average of 20% normal activity was
found in the assays of GAPDH and of LDH in the epidermis irradiated
by ultraviolet light. There was a rapid drop in GAPDH activity
at 12 hours, and a significant decrease, 30-50% (l{3 0.05), was found
at 48 hour; after irradiation. There was about 10% decrease in

LDH activity during the period of 12 to 48 hours after irradiation;
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animals. These depressions of the enzyme activities were
followed by maximal increases in both enzymes at 72 hours;
thereafter the values of specific activity remained or decreased
slightly until 168 hours (1 week) after irradiation: 40-140%

(P 0.001) in G-6-PDH and 40-50% (P 0.001) increase in 6-PGDH

activity.

B. The effect of UVL on the glycolytic enzymes (Table XI and

XII, Figure 6)

The data on glyceraldehyde-3-phosphate dehydrogenase
activity in normal epidermis showed statistically significant
(P 0.01) individual variation which ranged from 3. 4-4. 3 moles
per hour per kilogram dry weight of epidermis. The normal range
of lactate dehydrogenase activity from 16. 7-21. 8 moles per hour
per kilogram dry weight was not statistically significant (Table
XV).

An initial increase of an average of 20% normal activity was
found in the assays of GAPDH and of LLDH in the epidermis irradiated
by ultraviolet lighf. There was a rapid drop in GAPDH activity
at 12 hours, and a significant decrease, 30-50% (P 0.05), was found
at 48 hours after irradiation. There was about 10% decrease in

LDH activity during the period of 12 to 48 hours after irradiation;
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however, this value of decrease was not statistically significant.
The greatest increase, 50% (P 0.001), in GAPDH was reached at
72 hours and was maintained until 1 Week after irradiation. A
continuous increase in LLDH activity was observed after 48 hours

and reached in 50% increase (P 0.001) at one week after irradiation.

C. The effect of UVL on tricarboxylic acid cycle enzymes (Table

XIII and XIV, Figure 6)

The mean activity of 90 determinations of isocitrate dehydro-
genase in the normal epidermis was 0.93 moles per hour per kilo-
gram dry weight. The range of individual variation for this enzyme
activity from 0.87-0.99 moles per hour per kilogram dry weight
of epidermis was not statistically significant. The mean activity
of 90 determinations of malate dehydrogenase in the normal epidermis ‘
was 13, 3 moles per hour per kilogram dry weight with an insigni-
ficant fange of 12,0-14, 5 moles/hr/kg dry weight."

Ultraviolet radiation caused an initial and conclusive increase
in the activities of enZymes participating in the pentose phosphate
shunt and in the glycolytic cycle. In contrast to the above enzymes,
there were no suchincreases in the activity of ICDH and MDH of
tricarboxylic acid cycle. However, significant depression of

ICDH was observed in the period from 12 to 48 hours after irradiation:
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the greatest depression being 50% decrease (P 0. 001) of the
normal level at 48 hours. A normal level of ICDH activity was
recovered at 72 hours and remained until one week after irradia-
tion which was the termination of this experiment. MDH seemed
to be the least changeable enzyme by ultraviolet radiation.
Practically no MDH response was measurable in the irradiated
epidermis, except for only a short period of depression, 30%

decrease (P 0.00l) of normal activity at 48 hours after irradiation.

D. Sequential enzymatic changes in the epidermis after ultraviolet

irradiation

At 6 hours after UVL irradiation, G-6-PDH and 6-PGDH were
enhanced by 20-30% increase in their activities, GAPDH and LDH
were activated 20% more than in the normal, and ICDH and MDH
showed no changes.

At 12 hours after UVL irradiation, the pentose phosphate shunt
enzyﬁles showed normal level of activity, glycolytic enzymes were
depressed by 10-20% and TCA cycle enzymes also depressed by
10-30% of normal level of activity.

At 24 hours after irradiation, G-6-PDH activity was gradually
increased and 6- PGDH activity was decreased by 10% while

glycolytic and TCA cycle enzymes maintained the decreased level.



53

At 48 hours the pentose phosphate shunt enzyme showed
gradual increases and glycolytic and TCA cycle enzymes had
their greatest depressions.

At 72 hours the pentose shunt enzymes had 40-80% increased
activities, GAPDH had an effect similar to the pentose enzymes,
LDH had 10% increased activity, and TCA cycle enzymes recovered
to the normal level of activity.

At one week after irradiation the pentose shunt enzyme main-
tained the increased activities, glycolytic enzymes had 40-50%
increased activity, and TCA cycle enzyme maintained the normal

level of activity,
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TABLE IX

The effects of ultraviolet light on the activity of G~6-PDH.

- non .
Hour after Animal irradiate%A)* Irradiate%B " '

irradiation  number epidermis epidermis e (B)/ ) P
6 1663 .58 + .06 .60 + .05 1.0 -
1703 .36 ¥ ,10 w0 ¥ .09 1.5 .01

1781 -7 ¥ 03 sk F 10 1.3 .05
Ave, A4 4+ 12 <36 ¥ .08 - 1.3 .001

12 1663 .75 + .29 - ofd % 20 1.0 ——-
1703 .48 + .16 40 + .16 0.8 el

1781 47 + .07 .57 + .07 1.2 ---

Ave, w1 & W15 .57 £ .21 1.0 ———

24 1663 B2, & JOF .36 + .07 0.8 .05
1703 .41 + .06 61 + .18 1.5 -

1781 220 & 14 .63 + .10 11 et

Ave. a3 o X 60 % .12 I .2 e

48 1663 A7 + .14 Bl + <18 0.9 -
1703 wld, + SO .61 + .12 0.8 .05

1781 .58 + .04 1.3 # 15 2.3 .001

Ave. (00 X5 .78 + .43 1.3 e

72 1663 41+ .12 .54 + .15 L.3 -
1703 .68 + .05 1.20 + .30 1.8 -01
1781 .51 + .04 1.24 + .13 2.4 .001
Ave. 54 + .13 99 4 .38 1.8 .001

168 1663 .68 + .08 98+ 19 1.4 .05
(1 wk.) 1703 .48 + .10 .84 + .13 1.8 .01
’ 1781 .48 + .04 .96 + .14 2.0 .001

Ave, .53 + + .16 1.7 .001

.13 .92

*Numerical figures express the enzyme activities; moles of substrate
converted per kilogram of dry weight tissue per hour (moles/kg dry
wt./hr.), and all values are the mean + S.D. of 5 determinations.
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TABLE X

The effects of ultraviolet light on the activity of 6-PGDH.

Non-
Hour after Animal irradiate% .. Irradiated )

irradiation number epidermis A)* epidermis(B)“ (B)/ (A) P
6 1663 .60 + .16 . cld & w8 1.2 -
1703 .50 + .14 .63 + .08 1.2 -

1781 .40 4+ .02 .38 + .04 1.0 ———

Ave, .50 + .14 .58 + .18 1.2 -
12 1663 .69 4+ .06 .46 + .05 0.7 .001
1703 .32 + .04 s 30 E whZ 17 .01

1781 .42 1+ .08 38 & .09 0.9 -

Ave. 48 + .17 46 + .11 1.0 -

24 1663 .56 % .03 .40 + .07 0.7 .01
- 1703 « 3% 4 .08 236 + OB 0.9 ———

1781 44 4+ .09 43 4+ .12 1.0 e

Ave. 46 + .10 40 + .09 0.9 .05

48 1663 .40 + .08 .23 + .03 0.5 .001
1703 W P -39 & .08 0.6 .01
1781 w21 & atl 108 12 125 .001

Ave. .62 + .14 ~57 & .39 0.9 i

72 1663 0¥ 13 L P 1.1 -
1703 .61 4+ .16 B2+ & 1.5 .05

1781 ST # .09 .86 + .17 1.5 .05
Ave, .56 + .12 D L il 1.4 .001

168 1663 Bl 4 J06 .84 + .06 1.4 .001
(1 wk.) 1703 ATk yOF .68 + .13 1.2 .01

1781 .57 + .04 <39 4+ 06 1.0 -

Ave. 5 # 06 Sy .15 1.2 .001

* Numerical figures express the enzyme activities, moles of substrate
converted per kilogram of dry weight tissue per hour (moles/kg dry wt./
hr.), and all values are the mean + S.D. of 5 determinations.
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TABLE XI

The effects of ultraviolet light on the activity of GAPDH.

Non-
Hour after Animal irradiated Irradiated
irradiation number epidermis A)* epidermis(B)*  (B)/(4) P
6 1663 3.64 + .60  4.41 + 47 1.2 .S
1703 2.75+ .85  3.57 + .40 1:3 P
1781 2edl-3 8D 2.57 £ .72 I, 3 -——
Ave. 2.90 ¥ .81  3.51 f .93 1.2 e
12 1663 3.17 + .52 2.34 + .56 0.7 .05
1703 1.57+ .18  1.65 + .40 1.0 -
1781 3.27+ .65 2.66 £ .71 0.8 -
Ave. 2,67+ .93 2.22+ .68 0.8 exr
24 1663 6.88 + .57  3.88 + .79 0.6 001
1703 4.79 + 1.70 4.84 + 1.56 1.0 -
1781 5.67 + .49 5.90 + .92 1.0 —_——
Ave. S:i% = 1. 29 4,87 +1.36 0.9 -
48 1663 3.76 + .26 1.8l + .23 0.5 .001
1703 3.46 + .49 2.53 % .47 0.7 .05
1781 3.62 + .49 4.22 + .45 1.2 -
Ave. 3.61 + .41  2.85 % 1.10 0.8 .05
72 1663 JB0'E 6T &, 304 93 1.1 -
1703 3.67 + .37  7.06 + .80 1.9 .001
1781 3.81F .31  6.07 % .4k 1.6 .001
Ave, 3.76 + .44 5.81 + 1.37 5 .001
168 1663 4.27 + .38  6.42 + .23 1.5 .001
(1 wk.) 1703 4.15 + .38 5.25 + 1.52 1.3 -
1781 3.42 + .90 5.05 + .61 La5 .01
Ave. 3.95 + .68 5.57 + 1.08 1.4 .001

*Numerical figures express the enzyme activities, moles of substrate
converted per kilogram of dry weight tissue per hour (moles/kg dry
wt./hr.), and all values are the mean + S.D. of 5 determinations.
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TABLE XII

The effects of ultraviolet light on the activity of LDH.

: Non~

Hour after Animal irradiated Irradiated
irradiation number epidermis(8)* epidermis(B)*  (B)/(A) P
6 1663 50 £ 3.7 17edid 8.0 1.1 -
1703 13.1 + 2.7 20.4 + 5.8 1.5 .05
1781 Ihitigs 2.8 9.4 + 1.4 0.8 -——
Ave. 13.4 + 2.9 3384 6.8 1.2 ---
12 1663 24,1 + 2.1 23.4 4+ 8.0 1.0 ---
1703 16.1 ¢ 5.3 13.7 & 2.4 0.9 -—
1781 20.2 + 4.4 101 4 'Sed 0.8 -——
Ave. 205%: & 0.2 17.8 4 B+l 0.9 -
24 1663 22,2 4+ 6.4 14.8 + 2.8 0.7 .05
1703 20.0 + 9.5 24.7 + 1.9 1.2 -——
1781 16.2 + 4.1 12 S S 1.2 -
Ave. RL.2i% 6,1 19.4 + 4.7 0.9 -——
48 1663 26.5 + 4.7 21,0 + 5.3 0.8 -
1703 17.5 + 5.4 12.4 + 3.2 0.7 -
1781 19.4 4+ 6.0 26.6 % 1.5 1.4 -
Ave. 1.1 = 6.5 20.0. % 7.9 1.0 -——-
72 1663 22.4 4+ 4.5 Ibed 4372 0.8 .05
1703 18.5 % 2.8 32.3 + 6.1 1ad 01
1781 18.4 + 2.1 19.7 % 3.8 Ll -
Ave, 9. 7 4 8s5 22,43 7.9 1.1 -
168 1663 20.1 + 2.7 32.8 4+ 8.4 1.6 .05
(1 wk.) 1703 15.4 & 3.1 22;3 '+ 9.8 1.5 -——
1781 14.6 + 2.7 22.1 $:5.3 1.5 .05
Ave. 16.7 &+ &.2 257 % 8.8 15 .001

*Numerical figures express the enzyme activities, moles of substrate
converted per kilogram of dry weight tissue per hour (moles/kg dry wt./
hr.), and all values are the mean + S.D. of 5 determinations.
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TABLE XIII

The effects of ultraviolet light on the activity of ICDH.

Non-

Hour after Animal irradiatec} Irradiated 3
irradiation number epidermis A)* epidennis(B)’: (BY/(A) P
6 ‘ 1663 .84 + .17 .89 4+ .18 o} ==
1703 - 18 % 10 .91 + .06 152 ——
1781 .64 + .08 .60 4+ .16 0.9 e
Ave. .76 4+ .14 .80 + .19 1.0 ——
12 1663 1.08 + .09 .55 + .10 0.5 .001
1703 .54 + .09 .52 + .06 0.9 -
1781 .87 + .10 oD He [0 0.9 =i
Ave. .83 + .24 .61 + .12 0.7 .01
24 1663 04+ .12 .56 + .07 0.6 .001
1703 .81 + .16 .64 + .16 0.8 -
1781 1.00 + .09 .80 + .14 0.8 .05
Ave. M. LI S L 87 & 18 0.7 .001
48 1663 1.08 + .32 .55 + .14 0.5 .05
1703 1.14 + .23 36 & /08 0.3 .001
1781 1,12 + ,11 .88 + .23 0.8 S5k
Ave. Faddi o2 .60 + .26 0.5 .05
72 1663 151214 19 .62 + .06 0.6 001
1703 94 3,22 1.17 + .26 1.2 -
1781 1.01 + .23 1.20 + .29 1ii2 -—-
Ave. 1.02 + .21 1.00 + .34 1.0 -
168 1663 <98 4 43 1.24 % .22 L3 -—
(1 wk.) 1703 1.00 % .30 .92 4+ .15 0.9 -—--
1781 1.03 + .11 Leli7 e e22 1.1 -
Ave. 1.00 4+ .18 1T 2 23 1.1 ---

*Numerical figures express the enzyme activities, moles of substrate
converted per kilogram of dry weight tissue per hour (moles/kg dry
wt./hr.), and all values are the mean + S.D. of 5 determinations.
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TABLE XIV

The effects of ultraviolet light on the activity of MDH.

Non-
Hour after  Animal irradiated Irradiated

irradiation number epidermis(A)* epidermis(B)¥*  (B)/(A) P
6 1663 14.0 + 2.3 13.3 + 4.4 1.0 -
1703 Ul v 1T 12.4 + 2.4 i | -

1781 11.1 + 1.7 11.2 + 1.0 1.0 -

Ave. 17. 59 2.2 12.3 % 2.9 1.0 .

12 1663 15.1 + 5.5 16.9 + 2.5 i foul -
1703 12.2 + 1.9 Y3304 109 1P -

1781 14.0 % 4.4 12,0 £ 1.1 0.9 e

Ave. 13.8 ¥ 4.0 14,1 ¥ 2.8 0.9 —ro

24 1663 14.4 + 1.2 1203 il o2 0.9 .05
1703 9.8 + 3.9 11.8 + 3.0 1.2 -——

1781 13:3. ¢+ 2.& 13.9 + 2.9 1.0 -——

Ave. 12.5 * 3.3 12.7 2.5 1.0 —

48 1663 14.8 + 3.9 160 =24 0.7 Ze
1703 12,7 % 9.9 8.6 + 1.7 0.7 .05

1781 15.3 + 1.7 11.4 4+ 1.5 0.7 01
Ave, 14.3 + 3.0 10.0 + 2.3 0.7 .001

72 1663 11.0 + 2.3 14.1 + 3.4 1.3 ———
1703 16.1 + 3.9 14.9 + 1.8 0.9 -——

1781 2.5 + LB 13.1 + 1.7 1.0 -

Ave. 3.8 T 5.4 14.1 % 2.4 R was

168 1663 18.0 + 5.0 IS4 & 2.7 0.9 -—-
(1 wk.) 1703 14.5 + 3.2 9.7 #.2,1 0.7 .05
1781 14.6 + 2.6 12.5 + 2.0 0.9 -

Ave. 15.7 + 3.8 12.5 + 3.2 0.8 .05

*Numerical figures'express the enzyme activities, moles of substrate
converted per kilogram of dry weight tissue per hour (moles/kg dry
wt./hr.), and all values are the mean + S.D. of 5 determinations.



TABLE XV

60

Analyses of variance on 90 determinations of each enzyme activity in
the control epidermis of ultraviolet irradiation experiment.

G-6-PDH
Source Ss df MS F
Between group 0.05 5 0.010 0.52*% &3,
Within group 0.23 12 0.019
Total 0.28 17
6=~PGDH
Source SS daf MS F
Between group 0.02 5 0.004 0.04% <3,
Within group 0.12 12 0.01
Total 0.14 17
GAPDH
Source SS df MS F
Between group 18.3 5 3.66 6.6%% >5,
Within group 6.6 12 0.55
Total 24.9 17
LDH
Source SS df MS F
Between group 123.6 5 24,72 L.2% £3
Within group 231.6 12 19.30
Total 355.2 17
ICDH
Source SsS df MS F
Between group 0.25 5 0.05 2.5 {3,
Within group 0.23 12 0.02
Total 0.48 17
MDH
Source SS df MS F
Between group 10.49 5 2,10 - 0.3* <3,
Within group 72,88 12 6.07
Total 83.37 17

#* Individual variation is insignificant

*%*Individual variation is significant

11

11

06

.11

11

11

(P 0.01)



Figure 6

Changing curves of enzyme activities in the epidermis after

ultraviolet light irradiation.

The dotted lines indicate the means of each enzyme activity
in the nonirradiated epidermis which has no significant
individual variation (Table XV). In ordinate enzyme activity
is expressed as moles per hour per kilogram dry weight

epidermis, Abscissa indicates hours after UVL irradiation.
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III. Mechanical injury by scraping

All enzymatic changes during wound healing are listed in
Tables XVI, XVII, XVIII, XIX, XX, and XXI and are summarized
in Figures 7, 8, and 9. The enzyme activity of the control
epidermis, which was taken from the adjacent area approximately
1 cm away from the wound site, showed remarkable variation and
fluctuated during the wound healing as) it did in the wounded
epidermis. Therefore, the control tissue may not have been an
appropriate control for the wounded tissue. However, these
unusual variations in the control tissue may indicate that the
epidermis adjacent to the wound may be involved in the process
of wound healing.

A comparison of the data from the wound experiment with
those from normal epidermis in the ultraviolet irradiation experi-
ment showed that the enzymatic changes during the wound healing
were within the normal ranges with the exception of glucosé—é-
phosphate dehydrogenase. The G-6-PDH activity of the control
epidermis was in about the normal range, and a significant 40%-
60% increase in activity was observed from the 2nd day on after

wounding (Table XVI, Fig. 7).



63
TABLE XVI
Glucose~6~phosphate dehydrogenase activity of wounded and control

epidermis expressed as moles substrate converted per hour per
kilogram dry weight of epidermal tissue.

Day
after Control Wounded
wound Animal # epidermis(A) epidermis(B) (B)/(A) P
1 1770 .26 + .05% 27 + .08 1.0 -——
1799 325 .10 .90 ¥ .42 2.8 01
1801 % 213 .21 4+ ,07 1.0 o
Ave, 27 F 16 .57 + .45 2.1 -
2 1770 41 + .04 .89 + .34 2.2 .05
1799 67 F .21 63 F .17 0.9 .
1801 v AT 85 + .14 1.6 .05
Ave. 57 E.u22 75 £ .24 .5 .05
4 1770 49 ¥ 1% 1.01 + .28 3.5 .01
1799 .96 ¥ .20 .84 ¥ .19 0.9 N
1801 .61 * .10 TS 14 1.3 ——-
Ave. .62 + .31 .87 ¥ .22 1.4 .05
8 1770 .28 + .16 61 + .14 2.2 .05
1799 47 + .12 .88 4+ .30 1.4 ——-
1801 49 ¥ .15 4 F 41 1.5 -
Ave. 42 %16 .68 ¥ .29 1.6 .05
14 1770 .45 4+ .11 .65 + .08 1.5 .05
1799 .64 + .03 .83 + .13 13 .001
1801 .60 + .03 .85 ¥ .09 1.4 .001
Ave. .56 + .10 78 ¥ .13 1.4 .001
21 1770 .37 + .07 40 + .15 1.1 —--
1799 .25 1 .06 61 ¥ .23 2.4 .05
1801 .76 ¥ .21 1.04 ¥ .35 1.4 ——-
Ave, A7 + .27 .63 + .33 a3 -——

*Figures represent the mean + standard deviation of 5 determinations,
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TABLE XVII
6-Phosphogluconate dehydrogenase activity of wounded and control

epidermis expressed as moles substrate converted per hour per
kilogram dry weight of epidermal tissue.

Day .
after Control Wounded
wound Animal # epidermis(A) epidermis(B) (B)/(A) P
i 1770 25 % .07% .34 4+ .06 1.4 -
1799 .25 + .04 .34 + .10 1.4 -——
1801 26 4 Q3 41 + .28 1.6 -—e
Ave. v g M3 .36 + .16 1.4 .05
2 1770 .34 + .05 .27 + .05 0.8 ——
1799 .26 + .09 .35 + .04 1.3 -
1801 42 + .06 48 + .06 1.1 -
Ave. .34 + .09 36+ .10 Tl -
4 1770 «01 2 JO4 47 + .03 2.2 .001
1799 .39 + .07 46 + .06 1.2 ——=
1801 .43 + .08 29 + .07 1.4 .05
Ave. .34 + .11 .51 + .08 1.5 .001
8 1770 <o U3 <32 % S 1.6 .05
1799 26 + .85 .36 + .04 I:4 .01
1801 aed = 09 49 ¥ .17 2ol .05
Ave, 23 ¥ 06 -39 & .13 1.7 .001
14 1770 .22 + .04 .28 + .04 1.3 -
1799 «30 % ,03 40 + .08 1.3 el
1801 wr % 03 .36 + .04 1.3 .05
Ave. .26 + .05 .35 £ .07 1.3 .01
21 1770 .35 + .16 28 # .16 0.8 -
1799 ses ¥ 03 .24 + .04 1.0 -——-
1801 40 + .04 .45 + .07 1.1 ——-
Ave. 38 e L =3 + 18 1.0 -——-

*Figures represent the mean + standard deviation of 5 determinations.
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TABLE XVIII

Glyceraldehyde-3~phosphate dehydrogenase activity of wounded and
control epidermis expressed as moles substrate converted per hour
per kilogram dry weight of epidermal tissue.

Day
after Control Wounded
wound - Animal # epidermis(A) epidermis(B) (B)/(A) P
1 1770 1.77 + ,39% - 3.25 & .24 F .001
1799 2.81 + .67 3.80 ¥ 1,14 1.4 ---
1801 2.47 + .45 3.90 + .36 1.6 .001
Ave. 2.35 + .65 3.65 + .71 1.6 .001
2 1770 1.60 + .13 2.64 + .54 1.7 .01
1799 2.31 + .27 3.30-+ .58 1.5 .001
1801 3.57 + .31 4,28 ¥ .70 1.2 ——-
Ave. 2.49 + .87 3.47 + .89 1.4 .05
4 1770 3.25 + .32 7.57 £ 1,19 2.3 .001
1799 2.82 ¥ 1.25 6.75 + .95 2.4 .001
1801 3.94 + 1.51 4,33 + ,78 ey | -
Ave, 346 & 1,27 5.82 + 1.72 L7 .001
8 1770 2,34 4 A2 3.20 + .74 1.5 .05
1799 2.55+ .73 5.76 + 1.91 2.3 .01
1801 3.11 + .93 5.31 + 1.06 1.5 .01
Ave. 2.60 + .76 4,87 + 1.68 1.9 .01
14 1770 1.35 + .36 LT 4 .13 1.3 -—
1799 2.10 + .28 2.60 + .53 12 -
1801 1.84 + .50 3.20 .46 .9 .01
Ave. 1.76 + .48 2.52 + .71 1.4 .05
21 1770 1.97 + .42 1.75 + .85 0.9 ===
1799 1.32 ¥ .51 2.01 + .30 1.5 .05
1801 3.35 &+ .77 2.96 + .47 0.9 ---
Ave. 2.21 +1.03 2. 19 &= 75 1.0 ———

*Figures represent the mean + standard deviation of 5 determinations.
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TABLE XIX

Lactate dehydrogenase activity of wounded and control epidermis
expressed as moles substrate converted per hour per kilogram dry
welght of epidermal tissue.

Day
after Control Wounded
wound Animal # epidermis () epidermis(B) (B)/(A) P
1 1770 12:8 28,75 1734 b 1.4 -
1799 15.1 + 4.2 1336 ¥ 5.1 0.9 -
1801 17 T4 8 1 20.6 + 2.1 1.2 -
Ave. 15.0 + 4.3 17.2 + 4.9 1.3 -——
2 1770 8.7 & 2.4 12.5 + 1.5 1.4 .05
1799 10.9 + 1.0 10.1 + 2.7 0.9 -
1801 11.9 + 3.5 19::9 3 LS L7 .01
Ave. 10.6 + 2.7 14.2 ¥ 4.6 1.3 .05
4 1770 G319 8.9 4 B.b Ll -
1799 10.2 &+ 3.7 13.8 + 1.1 Iz -—-
1801 16.7 + 4.2 136, % 359 0.8 ===
Ave. 12.1 % 4.9 12.1 % 3.7 1.0 ——-
8 1770 13.0 + 2.7 10.9 + 3.1 0.8 ———
1799 9.4 + .9 17.2 & 5.6 1.8 .05
1801 8.9 + 2.0 16.1 + 2.8 1.8 .01
Ave. 10.4 + 2.6 14.7 + 4.7 1.4 .05
14 1770 11,5 + 3.9 12,3 + 4.0 LI Do
1799 14.5 ¥ 3.6 12.0 ¥ 2.8 0.8 ---
1801 15.9 + 2.7 16.2 + 3.3 1.0 ---
Ave. 14.0 + 3.7 13.5 + 3.7 1.0 -
21 1770 R ol 1.0 + 3.2 1.1 wm-
1799 a8 41125 9.8 + 2.4 0.8 —--
1801 19.6 + 7.4 14.9 * 1.6 08 ---
Ave. 13.5 + 6.0 11.9 ¥ 3.2 0.9 ---

*Figures represent the mean + standard deviation of 5 determinations.
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TABLE XX

Isocitrate dehydrogenase activity of wounded and control epidermis
expressed as moles substrate converted per hour per kilogram dry
weight of epidermal tissue.

Day
after Control Wounded
wound Animal # epidermis(A) ' epidermis(B) (B)/ (A) P
1 1770 .74 + .08% 1.08 4 .36 1.4 ——-
1799 1,08 4 .22 B2 4+ .28 0.8 -
1801 .93 £ .20 .95 4+ .10 1.0 -
Ave. vO2 4 22 <35 £ +27 1.0 ——
2 1770 .43 + .08 92 = 10 2.1 001
1799 81 4+ 34 w10, v 0.9 -——
1801 1.61 ¥ 25 1.08 .16 0.9 i
Ave, B3k v 30 B89 & .26 1.1 .05
4 1770 94 7 5 S 1.3 ———
1799 89 ¥ .31 <23 4 .17 1.0 -—
1801 1.20 4+ .35 18 e o 20, 0.9 -
Ave, «93 & 32 .99 + .24 11 e
8 1770 .54 4+ .06 208 ¢ 15 1.5 .05
1799 o A7 A A 1.32 3 .20 1.7 .001
1801 =94 % 2D 283+ 25 1.5 .05
Ave, .74 + .20 1:1% #. ;31 1.5 .001
14 1770 .96 + .18 .73 4+ .06 0.8 .001
1799 1,38 + 25 1,18 5 .25 0.9 oL
1801 oS = .10 1.54 % .17 1.6 001
Ave. 1.10 + .25 Le1® <& =38 1.0 -
21 1770 add . Lb Bl < <18 0.9 -
' 1799 B0 + .17 .84 + .19 1.0 -—
1801 L7 - 22 Le47 + 28 1.4 .05
Ave, 87 = i 99 % 4L 1.1 =T

*Figures represent the mean + standard deviation of 5 determinations,
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TABLE XXI

Malate dehydrogenase activity of wounded and control epidermis expres-
- sed as moles substrate converted per hour per kilogram dry weight
of epidermal tissue,

Day
after Control Wounded
wound Animal # epidermis(A) epidermis(B) (B)/(A) P
1 1770 12.7 + 9% Y.l &T.7 1.7 .01
1799 158 3¢ 133 14.8 + 6.8 1.0 —e-
1801 16.3 ¥ 2.3 15.0'% 559 0.9 ——-
Ave. 1540 9.2 17.0 ¥ 6.0 1.1 -
2 1770 10.6 + 2.6 9.1 +1.9 0.9 ———
1799 10.5 + 1.5 14.9 4 1.0 1.4 .001
1801 26,2 % 1.6 20.8 + 2.9 1.3 .05
Ave. 12.4 * 3.3 14,9 1 5.2 L -
4 1770 6.8 + 1.2 6.9 + 2.1 1.0 -
1799 i0.1 = .8 15.7 + 2.4 1.6 01
1801 13.2 + 2.3 1L 1S N B 0.8 ==l
Ave. 10.0 + 3.1 11.2 & 4.1 Pl -
8 1770 8:3 3.9 1.3 +1.2 Tk -
1799 11.2/% 2.0 19.9 + 2.6 Fo8 .001
1801 13.8 + 1.6 14.3 + 1.5 1.0 ———
Ave. 11.4 + 2.5 14.8 + 4.4 1.3 .05
14 1770 9.2 + 1.5 8.7 + 2.0 0.9 ---
1799 14.5 + 2.1 14.9 + 4.1 1.0 -
1801 15.3 4+ 3.3 13.6 + 2.5 0.9 -
Ave. 13.0 ¥ 3.6 12.4 ¥ 3.9 1.0 -
21 1770 V5 % L9 8.1 +1.3 oo L ———
1799 7.7 F Dok 6.8+ 1.1 0.9 -
1801 126 42357 11.8 + 3.0 0.9 o1
Ave. 9.3 + 3.2 8.9 1 2.8 1.0 -

*Figures represent the mean + standard deviation of 5 determinations.



FIGURE 7

Changing curves of the enzyme activities of the pentose phosphate

shunt in the epidermis after wounding.

Changes in enzyme activity in the wounded (solid) and its adjacent
epidermis (circle) are compared. The shaded area represents
the normal range of each enzyme activity obtained in the UVL
experiment. In ordinate the enzyme activity is expressed as
moles per hour per kilogram dry weight tissue. Abscissa

indicates the days after wounding.
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FIGURE 8

Changing curves of the glycolytic enzyme activities in the

epidermis after wounding.

Changes in enzyme activity in the wounded (solid) and its adjacent
epidermis (circle) are compared. The shaded area represents
the normal range of each enzyme activity obtained in the UVL
experiment. In ordinate the enzyme activity is expressed as
moles per hour per kilogram dry weight tissue. Abscissé,

indicates the days after wounding.
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FIGURE 9

Changing curves of the TCA cycle enzyme activities in the

epidermis after wounding.

Changes in enzyme activity in the wounded (solid) and its adjacent
epidermis (circle) are compared. The shaded area represents
the normal range of each enzyme activity obtained in the UVL
experiment. In ordinate the enzyme activity is expressed as
moles per hour per kilogram dry weight tissue. Abscissa

indicates the days after wounding.
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DISCUSSION

Glucose metabolism can be studied by investigating either the
overall reaction or certain intermediate reactions or both. In
this work, we evaluated some of the key enzymes participating in
the intermediate reaction. All enzymes studied were analyzed
under the optimal assay condition, determined beforehand by means
of epidermal homogenates from normal animals as enzyme source.
The enzyme activity assayed under the optimal condition (the
maximal activity) cannot be used for a functional definition of the
metabolic state but may be used for an interpretation of the

metabolic potential in the experimental tissue in vivo.

The application of DMBA with dodecylbenzene on the skin
produced erythema the first week, hyperkeratosis and fissuring
with bleeding the first month, papilloma at 2-1/2 months, and
keratoacanthoma at the eighth month. Therefore, the tumor and
hyperplasia used in this study for enzyme assay can be considered
to be severely "injured' tissue, and the degree of response of the
epidermis to the damage concurs with present findings: that
marked quantitative differences in the enzyme activity were found
between experimental and normal tissues. These changes in

enzyme activities possibly reflect increased rates of their
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respective metabolic pathways, i.e., The Embden-Meyerhof, the
pentose, and the TCA cycles. The remarkable changes in glucose-
dehydnog rgan

6 -phosphate dehydrogenase and 6-phosphogluconate/kactivities
suggest that the pentose cycle contributes significantly to the tissue
repair process., This provides a reasonable explanation for the
glucose path in hyperplastic epidermis, i.e., that glucose is
utilized by the active tissue not only to produce energy (ATP) but
also to provide certain basic substances fér nucleic acids and fatty
acids synthesis., In the present experiment, howevef, no malig-
nancy developed even after 1-1/2 years of treatment with the
carcinogen,

The enzyme content and overall metabolism of tumors are
known to be qualitatively the same but quantitatively different from
those of normal tissues (89). The adaptation of an enzyme to the
environment occurs readily in microorganisms, but it has been
discovered only recently that mammalian enzymes also arAe capable
of adéptation (90, 91, 92). Enzyme induction in animal tissue may
be controlled by 2 mechanisms: 1) increase in the rate of enzyme
synthesis; 2) decrease in the rate of enzyme degradation. For
exarnple, the acéumulation of liver tryptophan pyrrolase (enzyme

induction) may be brought about by either hydrocortisone (hormone)
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through the first mechanism or by tryptophan (substrate) through
the second mechanism (91). Both inducers acted as allosteric effectors
to give an allosteric change in the enzyme molecule as described in
the introduction. The results of increased enzyme activiti‘es
observed in this study might indicate an in vivo enzyme induction in
the process of epidermal repair; however, future study at the level
of an enzyme-producing system is required to understand this
process further. The site of protein synthesis at which the enzyme
induction occurs appears to be at the transcription le§e1 from DNA
to RNA (93); a carcinogen stimulated RNA polymerase activity in
the nuclei of rat liver (94).

Since tumor tissue is characterized by an increased production
of lactate, one may expect some increases in lactate dehydrogenase
activity. Yet, lactate dehydrogenase and malate dehydrogenase
activity resulted in little change in the tumor, and hyperplasia
required a further study on the subunit level of these enzymes.
Some changes in the isozyme components have been foﬁﬁd in squamous

CeL’L carcinoma (95), malignant melanoma (96), thyroid and colon tumor
(97, 98); LDH, (M, fastest migrating subunit) was increased and
LDHg (H, slowest migrating subunit) remained unchanged or

decreased slightly and thus changed the ratio of M to H subunit.
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Changes in the ratio of M to H suggest direct evidence of the
differential synthesis of proteins which may be under the
differential regulation of genes (97).
It would be of great interest and importance to conduct similar

micro-enzyme assays on the actively invading sites of malignant

tumors (but not the malignant tumor as a whole). Since an increase
in the pentose shunt activity in malignant tumor was reported (99,
100), one might observe greater increases in glucose-6-phosphate
dehydrogenase and 6-phosphogluconate dehydrogenasé activities in
the highly malignant tissue than in benig% hyperplastic epidermis,
If this were the case, the microenzyme assay methods applied here
would greatly facilitate the clinical diagnosis of early malignancy.
A biphasic change during recovery from the erythema produced
by ultraviolet light was observed in most of the enzyme activities.
The initial increases and subsequent decreases in enzyme activity
‘during the first 48 hours in the UVL-irradiated epidermis may be
due to a conformational change in the enzyme molecules by a
photoactively produced electron which may provide a retention of
enzyme catabolism at the initial stage. The increased eﬁzyme
activity in the later phase (3rd day - lst week) may indicate an
increased biosynthesis of enzyme or an increased population of the

metabolically active basal cells.
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The isocitrate dehydrogenase studied is NADP-dependent and

is believed to be localized in the cytoplasm (89), and its increased
activity in the ''injured' epidermis is thought to be related to the

generation of NADPH for the biosynthetic purpose.
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SUMMARY AND CONCLUSIONS

1, Three types of injuries (chemical, physical, and mechanical)
were produced experimentally on the epidermis of adult rhesus

monkeys (Macaca mulatta). Fluorometric microenzyme assay

with 0.5 - 2.0 pg tissue sample provided a sufficient measure-
ment of enzyme activities in the limited area of the "injured"
epidermis as well as in the normal.

2. Keratoacanthomas and epidermal hyperplasias were developed
on the back skin of the rhesus monkey by a topical application of
dimethylbenzanthracene (DMBA). These tissues produced
contained the following enzyme activities quantitatively different
from those of the normal epidermis:

a. There was no significant difference in enzyme activities
between the tumor and the hyperplastic epidermis; this concurs
with the nature of the tumor which is benign.

b. In the pentose phosphate shunt, glucose-6-phosphate
dehydrogenase activity was 5x higher and 6-phosphogluconate
dehydrogenase activity was 4 times higher in the tumor and hyper-
plastic epidermis than in the normal epidermis.

c. In glycolysis glyceraldehyde-3-phosphate dehydrogenase

activity was increased 3-fold whereas lactate dehydrogenase activity
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did not show any changes in the tumor and hyperplastic epidermis.

d. In the tricarboxylic acid cycle, a 3-fold increase in
isocitrate dehydrogenase activity and little change in malate
dehydrogenase activity were observed.

3. The epidermis injured by the 10 erythema doses of ultraviolet
light responded with the following biphasic change in enzyme
activity:

a. The enzymes of the pentose phosphate shunt in thé irradiated
epidermis were increased to 20-30% at 6 hours, decreased to 10%
at 24 hours, and again increased in their activities up to 80% of the
normal at 72 hours post-irradiation.

b. The enzymes of glycolysis were increased to 20% at 6 hours,
decreased to 20% during 12-48 hours, and increased in activities
to 50% of the normal.

c. The enzymes of tricarboxylic acid cycle showed no initial
change at 6 hours but 30-50% decrease in activity during 12-48
hours, followed by 10-20% increase.

4. No dramatic changes in enzyme activity in the newly-formed

epidermal tissue and its adjacent tissue were observed during wound

healing.
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5. In all types of epidermal injury, the response of enzymes
‘participating in the pentose cycle, glucosei-6~phosphate dehydro-
genase in particular, was femarkable. Therefore, we speculate
that in the process of epidermal repair the path of glucose might
be shifted significantly via the pentose cycle so that the tissue

would also provide basic substances for nucleic acids and fatty

acids synthesis in addition to the energy (ATP).
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